National Library of Energy BETA

Sample records for oxygenate production facilities

  1. Nuclear Facilities Production Facilities

    National Nuclear Security Administration (NNSA)

    Facilities Production Facilities Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Sand 2011-4582P. ENERGY U.S. DEPARTMENT OF Gamma Irradiation Facility (GIF) The GIF provides test cells for the irradiation of experiments with high-intensity gamma ray sources. The main features

  2. Fuel Ethanol Oxygenate Production

    Gasoline and Diesel Fuel Update (EIA)

    Product: Fuel Ethanol Methyl Tertiary Butyl Ether Merchant Plants Captive Plants Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History U.S. 30,256 29,621 28,543 30,139 29,594 31,075 1981-2015 East Coast (PADD 1) 876 854 692 664 664

  3. Production Facility SCADA Design Report

    SciTech Connect (OSTI)

    Dale, Gregory E.; Holloway, Michael Andrew; Baily, Scott A.; Woloshun, Keith Albert; Wheat, Robert Mitchell Jr.

    2015-03-23

    The following report covers FY 14 activities to develop supervisory control and data acquisition (SCADA) system for the Northstar Moly99 production facility. The goal of this effort is to provide Northstar with a baseline system design.

  4. New Oxygen-Production Technology Proving Successful

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy's National Energy Technology Laboratory has partnered with Air Products and Chemicals Inc. of Allentown, Penn. to develop the Ion Transport Membrane (ITM) Oxygen, a revolutionary new oxygen-production technology that requires less energy and offers lower capital costs than conventional technologies.

  5. Magnetism in LithiumOxygen Discharge Product

    SciTech Connect (OSTI)

    Lu, Jun; Jung, Hun-Ji; Lau, Kah Chun; Zhang, Zhengcheng; Schlueter, John A.; Du, Peng; Assary, Rajeev S.; Greeley, Jeffrey P.; Ferguson, Glen A.; Wang, Hsien-Hau; Hassoun, Jusef; Iddir, Hakim; Zhou, Jigang; Zuin, Lucia; Hu, Yongfeng; Sun, Yang-Kook; Scrosati, Bruno; Curtiss, Larry A.; Amine, Khalil

    2013-05-13

    Nonaqueous lithiumoxygen batteries have a much superior theoretical gravimetric energy density compared to conventional lithium-ion batteries, and thus could render long-range electric vehicles a reality. A molecular-level understanding of the reversible formation of lithium peroxide in these batteries, the properties of major/minor discharge products, and the stability of the nonaqueous electrolytes is required to achieve successful lithiumoxygen batteries. We demonstrate that the major discharge product formed in the lithiumoxygen cell, lithium peroxide, exhibits a magnetic moment. These results are based on dc-magnetization measurements and a lithium oxygen cell containing an ether-based electrolyte. The results are unexpected because bulk lithium peroxide has a significant band gap. Density functional calculations predict that superoxide- type surface oxygen groups with unpaired electrons exist on stoichiometric lithium peroxide crystalline surfaces and on nanoparticle surfaces; these computational results are consistent with the magnetic measurement of the discharged lithium peroxide product as well as EPR measurements on commercial lithium peroxide. The presence of superoxide-type surface oxygen groups with spin can play a role in the reversible formation and decomposition of lithium peroxide as well as the reversible formation and decomposition of electrolyte molecules.

  6. U.S. Oxygenate Production

    Gasoline and Diesel Fuel Update (EIA)

    Area: U.S. East Coast (PADD 1) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Fuel Ethanol 30,256 29,621 28,543 30,139 29,594 31,075 1981-2015

  7. Regulatory approaches for addressing dissolved oxygen concerns at hydropower facilities

    SciTech Connect (OSTI)

    Peterson, Mark J.; Cada, Glenn F.; Sale, Michael J.; Eddlemon, Gerald K.

    2003-03-01

    Low dissolved oxygen (DO) concentrations are a common water quality problem downstream of hydropower facilities. At some facilities, structural improvements (e.g. installation of weir dams or aerating turbines) or operational changes (e.g., spilling water over the dam) can be made to improve DO levels. In other cases, structural and operational approaches are too costly for the project to implement or are likely to be of limited effectiveness. Despite improvements in overall water quality below dams in recent years, many hydropower projects are unable to meet state water quality standards for DO. Regulatory agencies in the U.S. are considering or implementing dramatic changes in their approach to protecting the quality of the Nations waters. New policies and initiatives have emphasized flexibility, increased collaboration and shared responsibility among all parties, and market-based, economic incentives. The use of new regulatory approaches may now be a viable option for addressing the DO problem at some hydropower facilities. This report summarizes some of the regulatory-related options available to hydropower projects, including negotiation of site-specific water quality criteria, use of biological monitoring, watershed-based strategies for the management of water quality, and watershed-based trading. Key decision points center on the health of the local biological communities and whether there are contributing impacts (i.e., other sources of low DO effluents) in the watershed. If the biological communities downstream of the hydropower project are healthy, negotiation for site-specific water quality standards or biocriteria (discharge performance criteria based on characteristics of the aquatic biota) might be pursued. If there are other effluent dischargers in the watershed that contribute to low DO problems, watershed-scale strategies and effluent trading may be effective. This report examines the value of regulatory approaches by reviewing their use in other

  8. Integration of oxygen plants and gas turbines in IGCC facilities

    SciTech Connect (OSTI)

    Smith, A.R.; Sorensen, J.C.; Woodward, D.W.

    1996-10-01

    The commercialization of Integrated Gasification Combined-Cycle (IGCC) power has been aided by concepts involving the integration of a cryogenic air separation unit (ASU) with the gas turbine combined-cycle module. It is known and now widely accepted that an ASU designed for elevated pressure service and optimally integrated with the gas turbine can increase overall IGCC power output, increase overall efficiency, and decrease the net cost of power generation compared to non-integrated facilities employing low pressure ASU`s. Depending upon the specific gas turbine, gasification technology, NO{sub x} emission specification, and other site specific factors, various degrees of compressed air and nitrogen integration are optimal. Air Products has supplied ASU`s with no integration (Destec/Plaquemine IGCC), nitrogen-only integration (Tampa Electric/Polk County IGCC), and full air and nitrogen integration (Demkolec/Buggenum IGCC). Continuing advancements in both air separation and gas turbine technologies offer new integration opportunities to further improve performance and reduce costs. This paper reviews basic integration principles, highlights the integration scheme used at Polk County, and describes some advanced concepts based on emerging gas turbines. Operability issues associated with integration will be reviewed and control measures described for the safe, efficient, and reliable operation of these facilities.

  9. Hydrogen (H2) Production by Oxygenic Phototrophs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oxygenic Phototrophs Hydrogen (H2) Production by Oxygenic Phototrophs Presentation by Eric Hegg, Michigan State University, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado. PDF icon bio_h2_workshop_hegg.pdf More Documents & Publications Renewable Hydrogen Production from Biological Systems Autofermentative Biological Hydrogen Production by Cyanobacteria 2013 Biological Hydrogen Production Workshop

  10. Toda Cathode Materials Production Facility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cathode Materials Production Facility Toda Cathode Materials Production Facility 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt017_es_han_2013_p.pdf More Documents & Publications Toda Material/Component Production Facilities Toda Material/Component Production Facilities

  11. Toda Material/Component Production Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Toda Material/Component Production Facilities Toda Material/Component Production Facilities 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon esarravt017_han_2010_p.pdf More Documents & Publications Toda Material/Component Production Facilities Toda Material/Component Production Facilities Toda Cathode Materials Production Facility

  12. Hydrogen production using hydrogenase-containing oxygenic photosynthetic organisms

    DOE Patents [OSTI]

    Melis, Anastasios; Zhang, Liping; Benemann, John R.; Forestier, Marc; Ghirardi, Maria; Seibert, Michael

    2006-01-24

    A reversible physiological process provides for the temporal separation of oxygen evolution and hydrogen production in a microorganism, which includes the steps of growing a culture of the microorganism in medium under illuminated conditions to accumulate an endogenous substrate, depleting from the medium a nutrient selected from the group consisting of sulfur, iron, and/or manganese, sealing the culture from atmospheric oxygen, incubating the culture in light whereby a rate of light-induced oxygen production is equal to or less than a rate of respiration, and collecting an evolved gas. The process is particularly useful to accomplish a sustained photobiological hydrogen gas production in cultures of microorganisms, such as Chlamydomonas reinhardtii.

  13. Hydrogen Production Using Hydrogenase-Containing Oxygenic Photosynthetic Organisms

    DOE Patents [OSTI]

    Melis, A.; Zhang, L.; Benemann, J. R.; Forestier, M.; Ghirardi, M.; Seibert, M.

    2006-01-24

    A reversible physiological process provides for the temporal separation of oxygen evolution and hydrogen production in a microorganism, which includes the steps of growing a culture of the microorganism in medium under illuminated conditions to accumulate an endogenous substrate, depleting from the medium a nutrient selected from the group consisting of sulfur, iron, and/or manganese, sealing the culture from atmospheric oxygen, incubating the culture in light whereby a rate of light-induced oxygen production is equal to or less than a rate of respiration, and collecting an evolved gas. The process is particularly useful to accomplish a sustained photobiological hydrogen gas production in cultures of microorganisms, such as Chlamydomonas reinhardtii.

  14. Production Facility System Reliability Analysis Report

    SciTech Connect (OSTI)

    Dale, Crystal Buchanan; Klein, Steven Karl

    2015-10-06

    This document describes the reliability, maintainability, and availability (RMA) modeling of the Los Alamos National Laboratory (LANL) design for the Closed Loop Helium Cooling System (CLHCS) planned for the NorthStar accelerator-based 99Mo production facility. The current analysis incorporates a conceptual helium recovery system, beam diagnostics, and prototype control system into the reliability analysis. The results from the 1000 hr blower test are addressed.

  15. Toda Material/Component Production Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Merit Review June 7-9, 2010 Washington D.C. Jun Nakano, David Han, Yasuhiro Abe Toda America Inc. Project ID: ARRAVT017 Esarravt017_han_2010_p_final This presentation does not contain any proprietary, confidential, or otherwise restricted information. Overview Li-ion Cathode Materials Production Facility Timelines Start: February, 2010 Finish: December, 2013 1 st Line Schedule: Feb., 2011 Completion: ~10% Challenges Compressed schedule - first line production within 1 year

  16. Edison is back to production in the new facility building

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    back to production in the new facility building Edison is back to production in the new facility building January 4, 2016 Edison is back online after about 5 weeks of downtime to...

  17. Search for Efficient Technologies and Products for Federal Facilities |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Products & Technologies » Technology Deployment » Efficient Technologies & Products » Search for Efficient Technologies and Products for Federal Facilities Search for Efficient Technologies and Products for Federal Facilities The Federal Energy Management Program provides information and resources about energy- and water-efficient technologies and products that can help agencies meet federal facility goals and requirements. Search for technologies and products

  18. Toda Material/Component Production Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt017_es_han_2012_p.pdf More Documents & Publications Toda Material/Component Production Facilities Toda Cathode Materials Production Facility Toda Material/Component Production Facilities

  19. Toda Material/Component Production Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt017_es_han_2011_p.pdf More Documents & Publications Toda Material/Component Production Facilities Toda Material/Component Production Facilities Toda Cathode Materials Production Facility

  20. Efficient Technologies and Products for Federal Facilities | Department of

    Office of Environmental Management (EM)

    Energy Technology Deployment » Efficient Technologies and Products for Federal Facilities Efficient Technologies and Products for Federal Facilities The Federal Energy Management Program (FEMP) provides a one-stop shop for finding energy- and water-efficient technologies and products that can help agenices meet federal facility goals and requirements. Find technologies and products by category or efficiency program below, or use the advanced search to sort by program, topic, or campaigns

  1. BASF Catalysts Opens Cathode Production Facility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BASF Catalysts Opens Cathode Production Facility BASF Catalysts Opens Cathode Production Facility March 5, 2015 - 6:27pm Addthis BASF Catalysts, a battery component manufacturer, is running the largest cathode materials manufacturing facility in the country with support from EERE's Vehicle Technologies Office (VTO). The factory was supported by a $25 million American Recovery and Reinvestment Act project. Located in Elyria, Ohio, the facility at full capacity is capable of producing 2,500 metric

  2. EA-1727: AE Polysilicon Corporation Polysilicon Production Facility in

    Office of Environmental Management (EM)

    Fairless Hills, PA | Department of Energy 7: AE Polysilicon Corporation Polysilicon Production Facility in Fairless Hills, PA EA-1727: AE Polysilicon Corporation Polysilicon Production Facility in Fairless Hills, PA November 1, 2010 EA-1727: Final Environmental Assessment Loan Guarantee To AE Polysilicon Corporation for Construction And Startup Of Their Phase 2 Polysilicon Production Facility In Fairless Hills, Pennsylvania November 19, 2010 EA-1727: Finding of No Significant Impact

  3. Decommissioning of U.S. Uranium Production Facilities

    Reports and Publications (EIA)

    1995-01-01

    This report analyzes the uranium production facility decommissioning process and its potential impact on uranium supply and prices. 1995 represents the most recent publication year.

