Powered by Deep Web Technologies
Note: This page contains sample records for the topic "oxygenated blends commonly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Utilization of Renewable Oxygenates as Gasoline Blending Components  

SciTech Connect

This report reviews the use of higher alcohols and several cellulose-derived oxygenates as blend components in gasoline. Material compatibility issues are expected to be less severe for neat higher alcohols than for fuel-grade ethanol. Very little data exist on how blending higher alcohols or other oxygenates with gasoline affects ASTM Standard D4814 properties. Under the Clean Air Act, fuels used in the United States must be 'substantially similar' to fuels used in certification of cars for emission compliance. Waivers for the addition of higher alcohols at concentrations up to 3.7 wt% oxygen have been granted. Limited emission testing on pre-Tier 1 vehicles and research engines suggests that higher alcohols will reduce emissions of CO and organics, while NOx emissions will stay the same or increase. Most oxygenates can be used as octane improvers for standard gasoline stocks. The properties of 2-methyltetrahydrofuran, dimethylfuran, 2-methylfuran, methyl pentanoate and ethyl pentanoate suggest that they may function well as low-concentration blends with gasoline in standard vehicles and in higher concentrations in flex fuel vehicles.

Yanowitz, J.; Christensen, E.; McCormick, R. L.

2011-08-01T23:59:59.000Z

2

Oxygen Atoms Display Novel Behavior on Common Catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

11, 2008 11, 2008 Oxygen Atoms Display Novel Behavior on Common Catalyst Like waltzing dancers, the two atoms of an oxygen molecule usually behave identically when they separate on the surface of a catalyst. However, new research from the Environmental Molecular Sciences Laboratory reveals that on a particular catalyst, the oxygen atoms act like a couple dancing the tango: one oxygen atom plants itself while the other shimmies away, probably with energy partially stolen from the stationary one. Scientists from EMSL and Pacific Northwest National Laboratory discovered this unanticipated behavior while studying how oxygen interacts with reduced titanium oxide, a popular catalyst and a model oxide. Their research began with a slice of titanium oxide crystal, oriented so that titanium and oxygen

3

Biodiesel Blends  

DOE Green Energy (OSTI)

A 2-page fact sheet discussing general biodiesel blends and the improvement in engine performance and emissions.

Not Available

2005-04-01T23:59:59.000Z

4

Alternative Fuels Data Center: Biodiesel Blends  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Blends to Blends to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blends on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blends on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blends on Google Bookmark Alternative Fuels Data Center: Biodiesel Blends on Delicious Rank Alternative Fuels Data Center: Biodiesel Blends on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blends on AddThis.com... More in this section... Biodiesel Basics Blends Production & Distribution Specifications Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Biodiesel Blends Biodiesel can be blended and used in many different concentrations, including B100 (pure biodiesel), B20 (20% biodiesel, 80% petroleum diesel),

5

Thermal Stabilization Blend Plan  

SciTech Connect

The Blend Plan was written to identify items stored outside of the 213 MBA that will be moved into the MBA for thermal stabilization processing. Product quality oxide items stored in our vaults are found in Appendix A. A table is included in Appendix A which details the isotopic values for the oxide items and calculates the amount of material of any specific run that can be placed in a product can and maintain the 15 watt limit to meet storage vault specifications. This Revision of the Blend Plan adds items of lesser dose rate to lower the exposure of the workers until additional shielding can be added to the gloveboxes.

RISENMAY, H.R.

2000-04-20T23:59:59.000Z

6

Ethanol-blended Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Ethanol-Blended Ethanol-Blended Fuels A Study Guide and Overview of: * Ethanol's History in the U.S. and Worldwide * Ethanol Science and Technology * Engine Performance * Environmental Effects * Economics and Energy Security The Curriculum This curriculum on ethanol and its use as a fuel was developed by the Clean Fuels Development Coalition in cooperation with the Nebraska Ethanol Board. This material was developed in response to the need for instructional materials on ethanol and its effects on vehicle performance, the environment, and the economy. As a renewable alternative energy source made from grain and other biomass resources, ethanol study serves as an excellent learning opportunity for students to use in issue clarification and problem-solving activities. Ethanol illustrates that science and technology can provide us with new

7

Alternative Fuels Data Center: Ethanol Blends  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Blends to Blends to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blends on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blends on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blends on Google Bookmark Alternative Fuels Data Center: Ethanol Blends on Delicious Rank Alternative Fuels Data Center: Ethanol Blends on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blends on AddThis.com... More in this section... Ethanol Basics Blends E15 E85 Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Blends Ethanol is blended with gasoline in various amounts for use in vehicles. E10 E10 is a low-level blend composed of 10% ethanol and 90% gasoline. It is

8

NMOG Emissions Characterizations and Estimation for Vehicles Using Ethanol-Blended Fuels  

DOE Green Energy (OSTI)

Ethanol is a biofuel commonly used in gasoline blends to displace petroleum consumption; its utilization is on the rise in the United States, spurred by the biofuel utilization mandates put in place by the Energy Independence and Security Act of 2007 (EISA). The United States Environmental Protection Agency (EPA) has the statutory responsibility to implement the EISA mandates through the promulgation of the Renewable Fuel Standard. EPA has historically mandated an emissions certification fuel specification that calls for ethanol-free fuel, except for the certification of flex-fuel vehicles. However, since the U.S. gasoline marketplace is now virtually saturated with E10, some organizations have suggested that inclusion of ethanol in emissions certification fuels would be appropriate. The test methodologies and calculations contained in the Code of Federal Regulations for gasoline-fueled vehicles have been developed with the presumption that the certification fuel does not contain ethanol; thus, a number of technical issues would require resolution before such a change could be accomplished. This report makes use of the considerable data gathered during the mid-level blends testing program to investigate one such issue: estimation of non-methane organic gas (NMOG) emissions. The data reported in this paper were gathered from over 600 cold-start Federal Test Procedure (FTP) tests conducted on 68 vehicles representing 21 models from model year 2000 to 2009. Most of the vehicles were certified to the Tier-2 emissions standard, but several older Tier-1 and national low emissions vehicle program (NLEV) vehicles were also included in the study. Exhaust speciation shows that ethanol, acetaldehyde, and formaldehyde dominate the oxygenated species emissions when ethanol is blended into the test fuel. A set of correlations were developed that are derived from the measured non-methane hydrocarbon (NMHC) emissions and the ethanol blend level in the fuel. These correlations were applied to the measured NMHC emissions from the mid-level ethanol blends testing program and the results compared against the measured NMOG emissions. The results show that the composite FTP NMOG emissions estimate has an error of 0.0015 g/mile {+-}0.0074 for 95% of the test results. Estimates for the individual phases of the FTP are also presented with similar error levels. A limited number of tests conducted using the LA92, US06, and highway fuel economy test cycles show that the FTP correlation also holds reasonably well for these cycles, though the error level relative to the measured NMOG value increases for NMOG emissions less than 0.010 g/mile.

Sluder, Scott [ORNL; West, Brian H [ORNL

2011-10-01T23:59:59.000Z

9

NMOG Emissions Characterization and Estimation for Vehicles Using Ethanol-Blended Fuels  

Science Conference Proceedings (OSTI)

Ethanol is a biofuel commonly used in gasoline blends to displace petroleum consumption; its utilization is on the rise in the United States, spurred by the biofuel utilization mandates put in place by the Energy Independence and Security Act of 2007 (EISA). The United States Environmental Protection Agency (EPA) has the statutory responsibility to implement the EISA mandates through the promulgation of the Renewable Fuel Standard. EPA has historically mandated an emissions certification fuel specification that calls for ethanol-free fuel, except for the certification of flex-fuel vehicles. However, since the U.S. gasoline marketplace is now virtually saturated with E10, some organizations have suggested that inclusion of ethanol in emissions certification fuels would be appropriate. The test methodologies and calculations contained in the Code of Federal Regulations for gasoline-fueled vehicles have been developed with the presumption that the certification fuel does not contain ethanol; thus, a number of technical issues would require resolution before such a change could be accomplished. This report makes use of the considerable data gathered during the mid-level blends testing program to investigate one such issue: estimation of non-methane organic gas (NMOG) emissions. The data reported in this paper were gathered from over 600 cold-start Federal Test Procedure (FTP) tests conducted on 68 vehicles representing 21 models from model year 2000 to 2009. Most of the vehicles were certified to the Tier-2 emissions standard, but several older Tier-1 and national low emissions vehicle program (NLEV) vehicles were also included in the study. Exhaust speciation shows that ethanol, acetaldehyde, and formaldehyde dominate the oxygenated species emissions when ethanol is blended into the test fuel. A set of correlations were developed that are derived from the measured non-methane hydrocarbon (NMHC) emissions and the ethanol blend level in the fuel. These correlations were applied to the measured NMHC emissions from the mid-level ethanol blends testing program and the results compared against the measured NMOG emissions. The results show that the composite FTP NMOG emissions estimate has an error of 0.0015 g/mile {+-}0.0074 for 95% of the test results. Estimates for the individual phases of the FTP are also presented with similar error levels. A limited number of tests conducted using the LA92, US06, and highway fuel economy test cycles show that the FTP correlation also holds reasonably well for these cycles, though the error level relative to the measured NMOG value increases for NMOG emissions less than 0.010 g/mile.

Sluder, Scott [ORNL; West, Brian H [ORNL

2012-01-01T23:59:59.000Z

10

Tropexx – Blending System - Home - Energy Innovation Portal  

• Process gas-blending system • Blending of volatile liquids or gases PATENTS AND AWARDS The Y-12 National Security Complex has

11

Tropexx – Blending System - Energy Innovation Portal  

The Tropexx Blending System is a high-resolution blending system that works with gases, vapors and volatile (readily vaporizable) liquids in addition ...

12

Low-Level Ethanol Fuel Blends  

DOE Green Energy (OSTI)

This fact sheet addresses: (a) why Clean Cities promotes ethanol blends; (b) how these blends affect emissions; (c) fuel performance and availability; and (d) cost, incentives, and regulations.

Not Available

2005-04-01T23:59:59.000Z

13

South Texas Blending | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon South Texas Blending Jump to: navigation, search Name South Texas Blending Place Laredo, Texas Zip...

14

Alternative Fuels Data Center: Ethanol Blend Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Blend Blend Definition to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Definition on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Definition on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Definition on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Definition on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Definition on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Definition An ethanol blend is defined as a blended motor fuel containing ethyl alcohol that is at least 99% pure, derived from agricultural products, and

15

Thermal Stabilization Blend Plan  

SciTech Connect

The Blend Plan was written to identify items stored outside of the 213 MBA that will be moved into the MBA for thermal stabilization processing. Product quality oxide items stored in our vaults are found in Appendix B. A table is included in Appendix B which details the isotopic values for the oxide items and calculates the amount of material of any specific run that can be placed in a product can and maintain the 15 watt limit to meet storage vault specifications. There is no chance of exceeding the 15 watt limit with items starting with the designations ''LAO'' or ''PBO.'' All items starting with the designations ''BO,'' ''BLO,'' and ''DZ0'' are at risk of exceeding the 15 watt specification if the can were to be filled.

RISENMAY, H.R.

1999-08-19T23:59:59.000Z

16

Thermal Stabilization Blend Plan  

SciTech Connect

This Blend Plan documents the feed material items that are stored in 2736-2 vaults, the 2736-ZB 638 cage, the 192C vault, and the 225 vault that will be processed through the thermal stabilization furnaces. The purpose of thermal stabilization is to heat the material to 1000 degrees Celsius to drive off all water and leave the plutonium and/or uranium as oxides. The stabilized material will be sampled to determine the Loss On Ignition (LOI) or percent water. The stabilized material must meet water content or LOI of less than 0.5% to be acceptable for storage under DOE-STD-3013-99 specifications. Out of specification material will be recycled through the furnaces until the water or LOI limits are met.

RISENMAY, H.R.

2000-05-02T23:59:59.000Z

17

Vehicle Technologies Office: Intermediate Ethanol Blends  

NLE Websites -- All DOE Office Websites (Extended Search)

Intermediate Ethanol Intermediate Ethanol Blends to someone by E-mail Share Vehicle Technologies Office: Intermediate Ethanol Blends on Facebook Tweet about Vehicle Technologies Office: Intermediate Ethanol Blends on Twitter Bookmark Vehicle Technologies Office: Intermediate Ethanol Blends on Google Bookmark Vehicle Technologies Office: Intermediate Ethanol Blends on Delicious Rank Vehicle Technologies Office: Intermediate Ethanol Blends on Digg Find More places to share Vehicle Technologies Office: Intermediate Ethanol Blends on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Fuel Effects on Combustion Lubricants Natural Gas Research Biofuels End-Use Research

18

Alternative Fuels Data Center: Biodiesel Blend Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Blend Biodiesel Blend Standards to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Standards on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Standards on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Standards on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Standards on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Standards on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Standards Biodiesel blends are considered compliant with Texas Low Emissions Diesel Fuel (TxLED) regulations if the diesel fuel is compliant with TxLED

19

Alternative Fuels Data Center: Ethanol Blending Regulation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Blending Ethanol Blending Regulation to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blending Regulation on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blending Regulation on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blending Regulation on Google Bookmark Alternative Fuels Data Center: Ethanol Blending Regulation on Delicious Rank Alternative Fuels Data Center: Ethanol Blending Regulation on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blending Regulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blending Regulation Gasoline suppliers who provide fuel to distributors in the state must offer gasoline that is suitable for blending with fuel alcohol. Suppliers may not

20

Alternative Fuels Data Center: Ethanol Blend Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Blend Ethanol Blend Requirement to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Requirement on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Requirement on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Requirement on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Requirement on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Requirement on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Requirement Suppliers that import gasoline for sale in North Carolina must offer fuel that is not pre-blended with fuel alcohol but that is suitable for future

Note: This page contains sample records for the topic "oxygenated blends commonly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Alternative Fuels Data Center: Ethanol Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Blend Mandate Ethanol Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Mandate on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Mandate on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Mandate All gasoline offered for sale at retail stations within the state must contain 10% ethanol (E10). This requirement is waived only if a distributor is unable to purchase ethanol or ethanol-blended gasoline at the same or

22

MTBE, Oxygenates, and Motor Gasoline  

Gasoline and Diesel Fuel Update (EIA)

MTBE, Oxygenates, and MTBE, Oxygenates, and Motor Gasoline Contents * Introduction * Federal gasoline product quality regulations * What are oxygenates? * Who gets gasoline with oxygenates? * Which areas get MTBE? * How much has been invested in MTBE production capacity? * What does new Ethanol capacity cost? * What would an MTBE ban cost? * On-line information resources * Endnotes * Summary of revisions to this analysis Introduction The blending of methyl tertiary butyl ether (MTBE) into motor gasoline has increased dramatically since it was first produced 20 years ago. MTBE usage grew in the early 1980's in response to octane demand resulting initially from the phaseout of lead from gasoline and later from rising demand for premium gasoline. The oxygenated gasoline program stimulated an

23

Method to blend separator powders  

DOE Patents (OSTI)

A method for making a blended powder mixture, whereby two or more powders are mixed in a container with a liquid selected from nitrogen or short-chain alcohols, where at least one of the powders has an angle of repose greater than approximately 50 degrees. The method is useful in preparing blended powders of Li halides and MgO for use in the preparation of thermal battery separators.

Guidotti, Ronald A. (Albuquerque, NM); Andazola, Arthur H. (Albuquerque, NM); Reinhardt, Frederick W. (Albuquerque, NM)

2007-12-04T23:59:59.000Z

24

Alternative Fuels Data Center: Biofuel Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Blend Mandate Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Biofuel Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Biofuel Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Biofuel Blend Mandate on Google Bookmark Alternative Fuels Data Center: Biofuel Blend Mandate on Delicious Rank Alternative Fuels Data Center: Biofuel Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Biofuel Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Blend Mandate All Gasoline sold or offered for sale in Minnesota must contain at least: 10% corn-based ethanol by volume or the maximum percent by volume of corn-based ethanol authorized in a waiver issued by the U.S. Environmental

25

Alternative Fuels Data Center: Biodiesel Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Blend Biodiesel Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Mandate on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Mandate on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Mandate All diesel fuel sold to state agencies, political subdivisions of the state, and public schools for use in on-road motor vehicles must contain at

26

Alternative Fuels Data Center: Ethanol Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Blend Mandate Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Mandate on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Mandate on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Mandate Within one year after the Montana Department of Transportation has certified that ethanol producers in the state have produced a total of 40 million gallons of denatured ethanol and have maintained that level of

27

Alternative Fuels Data Center: Biodiesel Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Blend Biodiesel Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Mandate on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Mandate on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Mandate In September 2013, the commissioners of the Minnesota Department of Agriculture, Department of Commerce, and Pollution Control Agency determined that all conditions had been satisfied to implement a 10%

28

Alternative Fuels Data Center: Biodiesel Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Blend Biodiesel Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Mandate on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Mandate on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Mandate Pursuant to state law, all diesel motor vehicle fuel and all other liquid fuel used to operate motor vehicle diesel engines in Massachusetts must

29

Biodiesel Production and Blending Tax Credit (Kentucky) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biodiesel Production and Blending Tax Credit (Kentucky) Biodiesel Production and Blending Tax Credit (Kentucky) Eligibility Commercial Industrial Program Information Kentucky...

30

Intrinsically safe moisture blending system  

DOE Patents (OSTI)

A system for providing an adjustable blend of fluids to an application process is disclosed. The system uses a source of a first fluid flowing through at least one tube that is permeable to a second fluid and that is disposed in a source of the second fluid to provide the adjustable blend. The temperature of the second fluid is not regulated, and at least one calibration curve is used to predict the volumetric mixture ratio of the second fluid with the first fluid from the permeable tube. The system typically includes a differential pressure valve and a backpressure control valve to set the flow rate through the system.

Hallman Jr., Russell L.; Vanatta, Paul D.

2012-09-11T23:59:59.000Z

31

Oxygen analyzer  

DOE Patents (OSTI)

An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N.sub.2), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable oxygen obtained by decomposing the sample at 1135.degree. C., or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135.degree. C. as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N.sub.2, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

Benner, William H. (Danville, CA)

1986-01-01T23:59:59.000Z

32

Fuel blending with PRB coal  

Science Conference Proceedings (OSTI)

Many methods exist to accomplish coal blending at a new or existing power plant. These range from a basic use of the secondary (emergency) stockout/reclaim system to totally automated coal handling facilities with segregated areas for two or more coals. Suitable choices for different sized coal plant are discussed, along with the major components of the coal handling facility affected by Powder River Basin coal. 2 figs.

McCartney, R.H.; Williams, R.L. Jr. [Roberts and Schaefer, Chicago, IL (United States)

2009-03-15T23:59:59.000Z

33

Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Fuel Blend Ethanol Fuel Blend Dispensing Regulations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fuel Blend Dispensing Regulations

34

Alternative Fuels Data Center: Biodiesel Blend Purchase Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Blend Blend Purchase Requirement to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Purchase Requirement on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Purchase Requirement on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Purchase Requirement on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Purchase Requirement on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Purchase Requirement on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Purchase Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Purchase Requirement Diesel fuel that the New Hampshire Department of Transportation

35

Alternative Fuels Data Center: Biofuel Blend Dispenser Labeling Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuel Blend Biofuel Blend Dispenser Labeling Requirement to someone by E-mail Share Alternative Fuels Data Center: Biofuel Blend Dispenser Labeling Requirement on Facebook Tweet about Alternative Fuels Data Center: Biofuel Blend Dispenser Labeling Requirement on Twitter Bookmark Alternative Fuels Data Center: Biofuel Blend Dispenser Labeling Requirement on Google Bookmark Alternative Fuels Data Center: Biofuel Blend Dispenser Labeling Requirement on Delicious Rank Alternative Fuels Data Center: Biofuel Blend Dispenser Labeling Requirement on Digg Find More places to share Alternative Fuels Data Center: Biofuel Blend Dispenser Labeling Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Blend Dispenser Labeling Requirement

36

Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Blend Ethanol Blend Infrastructure Grant Program to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Infrastructure Grant Program

37

Oxygen analyzer  

DOE Patents (OSTI)

An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N/sub 2/), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable obtained by decomposing the sample at 1135/sup 0/C, or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135/sup 0/C as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N/sub 2/, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

Benner, W.H.

1984-05-08T23:59:59.000Z

38

Spinodal decomposition in multicomponent polymer blends  

Science Conference Proceedings (OSTI)

... 10091, Ref. 28. 53 In previous studies by the Exxon/Princeton group on blends of ethylene– butene copolymers, Ref. 54 it ...

2011-03-01T23:59:59.000Z

39

Recycling of rubber tires in electric arc furnace steelmaking: simultaneous combustion of metallurgical coke and rubber tyres blends  

Science Conference Proceedings (OSTI)

The present study investigates the effect of addition of waste rubber tires on the combustion behavior of its blends with coke for carbon injection in electric arc furnace steelmaking. Waste rubber tires were mixed in different proportions with metallurgical coke (MC) (10:90, 20:80, 30:70) for combustion and pyrolysis at 1473 K in a drop tube furnace (DTF) and thermogravimetric analyzer (TGA), respectively. Under experimental conditions most of the rubber blends indicated higher combustion efficiencies compared to those of the constituent coke. In the early stage of combustion the weight loss rate of the blends is much faster compared to that of the raw coke due to the higher volatile yield of rubber. The presence of rubber in the blends may have had an impact upon the structure during the release and combustion of their high volatile matter (VM) and hence increased char burnout. Measurements of micropore surface area and bulk density of the chars collected after combustion support the higher combustion efficiency of the blends in comparison to coke alone. The surface morphology of the 30% rubber blend revealed pores in the residual char that might be attributed to volatile evolution during high temperature reaction in oxygen atmosphere. Physical properties and VM appear to have a major effect upon the measured combustion efficiency of rubber blends. The study demonstrates that waste rubber tires can be successfully co-injected with metallurgical coke in electric arc furnace steelmaking process to provide additional energy from combustion. 44 refs., 11 figs., 2 tabs.

Magdalena Zaharia; Veena Sahajwalla; Byong-Chul Kim; Rita Khanna; N. Saha-Chaudhury; Paul O'Kane; Jonathan Dicker; Catherine Skidmore; David Knights [University of New South Wales, Sydney, NSW (Australia). School of Materials Science and Engineering

2009-05-15T23:59:59.000Z

40

Alternative Fuels Data Center: Biofuel Blending Capability Requirements and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuel Blending Biofuel Blending Capability Requirements and Regulations to someone by E-mail Share Alternative Fuels Data Center: Biofuel Blending Capability Requirements and Regulations on Facebook Tweet about Alternative Fuels Data Center: Biofuel Blending Capability Requirements and Regulations on Twitter Bookmark Alternative Fuels Data Center: Biofuel Blending Capability Requirements and Regulations on Google Bookmark Alternative Fuels Data Center: Biofuel Blending Capability Requirements and Regulations on Delicious Rank Alternative Fuels Data Center: Biofuel Blending Capability Requirements and Regulations on Digg Find More places to share Alternative Fuels Data Center: Biofuel Blending Capability Requirements and Regulations on AddThis.com... More in this section...

Note: This page contains sample records for the topic "oxygenated blends commonly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Characteristics of Engine Emissions from Different Biodiesel Blends.  

E-Print Network (OSTI)

??Engine exhaust characteristics from two different biodiesel blends, formulated from soy and animal fat biodiesel blended with ultra-low sulphur diesel, were tested during two different… (more)

Wan, Curtis

2012-01-01T23:59:59.000Z

42

Impact of Ethanol Blending on U.S. Gasoline Prices  

DOE Green Energy (OSTI)

This study assesses the impact of ethanol blending on gasoline prices in the US today and the potential impact of ethanol on gasoline prices at higher blending concentrations.

Not Available

2008-11-01T23:59:59.000Z

43

Green emitting phosphors and blends thereof  

DOE Patents (OSTI)

Phosphor compositions, blends thereof and light emitting devices including white light emitting LED based devices, and backlights, based on such phosphor compositions. The devices include a light source and a phosphor material as described. Also disclosed are phosphor blends including such a phosphor and devices made therefrom.

Setlur, Anant Achyut (Niskayuna, NY); Siclovan, Oltea Puica (Rexford, NY); Nammalwar, Prasanth Kumar (Bangalore, IN); Sathyanarayan, Ramesh Rao (Bangalore, IN); Porob, Digamber G. (Goa, IN); Chandran, Ramachandran Gopi (Bangalore, IN); Heward, William Jordan (Saratoga Springs, NY); Radkov, Emil Vergilov (Euclid, OH); Briel, Linda Jane Valyou (Niskayuna, NY)

2010-12-28T23:59:59.000Z

44

PAIRWISE BLENDING OF HIGH LEVEL WASTE (HLW)  

Science Conference Proceedings (OSTI)

The primary objective of this study is to demonstrate a mission scenario that uses pairwise and incidental blending of high level waste (HLW) to reduce the total mass of HLW glass. Secondary objectives include understanding how recent refinements to the tank waste inventory and solubility assumptions affect the mass of HLW glass and how logistical constraints may affect the efficacy of HLW blending.

CERTA, P.J.

2006-02-22T23:59:59.000Z

45

Geometric skinning with approximate dual quaternion blending  

Science Conference Proceedings (OSTI)

Skinning of skeletally deformable models is extensively used for real-time animation of characters, creatures and similar objects. The standard solution, linear blend skinning, has some serious drawbacks that require artist intervention. Therefore, a ... Keywords: Skinning, dual quaternions, linear combinations, rigid transformations, transformation blending

Ladislav Kavan; Steven Collins; Ji?í Žára; Carol O'Sullivan

2008-10-01T23:59:59.000Z

46

Alternative Fuels Data Center: Biodiesel Blend Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Blend Tax Biodiesel Blend Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Tax Credit on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Tax Credit on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Tax Credit Licensed biodiesel blenders are eligible for a tax credit for special fuel, including diesel, blended with biodiesel to create a biodiesel blend. The

47

Alternative Fuels Data Center: Ethanol Blended Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Blended Fuel Ethanol Blended Fuel Definition to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blended Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blended Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blended Fuel Definition on Google Bookmark Alternative Fuels Data Center: Ethanol Blended Fuel Definition on Delicious Rank Alternative Fuels Data Center: Ethanol Blended Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blended Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blended Fuel Definition Ethanol blended fuel, such as gasohol, is defined as any gasoline blended with 10% or more of anhydrous ethanol. (Reference Idaho Statutes 63-240

48

Oxygen Isotopes  

NLE Websites -- All DOE Office Websites (Extended Search)

Pages to Isotopes Data Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and Carbon-13 in Methane 800,000 Deuterium Record and Shorter Records of...

49

Selection of best neural network for estimating properties of diesel-biodiesel blends  

Science Conference Proceedings (OSTI)

Soybean oil was transesterified with methanol in the presence of alkaline catalyst to produce methyl esters commonly known as biodiesel. Biodiesel and diesel blends were prepared and tested in laboratory for flash point, fire point, viscosity and density. ... Keywords: artificial neural network, biodiesel, density, fire point, flash point, transesterification, viscosity

Jatinder Kumar; Ajay Bansal

2007-02-01T23:59:59.000Z

50

Emissions with butane/propane blends  

Science Conference Proceedings (OSTI)

This article reports on various aspects of exhaust emissions from a light-duty car converted to operate on liquefied petroleum gas and equipped with an electrically heated catalyst. Butane and butane/propane blends have recently received attention as potentially useful alternative fuels. Butane has a road octane number of 92, a high blending vapor pressure, and has been used to upgrade octane levels of gasoline blends and improve winter cold starts. Due to reformulated gasoline requirements for fuel vapor pressure, however, industry has had to remove increasing amounts of butane form the gasoline pool. Paradoxically, butane is one of the cleanest burning components of gasoline.

NONE

1996-11-01T23:59:59.000Z

51

Alternative Fuels Data Center: Biodiesel Production and Blending Equipment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Production Biodiesel Production and Blending Equipment Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Production and Blending Equipment Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Production and Blending Equipment Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Production and Blending Equipment Tax Credit on Google Bookmark Alternative Fuels Data Center: Biodiesel Production and Blending Equipment Tax Credit on Delicious Rank Alternative Fuels Data Center: Biodiesel Production and Blending Equipment Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Production and Blending Equipment Tax Credit on AddThis.com... More in this section... Federal State

52

Alternative Fuels Data Center: Biofuels Blend Use Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuels Blend Use Biofuels Blend Use Requirement to someone by E-mail Share Alternative Fuels Data Center: Biofuels Blend Use Requirement on Facebook Tweet about Alternative Fuels Data Center: Biofuels Blend Use Requirement on Twitter Bookmark Alternative Fuels Data Center: Biofuels Blend Use Requirement on Google Bookmark Alternative Fuels Data Center: Biofuels Blend Use Requirement on Delicious Rank Alternative Fuels Data Center: Biofuels Blend Use Requirement on Digg Find More places to share Alternative Fuels Data Center: Biofuels Blend Use Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuels Blend Use Requirement Whenever possible, governmental entities and state educational institutions must fuel diesel vehicles with biodiesel blends containing at least 2%

53

Alternative Fuels Data Center: Biodiesel Blending Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Blending Tax Blending Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blending Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blending Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blending Tax Credit on Google Bookmark Alternative Fuels Data Center: Biodiesel Blending Tax Credit on Delicious Rank Alternative Fuels Data Center: Biodiesel Blending Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blending Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blending Tax Credit A biodiesel blender located in Indiana may receive a credit of $0.02 per gallon of blended biodiesel produced at a facility located in Indiana. The

54

Alternative Fuels Data Center: Diesel Fuel Blend Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Diesel Fuel Blend Tax Diesel Fuel Blend Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Diesel Fuel Blend Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Diesel Fuel Blend Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Diesel Fuel Blend Tax Exemption on Google Bookmark Alternative Fuels Data Center: Diesel Fuel Blend Tax Exemption on Delicious Rank Alternative Fuels Data Center: Diesel Fuel Blend Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Diesel Fuel Blend Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Diesel Fuel Blend Tax Exemption The biodiesel or ethanol portion of blended fuel containing taxable diesel

55

Alternative Fuels Data Center: Biodiesel Blend Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Blend Tax Biodiesel Blend Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Tax Exemption on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Tax Exemption on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Tax Exemption Biodiesel blends of at least 20% (B20) that are used for personal, noncommercial use by the individual that produced the biodiesel portion of

56

Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Blend Ethanol Blend Dispenser Requirement to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Dispenser Requirement An ethanol retailer selling a blend of 10% ethanol by volume or higher must

57

Alternative Fuels Data Center: Biodiesel Blending Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Blending Tax Blending Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blending Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blending Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blending Tax Credit on Google Bookmark Alternative Fuels Data Center: Biodiesel Blending Tax Credit on Delicious Rank Alternative Fuels Data Center: Biodiesel Blending Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blending Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blending Tax Credit Businesses and individuals are eligible for a tax credit of up to 15% of the cost of qualified equipment used for storing or blending biodiesel with

58

Alternative Fuels Data Center: Biodiesel Blend Retailer Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Blend Biodiesel Blend Retailer Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Retailer Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Retailer Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Retailer Tax Credit on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Retailer Tax Credit on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Retailer Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Retailer Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Retailer Tax Credit Retailers whose total diesel sales consist of at least 50% biodiesel blends

59

Alternative Fuels Data Center: Ethanol Blend Labeling Requirements  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Blend Labeling Ethanol Blend Labeling Requirements to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Labeling Requirements Pumps that dispense ethanol-blended gasoline available for purchase must be

60

Alternative Fuels Data Center: Biofuel Blending Equipment Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Blending Blending Equipment Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Biofuel Blending Equipment Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Biofuel Blending Equipment Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Biofuel Blending Equipment Tax Exemption on Google Bookmark Alternative Fuels Data Center: Biofuel Blending Equipment Tax Exemption on Delicious Rank Alternative Fuels Data Center: Biofuel Blending Equipment Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Biofuel Blending Equipment Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Blending Equipment Tax Exemption Qualified equipment used for storing and blending petroleum-based fuel with

Note: This page contains sample records for the topic "oxygenated blends commonly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Imaginative play with blended reality characters  

E-Print Network (OSTI)

The idea and formative design of a blended reality character, a new class of character able to maintain visual and kinetic continuity between the fully physical and fully virtual; the technical underpinnings of its unique ...

Robert, David Yann

2011-01-01T23:59:59.000Z

62

Continuous blending of dry pharmaceutical powders  

E-Print Network (OSTI)

Conventional batch blending of pharmaceutical powders coupled with long quality analysis times increases the production cycle time leading to strained cash flows. Also, scale-up issues faced in process development causes ...

Pernenkil, Lakshman

2008-01-01T23:59:59.000Z

63

Blending a Substation into its Environment  

Science Conference Proceedings (OSTI)

This report provides information about public acceptance issues as well as technical approaches available to make substations acceptable within their environments. Case studies were used to examine substation acceptance experience from utilities in different countries and areas. This is the second report in a multi-year effort to build a multi-volume library on Blending a Substation into its Environment. Volume 1 examined available literature, standards, guides, and regulations that affect the blending o...

2006-12-12T23:59:59.000Z

64

BLENDING OF LOW-LEVEL RADIOACTIVE WASTE  

E-Print Network (OSTI)

To provide the Commission with the results of the staff’s analysis of issues associated with the blending of low-level radioactive waste (LLRW), as directed in Chairman Jaczko’s October 8, 2009, memorandum to the staff. The closure of the Barnwell waste disposal facility to most U.S. generators of Class B and C LLRW has caused industry to examine methods for reducing the amount of these wastes, including the blending of some types of Class B and C waste with similar Class A wastes to produce a Class A mixture that can be disposed of at a currently licensed facility. This paper identifies policy, safety, and regulatory issues associated with LLRW blending, provides options for a U. S. Nuclear Regulatory Commission (NRC) blending position, and makes a recommendation for a future blending policy. This paper does not address any new commitments. SUMMARY: In this paper, the staff examines the blending or mixing of LLRW with higher concentrations of radionuclides with LLRW with lower concentrations of radionuclides to form a final homogeneous mixture. While recognizing that some mixing of waste is unavoidable, and may even be necessary and appropriate for efficiency or dose reduction purposes, NRC has historically discouraged mixing LLRW to lower the classification of waste in other circumstances.

R. W. Borchardt; Contacts James; E. Kennedy

2010-01-01T23:59:59.000Z

65

Leaching and standing water characteristics of bottom ash and composted manure blends  

E-Print Network (OSTI)

Coal burning electrical generating facilities produce roughly 91 million metric tons of ash byproducts annually. Typically, this ash is retained at the power plant sites, adding to the cost of managing wastes at the plants. Another waste material requiring significant management efforts and costs is manure. Repeated application of manure on small parcels of land can contribute to environmental problems such as impaired water quality due to nitrate (NO?) leaching into the groundwater and phosphorus (P) runoff into surface water bodies. Alternative uses of bottom ash (BA) and composted manure (CM) such as a soil amendment for landscapes or potting media need to be explored. Before an alternative is adopted at a large scale, however, it must be evaluated for its effectiveness and environmental integrity. Two column studies were conducted to evaluate three blends of acidic and alkaline BA and CM, namely B1 (95:5%), B2 (90:10%), and B3 (80:20%). Samples from standing water (top) and leachate (bottom) were collected at weekly intervals to evaluate the effects of different blend ratios and time on chemical and physical properties. It was found that higher CM content in acidic and alkaline raw blends (no-de-ionized water added) resulted in significantly higher concentrations of total Kjeldahl nitrogen (TKN), P, and potassium (K). Generally, a higher CM content in acidic and alkaline blends resulted in higher leachate concentrations for total solids (TS), total dissolved solids (TDS), total volatile solids (TVS), total suspended solids (TSS), chemical oxygen demand (COD), TKN, NO?-N, ammonium (NH?-N), P, and K. Concentrations of nearly all chemicals were lower in standing water (top) compared to leachate (bottom) for acidic and alkaline blends. Alkaline blends had higher leachate and standing water TKN, NH?-N, N0?-N, P, and K compared to the acidic blends. After day 28, standing water TDS concentrations for all acidic blends were below the USEPA drinking water standard for TDS. Standing water for alkaline blends remained below the USEPA drinking water standard for TDS for the entire duration of the study. Leachate and standing water concentrations for all blends were below the USEPA drinking water standard for NO?-N for acidic blends. Standing water and leachate for alkaline blends B1 and B2 were below the USEPA drinking water standard for NO?-N while standing water was well below the standard for the entire duration of the study. P concentrations were low in leachate and nonexistent in standing water for both acidic and alkaline blends. Based on these findings, it is concluded that acidic and alkaline B1 (95:5%) and B2 (90:10%) may be considered as a soil amendment substitute.

Mathis, James Gregory

2001-01-01T23:59:59.000Z

66

Alternative Fuels Data Center: Ethanol Blend Retailer Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Blend Retailer Ethanol Blend Retailer Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Retailer Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Retailer Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Retailer Tax Credit on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Retailer Tax Credit on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Retailer Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Retailer Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Retailer Tax Credit The Ethanol Promotion Tax Credit is available to any fuel retailer for up

67

Alternative Fuels Data Center: Biofuel Blending Contract Regulation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuel Blending Biofuel Blending Contract Regulation to someone by E-mail Share Alternative Fuels Data Center: Biofuel Blending Contract Regulation on Facebook Tweet about Alternative Fuels Data Center: Biofuel Blending Contract Regulation on Twitter Bookmark Alternative Fuels Data Center: Biofuel Blending Contract Regulation on Google Bookmark Alternative Fuels Data Center: Biofuel Blending Contract Regulation on Delicious Rank Alternative Fuels Data Center: Biofuel Blending Contract Regulation on Digg Find More places to share Alternative Fuels Data Center: Biofuel Blending Contract Regulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Blending Contract Regulation Any provision in a contract between a fuel wholesaler and a refiner or

68

Alternative Fuels Data Center: Ethanol Fuel Blend Use Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Fuel Blend Use Ethanol Fuel Blend Use Requirement to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Blend Use Requirement on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Blend Use Requirement on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Use Requirement on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Use Requirement on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Blend Use Requirement on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Blend Use Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fuel Blend Use Requirement State government agencies and universities owning or operating motor

69

Alternative Fuels Data Center: Biodiesel Blend Use Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Blend Use Biodiesel Blend Use Requirement to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Use Requirement on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Use Requirement on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Use Requirement on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Use Requirement on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Use Requirement on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Use Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Use Requirement Any diesel-powered vehicle the state, county or local government, school district, community college, public college or university, or mass transit

70

Alternative Fuels Data Center: Biodiesel Blend Distribution Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Blend Biodiesel Blend Distribution Mandate to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Distribution Mandate on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Distribution Mandate on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Distribution Mandate on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Distribution Mandate on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Distribution Mandate on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Distribution Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Distribution Mandate All state-owned diesel fueling facilities must provide fuel containing at

71

Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Fuel Blend Tax Ethanol Fuel Blend Tax Rate to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fuel Blend Tax Rate The tax rate on fuel containing ethanol is $0.06 per gallon less than the tax rate on other motor fuels in certain geographic areas. This reduced

72

Alternative Fuels Data Center: Ethanol Fuel Blend Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Fuel Blend Ethanol Fuel Blend Standard to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Blend Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fuel Blend Standard At least 85% of gasoline supplied to a retailer or sold in Hawaii must contain a minimum of 10% ethanol (E10), unless the Director determines that

73

Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Blend Ethanol Blend Dispenser Requirement to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Dispenser Requirement A retail motor fuel dispenser that dispenses fuel containing more than 10%

74

Alternative Fuels Data Center: Biodiesel Blending Facility Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Blending Biodiesel Blending Facility Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blending Facility Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blending Facility Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blending Facility Tax Credit on Google Bookmark Alternative Fuels Data Center: Biodiesel Blending Facility Tax Credit on Delicious Rank Alternative Fuels Data Center: Biodiesel Blending Facility Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blending Facility Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blending Facility Tax Credit A tax credit is available for up to 30% of the cost of purchasing or

75

Measuring the Effect of Fuel Structures and Blend Distribution on Diesel Emissions Using Isotope Tracing  

DOE Green Energy (OSTI)

Carbon atoms occupying specific positions within fuel molecules can be labeled and followed in emissions. Renewable bio-derived fuels possess a natural uniform carbon-14 ({sup 14}C) tracer several orders of magnitude above petroleum-derived fuels. These fuels can be used to specify sources of carbon in particulate matter (PM) or other emissions. Differences in emissions from variations in the distribution of a fuel component within a blend can also be measured. Using Accelerator Mass Spectrometry (AMS), we traced fuel components with biological {sup 14}C/C levels of 1 part in 10{sup 12} against a {sup 14}C-free petroleum background in PM and CO{sub 2}. Different carbon atoms in the ester structure of the diesel oxygenate dibutyl maleate displayed far different propensities to produce PM. Homogeneous cosolvent and heterogeneous emulsified ethanol-in-diesel blends produced significantly different PM despite having the same oxygen content in the fuel. Emulsified blends produced PM with significantly more volatile species. Although ethanol-derived carbon was less likely to produce PM than diesel fuel, it formed non-volatile structures when it resided in PM. The contribution of lubrication oil to PM was determined by measuring an isotopic difference between 100% bio-diesel and the PM it produced. Data produced by the experiments provides validation for combustion models.

Cheng, A S; Mueller, C J; Buchholz, B A; Dibble, R W

2004-02-10T23:59:59.000Z

76

Phase Segregation in Polystyrene?Polylactide Blends  

SciTech Connect

Spun-cast films of polystyrene (PS) blended with polylactide (PLA) were visualized and characterized using atomic force microscopy (AFM) and synchrotron-based X-ray photoemission electron microscopy (X-PEEM). The composition of the two polymers in these systems was determined by quantitative chemical analysis of near-edge X-ray absorption signals recorded with X-PEEM. The surface morphology depends on the ratio of the two components, the total polymer concentration, and the temperature of vacuum annealing. For most of the blends examined, PS is the continuous phase with PLA existing in discrete domains or segregated to the air?polymer interface. Phase segregation was improved with further annealing. A phase inversion occurred when films of a 40:60 PS:PLA blend (0.7 wt percent loading) were annealed above the glass transition temperature (Tg) of PLA.

Leung, Bonnie; Hitchcock, Adam; Brash, John; Scholl, Andreas; Doran, Andrew

2010-06-09T23:59:59.000Z

77

Fuel-Cycle energy and emission impacts of ethanol-diesel blends in urban buses and farming tractors.  

DOE Green Energy (OSTI)

About 2.1 billion gallons of fuel ethanol was used in the United States in 2002, mainly in the form of gasoline blends containing up to 10% ethanol (E10). Ethanol use has the potential to increase in the U.S. blended gasoline market because methyl tertiary butyl ether (MTBE), formerly the most popular oxygenate blendstock, may be phased out owing to concerns about MTBE contamination of the water supply. Ethanol would remain the only viable near-term option as an oxygenate in reformulated gasoline production and to meet a potential federal renewable fuels standard (RFS) for transportation fuels. Ethanol may also be blended with additives (co-solvents) into diesel fuels for applications in which oxygenation may improve diesel engine emission performance. Numerous studies have been conducted to evaluate the fuel-cycle energy and greenhouse gas (GHG) emission effects of ethanol-gasoline blends relative to those of gasoline for applications in spark-ignition engine vehicles (see Wang et al. 1997; Wang et al. 1999; Levelton Engineering et al. 1999; Shapouri et al. 2002; Graboski 2002). Those studies did not address the energy and emission effects of ethanol-diesel (E-diesel or ED) blends relative to those of petroleum diesel fuel in diesel engine vehicles. The energy and emission effects of E-diesel could be very different from those of ethanol-gasoline blends because (1) the energy use and emissions generated during diesel production (so-called ''upstream'' effects) are different from those generated during gasoline production; and (2) the energy and emission performance of E-diesel and petroleum diesel fuel in diesel compression-ignition engines differs from that of ethanol-gasoline blends in spark-ignition (Otto-cycle-type) engine vehicles. The Illinois Department of Commerce and Community Affairs (DCCA) commissioned Argonne National Laboratory to conduct a full fuel-cycle analysis of the energy and emission effects of E-diesel blends relative to those of petroleum diesel when used in the types of diesel engines that will likely be targeted first in the marketplace. This report documents the results of our study. The draft report was delivered to DCCA in January 2003. This final report incorporates revisions by the sponsor and by Argonne.

Wang, M.; Saricks, C.; Lee, H.

2003-09-11T23:59:59.000Z

78

INVESTIGATION ON THE FLAME EXTINCTION LIMIT OF FUEL BLENDS  

SciTech Connect

Lean flame extinction limits of binary fuel mixtures of methane (CH{sub 4}), propane (C{sub 3}H{sub 8}), and ethane (C{sub 2}H{sub 6}) were measured using a twin-flame counter-flow burner. Experiments were conducted to generate an extinction equivalence ratio vs. global stretch rate plot and an extrapolation method was used to calculate the equivalence ratio corresponding to an experimentally unattainable zero-stretch condition. The foregoing gases were selected because they are the primary constitutes of natural gas, which is the primary focus of the present study. To validate the experimental setup and methodology, the flame extinction limit of pure fuels at zero stretch conditions were also estimated and compared with published values. The lean flame extinction limits of methane (f{sub ext} = 4.6%) and propane (f{sub ext} = 2.25%) flames measured in the present study agreed with the values reported in the literature. It was observed that the flame extinction limit of fuel blends have a polynomial relation with the concentration of component fuels in the mixture. This behavior contradicts with the commonly used linear Le Chatelier's approximation. The experimentally determined polynomial relations between the flame extinction limits of fuel blends (i.e. methane-propane and methane-ethane) and methane concentration are as follows: (1) Methane-Propane--%f{sub ext} = (1.05 x 10{sup -9}) f{sup 5}-(1.3644 x 10{sup -7}) f{sup 4}+(6.40299 x 10{sup -6}) f{sup 3}-(1.2108459 x 10{sup -4}) f{sup 2}+(2.87305329 x 10{sup -3}) f+2.2483; (2) Methane-Ethane--%f{sub ext} = (2.1 x 10{sup -9})f{sup 5}-(3.5752 x 10{sup -7}) f{sup 4}+(2.095425 x 10{sup -5}) f{sup 3}-(5.037353 x 10{sup -4}) f{sup 2} + 6.08980409 f + 2.8923. Where f{sub ext} is the extinction limits of methane-propane and methane-ethane fuel blends, and f is the concentration (% volume) of methane in the fuel mixture. The relations were obtained by fitting fifth order curve (polynomial regression) to experimentally measured extinction limits at different mixture conditions. To extend the study to a commercial fuel, the flame extinction limit for Birmingham natural gas (a blend of 95% methane, 5% ethane and 5% nitrogen) was experimentally determined and was found to be 3.62% fuel in the air-fuel mixture.

Ahsan R. Choudhuri

2005-02-01T23:59:59.000Z

79

Exploration of parameters for the continuous blending of pharmaceutical powders  

E-Print Network (OSTI)

The transition from traditional batch blending to continuous blending is an opportunity for the pharmaceutical industry to reduce costs and improve quality control. This operational shift necessitates a deeper understanding ...

Lin, Ben Chien Pang

2011-01-01T23:59:59.000Z

80

Alternative Fuels Data Center: Biodiesel Production and Blending Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Production Biodiesel Production and Blending Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Production and Blending Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Production and Blending Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Production and Blending Tax Credit on Google Bookmark Alternative Fuels Data Center: Biodiesel Production and Blending Tax Credit on Delicious Rank Alternative Fuels Data Center: Biodiesel Production and Blending Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Production and Blending Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Production and Blending Tax Credit

Note: This page contains sample records for the topic "oxygenated blends commonly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Advanced Ethanol Fuel Advanced Ethanol Fuel Blend Research Grants to someone by E-mail Share Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on Facebook Tweet about Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on Twitter Bookmark Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on Google Bookmark Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on Delicious Rank Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on Digg Find More places to share Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Advanced Ethanol Fuel Blend Research Grants

82

Designing and upgrading plants to blend coal  

SciTech Connect

Fuel flexibility isn't free. Whether you are equipping a new power plant to burn more than one type of coal or retrofitting an existing plant to handle coal blends, you will have to spend time and money to ensure that all three functions performed by its coal-handling system, unloading, stockout, and reclaim, are up to the task. The first half of this article lays out the available options for configuring each subsystem to support blending. The second half describes, in words and pictures, how 12 power plants in the USA, both new and old, address the issue. 9 figs., 1 tab.

McCartney, R.H. [Roberts and Schaefer Co. (United States)

2006-10-15T23:59:59.000Z

83

An evolutionary optimization approach for bulk material blending systems  

Science Conference Proceedings (OSTI)

Bulk material blending systems still mostly implement static and non-reactive material blending methods like the well-known Chevron stacking. The optimization potential in the existing systems which can be made available using quality analyzing methods ... Keywords: bulk material blending, chevron stacking, multi-objective evolutionary algorithms

Michael P. Cipold; Pradyumn Kumar Shukla; Claus C. Bachmann; Kaibin Bao; Hartmut Schmeck

2012-09-01T23:59:59.000Z

84

Fuel Oil Prepared by Blending Heavy Oil and Coal Tar  

Science Conference Proceedings (OSTI)

The effect of temperature, harmonic ration, surfactant and shearing to fuel oil prepared by blending heavy oil and coal tar were detailedly studied. The results show that the viscosity of the blended oil increases gradually with the increase of harmonic ... Keywords: coal tar, heavy oil, blending, surfactant

Guojie Zhang; Xiaojie Guo; Bo Tian; Yaling Sun; Yongfa Zhang

2009-10-01T23:59:59.000Z

85

IMPACT OF OXYGENATED FUEL ON DIESEL ENGINE PERFORMANCE AND EMISSIONS  

DOE Green Energy (OSTI)

As evidenced by recent lawsuits brought against operators of large diesel truck fleets [1] and by the Consent Decree brought against the heavy-duty diesel manufacturers [2], the environmental and health effects of diesel engine emissions continue to be a significant concern. Reduction of diesel engine emissions has traditionally been achieved through a combination of fuel system, combustion chamber, and engine control modifications [3]. Catalytic aftertreatment has become common on modern diesel vehicles, with the predominant device being the diesel oxidation catalytic converter [3]. To enable advanced after-treatment devices and to directly reduce emissions, significant recent interest has focused on reformulation of diesel fuel, particularly the reduction of sulfur content. The EPA has man-dated that diesel fuel will have only 15 ppm sulfur content by 2007, with current diesel specifications requiring around 300 ppm [4]. Reduction of sulfur will permit sulfur-sensitive aftertreatment devices, continuously regenerating particulate traps, NOx control catalysts, and plasma assisted catalysts to be implemented on diesel vehicles [4]. Another method of reformulating diesel fuel to reduce emissions is to incorporate oxygen in the fuel, as was done in the reformulation of gasoline. The use of methyl tertiary butyl ether (MTBE) in reformulated gasoline has resulted in contamination of water resources across the country [5]. Nonetheless, by relying on the lessons learned from MTBE, oxygenation of diesel fuel may be accomplished without compromising water quality. Oxygenation of diesel fuel offers the possibility of reducing particulate matter emissions significantly, even for the current fleet of diesel vehicles. The mechanism by which oxygen content leads to particulate matter reductions is still under debate, but recent evidence shows clearly that ''smokeless'' engine operation is possible when the oxygen content of diesel fuel reaches roughly 38% by weight [6]. The potential improvements in energy efficiency within the transportation section, particularly in sport utility vehicles and light-duty trucks, that can be provided by deployment of diesel engines in passenger cars and trucks is a strong incentive to develop cleaner burning diesel engines and cleaner burning fuels for diesel engines. Thus, serious consideration of oxygenated diesel fuels is of significant practical interest and value to society. In the present work, a diesel fuel reformulating agent, CETANERTM, has been examined in a popular light-medium duty turbodiesel engine over a range of blending ratios. This additive is a mixture of glycol ethers and can be produced from dimethyl ether, which itself can be manufactured from synthesis gas using Air Products' Liquid Phase Dimethyl Ether (LPDME TM) technology. CETANERTM is a liquid, has an oxygen content of 36 wt.%, has a cetane number over 100 and is highly miscible in diesel fuel. This combination of physical and chemical properties makes CETANERTM an attractive agent for oxygenating diesel fuel. The present study considered CETANERTM ratios from 0 to 40 wt.% in a California Air Resources Board (CARB) specification diesel fuel. Particulate matter emissions, gaseous emissions and in-cylinder pressure traces were monitored over the AVL 8-Mode engine test protocol [7]. This paper presents the results from these measurements and discusses the implications of using high cetane number oxygenates in diesel fuel reformulation.

Boehman, Andre L.

2000-08-20T23:59:59.000Z

86

HEU to LEU conversion and blending facility: Metal blending alternative to produce LEU oxide for disposal  

SciTech Connect

US DOE is examining options for disposing of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. The nuclear material is converted to a form more proliferation- resistant than the original form. Blending HEU (highly enriched uranium) with less-enriched uranium to form LEU has been proposed as a disposition option. Five technologies are being assessed for blending HEU. This document provides data to be used in environmental impact analysis for the HEU-LEU disposition option that uses metal blending with an oxide waste product. It is divided into: mission and assumptions, conversion and blending facility descriptions, process descriptions and requirements, resource needs, employment needs, waste and emissions from plant, hazards discussion, and intersite transportation.

1995-09-01T23:59:59.000Z

87

MTBE, Oxygenates, and Motor Gasoline (Released in the STEO October 1999)  

Reports and Publications (EIA)

The blending of methyl tertiary butyl ether (MTBE) into motor gasoline has increased dramatically since it was first produced 20 years ago. MTBE usage grew in the early 1980's in response to octane demand resulting initially from the phaseout of lead from gasoline and later from rising demand for premium gasoline. The oxygenated gasoline program stimulated an increase in MTBE production between 1990 and 1994. MTBE demand increased from 83,000 in 1990 to 161,000 barrels per day in 1994. The reformulated gasoline (RFG) program provided a further boost to oxygenate blending. The MTBE contained in motor gasoline increased to 269,000 barrels per day by 1997.

Information Center

1999-10-01T23:59:59.000Z

88

Table Definitions, Sources, and Explanatory Notes  

U.S. Energy Information Administration (EIA)

... precautions that the blends are not used as base gasolines for other oxygenated blends (commonly referred to as the "Sun" waiver).

89

Blending implicit shapes using fuzzy set operations  

Science Conference Proceedings (OSTI)

Implicit modelling is a powerful technique to design geometric shapes, where a geometric object is described by a real function. In general, the real functions used in implicit modelling are unbounded and can take any values in space R. In general, ... Keywords: blending operations, fuzzy sets, generalized algebraic operations, implicit curves and surfaces, isosurfaces, piecewise algebraic operations, soft computing

Qingde Li; Jie Tian

2008-07-01T23:59:59.000Z

90

BIODIESEL BLENDS IN SPACE HEATING EQUIPMENT.  

DOE Green Energy (OSTI)

Biodiesel is a diesel-like fuel that is derived from processing vegetable oils from various sources, such as soy oil, rapeseed or canola oil, and also waste vegetable oils resulting from cooking use. Brookhaven National laboratory initiated an evaluation of the performance of blends of biodiesel and home heating oil in space heating applications under the sponsorship of the Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL). This report is a result of this work performed in the laboratory. A number of blends of varying amounts of a biodiesel in home heating fuel were tested in both a residential heating system and a commercial size boiler. The results demonstrate that blends of biodiesel and heating oil can be used with few or no modifications to the equipment or operating practices in space heating. The results also showed that there were environmental benefits from the biodiesel addition in terms of reductions in smoke and in Nitrogen Oxides (NOx). The latter result was particularly surprising and of course welcome, in view of the previous results in diesel engines where no changes had been seen. Residential size combustion equipment is presently not subject to NOx regulation. If reductions in NOx similar to those observed here hold up in larger size (commercial and industrial) boilers, a significant increase in the use of biodiesel-like fuel blends could become possible.

KRISHNA,C.R.

2001-12-01T23:59:59.000Z

91

BLENDING OF CEPHEIDS IN M33  

SciTech Connect

A precise and accurate determination of the Hubble constant based on Cepheid variables requires proper characterization of many sources of systematic error. One of these is stellar blending, which biases the measured fluxes of Cepheids and the resulting distance estimates. We study the blending of 149 Cepheid variables in M33 by matching archival Hubble Space Telescope data with images obtained at the Wisconsin-Indiana-Yale-NOAO (WIYN) 3.5 m telescope, which differ by a factor of 10 in angular resolution. We find that 55% {+-} 4% of the Cepheids have no detectable nearby companions that could bias the WIYN V-band photometry, while the fraction of Cepheids affected below the 10% level is 73% {+-} 4%. The corresponding values for the I band are 60% {+-} 4% and 72% {+-} 4%, respectively. We find no statistically significant difference in blending statistics as a function of period or surface brightness. Additionally, we report all the detected companions within 2'' of the Cepheids (equivalent to 9 pc at the distance of M33) which may be used to derive empirical blending corrections for Cepheids at larger distances.

Chavez, Joy M. [Current address: Gemini Observatory, Northern Operations Center, Hilo, HI 96720, USA. (United States); Macri, Lucas M. [George P. and Cynthia Woods Mitchell Institute in Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, 4242 TAMU, College Station, TX 77843-4242 (United States); Pellerin, Anne, E-mail: jchavez@gemini.edu [Current address: Department of Physics, Mount Allison University, Sackville NB E4L 1E6, Canada. (Canada)

2012-10-01T23:59:59.000Z

92

HEU to LEU conversion and blending facility: UNH blending alternative to produce LEU oxide for disposal  

SciTech Connect

The United States Department of Energy (DOE) is examining options for the disposition of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. Disposition is a process of use or disposal of material that results in the material being converted to a form that is substantially and inherently more proliferation-resistant than is the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. This report provides data to be used in the environmental impact analysis for the uranyl nitrate hexahydrate blending option to produce oxide for disposal. This the Conversion and Blending Facility (CBF) alternative will have two missions (1) convert HEU materials into HEU uranyl nitrate (UNH) and (2) blend the HEU uranyl nitrate with depleted and natural assay uranyl nitrate to produce an oxide that can be stored until an acceptable disposal approach is available. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal.

1995-09-01T23:59:59.000Z

93

Intermediate Ethanol Blends Catalyst Durability Program  

Science Conference Proceedings (OSTI)

In the summer of 2007, the U.S. Department of Energy (DOE) initiated a test program to evaluate the potential impacts of intermediate ethanol blends (also known as mid-level blends) on legacy vehicles and other engines. The purpose of the test program was to develop information important to assessing the viability of using intermediate blends as a contributor to meeting national goals for the use of renewable fuels. Through a wide range of experimental activities, DOE is evaluating the effects of E15 and E20 - gasoline blended with 15% and 20% ethanol - on tailpipe and evaporative emissions, catalyst and engine durability, vehicle driveability, engine operability, and vehicle and engine materials. This report provides the results of the catalyst durability study, a substantial part of the overall test program. Results from additional projects will be reported separately. The principal purpose of the catalyst durability study was to investigate the effects of adding up to 20% ethanol to gasoline on the durability of catalysts and other aspects of the emissions control systems of vehicles. Section 1 provides further information about the purpose and context of the study. Section 2 describes the experimental approach for the test program, including vehicle selection, aging and emissions test cycle, fuel selection, and data handling and analysis. Section 3 summarizes the effects of the ethanol blends on emissions and fuel economy of the test vehicles. Section 4 summarizes notable unscheduled maintenance and testing issues experienced during the program. The appendixes provide additional detail about the statistical models used in the analysis, detailed statistical analyses, and detailed vehicle specifications.

West, Brian H; Sluder, Scott; Knoll, Keith; Orban, John; Feng, Jingyu

2012-02-01T23:59:59.000Z

94

Alternative Fuels Data Center: Supply of Petroleum Products for Blending  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Supply of Petroleum Supply of Petroleum Products for Blending with Biofuels to someone by E-mail Share Alternative Fuels Data Center: Supply of Petroleum Products for Blending with Biofuels on Facebook Tweet about Alternative Fuels Data Center: Supply of Petroleum Products for Blending with Biofuels on Twitter Bookmark Alternative Fuels Data Center: Supply of Petroleum Products for Blending with Biofuels on Google Bookmark Alternative Fuels Data Center: Supply of Petroleum Products for Blending with Biofuels on Delicious Rank Alternative Fuels Data Center: Supply of Petroleum Products for Blending with Biofuels on Digg Find More places to share Alternative Fuels Data Center: Supply of Petroleum Products for Blending with Biofuels on AddThis.com... More in this section... Federal

95

Correlation between speciated hydrocarbon emissions and flame ionization detector response for gasoline/alcohol blends .  

DOE Green Energy (OSTI)

The U.S. renewable fuel standard has made it a requirement to increase the production of ethanol and advanced biofuels to 36 billion by 2022. Ethanol will be capped at 15 billion, which leaves 21 billion to come from other sources such as butanol. Butanol has a higher energy density and lower affinity for water than ethanol. Moreover, alcohol fueled engines in general have been shown to positively affect engine-out emissions of oxides of nitrogen and carbon monoxide compared with their gasoline fueled counterparts. In light of these developments, the variety and blend levels of oxygenated constituents is likely to increase in the foreseeable future. The effect on engine-out emissions for total hydrocarbons is less clear due to the relative insensitivity of the flame ionization detector (FID) toward alcohols and aldehydes. It is well documented that hydrocarbon (HC) measurement using a conventional FID in the presence of oxygenates in the engine exhaust stream can lead to a misinterpretation of HC emissions trends for alcohol fuel blends. Characterization of the exhaust stream for all expected hydrocarbon constituents is required to accurately determine the actual concentration of unburned fuel components in the exhaust. In addition to a conventional exhaust emissions bench, this characterization requires supplementary instrumentation capable of hydrocarbon speciation and response factor independent quantification. Although required for certification testing, this sort of instrumentation is not yet widely available in engine development facilities. Therefore, an attempt is made to empirically determine FID correction factors for oxygenate fuels. Exhaust emissions of an engine fueled with several blends of gasoline and ethanol, n-butanol and iso-Butanol were characterized using both a conventional FID and a Fourier transform infrared. Based on these results, a response factor predicting the actual hydrocarbon emissions based solely on FID results as a function of alcohol type and content is presented. Finally, the correlation derived from data presented in this study is compared with equations and results found in the literature.

Wallner, T. (Energy Systems)

2011-08-01T23:59:59.000Z

96

TANK 21 AND TANK 24 BLEND AND FEED STUDY: BLENDING TIMES, SETTLING TIMES, AND TRANSFERS  

Science Conference Proceedings (OSTI)

The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where salt solutions of up to 1.2 million gallons will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. In particular, Tanks 21 and 24 are planned to be used for blending and transferring to the SDI feed tank. These tanks were evaluated here to determine blending times, to determine a range of settling times for disturbed sludge, and to determine that the SWPF Waste Acceptance Criteria that less than 1200 mg/liter of solids will be entrained in salt solutions during transfers from the Tank 21 and Tank 24 will be met. Overall conclusions for Tank 21 and Tank 24 operations include: (1) Experimental correction factors were applied to CFD (computational fluid dynamics) models to establish blending times between approximately two and five hours. As shown in Phase 2 research, blending times may be as much as ten times greater, or more, if lighter fluids are added to heavier fluids (i.e., water added to salt solution). As the densities of two salt solutions converge this effect may be minimized, but additional confirmatory research was not performed. (2) At the current sludge levels and the presently planned operating heights of the transfer pumps, solids entrainment will be less than 1200 mg/liter, assuming a conservative, slow settling sludge simulant. (3) Based on theoretical calculations, particles in the density range of 2.5 to 5.0 g/mL must be greater than 2-4 {micro}m in diameter to ensure they settle adequately in 30-60 days to meet the SWPF feed criterion ( 60 days) settling times in Tank 21.

Lee, S.; Leishear, R.; Poirier, M.

2012-05-31T23:59:59.000Z

97

Methylal and Methylal-Diesel Blended Fuels from Use In Compression-Ignition Engines  

DOE Green Energy (OSTI)

Gas-to-liquids catalytic conversion technologies show promise for liberating stranded natural gas reserves and for achieving energy diversity worldwide. Some gas-to-liquids products are used as transportation fuels and as blendstocks for upgrading crude derived fuels. Methylal (CH{sub 3}-O-CH{sub 2}-O-CH{sub 3}) also known as dimethoxymethane or DMM, is a gas-to-liquid chemical that has been evaluated for use as a diesel fuel component. Methylal contains 42% oxygen by weight and is soluble in diesel fuel. The physical and chemical properties of neat methylal and for blends of methylal in conventional diesel fuel are presented. Methylal was found to be more volatile than diesel fuel, and special precautions for distribution and fuel tank storage are discussed. Steady state engine tests were also performed using an unmodified Cummins 85.9 turbocharged diesel engine to examine the effect of methylal blend concentration on performance and emissions. Substantial reductions of particulate matter emissions h ave been demonstrated 3r IO to 30% blends of methylal in diesel fuel. This research indicates that methylal may be an effective blendstock for diesel fuel provided design changes are made to vehicle fuel handling systems.

Keith D. Vertin; James M. Ohi; David W. Naegeli; Kenneth H. Childress; Gary P. Hagen; Chris I. McCarthy; Adelbert S. Cheng; Robert W. Dibble

1999-05-05T23:59:59.000Z

98

Tough Blends of Polylactide and Castor Oil  

Science Conference Proceedings (OSTI)

Poly(l-lactide) (PLLA) is a renewable resource polymer derived from plant sugars with several commercial applications. Broader implementation of the material is limited due to its inherent brittleness. We show that the addition of 5 wt % castor oil to PLLA significantly enhances the overall tensile toughness with minimal reductions in the modulus and no plasticization of the PLLA matrix. In addition, we used poly(ricinoleic acid)-PLLA diblock copolymers, synthesized entirely from renewable resources, as compatibilizers for the PLLA/castor oil blends. Ricinoleic acid, the majority fatty acid comprising castor oil, was polymerized through a lipase-catalyzed condensation reaction. The resulting polymers contained a hydroxyl end-group that was subsequently used to initiate the ring-opening polymerization of L-lactide. The binary PLLA/castor oil blend exhibited a tensile toughness seven times greater than neat PLLA. The addition of block copolymer allowed for control over the morphology of the blends, and even further improvement in the tensile toughness was realized - an order of magnitude larger than that of neat PLLA.

Robertson, Megan L.; Paxton, Jessica M.; Hillmyer, Marc A. (UMM)

2012-10-10T23:59:59.000Z

99

Investment Busts, Reputation, and the Temptation to Blend in with the Crowd ?  

E-Print Network (OSTI)

We provide a real-options model of an industry in which agents time abandonment of their projects in an effort to protect their reputations. Agents delay abandonment attempting to signal their quality. When a public common shock forces abandonment of a small fraction of projects irrespective of agents ’ quality, many agents abandon their projects strategically even if they are unaffected by the shock. Such “blending in with the crowd ” effect creates an additional incentive to delay abandonment ahead of the shock, leading to accumulation of “living dead ” projects, which further amplifies the shock. The potential for moderate public common shocks often improves agents’values.

Steven R. Grenadier; Andrey Malenko; Ilya A. Strebulaev; Marc Martos-vila; Erwan Morellec; Kelly Shue; Youchang Wu (discussant

2013-01-01T23:59:59.000Z

100

The Impact of Low Octane Hydrocarbon Blending Streams on Ethanol Engine Optimization  

SciTech Connect

Ethanol is a very attractive fuel from an end-use perspective because it has a high chemical octane number and a high latent heat of vaporization. When an engine is optimized to take advantage of these fuel properties, both efficiency and power can be increased through higher compression ratio, direct fuel injection, higher levels of boost, and a reduced need for enrichment to mitigate knock or protect the engine and aftertreatment system from overheating. The ASTM D5798 specification for high level ethanol blends, commonly called E85, underwent a major revision in 2011. The minimum ethanol content was revised downward from 68 vol% to 51 vol%, which combined with the use of low octane blending streams such as natural gasoline introduces the possibility of a lower octane E85 fuel. While this fuel is suitable for current ethanol tolerant flex fuel vehicles, this study experimentally examines whether engines can still be aggressively optimized for the resultant fuel from the revised ASTM D5798 specification. The performance of six ethanol fuel blends, ranging from 51-85% ethanol, is compared to a premium-grade certification gasoline (UTG-96) in a single-cylinder direct-injection (DI) engine with a compression ratio of 12.9:1 at knock-prone engine conditions. UTG-96 (RON = 96.1), light straight run gasoline (RON = 63.6), and n-heptane (RON = 0) are used as the hydrocarbon blending streams for the ethanol-containing fuels in an effort to establish a broad range of knock resistance for high ethanol fuels. Results show that nearly all ethanol-containing fuels are more resistant to engine knock than UTG-96 (the only exception being the ethanol blend with 49% n-heptane). This knock resistance allows ethanol blends made with 33 and 49% light straight run gasoline, and 33% n-heptane to be operated at significantly more advanced combustion phasing for higher efficiency, as well as at higher engine loads. While experimental results show that the octane number of the hydrocarbon blend stock does impact engine performance, there remains a significant opportunity for engine optimization when considering even the lowest octane fuels that are in compliance with the current revision of ASTM D5798 compared to premium-grade gasoline.

Szybist, James P [ORNL; West, Brian H [ORNL

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxygenated blends commonly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Vehicle Technologies Office: Effects of Intermediate Ethanol Blends on  

NLE Websites -- All DOE Office Websites (Extended Search)

Effects of Intermediate Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 to someone by E-mail Share Vehicle Technologies Office: Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 on Facebook Tweet about Vehicle Technologies Office: Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 on Twitter Bookmark Vehicle Technologies Office: Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 on Google Bookmark Vehicle Technologies Office: Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 on Delicious Rank Vehicle Technologies Office: Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 on Digg

102

Fact Sheet: Effects of Intermediate Ethanol Blends | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Effects of Intermediate Ethanol Blends Effects of Intermediate Ethanol Blends Fact Sheet: Effects of Intermediate Ethanol Blends October 7, 2008 - 4:14pm Addthis In August 2007, the U.S. Department of Energy (DOE) initiated a test program to assess the potential impacts of higher intermediate ethanol blends on conventional vehicles and other engines that rely on gasoline. The test program focuses specifically on the effects of intermediate blends of E15 and E20-gasoline blended with 15 and 20 percent ethanol, respectively-on emissions, catalyst and engine durability, drivability or operability, and materials associated with these vehicles and engines. This DOE test program includes technical expertise from DOE's National Renewable Energy Laboratory (NREL) and Oak Ridge National Laboratory.

103

Development of High-Volume Fly Ash Blended Cements  

Science Conference Proceedings (OSTI)

High-volume fly ash (HVFA) blended cement can be produced either by intergrinding fly ash with portland cement clinker or by blending dry fly ash with portland cement. Production of HVFA cement using the intergrinding method may be the most cost-effective and practical of the two approaches. This report documents the results of commercial-scale production of HVFA blended cements using up to 55 percent fly ash to replace the portland cement.

2001-10-11T23:59:59.000Z

104

Impact of Biofuel Blending on Diesel Soot Oxidation: Implications for Aftertreatment  

SciTech Connect

Control strategies for diesel particulate filters (DPFs) remain one of the most important aspects of aftertreatment research and understanding the soot oxidation mechanism is key to controlling regeneration. Currently, most DPF models contain simple, first order heterogeneous reactions oxidation models with empirically fit parameters. This work improves the understanding of fundamental oxidation kinetics necessary to advance the capabilities of predictive modeling, by leading to better control over regeneration of the device. This study investigated the effects of blending soybean-derived biodiesel fuel on diesel particulate emissions under conventional combustion from a 1.7L direct injection, common rail diesel engine. Five biofuel blend levels were investigated and compared to conventional certification diesel for the nanostructure, surface chemistry and major constituents of the soluble organic fraction (SOF) of diesel particulate matter (PM), and the relationship between these properties and the particulate oxidation kinetics.

Strzelec, Andrea [ORNL; Toops, Todd J [ORNL; Lewis Sr, Samuel Arthur [ORNL; Daw, C Stuart [ORNL; Foster, David [University of Wisconsin; Rutland, Prof. Christopher J. [University of Wisconsin; Vander Wal, Dr. Randy [NASA-Glenn Research Center, Cleveland

2009-01-01T23:59:59.000Z

105

Process for blending coal with water immiscible liquid  

DOE Patents (OSTI)

A continuous process for blending coal with a water immiscible liquid produces a uniform, pumpable slurry. Pulverized raw feed coal and preferably a coal derived, water immiscible liquid are continuously fed to a blending zone (12 and 18) in which coal particles and liquid are intimately admixed and advanced in substantially plug flow to form a first slurry. The first slurry is withdrawn from the blending zone (12 and 18) and fed to a mixing zone (24) where it is mixed with a hot slurry to form the pumpable slurry. A portion of the pumpable slurry is continuously recycled to the blending zone (12 and 18) for mixing with the feed coal.

Heavin, Leonard J. (Olympia, WA); King, Edward E. (Gig Harbor, WA); Milliron, Dennis L. (Lacey, WA)

1982-10-26T23:59:59.000Z

106

Combustion Characterization and Modelling of Fuel Blends for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Value (405,990 DOE) COMBUSTION CHARACTERIZATION AND MODELLING OF FUEL BLENDS FOR POWER GENERATION GAS TURBINES University of Central Florida Presentation-Petersen, 1013...

107

Conductive Polymer/Fullerene Blend Thin Films with Honeycomb Framework  

This composite conductive polymer/fullerene blend material can be fabricated to exhibit regular, micrometer-sized pores. The pores allow the material ...

108

Coping with the Decline in Coke Quality – Using Onsite Blending ...  

Science Conference Proceedings (OSTI)

... coke (CPC), the blending of non-traditional cokes (NTAC's) has increased. ... Prebaked Anode from Coal - Utilization of Coal Extract as a Coke Feedstock-.

109

Stripping Ethanol from Ethanol-Blended Diesel Fuels for Reductant ...  

Stripping Ethanol from Ethanol-Blended Diesel Fuels for Reductant Use in N0x Catalytic Reduction Note: The technology described above is an early stage opportunity.

110

Biodiesel Production and Blending Tax Credit (Kentucky) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Eligibility Commercial Industrial Program Information Kentucky Program Type Corporate Tax Incentive blended biodiesel does not qualify. The biodiesel tax credit is applied against...

111

Effect of Biodiesel Blends on Diesel Particulate Filter Performance  

DOE Green Energy (OSTI)

Presents results of tests of ultra-low sulfur diesel blended with soy-biodiesel at 5 percent using a Cummins ISB engine with a diesel particulate filter.

Williams, A.; McCormick, R. L.; Hayes, R. R.; Ireland, J.; Fang, H. L.

2006-11-01T23:59:59.000Z

112

Student Common Interest Group  

Science Conference Proceedings (OSTI)

Students interested in the oils and fats industry make valuable networking connections by joining the AOCS Student Common Interest Group. Student Common Interest Group Student Membership achievement aocs application award awards distinguished divi

113

Kiowa County Commons Building  

Energy.gov (U.S. Department of Energy (DOE))

This poster describes the energy efficiency features and sustainable materials used in the Kiowa County Commons Building in Greensburg, Kansas.

114

TANK 21 AND TANK 24 BLEND AND FEED STUDY: BLENDING TIMES, SETTLING TIMES, AND TRANSFERS  

SciTech Connect

The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where salt solutions of up to 1.2 million gallons will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. In particular, Tanks 21 and 24 are planned to be used for blending and transferring to the SDI feed tank. These tanks were evaluated here to determine blending times, to determine a range of settling times for disturbed sludge, and to determine that the SWPF Waste Acceptance Criteria that less than 1200 mg/liter of solids will be entrained in salt solutions during transfers from the Tank 21 and Tank 24 will be met. Overall conclusions for Tank 21 and Tank 24 operations include: (1) Experimental correction factors were applied to CFD (computational fluid dynamics) models to establish blending times between approximately two and five hours. As shown in Phase 2 research, blending times may be as much as ten times greater, or more, if lighter fluids are added to heavier fluids (i.e., water added to salt solution). As the densities of two salt solutions converge this effect may be minimized, but additional confirmatory research was not performed. (2) At the current sludge levels and the presently planned operating heights of the transfer pumps, solids entrainment will be less than 1200 mg/liter, assuming a conservative, slow settling sludge simulant. (3) Based on theoretical calculations, particles in the density range of 2.5 to 5.0 g/mL must be greater than 2-4 {micro}m in diameter to ensure they settle adequately in 30-60 days to meet the SWPF feed criterion (<1200 mg/l). (4) Experimental tests with sludge batch 6 simulant and field turbidity data from a recent Tank 21 mixing evolution suggest the solid particles have higher density and/or larger size than indicated by previous analysis of SRS sludge and sludge simulants. (5) Tank 21 waste characterization, laboratory settling tests, and additional field turbidity measurements during mixing evolutions are recommended to better understand potential risk for extended (> 60 days) settling times in Tank 21.

Lee, S.; Leishear, R.; Poirier, M.

2012-05-31T23:59:59.000Z

115

Low-Temperature Biodiesel Research Reveals Potential Key to Successful Blend Performance (Fact Sheet)  

DOE Green Energy (OSTI)

Relatively low-cost solutions could improve reliability while making biodiesel blends an affordable option. While biodiesel has very low production costs and the potential to displace up to 10% of petroleum diesel, until now, issues with cold weather performance have prevented biodiesel blends from being widely adopted. Some biodiesel blends have exhibited unexplained low-temperature performance problems even at blend levels as low as 2% by volume. The most common low-temperature performance issue is vehicle stalling caused by fuel filter clogging, which prevents fuel from reaching the engine. Research at the National Renewable Energy Laboratory (NREL) reveals the properties responsible for these problems, clearing a path for the development of solutions and expanded use of energy-conserving and low-emissions alternative fuel. NREL researchers set out to study the unpredictable nature of biodiesel crystallization, the condition that impedes the flow of fuel in cold weather. Their research revealed for the first time that saturated monoglyceride impurities common to the biodiesel manufacturing process create crystals that can cause fuel filter clogging and other problems when cooling at slow rates. Biodiesel low-temperature operational problems are commonly referred to as 'precipitates above the cloud point (CP).' NREL's Advanced Biofuels team spiked distilled soy and animal fat-derived B100, as well as B20, B10, and B5 biodiesel blends with three saturated monoglycerides (SMGs) at concentration levels comparable to those of real-world fuels. Above a threshold or eutectic concentration, the SMGs (monomyristin, monopalmitin, and monostearin) were shown to significantly raise the biodiesel CP, and had an even greater impact on the final melting temperature. Researchers discovered that upon cooling, monoglyceride initially precipitates as a metastable crystal, but it transforms over time or upon slight heating into a more stable crystal with a much lower solubility and higher melting temperature - and with increased potential to cause vehicle performance issues. This explains why fuel-filter clogging typically occurs over the course of long, repeated diurnal cooling cycles. The elevated final melting points mean that restarting vehicles with clogged filters can be difficult even after ambient temperatures have warmed to well above CP. By examining how biodiesel impurities affect filtration and crystallization during warming and cooling cycles, NREL researchers uncovered an explanation for poor biodiesel performance at low temperatures. The observation of a eutectic point, or a concentration below which SMGs have no effect, indicates that SMGs do not have to be completely removed from biodiesel to solve low-temperature performance problems.

Not Available

2012-02-01T23:59:59.000Z

116

Crystallization, mechanical, rheological and degradation behavior of polytrimethylene terephthalate, polybutylene terephthalate and polycarbonate blend.  

E-Print Network (OSTI)

??Blends of polycarbonate (PC), polytrimethylene terephthalate (PTT) and poly butylene terephthalate (PBT) are an important class of commercial blends with numerous applications providing good chemical… (more)

Al-Omairi, L

2010-01-01T23:59:59.000Z

117

Catalytic Synthesis of Oxygenates: Mechanisms, Catalysts and Controlling Characteristics  

DOE Green Energy (OSTI)

This research focused on catalytic synthesis of unsymmetrical ethers as a part of a larger program involving oxygenated products in general, including alcohols, ethers, esters, carboxylic acids and their derivatives that link together environmentally compliant fuels, monomers, and high-value chemicals. The catalysts studied here were solid acids possessing strong Br�������¸nsted acid functionalities. The design of these catalysts involved anchoring the acid groups onto inorganic oxides, e.g. surface-grafted acid groups on zirconia, and a new class of mesoporous solid acids, i.e. propylsulfonic acid-derivatized SBA-15. The former catalysts consisted of a high surface concentration of sulfate groups on stable zirconia catalysts. The latter catalyst consists of high surface area, large pore propylsulfonic acid-derivatized silicas, specifically SBA-15. In both cases, the catalyst design and synthesis yielded high concentrations of acid sites in close proximity to one another. These materials have been well-characterization in terms of physical and chemical properties, as well as in regard to surface and bulk characteristics. Both types of catalysts were shown to exhibit high catalytic performance with respect to both activity and selectivity for the bifunctional coupling of alcohols to form ethers, which proceeds via an efficient SN2 reaction mechanism on the proximal acid sites. This commonality of the dual-site SN2 reaction mechanism over acid catalysts provides for maximum reaction rates and control of selectivity by reaction conditions, i.e. pressure, temperature, and reactant concentrations. This research provides the scientific groundwork for synthesis of ethers for energy applications. The synthesized environmentally acceptable ethers, in part derived from natural gas via alcohol intermediates, exhibit high cetane properties, e.g. methylisobutylether with cetane No. of 53 and dimethylether with cetane No. of 55-60, or high octane properties, e.g. diisopropylether with blending octane No. of 105, and can replace aromatics in liquid fuels.

Kamil Klier; Richard G. Herman

2005-11-30T23:59:59.000Z

118

Modeling of Sulfate Resistance of Flyash Blended Cement Concrete Materials  

E-Print Network (OSTI)

Modeling of Sulfate Resistance of Flyash Blended Cement Concrete Materials Barzin Mobasher1 or water with high SO3 content. External sulfate 2007 World of Coal Ash (WOCA), May 7-10, 2007, Covington, the effect of curing (especially in the case of blended cements) and the effect of the pH change during

Mobasher, Barzin

119

Deferred blending: Image composition for single-pass point rendering  

Science Conference Proceedings (OSTI)

In this paper, we propose novel GPU accelerated algorithms for interactive point-based rendering (PBR) and high-quality shading of transparent point surfaces. By introducing the concept of deferred blending we are able to formulate the smooth point interpolation ... Keywords: Alpha blending, GPU processing, Hardware acceleration, Point based rendering, Transparency

Yanci Zhang; Renato Pajarola

2007-04-01T23:59:59.000Z

120

Low energy consumption method for separating gaseous mixtures and in particular for medium purity oxygen production  

DOE Patents (OSTI)

A method for the separation of gaseous mixtures such as air and for producing medium purity oxygen, comprising compressing the gaseous mixture in a first compressor to about 3.9-4.1 atmospheres pressure, passing said compressed gaseous mixture in heat exchange relationship with sub-ambient temperature gaseous nitrogen, dividing the cooled, pressurized gaseous mixture into first and second streams, introducing the first stream into the high pressure chamber of a double rectification column, separating the gaseous mixture in the rectification column into a liquid oxygen-enriched stream and a gaseous nitrogen stream and supplying the gaseous nitrogen stream for cooling the compressed gaseous mixture, removing the liquid oxygen-enriched stream from the low pressure chamber of the rectification column and pumping the liquid, oxygen-enriched steam to a predetermined pressure, cooling the second stream, condensing the cooled second stream and evaporating the oxygen-enriched stream in an evaporator-condenser, delivering the condensed second stream to the high pressure chamber of the rectification column, and heating the oxygen-enriched stream and blending the oxygen-enriched stream with a compressed blend-air stream to the desired oxygen concentration.

Jujasz, Albert J. (North Olmsted, OH); Burkhart, James A. (Olmsted Falls, OH); Greenberg, Ralph (New York, NY)

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxygenated blends commonly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

PultrusionPultrusion of Fabric Reinforced Highof Fabric Reinforced High Flyash Blended Cement CompositesFlyash Blended Cement Composites  

E-Print Network (OSTI)

PultrusionPultrusion of Fabric Reinforced Highof Fabric Reinforced High Flyash Blended Cement CompositesFlyash Blended Cement Composites Barzin Mobasher1, Alva Peled 2, Jitendra Pahalijani1 1 Department Engineering Ben-Gurion University, Israel The World of Coal Ash 2005 International Ash Utilization Symposium

Mobasher, Barzin

122

Common Event Rule Expression  

Science Conference Proceedings (OSTI)

... Page 26 Incident Response/Management and the Common Cyber Observables (CybOX) Schema ... Content Transformed from Portion of MAEC ...

2012-10-26T23:59:59.000Z

123

Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model (Released in the STEO March 1998)  

Reports and Publications (EIA)

The blending of oxygenates, such as fuel ethanol and methyl tertiary butyl ether (MTBE), into motor gasoline has increased dramatically in the last few years because of the oxygenated and reformulated gasoline programs. Because of the significant role oxygenates now have in petroleum product markets, the Short-Term Integrated Forecasting System (STIFS) was revised to include supply and demand balances for fuel ethanol and MTBE. The STIFS model is used for producing forecasts in the Short-Term Energy Outlook. A review of the historical data sources and forecasting methodology for oxygenate production, imports, inventories, and demand is presented in this report.

Information Center

1998-03-01T23:59:59.000Z

124

RIVER PROTECTION PROJECT MISSION ANALYSIS WASTE BLENDING STUDY  

SciTech Connect

Preliminary evaluation for blending Hanford site waste with the objective of minimizing the amount of high-level waste (HLW) glass volumes without major changes to the overall waste retrieval and processing sequences currently planned. The evaluation utilizes simplified spreadsheet models developed to allow screening type comparisons of blending options without the need to use the Hanford Tank Waste Operations Simulator (HTWOS) model. The blending scenarios evaluated are expected to increase tank farm operation costs due to increased waste transfers. Benefit would be derived from shorter operating time period for tank waste processing facilities, reduced onsite storage of immobilized HLW, and reduced offsite transportation and disposal costs for the immobilized HLW.

SHUFORD DH; STEGEN G

2010-04-19T23:59:59.000Z

125

Battery separators based on polyphenylquinoxaline polymer blends. Final report  

Science Conference Proceedings (OSTI)

This document is a final report on battery separators based on polyphenylquinoxaline (PPQ) polymer blends. The report describes the preparation of the polymer blends and their extrusion into membranes, reports a series of quality assurance tests for the membranes, and reports cycle life testing of the new membranes. The test results for the PPQ blend membranes are compared with the results obtained for standard separator membranes. It is concluded that PPQ/Cellulose Acetate is a good candidate material for alkaline battery separators; however, because of cost considerations, it is not competative with similar state-of-the-art materials.

Angres, I.; Kowalchik, L.; Parkhurst, W.

1981-04-01T23:59:59.000Z

126

Phosphor blends for high-CRI fluorescent lamps  

DOE Patents (OSTI)

A phosphor blend comprises at least two phosphors each selected from one of the groups of phosphors that absorb UV electromagnetic radiation and emit in a region of visible light. The phosphor blend can be applied to a discharge gas radiation source to produce light sources having high color rendering index. A phosphor blend is advantageously includes the phosphor (Tb,Y,LuLa,Gd).sub.x(Al,Ga).sub.yO.sub.12:Ce.sup.3+, wherein x is in the range from about 2.8 to and including 3 and y is in the range from about 4 to and including 5.

Setlur, Anant Achyut (Niskayuna, NY); Srivastava, Alok Mani (Niskayuna, NY); Comanzo, Holly Ann (Niskayuna, NY); Manivannan, Venkatesan (Clifton Park, NY); Beers, William Winder (Chesterland, OH); Toth, Katalin (Pomaz, HU); Balazs, Laszlo D. (Budapest, HU)

2008-06-24T23:59:59.000Z

127

Safety and Performance Assessment of Ethanol/Diesel Blends (E-Diesel)  

DOE Green Energy (OSTI)

Subcontract report discussing safety concerns of ethanol-diesel blends and pathways to reducing risks.

Waterland, L. R.; Venkatesh, S.; Unnasch, S.

2003-09-01T23:59:59.000Z

128

The Common Land Model  

Science Conference Proceedings (OSTI)

The Common Land Model (CLM) was developed for community use by a grassroots collaboration of scientists who have an interest in making a general land model available for public use and further development. The major model characteristics include ...

Yongjiu Dai; Xubin Zeng; Robert E. Dickinson; Ian Baker; Gordon B. Bonan; Michael G. Bosilovich; A. Scott Denning; Paul A. Dirmeyer; Paul R. Houser; Guoyue Niu; Keith W. Oleson; C. Adam Schlosser; Zong-Liang Yang

2003-08-01T23:59:59.000Z

129

Common Coil Papers  

NLE Websites -- All DOE Office Websites (Extended Search)

on the common coil magnet design with Ramesh Gupta as a major author on the common coil magnet design with Ramesh Gupta as a major author (unless noted). There are many other papers on common coil magnet by several other authors that are not listed here. R. Gupta, et. al, "React & Wind Nb3Sn Common Coil Dipole", Presented at ASC 2006, August 27- September 1, 2006 in Seattle, WA, USA. J. Cozzolino, et. al., "Magnet Engineering and Test Results of the High Field Magnet R&D Program at BNL", Presented at the Applied Superconductivity Conference at Houston, TX, USA (2002). R. Gupta, et al., “R & D for Accelerator Magnets with React and Wind High Temperature Superconductors,” International Conference on Magnet Technology (MT-17) at Geneva, Switzerland (2001)... (Click here for Talk) J. Escallier, et al., "Technology Development for React and Wind

130

Alternative Fuels Data Center: Status Update: New Mid-Level Ethanol Blends  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

New New Mid-Level Ethanol Blends Certification Path, UL Meeting, and Mid-Level Blends Testing (August 2009) to someone by E-mail Share Alternative Fuels Data Center: Status Update: New Mid-Level Ethanol Blends Certification Path, UL Meeting, and Mid-Level Blends Testing (August 2009) on Facebook Tweet about Alternative Fuels Data Center: Status Update: New Mid-Level Ethanol Blends Certification Path, UL Meeting, and Mid-Level Blends Testing (August 2009) on Twitter Bookmark Alternative Fuels Data Center: Status Update: New Mid-Level Ethanol Blends Certification Path, UL Meeting, and Mid-Level Blends Testing (August 2009) on Google Bookmark Alternative Fuels Data Center: Status Update: New Mid-Level Ethanol Blends Certification Path, UL Meeting, and Mid-Level Blends Testing

131

Conversion and Blending Facility highly enriched uranium to low enriched uranium as metal. Revision 1  

SciTech Connect

The mission of this Conversion and Blending Facility (CBF) will be to blend surplus HEU metal and alloy with depleted uranium metal to produce an LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal.

1995-07-05T23:59:59.000Z

132

Biodiesel Production and Blending Tax Credit (Kentucky) | Open Energy  

Open Energy Info (EERE)

Production and Blending Tax Credit (Kentucky) Production and Blending Tax Credit (Kentucky) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on February 12, 2013. EZFeed Policy Place Kentucky Name Biodiesel Production and Blending Tax Credit (Kentucky) Policy Category Financial Incentive Policy Type Corporate Tax Incentive Affected Technologies Biomass/Biogas Active Policy Yes Implementing Sector State/Province Primary Website http://energy.ky.gov/biofuels/Pages/biofuelsIncentives.aspx Summary blended biodiesel does not qualify. The biodiesel tax credit is applied against the corporation income tax imposed under KRS 141.040 and/or the limited liability entity tax (LLET) imposed under KRS 141.0401. The amount

133

Time phased alternate blending of feed coals for liquefaction  

DOE Patents (OSTI)

The present invention is directed to a method for reducing process performance excursions during feed coal or process solvent changeover in a coal hydroliquefaction process by blending of feedstocks or solvents over time. ,

Schweigharett, Frank (Allentown, PA); Hoover, David S. (New Tripoli, PA); Garg, Diwaker (Macungie, PA)

1985-01-01T23:59:59.000Z

134

CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties...  