  4. Stowe Power Production Plant Biomass Facility | Open Energy Informatio...

    Open Energy Info (EERE)

    Stowe Power Production Plant Sector Biomass Facility Type Landfill Gas Location Montgomery County, Pennsylvania Coordinates 40.2290075, -75.3878525 Show Map Loading map......

  5. EA-1727: AE Polysilicon Corporation Polysilicon Production Facility...

    Broader source: Energy.gov (indexed) [DOE]

    In Fairless Hills, Pennsylvania November 19, 2010 EA-1727: Finding of No Significant Impact Construction and Startup of their Phase 2 Polysilicon Production Facility in...

  6. Isotope production facility produces cancer-fighting actinium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cancer therapy gets a boost from new isotope Isotope production facility produces cancer-fighting actinium A new medical isotope project shows promise for rapidly producing major...

  7. KCP celebrates production milestone at new facility | National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    celebrates production milestone at new facility | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  8. ARM Climate Research Facility Quarterly Value-Added Product Report

    SciTech Connect (OSTI)

    Sivaraman, Chitra

    2014-11-21

    The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement (ARM) Climate Research Facility.

  9. Production and Injection data for NV Binary facilities

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mines, Greg

    Excel files are provided with well production and injection data for binary facilities in Nevada. The files contain the data that reported montly to the Nevada Bureau of Mines and Geology (NBMG) by the facility operators. this data has been complied into Excel spreadsheets for each of the facilities given on the NBMG web site.

  10. Production and Injection data for NV Binary facilities

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mines, Greg

    2013-12-24

    Excel files are provided with well production and injection data for binary facilities in Nevada. The files contain the data that reported montly to the Nevada Bureau of Mines and Geology (NBMG) by the facility operators. this data has been complied into Excel spreadsheets for each of the facilities given on the NBMG web site.

  11. Ceramic Membranes for Hydrogen/Oxygen Production - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Startup America Startup America Industrial Technologies Industrial Technologies Hydrogen and Fuel Cell Hydrogen and Fuel Cell Find More Like This Return to Search Ceramic Membranes for Hydrogen/Oxygen Production Ceramic Membranes Developed at Argonne May Bring Fuel-Cell Cars Closer to Reality Argonne National Laboratory Contact ANL About This Technology Technology Marketing Summary In the long term, hydrogen is expected to be the fuel of choice for both the

  12. Cost estimate for muddy water palladium production facility at Mound

    SciTech Connect (OSTI)

    McAdams, R.K.

    1988-11-30

    An economic feasibility study was performed on the ''Muddy Water'' low-chlorine content palladium powder production process developed by Mound. The total capital investment and total operating costs (dollars per gram) were determined for production batch sizes of 1--10 kg in 1-kg increments. The report includes a brief description of the Muddy Water process, the process flow diagram, and material balances for the various production batch sizes. Two types of facilities were evaluated--one for production of new, ''virgin'' palladium powder, and one for recycling existing material. The total capital investment for virgin facilities ranged from $600,000 --$1.3 million for production batch sizes of 1--10 kg, respectively. The range for recycle facilities was $1--$2.3 million. The total operating cost for 100% acceptable powder production in the virgin facilities ranged from $23 per gram for a 1-kg production batch size to $8 per gram for a 10-kg batch size. Similarly for recycle facilities, the total operating cost ranged from $34 per gram to $5 per gram. The total operating cost versus product acceptability (ranging from 50%--100% acceptability) was also evaluated for both virgin and recycle facilities. Because production sizes studied vary widely and because scale-up factors are unknown for batch sizes greater than 1 kg, all costs are ''order-of-magnitude'' estimates. All costs reported are in 1987 dollars.

  13. Edison is back to production in the new facility building

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    back to production in the new facility building Edison is back to production in the new facility building January 4, 2016 Edison is back online after about 5 weeks of downtime to move to a new facility building, Wang Hall, at the main Berkeley campus. The following are the changes: Edison's batch system is now Slurm. All your old job scripts (for Torque/Moab) will not work anymore. Please visit our Running Jobs page to learn how to run job scripts under Slurm. If you need help with migrating

  14. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities - An example of a probablistic solar forecast produced with PRESCIENT. Permalink Gallery Sandia Develops Stochastic Production Cost Model Simulator for Electric Power Systems Analysis, Capabilities, Computational Modeling & Simulation, DETL, Distribution Grid Integration, Energy, Facilities, Grid Integration, Modeling, Modeling, Modeling & Analysis, Modeling & Analysis, News, News & Events, Photovoltaic, Renewable Energy, Research & Capabilities, Solar, Solar

  15. Isotope production facility produces cancer-fighting actinium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cancer therapy gets a boost from new isotope Isotope production facility produces cancer-fighting actinium A new medical isotope project shows promise for rapidly producing major quantities of a new cancer-treatment agent, actinium 225 (Ac-225). April 11, 2012 Los Alamos scientist Meiring Nortier holds a thorium foil test target for the proof-of-concept production experiments. Los Alamos scientist Meiring Nortier holds a thorium foil test target for the proof-of-concept production experiments.

  16. U.S. Plutonium "Pit" Production: Additional Facilities, Production

    National Nuclear Security Administration (NNSA)

    Plutonium "Pit" Production: Additional Facilities, Production Restart are Unnecessary, Costly, and Provocative Greg Mello, 1/18/10 draft A strategy that conserves production capability in existing and nearly-completed Los Alamos facilities for the foreseeable future with neither stockpile production nor expansion of capacity, neither of which are needed, is the one that best minimizes risks, maximizes opportunities, harmonizes goals, and avoids waste of all kinds. Planning for

  17. Advanced integration concepts for oxygen plants and gas turbines in gasification/IGCC facilities

    SciTech Connect (OSTI)

    Smith, A.R.; Klosek, J.; Woodward, D.W.

    1996-12-31

    The commercialization of Integrated Gasification Combined-Cycle (IGCC) power has been aided by concepts involving the integration of a cryogenic air separation unit (ASU) with the gas turbine combined-cycle module. Other processes, such as coal-based ironmaking and combined power and industrial gas production facilities, can benefit from the integration of these two units. It is known and now widely accepted that an ASU designed for elevated pressure service and optimally integrated with the gas turbine can increase overall IGCC power output, increase overall efficiency, and decrease the net cost of power generation compared to non-integrated facilities employing low pressure ASU`s. Depending upon the specific gas turbine, gasification technology, NOx emission specification, and other site specific factors, various degrees of compressed air and nitrogen integration are optimal. Air Products has supplied ASU`s with no integration (Destec/Plaquemine IGCC), nitrogen-only integration (Tampa Electric/Polk County IGCC), and full air and nitrogen integration (Demkolec/Buggenum IGCC). Continuing advancements in both air separation and gas turbine technologies offer new integration opportunities to further improve performance and reduce costs. This paper will review basic integration principles and describe advanced concepts based on emerging high compression ratio gas turbines. Humid Air Turbine (HAT) cycles, and integration of compression heat and refrigeration sources from the ASU. Operability issues associated with integration will be reviewed and control measures described for the safe, efficient, and reliable operation of these facilities.

  18. Controlled temperature expansion in oxygen production by molten alkali metal salts

    DOE Patents [OSTI]

    Erickson, Donald C.

    1985-06-04

    A continuous process is set forth for the production of oxygen from an oxygen containing gas stream, such as air, by contacting a feed gas stream with a molten solution of an oxygen acceptor to oxidize the acceptor and cyclically regenerating the oxidized acceptor by releasing oxygen from the acceptor wherein the oxygen-depleted gas stream from the contact zone is treated sequentially to temperature reduction by heat exchange against the feed stream so as to condense out entrained oxygen acceptor for recycle to the process, combustion of the gas stream with fuel to elevate its temperature and expansion of the combusted high temperature gas stream in a turbine to recover power.

  19. Dow Kokam Lithium Ion Battery Production Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt006_es_pham_2012_p.pdf More Documents & Publications Dow Kokam Lithium Ion Battery Production Facilities Dow/Kokam Cell/Battery

  20. Dow Kokam Lithium Ion Battery Production Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt006_es_pham_2011_p.pdf More Documents & Publications Dow/Kokam Cell/Battery Production Facilities Dow Kokam Lithium Ion Battery

  1. Hanford, WA Selected as Plutonium Production Facility | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Hanford, WA Selected as Plutonium Production Facility | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases

  2. Summary of Historical Production for Nevada Binary Facilities

    SciTech Connect (OSTI)

    Mines, Greg; Hanson, Hillary

    2014-09-01

    The analysis described was initiated to validate inputs used in the US Department of Energys (DOE) economic modeling tool GETEM (Geothermal Electricity Technology Evaluation Model) by using publically available data to identify production trends at operating geothermal binary facilities in the state of Nevada. Data required for this analysis was obtained from the Nevada Bureau of Mines and Geology (NBMG), whom received the original operator reports from the Nevada Division of Minerals (NDOM). The data from the NBMG was inputted into Excel files that have been uploaded to the DOEs National Geothermal Data System (NGDS). Once data was available in an Excel format, production trends for individual wells and facilities could be established for the periods data was available (thru 2009). Additionally, this analysis identified relationships existing between production (temperature and flow rates), power production and plant conversion efficiencies. The data trends showed that temperature declines have a significant impact on power production, and that in some instances operators increased production flow rate to offset power declines. The production trends with time that were identified are being used to update GETEMs default inputs.

  3. ARM Climate Research Facility Quarterly Value-Added Product Report

    SciTech Connect (OSTI)

    Sivaraman, Chitra

    2014-01-14

    The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement Climate Research Facility. The report is divided into the following sections: (1) new VAPs for which development has begun, (2) progress on existing VAPs, (3) future VAPs that have been recently approved, (4) other work that leads to a VAP, and (5) top requested VAPs from the archive.

  4. ARM Climate Research Facility Quarterly Value-Added Product Report

    SciTech Connect (OSTI)

    Sivaraman, Chitra

    2013-07-31

    The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement Climate Research Facility. The report is divided into the following sections: (1) new VAPs for which development has begun, (2) progress on existing VAPs, (3) future VAPs that have been recently approved, (4) other work that leads to a VAP, and (5) top requested VAPs from the archive.

  5. Green Zia Application Sandia National Laboratories' Neutron Generator Production Facility

    SciTech Connect (OSTI)

    SAAD, MAX P.; RICHARDSON, ANASTASIA DAWN

    2003-03-01

    The Green Zia Environmental Excellence Program is a voluntary program designed to support and assist all New Mexico businesses to achieve environmental excellence through continuous improvement and effective energy management. The program encourages integration of environmental excellence into business operations and management practices through the establishment of a prevention-based environmental management system. The Neutron Generator Production Facility has participated in the Green Zia Environmental Excellence Program for two years. This document is the submittal application for inclusion in the 2003 Green Zia program year.

  6. Controlled temperature expansion in oxygen production by molten alkali metal salts

    DOE Patents [OSTI]

    Erickson, D.C.

    1985-06-04

    A continuous process is set forth for the production of oxygen from an oxygen containing gas stream, such as air, by contacting a feed gas stream with a molten solution of an oxygen acceptor to oxidize the acceptor and cyclically regenerating the oxidized acceptor by releasing oxygen from the acceptor wherein the oxygen-depleted gas stream from the contact zone is treated sequentially to temperature reduction by heat exchange against the feed stream so as to condense out entrained oxygen acceptor for recycle to the process, combustion of the gas stream with fuel to elevate its temperature and expansion of the combusted high temperature gas stream in a turbine to recover power. 1 fig.

  7. Moly99 Production Facility: Report on Beamline Components, Requirements, Costs

    SciTech Connect (OSTI)

    Bishofberger, Kip A.

    2015-12-23

    In FY14 we completed the design of the beam line for the linear accelerator production design concept. This design included a set of three bending magnets, quadrupole focusing magnets, and octopoles to flatten the beam on target. This design was generic and applicable to multiple different accelerators if necessary. In FY15 we built on that work to create specifications for the individual beam optic elements, including power supply requirements. This report captures the specification of beam line components with initial cost estimates for the NorthStar production facility.This report is organized as follows: The motivation of the beamline design is introduced briefly, along with renderings of the design. After that, a specific list is provided, which accounts for each beamline component, including part numbers and costs, to construct the beamline. After that, this report details the important sections of the beamline and individual components. A final summary and list of followon activities completes this report.

  8. Energy and materials flows in the production of liquid and gaseous oxygen

    SciTech Connect (OSTI)

    Shen, S.; Wolsky, A.M.