NLE Websites -- All DOE Office Websites (Extended Search)

5-192009; 1 Sandia National Laboratories CNG, H 2 , CNG-H 2 Blends - Critical Fuel Properties and Behavior Jay Keller, Sandia National Laboratories Keynote Lecture presented at:...

135

West Coast (PADD 5) Imports from Spain of Gasoline Blending ...  

U.S. Energy Information Administration (EIA)

West Coast (PADD 5) Imports from Spain of Gasoline Blending Components (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9;

136

Eco-Friendly Complex Blends into Desert | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Eco-Friendly Complex Blends into Desert Eco-Friendly Complex Blends into Desert Eco-Friendly Complex Blends into Desert October 7, 2010 - 11:58am Addthis Paul Lester Communications Specialist, Office of Energy Efficiency and Renewable Energy What does this project do? Rooftop solar panels provide 27 percent of the facility's energy. Maricopa County officials estimate the complex is 42 percent more energy efficient than many modern day buildings. Next month, hikers marveling at the sun bathed canyons and ridges of White Tank Mountain in the Sonoran Desert will see something on the horizon - if they look hard. Built to blend into the desert landscape, the new 29,000 square-foot White Tank Library and Nature Center in Surprise, Ariz., is set to open on Nov. 13. Rooftop solar panels provide 27 percent of the facility's energy.

137

BLENDING ANALYSIS FOR RADIOACTIVE SALT WASTE PROCESSING FACILITY  

SciTech Connect

Savannah River National Laboratory (SRNL) evaluated methods to mix and blend the contents of the blend tanks to ensure the contents are properly blended before they are transferred from the blend tank such as Tank 21 and Tank 24 to the Salt Waste Processing Facility (SWPF) feed tank. The tank contents consist of three forms: dissolved salt solution, other waste salt solutions, and sludge containing settled solids. This paper focuses on developing the computational model and estimating the operation time of submersible slurry pump when the tank contents are adequately blended prior to their transfer to the SWPF facility. A three-dimensional computational fluid dynamics approach was taken by using the full scale configuration of SRS Type-IV tank, Tank 21H. Major solid obstructions such as the tank wall boundary, the transfer pump column, and three slurry pump housings including one active and two inactive pumps were included in the mixing performance model. Basic flow pattern results predicted by the computational model were benchmarked against the SRNL test results and literature data. Tank 21 is a waste tank that is used to prepare batches of salt feed for SWPF. The salt feed must be a homogeneous solution satisfying the acceptance criterion of the solids entrainment during transfer operation. The work scope described here consists of two modeling areas. They are the steady state flow pattern calculations before the addition of acid solution for tank blending operation and the transient mixing analysis during miscible liquid blending operation. The transient blending calculations were performed by using the 95% homogeneity criterion for the entire liquid domain of the tank. The initial conditions for the entire modeling domain were based on the steady-state flow pattern results with zero second phase concentration. The performance model was also benchmarked against the SRNL test results and literature data.

Lee, S.

2012-05-10T23:59:59.000Z

138

Coal Blending for NOx Reductions and Performance Improvements  

Science Conference Proceedings (OSTI)

Following its formation and initial meeting in 1995, the Alabama Fuels Development Consortium (AFDC) identified its highest priority as mitigating the adverse effects of burning low-volatile Alabama coals. These adverse effects included increased NOx emissions and flame instability. A pilot-scale AFDC study in 1995 and larger-scale projects conducted in partnership with EPRI in 1996 (Shoal Creek/Mina Pribbenow Blend Firing Demonstration) and 1997 (Shoal Creek/Mina Pribbenow Blend Milling Demonstration) m...

2004-09-20T23:59:59.000Z

139

Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate.  

DOE Green Energy (OSTI)

Detailed chemical kinetic mechanisms were developed and used to study the oxidation of two large unsaturated esters: methyl-5-decenoate and methyl-9-decenoate. These models were built from a previous methyl decanoate mechanism and were compared with rapeseed oil methyl esters oxidation experiments in a jet stirred reactor. A comparative study of the reactivity of these three oxygenated compounds was performed and the differences in the distribution of the products of the reaction were highlighted showing the influence of the presence and the position of a double bond in the chain. Blend surrogates, containing methyl decanoate, methyl-5-decenoate, methyl-9-decenoate and n-alkanes, were tested against rapeseed oil methyl esters and methyl palmitate/n-decane experiments. These surrogate models are realistic kinetic tools allowing the study of the combustion of biodiesel fuels in diesel and homogeneous charge compression ignition engines.

Herbinet, O; Pitz, W J; Westbrook, C K

2009-07-21T23:59:59.000Z

140

Oxygen ion conducting materials  

DOE Patents (OSTI)

An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

Vaughey, John (Elmhurst, IL); Krumpelt, Michael (Naperville, IL); Wang, Xiaoping (Downers Grove, IL); Carter, J. David (Bolingbrook, IL)

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxygenated blends commonly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Thermal stabilization FY 1999 blend plan  

SciTech Connect

This Blend Plan documents the alternate feed material items for the thermal stabilization process that will be used in place of the metal items that were originally planned to be processed. Problems with resolution of the safety basis for the metal items resulted in the decision to run material that already had an established safety basis. Various in process and scrap recovery items stored in gloveboxes, plutonium oxide and plutonium oxide mixed with uranium oxide stored in 2736-2 vaults will be processed through the stabilization furnaces until the safety basis for the metal items has been resolved. The purpose of thermal stabilization is to heat the material to 1000 degrees Celsius to drive off all volatile materials and leave the plutonium and/or uranium as oxides. The stabilized material will be sampled to determine the Loss On Ignition (LOI). The stabilized material must meet LOI of less than 0.5% to be acceptable for storage under DOE-STD-3013-94 specifications. Out of specification material will be recycled through the furnaces until the LOI limits are met.

RISENMAY, H.R.

1999-06-01T23:59:59.000Z

142

NVLAP Common Criteria Testing LAP  

Science Conference Proceedings (OSTI)

NVLAP Common Criteria Testing LAP. ... This site has been established for applicants to the Common Criteria Testing accreditation program. ...

2013-07-26T23:59:59.000Z

143

BLENDING OF RADIOACTIVE SALT SOLUTIONS IN MILLION GALLON TANKS  

SciTech Connect

Research was completed at Savannah River National Laboratory (SRNL) to investigate processes related to the blending of radioactive, liquid waste, salt solutions in 4920 cubic meter, 25.9 meter diameter storage tanks. One process was the blending of large salt solution batches (up to 1135 – 3028 cubic meters), using submerged centrifugal pumps. A second process was the disturbance of a settled layer of solids, or sludge, on the tank bottom. And a third investigated process was the settling rate of sludge solids if suspended into slurries by the blending pump. To investigate these processes, experiments, CFD models (computational fluid dynamics), and theory were applied. Experiments were performed using simulated, non-radioactive, salt solutions referred to as supernates, and a layer of settled solids referred to as sludge. Blending experiments were performed in a 2.44 meter diameter pilot scale tank, and flow rate measurements and settling tests were performed at both pilot scale and full scale. A summary of the research is presented here to demonstrate the adage that, “One good experiment fixes a lot of good theory”. Experimental testing was required to benchmark CFD models, or the models would have been incorrectly used. In fact, CFD safety factors were established by this research to predict full-scale blending performance. CFD models were used to determine pump design requirements, predict blending times, and cut costs several million dollars by reducing the number of required blending pumps. This research contributed to DOE missions to permanently close the remaining 47 of 51 SRS waste storage tanks.

Leishear, R.

2012-12-10T23:59:59.000Z

144

Blending Of Radioactive Salt Solutions In Million Gallon Tanks  

Science Conference Proceedings (OSTI)

Research was completed at Savannah River National Laboratory (SRNL) to investigate processes related to the blending of radioactive, liquid waste, salt solutions in 4920 cubic meter, 25.9 meter diameter storage tanks. One process was the blending of large salt solution batches (up to 1135 ? 3028 cubic meters), using submerged centrifugal pumps. A second process was the disturbance of a settled layer of solids, or sludge, on the tank bottom. And a third investigated process was the settling rate of sludge solids if suspended into slurries by the blending pump. To investigate these processes, experiments, CFD models (computational fluid dynamics), and theory were applied. Experiments were performed using simulated, non-radioactive, salt solutions referred to as supernates, and a layer of settled solids referred to as sludge. Blending experiments were performed in a 2.44 meter diameter pilot scale tank, and flow rate measurements and settling tests were performed at both pilot scale and full scale. A summary of the research is presented here to demonstrate the adage that, ?One good experiment fixes a lot of good theory?. Experimental testing was required to benchmark CFD models, or the models would have been incorrectly used. In fact, CFD safety factors were established by this research to predict full-scale blending performance. CFD models were used to determine pump design requirements, predict blending times, and cut costs several million dollars by reducing the number of required blending pumps. This research contributed to DOE missions to permanently close the remaining 47 of 51 SRS waste storage tanks.

Leishear, Robert A.; Lee, Si Y.; Fowley, Mark D.; Poirier, Michael R.

2012-12-10T23:59:59.000Z

145

Commonizing Uncommon Sense  

Office of Scientific and Technical Information (OSTI)

Commonizing Uncommon Sense Commonizing Uncommon Sense The universe that Einstein discovered—in which time doesn’t pass at the same rate for everyone, space bends, and chance prevails where we would expect certainties—seems strange to us, but becomes easier to understand once we realize that our everyday situation is the unusual one. Imagine that you had never known how different people’s customs are in other countries. One day you travel to another country, far from your own, where they do things not just slightly differently, but very differently. Not being forewarned of this, you might be greatly surprised, and find yourself having to spend a lot more time than you expected getting used to the differences. Your understanding of the culture could develop in at least one of two

146

Most Commonly Identified Recommendations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Most Commonly Identified Recommendations Most Commonly Identified Recommendations DOE ITP In Depth ITP Energy Assessment Webcast Presented by: Dr. Bin Wu, Director, Professor of Industrial Engineering Dr. Sanjeev Khanna, Assistant Director, Associate Professor of Mechanical Engineering With Contribution From MO IAC Student Engineers: Chatchai Pinthuprapa Jason Fox Yunpeng Ren College of Engineering, University of Missouri. April 16, 2009 Missouri Industrial Assessment Center Missouri IAC is one of the 26 centers founded by the U.S. DOE in the nation. Since its establishment in 2005, we have been working closely with the MoDNR, the MU University Extension, utility providers in the state, etc, to provide education, development and services in industrial energy efficiency. Our services (audits, workshops, etc), have already covered many locations across the state of Missouri.

147

Common tester platform concept.  

Science Conference Proceedings (OSTI)

This report summarizes the results of a case study on the doctrine of a common tester platform, a concept of a standardized platform that can be applicable across the broad spectrum of testing requirements throughout the various stages of a weapons program, as well as across the various weapons programs. The common tester concept strives to define an affordable, next-generation design that will meet testing requirements with the flexibility to grow and expand; supporting the initial development stages of a weapons program through to the final production and surveillance stages. This report discusses a concept investing key leveraging technologies and operational concepts combined with prototype tester-development experiences and practical lessons learned gleaned from past weapons programs.

Hurst, Michael James

2008-05-01T23:59:59.000Z

148

Common Information Model Primer  

Science Conference Proceedings (OSTI)

The Common Information Model (CIM) Primer explains the basics of the CIM (IEC 61970, IEC 61968, and IEC 62325). Starting with a historical perspective, it describes how the CIM originated and grew through the years. The functions of various working groups of Technical Committee 57 of the International Electrotechnical Commission (IEC) are described. The process of how an IEC standard is created is also outlined. The basics of the Unified Modeling Language (UML) are detailed to introduce the reader to the...

2011-11-10T23:59:59.000Z

149

Algae for Oxygen  

NLE Websites -- All DOE Office Websites (Extended Search)

Algae for Oxygen Algae for Oxygen Name: Pam Burkardt Status: N/A Age: N/A Location: N/A Country: N/A Date: N/A Question: Hi, I am Pam Burkardt, a seventh grader at Fox Chapel School. I have a question on algae. I read somewhere that someday people might take bath tubs full of algae onto spaceships to provide oxygen for the crew. How much oxygen does algae give off, is this really possible? Replies: I think that most of the oxygen in the atmosphere comes in fact from one-celled plants in the oceans, like algae. They are likely to produce a lot of oxygen per unit weight because they don't have non-photosynthesizing bark, roots, branches, etc., nor (I think) a major dormant period like temperate-zone plants. The cost of space travel at present is dominated by the expense of heaving weight up into Earth orbit (it costs very little extra to send it to the Moon, for example, or Mars). For missions of short duration the weight of the compressed oxygen you need to carry is less than the weight of algae, water and extra plumbing you'd need to carry if you relied on algae to produce your oxygen. The important use of green plants would be in very long duration space flight (years) or permanent inhabitation of worlds like the Moon, where you need an unlimited supply of oxygen. Now if you want to fantasize, Venus' atmosphere is almost all carbon dioxide. Suppose you dropped a whole lot of specially gene-tailored one-celled plants into the atmosphere (not the surface, it's too hot). Why then they might eat up all the carbon dioxide and produce a breathable atmosphere. The "greenhouse effect" would go away, and Venus would become a nice habitable if tropical world only 50 million miles away.

150

Plants making oxygen  

NLE Websites -- All DOE Office Websites (Extended Search)

Plants making oxygen Plants making oxygen Name: Doug Status: N/A Age: N/A Location: N/A Country: N/A Date: Around 1993 Question: How many plants are needed to make enough oxygen for one person for one hour? We are experimenting with Anacharis plants. Replies: The problem can be solved when broken down into smaller questions: 1. How much oxygen does a person need in an hour? 2. How much oxygen does a plant produce in an hour? 3. Based on the above, how many plants will provide the oxygen needs of the person for the hour? Here is the solution to the first question: A resting, healthy adult on an average, cool day breathes in about 53 liters of oxygen per hour. An average, resting, health adult breathes in about 500 mL of air per breath. This is called the normal tidal volume. Now, 150 mL of this air will go to non- functioning areas of the lung, called the "dead space." The average breath rate for this average person is 12 breaths per minute. So, the amount of air breathed in by the person which is available for use is 12 x (500 mL -150 mL) = 4,200 mL/minute. Multiply by 60 to get 252,000 mL/hour. That is, every hour, the person will breathe in 252 L of air. Now, on an average, cool, clear day, only 21% of that air is oxygen. So, 21% of 252 L is 53 L. So, in an hour, the person breathes in about 53 L of oxygen.

151

Controlled differential pressure system for an enhanced fluid blending apparatus  

DOE Patents (OSTI)

A system and method for producing a controlled blend of two or more fluids. Thermally-induced permeation through a permeable tube is used to mix a first fluid from outside the tube with a second fluid flowing through the tube. Mixture ratios may be controlled by adjusting the temperature of the first fluid or by adjusting the pressure drop through the permeable tube. The combination of a back pressure control valve and a differential regulator is used to control the output pressure of the blended fluid. The combination of the back pressure control valve and differential regulator provides superior flow control of the second dry gas. A valve manifold system may be used to mix multiple fluids, and to adjust the volume of blended fluid produced, and to further modify the mixture ratio.

Hallman, Jr., Russell Louis (Knoxville, TN)

2009-02-24T23:59:59.000Z

152

Certification of alternative aviation fuels and blend components  

SciTech Connect

Aviation turbine engine fuel specifications are governed by ASTM International, formerly known as the American Society for Testing and Materials (ASTM) International, and the British Ministry of Defence (MOD). ASTM D1655 Standard Specification for Aviation Turbine Fuels and MOD Defence Standard 91-91 are the guiding specifications for this fuel throughout most of the world. Both of these documents rely heavily on the vast amount of experience in production and use of turbine engine fuels from conventional sources, such as crude oil, natural gas condensates, heavy oil, shale oil, and oil sands. Turbine engine fuel derived from these resources and meeting the above specifications has properties that are generally considered acceptable for fuels to be used in turbine engines. Alternative and synthetic fuel components are approved for use to blend with conventional turbine engine fuels after considerable testing. ASTM has established a specification for fuels containing synthesized hydrocarbons under D7566, and the MOD has included additional requirements for fuels containing synthetic components under Annex D of DS91-91. New turbine engine fuel additives and blend components need to be evaluated using ASTM D4054, Standard Practice for Qualification and Approval of New Aviation Turbine Fuels and Fuel Additives. This paper discusses these specifications and testing requirements in light of recent literature claiming that some biomass-derived blend components, which have been used to blend in conventional aviation fuel, meet the requirements for aviation turbine fuels as specified by ASTM and the MOD. The 'Table 1' requirements listed in both D1655 and DS91-91 are predicated on the assumption that the feedstocks used to make fuels meeting these requirements are from approved sources. Recent papers have implied that commercial jet fuel can be blended with renewable components that are not hydrocarbons (such as fatty acid methyl esters). These are not allowed blend components for turbine engine fuels as discussed in this paper.

Wilson III, George R. (Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas 78238 (United States)); Edwards, Tim; Corporan, Edwin (United States Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States)); Freerks, Robert L. (Rentech, Incorporated, 1331 17th Street, Denver, Colorado 80202 (United States))

2013-01-15T23:59:59.000Z

153

Blending scheduling under uncertainty based on particle swarm optimization with hypothesis test  

Science Conference Proceedings (OSTI)

Blending is an important unit operation in process industry. As a nonlinear optimization problem with constraints, it is difficult to obtain optimal solution for blending scheduling, especially under uncertainty. As a novel evolutionary computing technique, ...

Hui Pan; Ling Wang

2006-08-01T23:59:59.000Z

154

Theoretical and experimental investigation of particle interactions in pharmaceutical powder blending  

E-Print Network (OSTI)

In pharmaceutical manufacturing practices, blending of active pharmaceutical ingredient (API) with excipients is a crucial step in that homogeneity of active ingredient after blending is a key issue for the quality assurance ...

Pu, Yu, Ph. D. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

155

High Volume Fly Ash Blended Cements: Status Report  

Science Conference Proceedings (OSTI)

At present, the production of high-volume fly ash (HVFA) concrete involves the addition of large volumes of fly ash as a separate ingredient at a ready-mixed concrete batch plant. This necessitates additional storage silos and quality control at the job site. In order to resolve these issues, CANMET, in partnership with Electric Power Research Institute, U.S.A., undertook a major research project to develop blended cements incorporating high volumes of ASTM Class fly ash. The blended cements are made by ...

1999-10-28T23:59:59.000Z

156

High Selectivity Oxygen Delignification  

DOE Green Energy (OSTI)

Project Objective: The objectives of this project are as follows: (1) Examine the physical and chemical characteristics of a partner mill pre- and post-oxygen delignified pulp and compare them to lab generated oxygen delignified pulps; (2) Apply the chemical selectivity enhancement system to the partner pre-oxygen delignified pulps under mill conditions (with and without any predetermined amounts of carryover) to determine how efficiently viscosity is preserved, how well selectivity is enhanced, if strength is improved, measure any yield differences and/or bleachability differences; and (3) Initiate a mill scale oxygen delignification run using the selectivity enhancement agent, collect the mill data, analyze it, and propose any future plans for implementation.

Lucian A. Lucia

2005-11-15T23:59:59.000Z

157

Biodiesel Blends in Space Heating Equipment: January 31, 2001 -- September 28, 2001  

DOE Green Energy (OSTI)

This report documents an evaluation of the performance of blends of biodiesel and home heating oil in space heating applications.

Krishna, C. R.

2004-05-01T23:59:59.000Z

158

Oxygen detection in biological systems  

Science Conference Proceedings (OSTI)

kinetics of flash induced oxygen evolution of algae through measuring ...... (1999) Fast response oxygen micro-optodes based on novel soluble ormosil glasses.

159

Brief paper: Multi-frequency disturbance rejection via blending control technique for hard disk drives  

Science Conference Proceedings (OSTI)

This paper is concerned with the rejection of multiple narrowband disturbances in hard disk drives (HDDs). Inspired by a control blending idea, the multi-frequency disturbance rejection is formulated as a blending control problem. Each disturbance rejection ... Keywords: Blending control, H2 control, Hard disk drives, Servo control, Vibration rejection

Chunling Du; Lihua Xie; F. L. Lewis; Youyi Wang

2009-10-01T23:59:59.000Z

160

Combinatorial Optimization of Pulverizers for Blended-Coal-Fired Power Plant  

Science Conference Proceedings (OSTI)

Coal blending has become an important way to ease the tension of coal purchase for many Chinese power plants. Mixed by pulverizers which has been widely used, is considered the most reasonable and convenient approach of coal blending. The implementation ... Keywords: power plant, coal blending, combinatorial optimization, pulverizer, NSGA-II

Xia Ji; Peng Peng; Hua Zhigang; Lu Pan; Chen Gang

2011-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxygenated blends commonly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

HEU to LEU Conversion and Blending Facility: UNH blending alternative to produce LEU UNH for commercial use  

SciTech Connect

US DOE is examining options for disposing of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. The nuclear material is converted to a form that is more proliferation-resistant than the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. Five technologies for blending HEU will be assessed. This document provides data to be used in the environmental impact analysis for the UNH blending HEU disposition option. Process requirements, resource needs, employment needs, waste/emissions from plant, hazards, accident scenarios, and intersite transportation are discussed.

1995-09-01T23:59:59.000Z

162

A Blended Satellite Total Precipitable Water Product for Operational Forecasting  

Science Conference Proceedings (OSTI)

Total precipitable water (TPW), the amount of water vapor in a column from the surface of the earth to space, is used by forecasters to predict heavy precipitation. In this paper, a process for blending TPW values retrieved from two satellite ...

Stanley Q. Kidder; Andrew S. Jones

2007-01-01T23:59:59.000Z

163

Fuel and fuel blending components from biomass derived pyrolysis oil  

DOE Patents (OSTI)

A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

2012-12-11T23:59:59.000Z

164

NOx, SOx & CO{sub 2} mitigation using blended coals  

Science Conference Proceedings (OSTI)

Estimates of potential CO{sub 2} reduction achievable through the use of a mixture of bituminous and subbituminous (PRB) coals, whilst attaining NOx and SOx compliance are presented. The optimization considerations to provide satisfactory furnace, boiler and unit performance with blended coal supplies to make such operation feasible are discussed. 6 refs., 7 figs., 1 tab.

Labbe, D.

2009-11-15T23:59:59.000Z

165

Optical oxygen concentration monitor  

DOE Patents (OSTI)

A system for measuring and monitoring the concentration of oxygen uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to one of oxygen`s A-band absorption lines. In a preferred embodiment, the argon line is split into sets of components of shorter and longer wavelengths by a magnetic field of approximately 2,000 Gauss that is parallel to the light propagation from the lamp. The longer wavelength components are centered on an absorption line of oxygen and thus readily absorbed, and the shorter wavelength components are moved away from that line and minimally absorbed. A polarization modulator alternately selects the set of the longer wavelength, or upshifted, components or the set of the shorter wavelength, or downshifted, components and passes the selected set to an environment of interest. After transmission over a path through that environment, the transmitted optical flux of the argon line varies as a result of the differential absorption. The system then determines the concentration of oxygen in the environment based on the changes in the transmitted optical flux between the two sets of components. In alternative embodiments modulation is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to either the emitting plasma of the lamp or the environment of interest. 4 figs.

Kebabian, P.

1997-07-22T23:59:59.000Z

166

A comparison of ethanol and butanol as oxygenates using a direct-injection, spark-ignition (DISI) engine.  

DOE Green Energy (OSTI)

This study was designed to evaluate a 'what if' scenario in terms of using butanol as an oxygenate in place of ethanol in an engine calibrated for gasoline operation. No changes to the stock engine calibration were performed for this study. Combustion analysis, efficiency, and emissions of pure gasoline, 10% ethanol, and 10% butanol blends in a modern direct-injection four-cylinder spark-ignition engine were analyzed. Data were taken at engine speeds of 1000 rpm up to 4000 rpm with load varying from 0 N m (idle) to 150 N m. Relatively minor differences existed between the three fuels for the combustion characteristics such as heat release rate, 50% mass fraction burned, and coefficient of variation in indicated mean effective pressure at low and medium engine loads. However at high engine loads the reduced knock resistance of the butanol blend forced the engine control unit to retard the ignition timing substantially, compared with the gasoline baseline and, even more pronounced, compared with the ethanol blend. Brake specific volumetric fuel consumption, which represented a normalized volumetric fuel flow rate, was lowest for the gasoline baseline fuel due to the higher energy density. The 10% butanol blend had a lower volumetric fuel consumption compared with the ethanol blend, as expected, based on energy density differences. The results showed little difference in regulated emissions between 10% ethanol and 10% butanol. The ethanol blend produced the highest peak specific NO{sub x} due to the high octane rating of ethanol and effective antiknock characteristics. Overall, the ability of butanol to perform equally as well as ethanol from an emissions and combustion standpoint, with a decrease in fuel consumption, initially appears promising. Further experiments are planned to explore the full operating range of the engine and the potential benefits of higher blend ratios of butanol.

Wallner, T.; Miers, S. A.; McConnell, S. (Energy Systems)

2009-05-01T23:59:59.000Z

167

U.S. transparency monitoring of HEU oxide conversion and blending to LEU hexafluoride at three Russian blending plants  

SciTech Connect

The down-blending of Russian highly enriched uranium (HEU) takes place at three Russian gaseous centrifuge enrichment plants. The fluorination of HEU oxide and down-blending of HEU hexafluoride began in 1994, and shipments of low enriched uranium (LEU) hexafluoride product to the United States Enrichment Corporation (USEC) began in 1995 US transparency monitoring under the HEU Purchase Agreement began in 1996 and includes a permanent monitoring presence US transparency monitoring at these facilities is intended to provide confidence that HEU is received and down-blended to LEU for shipment to USEC The monitoring begins with observation of the receipt of HEU oxide shipments, including confirmation of enrichment using US nondestructive assay equipment The feeding of HEU oxide to the fluorination process and the withdrawal of HEU hexafluoride are monitored Monitoring is also conducted where the blending takes place and where shipping cylinders are filled with LEU product. A series of process and material accountancy documents are provided to US monitors.

Leich, D., LLNL

1998-07-27T23:59:59.000Z

168

HEU to LEU conversion and blending facility: Oxide blending alternative to produce LEU oxide for commercial use  

SciTech Connect

The United States Department of Energy (DOE) is examining options for the disposition of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. Disposition is a process of use or disposal of material that results in the material being converted to a form that is substantially and inherently more proliferation-resistant than the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. This document provides data to be used in the environmental impact analysis for the oxide blending HEU disposition option. This option provides for a yearly HEU throughput of 1 0 metric tons (MT) of uranium metal with an average U235 assay of 50% blended with 165 MT of natural assay triuranium octoxide (U{sub 3} O{sub 8}) per year to produce 177 MT of 4% U235 assay U{sub 3} O{sub 8}, for LWR fuel. Since HEU exists in a variety of forms and not necessarily in the form to be blended, worst case scenarios for preprocessing prior to blending will be assumed for HEU feed streams.

1995-09-01T23:59:59.000Z

169

Polymer blends for use in photoelectrochemical cells for conversion of solar energy to electricity and methods for manufacturing such blends  

DOE Patents (OSTI)

There is disclosed a polymer blend of a highly conductive polymer and a solid polymer electrolyte that is designed to achieve better charge transfer across the conductive film/polymer electrolyte interface of the electrochemical photovoltaic cell. The highly conductive polymer is preferably polypyrrole or poly-N-p-nitrophenylpyrrole and the solid polymer electrolyte is preferably polyethylene oxide or polypropylene oxide.

Skotheim, Terje (East Patchogue, NY)

1984-01-01T23:59:59.000Z

170

Oxygen in Underwater Cave  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxygen in Underwater Cave Oxygen in Underwater Cave Name: Natalie Status: student Grade: 9-12 Location: HI Country: USA Date: Spring 2011 Question: Is it possible for there to be free oxygen in an underwater cave? If it is, then how does it work? Replies: Yes it is possible as I have personally experienced. If the cave roof rises to a level above the water, air dissolved in the water will slowly out gas until the water is at the same level at all places. A pocket of breathable air will form. In many caves the roof dips below water level in one place but it above it on both sides. Think of a U shaped tube where the bottom of the U is blocked by water. This is called a siphon and I have passed through many of these to find breathable air on the other side. R. W. "Bob" Avakian Oklahoma State Univ. Inst. of Technology

171

Conversion and Blending Facility highly enriched uranium to low enriched uranium as oxide. Revision 1  

SciTech Connect

This Conversion and Blending Facility (CBF) will have two missions: (1) convert HEU materials into pure HEU oxide and (2) blend the pure HEU oxide with depleted and natural uranium oxide to produce an LWR grade LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. To the extent practical, the chemical and isotopic concentrations of blended LEU product will be held within the specifications required for LWR fuel. Such blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry. Otherwise, blended LEU will be produced as a waste suitable for storage or disposal.

1995-07-05T23:59:59.000Z

172

Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Prohibition of the Prohibition of the Sale of Ethanol-Blended Gasoline to someone by E-mail Share Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on Facebook Tweet about Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on Twitter Bookmark Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on Google Bookmark Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on Delicious Rank Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on Digg Find More places to share Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

173

Oxygen Transport Membranes  

Science Conference Proceedings (OSTI)

The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the small polaron conduction mechanism. Scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) were used to develop strategies to detect and characterize vacancy creation, dopant segregations and defect association in the oxygen conducting membrane material. The pO{sub 2} and temperature dependence of the conductivity, non-stoichiometry and thermal-expansion behavior of compositions with increasing complexity of substitution on the perovskite A and B sites were studied. Studies with the perovskite structure show anomalous behavior at low oxygen partial pressures (oxygen equilibration kinetics arises from two different mechanisms. In the first, a two phase region occurs between an oxygen vacancy ordered phase such as brownmillerite SrFeO{sub 2.5} and perovskite SrFeO{sub 3-x}. The slow kinetics is associated with crossing the two phase region. The width of the miscibility gap decreases with increasing temperature and consequently the effect is less pronounced at higher temperature. The preferred kinetic pathway to reduction of perovskite ferrites when the vacancy concentration corresponds to the formation of significant concentrations of Fe{sup 2+} is via the formation of a Ruddlesden-Popper (RP) phases as clearly observed in the case of La{sub 0.5}Sr{sub 0.5}FeO{sub 3-x} where LaSrFeO{sub 4} is found together with Fe. In more complex compositions, such as LSFTO, iron or iron rich phases are observed locally with no evidence for the presence of discrete RP phase. Fracture strength of tubular perovskite membranes was determined in air and in reducing atmospheric conditions. The strength of the membrane decreased with temperature and severity of reducing conditions although the strength distribution (Weibull parameter, m) was relatively unaltered. Surface and volume dominated the fracture origins and the overall fracture was purely transgranular. The dual phas

S. Bandopadhyay

2008-08-30T23:59:59.000Z

174

REVIEW OF RHEOLOGY MODELS FOR HANFORD WASTE BLENDING  

Science Conference Proceedings (OSTI)

The area of rheological property prediction was identified as a technology need in the Hanford Tank Waste ? waste feed acceptance initiative area during a series of technical meetings among the national laboratories, Department of Energy-Office of River Protection, and Hanford site contractors. Meacham et al. delivered a technical report in June 2012, RPP-RPT-51652 ?One System Evaluation of Waste Transferred to the Waste Treatment Plant? that included estimating of single shell tank waste Bingham plastic rheological model constants along with a discussion of the issues inherent in predicting the rheological properties of blended wastes. This report was selected as the basis for moving forward during the technical meetings. The report does not provide an equation for predicting rheological properties of blended waste slurries. The attached technical report gives an independent review of the provided Hanford rheological data, Hanford rheological models for single tank wastes, and Hanford rheology after blending provided in the Meacham report. The attached report also compares Hanford to SRS waste rheology and discusses some SRS rheological model equations for single tank wastes, as well as discussing SRS experience with the blending of waste sludges with aqueous material, other waste sludges, and frit slurries. Some observations of note: Savannah River Site (SRS) waste samples from slurried tanks typically have yield stress >1 Pa at 10 wt.% undissolved solids (UDS), while core samples largely have little or no yield stress at 10 wt.% UDS. This could be due to how the waste has been processed, stored, retrieved, and sampled or simply in the differences in the speciation of the wastes.. The equations described in Meacham?s report are not recommended for extrapolation to wt.% UDS beyond the available data for several reasons; weak technical basis, insufficient data, and large data scatter. When limited data are available, for example two to three points, the equations are not necessarily satisfactory (justified) for interpolations, due to the number of unknown variables equal the number of known data points, resulting in a coefficient of determination of one. SRS has had some success predicting the rheology of waste blends for similar waste types using rheological properties of the individual wastes and empirical blending viscosity equations. Both the Kendall-Monroe and Olney-Carlson equations were used. High accuracy was not obtained, but predictions were reasonable compared to measured flow curves. Blending SRS processed waste with frit slurry (much larger particles and the source of SRS glass formers) is a different sort of problem than that of two similar slurries of precipitated waste particles. A different approach to rheology prediction has had some success describing the incorporation of large frit particles into waste than the one used for blending two wastes. In this case, the Guth-Simha equation was used. If Hanford waste is found to have significant particles in the >100 ?m diameter range, then it might be necessary to handle those particles differently from broadly distributed waste particles that are primarily <30 ?m in diameter. The following are recommendations for the Hanford tank farms: ? Investigate the impact of large-scale mixing operations on yield stress for one or more Hanford tanks to see if Hanford waste rheological properties change to become more like SRS waste during both tank retrieval and tank qualification operations. ? Determine rheological properties of mobilized waste slurries by direct measurement rather than by prediction ? Collect and characterize samples during the waste feed qualification process for each campaign. o From single source tanks that feed the qualification tanks o Blends from the qualification tanks ? Predictive rheological models must be used with caution, due to the lack of data to support such models and the utilization of the results that come from these models in making process decisions (e.g. the lack of actual operation expe

Koopman, D.; Stone, M.

2013-09-26T23:59:59.000Z

175

REVIEW OF RHEOLOGY MODELS FOR HANFORD WASTE BLENDING  

SciTech Connect

The area of rheological property prediction was identified as a technology need in the Hanford Tank Waste ? waste feed acceptance initiative area during a series of technical meetings among the national laboratories, Department of Energy-Office of River Protection, and Hanford site contractors. Meacham et al. delivered a technical report in June 2012, RPP-RPT-51652 ?One System Evaluation of Waste Transferred to the Waste Treatment Plant? that included estimating of single shell tank waste Bingham plastic rheological model constants along with a discussion of the issues inherent in predicting the rheological properties of blended wastes. This report was selected as the basis for moving forward during the technical meetings. The report does not provide an equation for predicting rheological properties of blended waste slurries. The attached technical report gives an independent review of the provided Hanford rheological data, Hanford rheological models for single tank wastes, and Hanford rheology after blending provided in the Meacham report. The attached report also compares Hanford to SRS waste rheology and discusses some SRS rheological model equations for single tank wastes, as well as discussing SRS experience with the blending of waste sludges with aqueous material, other waste sludges, and frit slurries. Some observations of note: Savannah River Site (SRS) waste samples from slurried tanks typically have yield stress >1 Pa at 10 wt.% undissolved solids (UDS), while core samples largely have little or no yield stress at 10 wt.% UDS. This could be due to how the waste has been processed, stored, retrieved, and sampled or simply in the differences in the speciation of the wastes.. The equations described in Meacham?s report are not recommended for extrapolation to wt.% UDS beyond the available data for several reasons; weak technical basis, insufficient data, and large data scatter. When limited data are available, for example two to three points, the equations are not necessarily satisfactory (justified) for interpolations, due to the number of unknown variables equal the number of known data points, resulting in a coefficient of determination of one. SRS has had some success predicting the rheology of waste blends for similar waste types using rheological properties of the individual wastes and empirical blending viscosity equations. Both the Kendall-Monroe and Olney-Carlson equations were used. High accuracy was not obtained, but predictions were reasonable compared to measured flow curves. Blending SRS processed waste with frit slurry (much larger particles and the source of SRS glass formers) is a different sort of problem than that of two similar slurries of precipitated waste particles. A different approach to rheology prediction has had some success describing the incorporation of large frit particles into waste than the one used for blending two wastes. In this case, the Guth-Simha equation was used. If Hanford waste is found to have significant particles in the >100 μm diameter range, then it might be necessary to handle those particles differently from broadly distributed waste particles that are primarily <30 μm in diameter. The following are recommendations for the Hanford tank farms: ? Investigate the impact of large-scale mixing operations on yield stress for one or more Hanford tanks to see if Hanford waste rheological properties change to become more like SRS waste during both tank retrieval and tank qualification operations. ? Determine rheological properties of mobilized waste slurries by direct measurement rather than by prediction ? Collect and characterize samples during the waste feed qualification process for each campaign. o From single source tanks that feed the qualification tanks o Blends from the qualification tanks ? Predictive rheological models must be used with caution, due to the lack of data to support such models and the utilization of the results that come from these models in making process decisions (e.g. the lack of actual operation expe

Koopman, D.; Stone, M.

2013-09-26T23:59:59.000Z

176

Professional Educators’ Common Interest Group  

Science Conference Proceedings (OSTI)

Promoting teaching excellence for those involved in university education and industrial training in lipids and oils. Professional Educators’ Common Interest Group Professional Educators’ Common Interest Group aocs awards Educators fats global info

177

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect

In the present quarter, the possibility of using a more complex interfacial engineering approach to the development of reliable and stable oxygen transport perovskite ceramic membranes/metal seals is discussed. Experiments are presented and ceramic/metal interactions are characterized. Crack growth and fracture toughness of the membrane in the reducing conditions are also discussed. Future work regarding this approach is proposed are evaluated for strength and fracture in oxygen gradient conditions. Oxygen gradients are created in tubular membranes by insulating the inner surface from the reducing environment by platinum foils. Fracture in these test conditions is observed to have a gradient in trans and inter-granular fracture as opposed to pure trans-granular fracture observed in homogeneous conditions. Fracture gradients are reasoned to be due to oxygen gradient set up in the membrane, variation in stoichiometry across the thickness and due to varying decomposition of the parent perovskite. The studies are useful in predicting fracture criterion in actual reactor conditions and in understanding the initial evolution of fracture processes.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2003-01-01T23:59:59.000Z

178

Optical oxygen concentration monitor  

DOE Patents (OSTI)

A system for measuring and monitoring the concentration of oxygen uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to one of oxygen's A-band absorption lines. In a preferred embodiment, the argon line is split into sets of components of shorter and longer wavelengths by a magnetic field of approximately 2000 Gauss that is parallel to the light propagation from the lamp. The longer wavelength components are centered on an absorption line of oxygen and thus readily absorbed, and the shorter wavelength components are moved away from that line and minimally absorbed. A polarization modulator alternately selects the set of the longer wavelength, or upshifted, components or the set of the shorter wavelength, or downshifted, components and passes the selected set to an environment of interest. After transmission over a path through that environment, the transmitted optical flux of the argon line varies as a result of the differential absorption. The system then determines the concentration of oxygen in the environment based on the changes in the transmitted optical flux between the two sets of components. In alternative embodiments modulation is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to either the emitting plasma of the lamp or the environment of interest.

Kebabian, Paul (Acton, MA)

1997-01-01T23:59:59.000Z

179

Common Platform Enumeration (CPE): Dictionary  

Science Conference Proceedings (OSTI)

... Common Platform Enumeration (CPE): Dictionary. ... CPE Dictionary Resources. Release 2.3. CPE 2.3 Dictionary Resources (August 2011). ...

2012-11-02T23:59:59.000Z

180

Fueling Infrastructure Polymer Materials Compatibility to Ethanol-blended  

Open Energy Info (EERE)

Fueling Infrastructure Polymer Materials Compatibility to Ethanol-blended Fueling Infrastructure Polymer Materials Compatibility to Ethanol-blended Gasoline Dataset Summary Description These data files contain volume, mass, and hardness changes of elastomers and plastics representative exposed to gasoline containing various levels of ethanol. These materials are representative of those used in gasoline fuel storage and dispensing hardware. All values are compared to the original untreated condition. The data sets include results from specimens exposed directly to the fuel liquid and also a set of specimens exposed only to the fuel vapors. Source Mike Kass, Oak Ridge National Laboratory Date Released August 16th, 2012 (2 years ago) Date Updated August 16th, 2012 (2 years ago) Keywords compatibility elastomers ethanol gasoline

Note: This page contains sample records for the topic "oxygenated blends commonly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Development of By-Pass Blending Station System  

E-Print Network (OSTI)

A new building blending station system named by-pass blending station (BBS) has been developed to reduce building pump energy consumption in both district heating and cooling systems. Theoretical investigation demonstrated that the BBS can significantly reduce building pump power for a typical cooling system when constant water flow is maintained in the building side. When differential pressure reset is applied in the building side, more pump energy can be saved. The BBS also reduces the pump size and therefore results in lower initial system cost. A case study was also performed and demonstrated 42% of annual chilled water pump energy savings for constant building water flow, and 82% of annual chilled water pump savings for differential pressure resetting at Omaha, Nebraska.

Liu, M.; Barnes, D.; Bunz, K.; Rosenberry, N.

2003-01-01T23:59:59.000Z

182

Coal Blending for the Reduction of Acid Gas Emissions: A Characterization of the Milling and Combustion Blends of Powder River Basin Coal and Bituminous Coal  

Science Conference Proceedings (OSTI)

This report describes a systematic study of performance and emission parameters from the combustion of Eastern bituminous coal, a Powder River Basin (PRB) coal, and various blends of these two coals. This study also investigated the effects of coal blending on mill performance, combustion, particulate emissions, and various emissions.

2004-09-21T23:59:59.000Z

183

High pressure oxygen furnace  

DOE Patents (OSTI)

A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized, the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 5 figs.

Morris, D.E.

1992-07-14T23:59:59.000Z

184

High pressure oxygen furnace  

DOE Patents (OSTI)

A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

Morris, Donald E. (Kensington, CA)

1992-01-01T23:59:59.000Z

185

Oxygen Transport Ceramic Membranes  

Science Conference Proceedings (OSTI)

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. The in situ electrical conductivity and Seebeck coefficient measurements were made on LSFT at 1000 and 1200 C over the oxygen activity range from air to 10{sup -15} atm. The electrical conductivity measurements exhibited a p to n type transition at an oxygen activity of 1 x 10{sup -10} at 1000 C and 1 x 10{sup -6} at 1200 C. Thermogravimetric studies were also carried out over the same oxygen activities and temperatures. Based on the results of these measurements, the chemical and mechanical stability range of LSFT were determined and defect structure was established. The studies on the fracture toughness of the LSFT and dual phase membranes exposed to air and N{sub 2} at 1000 C was done and the XRD and SEM analysis of the specimens were carried out to understand the structural and microstructural changes. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affect the mechanical properties. A complete transformation of fracture behavior was observed in the N{sub 2} treated LSFT samples. Further results to investigate the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Recent results on transient kinetic data are presented. The 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model is used to study ''frozen'' profiles in patterned or composite membranes.

S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

2005-02-01T23:59:59.000Z

186

Oxygen Transport Ceramic Membranes  

Science Conference Proceedings (OSTI)

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the previous research, the reference point of oxygen occupancy was determined and verified. In the current research, the oxygen occupancy was investigated at 1200 C as a function of oxygen activity and compared with that at 1000 C. The cause of bumps at about 200 C was also investigated by using different heating and cooling rates during TGA. The fracture toughness of LSFT and dual phase membranes at room temperature is an important mechanical property. Vicker's indentation method was used to evaluate this toughness. Through this technique, a K{sub Ic} (Mode-I Fracture Toughness) value is attained by means of semi-empirical correlations between the indentation load and the length of the cracks emanating from the corresponding Vickers indentation impression. In the present investigation, crack propagation behavior was extensively analyzed in order to understand the strengthening mechanisms involved in the non-transforming La based ceramic composites. Cracks were generated using Vicker's indenter and used to identify and evaluate the toughening mechanisms involved. Preliminary results of an electron microscopy study of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Modeling of the isotopic transients on operating membranes (LSCrF-2828 at 900 C) and a ''frozen'' isotope profile have been analyzed in conjunction with a 1-D model to reveal the gradient in oxygen diffusivity through the membrane under conditions of high chemical gradients.

S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

2005-08-01T23:59:59.000Z

187

Fuel cell oxygen electrode  

DOE Patents (OSTI)

An oxygen electrode for a fuel cell utilizing an acid electrolyte has a substrate of an alkali metal tungsten bronze of the formula: A.sub.x WO.sub.3 where A is an alkali metal and x is at least 0.2, which is covered with a thin layer of platinum tungsten bronze of the formula: Pt.sub.y WO.sub.3 where y is at least 0.8.

Shanks, Howard R. (Ames, IA); Bevolo, Albert J. (Ames, IA); Danielson, Gordon C. (Ames, IA); Weber, Michael F. (Wichita, KS)

1980-11-04T23:59:59.000Z

188

Formation Kinetics of Nitric Oxide of Biodiesel Relative to Petroleum Diesel under Comparable Oxygen Equivalence Ratio in a Homogeneous Reactor  

E-Print Network (OSTI)

Interest in biodiesel has piqued with advent of stringent emissions regulations. Biodiesel is a viable substitute for petroleum diesel because biodiesel produces significantly lower particulate and soot emissions relative to petroleum diesel. Higher nitric oxide (NO) emissions for biodiesel, however, are of primary concern in biodiesel-fueled engines. Search for an in-cylinder technique to reduce NO emissions for biodiesel has motivated studies to gain an improved understanding of fundamental factors that drive increase in NO emissions with biodiesel. Potential factors include fuel-bound oxygen, fuel-bound nitrogen and post-flame gas temperature. The role of fuel-bound oxygen however is debated in the literature. The research objective of this study is to computationally determine if biodiesel and petroleum diesel yield equivalent concentrations of NO with the same oxygen equivalence ratio in a 0-D homogeneous reactor, to explain the role of fuel-bound oxygen in biodiesel on increases in NO emissions with biodiesel. The results from this study indicate that the biodiesel surrogate yields higher NO emissions than the n-heptane because of its lower oxygen consumption efficiency. The lower oxygen consumption efficiency for biodiesel is likely because of the slower decomposition of the individual components and the blending ratios of the biodiesel surrogate blend. The relative differences in combustion efficiency of individual components of the biodiesel blend suggest this conclusion. The more efficient burning of the methyl esters relative to the n-heptane in biodiesel surrogate perhaps indicates the favorable role of fuel-bound oxygen in the fuel’s combustion. The low utilization of oxygen by the biodiesel surrogate could not be explained in this study. The dominance of NO2 H ? NO OH and N NO ? N2 O mechanisms during biodiesel combustion however explain the high NO emissions for the biodiesel surrogate relative to the n-heptane. The biodiesel may yield lower NO emissions than the petroleum diesel if the blending ratios for the biodiesel are adjusted such that combustion efficiency of biodiesel and petroleum diesel is same or the NO2 H ? NO OH and N NO ? N2 O mechanisms are suppressed during biodiesel combustion.

Rathore, Gurlovleen K.

2010-08-01T23:59:59.000Z

189

Impact of Alternative Fuels and Blends: Simple Tool for Ranking Coal and Blends Based on Slagging Potential  

Science Conference Proceedings (OSTI)

This report provides a summary of ongoing work to identify, develop, and validate advanced tools to assess the impact of fuel quality on boiler performance.BackgroundThe deposition of ash particles during the combustion of coal—or blends of coals—is one of the major issues associated with power companies’ lost generation. The ash deposition process, driven by accumulation of molten/sticky, sintered, or loosely condensed deposits on ...

2012-12-31T23:59:59.000Z

190

Investigation of Knock limited Compression Ratio of Ethanol Gasoline Blends  

DOE Green Energy (OSTI)

Ethanol offers significant potential for increasing the compression ratio of SI engines resulting from its high octane number and high latent heat of vaporization. A study was conducted to determine the knock limited compression ratio of ethanol gasoline blends to identify the potential for improved operating efficiency. To operate an SI engine in a flex fuel vehicle requires operating strategies that allow operation on a broad range of fuels from gasoline to E85. Since gasoline or low ethanol blend operation is inherently limited by knock at high loads, strategies must be identified which allow operation on these fuels with minimal fuel economy or power density tradeoffs. A single cylinder direct injection spark ignited engine with fully variable hydraulic valve actuation (HVA) is operated at WOT conditions to determine the knock limited compression ratio (CR) of ethanol fuel blends. The geometric compression ratio is varied by changing pistons, producing CR from 9.2 to 13.66. The effective CR is varied using an electro-hydraulic valvetrain that changed the effective trapped displacement using both Early Intake Valve Closing (EIVC) and Late Intake Valve Closing (LIVC). The EIVC and LIVC strategies result in effective CR being reduced while maintaining the geometric expansion ratio. It was found that at substantially similar engine conditions, increasing the ethanol content of the fuel results in higher engine efficiency and higher engine power. These can be partially attributed to a charge cooling effect and a higher heating valve of a stoichiometric mixture for ethanol blends (per unit mass of air). Additional thermodynamic effects on and a mole multiplier are also explored. It was also found that high CR can increase the efficiency of ethanol fuel blends, and as a result, the fuel economy penalty associated with the lower energy content of E85 can be reduced by about a third. Such operation necessitates that the engine be operated in a de-rated manner for gasoline, which is knock-prone at these high CR, in order to maintain compatibility. By using EIVC and LIVC strategies, good efficiency is maintained with gasoline, but power is reduced by about 34%.

Szybist, James P [ORNL; Youngquist, Adam D [ORNL; Wagner, Robert M [ORNL; Moore, Wayne [Delphi; Foster, Matthew [Delphi; Confer, Keith [Delphi

2010-01-01T23:59:59.000Z

191

Conversion and Blending Facility Highly enriched uranium to low enriched uranium as uranium hexafluoride. Revision 1  

SciTech Connect

This report describes the Conversion and Blending Facility (CBF) which will have two missions: (1) convert surplus HEU materials to pure HEU UF{sub 6} and a (2) blend the pure HEU UF{sub 6} with diluent UF{sub 6} to produce LWR grade LEU-UF{sub 6}. The primary emphasis of this blending be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The chemical and isotopic concentrations of the blended LEU product will be held within the specifications required for LWR fuel. The blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry.

1995-07-05T23:59:59.000Z

192

Source: Handbook for Handling, Storing, and Dispensing E85 and Other Ethanol Blends.  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

A1: Tank Manufacturer Compatibility with Ethanol Blends. September 2013. A1: Tank Manufacturer Compatibility with Ethanol Blends. September 2013. Tank Manufacturer Compatibility with Ethanol Blends Manufacturer Compatibility Statement Fiberglass 1 Containment Solutions Tanks manufactured after January 1, 1995 are all compatible with ethanol blends up to 100% (E100) (UL Listed) Owens Corning Single Wall Tanks Tanks manufactured between 1965 and 1994 are approved to store up to 10% ethanol (E10) Double Wall Tanks Tanks manufactured between 1965 and July 1, 1990 are approved to store up to 10% ethanol (E10) Tanks manufactured between July 2, 1990 and December 31, 1994 were warrantied to store any ethanol blend Xerxes Single Wall Tanks Tanks manufactured prior to 1981 are not compatible with ethanol blends Tanks manufactured from February 1981 through June 2005 are

193

Oxygen Transport Membranes  

SciTech Connect

The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the small polaron conduction mechanism. Scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) were used to develop strategies to detect and characterize vacancy creation, dopant segregations and defect association in the oxygen conducting membrane material. The pO{sub 2} and temperature dependence of the conductivity, non-stoichiometry and thermal-expansion behavior of compositions with increasing complexity of substitution on the perovskite A and B sites were studied. Studies with the perovskite structure show anomalous behavior at low oxygen partial pressures (<10{sup -5} atm). The anomalies are due to non-equilibrium effects and can be avoided by using very strict criteria for the attainment of equilibrium. The slowness of the oxygen equilibration kinetics arises from two different mechanisms. In the first, a two phase region occurs between an oxygen vacancy ordered phase such as brownmillerite SrFeO{sub 2.5} and perovskite SrFeO{sub 3-x}. The slow kinetics is associated with crossing the two phase region. The width of the miscibility gap decreases with increasing temperature and consequently the effect is less pronounced at higher temperature. The preferred kinetic pathway to reduction of perovskite ferrites when the vacancy concentration corresponds to the formation of significant concentrations of Fe{sup 2+} is via the formation of a Ruddlesden-Popper (RP) phases as clearly observed in the case of La{sub 0.5}Sr{sub 0.5}FeO{sub 3-x} where LaSrFeO{sub 4} is found together with Fe. In more complex compositions, such as LSFTO, iron or iron rich phases are observed locally with no evidence for the presence of discrete RP phase. Fracture strength of tubular perovskite membranes was determined in air and in reducing atmospheric conditions. The strength of the membrane decreased with temperature and severity of reducing conditions although the strength distribution (Weibull parameter, m) was relatively unaltered. Surface and volume dominated the fracture origins and the overall fracture was purely transgranular. The dual phas

S. Bandopadhyay

2008-08-30T23:59:59.000Z

194

U.S. Uranium Down-blending Activities: Fact Sheet | National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Down-blending Activities: Fact Sheet Mar 23, 2012 The permanent disposition of Highly Enriched Uranium (HEU) permanently reduces nuclear security vulnerabilities. In 1996, the...

195

DOE News Release - DOE Completes Hydrogen/CNG Blended Fuels Performanc...  

NLE Websites -- All DOE Office Websites (Extended Search)

4, 2004 DOE Completes HydrogenCNG Blended Fuels Performance and Emissions Vehicle Testing The U.S. Department of Energy, through its Advanced Vehicle Testing Activity, has...

196

Evaluation of Leachate Chemistry from Coal Refuse Blended and Layered with Fly Ash.  

E-Print Network (OSTI)

??Alkaline fly ash has been studied as a liming agent within coal refuse fills to reclaim acid-forming refuse. Previous studies focused on bulk blending ash… (more)

Hunt, Joseph Edward

2008-01-01T23:59:59.000Z

197

Effect of PCI blending on combustion characteristics for iron-making.  

E-Print Network (OSTI)

??The PCI technology is well established for reducing the consumption of economic and environmentally expensive coke in blast furnace iron-making. Often, coal blends show unexpected… (more)

Gill, Trilochan Singh

2009-01-01T23:59:59.000Z

198

Catalytic conversion of C3+ alcohols to hydrocarbon blend-stock  

Catalytic conversion of C3+ alcohols to hydrocarbon blend-stock Note: The technology described above is an early stage opportunity. Licensing rights to this ...

199

U.S. Uranium Down-blending Activities: Fact Sheet | National...  

National Nuclear Security Administration (NNSA)

(HEU) permanently reduces nuclear security vulnerabilities. In 1996, the Department of Energy (DOE) announced plans to reduce stockpiles of surplus HEU by down-blending, or...

200

An Improved Technique for Increasing the Accuracy of Photometrically Determined Redshifts for ___Blended___ Galaxies  

SciTech Connect

The redshift of a galaxy can be determined by one of two methods; photometric or spectroscopic. Photometric is a term for any redshift determination made using the magnitudes of light in different filters. Spectroscopic redshifts are determined by measuring the absorption spectra of the object then determining the difference in wavelength between the 'standard' absorption lines and the measured ones, making it the most accurate of the two methods. The data for this research was collected from SDSS DR8 and then separated into blended and non-blended galaxy sets; the definition of 'blended' is discussed in the Introduction section. The current SDSS photometric redshift determination method does not discriminate between blended and non-blended data when it determines the photometric redshift of a given galaxy. The focus of this research was to utilize machine learning techniques to determine if a considerably more accurate photometric redshift determination method could be found, for the case of the blended and non-blended data being treated separately. The results show a reduction of 0.00496 in the RMS error of photometric redshift determinations for blended galaxies and a more significant reduction of 0.00827 for non-blended galaxies, illustrated in Table 2.

Parker, Ashley Marie; /Marietta Coll. /SLAC

2012-08-24T23:59:59.000Z

Note: This page contains sample records for the topic "oxygenated blends commonly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Effect of Blending HDPE with Coke on the Reduction Behavior of a ...  

Science Conference Proceedings (OSTI)

This has led to the exploration of the possibility of using polymer/coke blends in the production of ferro-alloys, particularly High Carbon Ferromanganese (HC ...

202

BLENDING STUDY FOR SRR SALT DISPOSITION INTEGRATION: TANK 50H SCALE-MODELING AND COMPUTER-MODELING FOR BLENDING PUMP DESIGN, PHASE 2  

DOE Green Energy (OSTI)

The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where 300,000-800,000 gallons of salt solution will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. Blending requires the miscible salt solutions from potentially multiple source tanks per batch to be well mixed without disturbing settled sludge solids that may be present in a Blend Tank. Disturbing solids may be problematic both from a feed quality perspective as well as from a process safety perspective where hydrogen release from the sludge is a potential flammability concern. To develop the necessary technical basis for the design and operation of blending equipment, Savannah River National Laboratory (SRNL) completed scaled blending and transfer pump tests and computational fluid dynamics (CFD) modeling. A 94 inch diameter pilot-scale blending tank, including tank internals such as the blending pump, transfer pump, removable cooling coils, and center column, were used in this research. The test tank represents a 1/10.85 scaled version of an 85 foot diameter, Type IIIA, nuclear waste tank that may be typical of Blend Tanks used in SDI. Specifically, Tank 50 was selected as the tank to be modeled per the SRR, Project Engineering Manager. SRNL blending tests investigated various fixed position, non-rotating, dual nozzle pump designs, including a blending pump model provided by the blend pump vendor, Curtiss Wright (CW). Primary research goals were to assess blending times and to evaluate incipient sludge disturbance for waste tanks. Incipient sludge disturbance was defined by SRR and SRNL as minor blending of settled sludge from the tank bottom into suspension due to blending pump operation, where the sludge level was shown to remain constant. To experimentally model the sludge layer, a very thin, pourable, sludge simulant was conservatively used for all testing. To experimentally model the liquid, supernate layer above the sludge in waste tanks, two salt solution simulants were used, which provided a bounding range of supernate properties. One solution was water (H{sub 2}O + NaOH), and the other was an inhibited, more viscous salt solution. The research performed and data obtained significantly advances the understanding of fluid mechanics, mixing theory and CFD modeling for nuclear waste tanks by benchmarking CFD results to actual experimental data. This research significantly bridges the gap between previous CFD models and actual field experiences in real waste tanks. A finding of the 2009, DOE, Slurry Retrieval, Pipeline Transport and Plugging, and Mixing Workshop was that CFD models were inadequate to assess blending processes in nuclear waste tanks. One recommendation from that Workshop was that a validation, or bench marking program be performed for CFD modeling versus experiment. This research provided experimental data to validate and correct CFD models as they apply to mixing and blending in nuclear waste tanks. Extensive SDI research was a significant step toward bench marking and applying CFD modeling. This research showed that CFD models not only agreed with experiment, but demonstrated that the large variance in actual experimental data accounts for misunderstood discrepancies between CFD models and experiments. Having documented this finding, SRNL was able to provide correction factors to be used with CFD models to statistically bound full scale CFD results. Through the use of pilot scale tests performed for both types of pumps and available engineering literature, SRNL demonstrated how to effectively apply CFD results to salt batch mixing in full scale waste tanks. In other words, CFD models were in error prior to development of experimental correction factors determined during this research, which provided a technique to use CFD models fo

Leishear, R.; Poirier, M.; Fowley, M.

2011-05-26T23:59:59.000Z

203

Oxygen Transport Ceramic Membranes  

Science Conference Proceedings (OSTI)

Ti doping on La{sub 1-x}Sr{sub x}FeO{sub 3-{delta}} (LSF) tends to increase the oxygen equilibration kinetics of LSF in lower oxygen activity environment because of the high valence state of Ti. However, the addition of Ti decreases the total conductivity because the acceptor ([Sr{prime}{sub La}]) is compensated by the donor ([Ti{sub Fe}{sup {sm_bullet}}]) which decreases the carrier concentration. The properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 1-x}Ti{sub x}O{sub 3-{delta}} (LSFT, x = 0.45) have been experimentally and theoretically investigated to elucidate (1) the dependence of oxygen occupancy and electrochemical properties on temperature and oxygen activity by thermogravimetric analysis (TGA) and (2) the electrical conductivity and carrier concentration by Seebeck coefficient and electrical measurements. In the present study, dual phase (La{sub 0.2}Sr{sub 0.8}Fe{sub 0.6}Ti{sub 0.4}O{sub 3-{delta}}/Ce{sub 0.9}Gd{sub 0.1}O{sub 2-{delta}}) membranes have been evaluated for structural properties such as hardness, fracture toughness and flexural strength. The effect of high temperature and slightly reducing atmosphere on the structural properties of the membranes was studied. The flexural strength of the membrane decreases upon exposure to slightly reducing conditions at 1000 C. The as-received and post-fractured membranes were characterized using XRD, SEM and TG-DTA to understand the fracture mechanisms. Changes in structural properties of the composite were sought to be correlated with the physiochemical features of the two-phases. We have reviewed the electrical conductivity data and stoichiometry data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} some of which was reported previously. Electrical conductivity data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCrF) were obtained in the temperature range, 752 {approx} 1055 C and in the pO{sub 2} range, 10{sup -18} {approx} 0.5 atm. The slope of the plot of log {sigma} vs. log pO{sub 2} is {approx} 1/5 in the p-type region, pO{sub 2} = 10{sup -5} {approx} 10{sup -1} atm. The pO{sub 2} at which the p-n transition is observed increases with increasing temperature. The activation energy for ionic conduction was estimated to be 0.86 eV from an Arrhenius plot of the minimum conductivity vs. reciprocal temperature. At temperatures below 940 C, a plateau in the conductivity isotherm suggests the presence of a two-phase region. Most likely, phase separation occurs to form a mixture of a perovskite phase and an oxygen vacancy ordered phase related to brownmillerite. Additional data for the oxygen non stoichiometry are presented.

S. Bandopadhyay; T. Nithyanantham

2006-12-31T23:59:59.000Z

204

High Selectivity Oxygen Delignification  

DOE Green Energy (OSTI)

The overall objective of this program was to develop improved extended oxygen delignification (EOD) technologies for current U.S. pulp mill operations. This was accomplished by: (1) Identifying pulping conditions that optimize O and OO performance; (2) Identifying structural features of lignin that enhance reactivity towards EOD of high kappa pulps; (3) Identifying factors minimizing carbohydrate degradation and improve pulp strength of EOD high kappa pulps; (4) Developing a simple, reproducible method of quantifying yield gains from EOD; and (5) Developing process conditions that significantly reduce the capital requirements of EOD while optimizing the yield benefits. Key research outcomes included, demonstrating the use of a mini-O sequence such as (E+O)Dkf:0.05(E+O) or Dkf:0.05(E+O)(E+O) without interstage washing could capture approximately 60% of the delignification efficiency of a conventional O-stage without the major capital requirements associated with an O-stage for conventional SW kraft pulps. The rate of formation and loss of fiber charge during an O-stage stage can be employed to maximize net fiber charge. Optimal fiber charge development and delignification are two independent parameters and do not parallel each other. It is possible to utilize an O-stage to enhance overall cellulosic fiber charge of low and high kappa SW kraft pulps which is beneficial for physical strength properties. The application of NIR and multi-variant analysis was developed into a rapid and simple method of determining the yield of pulp from an oxygen delignification stage that has real-world mill applications. A focus point of this program was the demonstration that Kraft pulping conditions and oxygen delignification of high and low-kappa SW and HW pulps are intimately related. Improved physical pulp properties and yield can be delivered by controlling the H-factor and active alkali charge. Low AA softwood kraft pulp with a kappa number 30 has an average improvement of 2% in yield and 4 cP in viscosity in comparison to high AA pulp for the oxygen delignification. This difference is also seen for high-kappa SW kraft pulps with an average improvement of {approx}3% in yield and 3 cP in viscosity for low AA high kappa number 50 pulp. Low AA hardwood kappa number 20 pulp had an average improvement of {approx}4% in yield and 6-12 cP in viscosity as compared to high AA pulp. Lower kraft cooking temperature (160 vs. 170 C) in combination with the medium AA provides a practical approach for integrating high kappa pulping of hardwoods (i.e., low rejects) with an advanced extended oxygen delignification stage. ECF pulp bleaching of low and high kappa kraft SW and HW pulps exhibit comparable optical and physical strength properties when bleached D(EPO)D.

Arthur J. Ragauskas

2005-09-30T23:59:59.000Z

205

Emissions mitigation of blended coals through systems optimization  

Science Conference Proceedings (OSTI)

For coal fired power stations, such as those located in the US, that have installed NOx and SOx emissions abatement equipment substantial carbon dioxide reduction could be achieved by shifting from pure PRB coal to blended coals with local bituminous coal. Don Labbe explains how. The article is based on a presentation at Power-Gen Asia 2009, which takes place 7-9 October in Bangkok, Thailand and an ISA POWID 2009 paper (19th Annual Joint ISA POWID/EPRI Controlls and Instrumentation Conference, Chicago, Illinois, May 2009). 4 refs., 3 figs.

Don Labbe [IOM Invensys Operations Management (United States)

2009-10-15T23:59:59.000Z

206

Commons Capital | Open Energy Information  

Open Energy Info (EERE)

Commons Capital Commons Capital Jump to: navigation, search Logo: Commons Capital Name Commons Capital Address 320 Washington Street, 4th floor Place Brookline, Massachusetts Zip 02445 Region Greater Boston Area Product Early-stage venture capital fund. Phone number (617) 739-3500 Website http://www.commonscapital.com/ Coordinates 42.3333887°, -71.1201943° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.3333887,"lon":-71.1201943,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

207

Oxygen to the core  

NLE Websites -- All DOE Office Websites (Extended Search)

1-01 1-01 For immediate release: 01/10/2013 | NR-13-01-01 Oxygen to the core Anne M Stark, LLNL, (925) 422-9799, stark8@llnl.gov Printer-friendly An artist's conception of Earth's inner and outer core. LIVERMORE, Calif. -- An international collaboration including researchers from Lawrence Livermore National Laboratory has discovered that the Earth's core formed under more oxidizing conditions than previously proposed. Through a series of laser-heated diamond anvil cell experiments at high pressure (350,000 to 700,000 atmospheres of pressure) and temperatures (5,120 to 7,460 degrees Fahrenheit), the team demonstrated that the depletion of siderophile (also known as "iron loving") elements can be produced by core formation under more oxidizing conditions than earlier

208

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect

This report covers the following tasks: Task 1--Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints; Task 2--Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability; Task 3--Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres; Task 4--Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures; Task 5--Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability; and Task 6--Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2002-04-01T23:59:59.000Z

209

Oxygen-reducing catalyst layer  

DOE Patents (OSTI)

An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

O' Brien, Dennis P. (Maplewood, MN); Schmoeckel, Alison K. (Stillwater, MN); Vernstrom, George D. (Cottage Grove, MN); Atanasoski, Radoslav (Edina, MN); Wood, Thomas E. (Stillwater, MN); Yang, Ruizhi (Halifax, CA); Easton, E. Bradley (Halifax, CA); Dahn, Jeffrey R. (Hubley, CA); O' Neill, David G. (Lake Elmo, MN)

2011-03-22T23:59:59.000Z

210

Synergistic Effect of coal blends on thermoplasticity evaluated using a temperature-variable dynamic viscoelastic measurement  

SciTech Connect

To maximize the conversion of low-quality coal into good coke, we investigated the thermoplasticity of various binary blends of caking coals with slightly or noncaking coals using a dynamic viscoelastic technique with a temperature-variable rheometer. Coal blend samples were prepared by mixing two coals (1:1 by weight), which were heated from room temperature to 600 C at a rate of 3-80{sup o}C/min. At the slow rate of 3{sup o}C/min, the blends had a tan {delta} that was generally lower than the calculated value, showing that a negative interaction caused a loss of thermoplasticity. In contrast, at the rapid heating rate of 80{sup o}C/min, the tan {delta} of some blends was higher than the calculated value, indicating a positive interaction that enhanced the thermoplasticity. With rapid heating, the thermoplasticity of each coal itself increased, and their thermoplastic temperature ranges widened with rapid heating. Therefore, rapid heating was effective at converting these coal blends into good cokes. Moreover, even with slow heating, when a combination of coals (Gregory:Enshu, 1:1) showing some thermoplasticity in nearly the same temperature range was blended, a desirable synergistic effect of the blend was obtained. This suggests that blending coal with an overlapping thermoplastic temperature range is important for the synergistic effect, regardless of the heating rate. 15 refs., 9 figs., 2 tabs.

Toshimasa Takanohashi; Takahiro Shishido; Ikuo Saito; Kensuke Masaki; Atsushi Dobashi; Kiyoshi Fukada [National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan)

2006-12-15T23:59:59.000Z

211

Problems and Solutions for Multi-coals Blending in Thermal Plant  

Science Conference Proceedings (OSTI)

Multi-coals blending is an applicable method for energy-saving and pollutant reduction in thermal plants. However, the utilizations have been hampered by problems such as complexities of practical implements, risks against safety during operation, difficulties ... Keywords: multi-coals blending, whole process, global optimization, expert system

Peng Peng; Xia Ji; Yang Tao

2011-02-01T23:59:59.000Z

212

Effects of HyperCoal addition on coke strength and thermoplasticity of coal blends  

SciTech Connect

Ashless coal, also known as HyperCoal (HPC), was produced by thermal extraction of three coals of different ranks (Gregory caking coal, Warkworth steam coal, and Pasir subbituminous coal) with 1-methylnaphthalene (1-MN) at 360, 380, and 400{sup o}C. The effects of blending these HPCs into standard coal blends were investigated. Blending HPCs as 5-10% of a standard blend (Kouryusho:Goonyella:K9) enhanced the thermoplasticity over a wide temperature range. For blends made with the Pasir-HPC, produced from a noncaking coal, increasing the extraction temperature from 360 to 400{sup o}C increased the thermoplasticity significantly. Blends containing Warkworth-HPC, produced from a slightly caking coal, had a higher tensile strength than the standard blend in semicoke strength tests. The addition of 10% Pasir-HPC, extracted at 400{sup o}C, increased the tensile strength of the semicokes to the same degree as those made with Gregory-HPC. Furthermore, all HPC blends had a higher tensile strength and smaller weight loss during carbonization. These results suggest that the HPC became integrated into the coke matrix, interacting strongly with the other raw coals. 14 refs., 11 figs., 1 tab.

Toshimasa Takanohashi; Takahiro Shishido; Ikuo Saito [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan). Energy Technology Research Institute

2008-05-15T23:59:59.000Z

213

Combustion Characteristics of Coal and Biomass Blends and Thermal Dynamic Analysis  

Science Conference Proceedings (OSTI)

By using TGA technology, the combustion characteristics under different conditions of hard coal and biomass blends has been discussed. The combustion curves of blends exhibited the characteristics with two peaks. Results also exhibited that there was ... Keywords: coal, biomass, thermal analysis, combustion characteristics

Haizhen Huang; Haibo Chen; Guohua Wang; Jun Liu

2009-10-01T23:59:59.000Z

214

Handbook for Handling, Storing, and Dispensing E85 and Other Ethanol-Gasoline Blends (Book)  

DOE Green Energy (OSTI)

This document serves as a guide for blenders, distributors, sellers, and users of E85 and other ethanol blends above E10. It provides basic information on the proper and safe use of E85 and other ethanol blends and includes supporting technical and policy references.

Moriarty, K.

2013-09-01T23:59:59.000Z

215

JV Task 112-Optimal Ethanol Blend-Level Investigation  

SciTech Connect

Highway Fuel Economy Test (HWFET) and Federal Test Procedure 75 (FTP-75) tests were conducted on four 2007 model vehicles; a Chevrolet Impala flex-fuel and three non-flex-fuel vehicles: a Ford Fusion, a Toyota Camry, and a Chevrolet Impala. This investigation utilized a range of undenatured ethanol/Tier II gasoline blend levels from 0% to 85%. HWFET testing on ethanol blend levels of E20 in the flex fuel Chevrolet Impala and E30 in the non-flex-fuel Ford Fusion and Toyota Camry resulted in miles-per-gallon (mpg) fuel economy greater than Tier 2 gasoline, while E40 in the non-flex-fuel Chevrolet Impala resulted in an optimum mpg based on per-gallon fuel Btu content. Exhaust emission values for non-methane organic gases (NMOG), carbon monoxide (CO), and nitrogen oxides (NO{sub x}) obtained from both the FTP-75 and the HWFET driving cycles were at or below EPA Tier II, Light-Duty Vehicles, Bin 5 levels for all vehicles tested with one exception. The flex-fuel Chevrolet Impala exceeded the NMOG standard for the FTP-75 on E-20 and Tier II gasoline.

Richard Shockey; Ted Aulich; Bruce Jones; Gary Mead; Paul Steevens

2008-01-31T23:59:59.000Z

216

Composition dependence of the interaction parameter in isotopic polymer blends  

SciTech Connect

Isotopic polymer mixtures lack the structural asymmetries and specific interactions encountered in blends of chemically distinct species. In this respect, they form ideal model systems for exploring the limitations of the widely-used Flory-Huggins (FH) lattice model and for testing and improving new theories of polymer thermodynamics. The FH interaction parameter between deuterium-labeled and unlabeled segments of the same species ([sub [chi]HD]) should in principle be independent of concentration ([phi]), through previous small-angle neutron scattering (SANS) experiments have shown that it exhibits a minimum at [phi] [approximately] 0.5 for poly(vinylethylene) (PVE) and poly(ethylethylene) (PEE). The authors report new data on polyethylene (PE) as a function of molecular weight, temperature (T), and [phi], which show qualitatively similar behavior. However, measurements on [sub [chi]HD]([phi]) for polystyrene (PS) show a maximum at [phi] [approximately]0.5, in contrast to PVE, PEE, and PE. Reproducing the concentration dependence of [phi] in different model isotopic systems should serve as a sensitive test of the way in which theories of polymer thermodynamics can account for the details of the local packing and also the effects of noncombinatorial entropy, which appear to be the main cause of the variation of [sub [chi]HD]([phi]) for PE. These data also serve to quantify the effects of isotopic substitution in SANS experiments on polyolefin blends and thus lay the ground work for definitive studies of the compatibility of branched and linear polyethylenes.

Londono, J.D.; Narten, A.H.; Wignall, G.D. (Oak Ridge National Lab., TN (United States)); Honnell, K.G.; Hsieh, E.T.; Johnson, T.W. (Phillips Petroleum Co., Bartlesville, OK (United States). Research and Development); Bates, F.S. (Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Chemical Engineering)

1994-05-09T23:59:59.000Z

217

Molecular oxygen in the rho Ophiuchi cloud  

E-Print Network (OSTI)

Molecular oxygen, O2 has been expected historically to be an abundant component of the chemical species in molecular clouds and, as such, an important coolant of the dense interstellar medium. However, a number of attempts from both ground and from space have failed to detect O2 emission. The work described here uses heterodyne spectroscopy from space to search for molecular oxygen in the interstellar medium. The Odin satellite carries a 1.1 m sub-millimeter dish and a dedicated 119 GHz receiver for the ground state line of O2. Starting in 2002, the star forming molecular cloud core rho Oph A was observed with Odin for 34 days during several observing runs. We detect a spectral line at v(LSR) = 3.5 km/s with dv(FWHM) = 1.5 km/s, parameters which are also common to other species associated with rho Ohp A. This feature is identified as the O2 (N_J = 1_1 - 1_0) transition at 118 750.343 MHz. The abundance of molecular oxygen, relative to H2,, is 5E-8 averaged over the Odin beam. This abundance is consistently lower than previously reported upper limits.

B. Larsson; R. Liseau; L. Pagani; P. Bergman; P. Bernath; N. Biver; J. H. Black; R. S. Booth; V. Buat; J. Crovisier; C. L. Curry; M. Dahlgren; P. J. Encrenaz; E. Falgarone; P. A. Feldman; M. Fich; H. G. Flore'n; M. Fredrixon; U. Frisk; G. F. Gahm; M. Gerin; M. Hagstroem; J. Harju; T. Hasegawa; Aa. Hjalmarson; C. Horellou; L. E. B. Johansson; K. Justtanont; A. Klotz; E. Kyroelae; S. Kwok; A. Lecacheux; T. Liljestroem; E. J. Llewellyn; S. Lundin; G. Me'gie; G. F. Mitchell; D. Murtagh; L. H. Nordh; L. -Aa. Nyman; M. Olberg; A. O. H. Olofsson; G. Olofsson; H. Olofsson; G. Persson; R. Plume; H. Rickman; I. Ristorcelli; G. Rydbeck; Aa. Sandqvist; F. v. Sche'ele; G. Serra; S. Torchinsky; N. F. Tothill; K. Volk; T. Wiklind; C. D. Wilson; A. Winnberg; G. Witt

2007-02-19T23:59:59.000Z

218

DOE Hydrogen Analysis Repository: Ethanol-Diesel Blends in Buses and  

NLE Websites -- All DOE Office Websites (Extended Search)

Ethanol-Diesel Blends in Buses and Tractors Ethanol-Diesel Blends in Buses and Tractors Project Summary Full Title: Fuel-Cycle Energy and Emission Impacts of Ethanol-Diesel Blends in Urban Buses and Farming Tractors Project ID: 86 Principal Investigator: Michael Wang Brief Description: This project studied the full fuel-cycle energy and emissions effects of ethanol-diesel blends relative to those of petroleum diesel when used in urban transit buses and farming tractors. Keywords: Ethanol; diesel; emissions; well-to-wheels (WTW) Purpose Numerous studies have been conducted to evaluate the fuel-cycle energy and greenhouse gas (GHG) emission effects of ethanol-gasoline blends relative to those of gasoline for applications in spark- ignition engine vehicles. Those studies did not address the energy and emission effects of

219

Modeling the Auto-Ignition of Biodiesel Blends with a Multi-Step Model  

SciTech Connect

There is growing interest in using biodiesel in place of or in blends with petrodiesel in diesel engines; however, biodiesel oxidation chemistry is complicated to directly model and existing surrogate kinetic models are very large, making them computationally expensive. The present study describes a method for predicting the ignition behavior of blends of n-heptane and methyl butanoate, fuels whose blends have been used in the past as a surrogate for biodiesel. The autoignition is predicted using a multistep (8-step) model in order to reduce computational time and make this a viable tool for implementation into engine simulation codes. A detailed reaction mechanism for n-heptane-methyl butanoate blends was used as a basis for validating the multistep model results. The ignition delay trends predicted by the multistep model for the n-heptane-methyl butanoate blends matched well with that of the detailed CHEMKIN model for the majority of conditions tested.

Toulson, Dr. Elisa [Michigan State University, East Lansing; Allen, Casey M [Michigan State University, East Lansing; Miller, Dennis J [Michigan State University, East Lansing; McFarlane, Joanna [ORNL; Schock, Harold [Michigan State University, East Lansing; Lee, Tonghun [Michigan State University, East Lansing

2011-01-01T23:59:59.000Z

220

The Formation of Labrador Sea Water. Part III: The Evolution of Oxygen and Nutrient Concentration  

Science Conference Proceedings (OSTI)

Oxygen, nutrient, and tritium concentrations observed in the western Labrador Sea in March 1976 during deep convective renewal of Labrador Sea water are analyzed to show how a newly formed water mass obtains its characteristics. Common to other ...

R. Allyn Clarke; A. R. Coote

1988-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxygenated blends commonly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Quantitative characterization of pulverized coal and biomasscoal blends in pneumatic conveying pipelines using electrostatic sensor arrays and data fusion techniques  

E-Print Network (OSTI)

Quantitative characterization of pulverized coal and biomass­coal blends in pneumatic conveying.1088/0957-0233/23/8/085307 Quantitative characterization of pulverized coal and biomass­coal blends in pneumatic conveying pipelines using Quantitative data about the dynamic behaviour of pulverized coal and biomass­coal blends in fuel injection

Yan, Yong

222

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 61, NO. 5, MAY 2012 1343 Flow Measurement of Biomass and Blended Biomass  

E-Print Network (OSTI)

to those in the horizontal pipe. Index Terms--Biomass­coal flow, blended biomass, cross- correlation. It is expected that biomass­coal mixture or blended biomass flow is significantly more complex than and between different biomass fuels. Quantitative data about biomass­coal mixture flow and blended biomass

Yan, Yong

223

Constructing Commons in the Cultural Environment  

E-Print Network (OSTI)

Commons in the Cultural Environment Michael J. MadisonCOMMONS IN THE CULTURAL ENVIRONMENT Draft of August 27, 2008Commons in the Cultural Environment ? Michael J. Madison, 1

Madison, Michael J.; Frischmann, Brett M.; Strandburg, Katherine J.

2008-01-01T23:59:59.000Z

224

Plants and Night Oxygen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Plants and Night Oxygen Production Plants and Night Oxygen Production Name: Ashar Status: other Grade: other Location: Outside U.S. Country: India Date: Winter 2011-2012 Question: I would like to know if there are any plants which produces oxygen at night (without photosynthesis). I was told by a friend that Holy Basil (Ocimum tenuiflorum) produces oxygen even at night and I'm not convinced. I would like to get confirmation from experts. Replies: Some plants (particularly those of dry regions, e.g., deserts) only open their stomates at night to avoid drying out to intake CO2 (and output O2) (CAM photosynthesis) http://en.wikipedia.org/wiki/Crassulacean_acid_metabolism Sincerely, Anthony R. Brach, PhD Missouri Botanical Garden Bringing oxygen producing plants into your home is a way to mimic the healthy lifestyle factors of longevity in humans from the longest lived cultures.

225

Analysis of Oxygenated Compounds in Hydrotreated Biomass Fast Pyrolysis Oil Distillate Fractions  

Science Conference Proceedings (OSTI)

Three hydrotreated bio-oils with different oxygen contents (8.2, 4.9, and 0.4 w/w) were distilled to produce Light, Naphtha, Jet, Diesel, and Gasoil boiling range fractions that were characterized for oxygen containing species by a variety of analytical methods. The bio-oils were originally generated from lignocellulosic biomass in an entrained-flow fast pyrolysis reactor. Analyses included elemental composition, carbon type distribution by {sup 13}C NMR, acid number, GC-MS, volatile organic acids by LC, and carbonyl compounds by DNPH derivatization and LC. Acid number titrations employed an improved titrant-electrode combination with faster response that allowed detection of multiple endpoints in many samples and for acid values attributable to carboxylic acids and to phenols to be distinguished. Results of these analyses showed that the highest oxygen content bio-oil fractions contained oxygen as carboxylic acids, carbonyls, aryl ethers, phenols, and alcohols. Carboxylic acids and carbonyl compounds detected in this sample were concentrated in the Light, Naphtha, and Jet fractions (oil or refinery intermediate streams may exist for the Diesel and Gasoil fractions. The 4.9 % oxygen sample contained almost exclusively phenolic compounds found to be present throughout the boiling range of this sample, but imparting measurable acidity primarily in the Light, Naphtha and Jet fractions. Additional study is required to understand what levels of the weakly acidic phenols could be tolerated in a refinery feedstock. The Diesel and Gasoil fractions from this upgraded oil had low acidity but still contained 3 to 4 wt% oxygen present as phenols that could not be specifically identified. These materials appear to have excellent potential as refinery feedstocks and some potential for blending into finished fuels. Fractions from the lowest oxygen content oil exhibited some phenolic acidity, but generally contained very low levels of oxygen functional groups. These materials would likely be suitable as refinery feedstocks and potentially as fuel blend components. PIONA analysis of the Light and Naphtha fractions shows benzene content of 0.5 and 0.4 vol%, and predicted (RON + MON)/2 of 63 and 70, respectively.

Christensen, Earl D.; Chupka, Gina; Luecke, Jon; Smurthwaite, Tricia D.; Alleman, Teresa L.; Iisa, Kristiina; Franz, James A.; Elliott, Douglas C.; McCormick, Robert L.

2011-10-06T23:59:59.000Z

226

OXYGEN TRANSPORT CERAMIC MEMBRANES  

DOE Green Energy (OSTI)

Conversion of natural gas to liquid fuels and chemicals is a major goal for the Nation as it enters the 21st Century. Technically robust and economically viable processes are needed to capture the value of the vast reserves of natural gas on Alaska's North Slope, and wean the Nation from dependence on foreign petroleum sources. Technologies that are emerging to fulfill this need are all based syngas as an intermediate. Syngas (a mixture of hydrogen and carbon monoxide) is a fundamental building block from which chemicals and fuels can be derived. Lower cost syngas translates directly into more cost-competitive fuels and chemicals. The currently practiced commercial technology for making syngas is either steam methane reforming (SMR) or a two-step process involving cryogenic oxygen separation followed by natural gas partial oxidation (POX). These high-energy, capital-intensive processes do not always produce syngas at a cost that makes its derivatives competitive with current petroleum-based fuels and chemicals.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2002-01-01T23:59:59.000Z

227

Effect of Biodiesel Blending on the Speciation of Soluble Organic Fraction from a Light Duty Diesel Engine  

DOE Green Energy (OSTI)

Soy methyl ester (SME) biodiesel was volumetrically blended with 2007 certification ultra low sulfur diesel (ULSD) fuel and run in a 1.7L direct-injection common rail diesel engine at one speed-load point (1500rpm, 2.6bar BMEP). Engine fueling rate and injection timing were adjusted to maintain a constant load, while particulate samples were collected in a diesel particulate filter (DPF) and with a dilution tunnel sampling train. The samples collected at these two locations were found to contain different levels of soluble organic fraction (SOF) and the different hydrocarbon species in the SOF. This observation indicates that traditional SOF measurements, in light of the specific sampling procedure used, may not be appropriate to DPF applications.

Strzelec, Andrea [ORNL; Storey, John Morse [ORNL; Lewis Sr, Samuel Arthur [ORNL; Daw, C Stuart [ORNL; Foster, Prof. Dave [University of Wisconsin; Rutland, Prof. Christopher J. [University of Wisconsin

2010-01-01T23:59:59.000Z

228

Measurement of biodiesel blend and conventional diesel spray structure using x-ray radiography.  

DOE Green Energy (OSTI)

The near-nozzle structure of several nonevaporating biodiesel-blend sprays has been studied using X-ray radiography. Radiography allows quantitative measurements of the fuel distribution in sprays to be made with high temporal and spatial resolution. Measurements have been made at different values of injection pressure, ambient density, and with two different nozzle geometries to understand the influences of these parameters on the spray structure of the biodiesel blend. These measurements have been compared with corresponding measurements of Viscor, a diesel calibration fluid, to demonstrate the fuel effects on the spray structure. Generally, the biodiesel-blend spray has a similar structure to the spray of Viscor. For the nonhydroground nozzle used in this study, the biodiesel-blend spray has a slightly slower penetration into the ambient gas than the Viscor spray. The cone angle of the biodiesel-blend spray is generally smaller than that of the Viscor spray, indicating that the biodiesel-blend spray is denser than the Viscor spray. For the hydroground nozzle, both fuels produce sprays with initially wide cone angles that transition to narrow sprays during the steady-state portion of the injection event. These variations in cone angle with time occur later for the biodiesel-blend spray than for the Viscor spray, indicating that the dynamics of the injector needle as it opens are somewhat different for the two fuels.

Kastengren, A. L.; Powell, C. F.; Wang, Y. J.; IM, K. S.; Wang, J.

2009-11-01T23:59:59.000Z

229

Oxygenates vs. synthesis gas  

DOE Green Energy (OSTI)

Methanol synthesis from H{sub 2}/CO has been carried out at 7.6 MPa over zirconia-supported copper catalysts. Catalysts with nominal compositions of 10/90 mol% and 30/70 mol% Cu/ZrO{sub 2} were used in this study. Additionally, a 3 mol% cesium-doped 10/90 catalyst was prepared to study the effect of doping with heavy alkali, and this promoter greatly increased the methanol productivity. The effects of CO{sub 2} addition, water injection, reaction temperature, and H{sub 2}/C0 ratio have been investigated. Both CO{sub 2} addition to the synthesis gas and cesium doping of the catalyst promoted methanol synthesis, while inhibiting the synthesis of dimethyl ether. Injection of water, however, was found to slightly suppress methanol and dimethyl ether formation while being converted to CO{sub 2} via the water gas shift reaction over these catalysts. There was no clear correlation between copper surface area and catalyst activity. Surface analysis of the tested samples revealed that copper tended to migrate and enrich the catalyst surface. The concept of employing a double-bed reactor with a pronounced temperature gradient to enhance higher alcohol synthesis was explored, and it was found that utilization of a Cs-promoted Cu/ZnO/Cr{sub 2}O{sub 3} catalyst as a first lower temperature bed and a Cs-promoted ZnO/Cr{sub 2}O{sub 3} catalyst as a second high-temperature bed significantly promoted the productivity of 2-methyl-1-propanol (isobutanol) from H{sub 2}/CO synthesis gas mixtures. While the conversion of CO to C{sub 2+} oxygenates over the double-bed configuration was comparable to that observed over the single Cu-based catalyst, major changes in the product distribution occurred by the coupling to the zinc chromite catalyst; that is, the productivity of the C{sub 1}-C{sub 3} alcohols decreased dramatically, and 2-methyl branched alcohols were selectively formed. The desirable methanol/2-methyl oxygenate molar ratios close to 1 were obtained in the present double-bed system that provides the feedstock for the synthesis of high octane and high cetane ethers, where the isobutanol productivity was as high as 139 g/kg cat/hr. Higher alcohol synthesis has been investigated over a Cs/Cu/ZnO/Cr{sub 2}O{sub 3} catalyst at temperatures higher (up to 703K) than those previously utilized, and no sintering of the catalyst was observed during the short-term testing. However, the higher reaction temperatures led to lower CO conversion levels and lower yield of alcohols, especially of methanol, because of equilibrium limitations. With the double catalyst bed configuration, the effect of pressure in the range of 7.6--12.4 MPa on catalyst activity and selectivity was studied. The upper bed was composed of the copper-based catalyst at 598K, and the lower bed consisted of a copper-free Cs-ZnO/Cr{sub 2}O{sub 3} catalyst at a high temperature of 678K. High pressure was found to increase CO conversion to oxygenated products, although the increase in isobutanol productivity did not keep pace with that of methanol. It was also shown that the Cs/Cu/ZnO/Cr{sub 2}O{sub 3} catalyst could be utilized to advantage as the second-bed catalyst at 613--643K instead of the previously used copper-free Cs-ZnO/ Cr{sub 2}O{sub 3} catalyst at higher temperature, With double Cs/Cu/ZnO/Cr{sub 2}O{sub 3} catalysts, high space time yields of up to 202 g/kg cat/hr, with high selectivity to isobutanol, were achieved.