    1980-08-01

    Liquid and gaseous oxygen is produced in an energy-intensive air separation processo that also generates nitrogen. More than 65% of the cost of oxygen is attributable to energy costs. Energy use and materials flows are analyzed for various air separation methods. Effective approaches to energy and material conservation in air separation plants include efficient removal of contaminants (carbon dioxide and water), centralization of air products user-industries so that large air separation plants are cost-effective and the energy use in transportation is minimized, and increased production of nitrogen. Air separation plants can produce more than three times more nitrogen than oxygen, but present markets demand, at most, only 1.5 times more. Full utlization of liquid and gaseous nitrogen should be encouraged, so that the wasted separation energy is minimized. There are potential markets for nitrogen in, for example, cryogenic separation of metallic and plastic wastes, cryogenic particle size reduction, and production of ammonia for fertilizer.

  9. Lab Breakthrough: ADM Leads to Petroleum-Free Glycol Production Facility |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy ADM Leads to Petroleum-Free Glycol Production Facility Lab Breakthrough: ADM Leads to Petroleum-Free Glycol Production Facility May 22, 2012 - 9:38am Addthis Pacific Northwest National Laboratory discovered a viable way to deliver propylene glycol from feedstock, including glycerin byproducts. ADM licensed that technology and in 2010 completed construction and commissioning of its full-scale production facility for the sole purpose of commercializing the PGRS process.

  10. Property Tax Abatement for Production and Manufacturing Facilities

    Office of Energy Efficiency and Renewable Energy (EERE)

    Qualifying renewable energy manufacturing facilities are those that (1) produce materials, components or systems to convert solar, wind, geothermal, biomass, biogas or waste heat resources into...

  11. EERE Success Story—BASF Catalysts Opens Cathode Production Facility

    Broader source: Energy.gov [DOE]

    BASF Catalysts, a battery component manufacturer, is running the largest cathode materials manufacturing facility in the country with support from EERE’s Vehicle Technologies Office (VTO). The...

  12. Expanded North Carolina Lithium Facility Opens, Boosting U.S. Production of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a Key Manufacturing Material | Department of Energy North Carolina Lithium Facility Opens, Boosting U.S. Production of a Key Manufacturing Material Expanded North Carolina Lithium Facility Opens, Boosting U.S. Production of a Key Manufacturing Material June 29, 2012 - 12:28pm Addthis News Media Contact (202) 586-4940 WASHINGTON - Today, U.S. Energy Secretary Steven Chu recognized the opening of Rockwood Lithium's expanded manufacturing facility in Kings Mountain, North Carolina. Rockwood is

  13. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Facilities LANL's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Operator Los Alamos National Laboratory (505) 667-5061 Some LANL facilities are available to researchers at other laboratories, universities, and industry. Unique facilities foster experimental science, support LANL's security mission DARHT

  14. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Secure and Sustainable Energy Future Mission/Facilities - FacilitiesTara Camacho-Lopez2015-10-27T01:52:50+00:00 National Solar Thermal Test Facility (NSTTF) facility_nsttf_slide NSTTF's primary goal is to provide experimental engineering data for the design, construction, and operation of unique components and systems in proposed solar thermal electrical plants, which have three generic system architectures: line-focus (trough and continuous linear Fresnel reflector systems), point-focus central

  15. Dow/Kokam Cell/Battery Production Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dow/Kokam Cell/Battery Production Facilities Dow/Kokam Cell/Battery Production Facilities 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon esarravt006_pham_2010_p.pdf More Documents & Publications Dow Kokam Lithium Ion Battery

  16. Integrated production of fuel gas and oxygenated organic compounds from synthesis gas

    DOE Patents [OSTI]

    Moore, Robert B. (Allentown, PA); Hegarty, William P. (State College, PA); Studer, David W. (Wescosville, PA); Tirados, Edward J. (Easton, PA)

    1995-01-01

    An oxygenated organic liquid product and a fuel gas are produced from a portion of synthesis gas comprising hydrogen, carbon monoxide, carbon dioxide, and sulfur-containing compounds in a integrated feed treatment and catalytic reaction system. To prevent catalyst poisoning, the sulfur-containing compounds in the reactor feed are absorbed in a liquid comprising the reactor product, and the resulting sulfur-containing liquid is regenerated by stripping with untreated synthesis gas from the reactor. Stripping offgas is combined with the remaining synthesis gas to provide a fuel gas product. A portion of the regenerated liquid is used as makeup to the absorber and the remainder is withdrawn as a liquid product. The method is particularly useful for integration with a combined cycle coal gasification system utilizing a gas turbine for electric power generation.

  17. Performance Characterization of the Production Facility Prototype Helium Flow System

    SciTech Connect (OSTI)

    Woloshun, Keith Albert; Dale, Gregory E.; Dalmas, Dale Allen; Romero, Frank Patrick

    2015-12-16

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 ?A on each side of the target, 5.72 ?A total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was need for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GM 12.4 blower was selected, and is currently being installed at the LANL facility for target and component flow testing. This report describes this blower/motor/pressure vessel package and the status of the facility preparations. Blower performance (mass flow rate as a function of loop pressure drop) was measured at 4 blower speeds. Results are reported below.

  18. Algal Lipids and Omega-3 Production via Autotrophic and Heterotrophic Pathways at Cellana?s Kona Demonstration Facility, Hawaii

    SciTech Connect (OSTI)

    Bai, Xuemei; Knurek, Emily; Goes, Nikki; Griswold, Lynn

    2012-05-05

    Cellana?s Kona Demonstration Facility (KDF) is a 2.5 hectare facility, with 17,000 sq. ft. under roof and 1 hectare of cultivation systems. KDF is designed to execute and support all stages of the production process at pilot scale, from cultivation through extraction. Since Feb. 2009, KDF has been producing up to 0.7MT dry weight of algal biomass per month, while at the same time optimizing processes of cultivation, harvesting, dewatering and extraction. The cultivation system at KDF uses ALDUO? technology, a hybrid system of photobioreactors (PBRs) and open ponds. All fluid transfers related to KDF cultivation and harvesting processes are operated and monitored by a remote Process-Control System. Fluid transfer data, together with biochemical data, enable the mass balance calculations necessary to measure productivity. This poster summarizes methods to improve both biomass and lipids yield by 1) alleviating light limitation in open ponds, 2) de-oxygenation and 3) heterotrophic lipid production for post-harvesting cultures.

  19. Hydrogen Production and Dispensing Facility Opens at W. Va. Airport

    Broader source: Energy.gov [DOE]

    A hydrogen production and dispensing station constructed and operated with support from the Office of Fossil Energy's National Energy Technology Laboratory was officially opened Monday at the Yeager Airport in Charleston, W.Va.

  20. ARM Climate Research Facility Quarterly Value-Added Product Report...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    approved; (4) other work that leads to a VAP; (5) top requested VAPs from the ARM Data Archive; and (6) a summary of VAP and data releases to production and evaluation. New...

  1. Light-ion production in the interaction of 96 MeV neutrons with oxygen

    SciTech Connect (OSTI)

    Tippawan, U.; Pomp, S.; Atac, A.; Blomgren, J.; Dangtip, S.; Hildebrand, A.; Johansson, C.; Klug, J.; Mermod, P.; Oesterlund, M.; Bergenwall, B.; Nilsson, L.; Olsson, N.; Prokofiev, A.V.; Nadel-Turonski, P.; Corcalciuc, V.; Koning, A.J.

    2006-03-15

    Double-differential cross sections are reported for light-ion (p, d, t, {sup 3}He, and {alpha}) production in oxygen induced by 96 MeV neutrons. Energy spectra are measured at eight laboratory angles from 20 degree sign to 160 degree sign in steps of 20 degree sign . Procedures for data taking and data reduction are presented. Deduced energy-differential and production cross sections are reported. Experimental cross sections are compared to theoretical reaction model calculations and experimental data at lower neutron energies in the literature. The measured proton data agree reasonably well with the results of the model calculations, whereas the agreement for the other particles is less convincing. The measured production cross sections for protons, deuterons, tritons, and {alpha} particles support the trends suggested by data at lower energies.

  2. Wheeling for cogeneration and small power-production facilities

    SciTech Connect (OSTI)

    Tiano, J.R.; Zimmer, M.J.

    1982-01-01

    New problems have arisen over the ability to wheel power from decentralized cogeneration and small generation sources between electric utilities or between industrial facilities within a common geographical area. This article explores the historical and current positions of the Federal Power Commission, now the Federal Energy Regulatory Commission (FERC) as it has interpreted its authority under Part II of the Federal Power Act to order the wheeling of electric power. The authors also outline and discuss related antitrust issues which often arise within the context of wheeling and the possibilities of recognizing potential antitrust violations as a factor in promoting wheeling arrangements. Concluding that Congress will not address the issue, they recommend the negotiation of wheeling rates by project sponsors to introduce flexibility and avoid more regulation and costly antitrust litigation. 21 references.

  3. Feasibility of a digester gas fuel production facility

    SciTech Connect (OSTI)

    Dakes, G.; Greene, D.S.; Sheehan, J.F.

    1982-03-01

    Results of studies on the feasibility of using digester gas produced from wastewater sludge to fuel vehicles are reported. Availability and suitability of digester gas as well as digester gas production records and test analyses on digester gas were reviewed. The feasibility of the project based on economic and environmental considerations is reported and compared to possible alternative uses of the digester gas.

  4. Impact of Polymer Electrolyte Membrane Degradation Products on Oxygen Reduction Reaction Activity for Platinum Electrocatalysts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Christ, J. M.; Neyerlin, K. C.; Wang, H.; Richards, R.; Dinh, H. N.

    2014-10-30

    The impact of model membrane degradation compounds on the relevant electrochemical parameters for the oxygen reduction reaction (i.e. electrochemical surface area and catalytic activity), was studied for both polycrystalline Pt and carbon supported Pt electrocatalysts. Model compounds, representing previously published, experimentally determined polymer electrolyte membrane degradation products, were in the form of perfluorinated organic acids that contained combinations of carboxylic and/or sulfonic acid functionality. Perfluorinated carboxylic acids of carbon chain length C1 – C6 were found to have an impact on electrochemical surface area (ECA). The longest chain length acid also hindered the observed oxygen reduction reaction (ORR) performance, resultingmore » in a 17% loss in kinetic current (determined at 0.9 V). Model compounds containing sulfonic acid functional groups alone did not show an effect on Pt ECA or ORR activity. Lastly, greater than a 44% loss in ORR activity at 0.9V was observed for diacid model compounds DA-Naf (perfluoro(2-methyl-3-oxa-5-sulfonic pentanoic) acid) and DA-3M (perfluoro(4-sulfonic butanoic) acid), which contained both sulfonic and carboxylic acid functionalities.« less

  5. Oxygen analyzer

    DOE Patents [OSTI]

    Benner, William H. (Danville, CA)

    1986-01-01

    An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N.sub.2), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable oxygen obtained by decomposing the sample at 1135.degree. C., or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135.degree. C. as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N.sub.2, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

  6. Concentration Effects of Polymer Electrolyte Membrane Degradation Products on Oxygen Reduction Activity for Three Platinum Catalysts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Christ, J. M.; Neyerlin, K. C.; Richards, R.; Dinh, H. N.

    2014-10-04

    A rotating disk electrode (RDE) along with cyclic voltammetry (CV) and linear sweep voltammetry (LSV), were used to investigate the impact of two model compounds representing degradation products of Nafion and 3M perfluorinated sulfonic acid membranes on the electrochemical surface area (ECA) and oxygen reduction reaction (ORR) activity of polycrystalline Pt, nano-structured thin film (NSTF) Pt (3M), and Pt/Vulcan carbon (Pt/Vu) (TKK) electrodes. ORR kinetic currents (measured at 0.9 V and transport corrected) were found to decrease linearly with the log of concentration for both model compounds on all Pt surfaces studied. Ultimately, model compound adsorption effects on ECA weremore » more abstruse due to competitive organic anion adsorption on Pt surfaces superimposing with the hydrogen underpotential deposition (HUPD) region.« less

  7. An Integrated Assessment of Location-Dependent Scaling for Microalgae Biofuel Production Facilities

    SciTech Connect (OSTI)

    Coleman, Andre M.; Abodeely, Jared; Skaggs, Richard; Moeglein, William AM; Newby, Deborah T.; Venteris, Erik R.; Wigmosta, Mark S.

    2014-07-01

    Successful development of a large-scale microalgae-based biofuels industry requires comprehensive analysis and understanding of the feedstock supply chain—from facility siting/design through processing/upgrading of the feedstock to a fuel product. The evolution from pilot-scale production facilities to energy-scale operations presents many multi-disciplinary challenges, including a sustainable supply of water and nutrients, operational and infrastructure logistics, and economic competitiveness with petroleum-based fuels. These challenges are addressed in part by applying the Integrated Assessment Framework (IAF)—an integrated multi-scale modeling, analysis, and data management suite—to address key issues in developing and operating an open-pond facility by analyzing how variability and uncertainty in space and time affect algal feedstock production rates, and determining the site-specific “optimum” facility scale to minimize capital and operational expenses. This approach explicitly and systematically assesses the interdependence of biofuel production potential, associated resource requirements, and production system design trade-offs. The IAF was applied to a set of sites previously identified as having the potential to cumulatively produce 5 billion-gallons/year in the southeastern U.S. and results indicate costs can be reduced by selecting the most effective processing technology pathway and scaling downstream processing capabilities to fit site-specific growing conditions, available resources, and algal strains.