Kamil Klier; Richard G. Herman; Alessandra Beretta; Maria A. Burcham; Qun Sun; Yeping Cai; Biswanath Roy

1999-04-01T23:59:59.000Z

230

Frostbite Theater - Liquid Oxygen vs. Liquid Nitrogen - Liquid Oxygen and  

NLE Websites -- All DOE Office Websites (Extended Search)

Cells vs. Liquid Nitrogen! Cells vs. Liquid Nitrogen! Previous Video (Cells vs. Liquid Nitrogen!) Frostbite Theater Main Index Next Video (Paramagnetism) Paramagnetism Liquid Oxygen and Fire! What happens when nitrogen and oxygen are exposed to fire? [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: And this is a test tube of liquid nitrogen! Steve: And this is a test tube of liquid oxygen! Joanna: Let's see what happens when nitrogen and oxygen are exposed to fire. Steve: Fire?! Joanna: Yeah! Steve: Really?! Joanna: Why not! Steve: Okay! Joanna: As nitrogen boils, it changes into nitrogen gas. Because it's so cold, it's denser than the air in the room. The test tube fills up with

231

Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from Ethanol/Gasoline Fuels; Phase 3: Effects of Winter Gasoline Volatility and Ethanol Content on Blend Flammability; Flammability Limits of Denatured Ethanol  

DOE Green Energy (OSTI)

This study assessed differences in headspace flammability for summertime gasolines and new high-ethanol content fuel blends. The results apply to vehicle fuel tanks and underground storage tanks. Ambient temperature and fuel formulation effects on headspace vapor flammability of ethanol/gasoline blends were evaluated. Depending on the degree of tank filling, fuel type, and ambient temperature, fuel vapors in a tank can be flammable or non-flammable. Pure gasoline vapors in tanks generally are too rich to be flammable unless ambient temperatures are extremely low. High percentages of ethanol blended with gasoline can be less volatile than pure gasoline and can produce flammable headspace vapors at common ambient temperatures. The study supports refinements of fuel ethanol volatility specifications and shows potential consequences of using noncompliant fuels. E85 is flammable at low temperatures; denatured ethanol is flammable at warmer temperatures. If both are stored at the same location, one or both of the tanks' headspace vapors will be flammable over a wide range of ambient temperatures. This is relevant to allowing consumers to splash -blend ethanol and gasoline at fueling stations. Fuels compliant with ASTM volatility specifications are relatively safe, but the E85 samples tested indicate that some ethanol fuels may produce flammable vapors.

Gardiner, D. P.; Bardon, M. F.; Clark, W.

2011-07-01T23:59:59.000Z

232

Conversion and Blending Facility highly enriched uranium to low enriched uranium as uranyl nitrate hexahydrate. Revision 1  

SciTech Connect

This Conversion and Blending Facility (CBF) will have two missions: (1) convert HEU materials to pure HEU uranyl nitrate (UNH) and (2) blend pure HEU UNH with depleted and natural UNH to produce HEU UNH crystals. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. To the extent practical, the chemical and isotopic concentrations of blended LEU product will be held within the specifications required for LWR fuel. Such blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry. Otherwise, blended LEU Will be produced as a waste suitable for storage or disposal.

1995-07-05T23:59:59.000Z

233

Common Rail Injection System Development  

DOE Green Energy (OSTI)

The collaborative research program between the Department of energy and Electro-Motive Diesels, Inc. on the development of common rail fuel injection system for locomotive diesel engines that can meet US EPA Tier 2 exhaust emissions has been completed. This final report summarizes the objectives of the program, work scope, key accomplishments and research findings. The major objectives of this project encompassed identification of appropriate injection strategies by using advanced analytical tools, development of required prototype hardware/controls, investigations of fuel spray characteristics including cavitation phenomena, and validation of hareware using a single-cylinder research locomotive diesel engine. Major milestones included: (1) a detailed modeling study using advanced mathematical models - several various injection profiles that show simultaneous reduction of NOx and particulates on a four stroke-cycle locomotive diesel engine were identified; (2) development of new common rail fuel injection hardware capable of providing these injection profiles while meeting EMD engine and injection performance specifications. This hardware was developed together with EMD's current fuel injection component supplier. (3) Analysis of fuel spray characteristics. Fuel spray numerical studies and high speed photographic imaging analyses were performed. (4) Validation of new hardware and fuel injection profiles. EMD's single-cylinder research diesel engine located at Argonne National Laboratory was used to confirm emissions and performacne predictions. These analytical ane experimental investigations resulted in optimized fuel injection profiles and engine operating conditions that yield reductions in NOx emissions from 7.8 g/bhp-hr to 5.0 g/bhp-hr at full (rated) load. Additionally, hydrocarbon and particulate emissions were reduced considerably when compared to baseline Tier I levels. The most significant finding from the injection optimization process was a 2% to 3% improvement in fuel economy over EMD's traditional Tier I engine hardware configuration. the common rail fuel injection system enabled this added benefit by virtue of an inherent capability to provide multiple injections per power stroke at high fuel rail pressures. On the basis of the findings in this study, EMD concludes that the new electronically-controlled high-pressure common rail injection system has the potential to meet locomotive Tier 2 NOx and particulates emission standards without sacrificing the fuel economy. A number of areas to further improve the injection hardware and engine operating characteristics to further exploit the benefits of common rail injection system have also been identified.

Electro-Motive,

2005-12-30T23:59:59.000Z

234

Oxygenate Supply/Demand Balances  

Gasoline and Diesel Fuel Update (EIA)

Oxygenate Supply/Demand Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model By Tancred C.M. Lidderdale This article first appeared in the Short-Term Energy Outlook Annual Supplement 1995, Energy Information Administration, DOE/EIA-0202(95) (Washington, DC, July 1995), pp. 33-42, 83-85. The regression results and historical data for production, inventories, and imports have been updated in this presentation. Contents * Introduction o Table 1. Oxygenate production capacity and demand * Oxygenate demand o Table 2. Estimated RFG demand share - mandated RFG areas, January 1998 * Fuel ethanol supply and demand balance o Table 3. Fuel ethanol annual statistics * MTBE supply and demand balance o Table 4. EIA MTBE annual statistics * Refinery balances

235

It's Elemental - The Element Oxygen  

NLE Websites -- All DOE Office Websites (Extended Search)

Nitrogen Nitrogen Previous Element (Nitrogen) The Periodic Table of Elements Next Element (Fluorine) Fluorine The Element Oxygen [Click for Isotope Data] 8 O Oxygen 15.9994 Atomic Number: 8 Atomic Weight: 15.9994 Melting Point: 54.36 K (-218.79°C or -361.82°F) Boiling Point: 90.20 K (-182.95°C or -297.31°F) Density: 0.001429 grams per cubic centimeter Phase at Room Temperature: Gas Element Classification: Non-metal Period Number: 2 Group Number: 16 Group Name: Chalcogen What's in a name? From the greek words oxys and genes, which together mean "acid forming." Say what? Oxygen is pronounced as OK-si-jen. History and Uses: Oxygen had been produced by several chemists prior to its discovery in 1774, but they failed to recognize it as a distinct element. Joseph

236

Oxygen sensitive, refractory oxide composition  

DOE Patents (OSTI)

Oxide compositions containing niobium pentoxide and an oxide selected from the group consisting of hafnia, titania, and zirconia have electrical conductivity characteristics which vary greatly depending on the oxygen content.

Holcombe, Jr., Cressie E. (Oak Ridge, TN); Smith, Douglas D. (Knoxville, TN)

1976-01-01T23:59:59.000Z

237

Regional imaging with oxygen-14  

SciTech Connect

The metabolic significance of the distribution of labeled oxygen was studied in the dog by inhalation of gas mixtures labeled with oxygen-14 (T/sub /sup 1///sub 2// = 71 seconds) maintained at a constant level of activity. Under steady-state conditions, whole-body images were developed by detection of the positron annihilation emissions with a dual head rectilinear scanner in the coincidence mode. (auth)

Russ, G.A.; Bigler, R.E.; Dahl, J.R.; Kostick, J.; McDonald, J.M.; Tilbury, R.S.; Laughlin, J.S.

1975-01-01T23:59:59.000Z

238

HEU to LEU Conversion and Blending Facility: UF{sub 6} blending alternative to produce LEU UF{sub 6} for commercial use  

Science Conference Proceedings (OSTI)

US DOE is examining options for disposing of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials; the nuclear material will be converted to a form more proliferation- resistant than the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. Five technologies for blending HEU will be assessed; blending as UF{sub 6} to produce a UF{sub 6} product for commercial use is one of them. This document provides data to be used in the environmental impact analysis for the UF{sub 6} blending HEU disposition option. Resource needs, employment needs, waste and emissions from plant, hazards, accident scenarios, and intersite transportation are discussed.

NONE

1995-09-01T23:59:59.000Z

239

The Role of Leadership in Starting and Operating Blended Learning Charter Schools: A Multisite Case Study.  

E-Print Network (OSTI)

??Heavily utilizing both instructional technology and face-to-face instruction within a bricks-and-mortar school environment, blended learning charter schools are gaining attention as a cost-effective school design.… (more)

Agostini, Michael

2013-01-01T23:59:59.000Z

240

ESS 2012 Peer Review - Acid Based Blend Membranes for Redox Flow...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Acid Based Blend Membranes for Redox Flow Batteries DOE Grant No: DE-SC0006306 Alan Cisar* and Chris Rhodes Lynntech, Inc., 2501 Earl Rudder Freeway South, College Station, TX...

Note: This page contains sample records for the topic "oxygenated blends commonly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation  

DOE Green Energy (OSTI)

Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

2009-08-01T23:59:59.000Z

242

Optimal handling of Highly Active Pharmaceutical Ingredients during milling and blending operations  

E-Print Network (OSTI)

This thesis investigates best practices for Highly Active Pharmaceutical Ingredient (HAPI) milling and blending. We utilize a qualitative analysis centering on a benchmarking study and quantitative analyses using a ...

Setty, Prashant (Prashant Neelappanavara)

2013-01-01T23:59:59.000Z

243

Knock limits in spark ignited direct injected engines using gasoline/ethanol blends  

E-Print Network (OSTI)

Direct Fuel Injection (DI) extends engine knock limits compared to Port Fuel Injection (PFI) by utilizing the in-cylinder charge cooling effect due to fuel evaporation. The use of gasoline/ethanol blends in DI is therefore ...

Kasseris, Emmanuel P

2011-01-01T23:59:59.000Z

244

Durable and Non-Toxic Topical Flame Retardants for Cotton and Cotton Blends.  

E-Print Network (OSTI)

??Flame retardant chemicals were used as topical finishes on cotton and cotton blended fabric. Comparison of flame resistance and durability of non-bromine/non-antimony flame retardants were… (more)

Mathews, Marc Christopher

2008-01-01T23:59:59.000Z

245

Coal Combustion and Organic By-Product Blends as Soil Substitutes / Amendments for Horticulture  

Science Conference Proceedings (OSTI)

This report provides a field assessment of the use of blends of coal combustion by-products with biosolids in horticultural applications such as potting mixes for ornamentals and turf production.

2001-11-30T23:59:59.000Z

246

The Common Communication Interface (CCI)  

SciTech Connect

There are many APIs for connecting and exchanging data between network peers. Each interface varies wildly based on metrics including performance, portability, and complexity. Specifically, many interfaces make design or implementation choices emphasizing some of the more desirable metrics (e.g., performance) while sacrificing others (e.g., portability). As a direct result, software developers building large, network-based applications are forced to choose a specific network API based on a complex, multi-dimensional set of criteria. Such trade-offs inevitably result in an interface that fails to deliver some desirable features. In this paper, we introduce a novel interface that both supports many features that have become standard (or otherwise generally expected) in other communication interfaces, and strives to export a small, yet powerful, interface. This new interface draws upon years of experience from network-oriented software development best practices to systems-level implementations. The goal is to create a relatively simple, high-level communication interface with low barriers to adoption while still providing important features such as scalability, resiliency, and performance. The result is the Common Communications Interface (CCI): an intuitive API that is portable, efficient, scalable, and robust to meet the needs of network-intensive applications common in HPC and cloud computing.

Shipman, Galen M [ORNL; Atchley, Scott [ORNL; Dillow, David A [ORNL; Geoffray, Patrick [ORNL; Bosilca, George [University of Tennessee, Knoxville (UTK); Squyres, Jeffrey M [ORNL; Minnich, Ronald [Sandia National Laboratories (SNL)

2011-01-01T23:59:59.000Z

247

Characterization and Combustion Performance of Corn Oil-Based Biofuel Blends  

E-Print Network (OSTI)

In recent years, the development and use of biofuels have received considerable attention due to the high demand for environmentally acceptable (green) fuels. Most of the recent studies have looked at the processes of converting vegetable oils into biodiesel. It is well known vegetable oil to biodiesel conversion involves many processes including transesterification, which makes biodiesel costly and time-consuming to produce. In this study, the effects of blending high-viscosity fresh and used corn oils with low-viscosity diesel and jet fuel mixed with butanol and ethanol were studied. Several corn oil-based blends were formulated and characterized to understand the effect of composition on viscosity, fuel stability and energy content. The formulated corn oil blends were combusted in a 30 kW modified combustion chamber to determine the corresponding NOx and CO emission levels, along with CO? levels. Used corn oil was made by simply heating fresh corn oil for a fixed period of time (about 44 hours), and was characterized by quantifying its total polar material (TPM), iodine value, free fatty acid content, and peroxide value. The combustion experiments were conducted at a constant heat output of 68,620 kJ/hr (19 kW), to observe and study the effects of equivalence ratio, swirl number, and fuel composition on emissions. Used corn oil blends exhibited better combustion performance than fresh corn oil blends, due in part to the higher unsaturation levels in fresh corn oil. NOx emissions for used corn oil increased with swirl number. Among all the blends, the one with the higher amount of diesel (lower amount of corn oil) showed higher NOx emissions. The blend with fresh corn oil showed decreasing NOx with increasing equivalence ratio at swirl number 1.4. All blends showed generally decreasing CO trends at both swirl numbers at very lean conditions. The diesel fuel component as well as the alcohols in the blends were also important in the production of pollutants. Compared to the diesel-based blends mixed with used corn oil, butanol, and ethanol, the jet fuel-based blends showed higher NOx levels and lower CO levels at both swirl numbers.

Savant, Gautam Sandesh

2012-05-01T23:59:59.000Z

248

Development of Kinetics and Mathematical Models for High Pressure Gasification of Lignite-Switchgrass Blends  

NLE Websites -- All DOE Office Websites (Extended Search)

Kinetics and Mathematical Kinetics and Mathematical Models for High Pressure Gasification of Lignite-Switchgrass Blends Background Significant progress has been made in recent years in controlling emissions resulting from coal-fired electricity generation in the United States through the research, development, and deployment of innovative technologies such as gasification. Gasification is a process that converts solid feedstocks such as coal, biomass, or blends

249

Advanced Vehicle Testing Activity: Low-Percentage Hydrogen/CNG Blend, Ford F-150 -- Operating Summary  

DOE Green Energy (OSTI)

Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.

Karner, D.; Francfort, James Edward

2003-01-01T23:59:59.000Z

250

Advanced Vehicle Testing Activity: High-Percentage Hydrogen/CNG Blend, Ford F-150 -- Operating Summary  

DOE Green Energy (OSTI)

Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen–50% CNG fuel.

Don Karner; Francfort, James Edward

2003-01-01T23:59:59.000Z

251

Business Plan for Utilization of Coal Combustion By-Products (CCBP) -- Biosolids Blends in Horticultural Markets  

Science Conference Proceedings (OSTI)

This report presents a marketing plan for coal combustion by-products (CCBP)-biosolids blends which summarizes the business opportunity (potential demand for CCBP-biosolids blends) and defines conditions necessary to seize and execute the opportunity identified. The plan places a hypothetical business in a specific location (Austell, GA) to make the cost-profit analysis as realistic as possible. It should be remembered, however, that the marketing plan for a business venture is not "the business." This h...

1999-12-03T23:59:59.000Z

252

Solvent Blending Strategy to Upgrade MCU CSSX Solvent to Equivalent Next-Generation CSSX Solvent  

Science Conference Proceedings (OSTI)

The results of the present study have validated an equal-volume blending strategy for upgrading freshly prepared CSSX solvent to a blended solvent functionally equivalent to NG-CSSX solvent. It is shown that blending fresh CSSX solvent as currently used in MCU with an equal volume of an NG-CSSX solvent concentrate of appropriate composition yields a blended solvent composition (46.5 mM of MaxCalix, 3.5 mM of BOBCalixC6, 0.5 M of Cs-7SB, 3 mM of guanidine suppressor, and 1.5 mM of TOA in Isopar L) that exhibits equivalent batch ESS performance to that of the NG-CSSX solvent containing 50 mM of MaxCalix, 0.5 M of Cs-7SB, and 3 mM of guanidine suppressor in Isopar L. The solvent blend composition is robust to third-phase formation. Results also show that a blend containing up to 60% v/v of CSSX solvent could be accommodated with minimal risk. Extraction and density data for the effect of solvent concentration mimicking diluent evaporation or over-dilution of the equal-volume blended solvent are also given, providing input for setting operational limits. Given that the experiments employed all pristine chemicals, the results do not qualify a blended solvent starting with actual used MCU solvent, which can be expected to have undergone some degree of degradation. Consequently, further work should be considered to evaluate this risk and implement appropriate remediation if needed.

Delmau, Laetitia Helene [ORNL; Moyer, Bruce A [ORNL

2012-12-01T23:59:59.000Z

253

Empirical Study of the Stability of Biodiesel and Biodiesel Blends: Milestone Report  

DOE Green Energy (OSTI)

The objective of this work was to develop a database that supports specific proposals for a stability test and specification for biodiesel and biodiesel blends. B100 samples from 19 biodiesel producers were obtained in December of 2005 and January of 2006 and tested for stability. Eight of these samples were then selected for additional study, including long-term storage tests and blending at 5% and 20% with a number of ultra-low sulfur diesel fuels.

McCormick, R. L.; Westbrook, S. R.

2007-05-01T23:59:59.000Z

254

Researchers Directly Observe Oxygen Signature in the Oxygen-evolving  

NLE Websites -- All DOE Office Websites (Extended Search)

Researchers Directly Observe Oxygen Signature in the Researchers Directly Observe Oxygen Signature in the Oxygen-evolving Complex of Photosynthesis Arguably the most important chemical reaction on earth is the photosynthetic splitting of water to molecular oxygen by the Mn-containing oxygen-evolving complex (Mn-OEC) in the protein known as photosystem II (PSII). It is this reaction which has, over the course of some 3.8 billion years, gradually filled our atmosphere with O2 and consequently enabled and sustained the evolution of complex aerobic life. Coupled to the reduction of carbon dioxide, biological photosynthesis contributes foodstuffs for nutrition while recycling CO2 from the atmosphere and replacing it with O2. By utilizing sunlight to power these energy-requiring reactions, photosynthesis also serves as a model for addressing societal energy needs as we enter an era of diminishing fossil fuel resources and climate change. Understanding, at the molecular level, the dynamics and mechanisms behind photosynthesis is of fundamental importance and will prove critical to the future design of devices aimed at converting sunlight into electrochemical energy and transportable fuel.

255

Phase Behavior of Neat Triblock Copolymers and Copolymer/Homopolymer Blends Near Network Phase Windows  

Science Conference Proceedings (OSTI)

The phase behavior of poly(isoprene-b-styrene-b-methyl methacrylate) (ISM) copolymers near the styrene-rich network phase window was examined through the use of neat triblock copolymers and copolymer/homopolymer blends. Both end-block and middle-block blending protocols were employed using poly(isoprene) (PI), poly(methyl methacrylate) (PMMA), and poly(styrene) (PS) homopolymers. Blended specimens exhibited phase transformations to well-ordered nanostructures (at homopolymer loadings up to 26 vol % of the total blend volume). Morphological consistency between neat and blended specimens was established at various locations in the ISM phase space. Copolymer/homopolymer blending permitted the refinement of lamellar, hexagonally packed cylinder, and disordered melt phase boundaries as well as the identification of double gyroid (Q{sup 230}), alternating gyroid (Q{sup 214}), and orthorhombic (O{sup 70}) network regimes. Additionally, the experimental phase diagram exhibited similar trends to those found in a theoretical ABC triblock copolymer phase diagram with symmetric interactions and statistical segments lengths generated by Tyler et al.

M Tureau; L Rong; B Hsiao; T Epps

2011-12-31T23:59:59.000Z

256

EVALUATING AN INNOVATIVE OXYGEN SENSOR FOR REMOTE SUBSURFACE OXYGEN MEASUREMENTS  

Science Conference Proceedings (OSTI)

Oxygen is a primary indicator of whether anaerobic reductive dechlorination and similar redox based processes contribute to natural attenuation remedies at chlorinated solvent contaminated sites. Thus, oxygen is a viable indicator parameter for documenting that a system is being sustained in an anaerobic condition. A team of researchers investigated the adaptation of an optical sensor that was developed for oceanographic applications. The optical sensor, because of its design and operating principle, has potential for extended deployment and sensitivity at the low oxygen levels relevant to natural attenuation. The results of the research indicate this tool will be useful for in situ long-term monitoring applications, but that the traditional characterization tools continue to be appropriate for characterization activities.

Millings, M; Brian Riha, B; Warren Hyde, W; Karen Vangelas, K; Brian02 Looney, B

2006-10-12T23:59:59.000Z

257

Hybrid Dynamic Density Functional Theory for Polymer Melts and Blends  

E-Print Network (OSTI)

We propose a high-speed and accurate hybrid dynamic density functional theory for the computer simulations of the phase separation processes of polymer melts and blends. The proposed theory is a combination of the dynamic self-consistent field (SCF) theory and a time-dependent Ginzburg-Landau type theory with the random phase approximation (GRPA). The SCF theory is known to be accurate in evaluating the free energy of the polymer systems in both weak and strong segregation regions although it has a disadvantage of the requirement of a considerable amount of computational cost. On the other hand, the GRPA theory has an advantage of much smaller amount of required computational cost than the SCF theory while its applicability is limited to the weak segregation region. To make the accuracy of the SCF theory and the high-performance of the GRPA theory compatible, we adjust the chemical potential of the GRPA theory by using the SCF theory every constant time steps in the dynamic simulations. The performance of the GRPA and the hybrid theories is tested by using several systems composed of an A/B homopolymer, an AB diblock copolymer, or an ABC triblock copolymer. Using the hybrid theory, we succeeded in reproducing the metastable complex phase-separated domain structures of an ABC triblock copolymer observed by experiments.

Takashi Honda; Toshihiro Kawakatsu

2006-09-05T23:59:59.000Z

258

A Study of the Use of Jatropha Oil Blends in Boilers  

DOE Green Energy (OSTI)

Executive Summary: This project investigated the combustion performance of blends of unrefined Jatropha oil and its blends in laboratory boilers. Although a very limited amount of testing blends in distillate oil, ASTM No. 2 oil or heating oil was conducted, the primary interest was in testing the performance of blends with residual ASTM No. 6 oil. The basic idea is to provide a renewable fuel option to residual oil used in space heating and in industrial applications. The intent also was to explore the use of non-edible plant oil and one that might be potentially cheaper than biodiesel. The characteristics of No. 6 oil, such as high viscosity at ambient temperature, which requires it to be kept heated, make the blending with such oils feasible. Jatropha oil is one such oil and there is currently considerable interest building up in its use as a source for making biodiesel and jet fuel. A 10% blend of Jatropha oil with heating oil was burned using a standard burner in a residential boiler. Combustion performance was shown to be comparable with that of burning heating oil by itself with some noticeable differences. Typical heating oil has about 2000 ppm of sulfur, while the Jatropha oil has about 50 ppm leading to lower levels of sulphur dioxide emissions. Stack measurements also showed that the NOx emission was lower with the blend. We have previously reported similar reductions in NOx with blends of biodiesel in heating oil as well as slight reductions in PM2.5, particulates below 2.5 microns in size. Long term tests were not part of this project and hence deleterious effects on pumps, seals etc., if any, were not measured. The majority of the work involved testing blends of Jatropha oil with residual oil in a 1.5 million Btu/hr boiler with a burner modified to burn residual oil. Blends of 20 and 60% Jatropha oil and 100% Jatropha oil were burned in the combustion performance tests. The residual oil used had a sulfur content of over 2000 ppm and hence dramatic reductions in sulfur dioxide emissions are measured with the blends. Again, consistent with our past experience with biodiesel blends, significant reductions in nitrogen oxide emissions nearing 50% with 100% Jatropha oil, were also measured. This is in contrast with the use of biodiesel in diesel engines, where the NOx has a tendency to increase. In addition to the gaseous emission measurements, particulate emissions were measured using an EPA CTM-39 system to obtain both particulates, of sizes below 2.5 microns, so-called PM2.5, and of sizes larger than 2.5 microns. The results show that the particulate emissions are lower with the blending of Jatropha oil. Overall, one can conclude that the blending of Jatropha oil with residual oil is a feasible approach to using non-edible plant oil to provide a renewable content to residual oil, with significant benefits in the reduction of pollutant emissions such as sulfur dioxide, nitrogen oxides and particulates.

Krishna, C.R.

2010-10-01T23:59:59.000Z

259

CPE - Common Platform Enumeration Dictionary Statistics  

Science Conference Proceedings (OSTI)

Official Common Platform Enumeration (CPE) Dictionary Statistics. CPE is a structured naming scheme for information technology ...

260

Blending Study of MgO-Based Separator Materials for Thermal Batteries  

Science Conference Proceedings (OSTI)

The development and testing of a new technique for blending of electrolyte-binder (separator) mixes for use in thermal batteries is described. The original method of blending such materials at Sandia involved liquid Freon TF' as a medium. The ban on the use of halogenated solvents throughout much of the Department of Energy complex required the development of an alternative liquid medium as a replacement. The use of liquid nitrogen (LN) was explored and developed into a viable quality process. For comparison, a limited number of dry-blending tests were also conducted using a Turbula mixer. The characterization of pellets made from LN-blended separators involved deformation properties at 530 C and electrolyte-leakage behavior at 400 or 500 C, as well as performance in single-cells and five-cell batteries under several loads. Stack-relaxation tests were also conducted using 10-cell batteries. One objective of this work was to observe if correlations could be obtained between the mechanical properties of the separators and the performance in single cells and batteries. Separators made using three different electrolytes were examined in this study. These included the LiCl-KCl eutectic, the all-Li LiCl-LiBr-LiF electrolyte, and the low-melting LiBr-KBr-LiF eutectic. The electrochemical performance of separator pellets made with LN-blended materials was compared to that for those made with Freon T P and, in some cases, those that were dry blended. A satisfactory replacement MgO (Marinco 'OL', now manufactured by Morton) was qualified as a replacement for the standard Maglite 'S' MgO that has been used for years but is no longer commercially available. The separator compositions with the new MgO were optimized and included in the blending and electrochemical characterization tests.

GUIDOTTI, RONALD A.; REINHARDT, FREDERICK W.; ANDAZOLA, ARTHUR H.

2002-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxygenated blends commonly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

COMPARISON OF EXPERIMENTAL RESULTS TO CFD MODELS FOR BLENDING IN A TANK USING DUAL OPPOSING JETS  

Science Conference Proceedings (OSTI)

Research has been completed in a pilot scale, eight foot diameter tank to investigate blending, using a pump with dual opposing jets. The jets re-circulate fluids in the tank to promote blending when fluids are added to the tank. Different jet diameters and different horizontal and vertical orientations of the jets were investigated. In all, eighty five tests were performed both in a tank without internal obstructions and a tank with vertical obstructions similar to a tube bank in a heat exchanger. These obstructions provided scale models of several miles of two inch diameter, serpentine, vertical cooling coils below the liquid surface for a full scale, 1.3 million gallon, liquid radioactive waste storage tank. Two types of tests were performed. One type of test used a tracer fluid, which was homogeneously blended into solution. Data were statistically evaluated to determine blending times for solutions of different density and viscosity, and the blending times were successfully compared to computational fluid dynamics (CFD) models. The other type of test blended solutions of different viscosity. For example, in one test a half tank of water was added to a half tank of a more viscous, concentrated salt solution. In this case, the fluid mechanics of the blending process was noted to significantly change due to stratification of fluids. CFD models for stratification were not investigated. This paper is the fourth in a series of papers resulting from this research (Leishear, et.al. [1- 4]), and this paper documents final test results, statistical analysis of the data, a comparison of experimental results to CFD models, and scale-up of the results to a full scale tank.

Leishear, R.

2011-08-07T23:59:59.000Z

262

Process simulation, integration and optimization of blending of petrodiesel with biodiesel  

E-Print Network (OSTI)

With the increasing stringency on sulfur content in petrodiesel, there is a growing tendency of broader usage of ultra low sulfur diesel (ULSD) with sulfur content of 15 ppm. Refineries around the world should develop cost-effective and sustainable strategies to meet these requirements. The primary objective of this work is to analyze alternatives for producing ULSD. In addition to the conventional approach of revamping existing hydrotreating facilities, the option of blending petrodiesel with biodiesel is investigated. Blending petrodiesel with biodiesel is a potentially attractive option because it is naturally low in sulfur, enhances the lubricity of petrodiesel, and is a sustainable energy resource. In order to investigate alternatives for producing ULSD, several research tasks were undertaken in this work. Firstly, base-case designs of petrodiesel and biodiesel production processes were developed using computer-aided tools ASPEN Plus. The simulations were adjusted until the technical criteria and specifications of petrodiesel and biodiesel production were met. Next, process integration techniques were employed to optimize the synthesized processes. Heat integration for petrodiesel and biodiesel was carried out using algebraic, graphical and optimization methods to maximize the integrated heat exchange and minimize the heating and cooling utilities. Additionally, mass integration was applied to conserve material resources. Cost estimation was carried out for both processes. The capital investments were obtained from ASPEN ICARUS Process Evaluator, while operating costs were calculated based on the updated chemical market prices. The total operating costs before and after process integration were calculated and compared. Next, blending optimization was performed for three blending options with the optimum blend for each option identified. Economic comparison (total annualized cost, breakeven analysis, return on investment, and payback period) of the three options indicated that the blending of ULSD with chemical additives was the most profitable. However, the subsequent life-cycle greenhouse gas (GHG) emission and safety comparisons demonstrated that the blending of ULSD with biodiesel was superior.

Wang, Ting

2008-08-01T23:59:59.000Z

263

Consistent predictable patterns in the hydrogen and oxygen stable isotope ratios of animal proteins consumed by modern  

E-Print Network (OSTI)

Consistent predictable patterns in the hydrogen and oxygen stable isotope ratios of animal proteins, IN 47907, USA 4 University of Utah, Department of Geology & Geophysics, 115 S 1460 E, Salt Lake City, UT acid hydrogen (d2 H) and oxygen (d18 O) isotope ratios is a common feature in systems where isotopic

Ehleringer, Jim

264

Emissions characterization and particle size distribution from a DPF-equipped diesel truck fueled with biodiesel blends.  

E-Print Network (OSTI)

??Biodiesel may be derived from either plant or animal sources, and is usually employed as a compression ignition fuel in a blend with petroleum diesel… (more)

Olatunji, Idowu O.

2010-01-01T23:59:59.000Z

265

The EC bioethanol blend mandate policy: its effect on ACP sugar trade and potential interaction with EPA policies.  

E-Print Network (OSTI)

??The study aim was to determine effects of the EC bioethanol blend mandate policy and its potential interaction with the EPA policies on EU/ACP countries.… (more)

Sukati, M.A.

2013-01-01T23:59:59.000Z

266

Study of comfort properties of natural and synthetic knitted fabrics in different blend ratios for winter active sportswear.  

E-Print Network (OSTI)

??The objective of the present study is to produce base layer winter active sportswear fabrics using natural and synthetic fibres and their blends which will… (more)

Wardiningsih, W

2009-01-01T23:59:59.000Z

267

Returning common sense to regulations  

SciTech Connect

While these sessions of the November 1995 meeting of the American Nuclear Society are being devoted to the Linear Theory of harm from radiation, it must be realized that the low-level radiation issue, as important as it may be, is but a subset of an entire body of environmental issues running afoul of common sense. Cellular phones, electromagnetic fields, asbestos, dioxin, acid rain, and others especially in their public portrayals, some in their regulatory treatment, are based upon exaggerated or misunderstood risks. One must recognize that what lies ahead is an immense effort to revisit the underlying science of the existing regulations of radiation exposures. New evidence has been published, and most importantly, it is now recognized that many of these regulations--promulgated with the best of intentions--have been extraordinarily harmful to the public. In many cases, the harm has been exaggerated, and has created in the public policy arena the notion that the public is at great risk from the smallest sources of radiation. The national cost of compliance with these regulations has been enormous. To the extent that existing environmental regulations are not being moderated, they pose major economic threats to present and future industries involving nuclear materials and technology. These would include the pharmaceutical industries as well as those seeking U.S. isotope markets in separations, purification, labeling, and manufacturing of new radiopharmaceuticals for cancer therapy, diagnosis, pain mitigation, treatment of arthritis, and other new applications. For those who are not aware of the results of recent advances in radiopharmaceuticals, clinical trials have demonstrated an 80% remission rate in the treatment of b-cell lymphoma and leukemia. New isotopes and new isotope technology promise greater effectiveness in the treatment of cancer and other diseases. The regulatory problems and their enormous costs exist at all stages in nuclear medicine, from the manufacture of the radiopharmaceuticals to the disposal of low-level wastes in Ward Valley, California, for example. Access to these promising new technologies will be severely limited under the existing regulatory environment.

Fox, M.R.

1995-10-01T23:59:59.000Z

268

SAVANNAH RIVER SITE INCIPIENT SLUDGE MIXING IN RADIOACTIVE LIQUID WASTE STORAGE TANKS DURING SALT SOLUTION BLENDING  

DOE Green Energy (OSTI)

This paper is the second in a series of four publications to document ongoing pilot scale testing and computational fluid dynamics (CFD) modeling of mixing processes in 85 foot diameter, 1.3 million gallon, radioactive liquid waste, storage tanks at Savannah River Site (SRS). Homogeneous blending of salt solutions is required in waste tanks. Settled solids (i.e., sludge) are required to remain undisturbed on the bottom of waste tanks during blending. Suspension of sludge during blending may potentially release radiolytically generated hydrogen trapped in the sludge, which is a safety concern. The first paper (Leishear, et. al. [1]) presented pilot scale blending experiments of miscible fluids to provide initial design requirements for a full scale blending pump. Scaling techniques for an 8 foot diameter pilot scale tank were also justified in that work. This second paper describes the overall reasons to perform tests, and documents pilot scale experiments performed to investigate disturbance of sludge, using non-radioactive sludge simulants. A third paper will document pilot scale CFD modeling for comparison to experimental pilot scale test results for both blending tests and sludge disturbance tests. That paper will also describe full scale CFD results. The final paper will document additional blending test results for stratified layers in salt solutions, scale up techniques, final full scale pump design recommendations, and operational recommendations. Specifically, this paper documents a series of pilot scale tests, where sludge simulant disturbance due to a blending pump or transfer pump are investigated. A principle design requirement for a blending pump is UoD, where Uo is the pump discharge nozzle velocity, and D is the nozzle diameter. Pilot scale test results showed that sludge was undisturbed below UoD = 0.47 ft{sup 2}/s, and that below UoD = 0.58 ft{sup 2}/s minimal sludge disturbance was observed. If sludge is minimally disturbed, hydrogen will not be released. Installation requirements were also determined for a transfer pump which will remove tank contents, and which is also required to not disturb sludge. Testing techniques and test results for both types of pumps are presented.

Leishear, R.; Poirier, M.; Lee, S.; Steeper, T.; Fowley, M.; Parkinson, K.

2011-01-12T23:59:59.000Z

269

Combustion kinetics of coal chars in oxygen-enriched ...  

Science Conference Proceedings (OSTI)

... oil re- covery or coal-bed methane applications [1 ... eastern United States bituminous coal blend provided ... These coals were ground and sieved into a ...

2007-03-13T23:59:59.000Z

270

Pilot plant assessment of blend properties and their impact on critical power plant components  

Science Conference Proceedings (OSTI)

A series of tests were performed to determine the effects of blending eastern bituminous coals with western subbituminous coals on utility boiler operation. Relative to the baseline bituminous coal, the testing reported here indicated that there were significant impacts to boiler performance due to the blending of the eastern and western coals. Results indicated that fuel blending can be used to adequately control flue gas emissions of both SO{sub 2} and NO{sub x} at the expense of reduced milling efficiency, increased sootblowing in the high-temperature and low-temperature regions of the boiler and, to a lesser extent, decreased collection efficiency for an electrostatic precipitator. The higher reactivity of the subbituminous coal increased the overall combustion efficiency, which may tend to decrease the impact of milling efficiency losses. The extent of these impacts was directly related to the percentage of subbituminous coal in the blends. At the lowest blend ratios of subbituminous coal, the impacts were greatly reduced.

NONE

1996-10-01T23:59:59.000Z

271

NO reduction in decoupling combustion of biomass and biomass-coal blend  

SciTech Connect

Biomass is a form of energy that is CO{sub 2}-neutral. However, NOx emissions in biomass combustion are often more than that of coal on equal heating-value basis. In this study, a technology called decoupling combustion was investigated to demonstrate how it reduces NO emissions in biomass and biomass-coal blend combustion. The decoupling combustion refers to a two-step combustion method, in which fuel pyrolysis and the burning of char and pyrolysis gas are separated and the gas burns out during its passage through the burning-char bed. Tests in a quartz dual-bed reactor demonstrated that, in decoupling combustion, NO emissions from biomass and biomass-coal blends were both less than those in traditional combustion and that NO emission from combustion of blends of biomass and coal decreased with increasing biomass percentage in the blend. Co-firing rice husk and coal in a 10 kW stove manufactured according to the decoupling combustion technology further confirmed that the decoupling combustion technology allows for truly low NO emission as well as high efficiency for burning biomass and biomass-coal blends, even in small-scale stoves and boilers. 22 refs., 6 figs., 1 tab.

Li Dong; Shiqiu Gao; Wenli Song; Jinghai Li; Guangwen Xu [Chinese Academy of Sciences, Beijing (China). State Key Laboratory of Multi-Phase Complex Systems

2009-01-15T23:59:59.000Z

272

Pyrolyzed macrocycle/carbon blends for advanced electrocatalysts  

DOE Green Energy (OSTI)

Pyrolysis of metallated macrocycle compounds involves a vapor phase condensation to form a solid, condensation product that is carbonaceous and electronically conductive. Reaction of these vapors with hot carbon surfaces permits condensation on these surfaces that prepares active electrocatalytic carbons. The role of the metal ion in these processes is not clear, although the chelate clearly acts to carry the metal into the vapor phase. Rapid peroxide decomposition results only with the composite (carbon plus chelate) char. Thus these modified surfaces add the necessary peroxide reactivity to carbon for high oxygen electroreduction rates.

Vanderborgh, N.E.; Rieke, P.C.

1986-01-01T23:59:59.000Z

273

Common Carbon Metric | Open Energy Information  

Open Energy Info (EERE)

Common Carbon Metric Common Carbon Metric Jump to: navigation, search Tool Summary Name: Common Carbon Metric Agency/Company /Organization: United Nations Environment Programme, World Resources Institute Sector: Energy Focus Area: Buildings, Energy Efficiency, Industry Topics: GHG inventory, Implementation Resource Type: Guide/manual, Publications Website: www.unep.org/sbci/pdfs/Common-Carbon-Metric-for_Pilot_Testing_220410.p Common Carbon Metric Screenshot References: Common Carbon Metrics [1] "This paper is offered by the United Nations Environment Programme's Sustainable Buildings & Climate Initiative (UNEP-SBCI), a partnership between the UN and public and private stakeholders in the building sector, promoting sustainable building practices globally. The purpose of this

274

The effects of blending hydrogen with methane on engine operation, efficiency, and emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

-01-0474 -01-0474 The effects of blending hydrogen with methane on engine operation, efficiency, and emissions Thomas Wallner and Henry K. Ng Argonne National Laboratory Robert W. Peters University of Alabama at Birmingham Copyright © 2007 SAE International ABSTRACT Hydrogen is considered one of the most promising future energy carriers and transportation fuels. Because of the lack of a hydrogen infrastructure and refueling stations, widespread introduction of vehicles powered by pure hydrogen is not likely in the near future. Blending hydrogen with methane could be one solution. Such blends take advantage of the unique combustion properties of hydrogen and, at the same time, reduce the demand for pure hydrogen. In this paper, the authors analyze the combustion properties of hydrogen/methane

275

ESS 2012 Peer Review - Acid Based Blend Membranes for Redox Flow Batteries - Alan Cisar, Lynntech  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Acid Based Blend Membranes for Redox Flow Batteries Acid Based Blend Membranes for Redox Flow Batteries DOE Grant No: DE-SC0006306 Alan Cisar* and Chris Rhodes Lynntech, Inc., 2501 Earl Rudder Freeway South, College Station, TX 77845 *E-mail: alan.cisar@lynntech.com, Phone: 979.764.2311 Prof. Arumugam Manthiram University of Texas, Austin, TX 78712 Prof. Fuqiang Liu University of Texas Arlington, Arlington, TX 76019 Conclusions Lynntech, in conjunction with the University of Texas and the University of Texas at Arlington, developed a new series of low-cost polymer blend membranes with high proton conductivity and ultralow vanadium ion permeability. The proton conductivity and physical properties of these membranes are tunable by adjusting the ratio of acid and base components. Membrane conductivity was found to be more critical to

276

Citizens Advisory Board's Eco Fair Blends Fun and Facts for Schoolchildren  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Citizens Advisory Board's Eco Fair Blends Fun and Facts for Citizens Advisory Board's Eco Fair Blends Fun and Facts for Schoolchildren near Paducah Site Citizens Advisory Board's Eco Fair Blends Fun and Facts for Schoolchildren near Paducah Site June 1, 2012 - 12:00pm Addthis Lone Oak Middle School sixth-graders pet a mallard hen at the third annual Eco Fair May 15 in West Kentucky Wildlife Management Area. Lone Oak Middle School sixth-graders pet a mallard hen at the third annual Eco Fair May 15 in West Kentucky Wildlife Management Area. Ralph Young of Recycle Now! explains to Eco Fair attendees the value of recycling. Young is chairman of the Paducah Citizens Advisory Board, which advises the Department of Energy regarding cleanup issues at the Paducah site. Ralph Young of Recycle Now! explains to Eco Fair attendees the value of

277

Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

Blending Hydrogen into Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues M. W. Melaina, O. Antonia, and M. Penev Technical Report NREL/TP-5600-51995 March 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues M. W. Melaina, O. Antonia, and M. Penev Prepared under Task No. HT12.2010 Technical Report NREL/TP-5600-51995 March 2013 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

278

Calcination of Fluorinel-sodium waste blends using sugar as a feed additive (formerly WINCO-11879)  

SciTech Connect

Methods were studied for using sugar as a feed additive for converting the sodium-bearing wastes stored at the Idaho Chemical Processing Plant into granular, free flowing solids by fluidized-bed calcination at 500{degrees}C. All methods studied blended sodium-bearing wastes with Fluorinel wastes but differed in the types of sugar (sucrose or dextrose) that were added to the blend. The most promising sugar additive was determined to be sucrose, since it is converted more completely to inorganic carbon than is dextrose. The effect of the feed aluminum-to-alkali metal mole ratio on calcination of these blends with sugar was also investigated. Increasing the aluminum-to-alkali metal ratio from 0.6 to 1.0 decreased the calcine product-to-fines ratio from 3.0 to 1.0 and the attrition index from 80 to 15%. Further increasing the ratio to 1.25 had no effect.

Newby, B.J.; Thomson, T.D.; O`Brien, B.H.

1992-06-01T23:59:59.000Z

279

Drive cycle analysis of butanol/diesel blends in a light-duty vehicle.  

Science Conference Proceedings (OSTI)

The potential exists to displace a portion of the petroleum diesel demand with butanol and positively impact engine-out particulate matter. As a preliminary investigation, 20% and 40% by volume blends of butanol with ultra low sulfur diesel fuel were operated in a 1999 Mercedes Benz C220 turbo diesel vehicle (Euro III compliant). Cold and hot start urban as well as highway drive cycle tests were performed for the two blends of butanol and compared to diesel fuel. In addition, 35 MPH and 55 MPH steady-state tests were conducted under varying road loads for the two fuel blends. Exhaust gas emissions, fuel consumption, and intake and exhaust temperatures were acquired for each test condition. Filter smoke numbers were also acquired during the steady-state tests.

Miers, S. A.; Carlson, R. W.; McConnell, S. S.; Ng, H. K.; Wallner, T.; LeFeber, J.; Energy Systems; Esper Images Video & Multimedia

2008-10-01T23:59:59.000Z

280

Citizens Advisory Board's Eco Fair Blends Fun and Facts for Schoolchildren  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Citizens Advisory Board's Eco Fair Blends Fun and Facts for Citizens Advisory Board's Eco Fair Blends Fun and Facts for Schoolchildren near Paducah Site Citizens Advisory Board's Eco Fair Blends Fun and Facts for Schoolchildren near Paducah Site June 1, 2012 - 12:00pm Addthis Lone Oak Middle School sixth-graders pet a mallard hen at the third annual Eco Fair May 15 in West Kentucky Wildlife Management Area. Lone Oak Middle School sixth-graders pet a mallard hen at the third annual Eco Fair May 15 in West Kentucky Wildlife Management Area. Ralph Young of Recycle Now! explains to Eco Fair attendees the value of recycling. Young is chairman of the Paducah Citizens Advisory Board, which advises the Department of Energy regarding cleanup issues at the Paducah site. Ralph Young of Recycle Now! explains to Eco Fair attendees the value of

Note: This page contains sample records for the topic "oxygenated blends commonly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Ice Crystal Replication with Common Plastic Solutions  

Science Conference Proceedings (OSTI)

Use of common plastics, i.e., polystyrene, Plexiglas (polymethyl methacrylate) and Lexan (polycarbonate), was investigated for ice crystal replication. The results suggest that all common plastics tested are usable for ice crystal replication ...

Tsuneya Takahashi; Norihiko Fukuta

1988-02-01T23:59:59.000Z

282

Commonality of ground systems in launch operations  

E-Print Network (OSTI)

NASA is examining the utility of requiring a certain degree of commonality in both flight and ground systems in the Constellation Program. While the benefits of commonality seem obvious in terms of minimizing upfront ...

Quinn, Shawn M

2008-01-01T23:59:59.000Z

283

Fundamentals versus Beliefs under Almost Common Knowledge  

E-Print Network (OSTI)

Fundamentals versus Beliefs under Almost Common Knowledgeabout the economic fundamentals, this indeterminacy vanishespsychology as on economic fundamentals has become widespread

Karp, Larry

2000-01-01T23:59:59.000Z

284

Results of Baldrige Winners' Common Stock Comparison ...  