  8. Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles

    DOE Patents [OSTI]

    Cassano, Anthony A.

    1985-01-01

    A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs.

  9. Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles

    DOE Patents [OSTI]

    Cassano, A.A.

    1985-07-02

    A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs. 3 figs.

  10. Radiocesium Discharges and Subsequent Environmental Transport at the Major U.S. Weapons Production Facilities

    SciTech Connect (OSTI)

    Garten, Jr. C.T.; Hamby, D.M.; Schreckhise, R.G.

    1999-11-14

    Radiocesium is one of the more prevalent radionuclides in the environment as a result of weapons production related atomic projects in the United States and the former Soviet Union. Radiocesium discharges during the 1950's account for a large fraction of the historical releases from U.S. weapons production facilities. Releases of radiocesium to terrestrial and aquatic ecosystems during the early ,years of nuclear weapons production provided the opportunity to conduct multidisciplinary studies on the transport mechanisms of this potentially hazardous radionuclide. The major U.S. Department of Energy facilities (Oak Ridge Reservation in Tennessee, Hanford Site near Richland, Washington, and Savannah River Site near Aiken, South Carolina) are located in regions of the country that have different geographical characteristics. The facility siting provided diverse backgrounds for the development of an understanding of environmental factors contributing to the fate and transport of radiocesium. In this paper, we summarize the significant environmental releases of radiocesium in the early -years of weapons production and then discuss the historically significant transport mechanisms for r37Cs at the three facilities that were part of the U.S. nuclear weapons complex.

  11. Ethanol Demand in United States Production of Oxygenate-limited Gasoline

    SciTech Connect (OSTI)

    Hadder, G.R.

    2000-08-16

    Ethanol competes with methyl tertiary butyl ether (MTBE) to satisfy oxygen, octane, and volume requirements of certain gasolines. However, MTBE has water quality problems that may create significant market opportunities for ethanol. Oak Ridge National Laboratory (ORNL) has used its Refinery Yield Model to estimate ethanol demand in gasolines with restricted use of MTBE. Reduction of the use of MTBE would increase the costs of gasoline production and possibly reduce the gasoline output of U.S. refineries. The potential gasoline supply problems of an MTBE ban could be mitigated by allowing a modest 3 vol percent MTBE in all gasoline. In the U.S. East and Gulf Coast gasoline producing regions, the 3 vol percent MTBE option results in costs that are 40 percent less than an MTBE ban. In the U.S. Midwest gasoline producing region, with already high use of ethanol, an MTBE ban has minimal effect on ethanol demand unless gasoline producers in other regions bid away the local supply of ethanol. The ethanol/MTBE issue gained momentum in March 2000 when the Clinton Administration announced that it would ask Congress to amend the Clean Air Act to provide the authority to significantly reduce or eliminate the use of MTBE; to ensure that air quality gains are not diminished as MTBE use is reduced; and to replace the existing oxygenate requirement in the Clean Air Act with a renewable fuel standard for all gasoline. Premises for the ORNL study are consistent with the Administration announcement, and the ethanol demand curve estimates of this study can be used to evaluate the impact of the Administration principles and related policy initiatives.

  12. Oxygen analyzer

    DOE Patents [OSTI]

    Benner, W.H.

    1984-05-08

    An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N/sub 2/), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable obtained by decomposing the sample at 1135/sup 0/C, or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135/sup 0/C as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N/sub 2/, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

  13. Location of Natural Gas Production Facilities in the Gulf of Mexico

    Gasoline and Diesel Fuel Update (EIA)

    Location of Natural Gas Production Facilities in the Gulf of Mexico 2014 U.S. Energy Information Administration | Natural Gas Annual 102 1,179,714 4.6 Gulf of Mexico - Natural Gas 2011 Million Cu. Feet Percent of National Total Dry Production: Table S12. Summary statistics for natural gas - Gulf of Mexico, 2010-2014 Gulf of Mexico - Table S12 Federal Offshore Production trillion cubic feet 0 1 2 3 4 5 6 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

  14. Abatement of Xenon and Iodine Emissions from Medical Isotope Production Facilities

    SciTech Connect (OSTI)

    Doll, Charles G.; Sorensen, Christina M.; Bowyer, Ted W.; Friese, Judah I.; Hayes, James C.; Hoffman, Emma L.; Kephart, Rosara F.

    2014-04-01

    The capability of the International Monitoring System (IMS) to detect xenon from underground nuclear explosions is dependent on the radioactive xenon background. Adding to the background, medical isotope production (MIP) by fission releases several important xenon isotopes including xenon-133 and iodine-133 that decays to xenon-133. The amount of xenon released from these facilities may be equivalent to or exceed that released from an underground nuclear explosion. Thus the release of gaseous fission products within days of irradiation makes it difficult to distinguish MIP emissions from a nuclear explosion. In addition, recent shortages in molybdenum-99 have created interest and investment opportunities to design and build new MIP facilities in the United States and throughout the world. Due to the potential increase in the number of MIP facilities, a discussion of abatement technologies provides insight into how the problem of emission control from MIP facilities can be tackled. A review of practices is provided to delineate methods useful for abatement of medical isotopes.

  15. Low energy consumption method for separating gaseous mixtures and in particular for medium purity oxygen production

    DOE Patents [OSTI]

    Jujasz, Albert J. (North Olmsted, OH); Burkhart, James A. (Olmsted Falls, OH); Greenberg, Ralph (New York, NY)

    1988-01-01

    A method for the separation of gaseous mixtures such as air and for producing medium purity oxygen, comprising compressing the gaseous mixture in a first compressor to about 3.9-4.1 atmospheres pressure, passing said compressed gaseous mixture in heat exchange relationship with sub-ambient temperature gaseous nitrogen, dividing the cooled, pressurized gaseous mixture into first and second streams, introducing the first stream into the high pressure chamber of a double rectification column, separating the gaseous mixture in the rectification column into a liquid oxygen-enriched stream and a gaseous nitrogen stream and supplying the gaseous nitrogen stream for cooling the compressed gaseous mixture, removing the liquid oxygen-enriched stream from the low pressure chamber of the rectification column and pumping the liquid, oxygen-enriched steam to a predetermined pressure, cooling the second stream, condensing the cooled second stream and evaporating the oxygen-enriched stream in an evaporator-condenser, delivering the condensed second stream to the high pressure chamber of the rectification column, and heating the oxygen-enriched stream and blending the oxygen-enriched stream with a compressed blend-air stream to the desired oxygen concentration.

  16. MORTALITY AMONG WORKERS AT THE SAVANNAH RIVER NUCLEAR FUELS PRODUCTION FACILITY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MORTALITY AMONG WORKERS AT THE SAVANNAH RIVER NUCLEAR FUELS PRODUCTION FACILITY Donna L. Cragle and Janice P. Watkins, Center for Epidemiologic Research; Kathryn Robertson-DeMers, Bechtel Hanford, Inc. Donna Cragle, Oak Ridge Associated Universities, P.O. Box 117, Oak Ridge, TN 37831-0117 Key Words: mortality study, radiation exposure, leukemia, occupational cohort, trend test INTRODUCTION Since 1952 the Savannah River Site (SRS), located in Aiken, South Carolina, has operated as a Department of

  17. FOAM FORMATION IN THE SALTSTONE PRODUCTION FACILITY: EVALUATION OF SOURCES AND MITIGATION

    SciTech Connect (OSTI)

    Cozzi, A.

    2011-01-18

    The Saltstone Production Facility receives waste from Tank 50H for treatment. Influents into Tank 50H include the Effluent Treatment Project waste concentrate, H-Canyon low activity waste and General Purpose Evaporator bottoms, Modular Caustic Side Solvent Extraction Unit decontaminated salt solution, and salt solution from the Deliquification, Dissolution and Adjust campaign. Using the Waste Characterization System (WCS), this study tracks the relative amounts of each influent into Tank 50H, as well as the total content of Tank 50H, in an attempt to identify the source of foaming observed in the Saltstone Production Facility hopper. Saltstone has been using antifoam as part of routine processing with the restart of the facility in December 2006. It was determined that the maximum admix usage in the Saltstone Production Facility, both antifoam and set retarder, corresponded with the maximum concentration of H-Canyon low activity waste in Tank 50H. This paper also evaluates archived salt solutions from Waste Acceptance Criteria analysis for propensity to foam and the antifoam dosage required to mitigate foaming. It was determined that Effluent Treatment Project contributed to the expansion factor (foam formation) and General Purpose Evaporator contributed to foaminess (persistence). It was also determined that undissolved solids contribute to foam persistence. It was shown that additions of Dow Corning Q2-1383a antifoam reduced both the expansion factor and foaminess of salt solutions. The evaluation of foaming in the grout hopper during the transition from water to salt solution indicated that higher water-to-premix ratios tended to produce increased foaming. It was also shown that additions of Dow Corning Q2-1383a antifoam reduced foam formation and persistence.

  18. International technology exchange in support of the Defense Waste Processing Facility wasteform production

    SciTech Connect (OSTI)

    Kitchen, B.G.

    1989-08-23

    The nearly completed Defense Waste Processing Facility (DWPF) is a Department of Energy (DOE) facility at the Savannah River Site that is designed to immobilize defense high level radioactive waste (HLW) by vitrification in borosilicate glass and containment in stainless steel canisters suitable for storage in the future DOE HLW repository. The DWPF is expected to start cold operation later this year (1990), and will be the first full scale vitrification facility operating in the United States, and the largest in the world. The DOE has been coordinating technology transfer and exchange on issues relating to HLW treatment and disposal through bi-lateral agreements with several nations. For the nearly fifteen years of the vitrification program at Savannah River Laboratory, over two hundred exchanges have been conducted with a dozen international agencies involving about five-hundred foreign national specialists. These international exchanges have been beneficial to the DOE`s waste management efforts through confirmation of the choice of the waste form, enhanced understanding of melter operating phenomena, support for paths forward in political/regulatory arenas, confirmation of costs for waste form compliance programs, and establishing the need for enhancements of melter facility designs. This paper will compare designs and schedules of the international vitrification programs, and will discuss technical areas where the exchanges have provided data that have confirmed and aided US research and development efforts, impacted the design of the DWPF and guided the planning for regulatory interaction and product acceptance.

  19. International technology exchange in support of the Defense Waste Processing Facility wasteform production

    SciTech Connect (OSTI)

    Kitchen, B.G.

    1989-08-23

    The nearly completed Defense Waste Processing Facility (DWPF) is a Department of Energy (DOE) facility at the Savannah River Site that is designed to immobilize defense high level radioactive waste (HLW) by vitrification in borosilicate glass and containment in stainless steel canisters suitable for storage in the future DOE HLW repository. The DWPF is expected to start cold operation later this year (1990), and will be the first full scale vitrification facility operating in the United States, and the largest in the world. The DOE has been coordinating technology transfer and exchange on issues relating to HLW treatment and disposal through bi-lateral agreements with several nations. For the nearly fifteen years of the vitrification program at Savannah River Laboratory, over two hundred exchanges have been conducted with a dozen international agencies involving about five-hundred foreign national specialists. These international exchanges have been beneficial to the DOE's waste management efforts through confirmation of the choice of the waste form, enhanced understanding of melter operating phenomena, support for paths forward in political/regulatory arenas, confirmation of costs for waste form compliance programs, and establishing the need for enhancements of melter facility designs. This paper will compare designs and schedules of the international vitrification programs, and will discuss technical areas where the exchanges have provided data that have confirmed and aided US research and development efforts, impacted the design of the DWPF and guided the planning for regulatory interaction and product acceptance.

  20. Estimates of Radioxenon Released from Southern Hemisphere Medical isotope Production Facilities Using Measured Air Concentrations and Atmospheric Transport Modeling

    SciTech Connect (OSTI)

    Eslinger, Paul W.; Friese, Judah I.; Lowrey, Justin D.; McIntyre, Justin I.; Miley, Harry S.; Schrom, Brian T.

    2014-09-01

    Abstract The International Monitoring System (IMS) of the Comprehensive-Nuclear-Test-Ban-Treaty monitors the atmosphere for radioactive xenon leaking from underground nuclear explosions. Emissions from medical isotope production represent a challenging background signal when determining whether measured radioxenon in the atmosphere is associated with a nuclear explosion prohibited by the treaty. The Australian Nuclear Science and Technology Organisation (ANSTO) operates a reactor and medical isotope production facility in Lucas Heights, Australia. This study uses two years of release data from the ANSTO medical isotope production facility and Xe-133 data from three IMS sampling locations to estimate the annual releases of Xe-133 from medical isotope production facilities in Argentina, South Africa, and Indonesia. Atmospheric dilution factors derived from a global atmospheric transport model were used in an optimization scheme to estimate annual release values by facility. The annual releases of about 6.81014 Bq from the ANSTO medical isotope production facility are in good agreement with the sampled concentrations at these three IMS sampling locations. Annual release estimates for the facility in South Africa vary from 1.21016 to 2.51016 Bq and estimates for the facility in Indonesia vary from 6.11013 to 3.61014 Bq. Although some releases from the facility in Argentina may reach these IMS sampling locations, the solution to the objective function is insensitive to the magnitude of those releases.