Science Conference Proceedings (OSTI)

... Results of Baldrige Winners' Common Stock Comparison Third NIST Stock Investment Study February 1997 Methodology: A hypothetical sum was ...

2013-09-11T23:59:59.000Z

285

Catalyst containing oxygen transport membrane  

Science Conference Proceedings (OSTI)

A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a high average pore diameter and the intermediate porous layer has a lower permeability and lower pore diameter than the porous support layer. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.

Christie, Gervase Maxwell; Wilson, Jamie Robyn; van Hassel, Bart Antonie

2012-12-04T23:59:59.000Z

286

Blending of hydrogen in natural gas distribution systems. Volume I. Gas blends flow in distribution system, mixing points, and regulatory standards. Final report, June 1, 1976--August 30, 1977. [10 and 20% hydrogen  

DOE Green Energy (OSTI)

This volume of the subject study ''Blending of Hydrogen in Natural Gas Distribution Systems'' describes studies on the determination of gas distribution system flows with hydrogen - natural gas blends, potential hydrogen admission points to gas distribution systems, and the impact of hydrogen - natural gas blends on regulatory standards for gas distribution systems. The studies resulted in the following principal findings: (1) Most existing natural gas distribution systems could adequately transport 20% blends of hydrogen by volume with little or no modification. (2) The best point of admission of the hydrogen into a natural gas distribution system would be at the meter and regulating stations supplying a particular distribution system. (3) The impact of hydrogen - natural gas blends on state regulatory standards appears to be minimal for PSE and G, but requires further study for various National Codes and for other states.

None

1977-09-01T23:59:59.000Z

287

Microbial oceanography of anoxic oxygen minimum zones  

E-Print Network (OSTI)

Vast expanses of oxygen-deficient and nitrite-rich water define the major oxygen minimum zones (OMZs) of the global ocean. They support diverse microbial communities that influence the nitrogen economy of the oceans, ...

Ulloa, Osvaldo

288

Microchemical systems for singlet oxygen generation  

E-Print Network (OSTI)

Chemical Oxygen-Iodine Lasers (COIL) are a technology of interest for industrial and military audiences. COILs are flowing gas lasers where the gain medium of iodine atoms is collisionally pumped by singlet delta oxygen ...

Hill, Tyrone F. (Tyrone Frank), 1980-

2008-01-01T23:59:59.000Z

289

Oxygen Sensitivity of Krypton and Lyman-? Hygrometers  

Science Conference Proceedings (OSTI)

The oxygen sensitivity of krypton and Lyman-? hygrometers is studied. Using a dewpoint generator and a controlled nitrogen/oxygen flow the extinction coefficients of five hygrometers associated with the third-order Taylor expansion of the Lambert–...

Arjan van Dijk; Wim Kohsiek; Henk A. R. de Bruin

2003-01-01T23:59:59.000Z

290

Design and Application of Coal Blending Control System Based on HOLLiAS-LK Large-Scale PLC  

Science Conference Proceedings (OSTI)

To make full use of coal combustion heat energy, and for the purposes of energy savings and pollutant reductions, more than two different coal needs to optimize the preparation of coal. This article describes design and application of coal blending control ... Keywords: coal blending system, PLC, cascade control, kingview

Hong Zhu; Haitao Li; Sheng Fu; Yinhua Pang

2010-06-01T23:59:59.000Z

291

Innovative oxygen separation membrane prototype  

SciTech Connect

Improvements are still needed to gas separation processes to gain industry acceptance of coal gasification systems. The Ion Transport Membrane (ITM) technology, being developed by the US Department of Energy and its partners, offers an opportunity to lower overall plant cost and improve efficiency compared to cryogenic distillation and pressure swing adsorption methods. The technology is based on a novel class of perovskite ceramic oxides which can selectively separate oxygen ions from a stream of air at high temperature and pressure. Those ions are transported across the ITM leaving non-permeate air which can be integrated with a fuel-fired gas system, enabling co-production of power and steam along with the concentrated, high-purity oxygen. The project is at the second phase, to scale up the ITM Oxygen ceramic devices to demonstrate the technology at the 1-5 tpd capability in the Subscale Engineering Prototype. A third phase to demonstrate commercial viability extends to the end of the decade. 2 figs.

NONE

2006-08-15T23:59:59.000Z

292

Dry Blending to Achieve Isotopic Dilution of Highly Enriched Uranium Oxide Materials  

SciTech Connect

The end of the cold war produced large amounts of excess fissile materials in the United States and Russia. The Department of Energy has initiated numerous activities to focus on identifying material management strategies for disposition of these excess materials. To date, many of these planning strategies have included isotopic dilution of highly enriched uranium as a means of reducing the proliferation and safety risks. Isotopic dilution by dry blending highly enriched uranium with natural and/or depleted uranium has been identified as one non-aqueous method to achieve these risk (proliferation and criticality safety) reductions. This paper reviews the technology of dry blending as applied to free flowing oxide materials.

Henry, Roger Neil; Chipman, Nathan Alan; Rajamani, R. K.

2001-04-01T23:59:59.000Z

293

A review of chromatographic characterization techniques for biodiesel and biodiesel blends.  

Science Conference Proceedings (OSTI)

This review surveys chromatographic technology that has been applied to the characterization of biodiesel and its blends. Typically, biodiesel consists of fatty acid methyl esters produced by transesterification of plant or animal derived triacylglycerols. Primary attention is given to the determination of trace impurities in biodiesel, such as methanol, glycerol, mono-, di-, and triacylglycerols, and sterol glucosides. The determination of the fatty acid methyl esters, trace impurities in biodiesel, and the determination of the biodiesel content of commercial blends of biodiesel in conventional diesel are also addressed.

Pauls, R. E. (Chemical Sciences and Engineering Division)

2011-05-01T23:59:59.000Z

294

Brazilian experience with self-adjusting fuel system for variable alcohol-gasoline blends  

DOE Green Energy (OSTI)

A fuel control system has been developed which allows fuels of various stoichiometries to be used interchangeably without suffering a fuel consumption penalty, allowing a more efficient use of the combustion energy. This Adaptive Lean Limit Control system uses a single, digital sensor and an electronic circuit to detect lean limit engine operation, and feeds back information to the fuel system to maintain the best economy mixture, regardless of the fuel blend being used. The hardware is described, and the results of extensive vehicle testing, using 20% and 50% ethanol-gasoline blends, are included.

Leshner, M.D.; Luengo, C.A.; Calandra, F.

1980-01-01T23:59:59.000Z

295

Prediction of metallurgical coke strength from the petrographic composition of coal blends  

Science Conference Proceedings (OSTI)

Turkey, especially Zonguldak on the West Coast of Black Sea region, has large reserves of bituminous coal that can be used either directly or in blends with other coals for metallurgical coke production. It is possible to predict the coking properties of these coals by petrographic analysis. In this study, semi- and non-coking coals were blended with coking bituminous coals in varying proportions and an estimation was made as to their stability factors through petrographic techniques. It was established that semi- and non-coking bituminous coals could be used in the production of metallurgical coke.

Sutcu, H.; Toroglu, I.; Piskin, S. [Zonguldak Karaelmas University, Zonguldak (Turkey)

2009-07-01T23:59:59.000Z

296

Common Air Conditioner Problems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Common Air Conditioner Problems Common Air Conditioner Problems Common Air Conditioner Problems May 30, 2012 - 6:41pm Addthis A refrigerant leak is one common air conditioning problem. | Photo courtesy of ©iStockphoto/BanksPhotos. A refrigerant leak is one common air conditioning problem. | Photo courtesy of ©iStockphoto/BanksPhotos. What does this mean for me? You can eliminate the most common air conditioner problems before hiring an air conditioning technician. You can do some air conditioner maintenance and repair tasks yourself. One of the most common air conditioning problems is improper operation. If your air conditioner is on, be sure to close your home's windows and outside doors. For room air conditioners, isolate the room or a group of connected rooms as much as possible from the rest of your home.

297

Common Air Conditioner Problems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Common Air Conditioner Problems Common Air Conditioner Problems Common Air Conditioner Problems May 30, 2012 - 6:41pm Addthis A refrigerant leak is one common air conditioning problem. | Photo courtesy of ©iStockphoto/BanksPhotos. A refrigerant leak is one common air conditioning problem. | Photo courtesy of ©iStockphoto/BanksPhotos. What does this mean for me? You can eliminate the most common air conditioner problems before hiring an air conditioning technician. You can do some air conditioner maintenance and repair tasks yourself. One of the most common air conditioning problems is improper operation. If your air conditioner is on, be sure to close your home's windows and outside doors. For room air conditioners, isolate the room or a group of connected rooms as much as possible from the rest of your home.

298

Selectivity of the reactions of oxygenates on transition metal surfaces  

Science Conference Proceedings (OSTI)

The goal of this research has been to understand, by means of surface science studies, the elementary processes involved in the synthesis of higher oxygenates on transition metals, and the dependence of these processes upon the nature of the surface. We have completed a considerable body of work (Ph.D. thesis of J. Lynn Davis, 1988) on the reactions of alcohols, aldehydes, and carboxylic acids on clean and oxygen-containing Pd(111) surfaces. Work during the past year has focused on the surface chemistry of rhodium. We find both interesting similarities and differences between rhodium and palladium. Comparison of the two sheds light on common reaction networks among the transition metals, and on the differences between them which permit control of selectivities in catalytic reactions.

Barteau, M.A.

1989-01-01T23:59:59.000Z

299

Development and experimental evaluation of a high temperature mechanism for blended n-heptane-isooctane-ethanol-air-mixtures and gasoline-ethanol-air-mixtures  

Science Conference Proceedings (OSTI)

Laminar burning velocity measurements using the closed vessel bomb method have been done for fuel-blend-air-mixtures at 373 K initial temperature and up to 20 bar initial pressure. The two experimentally investigated fuel blends consist, on the one hand, ... Keywords: ethanol-gasoline-blends, laminar burning velocity

S. Jerzembeck; C. Glawe; N. Peters

2009-02-01T23:59:59.000Z

300

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Ethanol Plant Production Ethanol Plant Production Definitions Key Terms Definition Barrel A unit of volume equal to 42 U.S. gallons. Fuel Ethanol An anhydrous alcohol (ethanol with less than 1% water) intended for gasoline blending as described in the Oxygenates definition. Oxygenates Substances which, when added to gasoline, increase the amount of oxygen in that gasoline blend. Ethanol, Methyl Tertiary Butyl Ether (MTBE), Ethyl Tertiary Butyl Ether (ETBE), and methanol are common oxygenates. Fuel Ethanol: Blends of up to 10 percent by volume anhydrous ethanol (200 proof) (commonly referred to as the "gasohol waiver"). Methanol: Blends of methanol and gasoline-grade tertiary butyl alcohol (GTBA) such that the total oxygen content does not exceed 3.5 percent by weight and the ratio of methanol to GTBA is less than or equal to 1. It is also specified that this blended fuel must meet ASTM volatility specifications (commonly referred to as the "ARCO" waiver).

Note: This page contains sample records for the topic "oxygenated blends commonly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Enhancements of a Combustion Vessel to Determine Laminar Flame Speeds of Hydrocarbon Blends with Helium Dilution at Elevated Temperatures and Pressures  

E-Print Network (OSTI)

Fuel flexibility in gas turbines is of particular importance because of the main fuel source, natural gas. Blends of methane, ethane, and propane are big constituents in natural gas and consequently are of particular interest. With this level of importance comes the need for baseline data such as laminar flame speed of said fuels. While flame speeds at standard temperature and pressure have been extensively studied in the literature, experimental data at turbine-like conditions are still lacking currently. This thesis discusses the theory behind laminar flames; new data acquisition techniques; temperature and pressure capability improvements; measured flame speeds; and a discussion of the results including stability analysis. The measured flame speeds were those of methane, ethane, and propane fuel blends, as well as pure methane, at an elevated pressure of 5 atm and temperatures of 298 and 473 K, using a constant-volume, cylindrical combustion vessel. The current Aramco mechanism developed in conjunction with National University of Ireland Galway compared favorably with the data, while the literature data showed discrepancies at stoichiometric to rich conditions. An in-depth flame speed uncertainty analysis yielded a wide range of values from 0.5 cm/s to 21.5 cm/s. It is well known that high-pressure experiments develop flame instabilities when air is used as the oxidizer. In this study, the hydrodynamic instabilities were restrained by using a high diluent-to-oxygen ratio. The thermal-diffusive instabilities were inhibited by using helium as the diluent. To characterize this flame stability, the Markstein length and Lewis number were calculated for the presented conditions. The resultant positive Markstein lengths showed a low propensity of flame speed to flame stretch, while the larger-than-unity Lewis numbers showed the relatively higher diffusivity of helium to that of nitrogen.

Plichta, Drew

2013-05-01T23:59:59.000Z

302

The Role of Oxygen in Coal Gasification  

E-Print Network (OSTI)

Air Products supplies oxygen to a number of coal gasification and partial oxidation facilities worldwide. At the high operating pressures of these processes, economics favor the use of 90% and higher oxygen purities. The effect of inerts in the oxidant on gasifier and downstream production units also favor the use of oxygen in place of air. Factors that must be considered in selecting the optimum oxygen purity include: end use of the gasifier products, oxygen delivery pressure and the cost of capital and energy. This paper examines the major factors in oxygen purity selection for typical coal gasifiers. Examples demonstrating the effect of oxygen purity on several processes are presented: production of synthetic natural gas (SNG), integrated gasification combined-cycle (IGCC) power generation and methanol synthesis. The potential impact of a non-cryogenic air separation process currently under development is examined based on integration with a high temperature processes.

Klosek, J.; Smith, A. R.; Solomon, J.

1986-06-01T23:59:59.000Z

303

Oxygen enriched combustion system performance study  

SciTech Connect

The current study was undertaken to evaluate the performance of a pressure swing adsorption (PSA) oxygen plant to provide oxygen for industrial combustion applications. PSA oxygen plants utilize a molecular sieve material to separate air into an oxygen rich product stream and a nitrogen rich exhaust stream. These plants typically produce 90-95% purity oxygen and are located in close proximity to the point of use. In contrast, high purity (99.999%) oxygen is produced by the distillation of liquid air at a remote plant and is usually transported to the point of use either as a cryogenic liquid in a tank trailer or as a high pressure gas via pipeline. In this study, experiments were performed to the test PSA system used in conjunction with an A'' burner and comparisons were made with the results of the previous study which utilized high purity liquid oxygen. 4 refs., 6 figs., 6 tabs.

Delano, M.A. (Union Carbide Industrial Gases, Inc., Tarrytown, NY (USA)); Kwan, Y. (Energy and Environmental Research Corp., Irvine, CA (USA))

1989-07-01T23:59:59.000Z

304

HIGHLY ENRICHED URANIUM BLEND DOWN PROGRAM AT THE SAVANNAH RIVER SITE PRESENT AND FUTURE  

SciTech Connect

The Department of Energy (DOE) and Tennessee Valley Authority (TVA) entered into an Interagency Agreement to transfer approximately 40 metric tons of highly enriched uranium (HEU) to TVA for conversion to fuel for the Browns Ferry Nuclear Power Plant. Savannah River Site (SRS) inventories included a significant amount of this material, which resulted from processing spent fuel and surplus materials. The HEU is blended with natural uranium (NU) to low enriched uranium (LEU) with a 4.95% 235U isotopic content and shipped as solution to the TVA vendor. The HEU Blend Down Project provided the upgrades needed to achieve the product throughput and purity required and provided loading facilities. The first blending to low enriched uranium (LEU) took place in March 2003 with the initial shipment to the TVA vendor in July 2003. The SRS Shipments have continued on a regular schedule without any major issues for the past 5 years and are due to complete in September 2008. The HEU Blend program is now looking to continue its success by dispositioning an additional approximately 21 MTU of HEU material as part of the SRS Enriched Uranium Disposition Project.

Magoulas, V; Charles Goergen, C; Ronald Oprea, R

2008-06-05T23:59:59.000Z

305

Co-firing of coal and biomass fuel blends M. Sami, K. Annamalai*, M. Wooldridge1  

E-Print Network (OSTI)

Co-firing of coal and biomass fuel blends M. Sami, K. Annamalai*, M. Wooldridge1 Department; accepted 6 June 2000 Abstract This paper reviews literature on co-firing of coal with biomass fuels. Here of coal and biomass fuels are presented. Different classes of co-firing methods are identified

Wooldridge, Margaret S.

306

TURBULENT COMBUSTION MODELING OF COAL:BIOMASS BLENDS IN A SWIRL BURNER I -PRELIMINARY RESULTS  

E-Print Network (OSTI)

TURBULENT COMBUSTION MODELING OF COAL:BIOMASS BLENDS IN A SWIRL BURNER I - PRELIMINARY RESULTS of Mathematics Texas A&M University College Station, TX 77843 ABSTRACT A combustion model using three mixture fractions has been developed for accurate simulation of coal:manure combustion. This model treats coal

Daripa, Prabir

307

Understanding Polymorphism Formation in Electrospun Fibers of Immiscible Poly(vinylidene fluoride) Blends  

SciTech Connect

Effects of electric poling, mechanical stretching, and dipolar interaction on the formation of ferroelectric ({beta} and/or {gamma}) phases in poly(vinylidene fluoride) (PVDF) have been studied in electrospun fibers of PVDF/polyacrylonitrile (PAN) and PVDF/polysulfone (PSF) blends with PVDF as the minor component, using wide-angle X-ray diffraction and Fourier transform infrared techniques. Experimental results of as-electrospun neat PVDF fibers (beaded vs. bead-free) showed that mechanical stretching during electrospinning, rather than electric poling, was effective to induce ferroelectric phases. For as-electrospun PVDF blend fibers with the non-polar PSF matrix, mechanical stretching during electrospinning again was capable of inducing some ferroelectric phases in addition to the major paraelectric ({alpha}) phase. However, after removing the mechanical stretching in a confined melt-recrystallization process, only the paraelectric phase was obtained. For as-electrospun PVDF blend fibers with the polar (or ferroelectric) PAN matrix, strong intermolecular interactions between polar PAN and PVDF played an important role in the ferroelectric phase formation in addition to the mechanical stretching effect during electrospinning. Even after the removal of mechanical stretching through the confined melt-recrystallization process, a significant amount of ferroelectric phases persisted. Comparing the ferroelectric phase formation between PVDF/PSF and PVDF/PAN blend fibers, we concluded that the local electric field-dipole interactions were the determining factor for the nucleation and growth of polar PVDF phases.

G Zhong; L Zhang; R Su; K Wang; H Fong; L Zhu

2011-12-31T23:59:59.000Z

308

Combustion characterization of the blend of plant coal and recovered coal fines  

SciTech Connect

The overall objective of this proposed research program is to determine the combustion characteristics of the blend derived from mixing a plant coal and recovered and clean coal fines from the pond. During this study, one plant coal and three blend samples will be prepared and utilized. The blend samples will be of a mixture of 90% plant coal + 10% fines, 85% plant coal + 15% fines, 80% plant coal + 20% fines having particle size distribution of 70% passing through {minus}200 mesh size. These samples' combustion behavior will be examined in two different furnaces at Penn State University, i.e., a down-fired furnace and a drop-tube furnace. The down-fired furnace will be used mainly to measure the emissions and ash deposition study, while the drop tube furnace will be used to determine burning profile, combustion efficiency, etc. This report covers the first quarter's progress. Major activities during this period were focused on finding the plants where a demo MTU column will be installed to prepare the samples needed to characterize the combustion behavior of slurry effluents. Also, a meeting was held at Penn State University to discuss the availability of the laboratory furnace for testing the plant coal/recovered coal fines blends.

Singh, Shyam.

1991-01-01T23:59:59.000Z

309

Polymer blends for use in photoelectrochemical cells for conversion of solar energy to electricity  

DOE Patents (OSTI)

There is disclosed a polymer blend of a highly conductive polymer and a solid polymer electrolyte that is designed to achieve better charge transfer across the conductive film/polymer electrolyte interface of the electrochemical photovoltaic cell. The highly conductive polymer is preferably polypyrrole or poly-N-p-nitrophenylpyrrole and the solid polymer electrolyte is preferably polyethylene oxide or polypropylene oxide.

Skotheim, Terje (East Patchogue, NY)

1986-01-01T23:59:59.000Z

310

Blended learning and pure e-learning concepts for information retrieval: experiences and future directions  

Science Conference Proceedings (OSTI)

Today, teaching and learning are mostly supported by digital material and electronic communication ranging from the provision of slides or scripts in digital form to elaborate, interactive learning environments. This article describes the prospects and ... Keywords: Blended learning, Interaction, Teaching information retrieval, e-Learning

Andreas Henrich; Stefanie Sieber

2009-04-01T23:59:59.000Z

311

NUCLEAR ISOTOPIC DILUTION OF HIGHLY ENRICHED URANIUM BY DRY BLENDING VIA THE RM-2 MILL TECHNOLOGY  

SciTech Connect

DOE has initiated numerous activities to focus on identifying material management strategies to disposition various excess fissile materials. In particular the INEEL has stored 1,700 Kg of offspec HEU at INTEC in CPP-651 vault facility. Currently, the proposed strategies for dispositioning are (a) aqueous dissolution and down blending to LEU via facilities at SRS followed by shipment of the liquid LEU to NFS for fabrication into LWR fuel for the TVA reactors and (b) dilution of the HEU to 0.9% for discard as a waste stream that would no longer have a criticality or proliferation risk without being processed through some type of enrichment system. Dispositioning this inventory as a waste stream via aqueous processing at SRS has been determined to be too costly. Thus, dry blending is the only proposed disposal process for the uranium oxide materials in the CPP-651 vault. Isotopic dilution of HEU to typically less than 20% by dry blending is the key to solving the dispositioning issue (i.e., proliferation) posed by HEU stored at INEEL. RM-2 mill is a technology developed and successfully tested for producing ultra-fine particles by dry grinding. Grinding action in RM-2 mill produces a two million-fold increase in the number of particles being blended in a centrifugal field. In a previous study, the concept of achieving complete and adequate blending and mixing (i.e., no methods were identified to easily separate and concentrate one titanium compound from the other) in remarkably short processing times was successfully tested with surrogate materials (titanium dioxide and titanium mono-oxide) with different particle sizes, hardness and densities. In the current project, the RM-2 milling technology was thoroughly tested with mixtures of natural uranium oxide (NU) and depleted uranium oxide (DU) stock to prove its performance. The effects of mill operating and design variables on the blending of NU/DU oxides were evaluated. First, NU and DU both made of the same oxide, UO{sub 3}, was used in the testing. Next, NU made up of UO{sub 3} and DU made up of UO{sub 2} was used in the test work. In every test, the blend achieved was characterized by spatial sampling of the ground product and analyzing for {sup 235}U concentration. The test work proved that these uranium oxide materials can be blended successfully. The spatial concentration was found to be uniform. Next, sintered thorium oxide pellets were used as surrogate for light water breeder reactor pellets (LWBR). To simulate LWBR pellet dispositioning, the thorium oxide pellets were first ground to a powder form and then the powder was blended with NU. In these tests also the concentration of {sup 235}U and {sup 232}Th in blended products fell within established limits proving the success of RM-2 milling technology. RM-2 milling technology is applicable to any dry radioactive waste, especially brittle solids that can be ground up and mixed with the non-radioactive stock.

Raj K. Rajamani; Sanjeeva Latchireddi; Vikas Devrani; Harappan Sethi; Roger Henry; Nate Chipman

2003-08-01T23:59:59.000Z

312

Management of multiple-use commons.  

E-Print Network (OSTI)

??This thesis addresses an example of multiple-use commons problems: the case of land use for forestry and reindeer husbandry. Forestry use land for industrial purposes… (more)

Widmark, Camilla

2009-01-01T23:59:59.000Z

313

Jupiter Oxygen Corporation | Open Energy Information  

Open Energy Info (EERE)

Corporation Place Schiller Park, Illinois Zip 60176 Product Illinois-based oxy-fuel combustion company involved in the capture of CO2. References Jupiter Oxygen Corporation1...

314

Insitu Oxygen Conduction Into Internal Combustion Chamber  

Insitu Oxygen Conduction Into Internal Combustion Chamber Note: The technology described above is an early stage opportunity. Licensing rights to this ...

315

Areas Participating in the Oxygenated Gasoline Program  

U.S. Energy Information Administration (EIA)

Demand and Price Outlook ... is a colorless, odorless, and poisonous gas ... oxygen by weight is to be used in the wintertime in those areas of the county that ...

316

Electrocatalyst for Oxygen Reduction with Reduced Platinum ...  

Platinum is the most efficient electrocatalyst for accelerating the oxygen reduction reaction in fuel cells. Under operating conditions, though, platinum catalysts ...

317

Direct Observation of the Oxygenated Species during Oxygen Reduction on a  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Observation of the Oxygenated Species during Oxygen Reduction on a Direct Observation of the Oxygenated Species during Oxygen Reduction on a Platinum Fuel Cell Cathode Friday, December 20, 2013 Fuel Cell Figure 1 Figure 1. In situ x-ray spectroscopy identification and DFT simulations of oxygenated intermediates on a platinum fuel-cell cathode. The study shows that two types of hydroxyl intermediates (non-hydrated OH and hydrated OH) with distinct activities coexist on a fuel-cell cathode. The performance of polymer-electrolyte-membrane (PEM) fuel cells is limited by the reduction at the cathode of various oxygenated intermediates in the four-electron pathway of the oxygen reduction reaction. A research team led by SLAC scientists performed x-ray spectroscopy identification and DFT simulations of oxygenated intermediates on a platinum fuel-cell cathode

318

Organic gas emissions from a stoichiometric direct injection spark ignition engine operating on ethanol/gasoline blends  

E-Print Network (OSTI)

The organic gas emissions from a stoichiometric direct injection spark ignition engine operating on ethanol/gasoline blends have been assessed under warmed-up and cold idle conditions. The speciated emissions show that the ...

Kar, Kenneth

319

Measurement of Selected Physical and Chemical Properties of Blends of Coaal-Based Jet fuel with Dodecane and Norpar-13.  

E-Print Network (OSTI)

??The aim of this work was to investigate the impact of blending a coal-based fuel, JP-900, with two model paraffinic fuels, dodecane and Norpar-13, on… (more)

Guiadem, Sidonie

2009-01-01T23:59:59.000Z

320

Effects of blending, staging and furnace temperature on co-firing of coal and biomass-bagasse.  

E-Print Network (OSTI)

??This manuscript reports on emissions generated from laboratory-scale batch combustion of a high-volatile content bituminous coal, sugar-cane bagasse, and blends thereof. The average bulk equivalence… (more)

Arvind, Joshi Kulbhushan

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxygenated blends commonly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Wear, durability, and lubricating oil performance of a straight vegetable oil (Karanja) blend fueled direct injection compression ignition engine  

Science Conference Proceedings (OSTI)

Depletion of fossil fuel resources and resulting associated environmental degradation has motivated search for alternative transportation fuels. Blending small quantity of Karanja oil (straight vegetable oil) with mineral diesel is one of the simplest available alternatives

Avinash Kumar Agarwal; Atul Dhar

2012-01-01T23:59:59.000Z

322

Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 - Updated  

DOE Green Energy (OSTI)

Intended for policymakers and others who make decisions about, and set guidelines for, the proper use of intermediate ethanol blends such as E20 in both vehicle engines and other engine types.

Knoll, K.; West, B.; Clark, W.; Graves, R.; Orban, J.; Przesmitzki, S.; Theiss, T.

2009-02-01T23:59:59.000Z

323

Blending of hydrogen in natural gas distribution systems. Volume II. Combustion tests of blends in burners and appliances. Final report, June 1, 1976--August 30, 1977. [8, 11, 14, 20, 22, 25, and 31% hydrogen  

DOE Green Energy (OSTI)

The emerging ''hydrogen economy'' is a strong contender as one method to supplement or extend the domestic natural gas supply. This volume of the subject study ''Blending Hydrogen in Natural Gas Distribution Systems'' describes combustion studies to determine the maximum amount of hydrogen that can be blended in natural gas and utilized satisfactorily in typical appliances with no adjustment or conversion. Eleven pilot burners and twenty-three main burners typical of those in current use were operated on hydrogen-natural gas mixtures containing approximately 8, 11, 14, 20, 22, 25, and 31 percent, by volume, hydrogen. The eleven pilot burners and thirteen main burners were tested outside the appliance they were a part of. Ten main burners were tested in their respective appliances. Performance of the various burners tested are as follows: (1) Gas blends containing more than 6 to 11% hydrogen are the limiting mixtures for target type pilot burners. (2) Gas blends containing more than 20 to 22% hyrogen are the limiting mixtures for main burners operating in the open. (3) Gas blends containing more than 22 to 25% hydrogen are the limiting mixtures for main burners tested in appliances. (4) Modification of the orifice in target pilots or increasing the supply pressure to a minimum of 7 inches water column will permit the use of gas blends with 20% hydrogen.

None

1977-10-01T23:59:59.000Z

324

A common-view disciplined oscillator  

SciTech Connect

This paper describes a common-view disciplined oscillator (CVDO) that locks to a reference time scale through the use of common-view global positioning system (GPS) satellite measurements. The CVDO employs a proportional-integral-derivative controller that obtains near real-time common-view GPS measurements from the internet and provides steering corrections to a local oscillator. A CVDO can be locked to any time scale that makes real-time common-view data available and can serve as a high-accuracy, self-calibrating frequency and time standard. Measurement results are presented where a CVDO is locked to UTC(NIST), the coordinated universal time scale maintained at the National Institute of Standards and Technology in Boulder, Colorado.

Lombardi, Michael A. [Time and Frequency Division, National Institute of Standards and Technology (NIST), Boulder, Colorado 80305 (United States); Dahlen, Aaron P. [Loran Support Unit, United States Coast Guard (USCG), Wildwood, New Jersey 08260 (United States)

2010-05-15T23:59:59.000Z

325

Commonality analysis for exploration life support systems  

E-Print Network (OSTI)

Commonality, defined practically as the use of similar technologies to deliver similar functions across a range of different complex systems, offers opportunities to improve the lifecycle costs of portfolios of complex ...

Cunio, Phillip M

2008-01-01T23:59:59.000Z

326

Advanced Metering Infrastructure Common Alarms and Events  

Science Conference Proceedings (OSTI)

In order to identify a common set of Advanced Metering Infrastructure (AMI) electric meter alarms and events for standardization, it is important to determine which alarms and events are the most critical and valuable for detecting and responding to AMI security incidents. This document contains the results of the Common AMI Alarms and Events Task, which is a component of the Electric Power Research Institute's (EPRI) AMI Incident Response Project. The report provides information that can be ...

2012-12-20T23:59:59.000Z

327

Advanced Vehicle Testing Activity: Low-Percentage Hydrogen/CNG Blend Ford F-150 Operating Summary - January 2003  

Science Conference Proceedings (OSTI)

Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.

Karner, D.; Francfort, J.E.

2003-01-22T23:59:59.000Z

328

Advanced Vehicle Testing Activity: High-Percentage Hydrogen/CNG Blend Ford F-150 Operating Summary - January 2003  

Science Conference Proceedings (OSTI)

Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen-50% CNG fuel.

Karner, D.; Francfort, J.E.

2003-01-22T23:59:59.000Z

329

Multiple boiler steam blending control system for an electric power plant  

SciTech Connect

A steam blending control is provided for two or more boilers in an electric power plant. To blend an oncoming boiler with an online boiler, the oncoming boiler is fired to a pressure ramp setpoint and outlet steam is isolated from the plant turbine and directed through position controlled bypass valve means. When steam temperature and pressure conditions are matched, the oncoming boiler isolation valve is opened and the bypass flow then existing is stored in a memory. The oncoming boiler bypass flow is cut back with total oncoming boiler steam flow controlled to the memorized flow valve as a setpoint. Flow from the on-line boiler is cut back under load control as the oncoming boiler flow to the plant turbine is increased. Deblending is implemented in a similar manner.

Binstock, M.H.; Criswell, R.L.

1981-12-22T23:59:59.000Z

330

Bird Checklist for the East Coast Seen Common Name Latin Name Seen Common Name Latin Name  

E-Print Network (OSTI)

herodias Red-shouldered Hawk Buteo lineatus Great Egret Casmerodius albus Broad-winged Hawk ButeoBird Checklist for the East Coast 1 Seen Common Name Latin Name Seen Common Name Latin Name Red-throated Loon Gavia stellata Common Scoter Melanitta nigra Pacific Loon Gavia pacifica White-winged Scoter

Sharp, Kim

331

he first glossary of common and not-so-common terms and buzz-  

E-Print Network (OSTI)

he first glossary of common and not-so-common terms and buzz- words for reference to high perfor for an update because · many new terms have arisen or, in some cases, their original meanings have expanded- vides guidance and changes in some of the more commonly accepted terms (2). This month's "Column Watch

Frey, Douglas D.

332

Legacy Vehicle Fuel System Testing with Intermediate Ethanol Blends  

DOE Green Energy (OSTI)

The effects of E10 and E17 on legacy fuel system components from three common mid-1990s vintage vehicle models (Ford, GM, and Toyota) were studied. The fuel systems comprised a fuel sending unit with pump, a fuel rail and integrated pressure regulator, and the fuel injectors. The fuel system components were characterized and then installed and tested in sample aging test rigs to simulate the exposure and operation of the fuel system components in an operating vehicle. The fuel injectors were cycled with varying pulse widths during pump operation. Operational performance, such as fuel flow and pressure, was monitored during the aging tests. Both of the Toyota fuel pumps demonstrated some degradation in performance during testing. Six injectors were tested in each aging rig. The Ford and GM injectors showed little change over the aging tests. Overall, based on the results of both the fuel pump testing and the fuel injector testing, no major failures were observed that could be attributed to E17 exposure. The unknown fuel component histories add a large uncertainty to the aging tests. Acquiring fuel system components from operational legacy vehicles would reduce the uncertainty.

Davis, G. W.; Hoff, C. J.; Borton, Z.; Ratcliff, M. A.

2012-03-01T23:59:59.000Z

333

Effects of Pressure on Oxygen Sensors  

Science Conference Proceedings (OSTI)

To measure the effects of pressure on the output of a membrane oxygen sensor and a nonmembrane oxygen sensor, the authors pressure cycled a CTD sensor package in a laboratory pressure facility. The CTD sensor package was cycled from 30 to 6800 db ...

M. J. Atkinson; F. I. M. Thomas; N. Larson

1996-12-01T23:59:59.000Z

334

Oxygen Control in PWR Makeup Water  

Science Conference Proceedings (OSTI)

Three fixed-bed processes can accelerate hydrazine-oxygen reactions in PWR makeup water and reduce oxygen levels to below 5 ppb. In this comparative-test project, activated carbon based systems offered the best combination of low cost, effectiveness, and commercial availability. A second process, employing palladium-coated anion resin, is also commercially available.

1988-02-03T23:59:59.000Z

335

Pilot Plant Assessment of Blend Properties and Their Impact on Critical Power Plant Components  

Science Conference Proceedings (OSTI)

Low-sulfur subbituminous coals, currently in demand to meet regulated SO2 emission standards, are very different in composition from bituminous coal and affect many operating characteristics when fired in boilers designed for bituminous coal. This report documents a pilot-scale study of the relative impacts of a subbituminous coal or blend containing subbituminous coal on unit operating characteristics such as mill performance, furnace wall slagging, convective pass fouling, and electrostatic precipitato...

1999-02-02T23:59:59.000Z

336

Laboratory Studies on Rendering Remediation Wastes Nonhazardous: Blending of Tar and Tarry Materials  

Science Conference Proceedings (OSTI)

Some remediation wastes and tarry soils from former manufactured gas plant (MGP) sites will be classified as hazardous waste based on the results of Toxicity Characteristic Leaching Procedure (TCLP) tests. This report presents the results of bench-scale mixing tests of nine blending agents on several former MGP tars and tarry soils known to exceed the toxicity characteristic (TC) for benzene. These mixing studies were designed to measure the dilution, loss by volatilization, or fixation by adsorption of ...

2000-09-15T23:59:59.000Z

337

Use of Savannah River Site facilities for blend down of highly enriched uranium  

SciTech Connect

Westinghouse Savannah River Company was asked to assess the use of existing Savannah River Site (SRS) facilities for the conversion of highly enriched uranium (HEU) to low enriched uranium (LEU). The purpose was to eliminate the weapons potential for such material. Blending HEU with existing supplies of depleted uranium (DU) would produce material with less than 5% U-235 content for use in commercial nuclear reactors. The request indicated that as much as 500 to 1,000 MT of HEU would be available for conversion over a 20-year period. Existing facilities at the SRS are capable of producing LEU in the form of uranium trioxide (UO{sub 3}) powder, uranyl nitrate [UO{sub 2}(NO{sub 3}){sub 2}] solution, or metal. Additional processing, and additional facilities, would be required to convert the LEU to uranium dioxide (UO{sub 2}) or uranium hexafluoride (UF{sub 3}), the normal inputs for commercial fuel fabrication. This study`s scope does not include the cost for new conversion facilities. However, the low estimated cost per kilogram of blending HEU to LEU in SRS facilities indicates that even with fees for any additional conversion to UO{sub 2} or UF{sub 6}, blend-down would still provide a product significantly below the spot market price for LEU from traditional enrichment services. The body of the report develops a number of possible facility/process combinations for SRS. The primary conclusion of this study is that SRS has facilities available that are capable of satisfying the goals of a national program to blend HEU to below 5% U-235. This preliminary assessment concludes that several facility/process options appear cost-effective. Finally, SRS is a secure DOE site with all requisite security and safeguard programs, personnel skills, nuclear criticality safety controls, accountability programs, and supporting infrastructure to handle large quantities of special nuclear materials (SNM).

Bickford, W.E.; McKibben, J.M.

1994-02-01T23:59:59.000Z

338

Formulation Efforts for Direct Vitrification of INEEL Blend Calcine Waste Simulate: Fiscal Year 2000  

SciTech Connect

This report documents the results of glass formulation efforts for Idaho National Engineering and Environmental Laboratory (INEEL) high level waste (HWL) calcine. Two waste compositions were used during testing. Testing started by using the Run 78 calcine composition and switched to simulated Blend calcine composition when it became available. The goal of the glass formulation efforts was to develop a frit composition that will accept higher waste loading that satisfies the glass processing and product acceptance constraints. 1. Melting temperature of 1125 ? 25?C 2. Viscosity between 2 and 10 Pa?s at the melting temperature 3. Liquidus temperature at least 100?C below the melting temperature 4. Normalized release of B, Li and Na each below 1 g/m2 (per ASTM C 1285-97) Glass formulation efforts tested several frit compositions with variable waste loadings of Run 78 calcine waste simulant. Frit 107 was selected as the primary candidate for processing since it met all process and performance criteria up to 45 mass% waste loading. When the simulated Blend calcine waste composition became available Frits 107 and 108 compositions were retested and again Frit 107 remained the primary candidate. However, both frits suffered a decrease in waste loading when switching from the Run 78 calcine to simulated Blend calcine waste composition. This was due to increase concentrations of both F and Al2O3 along with a decrease in CaO and Na2O in the simulate Blend calcine waste all of which have strong impacts on the glass properties that limit waste loading of this type of waste.

Crum, Jarrod V.; Vienna, John D.; Peeler, David K.; Reamer, I. A.

2001-03-30T23:59:59.000Z

339

In-cylinder pressure characteristics of a CI engine using blends of diesel fuel and methyl esters of beef tallow  

Science Conference Proceedings (OSTI)

A Cummins N14-410 diesel engine was operated on 12 fuels produced by blending methyl tallowate, methyl soyate, and ethanol with no. 2 diesel fuel. Engine in-cylinder pressure data were used to evaluate engine performance. Peak cylinder pressures for each fuel blend at all engine speeds were lower than peak pressure for diesel fuel with the exception of the 80% diesel, 13% methyl tallowate, and 7% ethanol; and the 80% diesel, 6.5% methyl tallowate, 6.5% methyl soyate and 7% ethanol blends. The indicated mean effective pressure (IMEP) values for all fuel blends were less than for diesel fuel. The differences in IMEP values correlated with differences in power output of the engine. Similarly, maximum rates of pressure rise for most fuel blends were less than for diesel fuel. It was concluded that the fuel blends used in this study would have no detrimental long-term effects on engine performance, wear, and knock. 6 refs., 4 figs., 7 tabs.

Ali, Y.; Hanna, M.A.; Borg, J.E. [Univ. of Nebraska, Lincoln, NE (United States)

1996-05-01T23:59:59.000Z

340

Compatibility Study for Plastic, Elastomeric, and Metallic Fueling Infrastructure Materials Exposed to Aggressive Formulations of Ethanol-blended Gasoline  

SciTech Connect

In 2008 Oak Ridge National Laboratory began a series of experiments to evaluate the compatibility of fueling infrastructure materials with intermediate levels of ethanol-blended gasoline. Initially, the focus was elastomers, metals, and sealants, and the test fuels were Fuel C, CE10a, CE17a and CE25a. The results of these studies were published in 2010. Follow-on studies were performed with an emphasis on plastic (thermoplastic and thermoset) materials used in underground storage and dispenser systems. These materials were exposed to test fuels of Fuel C and CE25a. Upon completion of this effort, it was felt that additional compatibility data with higher ethanol blends was needed and another round of experimentation was performed on elastomers, metals, and plastics with CE50a and CE85a test fuels. Compatibility of polymers typically relates to the solubility of the solid polymer with a solvent. It can also mean susceptibility to chemical attack, but the polymers and test fuels evaluated in this study are not considered to be chemically reactive with each other. Solubility in polymers is typically assessed by measuring the volume swell of the polymer exposed to the solvent of interest. Elastomers are a class of polymers that are predominantly used as seals, and most o-ring and seal manufacturers provide compatibility tables of their products with various solvents including ethanol, toluene, and isooctane, which are components of aggressive oxygenated gasoline as described by the Society of Automotive Engineers (SAE) J1681. These tables include a ranking based on the level of volume swell in the elastomer associated with exposure to a particular solvent. Swell is usually accompanied by a decrease in hardness (softening) that also affects performance. For seal applications, shrinkage of the elastomer upon drying is also a critical parameter since a contraction of volume can conceivably enable leakage to occur. Shrinkage is also indicative of the removal of one or more components of the elastomers (by the solvent). This extraction of additives can negatively change the properties of the elastomer, leading to reduced performance and durability. For a seal application, some level of volume swell is acceptable, since the expansion will serve to maintain a seal. However, the acceptable level of swell is dependent on the particular application of the elastomer product. It is known that excessive swell can lead to unacceptable extrusion of the elastomer beyond the sealed interface, where it becomes susceptible to damage. Also, since high swell is indicative of high solubility, there is a heightened potential for fluid to seep through the seal and into the environment. Plastics, on the other hand, are used primarily in structural applications, such as solid components, including piping and fluid containment. Volume change, especially in a rigid system, will create internal stresses that may negatively affect performance. In order to better understand and predict the compatibility for a given polymer type and fuel composition, an analysis based on Hansen solubility theory was performed for each plastic and elastomer material. From this study, the solubility distance was calculated for each polymer material and test fuel combination. Using the calculated solubility distance, the ethanol concentration associated with peak swell and overall extent of swell can be predicted for each polymer. The bulk of the material discussion centers on the plastic materials, and their compatibility with Fuel C, CE25a, CE50a, and CE85a. The next section of this paper focuses on the elastomer compatibility with the higher ethanol concentrations with comparison to results obtained previously for the lower ethanol levels. The elastomers were identical to those used in the earlier study. Hansen solubility theory is also applied to the elastomers to provide added interpretation of the results. The final section summarizes the performance of the metal coupons.

Kass, Michael D [ORNL; Pawel, Steven J [ORNL; Theiss, Timothy J [ORNL; Janke, Christopher James [ORNL

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxygenated blends commonly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Oxygen ion-conducting dense ceramic  

DOE Patents (OSTI)

Preparation, structure, and properties of mixed metal oxide compositions containing at least strontium, cobalt, iron and oxygen are described. The crystalline mixed metal oxide compositions of this invention have, for example, structure represented by Sr.sub..alpha. (Fe.sub.1-x Co.sub.x).sub..alpha.+.beta. O.sub..delta. where x is a number in a range from 0.01 to about 1, .alpha. is a number in a range from about 1 to about 4, .beta. is a number in a range upward from 0 to about 20, and .delta. is a number which renders the compound charge neutral, and wherein the composition has a non-perovskite structure. Use of the mixed metal oxides in dense ceramic membranes which exhibit oxygen ionic conductivity and selective oxygen separation, are described as well as their use in separation of oxygen from an oxygen-containing gaseous mixture.

Balachandran, Uthamalingam (Hinsdale, IL); Kleefisch, Mark S. (Naperville, IL); Kobylinski, Thaddeus P. (Lisle, IL); Morissette, Sherry L. (Las Cruces, NM); Pei, Shiyou (Naperville, IL)

1997-01-01T23:59:59.000Z

342

Oxygen ion-conducting dense ceramic  

DOE Patents (OSTI)

Preparation, structure, and properties of mixed metal oxide compositions containing at least strontium, cobalt, iron and oxygen are described. The crystalline mixed metal oxide compositions of this invention have, for example, structure represented by Sr.sub..alpha. (Fe.sub.1-x Co.sub.x).sub..alpha.+.beta. O.sub..delta. where x is a number in a range from 0.01 to about 1, .alpha. is a number in a range from about 1 to about 4, .beta. is a number in a range upward from 0 to about 20, and .delta. is a number which renders the compound charge neutral, and wherein the composition has a non-perovskite structure. Use of the mixed metal oxides in dense ceramic membranes which exhibit oxygen ionic conductivity and selective oxygen separation, are described as well as their use in separation of oxygen from an oxygen-containing gaseous mixture.

Balachandran, Uthamalingam (Hinsdale, IL); Kleefisch, Mark S. (Naperville, IL); Kobylinski, Thaddeus P. (Lisle, IL); Morissette, Sherry L. (Las Cruces, NM); Pei, Shiyou (Naperville, IL)

1996-01-01T23:59:59.000Z

343

Modelling Hydrogen Reduction and Hydrodeoxygenation of Oxygenates  

Science Conference Proceedings (OSTI)

Based on Density Functional Theory (DFT) simulations, we have studied the reduction of nickel oxide and biomass derived oxygenates (catechol, guaiacol, etc.) in hydrogen. Both the kinetic barrier and thermodynamic favorability are calculated with respect to the modeled reaction pathways. In early-stage reduction of the NiO(100) surface by hydrogen, the pull-off of the surface oxygen atom and simultaneous activation of the nearby Ni atoms coordinately dissociate the hydrogen molecules so that a water molecule can be formed, leaving an oxygen vacancy on the surface. In hydrogen reaction with oxygenates catalyzed by transition metals, hydrogenation of the aromatic carbon ring normally dominates. However, selective deoxygenation is of particular interest for practical application such as biofuel conversion. Our modeling shows that doping of the transition metal catalysts can change the orientation of oxygenates adsorbed on metal surfaces. The correlation between the selectivity of reaction and the orientation of adsorption are discussed.

Zhao, Y.; Xu, Q.; Cheah, S.

2013-01-01T23:59:59.000Z

344

SAVANNAH RIVER SITE'S H-CANYON FACILITY: RECOVERY AND DOWN BLEND URANIUM FOR BENEFICIAL USE  

SciTech Connect

For over fifty years, the H Canyon facility at the Savannah River Site (SRS) has performed remotely operated radiochemical separations of irradiated targets to produce materials for national defense. Although the materials production mission has ended, the facility continues to play an important role in the stabilization and safe disposition of proliferable nuclear materials. As part of the US HEU Disposition Program, SRS has been down blending off-specification (off-spec) HEU to produce LEU since 2003. Off-spec HEU contains fission products not amenable to meeting the American Society for Testing and Material (ASTM) commercial fuel standards prior to purification. This down blended HEU material produced 301 MT of ~5% enriched LEU which has been fabricated into light water reactor fuel being utilized in Tennessee Valley Authority (TVA) reactors in Tennessee and Alabama producing economic power. There is still in excess of ~10 MT of off-spec HEU throughout the DOE complex or future foreign and domestic research reactor returns that could be recovered and down blended for beneficial use as either ~5% enriched LEU, or for use in subsequent LEU reactors requiring ~19.75% enriched LEU fuel.

Magoulas, V.

2013-05-27T23:59:59.000Z

345

50,000 mile methanol/gasoline blend fleet study: a progress report  

DOE Green Energy (OSTI)

Seven current production automobiles are being used in a fleet study to obtain operational experience in using 10% methanol/90% gasoline blends as an automotive fuel. Data from chassis dynamometer tests (run according to the 1975--1978 Federal test procedure) have been obtained, showing fuel economy and exhaust emissions of carbon monoxide, oxides of nitrogen, unburned fuel, methanol, and aldehydes. These data are shown for each of the vehicles when operated on the 10% methanol blend, and on unleaded low octane Indolene. Chassis dynamometer tests were run at 5,000-mile intervals during the 35,000 miles accumulated on each of the four 1977 model-year vehicles and at 5,000 and 10,000 mile accumulation levels for each of the three 1978 model-year vehicles. These data show an average decrease in volumetric fuel economy (approx. = 5%) and a reduction in carbon monoxide emissions associated with the use of the 10% methanol blend. Exhaust emission deterioration factors are projected from the Federal test procedure urban cycle data. The most severe driveability problems that have been encountered thus far into the program are related to operating on a phase separated fuel and materials compatibility problems with an elastomer in the air-fuel control hardware of one vehicle.

Stamper, K R

1979-01-01T23:59:59.000Z

346

Source: Handbook for Handling, Storing, and Dispensing E85 and Other Ethanol Blends.  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

A2: Manufacturer Compatibility with Ethanol Blends (Other Equipment). September 2013. A2: Manufacturer Compatibility with Ethanol Blends (Other Equipment). September 2013. Manufacturer Compatibility with Ethanol Blends (Other Equipment) Manufacturer Product Model Ethanol Compatibility Bravo Systems Fiberglass Fittings Series F, FF, FPE, FR, F Retrofit- S, RPE Retrofit-Si, F BLR, F D-BLR-S, TBF E0-E100 Bravo Systems Spill Buckets B3XX E0-E100 Bravo Systems Tank Sumps & Covers B4XX E0-E100 Bravo Systems Transition Sumps (planter, walkover, H-20 rated) B5XX, B6XX, B7XX, B8XX E0-E100 Bravo Systems Transition Sumps B8XX E0-E100 Bravo Systems Under Dispenser Contain- ment Sumps B7XXX, B8XXX, B9XXX E0-E100 Brugg Pipes FLEXWELL-HL, SECON-X, NIROFLEX, LPG E0-E100 KPS Petrol Pipe Systems Pipes and Associated Products All single- and double-wall plastic pipes, flexible

347

Oxygen Absorption in Cooling Flows  

E-Print Network (OSTI)

The inhomogeneous cooling flow scenario predicts the existence of large quantities of gas in massive elliptical galaxies, groups, and clusters that have cooled and dropped out of the flow. Using spatially resolved, deprojected X-ray spectra from the ROSAT PSPC we have detected strong absorption over energies ~0.4-0.8 keV intrinsic to the central ~1 arcmin of the galaxy, NGC 1399, the group, NGC 5044, and the cluster, A1795. These systems have amongst the largest nearby cooling flows in their respective classes and low Galactic columns. Since no excess absorption is indicated for energies below ~0.4 keV the most reasonable model for the absorber is warm, collisionally ionized gas with T=10^{5-6} K where ionized states of oxygen provide most of the absorption. Attributing the absorption only to ionized gas reconciles the large columns of cold H and He inferred from Einstein and ASCA with the lack of such columns inferred from ROSAT, and also is consistent with the negligible atomic and molecular H inferred from HI, and CO observations of cooling flows. The prediction of warm ionized gas as the product of mass drop-out in these and other cooling flows can be verified by Chandra, XMM, and ASTRO-E.

David A. Buote

2000-01-19T23:59:59.000Z

348

OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL  

SciTech Connect

Conventional wisdom says adding oxygen to a combustion system enhances product throughput, system efficiency, and, unless special care is taken, increases NOx emissions. This increase in NOx emissions is typically due to elevated flame temperatures associated with oxygen use leading to added thermal NOx formation. Innovative low flame temperature oxy-fuel burner designs have been developed and commercialized to minimize both thermal and fuel NOx formation for gas and oil fired industrial furnaces. To be effective these systems require close to 100% oxy-fuel combustion and the cost of oxygen is paid for by fuel savings and other benefits. For applications to coal-fired utility boilers at the current cost of oxygen, however, it is not economically feasible to use 100% oxygen for NOx control. In spite of this conventional wisdom, Praxair and its team members, in partnership with the US Department of Energy National Energy Technology Laboratory, have developed a novel way to use oxygen to reduce NOx emissions without resorting to complete oxy-fuel conversion. In this concept oxygen is added to the combustion process to enhance operation of a low NOx combustion system. Only a small fraction of combustion air is replaced with oxygen in the process. By selectively adding oxygen to a low NOx combustion system it is possible to reduce NOx emissions from nitrogen-containing fuels, including pulverized coal, while improving combustion characteristics such as unburned carbon. A combination of experimental work and modeling was used to define how well oxygen enhanced combustion could reduce NOx emissions. The results of this work suggest that small amounts of oxygen replacement can reduce the NOx emissions as compared to the air-alone system. NOx emissions significantly below 0.15 lbs/MMBtu were measured. Oxygen addition was also shown to reduce carbon in ash. Comparison of the costs of using oxygen for NOx control against competing technologies, such as SCR, show that this concept offers substantial savings over SCR and is an economically attractive alternative to purchasing NOx credits or installing other conventional technologies. In conjunction with the development of oxygen based low NOx technology, Praxair also worked on developing the economically enhancing oxygen transport membrane (OTM) technology which is ideally suited for integration with combustion systems to achieve further significant cost reductions and efficiency improvements. This OTM oxygen production technology is based on ceramic mixed conductor membranes that operate at high temperatures and can be operated in a pressure driven mode to separate oxygen with infinite selectivity and high flux. An OTM material was selected and characterized. OTM elements were successfully fabricated. A single tube OTM reactor was designed and assembled. Testing of dense OTM elements was conducted with promising oxygen flux results of 100% of target flux. However, based on current natural gas prices and stand-alone air separation processes, ceramic membranes do not offer an economic advantage for this application. Under a different DOE-NETL Cooperative Agreement, Praxair is continuing to develop oxygen transport membranes for the Advanced Boiler where the economics appear more attractive.

David R. Thompson; Lawrence E. Bool; Jack C. Chen

2004-04-01T23:59:59.000Z

349

Catalytic hydroprocessing of coal-derived gasification residues to fuel blending stocks: effect of reaction variables and catalyst on hydrodeoxygenation (HDO), hydrodenitrogenation (HDN), and hydrodesulfurization (HDS)  

SciTech Connect

Gas liquors, tar oils, and tar products resulting from the coal gasification of a high-temperature Fischer-Tropsch plant can be successfully refined to fuel blending components by the use of severe hydroprocessing conditions. High operating temperatures and pressures combined with low space velocities ensure the deep hydrogenation of refractory oxygen, sulfur, and nitrogen compounds. Hydrodeoxygenation, particularly the removal of phenolic components, hydrodesulfurization, and hydrodenitrogenation were obtained at greater than 99% levels using the NiMo and NiW on {gamma}-Al{sub 2}O{sub 3} catalysts. Maximum deoxygenation activity was achieved using the NiMo/{gamma}-Al{sub 2}O{sub 3} catalyst having a maximum pore size distribution in the range of 110-220{angstrom}. The NiMo/{gamma}-Al{sub 2}O{sub 3} catalyst, which also has a relatively high proportion of smaller pore sizes (35-60 {angstrom}), displays lower hydrogenation activity. 30 refs., 1 fig. 8 tabs.

Dieter Leckel [Sasol Technology Research and Development, Sasolburg (South Africa). Fischer-Tropsch Refinery Catalysis

2006-10-15T23:59:59.000Z

350

Method of detecting oxygen partial pressure and oxygen partial pressure sensor  

DOE Patents (OSTI)

This invention is comprised of a method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured.

Dees, D.W.

1991-12-31T23:59:59.000Z

351

Selective photooxidation of hydrocarbons in zeolites by oxygen  

DOE Patents (OSTI)

A selective photooxidation process for the conversion of hydrocarbon molecules to partially oxygenated derivatives, which comprises the steps of adsorbing a hydrocarbon and oxygen onto a dehydrated zeolite support matrix to form a hydrocarbon-oxygen contact pair, and subsequently exposing the hydrocarbon-oxygen contact pair to visible light, thereby forming a partially oxygenated derivative.

Frei, Heinz (Berkeley, CA); Blatter, Fritz (Berkeley, CA); Sun, Hai (Berkeley, CA)

1998-01-01T23:59:59.000Z

352

CommonAngels | Open Energy Information  

Open Energy Info (EERE)

CommonAngels CommonAngels Jump to: navigation, search Name CommonAngels Place Lexington, Massachusetts Zip 2421 Product Boston-based technology venture investor focused on Series A rounds. Coordinates 37.785485°, -79.441469° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.785485,"lon":-79.441469,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

353

The Global Innovation Commons | Open Energy Information  

Open Energy Info (EERE)

Commons Commons Jump to: navigation, search Name The Global Innovation Commons Address 210 Ridge-McIntire Road Place Charlottesville, Virginia Zip 22903 Year founded 2009 Notes www.globalinnovationcommons.org/blog Coordinates 38.0314057°, -78.4850371° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.0314057,"lon":-78.4850371,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

354

Some Common Ingredients for Heavy Orographic Rainfall  

Science Conference Proceedings (OSTI)

The purpose of this paper is to synthesize some common synoptic and mesoscale environments conducive to heavy orographic rainfall. Previous studies of U.S. and Alpine cases and new analyses of some Alpine and east Asian cases have shown the ...

Yuh-Lang Lin; Sen Chiao; Ting-An Wang; Michael L. Kaplan; Ronald P. Weglarz

2001-12-01T23:59:59.000Z

355

Oxygen Carriers for Solid Fuel Chemical Looping Combustion Process  

This patent-pending technology, “Regenerable Mixed Copper-Iron-Inert Support Oxygen Carriers for Solid Fuel Chemical Looping Combustion Process,” provides a metal-oxide oxygen carrier for application in fuel combustion processes that use oxygen.

356

Design optimization of oxygenated fluid pump  

E-Print Network (OSTI)

In medical emergencies, an oxygen-starved brain quickly suffers irreparable damage. In many cases, patients who stop breathing can be resuscitated but suffer from brain damage. Dr. John Kheir from Boston Children's Hospital ...

Piazzarolo, Bruno Aiala

2012-01-01T23:59:59.000Z

357

Permanent magnet hydrogen oxygen generating cells  

SciTech Connect

A generating cell for hydrogen and oxygen utilizes permanent magnets and electromagnets. Means are provided for removing gases from the electrodes. Mixing chambers are provided for water and the electrolyte used in the cell.

Harris, M.

1976-07-13T23:59:59.000Z

358

OXYGEN DIFFUSION IN HYPOSTOICHIOMETRIC URANIUM DIOXIDE  

E-Print Network (OSTI)

IN HYPOSTOICHIOMETRIC URANIUM DIOXIDE Kee Chul Kim Ph.D.727-366; Figure 1. Oxygen-uranium phase-equilibrium _ystem [18]. uranium dioxide powders and 18 0 enriched carbon

Kim, Kee Chul

2010-01-01T23:59:59.000Z

359

THE PATH OF OXYGEN IN PHOTOSYNTHESIS  

DOE Green Energy (OSTI)

An experiment is described in which an attempt is made to follow the path of oxygen in photosynthesis by the use of O{sup 18} as a tracer.

Dorough, G.D.; Calvin, M.

1950-03-31T23:59:59.000Z

360

Oxy-combustion: Oxygen Transport Membrane Development  

NLE Websites -- All DOE Office Websites (Extended Search)

combustion: Oxygen Transport combustion: Oxygen Transport Membrane Development Background The mission of the U.S. Department of Energy's (DOE) Existing Plants, Emissions & Capture (EPEC) Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. The EPEC R&D

Note: This page contains sample records for the topic "oxygenated blends commonly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Oxygen ion-conducting dense ceramic  

DOE Patents (OSTI)

Preparation, structure, and properties of mixed metal oxide compositions and their uses are described. Mixed metal oxide compositions of the invention have stratified crystalline structure identifiable by means of powder X-ray diffraction patterns. In the form of dense ceramic membranes, the present compositions demonstrate an ability to separate oxygen selectively from a gaseous mixture containing oxygen and one or more other volatile components by means of ionic conductivities.

Balachandran, Uthamalingam (Hinsdale, IL); Kleefisch, Mark S. (Plainfield, IL); Kobylinski, Thaddeus P. (Prospect, PA); Morissette, Sherry L. (Las Cruces, NM); Pei, Shiyou (Naperville, IL)

1998-01-01T23:59:59.000Z

362

Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon...  

NLE Websites -- All DOE Office Websites (Extended Search)

Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and Carbon-13 in Methane Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and...

363

Oxygen Nonstoichiometry, Thermo-chemical Stability and Crystal ...  

Science Conference Proceedings (OSTI)

... gas separation membranes and oxygen sensors, oxygen nonstoichiometry and crystal ... New Electric Current Effects on 8-Y Zirconia Ceramics: Pore/Bubble ...

364

Magnetism in Lithium–Oxygen Discharge Product  

SciTech Connect

Nonaqueous lithium–oxygen batteries have a much superior theoretical gravimetric energy density compared to conventional lithium-ion batteries, and thus could render long-range electric vehicles a reality. A molecular-level understanding of the reversible formation of lithium peroxide in these batteries, the properties of major/minor discharge products, and the stability of the nonaqueous electrolytes is required to achieve successful lithium–oxygen batteries. We demonstrate that the major discharge product formed in the lithium–oxygen cell, lithium peroxide, exhibits a magnetic moment. These results are based on dc-magnetization measurements and a lithium– oxygen cell containing an ether-based electrolyte. The results are unexpected because bulk lithium peroxide has a significant band gap. Density functional calculations predict that superoxide- type surface oxygen groups with unpaired electrons exist on stoichiometric lithium peroxide crystalline surfaces and on nanoparticle surfaces; these computational results are consistent with the magnetic measurement of the discharged lithium peroxide product as well as EPR measurements on commercial lithium peroxide. The presence of superoxide-type surface oxygen groups with spin can play a role in the reversible formation and decomposition of lithium peroxide as well as the reversible formation and decomposition of electrolyte molecules.

Lu, Jun; Jung, Hun-Ji; Lau, Kah Chun; Zhang, Zhengcheng; Schlueter, John A.; Du, Peng; Assary, Rajeev S.; Greeley, Jeffrey P.; Ferguson, Glen A.; Wang, Hsien-Hau; Hassoun, Jusef; Iddir, Hakim; Zhou, Jigang; Zuin, Lucia; Hu, Yongfeng; Sun, Yang-Kook; Scrosati, Bruno; Curtiss, Larry A.; Amine, Khalil

2013-05-13T23:59:59.000Z

365

Underground coal gasification using oxygen and steam  

Science Conference Proceedings (OSTI)

In this paper, through model experiment of the underground coal gasification, the effects of pure oxygen gasification, oxygen-steam gasification, and moving-point gasification methods on the underground gasification process and gas quality were studied. Experiments showed that H{sub 2} and CO volume fraction in product gas during the pure oxygen gasification was 23.63-30.24% and 35.22-46.32%, respectively, with the gas heating value exceeding 11.00 MJ/m{sup 3}; under the oxygen-steam gasification, when the steam/oxygen ratio stood at 2: 1, gas compositions remained virtually stable and CO + H{sub 2} was basically between 61.66 and 71.29%. Moving-point gasification could effectively improve the changes in the cavity in the coal seams or the effects of roof inbreak on gas quality; the ratio of gas flowing quantity to oxygen supplying quantity was between 3.1:1 and 3.5:1 and took on the linear changes; on the basis of the test data, the reasons for gas quality changes under different gasification conditions were analyzed.

Yang, L.H.; Zhang, X.; Liu, S. [China University of Mining & Technology, Xuzhou (China)

2009-07-01T23:59:59.000Z

366

Technical Issues Associated With the Use of Intermediate Ethanol Blends (>E10) in the U.S. Legacy Fleet  

DOE Green Energy (OSTI)

The Oak Ridge National Laboratory (ORNL) supports the U.S. Department of Energy (DOE) in assessing the impact of using intermediate ethanol blends (E10 to E30) in the legacy fleet of vehicles in the U.S. fleet. The purpose of this report is to: (1) identify the issues associated with intermediate ethanol blends with an emphasis on the end-use or vehicle impacts of increased ethanol levels; (2) assess the likely severity of the issues and whether they will become more severe with higher ethanol blend levels, or identify where the issue is most severe; (3) identify where gaps in knowledge exist and what might be required to fill those knowledge gaps; and (4) compile a current and complete bibliography of key references on intermediate ethanol blends. This effort is chiefly a critical review and assessment of available studies. Subject matter experts (authors and selected expert contacts) were consulted to help with interpretation and assessment. The scope of this report is limited to technical issues. Additional issues associated with consumer, vehicle manufacturer, and regulatory acceptance of ethanol blends greater than E10 are not considered. The key findings from this study are given.

Rich, Bechtold [Alliance Technical Services; Thomas, John F [ORNL; Huff, Shean P [ORNL; Szybist, James P [ORNL; West, Brian H [ORNL; Theiss, Timothy J [ORNL; Timbario, Tom [Alliance Technical Services; Goodman, Marc [Alliance Technical Services

2007-08-01T23:59:59.000Z

367

Energy Calculator- Common Units and Conversions  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Calculator - Common Units and Conversions Energy Calculator - Common Units and Conversions Calculators for Energy Used in the United States: Coal Electricity Natural Gas Crude Oil Gasoline Diesel & Heating Oil Coal Conversion Calculator Short Tons Btu Megajoules Metric Tons Clear Calculate 1 Short Ton = 20,169,000 Btu (based on U.S. consumption, 2007) Electricity Conversion Calculator KilowattHours Btu Megajoules million Calories Clear Calculate 1 KilowattHour = 3,412 Btu Natural Gas Conversion Calculator Cubic Feet Btu Megajoules Cubic Meters Clear Calculate 1 Cubic Foot = 1,028 Btu (based on U.S. consumption, 2007); 1 therm = 100,000 Btu; 1 terajoule = 1,000,000 megajoules Crude Oil Conversion Calculator Barrels Btu Megajoules Metric Tons* Clear Calculate 1 Barrel = 42 U.S. gallons = 5,800,000 Btu (based on U.S. consumption,

368

Transformer Modeling in the Common Information Model  

Science Conference Proceedings (OSTI)

The Common Information Model (CIM) International Electrotechnical Commission (IEC) 61970 model contains transformers. However, the modeling was based on the needs and requirements defined primarily by the transmission users. Because the CIM has been expanded into distribution and the distribution control center, there is a need to review the transformer model and ensure that the needs and requirements of both transmission and distribution are defined and included. This report proposes method to model tra...

2010-05-31T23:59:59.000Z

369

In situ Carbon 13 and Oxygen 18 Ratios of Atmospheric CO2 from Cape Grim,  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxygen Isotopes and Ratios » 13C and 18O Oxygen Isotopes and Ratios » 13C and 18O Ratios, Atmospheric CO2, Cape Grim In situ Carbon 13 and Oxygen 18 Ratios of Atmospheric CO2 from Cape Grim, Tasmania, Australia: 1982-1993 DOI: 10.3334/CDIAC/atg.db1014 data Data Investigators Francey R. J. and C. E. Allison Description Since 1982, a continuous program of sampling atmospheric CO2 to determine stable isotope ratios has been maintained at the Australian Baseline Air Pollution Station, Cape Grim, Tasmania (40°, 40'56"S, 144°, 41'18"E). The process of in situ extraction of CO2 from air, the preponderance of samples collected in conditions of strong wind from the marine boundary layer of the Southern Ocean, and the determination of all isotope ratios relative to a common high purity CO2 reference gas with isotopic δ13C close to

370

Results of Aging Tests of Vendor-Produced Blended Feed Simulant  

SciTech Connect

The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is procuring through Pacific Northwest National Laboratory (PNNL) a minimum of five 3,500 gallon batches of waste simulant for Phase 1 testing in the Pretreatment Engineering Platform (PEP). To make sure that the quality of the simulant is acceptable, the production method was scaled up starting from laboratory-prepared simulant through 15-gallon vendor prepared simulant and 250-gallon vendor prepared simulant before embarking on the production of the 3500-gallon simulant batch by the vendor. The 3500-gallon PEP simulant batches were packaged in 250-gallon high molecular weight polyethylene totes at NOAH Technologies. The simulant was stored in an environmentally controlled environment at NOAH Technologies within their warehouse before blending or shipping. For the 15-gallon, 250-gallon, and 3500-gallon batch 0, the simulant was shipped in ambient temperature trucks with shipment requiring nominally 3 days. The 3500-gallon batch 1 traveled in a 70-75°F temperature controlled truck. Typically the simulant was uploaded in a PEP receiving tank within 24-hours of receipt. The first uploading required longer with it stored outside. Physical and chemical characterization of the 250-gallon batch was necessary to determine the effect of aging on the simulant in transit from the vendor and in storage before its use in the PEP. Therefore, aging tests were conducted on the 250-gallon batch of the vendor-produced PEP blended feed simulant to identify and determine any changes to the physical characteristics of the simulant when in storage. The supernate was also chemically characterized. Four aging scenarios for the vendor-produced blended simulant were studied: 1) stored outside in a 250-gallon tote, 2) stored inside in a gallon plastic bottle, 3) stored inside in a well mixed 5-L tank, and 4) subject to extended temperature cycling under summer temperature conditions in a gallon plastic bottle. The following series of aging tests were conducted to accomplish these objectives.

Russell, Renee L.; Buchmiller, William C.; Cantrell, Kirk J.; Peterson, Reid A.; Rinehart, Donald E.

2009-04-21T23:59:59.000Z

371

IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS  

DOE Green Energy (OSTI)

The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, we have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Our strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, we have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. To date, our activities have covered three areas: examination of the impact of lubricity additives on the viscosity of DME, development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. This report provides summaries of the progress toward evaluation of the viscosity impacts of lubricity additives, completion of both experimental systems and a summary of the plan for completion of the project objectives.

Elana M. Chapman; Andre Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

2003-06-01T23:59:59.000Z

372

IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS  

DOE Green Energy (OSTI)

The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. This project complements another ongoing project titled ''Development of a Dimethyl Ether (DME)-Fueled Shuttle Bus Demonstration Project''. The objectives of that research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, they have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. To date, the activities have covered two areas: development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. This report provides summaries of the progress toward completion of both experimental systems and a summary of the plan for completion of the project objectives.

Elana M. Chapman; Andre L. Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

2002-07-01T23:59:59.000Z

373

Oxygen generator for medical applications (USIC)  

Science Conference Proceedings (OSTI)

The overall Project objective is to develop a portable, non-cryogenic oxygen generator capable of supplying medical grade oxygen at sufficient flow rates to allow the field application of the Topical Hyperbaric Oxygen Therapy (THOT{reg_sign}) developed by Numotech, Inc. This project was sponsored by the U.S. Department of Energy Global Initiatives for Proliferation Prevention (GIPP) and is managed by collaboration between Sandia National Laboratories (SNL), Numotech, Inc, and LLC SPE 'Spektr-Conversion.' The project had two phases, with the objective of Phase I being to develop, build and test a laboratory prototype of the membrane-pressure swing adsorber (PSA) system producing at 15 L/min of oxygen with a minimum of 98% oxygen purity. Phase II objectives were to further refine and identify the pre-requisites needed for a commercial product and to determine the feasibility of producing 15 L/min of oxygen with a minimum oxygen purity of 99%. In Phase I, Spektr built up the necessary infrastructure to perform experimental work and proceeded to build and demonstrate a membrane-PSA laboratory prototype capable of producing 98% purity oxygen at a flow rate of 5 L/min. Spektr offered a plausible path to scale up the process for 15 L/min. Based on the success and experimental results obtained in Phase I, Spektr performed work in three areas for Phase II: construction of a 15 L/min PSA; investigation of compressor requirements for the front end of the membrane/PSA system; and performing modeling and simulation of assess the feasibility of producing oxygen with a purity greater than 99%. Spektr successfully completed all of the tasks under Phase II. A prototype 15 L/min PSA was constructed and operated. Spektr determined that no 'off the shelf' air compressors met all of the specifications required for the membrane-PSA, so a custom compressor will likely need to be built. Modeling and simulation concluded that production of oxygen with purities greater than 99% was possible using a Membrane-PSA system.

Staiger, C. L.

2012-03-01T23:59:59.000Z

374

Characterization of mutagenic activity in grain-based coffee-substitute blends and instant coffees  

SciTech Connect

Several grain-based coffee-substitute blends and instant coffees showed a mutagenic response in the Ames/Salmonella test using TA98, YG1024 and YG1O29 with metabolic activation. The beverage powders contained 150 to 500 TA98 and 1150 to 4050 YG1024 revertant colonies/gram, respectively. The mutagenic activity in the beverage powders was shown to be stable to heat and the products varied in resistance to acid nitrite treatment. Characterization of the mutagenic activity, using HPLC-and the Ames test of the collected fractions, showed the coffee-substitutes and instant coffees contain several mutagenic compounds, which are most likely aromatic amines.

Johansson, M.A.E.; Knize, M.G.; Felton, J.S.; Jagerstad, M.

1994-06-01T23:59:59.000Z

375

Exhaust particle characterization for lean and stoichiometric DI vehicles operating on ethanol-gasoline blends  

DOE Green Energy (OSTI)

Gasoline direct injection (GDI) engines can offer better fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet the U.S. fuel economy standards for 2016. Furthermore, lean-burn GDI engines can offer even higher fuel economy than stoichiometric GDI engines and have overcome challenges associated with cost-effective aftertreatment for NOx control. Along with changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the current 10% due to the recent EPA waiver allowing 15% ethanol. In addition, the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA) mandates the use of biofuels in upcoming years. GDI engines are of environmental concern due to their high particulate matter (PM) emissions relative to port-fuel injected (PFI) gasoline vehicles; widespread market penetration of GDI vehicles may result in additional PM from mobile sources at a time when the diesel contribution is declining. In this study, we characterized particulate emissions from a European certified lean-burn GDI vehicle operating on ethanol-gasoline blends. Particle mass and particle number concentration emissions were measured for the Federal Test Procedure urban driving cycle (FTP 75) and the more aggressive US06 driving cycle. Particle number-size distributions and organic to elemental carbon ratios (OC/EC) were measured for 30 MPH and 80 MPH steady-state operation. In addition, particle number concentration was measured during wide open throttle accelerations (WOTs) and gradual accelerations representative of the FTP 75. Fuels included certification gasoline and 10% (E10) and 20% (E20) ethanol blends from the same supplier. The particle mass emissions were approximately 3 and 7 mg/mile for the FTP75 and US06, respectively, with lower emissions for the ethanol blends. The data are compared to a previous study on a U.S.-legal stoichiometric GDI vehicle operating on the same ethanol blends. The lean-burn GDI vehicle emitted a higher number of particles, but had an overall smaller average size. Particle number per mile decreased with increasing ethanol content for the transient tests. For the 30 and 80 mph tests, particle number concentration decreased with increasing ethanol content, although the shape of the particle size distribution remained the same. Engine-out OC/EC ratios were highest for the stoichiometric GDI vehicle with E20, but tailpipe OC/EC ratios were similar for all vehicles.

Storey, John Morse [ORNL; Barone, Teresa L [ORNL; Thomas, John F [ORNL; Huff, Shean P [ORNL

2012-01-01T23:59:59.000Z

376

IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS  

DOE Green Energy (OSTI)

The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, we have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Our strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, we have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. Our activities have covered three areas: examination of the impact of lubricity additives on the viscosity of DME, development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. The first two of these areas have resulted in valuable information about the limitations of lubricity and viscosity additives that are presently available in terms of their impact on the viscosity of DME and on wear rates on injector hardware. The third area, that of development of an injector durability test stand, has not resulted in a functioning experiment. Some information is provided in this report to identify the remaining tasks that need to be performed to make the injector stand operational. The key observations from the work are that when blended at 25 wt.% in either diesel fuel or Biodiesel fuel, DME requires more than 5 wt.% additive of all viscosity and lubricity additives tested here to even approach the lower limit of the ASTM diesel fuel viscosity requirement. To treat neat DME sufficiently to make DME comply with the ASTM diesel fuel viscosity requirement would require a viscosity additive with 10{sup 45} cSt viscosity, which is not possible with current additive technologies.

Elana M. Chapman; Andre Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

2004-04-01T23:59:59.000Z

377

Charge Separation of Wurtzite/Zinc-blende Heterojunction GaN Nanowires  

DOE Green Energy (OSTI)

The electronic properties of wurtzite/zinc-blende (WZ/ZB) heterostructure GaN are investigated using first-principles methods. A small component of ZB stacking formed along the growth direction in the WZ GaN nanowires does not show a significant effect on the electronic property, whereas a charge separation of electrons and holes occurs along the directions perpendicular to the growth direction in the ZB stacking. The later case provides an efficient way to separate the charge through controlling crystal structure. These results should have significant implications for most state of the art excitonic solar cells and the tuning region in tunable laser diodes.

Wang, Zhiguo; Li, Jingbo; Gao, Fei; Weber, William J.

2010-08-27T23:59:59.000Z

378

Powertrain Component Inspection from Mid-Level Blends Vehicle Aging Study  

DOE Green Energy (OSTI)

The Energy Independence and Security Act of 2007 calls on the nation to significantly increase its use of renewable fuels to meet its transportation energy needs. The law expands the renewable fuel standard to require use of 36 billion gallons of renewable fuel by 2022. Given that ethanol is the most widely used renewable fuel in the U.S. market, ethanol will likely make up a significant portion of the 36-billion-gallon requirement. The vast majority of ethanol used in the United States is blended with gasoline to create E10-gasoline with up to 10% ethanol. The remaining ethanol is sold in the form of E85 - a gasoline blend with as much as 85% ethanol that can only be used in flexible-fuel vehicles (FFVs). Consumption of E85 is at present limited by both the size of the FFV fleet and the number of E85 fueling stations. Gasoline consumption in the United States is currently about 140 billion gallons per year; thus the maximum use of ethanol as E10 is only about 14 billion gallons. While the U.S. Department of Energy (DOE) remains committed to expanding the E85 infrastructure, that market represented less than 1% of the ethanol consumed in 2010 and will not be able to absorb projected volumes of ethanol in the near term. Because of these factors, DOE and others have been assessing the viability of using mid-level ethanol blends (E15 or E20) as a way to accommodate growing volumes of ethanol. The DOE Mid-Level Ethanol Blends Test Program has been under way since 2007, supported jointly by the Office of the Biomass Program and the Vehicle Technologies Program. One of the larger projects, the Catalyst Durability Study, or Vehicle Aging Study, will be completed early in calendar year 2011. The following report describes a subproject of the Vehicle Aging Study in which powertrain components from 18 of the vehicles were examined at Southwest Research Institute under contract to Oak Ridge National Laboratory (ORNL).

Shoffner, Brent [Southwest Research Institute, San Antonio; Johnson, Ryan [Southwest Research Institute, San Antonio; Heimrich, Martin J. [Southwest Research Institute, San Antonio; Lochte, Michael [Southwest Research Institute, San Antonio

2010-11-01T23:59:59.000Z

379

Nanostructured Electrodes For Organic Bulk Heterojunction Solar Cells: Model Study Using Carbon Nanotube Dispersed Polythiophene-fullerene Blend Devices  

Science Conference Proceedings (OSTI)

We test the feasibility of using nanostructured electrodes in organic bulk heterojunction solar cells to improve their photovoltaic performance by enhancing their charge collection efficiency and thereby increasing the optimal active blend layer thickness. As a model system, small concentrations of single wall carbon nanotubes are added to blends of poly(3-hexylthiophene): [6,6]-phenyl-C{sub 61}-butyric acid methyl ester in order to create networks of efficient hole conduction pathways in the device active layer without affecting the light absorption. The nanotube addition leads to a 22% increase in the optimal blend layer thickness from 90 nm to 110 nm, enhancing the short circuit current density and photovoltaic device efficiency by as much as {approx}10%. The associated incident-photon-to-current conversion efficiency for the given thickness also increases by {approx}10% uniformly across the device optical absorption spectrum, corroborating the enhanced charge carrier collection by nanostructured electrodes.

Nam, C.Y.; Wu, Q.; Su, D.; Chiu, C.-y; Tremblay, N.J.; Nuckolls, C,; Black, C.T.

2011-09-19T23:59:59.000Z

380

Combustion characterization of the blend of plant coal and recovered coal fines. Technical report, December 1, 1991--February 29, 1992  

SciTech Connect

The overall objective of this proposed research program is to determine the combustion characteristics of the blend derived from mixing a plant coal and recovered and clean coal fines from the pond. During this study, one plant coal and three blend samples will be prepared and utilized. The blend samples will be of a mixture of 90% plant coal + 10% fines, 85% plant coal + 15% fines, 80% plant coal + 20% fines having particle size distribution of 70% passing through -200 mesh size. These samples` combustion behavior will be examined in two different furnaces at Penn State University, i.e., a down-fired furnace and a drop-tube furnace. The down-fired furnace will be used mainly to measure the emissions and ash deposition study, while the drop tube furnace will be used to determine burning profile, combustion efficiency, etc.

Singh, S. [SS Energy Environmental International, Inc., Rockford, IL (United States); Scaroni, A.; Miller, B. [Pennsylvania State Univ., University Park, PA (United States). Combustion Lab.; Choudhry, V. [Praxis Engineers, Inc., Milpitas, CA (United States)

1992-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxygenated blends commonly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Common element key to multiprocessor architecture  

SciTech Connect

The described multiprocessing system uses only one kind of microprocessoras a common intelligent element in order to offer faster response with greater throughput. Unusual design features overcome some of the drawbacks which limit other multiprocessing architectures. A hierarchy of buses allows communication among the master processor, the subordinate processors, and local modules within a subordinate processors, and local modules within a subordinate processor. A flexible set of address mappings allows processors to access the distributed memory. Subordinate processors have two distinct address mappings in order to make different memory regions available on the various buses. The resulting high performance architecture is easily customised for a variety of applications.

Ang, W.S.

1981-10-01T23:59:59.000Z

382

A blended learning Approach to teaching foreign policy: Student experiences of learning through face-to-face and online discussion and their relationship to academic performance  

Science Conference Proceedings (OSTI)

This article presents research on students' experiences of learning through a blend of face-to-face and online discussion. The participants in our study were students enrolled in a foreign policy course at a major Australian university. Students' conceptions ... Keywords: Blended learning, Computer mediated communication, Learning through discussion, Phenomenography, Teaching/learning strategies

Ana-Maria Bliuc; Robert A. Ellis; Peter Goodyear; Leanne Piggott

2011-04-01T23:59:59.000Z

383

Absorption process for producing oxygen and nitrogen and solution therefor  

DOE Patents (OSTI)

Process for the separation and purification of oxygen and nitrogen is disclosed which utilizes solutions of oxygen carriers to selectively absorb oxygen from a gaseous stream, leaving nitrogen as a byproduct. In the process, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a solvent solution, which absorbs oxygen from an oxygen-containing gaseous feed stream such as atmospheric air and desorbs oxygen to a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form during desorption. In an alternate mode of operation, the carrier solution is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, and at a sufficiently high temperature to keep the carrier in its deoxygenated form during desorption. Under such conditions, exceptionally high oxygen concentrations on the order of 95% to 99% are obtained, as well as a long carrier lifetime in excess of 3 months, making the process commercially feasible. 1 figure

Roman, I.C.; Baker, R.W.

1990-09-25T23:59:59.000Z

384

Oxygen scavengers - The chemistry of sulfite under hydrothermal conditions  

Science Conference Proceedings (OSTI)

Control of oxygen corrosion is critical to the reliability of steam generator systems. Mechanical deaeration and chemical oxygen scavenging effectively reduce oxygen levels in boiler feedwater systems. This paper reviews the use of sulfites to reduce oxygen and provide corrosion control throughout the boiler feedwater circuit as well as mechanical and operational oxygen reduction methods. The mechanism of oxygen pitting, electrochemical reactions, and the basis of operation of mechanical deaeration are discussed. Estimating techniques for the amount of steam required and a deaerator troubleshooting guide are included. The chemistry of sulfites is covered in detail. Also included are a functional definition of chemical oxygen scavengers and a general discussion of their various types.

Cotton, I.J.

1987-03-01T23:59:59.000Z

385

Direct Observation of Oxygen Superstructures in Manganites  

Science Conference Proceedings (OSTI)

We report the observation of superstructures associated with the oxygen 2p states in two prototypical manganites using x-ray diffraction at the oxygen K edge. In the stripe order system Bi{sub 0.31}Ca{sub 0.69}MnO{sub 3}, hole-doped O states are orbitally ordered, at the same propagation vector as the Mn orbital ordering, but no oxygen charge stripes are found at this periodicity. In La{sub 7/8}Sr{sub 1/8}MnO{sub 3}, we observe a 2p charge ordering described by alternating hole-poor and hole-rich MnO planes that is consistent with some of the recent predictions.

Grenier, S.; Tonnerre, J. M. [Institut Neel, CNRS and Universite Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9 (France); Thomas, K. J.; Hill, J. P. [Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Staub, U.; Bodenthin, Y.; Garcia-Fernandez, M. [Swiss Light Source, Paul Sherrer Institut, 5232 Villigen (Switzerland); Scagnoli, V. [European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex 9 (France); Kiryukhin, V.; Cheong, S-W.; Kim, B. G. [Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854 (United States)

2007-11-16T23:59:59.000Z

386

J5: Electrical Conductivity of Diesel-Biodiesel Blends Evaluated by ...  

Science Conference Proceedings (OSTI)

B7: Synthesis and Electrical Properties of K2NiF4-Type (Ca2-xLnx)MnO4 (Ln=Nd and Sm) · B8: Monitoring Oxygen Diffusion in Gd-Doped Ceria by Null ...

387

Common Cyber Security Vulnerabilities Observed in Control System...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Common Cyber Security Vulnerabilities Observed in Control System Assessments by the INL NSTB Program Common Cyber Security Vulnerabilities Observed in Control System Assessments by...

388

Building a Common Understanding: Clean Air Act and Upcoming Carbon...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Common Understanding: Clean Air Act and Upcoming Carbon Pollution Guidelines for Existing Power Plants Webinar Building a Common Understanding: Clean Air Act and Upcoming Carbon...

389

Electrolysis method for producing hydrogen and oxygen  

SciTech Connect

A novel electrolytic cell produces a mixture of highly ionized hydrogen and oxygen gases by a method combining electrolysis and radiolysis of an aqueous electrolyte. The electrolyte, which may be 25 percent of potassium hydroxide, is introduced into the cell and is simultaneously subjected to an electrolyting current and intense irradiation by electromagnetic radiation of frequency less than 10/sup -10/ meters.

Horvath, S.

1978-08-15T23:59:59.000Z

390

Novel Membranes and Processes for Oxygen Enrichment  

SciTech Connect

The overall goal of this project is to develop a membrane process that produces air containing 25-35% oxygen, at a cost of $25-40/ton of equivalent pure oxygen (EPO2). Oxygen-enriched air at such a low cost will allow existing air-fueled furnaces to be converted economically to oxygen-enriched furnaces, which in turn will improve the economic and energy efficiency of combustion processes significantly, and reduce the cost of CO{sub 2} capture and sequestration from flue gases throughout the U.S. manufacturing industries. During the 12-month Concept Definition project: We identified a series of perfluoropolymers (PFPs) with promising oxygen/nitrogen separation properties, which were successfully made into thin film composite membranes. The membranes showed oxygen permeance as high as 1,200 gpu and oxygen/nitrogen selectivity of 3.0, and the permeance and selectivity were stable over the time period tested (60 days). We successfully scaled up the production of high-flux PFP-based membranes, using MTR's commercial coaters. Two bench-scale spiral-wound modules with countercurrent designs were made and parametric tests were performed to understand the effect of feed flow rate and pressure, permeate pressure and sweep flow rate on the membrane module separation properties. At various operating conditions that modeled potential industrial operating conditions, the module separation properties were similar to the pure-gas separation properties in the membrane stamps. We also identified and synthesized new polymers [including polymers of intrinsic microporosity (PIMs) and polyimides] with higher oxygen/nitrogen selectivity (3.5-5.0) than the PFPs, and made these polymers into thin film composite membranes. However, these membranes were susceptible to severe aging; pure-gas permeance decreased nearly six-fold within two weeks, making them impractical for industrial applications of oxygen enrichment. We tested the effect of oxygen-enriched air on NO{sub x} emissions using a Bloom baffle burner at GTI. The results are positive and confirm that oxygen-enriched combustion can be carried out without producing higher levels of NOx than normal air firing, if lancing of combustion air is used and the excess air levels are controlled. A simple economic study shows that the membrane processes can produce O{sub 2} at less than $40/ton EPO{sub 2} and an energy cost of 1.1-1.5 MMBtu/ton EPO{sub 2}, which are very favorable compared with conventional technologies such as cryogenics and vacuum pressure swing adsorption processes. The benefits of integrated membrane processes/combustion process trains have been evaluated, and show good savings in process costs and energy consumption, as well as reduced CO{sub 2} emissions. For example, if air containing 30% oxygen is used in natural gas furnaces, the net natural gas savings are an estimated 18% at a burner temperature of 2,500 F, and 32% at a burner temperature of 3,000 F. With a 20% market penetration of membrane-based oxygen-enriched combustion in all combustion processes by 2020, the energy savings would be 414-736 TBtu/y in the U.S. The comparable net cost savings are estimated at $1.2-2.1 billion per year by 2020, calculated as the value of fuel savings subtracted from the cost of oxygen production. The fuel savings of 18%-32% by the membrane/oxygen-enriched combustion corresponds to an 18%-32% reduction in CO{sub 2} emissions, or 23-40 MM ton/y less CO{sub 2} from natural gas-fired furnaces by 2020. In summary, results from this project (Concept Definition phase) are highly promising and clearly demonstrate that membrane processes can produce oxygen-enriched air in a low cost manner that will lower operating costs and energy consumption in industrial combustion processes. Future work will focus on proof-of-concept bench-scale demonstration in the laboratory.

Lin, Haiqing

2011-11-15T23:59:59.000Z

391

Ethanol Blend Effects On Direct Injection Spark-Ignition Gasoline Vehicle Particulate Matter Emissions  

Science Conference Proceedings (OSTI)

Direct injection spark-ignition (DISI) gasoline engines can offer better fuel economy and higher performance over their port fuel-injected counterparts, and are now appearing increasingly in more U.S. vehicles. Small displacement, turbocharged DISI engines are likely to be used in lieu of large displacement engines, particularly in light-duty trucks and sport utility vehicles, to meet fuel economy standards for 2016. In addition to changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the 10% allowed by current law due to the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA). In this study, we present the results of an emissions analysis of a U.S.-legal stoichiometric, turbocharged DISI vehicle, operating on ethanol blends, with an emphasis on detailed particulate matter (PM) characterization. Gaseous species, particle mass, and particle number concentration emissions were measured for the Federal Test Procedure urban driving cycle (FTP 75) and the more aggressive US06 cycle. Particle number-size distributions and organic to elemental carbon ratios (OC/EC) were measured for 30 MPH and 80 MPH steady-state operation. In addition, particle number concentration was measured during wide open throttle accelerations (WOTs) and gradual accelerations representative of the FTP 75. For the gaseous species and particle mass measurements, dilution was carried out using a full flow constant volume sampling system (CVS). For the particle number concentration and size distribution measurements, a micro-tunnel dilution system was employed. The vehicles were fueled by a standard test gasoline and 10% (E10) and 20% (E20) ethanol blends from the same supplier. The particle mass emissions were approximately 3 and 7 mg/mile for the FTP75 and US06, respectively, with lower emissions for the ethanol blends. During steady-state operation, the geometric mean diameter of the particle-number size distribution remained approximately the same (50 nm) but the particle number concentration decreased with increasing ethanol content in the fuel. In addition, increasing ethanol content significantly reduced the number concentration of 50 and 100 nm particles during gradual and WOT accelerations.