  1. Hydrogen Production in Radioactive Solutions in the Defense Waste Processing Facility

    SciTech Connect (OSTI)

    CRAWFORD, CHARLES L.

    2004-05-26

    In the radioactive slurries and solutions to be processed in the Defense Waste Processing Facility (DWPF), hydrogen will be produced continuously by radiolysis. This production results from alpha, beta, and gamma rays from decay of radionuclides in the slurries and solutions interacting with the water. More than 1000 research reports have published data concerning this radiolytic production. The results of these studies have been reviewed in a comprehensive monograph. Information about radiolytic hydrogen production from the different process tanks is necessary to determine air purge rates necessary to prevent flammable mixtures from accumulating in the vapor spaces above these tanks. Radiolytic hydrogen production rates are usually presented in terms of G values or molecules of hydrogen produced per 100ev of radioactive decay energy absorbed by the slurry or solution. With the G value for hydrogen production, G(H2), for a particular slurry and the concentrations of radioactive species in that slurry, the rate of H2 production for that slurry can be calculated. An earlier investigation estimated that the maximum rate that hydrogen could be produced from the sludge slurry stream to the DWPF is with a G value of 0.45 molecules per 100ev of radioactive decay energy sorbed by the slurry.

  2. Compendium of Low-Cost Pacific Salmon and Steelhead Trout Production Facilities and Practices in the Pacific Northwest.

    SciTech Connect (OSTI)

    Senn, Harry G.

    1984-09-01

    The purpose was to research low capital cost salmon and steelhead trout production facilities and identify those that conform with management goals for the Columbia Basin. The species considered were chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch), sockeye salmon (O. nerka), and steelhead trout (Salmo gairdneri). This report provides a comprehensive listing of the facilities, techniques, and equipment used in artificial production in the Pacific Northwest. (ACR)

  3. Demonstration of two-beam acceleration and 30 GHz power production in the CLIC Test Facility

    SciTech Connect (OSTI)

    Bossart, R.; Braun, H. H.; Carron, G.; Chanudet, M.; Chautard, F.; Delahaye, J. P.; Godot, J. C.; Hutchins, S.; Martinez, C.; Suberlucq, G.; Tenenbaum, P.; Thorndahl, L.; Trautner, H.; Valentini, M.; Wilson, I.; Wuensch, W. [CERN, 1211 Geneva 23 (Switzerland)

    1999-05-07

    The Compact Linear Collider (CLIC) Test Facility (CTF II) at CERN has recently demonstrated Two-Beam power production and acceleration at 30 GHz. With 41 MW of 30 GHz power produced in 14 ns pulses at a repetition rate of 5 Hz, the main beam has been accelerated by 28 MeV. The 30 GHz RF power is extracted in low impedance decelerating structures from a low-energy, high-current 'drive beam' which runs parallel to the main beam. The average current in the drive-beam train is 25 A, while the peak current exceeds 2 kA. Crosschecks between measured drive-beam charge, 30 GHz power and main-beam energy gain are in good agreement. In this paper, some relevant experimental and technical issues on drive-beam generation, two-beam power production and acceleration are presented.

  4. Coeur d'Alene Tribal Production Facility, Volume I of III, 2002-2003 Progress Report.

    SciTech Connect (OSTI)

    Anders, Paul

    2003-01-01

    In fulfillment of the NWPPC's 3-Step Process for the implementation of new hatcheries in the Columbia Basin, this Step 1 submission package to the Council includes four items: (1) Cover letter from the Coeur d'Alene Tribe, Interdisciplinary Team Chair, and the USFWS; (2) References to key information (Attachments 1-4); (3) The updated Master Plan for the Tribe's native cutthroat restoration project; and (4) Appendices. In support of the Master Plan submitted by the Coeur d'Alene Tribe the reference chart (Item 2) was developed to allow reviewers to quickly access information necessary for accurate peer review. The Northwest Power Planning Council identified pertinent issues to be addressed in the master planning process for new artificial production facilities. References to this key information are provided in three attachments: (1) NWPPC Program language regarding the Master Planning Process, (2) Questions Identified in the September 1997 Council Policy, and (3) Program language identified by the Council's Independent Scientific Review Panel (ISRP). To meet the need for off-site mitigation for fish losses on the mainstem Columbia River, in a manner consistent with the objectives of the Council's Program, the Coeur d'Alene Tribe is proposing that the BPA fund the design, construction, operation, and maintenance of a trout production facility located adjacent to Coeur d'Alene Lake on the Coeur d'Alene Indian Reservation. The updated Master Plan (Item 3) represents the needs associated with the re-evaluation of the Coeur d'Alene Tribe's Trout Production Facility (No.199004402). This plan addresses issues and concerns expressed by the NWPPC as part of the issue summary for the Mountain Columbia provincial review, and the 3-step hatchery review process. Finally, item 4 (Appendices) documents the 3-Step process correspondence to date between the Coeur d'Alene Tribe and additional relevant entities. Item 4 provides a chronological account of previous ISRP reviews, official Coeur d'Alene fisheries program responses to a series of ISRP reviews, master planning documentation, and annual reports dating back to 1990. Collectively, the materials provided by the Coeur d'Alene Tribe in this Step-1 submission package comprehensively assesses key research, habitat improvement activities, and hatchery production issues to best protect and enhance native cutthroat trout populations and the historically and culturally important tribal fisheries they support.

  5. Method of producing metallized chloroplasts and use thereof in the photochemical production of hydrogen and oxygen

    DOE Patents [OSTI]

    Greenbaum, Elias (Oak Ridge, TN)

    1987-01-01

    The invention is primarily a metallized chloroplast composition for use in a photosynthetic reaction. A catalytic metal is precipitated on a chloroplast membrane at the location where a catalyzed reduction reaction occurs. This metallized chloroplast is stabilized by depositing it on a support medium such as fiber so that it can be easily handled. A possible application of this invention is the splitting of water to form hydrogen and oxygen that can be used as a renewable energy source.

  6. Facility Floorplan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility Floorplan

  7. Determining the Cause of a Header Failure in a Natural Gas Production Facility

    SciTech Connect (OSTI)

    Matthes, S.A.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.; Holcomb, G.R.

    2007-03-01

    An investigation was made into the premature failure of a gas-header at the Rocky Mountain Oilfield Testing Center (RMOTC) natural gas production facility. A wide variety of possible failure mechanisms were considered: design of the header, deviation from normal pipe alloy composition, physical orientation of the header, gas composition and flow rate, type of corrosion, protectiveness of the interior oxide film, time of wetness, and erosion-corrosion. The failed header was examined using metallographic techniques, scanning electron microscopy, and microanalysis. A comparison of the failure site and an analogous site that had not failed, but exhibited similar metal thinning was also performed. From these studies it was concluded that failure resulted from erosion-corrosion, and that design elements of the header and orientation with respect to gas flow contributed to the mass loss at the failure point.

  8. The production of carbon nanofibers and thin films on palladium catalysts from ethylene oxygen mixtures

    SciTech Connect (OSTI)

    Phillips, Jonathan; Doorn, Stephen; Atwater, Mark; Leseman, Zayd; Luhrs, Claudia C; Diez, Yolanda F; Diaz, Angel M

    2009-01-01

    The characteristics of carbonaceous materials deposited in fuel rich ethylene-oxygen mixtures on three types of palladium: foil, sputtered film, and nanopowder, are reported. It was found that the form of palladium has a dramatic influence on the morphology of the deposited carbon. In particular, on sputtered film and powder, tight 'weaves' of sub-micron filaments formed quickly. In contrast, on foils under identical conditions, the dominant morphology is carbon thin films with basal planes oriented parallel to the substrate surface. Temperature, gas flow rate, reactant flow ratio (C2H4:02), and residence time (position) were found to influence both growth rate and type for all three forms of Pd. X-ray diffraction, high-resolution transmission electron microscopy, temperature-programmed oxidation, and Raman spectroscopy were used to assess the crystallinity of the as-deposited carbon, and it was determined that transmission electron microscopy and x-ray diffraction were the most reliable methods for determining crystallinity. The dependence of growth on reactor position, and the fact that no growth was observed in the absence of oxygen support the postulate that the carbon deposition proceeds by combustion generated radical species.

  9. Low oxygen levels contribute to improve photohydrogen production in mixotrophic non-stressed Chlamydomonas cultures

    SciTech Connect (OSTI)

    Jurado-Oller, Jose Luis; Dubini, Alexandra; Galvan, Aurora; Fernandez, Emilio; Gonzalez-Ballester, David

    2015-09-17

    Currently, hydrogen fuel is derived mainly from fossil fuels, but there is an increasing interest in clean and sustainable technologies for hydrogen production. In this context, the ability of some photosynthetic microorganisms, particularly cyanobacteria and microalgae, to produce hydrogen is a promising alternative for renewable, clean-energy production. Among a diverse array of photosynthetic microorganisms able to produce hydrogen, the green algae Chlamydomonas reinhardtii is the model organism widely used to study hydrogen production. Furthermore, the well-known fact that acetate-containing medium enhances hydrogen production in this algae, little is known about the precise role of acetate during this process.

  10. Low oxygen levels contribute to improve photohydrogen production in mixotrophic non-stressed Chlamydomonas cultures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jurado-Oller, Jose Luis; Dubini, Alexandra; Galvan, Aurora; Fernandez, Emilio; Gonzalez-Ballester, David

    2015-09-17

    Currently, hydrogen fuel is derived mainly from fossil fuels, but there is an increasing interest in clean and sustainable technologies for hydrogen production. In this context, the ability of some photosynthetic microorganisms, particularly cyanobacteria and microalgae, to produce hydrogen is a promising alternative for renewable, clean-energy production. Among a diverse array of photosynthetic microorganisms able to produce hydrogen, the green algae Chlamydomonas reinhardtii is the model organism widely used to study hydrogen production. Furthermore, the well-known fact that acetate-containing medium enhances hydrogen production in this algae, little is known about the precise role of acetate during this process.

  11. Synthesis of oxygenate products for high volume fuels applications. Quarterly technical progress report, November 1, 1994--January 31, 1995

    SciTech Connect (OSTI)

    1995-03-08

    The objective of this project is to develop high yield syntheses of oxygenate products that are liquid at room temperature using as starting materials dimethy ether (DME) or methanol. The identified products include: Dimethyl Carbonate (DMC), 1,1-Dimethoxyethane (DMOE), C{sub 2}{sup +} Alcohols/Ethers (C{sub 2}AE). The technical strategy is outlined below: (A) Synthesis of DMC via oxidative carbonylation of DME instead of methanol. Since this synthesis would not co-produce water as a byproduct, there is a potential for very high DME conversions in contrast to the low (ca 20%) conversions obtained in conventional plants. Technical emphasis will be placed on development of a supported copper catalyst with a capability for cleavage of DME into its chemisorbed organic moieties. (B) Synthesis of 1,1-dimethoxymethane (DMOE) from acetylene/CO/H{sub 2} process streams obtained from commercial methane oxidative pyrolysis processes. In the overall processing scheme the syngas would be converted to DME. The wet acetylene stream would be partially condensed to retain an equivalent of water and then condensed with DME to produce EMOE. (C) Direct conversion of DME or DME/methanol to ethanol/propanol or their methyl ethers. Under the influence of functionalized alcohol condensation catalysts developed exclusively at Amoco it should be possible to achieve direct conversion of dimethyl ether (or methanol) to ethanol/propanol and/or the methyl ethers of these alcohols. Although this reaction is not currently known, a combination of key catalyst components from identified systems should result in a DME conversion catalyst to C{sub 2}+ oxygenates. (D) Reaction of DME or acetylene with synthesis gas (CO/H{sub 2}) or methanol. A variety of catalysts will be tested for conversion of acetylene/CO/H{sub 2} or acetylene/methanol to propylene and conversion of DME/CO/H{sub 2} or DME/methanol to dimenthyoxymethane (DMM) and/or other oxygenates.

  12. Commercial demonstration of atmospheric medium BTU fuel gas production from biomass without oxygen the Burlington, Vermont Project

    SciTech Connect (OSTI)

    Rohrer, J.W.