Storey, John Morse [ORNL; Lewis Sr, Samuel Arthur [ORNL; Barone, Teresa L [ORNL

2010-01-01T23:59:59.000Z

392

Prediction of early heat of hydration of plain and blended cements using neuro-fuzzy modelling techniques  

Science Conference Proceedings (OSTI)

In this study, a new approach based on an adaptive neuro-fuzzy inference system (ANFIS) was presented for the prediction of early heat of hydration of plain and blended cements. Two different type of model is trained and tested using these data. The ... Keywords: ANFIS, Cement, Fuzzy logic, Hydration heat, Neural networks

Abdulhamit Subasi; Ahmet Serdar Yilmaz; Hanifi Binici

2009-04-01T23:59:59.000Z

393

Combustion characterization of the blend of plant coal and recovered coal fines. Technical report, September 1--November 30, 1991  

SciTech Connect

The overall objective of this proposed research program is to determine the combustion characteristics of the blend derived from mixing a plant coal and recovered and clean coal fines from the pond. During this study, one plant coal and three blend samples will be prepared and utilized. The blend samples will be of a mixture of 90% plant coal + 10% fines, 85% plant coal + 15% fines, 80% plant coal + 20% fines having particle size distribution of 70% passing through {minus}200 mesh size. These samples` combustion behavior will be examined in two different furnaces at Penn State University, i.e., a down-fired furnace and a drop-tube furnace. The down-fired furnace will be used mainly to measure the emissions and ash deposition study, while the drop tube furnace will be used to determine burning profile, combustion efficiency, etc. This report covers the first quarter`s progress. Major activities during this period were focused on finding the plants where a demo MTU column will be installed to prepare the samples needed to characterize the combustion behavior of slurry effluents. Also, a meeting was held at Penn State University to discuss the availability of the laboratory furnace for testing the plant coal/recovered coal fines blends.

Singh, Shyam

1991-12-31T23:59:59.000Z

394

Overview of Two Hydrogen Energy Storage Studies: Wind Hydrogen in California and Blending in Natural Gas Pipelines (Presentation)  

DOE Green Energy (OSTI)

This presentation provides an overview of two NREL energy storage studies: Wind Hydrogen in California: Case Study and Blending Hydrogen Into Natural Gas Pipeline Networks: A Review of Key Issues. The presentation summarizes key issues, major model input assumptions, and results.

Melaina, M. W.

2013-05-01T23:59:59.000Z

395

Isotopic Tracing of Particulate Matter from a Compression Ignition Engine Fueled with Ethanol-in-Diesel Blends  

DOE Green Energy (OSTI)

Accelerator Mass Spectrometry (AMS) was used to investigate the relative contribution to diesel engine particulate matter (PM) from the ethanol and diesel fractions of blended fuels. Four test fuels along with a diesel fuel baseline were investigated. The test fuels were comprised of {sup 14}C depleted diesel fuel mixed with contemporary grain ethanol (>400 the {sup 14}C concentration of diesel). An emulsifier (Span 85) or cosolvent (butyl alcohol) was used to facilitate mixing. The experimental test engine was a 1993 Cummins B5.9 diesel rated at 175 hp at 2500 rpm. Test fuels were run at steady-state conditions of 1600 rpm and 210 ft-lbs, and PM samples were collected on quartz filters following dilution of engine exhaust in a mini-dilution tunnel. AMS analysis of the filter samples showed that the ethanol contributed less to PM relative to its fraction in the fuel blend. For the emulsified blends, 6.4% and 10.3% contributions to PM were observed for 11.5% and 23.0% ethanol fuels, respectively. For the cosolvent blends, even lower contributions were observed (3.8% and 6.3% contributions to PM for 12.5% and 25.0% ethanol fuels, respectively).

Cheng, A.S.; Dibble, R.W.; Buchholz, B.

1999-11-22T23:59:59.000Z

396

Properties of Cu-based Oxygen Carrier Used in Chemical Looping ...  

Science Conference Proceedings (OSTI)

A Sintering Ore Blending Optimization Model Based on 'Iron Increase and Silicon ... on the Al2O3 Extraction Rate during Acid Leaching Process of Coal Fly Ash.

397

IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS  

Office of Scientific and Technical Information (OSTI)

Annual Technical Progress Report for Project Entitled "Impact Annual Technical Progress Report for Project Entitled "Impact of DME-Diesel Fuel Blend Properties on Diesel Fuel Injection Systems" May 16, 2002 - May 15, 2003 Elana M. Chapman, Andre Boehman, Kimberly Wain, Wallis Lloyd, Joseph M. Perez, Donald Stiver, Joseph Conway Report Issue Date: June 2003 DOE Award Number: DE-FC26-01NT41115 The Pennsylvania State University The Energy Institute University Park, PA 16802 ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

398

Results of Research Engine and Vehicle Drive Cycle Testing during Blended Hydrogen/Methane Operation  

NLE Websites -- All DOE Office Websites (Extended Search)

Results of Research Engine and Results of Research Engine and Vehicle Drive Cycle Testing during Blended Hydrogen/Methane Operation Thomas Wallner, Henning Lohse-Busch, Henry Ng Argonne National Laboratory Robert Peters University of Alabama at Birmingham NHA Annual Hydrogen Conference 2007 San Antonio/Texas March 19 th - 22 nd 2007 DOE-Sponsors: Lee Slezak, Gurpreet Singh Government license The submitted manuscript was developed by the UChicago Argonne LLC as Operator of Argonne National Laboratory ("Argonne") under Contract No. DE-AC-02-06CH11357 with DOE. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on

399

Estimation of Physical Properties of AN-107 Cesium and Technetium Eluate Blend  

SciTech Connect

The objective of this study, as defined in the associated test specifications and task technical and quality assurance plan, was to estimate all the physical properties that are required to design the storage and transport facilities for the concentrated cesium and technetium eluates. Specifically, the scope of this study included: (1) modeling of the aqueous electrolyte chemistry of Tank 241-AN-107 Cs and Tc eluate evaporators, (2) process modeling of semi-batch and continuous evaporation operations, (3) determination of the operating vacuum and target endpoint of each evaporator, (4) calculation of the physical properties of the concentrated Cs and Tc eluate blend, and (5) development of the empirical correlations for the physical properties thus estimated.

Choi, A.S.

2001-06-12T23:59:59.000Z

400

Susceptibility of Aluminum Alloys to Corrosion in Simulated Fuel Blends Containing Ethanol  

Science Conference Proceedings (OSTI)

The compatibility of aluminum and aluminum alloys with synthetic fuel blends comprised of ethanol and reference fuel C (a 50/50 mix of toluene and iso-octane) was examined as a function of water content and temperature. Commercially pure wrought aluminum and several cast aluminum alloys were observed to be similarly susceptible to substantial corrosion in dry (ethanol. Corrosion rates of all the aluminum materials examined was accelerated by increased temperature and ethanol content in the fuel mixture, but inhibited by increased water content. Pretreatments designed to stabilize passive films on aluminum increased the incubation time for onset of corrosion, suggesting film stability is a significant factor in the mechanism of corrosion.

Thomson, Jeffery K [ORNL; Pawel, Steven J [ORNL; Wilson, Dane F [ORNL

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxygenated blends commonly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Common and Scientific Names Table D1 Common and scientific names as referred to in document.  

E-Print Network (OSTI)

Green-winged teal Anas crecca Horned lark Eremophila alpestris Lazuli bunting Passerina amoena Lewis tenebrosus Red-legged frog Rana aurora Western toad Bufo boreas COMMON SCIENTIFIC MAMMALS American beaver Red alder Alnus rubra Russian olive Elaeagnus angustifolia Sitka spruce Picea sitchensis Subalpine fir

402

Performance of a small scale boiler burner in the firing of fuel blends  

E-Print Network (OSTI)

Power plants spend nearly 50 billion dollars a year on fuel cost. Presently coal accounts for over 75% of the electricity generated in this country. Due to increasingly harsh environmental regulations, the demand for low sulfur (S) coal has dramatically increased. This increase in demand is expected to cause the price of coal to rise. Such a senario has caused the utilities to explore the possibilities of supplementing coal with fuel alternatives such as the byproducts of process industries. The supplemental fuel for utilities located near feedlots (e.g. Northwest Texas) happens to be feedlot manure. Feedlot manure is attractive because it is nearly ten times cheaper than coal and is relatively inexpensive to transport. There exists nearly six million head of cattle in Northwest Texas which produce 25,000 tons of manure each day. Feedlot manure presents water and air pollution concerns if not disposed of properly. As such, the feedlot operators are eager to find methods of safely disposing of the feedlot manure. A small scale boiler burner facility has been constructed to simulate a utility class boiler. Experiments were conducted with coal only and then for coal/feedlot manure. Three types of feedlot manure are examined; raw feedlot manure, partially composted feedlot manure, and finished composted feedlot manure. Performance characteristics and emission data were taken for each case. A summary of the results is as follows: (I) sulfur Wyoming coal was fired and a gasification efficiency of 66% was measured. (i I) Emissions measurements were recorded and it was seen that emissions of NO,, and S02 increased as the burnt mass fraction increased. However, all emissions were within NSPS guidelines. (iii) The successful firing of coal and feedlot manure was achieved, a gasification efficiency in the range of 86% was measured, which is higher than 66% obtained when firing coal alone. (iv) When the fuel blend is fully burnt, the NO,, emissions with the blend firing was lower than the firing of coal alone.

Frazzitta, Stephen

1993-01-01T23:59:59.000Z

403

PUBLIC AND REGULATORY ACCEPTANCE OF BLENDING OF RADIOACTIVE WASTE VS DILUTION  

SciTech Connect

On April 21, 2009, the Energy Facilities Contractors Group (EFCOG) Waste Management Working Group (WMWG) provided a recommendation to the Department of Energy's Environmental Management program (DOE-EM) concerning supplemental guidance on blending methodologies to use to classify waste forms to determine if the waste form meets the definition of Transuranic (TRU) Waste or can be classified as Low-Level Waste (LLW). The guidance provides specific examples and methods to allow DOE and its Contractors to properly classify waste forms while reducing the generation of TRU wastes. TRU wastes are much more expensive to characterize at the generator's facilities, ship, and then dispose at the Waste Isolation Pilot Plant (WIPP) than Low-Level Radioactive Waste's disposal. Also the reduction of handling and packaging of LLW is inherently less hazardous to the nuclear workforce. Therefore, it is important to perform the characterization properly, but in a manner that minimizes the generation of TRU wastes if at all possible. In fact, the generation of additional volumes of radioactive wastes under the ARRA programs, this recommendation should improve the cost effective implementation of DOE requirements while properly protecting human health and the environment. This paper will describe how the message of appropriate, less expensive, less hazardous blending of radioactive waste is the 'right' thing to do in many cases, but can be confused with inappropriate 'dilution' that is frowned upon by regulators and stakeholders in the public. A proposal will be made in this paper on how to communicate this very complex and confusing technical issue to regulatory bodies and interested stakeholders to gain understanding and approval of the concept. The results of application of the proposed communication method and attempt to change the regulatory requirements in this area will be discussed including efforts by DOE and the NRC on this very complex subject.

Goldston, W.

2010-11-30T23:59:59.000Z

404

Probing Oxygen Activation Sites in Two Flavoprotein Oxidases Using Chloride as an Oxygen Surrogate  

SciTech Connect

A single basic residue above the si-face of the flavin ring is the site of oxygen activation in glucose oxidase (GOX) (His516) and monomeric sarcosine oxidase (MSOX) (Lys265). Crystal structures of both flavoenzymes exhibit a small pocket at the oxygen activation site that might provide a preorganized binding site for superoxide anion, an obligatory intermediate in the two-electron reduction of oxygen. Chloride binds at these polar oxygen activation sites, as judged by solution and structural studies. First, chloride forms spectrally detectable complexes with GOX and MSOX. The protonated form of His516 is required for tight binding of chloride to oxidized GOX and for rapid reaction of reduced GOX with oxygen. Formation of a binary MSOX-chloride complex requires Lys265 and is not observed with Lys265Met. Binding of chloride to MSOX does not affect the binding of a sarcosine analogue (MTA, methylthioactetate) above the re-face of the flavin ring. Definitive evidence is provided by crystal structures determined for a binary MSOX-chloride complex and a ternary MSOX-chloride-MTA complex. Chloride binds in the small pocket at a position otherwise occupied by a water molecule and forms hydrogen bonds to four ligands that are arranged in approximate tetrahedral geometry: Lys265:NZ, Arg49:NH1, and two water molecules, one of which is hydrogen bonded to FAD:N5. The results show that chloride (i) acts as an oxygen surrogate, (ii) is an effective probe of polar oxygen activation sites, and (iii) provides a valuable complementary tool to the xenon gas method that is used to map nonpolar oxygen-binding cavities.

Kommoju, Phaneeswara-Rao; Chen, Zhi-wei; Bruckner, Robert C.; Mathews, F. Scott; Jorns, Marilyn Schuman (Drexel-MED); (St. Louis-MED); (WU-MED)

2011-08-16T23:59:59.000Z

405

Oxygen transport by oxygen potential gradient in dense ceramic oxide membranes  

DOE Green Energy (OSTI)

Numerous studies have been conducted in recent years on the partial oxidation of methane to synthesis gas (syngas: CO + H{sub 2}) with air as the oxidant. In partial oxidation, a mixed-oxide ceramic membrane selectively transports oxygen from the air; this transport is driven by the oxygen potential gradient. Of the several ceramic materials the authors have tested, a mixed oxide based on the Sr-Fe-Co-O system has been found to be very attractive. Extensive oxygen permeability data have been obtained for this material in methane conversion experiments carried out in a reactor. The data have been analyzed by a transport equation based on the phenomenological theory of diffusion under oxygen potential gradients. Thermodynamic calculations were used to estimate the driving force for the transport of oxygen ions. The results show that the transport equation deduced from the literature describes the permeability data reasonably well and can be used to determine the diffusion coefficients and the associated activation energy of oxygen ions in the ceramic membrane material.

Maiya, P.S.; Balachandran, U.; Dusek, J.T.; Mieville, R.L. [Argonne National Lab., IL (United States). Energy Technology Div.; Kleefisch, M.S.; Udovich, C.A. [Amoco Exploration/Production, Naperville, IL (United States)

1996-05-01T23:59:59.000Z

406

Oxygen electrode in molten carbonate fuel cells  

DOE Green Energy (OSTI)

The oxygen reduction reaction on a gold electrode in lithium carbonate melt was investigated to determine the influence of partial pressure of carbon dioxide and temperature on electrode kinetics and oxygen solubility by using cyclic Voltammetry and impedance analysis techniques. During this quarter, the impedance data were analyzed by a Complex Nonlinear Least Square (CNLS) Parameter estimation program to determine the kinetic and the mass transfer related parameters such as charge transfer resistance, double layer capacitance, solution resistance, and Warburg coefficient. The estimated parameters were used to obtain the C0{sub 2} reaction orders and apparent activation energies for the exchange current density and the mass transfer parameter (D{sub o}{sup {1/2}}C{sub o}*).

Dave, B.B.; Srinivasan, S.; White, R.E.; Appleby, A.J.

1989-01-01T23:59:59.000Z

407

Electrical insulator assembly with oxygen permeation barrier  

DOE Patents (OSTI)

A high-voltage electrical insulator for electrically insulating a thermoelectric module in a spacecraft from a niobium-1% zirconium alloy wall of a heat exchanger filled with liquid lithium while providing good thermal conductivity between the heat exchanger and the thermoelectric module. The insulator has a single crystal alumina layer (SxAl[sub 2]O[sub 3], sapphire) with a niobium foil layer bonded thereto on the surface of the alumina crystal facing the heat exchanger wall, and a molybdenum layer bonded to the niobium layer to act as an oxygen permeation barrier to preclude the oxygen depleting effects of the lithium from causing undesirable niobium-aluminum intermetallic layers near the alumina-niobium interface. 3 figures.

Van Der Beck, R.R.; Bond, J.A.

1994-03-29T23:59:59.000Z

408

Electrical insulator assembly with oxygen permeation barrier  

DOE Patents (OSTI)

A high-voltage electrical insulator (21) for electrically insulating a thermoelectric module (17) in a spacecraft from a niobium-1% zirconium alloy wall (11) of a heat exchanger (13) filled with liquid lithium (16) while providing good thermal conductivity between the heat exchanger and the thermoelectric module. The insulator (21) has a single crystal alumina layer (SxAl.sub.2 O.sub.3, sapphire) with a niobium foil layer (32) bonded thereto on the surface of the alumina crystal (26) facing the heat exchanger wall (11), and a molybdenum layer (31) bonded to the niobium layer (32) to act as an oxygen permeation barrier to preclude the oxygen depleting effects of the lithium from causing undesirable niobium-aluminum intermetallic layers near the alumina-niobium interface.

Van Der Beck, Roland R. (Lansdale, PA); Bond, James A. (Exton, PA)

1994-01-01T23:59:59.000Z

409

On the reduction of oxygen from dispersed media  

E-Print Network (OSTI)

The reduction of oxygen from an organic phase dispersed in a concentrated electrolyte is investigated. Dispersed organic phases are used to enhance oxygen transport in fermenters and artificial blood substitutes. This work ...

Roushdy, Omar H., 1977-

2007-01-01T23:59:59.000Z

410

Application of Oxygen Eddy Correlation in Aquatic Systems  

Science Conference Proceedings (OSTI)

The eddy correlation technique is rapidly becoming an established method for resolving dissolved oxygen fluxes in natural aquatic systems. This direct and noninvasive determination of oxygen fluxes close to the sediment by simultaneously ...

Claudia Lorrai; Daniel F. McGinnis; Peter Berg; Andreas Brand; Alfred Wüest

2010-09-01T23:59:59.000Z

411

Probing brain oxygenation with near infrared spectroscopy  

E-Print Network (OSTI)

The fundamentals of near infrared spectroscopy (NIRS) are reviewed. This technique allows to measure the oxygenation of the brain tissue. The particular problems involved in detecting regional brain oxygenation (rSO2) are discussed. The dominant chromophore (light absorber) in tissue is water. Only in the NIR light region of 650-1000 nm, the overall absorption is sufficiently low, and the NIR light can be detected across a thick layer of tissues, among them the skin, the scull and the brain. In this region, there are many absorbing light chromophores, but only three are important as far as the oxygenation is concerned. They are the hemoglobin (HbO2), the deoxy-hemoglobin (Hb) and cytochrome oxidase (CtOx). In the last 20 years there was an enormous growth in the instrumentation and applications of NIRS. . The devices that were used in our experiments were : Somanetics's INVOS Brain Oximeter (IBO) and Toomim's HEG spectrophotometer. The performances of both devices were compared including their merits and draw...

Gersten, Alexander; Raz, Amir; Fried, Robert

2011-01-01T23:59:59.000Z

412

DD4, Oxygen Plasma Exposure Effects on Indium Oxide Nanowire ...  

Science Conference Proceedings (OSTI)

Presentation Title, DD4, Oxygen Plasma Exposure Effects on Indium Oxide Nanowire ... Electronic Materials Science Challenges in Renewable Energy.

413

Blend Down Monitoring System Fissile Mass Flow Monitor and its Implementation at the Siberian Chemical Enterprise, Seversk, Russia  

SciTech Connect

In this paper the implementation plans and preparations for installation of the Fissile Mass Flow Monitor (FMFM) equipment at the Siberian Chemical Enterprise (SChE), Seversk, Russia, are presented. The FMFM, developed by Oak Ridge National Laboratory, is part of the Blend Down Monitoring System (BDMS) for the U.S. Department of Energy Highly Enriched Uranium (HEU) Transparency Implementation Program. The BDMS provides confidence to the United States that the Russian nuclear facilities supplying the lower assay ({approx}4%) product low enriched uranium (PLEU) to the United States from down-blended weapon-grade HEU are meeting the nonproliferation goals of the government-to-government HEU purchase agreement signed between the Russian Federation and the United States in 1993. The first BDMS has been operational at Ural Electrochemical Integrated Plant, Novouralsk, since February 1999. The second BDMS has been operational at Electro Chemical Plant, Zelenogorsk, since March 2003. These systems are successfully providing HEU transparency data to the United States. The third BDMS was successfully installed on the HEU down-blending tee in the SChE Enrichment Plant in October 2004. The FMFM makes use of a set of thermalized {sup 252}Cf spontaneous neutron sources for modulated fission activation of the UF{sub 6} gas stream for measuring the {sup 235}U fissile mass flow rate. To do this, the FMFM measures the transport time of the fission fragments created from the fission activation process under the modulated source to the downstream detectors by detecting the delayed gamma rays from the fission fragments retained in the flow. The FMFM provides unattended nonintrusive measurements of the {sup 235}U mass flow of the UF{sub 6} gas in the blending tee legs of HEU, the LEU blend stock, and the resulting P-LEU. The FMFM also confirms that highly enriched UF{sub 6} gas identified in the HEU leg flows through the blending tee into the P-LEU leg. This report contains details of the SChE FMFM equipment characteristics as well as the technical installation requirements and the latest measurement results.

Uckan, T

2005-07-28T23:59:59.000Z

414

E.L. Grossman Chapter 10 Oxygen Isotope Stratigraphy  

E-Print Network (OSTI)

are the mineral and water respectively. Oxygen isotopic ratios are The Geologic Time Scale 2012. DOI: 10.1016/B978E.L. Grossman Chapter 10 Oxygen Isotope Stratigraphy Abstract:Variations in the 18 O/16 O ratios for global correlation. Relying on previous compilations and new data, this chapter presents oxygen isotope

Grossman, Ethan L.

415

Dilute Oxygen Combustion Phase IV Final Report  

Science Conference Proceedings (OSTI)

Novel furnace designs based on Dilute Oxygen Combustion (DOC) technology were developed under subcontract by Techint Technologies, Coraopolis, PA, to fully exploit the energy and environmental capabilities of DOC technology and to provide a competitive offering for new furnace construction opportunities. Capital cost, fuel, oxygen and utility costs, NOx emissions, oxide scaling performance, and maintenance requirements were compared for five DOC-based designs and three conventional air5-fired designs using a 10-year net present value calculation. A furnace direct completely with DOC burners offers low capital cost, low fuel rate, and minimal NOx emissions. However, these benefits do not offset the cost of oxygen and a full DOC-fired furnace is projected to cost $1.30 per ton more to operate than a conventional air-fired furnace. The incremental cost of the improved NOx performance is roughly $6/lb NOx, compared with an estimated $3/lb. NOx for equ8pping a conventional furnace with selective catalytic reduction (SCCR) technology. A furnace fired with DOC burners in the heating zone and ambient temperature (cold) air-fired burners in the soak zone offers low capital cost with less oxygen consumption. However, the improvement in fuel rate is not as great as the full DOC-fired design, and the DOC-cold soak design is also projected to cost $1.30 per ton more to operate than a conventional air-fired furnace. The NOx improvement with the DOC-cold soak design is also not as great as the full DOC fired design, and the incremental cost of the improved NOx performance is nearly $9/lb NOx. These results indicate that a DOC-based furnace design will not be generally competitive with conventional technology for new furnace construction under current market conditions. Fuel prices of $7/MMBtu or oxygen prices of $23/ton are needed to make the DOC furnace economics favorable. Niche applications may exist, particularly where access to capital is limited or floor space limitations are critical. DOC technology will continue to have a highly competitive role in retrofit applications requiring increases in furnace productivity.

Riley, M.F.

2003-04-30T23:59:59.000Z

416

Mechanical Properties and Durability of Concrete Made with High-Volume Fly Ash Blended Cement Produced in a Cement Plant: Commercial -Scale Trial Results  

Science Conference Proceedings (OSTI)

This interim report documents the preliminary results of the commercial-scale production of a high-volume fly ash (HVFA) blended cement, using up to 55 percent fly ash to replace the portland cement.

2000-12-12T23:59:59.000Z

417

Development and Demonstration of Hydrogen and Compressed Natural Gas (H/CNG) Blend Transit Buses: October 15, 2002--September 30, 2004  

DOE Green Energy (OSTI)

The report covers literature and laboratory analyses to identify modification requirements of a Cummins Westport B Gas Plus engine for transit buses using a hydrogen/compressed natural fuel blend.

Del Toro, A.; Frailey, M.; Lynch, F.; Munshi, S.; Wayne, S.

2005-11-01T23:59:59.000Z

418

Crystallization and Solidification Properties Chapter 4 Effects of Tempering on Physical Properties of Shortenings Based on BinaryBlends of Palm Oil & Anhydrous Milk Fat During Storage  

Science Conference Proceedings (OSTI)

Crystallization and Solidification Properties Chapter 4 Effects of Tempering on Physical Properties of Shortenings Based on BinaryBlends of Palm Oil & Anhydrous Milk Fat During Storage Health Nutrition Biochemistry eChapters Health - Nu

419

Cocoa Butter and Related CompoundsChapter 16 Molecular Interactions of Triacylglycerides in Blends of Cocoa Butter with trans-free Vegetable Oils  

Science Conference Proceedings (OSTI)

Cocoa Butter and Related Compounds Chapter 16 Molecular Interactions of Triacylglycerides in Blends of Cocoa Butter with trans-free Vegetable Oils Food Science Health Nutrition eChapters Food Science & Technology Health - Nutrition - Bioc

420

Application and management of commonality within NASA systems  

E-Print Network (OSTI)

Commonality can be defined as the sharing of assets such as components, designs, processes, technologies, interfaces, and/or infrastructure across systems. Through commonality, NASA has the opportunity to develop, produce, ...

Rhodes, Richard Alexander

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxygenated blends commonly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Amorphous Materials: Common Issues within Science and Technology  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, Materials Science & Technology 2013. Symposium, Amorphous Materials: Common Issues within Science and Technology.

422

Fuel-blending stocks from the hydrotreatment of a distillate formed by direct coal liquefaction  

SciTech Connect

The direct liquefaction of coal in the iron-catalyzed Suplex process was evaluated as a technology complementary to Fischer-Tropsch synthesis. A distinguishing feature of the Suplex process, from other direct liquefaction processes, is the use of a combination of light- and heavy-oil fractions as the slurrying solvent. This results in a product slate with a small residue fraction, a distillate/naphtha mass ratio of 6, and a 65.8 mass % yield of liquid fuel product on a dry, ash-free coal basis. The densities of the resulting naphtha (C{sub 5}-200{sup o}C) and distillate (200-400{sup o}C) fractions from the hydroprocessing of the straight-run Suplex distillate fraction were high (0.86 and 1.04 kg/L, respectively). The aromaticity of the distillate fraction was found to be typical of coal liquefaction liquids, at 60-65%, with a Ramsbottom carbon residue content of 0.38 mass %. Hydrotreatment of the distillate fraction under severe conditions (200{sup o}C, 20.3 MPa, and 0.41 g{sub feed} h{sup -1} g{sub catalyst}{sup -1}) with a NiMo/Al{sub 2}O{sub 3} catalyst gave a product with a phenol content of {lt}1 ppm, a nitrogen content {lt}200 ppm, and a sulfur content {lt}25 ppm. The temperature was found to be the main factor affecting diesel fraction selectivity when operating at conditions of WHSV = 0.41 g{sub feed} h{sup -1} g{sub catalyst}{sup -1} and PH{sub 2} = 20.3 MPa, with excessively high temperatures (T {gt} 420{sup o}C) leading to a decrease in diesel selectivity. The fuels produced by the hydroprocessing of the straight-run Suplex distillate fraction have properties that make them desirable as blending components, with the diesel fraction having a cetane number of 48 and a density of 0.90 kg/L. The gasoline fraction was found to have a research octane number (RON) of 66 and (N + 2A) value of 100, making it ideal as a feedstock for catalytic reforming and further blending with Fischer-Tropsch liquids. 44 refs., 9 figs., 12 tabs.

Andile B. Mzinyati [Sasol Technology Research and Development, Sasolburg (South Africa). Fischer-Tropsch Refinery Catalysis

2007-09-15T23:59:59.000Z

423

Pyrolysis and ignition behavior of coal, cattle biomass, and coal/cattle biomass blends  

E-Print Network (OSTI)

Increases in demand, lower emission standards, and reduced fuel supplies have fueled the recent effort to find new and better fuels to power the necessary equipment for society’s needs. Often, the fuels chosen for research are renewable fuels derived from biomass. Current research at Texas A&M University is focused on the effectiveness of using cattle manure biomass as a fuel source in conjunction with coal burning utilities. The scope of this project includes fuel property analysis, pyrolysis and ignition behavior characteristics, combustion modeling, emissions modeling, small scale combustion experiments, pilot scale commercial combustion experiments, and cost analysis of the fuel usage for both feedlot biomass and dairy biomass. This paper focuses on fuel property analysis and pyrolysis and ignition characteristics of feedlot biomass. Deliverables include a proximate and ultimate analysis, pyrolysis kinetics values, and ignition temperatures of four types of feedlot biomass (low ash raw manure [LARM], low ash partially composted manure [LAPC], high ash raw manure [HARM], and high ash partially composted manure [HAPC]) as well as blends of each biomass with Texas lignite coal (TXL). Activation energy results for pure samples of each fuel using the single reaction model rigorous solution were as follows: 45 kJ/mol (LARM), 43 kJ/mol (LAPC), 38 kJ/mol (HARM), 36 kJ/mol (HAPC), and 22 kJ/mol (TXL). Using the distributed activation energy model the activation energies were 169 kJ/mol (LARM), 175 kJ/mol (LAPC), 172 kJ/mol (HARM), 173 kJ/mol (HAPC), and 225 kJ/mol (TXL). Ignition temperature results for pure samples of each of the fuels were as follows: 734 K (LARM), 745 K (LAPC), 727 (HARM), 744 K (HAPC), and 592 K (TXL). There was little difference observed between the ignition temperatures of the 50% blends of coal with biomass and the pure samples of coal as observed by the following results: 606 K (LARM), 571 K (LAPC), 595 K (HARM), and 582 K (HAPC).

Martin, Brandon Ray

2006-12-01T23:59:59.000Z

424

An Experimental Investigation of Microexplosion in Emulsified Vegetable-Methanol Blend  

E-Print Network (OSTI)

Vegetable oil is one of the most widely available renewable sources of energy that can be used to meet the world’s demands. Many vegetable oils also have the advantage of containing little to no detectable amounts of nitrogen. Recently, research studies have revealed that when two liquids with different vapor pressure values are formed into droplet-like emulsions, a micro-explosion effect can happen under specific environmental conditions. Understanding the micro-explosion phenomena can help increase the efficiency of bio-emulsion combustion as well as reduce pollution levels. Many researchers have conducted experiments to find the optimal condition that induces microexplosion effects. Microexplosion is also associated with the formation of shock waves characteristic of explosions at larger scales. However, little is known about how emulsion composition and droplet size affect the micro-explosion process. Through this research, methanol-in-vegetable oil emulsion has been studied from the microexplosion point of view using custom made electric furnace equipment with a high speed camera system and an acoustic sensor system. The main goal of this study is to understand the effect of emulsion compositions, chamber temperatures, and droplet sizes on the characteristics of microexplosion. First, an n-hexadecane-in-water emulsion was prepared to validate the performance of the custom-made experimental apparatus using previous published data. Methanol-in-canola oil emulsions with different compositions were also prepared and used to compare the micro-explosion phenomena with water as a volatile compound. Microexplosion events of the blended fuels were captured using a high speed camera and an acoustic sensor. The wave signals generated by the microexplosion were analyzed after converting the signals using a Fast Fourier Transform coded in Matlab. One of the major findings of this research work was that higher temperatures and higher concentrations of high vapor pressure fluids such as methanol and water in emulsions causes a high probability of microexplosion event due to the sudden expansion of the emulsified fluid. Also, the effect of size on microexplosion was evident in the greater probability of explosion. Methanol-in-canola oil emulsion with 15 % methanol with droplets size of 200 ?m placed in a furnace chamber heated to 980 ?C showed optimal microexplosion behavior based on the formation of fine droplets. Also, smaller droplets produced higher frequencies, which could be used to detect microexplosion without high speed imaging. When large droplets microexploded, lower frequencies were detected in all the blends.

Nam, Hyungseok

2012-05-01T23:59:59.000Z

425

Inclusion of Blended Lipid Solutions as Functional Ingredients to Alter the Fatty Acid Profile of Beef Patties  

E-Print Network (OSTI)

We hypothesized that beef patties formulated with the addition of a beef fat, plant oil and rosemary extract (antioxidant) blend would increase unsaturated fatty acid content and maintain desirable sensory attributes as compared to 10 and 20% fat control beef patties. Treatment patties were formulated by combining beef trimmings (6% fat) with a lipid blend mixture (4% or 14% addition, respectively) containing 57% beef tallow, 0.3% rosemary extract and 43% of either high oleic safflower oil (SO), olive oil (OO), or corn oil (CO) to achieve a total fat content of 10 or 20%. Treatment patties were similar to control patties for lipid oxidation at 0 and 3 d of refrigerated (2oC) storage and up to 56 d of frozen (-10oC) storage. Cooked lipid blend patties at 10 or 20% fat content were similar to or higher, respectively, than control patties for juiciness and were no different for other sensory attributes evaluated. At 10 and 20% fat levels, oleic acid (18:1) in cooked SO patties (46.1 and 50.3%, respectively) and OO patties (43.8 and 48.1%, respectively) was higher than the control (37.3 and 37.6%, respectively). Unsaturated to saturated fatty acid ratios at the 10 and 20% fat levels were higher in SO (1.37 and 1.60, respectively) and CO (1.40 and 1.48, respectively) patties than the control (0.97 and 0.94, respectively). The incorporation of nutritionally enhanced lipid blends increased unsaturated fatty acid content and maintained desirable sensory attributes of beef patties while suppressing lipid oxidation.

Lowder, Austin C.

2009-08-01T23:59:59.000Z

426

NETL: Gasification - Development of Ion-Transport Membrane Oxygen  

NLE Websites -- All DOE Office Websites (Extended Search)

Presentations, Papers, and Publications Presentations, Papers, and Publications ITM Oxygen Development for Advanced Oxygen Supply (Oct 2011) Ted Foster, Air Products & Chemicals, Inc. presented at the Gasification Technologies Conference, San Francisco, CA Oct 9-12, 2011. ASU/IGCC Integration Strategies (Oct 2009), David McCarthy, Air Products & Chemicals, Inc., 2009 Gasification Technologies Conference, Colorado Springs, CO. ITM Oxygen: Taking the Next Step (Oct 2009), VanEric Stein, Air Products & Chemicals, Inc., 2009 Gasification Technologies Conference, Colorado Springs, CO. ITM Oxygen: Scaling Up a Low-Cost Oxygen Supply Technology (Oct 2006) Philip Armstrong, Air Products & Chemicals, Inc., 2006 Gasification Technologies Conference, Washington, D.C. ITM Oxygen: The New Oxygen Supply for the New IGCC Market (Oct 2005)

427

(Selective carbon oxygen bond scission during reactions of oxygenates on single crystal catalysts)  

SciTech Connect

We have discovered that the carbon-oxygen bond in methanol can be selectively broken if the surface structure of the platinum catalyst is appropriately tailored. The objective of this project is to determine if variations in surface structure allow one to selectively break C-O and C-H bonds. The decomposition of a wide range of oxygenates on several carefully chosen faces of group VIII metals will be examined to see when C-O bond scission occurs and what new chemistry we can find on stepped surfaces.

1992-01-01T23:59:59.000Z

428

[Selective carbon oxygen bond scission during reactions of oxygenates on single crystal catalysts]. Progress report  

SciTech Connect

We have discovered that the carbon-oxygen bond in methanol can be selectively broken if the surface structure of the platinum catalyst is appropriately tailored. The objective of this project is to determine if variations in surface structure allow one to selectively break C-O and C-H bonds. The decomposition of a wide range of oxygenates on several carefully chosen faces of group VIII metals will be examined to see when C-O bond scission occurs and what new chemistry we can find on stepped surfaces.

1992-08-01T23:59:59.000Z

429

BLENDED CALCIUM ALUMINATE-CALCIUM SULFATE CEMENT-BASED GROUT FOR P-REACTOR VESSEL IN-SITU DECOMMISSIONING  

SciTech Connect

The objective of this report is to document laboratory testing of blended calcium aluminate - calcium hemihydrate grouts for P-Reactor vessel in-situ decommissioning. Blended calcium aluminate - calcium hemihydrate cement-based grout was identified as candidate material for filling (physically stabilizing) the 105-P Reactor vessel (RV) because it is less alkaline than portland cement-based grout which has a pH greater than 12.4. In addition, blended calcium aluminate - calcium hemihydrate cement compositions can be formulated such that the primary cementitious phase is a stable crystalline material. A less alkaline material (pH {<=} 10.5) was desired to address a potential materials compatibility issue caused by corrosion of aluminum metal in highly alkaline environments such as that encountered in portland cement grouts [Wiersma, 2009a and b, Wiersma, 2010, and Serrato and Langton, 2010]. Information concerning access points into the P-Reactor vessel and amount of aluminum metal in the vessel is provided elsewhere [Griffin, 2010, Stefanko, 2009 and Wiersma, 2009 and 2010, Bobbitt, 2010, respectively]. Radiolysis calculations are also provided in a separate document [Reyes-Jimenez, 2010].

Langton, C.; Stefanko, D.

2011-03-10T23:59:59.000Z

430

THE EFFECTS OF BIODIESEL BLENDS AND ARCO EC-DIESEL ON EMISSIONS from LIGHT HEAVY-DUTY DIESEL VEHICLES  

DOE Green Energy (OSTI)

Chassis dynamometer tests were performed on 7 light heavy-duty diesel trucks comparing the emissions of a California diesel fuel with emissions from 4 other fuels: ARCO EC-diesel (EC-D) and three 20% biodiesel blends (1 yellow grease and 2 soy-based). The EC-D and the yellow grease biodiesel blend both showed significant reductions in THC and CO emissions over the test vehicle fleet. EC-D also showed reductions in PM emission rates. NOx emissions were comparable for the different fuel types over the range of vehicles tested. The soy-based biodiesel blends did not show significant or consistent emissions differences over all test vehicles. Total carbon accounted for more than 70% of the PM mass for 4 of the 5 sampled vehicles. Elemental and organic carbon ratios varied significantly from vehicle-to-vehicle but showed very little fuel dependence. Inorganic species represented a smaller portion of the composite total, ranging from 0.2 to 3.3% of the total PM. Total PAH emissions ranged from approximately 1.8 mg/mi to 67.8 mg/mi over the different vehicle/fuel combinations representing between 1.6 and 3.8% of the total PM mass.

Durbin, Thomas

2001-08-05T23:59:59.000Z

431

Oxygen stabilized zirconium-vanadium-iron alloy  

SciTech Connect

An oxygen stabilized intermetallic compound having the formula (Zr.sub.1-x Ti.sub.x).sub.2-u (V.sub.1-y Fe.sub.y)O.sub.z where x=0.0 to 0.9, y=0.01 to 0.9, z=0.25 to 0.5 and u=0 to 1. The compound is capable of reversibly sorbing hydrogen at temperatures from -196.degree. C. to 200.degree. C. at pressures down to 10.sup.-6 torr. The compound is suitable for use as a hydrogen getter in low pressure, high temperature applications such as magnetic confinement fusion devices.

Mendelsohn, Marshall H. (Woodridge, IL); Gruen, Dieter M. (Downers Grove, IL)

1982-01-01T23:59:59.000Z

432

Compact reaction cell for homogenizing and down-blending highly enriched uranium metal  

DOE Patents (OSTI)

The invention is a specialized reaction cell for converting uranium metal to uranium oxide. In a preferred form, the reaction cell comprises a reaction chamber with increasing diameter along its length (e.g. a cylindrical chamber having a diameter of about 2 inches in a lower portion and having a diameter of from about 4 to about 12 inches in an upper portion). Such dimensions are important to achieve the necessary conversion while at the same time affording criticality control and transportability of the cell and product. The reaction chamber further comprises an upper port and a lower port, the lower port allowing for the entry of reactant gases into the reaction chamber, the upper port allowing for the exit of gases from the reaction chamber. A diffuser plate is attached to the lower port of the reaction chamber and serves to shape the flow of gas into the reaction chamber. The reaction cell further comprises means for introducing gases into the reaction chamber and a heating means capable of heating the contents of the reaction chamber. The present invention also relates to a method for converting uranium metal to uranium oxide in the reaction cell of the present invention. The invention is useful for down-blending highly enriched uranium metal by the simultaneous conversion of highly enriched uranium metal and natural or depleted uranium metal to uranium oxide within the reaction cell. 4 figs.

McLean, W. II; Miller, P.E.; Horton, J.A.

1995-05-02T23:59:59.000Z

433

Excitation Dynamics in Low Band Gap Donor-Acceptor Copolymers and Blends  

E-Print Network (OSTI)

Donor-acceptor (D-A) type copolymers show great potential for the application in the active layer of organic solar cells. Nevertheless the nature of the excited states, the coupling mechanism and the relaxation pathways following photoexcitation are yet to be clarified. We carried out comparative measurements of the steady state absorption and photoluminescence (PL) on the copolymer poly[N-(1-octylnonyl)-2,7-carbazole] -alt-5,5-[4',7' -di(thien-2-yl)-2',1',3' -benzothiadiazole] (PCDTBT), its building blocks as well as on the newly synthesized N-(1-octylnonyl)-2,7-bis-[(5-phenyl)thien-2-yl)carbazole (BPT-carbazole) (see Figure 1). The high-energy absorption band (HEB) of PCDTBT was identified with absorption of carbazoles with adjacent thiophene rings while the low-energy band (LEB) originates instead from the charge transfer (CT) state delocalized over the aforementioned unit with adjacent benzothiadiazole group. Photoexcitation of the HEB is followed by internal relaxation prior the radiative decay to the ground state. Adding PC70BM results in the efficient PL quenching within the first 50 ps after excitation. From the PL excitation experiments no evidence for a direct electron transfer from the HEB of PCDTBT towards the fullerene acceptor was found, therefore the internal relaxation mechanisms within PCDTBT can be assumed to precede. Our findings indicate that effective coupling between copolymer building blocks governs the photovoltaic performance of the blends.

Björn Gieseking; Berthold Jäck; Eduard Preis; Stefan Jung; Michael Forster; Ullrich Scherf; Carsten Deibel; Vladimir Dyakonov

2012-06-20T23:59:59.000Z

434

Fuzzy linear programming based optimal fuel scheduling incorporating blending/transloading facilities  

Science Conference Proceedings (OSTI)

In this paper the blending/transloading facilities are modeled using an interactive fuzzy linear programming (FLP), in order to allow the decision-maker to solve the problem of uncertainty of input information within the fuel scheduling optimization. An interactive decision-making process is formulated in which decision-maker can learn to recognize good solutions by considering all possibilities of fuzziness. The application of the fuzzy formulation is accompanied by a careful examination of the definition of fuzziness, appropriateness of the membership function and interpretation of results. The proposed concept provides a decision support system with integration-oriented features, whereby the decision-maker can learn to recognize the relative importance of factors in the specific domain of optimal fuel scheduling (OFS) problem. The formulation of a fuzzy linear programming problem to obtain a reasonable nonfuzzy solution under consideration of the ambiguity of parameters, represented by fuzzy numbers, is introduced. An additional advantage of the FLP formulation is its ability to deal with multi-objective problems.

Djukanovic, M.; Babic, B.; Milosevic, B. [Electrical Engineering Inst. Nikola Tesla, Belgrade (Yugoslavia); Sobajic, D.J. [EPRI, Palo Alto, CA (United States). Power System Control; Pao, Y.H. [Case Western Reserve Univ., Cleveland, OH (United States)]|[AI WARE, Inc., Cleveland, OH (United States)

1996-05-01T23:59:59.000Z

435

Ordered Ground State Wurtzite Alloys from Zinc-Blende Parent Compounds  

DOE Green Energy (OSTI)

The ground state structures of the A{sub x}B{sub 1-x}C wurtzite (WZ) alloys with x=0.25, 0.5, and 0.75 are revealed by a ground state search using the valence-force field model and density-functional theory total-energy calculations. It is shown that the ground state WZ alloy always has a lower strain energy and formation enthalpy than the corresponding zinc-blende (ZB) alloy. Therefore, we propose that the WZ phase can be stabilized through alloying. This idea is supported by the fact that the WZ AlP{sub 0.5}Sb{sub 0.5}, AlP{sub 0.75}Sb{sub 0.25}, ZnS{sub 0.5}Te{sub 0.5}, and ZnS{sub 0.75}Te{sub 0.25} alloys in the lowest-energy structures are more stable than the corresponding ZB alloys. In this example, the alloy adopts a structure distinct from both parent phases.

Xiang, H. J.; Wei, S. H.; Chen, S.; Gong, X. G.

2009-01-01T23:59:59.000Z

436

Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions  

Science Conference Proceedings (OSTI)

U.S. natural gas composition is expected to be more variable in the future. Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Unconventional gas supplies, like coal-bed methane, are also expected to grow. As a result of these anticipated changes, the composition of fuel sources may vary significantly from existing domestic natural gas supplies. To allow the greatest use of gas supplies, end-use equipment should be able to accommodate the widest possible gas composition. For this reason, the effect of gas composition on combustion behavior is of interest. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 589K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx emissions. These results vary from data reported in the literature for some engine applications and potential reasons for these differences are discussed.

D. Straub; D. Ferguson; K. Casleton; G. Richards