    1995-12-31

    The first U.S. demonstration of a gas turbine operating on fuel gas produced by the thermal gasification of biomass occurred at Battelle Columbus Labs (BCL) during 1994 using their high throughput indirect medium Btu gasification Process Research Unit (PRU). Zurn/NEPCO was retained to build a commercial scale gas plant utilizing this technology. This plant will have a throughput rating of 8 to 12 dry tons per hour. During a subsequent phase of the Burlington project, this fuel gas will be utilized in a commercial scale gas turbine. It is felt that this process holds unique promise for economically converting a wide variety of biomass feedstocks efficiently into both a medium Btu (500 Btu/scf) gas turbine and IC engine quality fuel gas that can be burned in engines without modification, derating or efficiency loss. Others are currently demonstrating sub-commercial scale thermal biomass gasification processes for turbine gas, utilizing both atmospheric and pressurized air and oxygen-blown fluid bed processes. While some of these approaches hold merit for coal, there is significant question as to whether they will prove economically viable in biomass facilities which are typically scale limited by fuel availability and transportation logistics below 60 MW. Atmospheric air-blown technologies suffer from large sensible heat loss, high gas volume and cleaning cost, huge gas compressor power consumption and engine deratings. Pressurized units and/or oxygen-blown gas plants are extremely expensive for plant scales below 250 MW. The FERCO/BCL process shows great promise for overcoming the above limitations by utilizing an extremely high throughout circulation fluid bed (CFB) gasifier, in which biomass is fully devolitalized with hot sand from a CFB char combustor. The fuel gas can be cooled and cleaned by a conventional scrubbing system. Fuel gas compressor power consumption is reduced 3 to 4 fold verses low Btu biomass gas.

  13. Probabilistic Risk Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems

    SciTech Connect (OSTI)

    Greg Thoma; John Veil; Fred Limp; Jackson Cothren; Bruce Gorham; Malcolm Williamson; Peter Smith; Bob Sullivan

    2009-05-31

    This report describes work performed during the initial period of the project 'Probabilistic Risk Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems.' The specific region that is within the scope of this study is the Fayetteville Shale Play. This is an unconventional, tight formation, natural gas play that currently has approximately 1.5 million acres under lease, primarily to Southwestern Energy Incorporated and Chesapeake Energy Incorporated. The currently active play encompasses a region from approximately Fort Smith, AR east to Little Rock, AR approximately 50 miles wide (from North to South). The initial estimates for this field put it almost on par with the Barnett Shale play in Texas. It is anticipated that thousands of wells will be drilled during the next several years; this will entail installation of massive support infrastructure of roads and pipelines, as well as drilling fluid disposal pits and infrastructure to handle millions of gallons of fracturing fluids. This project focuses on gas production in Arkansas as the test bed for application of proactive risk management decision support system for natural gas exploration and production. The activities covered in this report include meetings with representative stakeholders, development of initial content and design for an educational web site, and development and preliminary testing of an interactive mapping utility designed to provide users with information that will allow avoidance of sensitive areas during the development of the Fayetteville Shale Play. These tools have been presented to both regulatory and industrial stakeholder groups, and their feedback has been incorporated into the project.

  14. Carbon Capture and Sequestration from a Hydrogen Production Facility in an Oil Refinery

    SciTech Connect (OSTI)

    Engels, Cheryl; Williams, Bryan, Valluri, Kiranmal; Watwe, Ramchandra; Kumar, Ravi; Mehlman, Stewart

    2010-06-21

    The project proposed a commercial demonstration of advanced technologies that would capture and sequester CO2 emissions from an existing hydrogen production facility in an oil refinery into underground formations in combination with Enhanced Oil Recovery (EOR). The project is led by Praxair, Inc., with other project participants: BP Products North America Inc., Denbury Onshore, LLC (Denbury), and Gulf Coast Carbon Center (GCCC) at the Bureau of Economic Geology of The University of Texas at Austin. The project is located at the BP Refinery at Texas City, Texas. Praxair owns and operates a large hydrogen production facility within the refinery. As part of the project, Praxair would construct a CO2 capture and compression facility. The project aimed at demonstrating a novel vacuum pressure swing adsorption (VPSA) based technology to remove CO2 from the Steam Methane Reformers (SMR) process gas. The captured CO2 would be purified using refrigerated partial condensation separation (i.e., cold box). Denbury would purchase the CO2 from the project and inject the CO2 as part of its independent commercial EOR projects. The Gulf Coast Carbon Center at the Bureau of Economic Geology, a unit of University of Texas at Austin, would manage the research monitoring, verification and accounting (MVA) project for the sequestered CO2, in conjunction with Denbury. The sequestration and associated MVA activities would be carried out in the Hastings field at Brazoria County, TX. The project would exceed DOE?s target of capturing one million tons of CO2 per year (MTPY) by 2015. Phase 1 of the project (Project Definition) is being completed. The key objective of Phase 1 is to define the project in sufficient detail to enable an economic decision with regard to proceeding with Phase 2. This topical report summarizes the administrative, programmatic and technical accomplishments completed in Phase 1 of the project. It describes the work relative to project technical and design activities (associated with CO2 capture technologies and geologic sequestration MVA), and Environmental Information Volume. Specific accomplishments of this Phase include: 1. Finalization of the Project Management Plan 2. Development of engineering designs in sufficient detail for defining project performance and costs 3. Preparation of Environmental Information Volume 4. Completion of Hazard Identification Studies 5. Completion of control cost estimates and preparation of business plan During the Phase 1 detailed cost estimate, project costs increased substantially from the previous estimate. Furthermore, the detailed risk assessment identified integration risks associated with potentially impacting the steam methane reformer operation. While the Phase 1 work identified ways to mitigate these integration risks satisfactorily from an operational perspective, the associated costs and potential schedule impacts contributed to the decision not to proceed to Phase 2. We have concluded that the project costs and integration risks at Texas City are not commensurate with the potential benefits of the project at this time.

  15. Solid Fuel - Oxygen Fired Combustion for Production of Nodular Reduced Iron to Reduce CO2 Emissions and Improve Energy Efficiencies

    SciTech Connect (OSTI)

    Donald R. Fosnacht; Richard F. Kiesel; David W. Hendrickson; David J. Englund; Iwao Iwasaki; Rodney L. Bleifuss; Mathew A. Mlinar

    2011-12-22

    The current trend in the steel industry is an increase in iron and steel produced in electric arc furnaces (EAF) and a gradual decline in conventional steelmaking from taconite pellets in blast furnaces. In order to expand the opportunities for the existing iron ore mines beyond their blast furnace customer base, a new material is needed to satisfy the market demands of the emerging steel industry while utilizing the existing infrastructure and materials handling capabilities. This demand creates opportunity to convert iron ore or other iron bearing materials to Nodular Reduced Iron (NRI) in a recently designed Linear Hearth Furnace (LHF). NRI is a metallized iron product containing 98.5 to 96.0% iron and 2.5 to 4% C. It is essentially a scrap substitute with little impurity that can be utilized in a variety of steelmaking processes, especially the electric arc furnace. The objective of this project was to focus on reducing the greenhouse gas emissions (GHG) through reducing the energy intensity using specialized combustion systems, increasing production and the use of biomass derived carbon sources in this process. This research examined the use of a solid fuel-oxygen fired combustion system and compared the results from this system with both oxygen-fuel and air-fuel combustion systems. The solid pulverized fuels tested included various coals and a bio-coal produced from woody biomass in a specially constructed pilot scale torrefaction reactor at the Coleraine Minerals Research Laboratory (CMRL). In addition to combustion, the application of bio-coal was also tested as a means to produce a reducing atmosphere during key points in the fusion process, and as a reducing agent for ore conversion to metallic iron to capture the advantage of its inherent reduced carbon footprint. The results from this study indicate that the approaches taken can reduce both greenhouse gas emissions and the associated energy intensity with the Linear Hearth Furnace process for converting iron ore to metallic iron nodules. Various types of coals including a bio-coal produced though torrefaction can result in production of NRI at reduced GHG levels. The process results coupled with earlier already reported developments indicate that this process technique should be evaluated at the next level in order to develop parameter information for full scale process design. Implementation of the process to full commercialization will require a full cost production analysis and comparison to other reduction technologies and iron production alternatives. The technical results verify that high quality NRI can be produced under various operating conditions at the pilot level.

  16. ARM Climate Research Facility Quarterly Value-Added Product Report January 1–March 30, 2011

    SciTech Connect (OSTI)

    Sivaraman, C

    2011-06-14

    The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement Climate Research Facility. The report is divided into the following sections: (1) new VAPs for which development has begun, (2) progress on existing VAPs, and (3) future VAPs that have been recently approved.

  17. Liquid Fuel From Bacteria: Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from CO2, Hydrogen, and Oxygen

    SciTech Connect (OSTI)

    2010-07-15

    Electrofuels Project: MIT is using solar-derived hydrogen and common soil bacteria called Ralstonia eutropha to turn carbon dioxide (CO2) directly into biofuel. This bacteria already has the natural ability to use hydrogen and CO2 for growth. MIT is engineering the bacteria to use hydrogen to convert CO2 directly into liquid transportation fuels. Hydrogen is a flammable gas, so the MIT team is building an innovative reactor system that will safely house the bacteria and gas mixture during the fuel-creation process. The system will pump in precise mixtures of hydrogen, oxygen, and CO2, and the online fuel-recovery system will continuously capture and remove the biofuel product.

  18. Coeur d'Alene Tribal Production Facility, Volume II of III, 2002-2003 Progress Report.

    SciTech Connect (OSTI)

    Anders, Paul

    2003-01-01

    This appendices covers the following reports: (1) Previous ISRP Reviews (Project 199004400) Implement Fisheries Enhancement Opportunities-Coeur d'Alene Reservation; (2) Step 1 review of the hatchery master plan (Memorandum from Mark Fritsch, Fish Production Coordinator, Draft version March 10, 2000); (3) Coeur d'Alene Tribe response to ISRP comments on Project No. 199004402; includes attachment A Water Quantity Report. This is an incomplete document Analysis of Well Yield Potential for a Portion of the Coeur d'Alene Reservation near Worley, Idaho, February 2001; (4) Coeur d'Alene Tribe Fisheries Program, Rainbow Trout Feasibility Report on the Coeur d'Alene Indian Reservation prepared by Ronald L. Peters, February 2001; (5) Coeur d'Alene Tribe response letter pursuant to the questions raised in the Step 1 review of the Coeur d'Alene Tribe Trout Production Facility from Ronald L. Peters, March 27, 2001 ; includes attachments Water quantity report (this is the complete report), Appendix A Logs for Test Wells and 1999 Worley West Park Well, letters from Ralston, Appendix B Cost of Rainbow Purchase Alternative; (6) NPPC response (memorandum from Mark Fritsch, March 28, 2001); (7) Response to NPPC (letter to Frank Cassidy, Jr., Chair, from Ernest L. Stensgar, April 18, 2001); (8) Final ISRP review (ISRP 2001-4: Mountain Columbia Final Report); (9) Response to ISRP comment (letter to Mark Walker, Director of Public Affairs, from Ronald Peters, May 7, 2001); (10) Final comments to the Fish 4 committee; (11) Scope of Work/Budget FY 2001-2004; (12) Letter from City of Worley concerning water service; (13) Letter to BPA regarding status of Step 1 package; (14) Fisheries Habitat Evaluation on Tributaries of the Coeur d'Alene Indian Reservation, 1990 annual report; (15) Fisheries Habitat Evaluation on Tributaries of the Coeur d'Alene Indian Reservation, 1991 annual report; and (16) Fisheries Habitat Evaluation on Tributaries of the Coeur d'Alene Indian Reservation, 1992 annual report.

  19. Pilot-Scale Demonstration of Pefi's Oxygenated Transportation Fuels Production Technology

    SciTech Connect (OSTI)

    2005-05-01

    Coal-cleaning processes have been utilized to increase the heating value of coal by extracting ash-forming minerals in the coal. These processes involve the crushing or grinding of raw coal followed by physical separation processes, taking advantage of the density difference between carbonaceous particles and mineral particles. In addition to the desired increase in the heating value of coal, a significant reduction of the sulfur content of the coal fed to a combustion unit is effected by the removal of pyrite and other sulfides found in the mineral matter. WRI is assisting PulseWave to develop an alternate, more efficient method of liberating and separating the undesirable mineral matter from the carbonaceous matter in coal. The approach is based on PulseWave's patented resonance disintegration technology that reduces that particle size of materials by application of destructive resonance, shock waves, and vortex generating forces. Illinois No.5 coal, a Wyodak coal, and a Pittsburgh No.8 coal were processed using the resonance disintegration apparatus then subjected to conventional density separations. Initial microscopic results indicate that up to 90% of the pyrite could be liberated from the coal in the machine, but limitations in the density separations reduced overall effectiveness of contaminant removal. Approximately 30-80% of the pyritic sulfur and 30-50% of the mercury was removed from the coal. The three coals (both with and without the pyritic phase separated out) were tested in WRI's 250,000 Btu/hr Combustion Test Facility, designed to replicate a coal-fired utility boiler. The flue gases were characterized for elemental, particle bound, and total mercury in addition to sulfur. The results indicated that pre-combustion cleaning could reduce a large fraction of the mercury emissions.

  20. Science Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities /science-innovation/_assets/images/icon-science.jpg Science Facilities The focal point for basic and applied R&D programs with a primary focus on energy but also encompassing medical, biotechnology, high-energy physics, and advanced scientific computing programs. Center for Integrated Nanotechnologies» Dual Axis Radiographic Hydrodynamic Test Facility (DARHT)» Electron Microscopy Lab» Ion Beam Materials Lab» Isotope Production Facility» Los Alamos Neutron Science Center»

  1. Screening study for waste biomass to ethanol production facility using the Amoco process in New York State. Final report

    SciTech Connect (OSTI)

    1995-08-01

    This report evaluates the economic feasibility of locating biomass-to-ethanol waste conversion facilities in New York State. Part 1 of the study evaluates 74 potential sites in New York City and identifies two preferred sites on Staten, the Proctor Gamble and the Arthur Kill sites, for further consideration. Part 2 evaluates upstate New York and determines that four regions surrounding the urban centers of Albany, Buffalo, Rochester, and Syracuse provide suitable areas from which to select specific sites for further consideration. A separate Appendix provides supplemental material supporting the evaluations. A conceptual design and economic viability evaluation were developed for a minimum-size facility capable of processing 500 tons per day (tpd) of biomass consisting of wood or paper, or a combination of the two for upstate regions. The facility would use Amoco`s biomass conversion technology and produce 49,000 gallons per day of ethanol and approximately 300 tpd of lignin solid by-product. For New York City, a 1,000-tpd processing facility was also evaluated to examine effects of economies of scale. The reports evaluate the feasibility of building a biomass conversion facility in terms of city and state economic, environmental, and community factors. Given the data obtained to date, including changing costs for feedstock and ethanol, the project is marginally attractive. A facility should be as large as possible and located in a New York State Economic Development Zone to take advantage of economic incentives. The facility should have on-site oxidation capabilities, which will make it more financially viable given the high cost of energy. 26 figs., 121 tabs.

  2. Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from Carbon Dioxide, Hydrogen, and Oxygen Project Final Report

    SciTech Connect (OSTI)

    Sinskey, Anthony J.; Worden, Robert Mark; Brigham, Christopher; Lu, Jingnan; Quimby, John Westlake; Gai, Claudia; Speth, Daan; Elliott, Sean; Fei, John Qiang; Bernardi, Amanda; Li, Sophia; Grunwald, Stephan; Grousseau, Estelle; Maiti, Soumen; Liu, Chole

    2013-12-16

    This research project is a collaboration between the Sinskey laboratory at MIT and the Worden laboratory at Michigan State University. The goal of the project is to produce Isobutanol (IBT), a branched-chain alcohol that can serve as a drop-in transportation fuel, through the engineered microbial biosynthesis of Carbon Dioxide, Hydrogen, and Oxygen using a novel bioreactor. This final technical report presents the findings of both the biological engineering work at MIT that extended the native branched-chain amino acid pathway of the wild type Ralstonia eutropha H16 to perform this biosynthesis, as well as the unique design, modeling, and construction of a bioreactor for incompatible gasses at Michigan State that enabled the operational testing of the complete system. This 105 page technical report summarizing the three years of research includes 72 figures and 11 tables of findings. Ralstonia eutropha (also known as Cupriavidus necator) is a Gram-negative, facultatively chemolithoautotrophic bacteria. It has been the principle organism used for the study of polyhydroxybutyrate (PHB) polymer biosynthesis. The wild-type Ralstonia eutropha H16 produces PHB as an intracellular carbon storage material while under nutrient stress in the presence of excess carbon. Under this stress, it can accumulate approximately 80 % of its cell dry weight (CDW) as this intracellular polymer. With the restoration of the required nutrients, the cells are then able to catabolize this polymer. If extracted from the cell, this PHB polymer can be processed into biodegradable and biocompatible plastics, however for this research, it is the efficient metabolic pathway channeling the captured carbon that is of interest. R. eutropha is further unique in that it contains two carbon-fixation CalvinBensonBassham cycle operons, two oxygen-tolerant hydrogenases, and several formate dehydrogenases. It has also been much studied for its ability in the presence of oxygen, to fix carbon dioxide into complex cellular molecules using the energy from hydrogen. In this research project, engineered strains of R. eutropha redirected the excess carbon from PHB storage into the production of isobutanol and 3-methyl-1-butanol (branched-chain higher alcohols). These branched-chain higher alcohols can be used directly as substitutes for fossil-based fuels and are seen as alternative biofuels to ethanol and biodiesel. Importantly, these alcohols have approximately 98 % of the energy content of gasoline, 17 % higher than the current gasoline additive ethanol, without impacting corn market production for feed or food. Unlike ethanol, these branched-chain alcohols have low vapor pressure, hygroscopicity, and water solubility, which make them readily compatible with the existing pipelines, gasoline pumps, and engines in our transportation infrastructure. While the use of alternative energies from solar, wind, geothermal, and hydroelectric has spread for stationary power applications, these energy sources cannot be effectively or efficiently employed in current or future transportation systems. With the ongoing concerns of fossil fuel availability and price stability over the long term, alternative biofuels like branched-chain higher alcohols hold promise as a suitable transportation fuel in the future. We showed in our research that various mutant strains of R. eutropha with isobutyraldehyde dehydrogenase activity, in combination with the overexpression of plasmid-borne, native branched-chain amino acid biosynthesis pathway genes and the overexpression of heterologous ketoisovalerate decarboxylase gene, would produce isobutanol and 3-methyl-1-butanol when initiated during nitrogen or phosphorus limitation. Early on, we isolated one mutant R. eutropha strain which produced over 180 mg/L branched-chain alcohols in flask culture while being more tolerant of isobutanol toxicity. After the targeted elimination of genes encoding several potential carbon sinks (ilvE, bkdAB, and aceE), the production titer of the improved to 270 mg/L isobutanol and 40 mg/L 3-methyl-1-butanol.

  3. Compressed Air System Project Improves Production at a Candy Making Facility

    SciTech Connect (OSTI)

    2002-03-01

    The H.B. Reese Company successfully completed an upgrade of this compressed air system at its facility in Hershey, PA. The plant took two compressors offline while increasing throughput and quality.

  4. Hybrid fs/ps rotational CARS temperature and oxygen measurements in the product gases of canonical flat flames

    SciTech Connect (OSTI)

    Kearney, Sean Patrick

    2014-12-31

    We fou hybrid fs/ps pure-rotational coherent anti-Stokes Raman scattering (CARS) scheme is systematically evaluated over a wide range of flame conditions in the product gases of two canonical flat-flame burners. Near-transform-limited, broadband femtosecond pump and Stokes pulses impulsively prepare a rotational Raman coherence, which is later probed using a high-energy, frequency-narrow picosecond beam generated by the second-harmonic bandwidth compression scheme that has recently been demonstrated for rotational CARS generation in H2/air flat flames. The measured spectra are free of collision effects and nonresonant background and can be obtained on a single-shot basis at 1 kHz. The technique is evaluated for temperature/oxygen measurements in near-adiabatic H2/air flames stabilized on the Hencken burner for equivalence ratios of ? = 0.201.20. Thermometry is demonstrated in hydrocarbon/air products for ? = 0.753.14 in premixed C2H4/air flat flames on the McKenna burner. Reliable spectral fitting is demonstrated for both shot-averaged and single-laser-shot data using a simple phenomenological model. Measurement accuracy is benchmarked by comparison to adiabatic-equilibrium calculations for the H2/air flames, and by comparison with nanosecond CARS measurements for the C2H4/air flames. Quantitative accuracy comparable to nanosecond rotational CARS measurements is observed, while the observed precision in both the temperature and oxygen data is extraordinarily high, exceeding nanosecond CARS, and on par with the best published thermometric precision by femtosecond vibrational CARS in flames, and rotational femtosecond CARS at low temperature. Threshold levels of signal-to-noise ratio to achieve 12% precision in temperature and O2/N2 ratio are identified. Our results show that pure-rotational fs/ps CARS is a robust and quantitative tool when applied across a wide range of flame conditions spanning lean H2/air combustion to fuel-rich sooting hydrocarbon flames.

  5. ARM Climate Research Facility Quarterly Value-Added Product Report First Quarter: October 01-December 31, 2011

    SciTech Connect (OSTI)

    Sivaraman, C

    2012-02-28

    The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement (ARM) Climate Research Facility. The report is divided into the following sections: (1) new VAPs for which development has begun, (2) progress on existing VAPs, (3) future VAPs that have been recently approved, (4) other work that leads to a VAP, and (5) top requested VAPs from the archive.

  6. ARM Climate Research Facility Quarterly Value-Added Product Report Fourth Quarter: July 1–September 30, 2012

    SciTech Connect (OSTI)

    Sivaraman, C

    2012-11-13

    The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement (ARM) Climate Research Facility. The report is divided into the following sections: (1) new VAPs for which development has begun, (2) progress on existing VAPs, (3) future VAPs that have been recently approved, (4) other work that leads to a VAP, and (5) top requested VAPs from the archive.

  7. ARM Climate Research Facility Quarterly Value-Added Product Report Third Quarter: April 01–June 30, 2011

    SciTech Connect (OSTI)

    Sivaraman, C

    2011-08-18

    The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement Climate Research Facility. The report is divided into the following sections: (1) new VAPs for which development has begun, (2) progress on existing VAPs, (3) future VAPs that have been recently approved, (4) other work that leads to a VAP, and (5) top requested VAPs from the archive

  8. Constitutive NF-?B activation and tumor-growth promotion by Romo1-mediated reactive oxygen species production

    SciTech Connect (OSTI)

    Chung, Jin Sil; Lee, Sora; Yoo, Young Do

    2014-08-08

    Highlights: Romo1 expression is required for constitutive nuclear DNA-binding activity of NF-?B. Romo1 depletion suppresses tumor growth in vivo. Romo1 presents a potential therapeutic target for diseases. - Abstract: Deregulation of nuclear factor-?B (NF-?B) and related pathways contribute to tumor cell proliferation and invasion. Mechanisms for constitutive NF-?B activation are not fully explained; however, the underlying defects appear to generate and maintain pro-oxidative conditions. In hepatocellular carcinoma (HCC) tissues, up-regulation of reactive oxygen species modulator 1 (Romo1) correlates positively with tumor size. In the present study, we showed that Romo1 expression is required to maintain constitutive nuclear DNA-binding activity of NF-?B and transcriptional activity through constitutive I?B? phosphorylation. Overexpression of Romo1 promoted p65 nuclear translocation and DNA-binding activity. We also show that Romo1 depletion suppressed anchorage-independent colony formation by HCC cells and suppressed tumor growth in vivo. Based on these findings, Romo1 may be a principal regulatory factor in the maintenance of constitutive NF-?B activation in tumor cells. In the interest of anti-proliferative treatments for cancer, Romo1 may also present a productive target for drug development.

  9. Design, Development and Operational Experience of Demonstration Facility for Cs-137 Source Pencil Production at Trombay - 13283

    SciTech Connect (OSTI)

    Patil, S.B.; Srivastava, P.; Mishra, S.K.; Khan, S.S.; Nair, K.N.S.

    2013-07-01

    Radioactive waste management is a vital aspect of any nuclear program. The commercial feasibility of the nuclear program largely depends on the efficiency of the waste management techniques. One of such techniques is the separation of high yield radio-nuclides from the waste and making it suitable for medical and industrial applications. This will give societal benefit in addition to revenue generation. Co-60, the isotope presently being used for medical applications, needs frequent replacement because of its short half life. Cs-137, the major constituent of the nuclear waste, is a suitable substitute for Co-60 as a radioactive source because of its longer half life (28 years). Indian nuclear waste management program has given special emphasis on utilization of Cs-137 for such applications. In view of this a demonstration facility has been designed for vitrification of Cs-137 in borosilicate glass, cast in stainless steel pencils, to be used as source pencils of 300 Ci strength for blood irradiation. An induction heated metallic melter of suitable capacity has been custom designed for the application and employed for the Cs-137 pencil fabrication facility. This article describes various systems, design features, experiments and resulting modifications, observations and remote handling features necessary for the actual operation of such facility. The layout of the facility has been planned in such a way that the same can be adopted in a hot cell for commercial production of source pencils. (authors)

  10. EIA-819, Monthly Oxygenate Report ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (EIA) Form EIA-819, "Monthly Biofuel and Oxygenate Report," is used to collect data on ethanol production capacity, as well as stocks, receipts, inputs, production, and blending of...

  11. Synthesis of oxygenate products for high volume fuels applications. Quarterly technical progress report No. 1, November 1, 1994--January 31, 1995

    SciTech Connect (OSTI)

    1995-03-08

    Construction and setup of twin laboratory gas phase reactors with in-line Gas chromatographic analysers was completed. Calibration and C.G. analysis methods development were carried out, and spreadsheet programs were written for reduction of data to interpretable results. Initial tests were carried out with pentasil zeolite ASM-5 containing very low (0.1%) levels of mercury as potential catalysts for conversion of acetylene/methanol streams to 1,1-dimethoxyethane or to C{sub 2}{sup +} alcohols, both useful as high-oxygenate gasoline blending agents. Trace levels of both types of products were observed, although the predominant products were light olefins at lower reaction temperatures and aromatics at higher temperatures. It is anticipated that less acidic zeolites and/or Zn- containing catalysts will be more active for oxygenate production. Testing of these materials is underway.

  12. Hybrid fs/ps rotational CARS temperature and oxygen measurements in the product gases of canonical flat flames

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kearney, Sean Patrick

    2014-12-31

    A hybrid fs/ps pure-rotational coherent anti-Stokes Raman scattering (CARS) scheme is systematically evaluated over a wide range of flame conditions in the product gases of two canonical flat-flame burners. Near-transform-limited, broadband femtosecond pump and Stokes pulses impulsively prepare a rotational Raman coherence, which is later probed using a high-energy, frequency-narrow picosecond beam generated by the second-harmonic bandwidth compression scheme that has recently been demonstrated for rotational CARS generation in H2/air flat flames. The measured spectra are free of collision effects and nonresonant background and can be obtained on a single-shot basis at 1 kHz. The technique is evaluated for temperature/oxygenmore » measurements in near-adiabatic H2/air flames stabilized on the Hencken burner for equivalence ratios of φ = 0.20–1.20. Thermometry is demonstrated in hydrocarbon/air products for φ = 0.75–3.14 in premixed C2H4/air flat flames on the McKenna burner. Reliable spectral fitting is demonstrated for both shot-averaged and single-laser-shot data using a simple phenomenological model. Measurement accuracy is benchmarked by comparison to adiabatic-equilibrium calculations for the H2/air flames, and by comparison with nanosecond CARS measurements for the C2H4/air flames. Quantitative accuracy comparable to nanosecond rotational CARS measurements is observed, while the observed precision in both the temperature and oxygen data is extraordinarily high, exceeding nanosecond CARS, and on par with the best published thermometric precision by femtosecond vibrational CARS in flames, and rotational femtosecond CARS at low temperature. Threshold levels of signal-to-noise ratio to achieve 1–2% precision in temperature and O2/N2 ratio are identified. Our results show that pure-rotational fs/ps CARS is a robust and quantitative tool when applied across a wide range of flame conditions spanning lean H2/air combustion to fuel-rich sooting hydrocarbon flames.« less

  13. Coeur d'Alene Tribe Fish, Water and Wildlife Program : Coeur d'Alene Tribe Trout Production Facility Master Plan.

    SciTech Connect (OSTI)

    Peters, Ronald L.; Woodward-Lilengreen, Kelly L.; Vitale, Angelo J.

    1999-09-01

    The Northwest Power Planning Council (Council) receives and reviews proposals to mitigate for fish and wildlife losses and refers approved measures to Bonneville Power Administration (BPA) for funding. The Northwest Power Act (Act) calls on the Council to include measures in its Columbia River Basin Fish and Wildlife Program (Program) to address system-wide fish and wildlife losses. The Act further states that the Council may include in its Program measures that provide off-site mitigation--mitigation physically removed from the hydro project(s) that caused the need to mitigate. The Program includes a goal ''to recover and preserve the health of native resident fish injured by the hydropower system, where feasible, and, where appropriate, to use resident fish to mitigate for anadromous fish losses in the system.'' Among those recommended measures are off-site mitigation for losses of anadromous fisheries including the measure under analysis in this Coeur d'Alene Tribe Trout Production Facility Master Plan, proposed by the Coeur d'Alene Tribe. To meet the need for off-site mitigation for anadromous fish losses in the Columbia River Basin in a manner consistent with the objectives of the Council's Fish and Wildlife Program, the Coeur d'Alene Tribe is proposing that the BPA fund the design, construction, operations and maintenance of a trout production facility on the Coeur d'Alene Indian Reservation. Measures for establishing a Coeur d'Alene fish production facility have been a part of the Council's Program since 1987. The Coeur d'Alene Tribe Trout Production Facility is intended to rear and release westslope cutthroat trout into rivers and streams with the express purpose of increasing the numbers of fish spawning, incubating and rearing in the natural environment. It will use the modern technology that hatcheries offer to overcome the mortality resulting from habitat degradation in lakes, rivers, and streams after eggs are laid in the gravel. Supplementation of native fish stocks in conjunction with effective habitat restoration will be the primary means of achieving these biological goals. Overarching goals for the program include: (1) Protection, mitigation, and enhancement of Columbia River Basin native resident fish resources. (2) Develop, increase, and/or reintroduce natural spawning populations of westslope cutthroat trout into reservation waters. (3) Provide both short and long-term harvest opportunities for the reservation community. (4) Sustain long-term fitness and genetic integrity of targeted fish populations. (5) Keep ecological and genetic impacts to non-targeted fish populations to a minimum.

  14. ARM Climate Research Facility Quarterly Value-Added Product Report Fourth Quarter: July 01–September 30, 2011

    SciTech Connect (OSTI)

    Sivaraman, C

    2011-11-02

    The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement Climate Research Facility. The report is divided into the following sections: (1) new VAPs for which development has begun, (2) progress on existing VAPs, (3) future VAPs that have been recently approved, (4) other work that leads to a VAP, and (5) top requested VAPs from the archive. New information is highlighted in blue text. New information about processed data by the developer is highlighted in red text.

  15. Nevada Production and Injection Well Data for Facilities with Flash Steam Plants

    SciTech Connect (OSTI)

    Mines, Greg

    2014-03-26

    Files contain a summary of the production and injection data submitted by the geothermal operators to the Nevada Bureau of Mines and Geology over the period from 1985 thru 2009

  16. Nevada Production and Injection Well Data for Facilities with Flash Steam Plants

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mines, Greg

    Files contain a summary of the production and injection data submitted by the geothermal operators to the Nevada Bureau of Mines and Geology over the period from 1985 thru 2009

  17. Composite Data Products (CDPs) from the Hydrogen Secure Data Center (HSDC) at the Energy Systems Integration Facility (ESIF), NREL

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Hydrogen Secure Data Center (HSDC) at NREL's Energy Systems Integration Facility (ESIF) plays a crucial role in NREL's independent, third-party analysis of hydrogen fuel cell technologies in real-world operation. NREL partners submit operational, maintenance, safety, and cost data to the HSDC on a regular basis. NREL's Technology Validation Team uses an internal network of servers, storage, computers, backup systems, and software to efficiently process raw data, complete quarterly analysis, and digest large amounts of time series data for data visualization. While the raw data are secured by NREL to protect commercially sensitive and proprietary information, individualized data analysis results are provided as detailed data products (DDPs) to the partners who supplied the data. Individual system, fleet, and site analysis results are aggregated into public results called composite data products (CDPs) that show the status and progress of the technology without identifying individual companies or revealing proprietary information. These CDPs are available from this NREL website: 1) Hydrogen Fuel Cell Vehicle and Infrastructure Learning Demonstration; 2) Early Fuel Cell Market Demonstrations; 3) Fuel Cell Technology Status [Edited from http://www.nrel.gov/hydrogen/facilities_secure_data_center.html].

  18. ARM Climate Research Facility Spectral Surface Albedo Value-Added Product (VAP) Report

    SciTech Connect (OSTI)

    McFarlane, S; Gaustad, K; Long, C; Mlawer, E

    2011-07-15

    This document describes the input requirements, output data products, and methodology for the Spectral Surface Albedo (SURFSPECALB) value-added product (VAP). The SURFSPECALB VAP produces a best-estimate near-continuous high spectral resolution albedo data product using measurements from multifilter radiometers (MFRs). The VAP first identifies best estimates for the MFR downwelling and upwelling shortwave irradiance values, and then calculates narrowband spectral albedo from these best-estimate irradiance values. The methodology for finding the best-estimate values is based on a simple process of screening suspect data and backfilling screened and missing data with estimated values when possible. The resulting best-estimate MFR narrowband spectral albedos are used to determine a daily surface type (snow, 100% vegetation, partial vegetation, or 0% vegetation). For non-snow surfaces, a piecewise continuous function is used to estimate a high spectral resolution albedo at 1 min temporal and 10 cm-1 spectral resolution.

  19. System Evaluations and Life-Cycle Cost Analyses for High-Temperature Electrolysis Hydrogen Production Facilities

    SciTech Connect (OSTI)

    Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

    2012-05-01

    This report presents results of system evaluations and lifecycle cost analyses performed for several different commercial-scale high-temperature electrolysis (HTE) hydrogen production concepts. The concepts presented in this report rely on grid electricity and non-nuclear high-temperature process heat sources for the required energy inputs. The HYSYS process analysis software was used to evaluate both central plant designs for large-scale hydrogen production (50,000 kg/day or larger) and forecourt plant designs for distributed production and delivery at about 1,500 kg/day. The HYSYS software inherently ensures mass and energy balances across all components and it includes thermodynamic data for all chemical species. The optimized designs described in this report are based on analyses of process flow diagrams that included realistic representations of fluid conditions and component efficiencies and operating parameters for each of the HTE hydrogen production configurations analyzed. As with previous HTE system analyses performed at the INL, a custom electrolyzer model was incorporated into the overall process flow sheet. This electrolyzer model allows for the determination of the average Nernst potential, cell operating voltage, gas outlet temperatures, and electrolyzer efficiency for any specified inlet steam, hydrogen, and sweep-gas flow rates, current density, cell active area, and external heat loss or gain. The lifecycle cost analyses were performed using the H2A analysis methodology developed by the Department of Energy (DOE) Hydrogen Program. This methodology utilizes spreadsheet analysis tools that require detailed plant performance information (obtained from HYSYS), along with financial and cost information to calculate lifecycle costs. There are standard default sets of assumptions that the methodology uses to ensure consistency when comparing the cost of different production or plant design options. However, these assumptions may also be varied within the spreadsheets when better information is available or to allow the performance of sensitivity studies. The selected reference plant design for this study was a 1500 kg/day forecourt hydrogen production plant operating in the thermal-neutral mode. The plant utilized industrial natural gas-fired heaters to provide process heat, and grid electricity to supply power to the electrolyzer modules and system components. Modifications to the reference design included replacing the gas-fired heaters with electric resistance heaters, changing the operating mode of the electrolyzer (to operate below the thermal-neutral voltage), and considering a larger 50,000 kg/day central hydrogen production plant design. Total H2A-calculated hydrogen production costs for the reference 1,500 kg/day forecourt hydrogen production plant were $3.42/kg. The all-electric plant design using electric resistance heaters for process heat, and the reference design operating below the thermal-neutral voltage had calculated lifecycle hydrogen productions costs of $3.55/kg and $5.29/kg, respectively. Because of its larger size and associated economies of scale, the 50,000 kg/day central hydrogen production plant was able to produce hydrogen at a cost of only $2.89/kg.

  20. List of currently classified documents relative to Hanford Production Facilities Operations originated on the Hanford Site between 1961 and 1972

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    The United States Department of Energy (DOE) has declared that all Hanford plutonium production- and operations-related information generated between 1944 and 1972 is declassified. Any documents found and deemed useful for meeting Hanford Environmental Dose Reconstruction (HEDR) objectives may be declassified with or without deletions in accordance with DOE guidance by Authorized Derivative Declassifiers. The September 1992, letter report, Declassifications Requested by the Technical Steering Panel of Hanford Documents Produced 1944--1960, (PNWD-2024 HEDR UC-707), provides an important milestone toward achieving a complete listing of documents that may be useful to the HEDR Project. The attached listing of approximately 7,000 currently classified Hanford-originated documents relative to Hanford Production Facilities Operations between 1961 and 1972 fulfills TSP Directive 89-3. This list does not include such titles as the Irradiation Processing Department, Chemical Processing Department, and Hanford Laboratory Operations monthly reports generated after 1960 which have been previously declassified with minor deletions and made publicly available. Also Kaiser Engineers Hanford (KEH) Document Control determined that no KEH documents generated between January 1, 1961 and December 31, 1972 are currently classified. Titles which address work for others have not been included because Hanford Site contractors currently having custodial responsibility for these documents do not have the authority to determine whether other than their own staff have on file an appropriate need-to-know. Furthermore, these documents do not normally contain information relative to Hanford Site operations.

  1. Support Facilities | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Support Facilities Support Facilities The Y-12 site comprises more than 250 non-production facilities that help support ongoing and planned missions. We continue to maintain and...

  2. Carbon Capture and Sequestration (via Enhanced Oil Recovery) from a Hydrogen Production Facility in an Oil Refinery

    SciTech Connect (OSTI)

    Stewart Mehlman

    2010-06-16

    The project proposed a commercial demonstration of advanced technologies that would capture and sequester CO2 emissions from an existing hydrogen production facility in an oil refinery into underground formations in combination with Enhanced Oil Recovery (EOR). The project is led by Praxair, Inc., with other project participants: BP Products North America Inc., Denbury Onshore, LLC (Denbury), and Gulf Coast Carbon Center (GCCC) at the Bureau of Economic Geology of The University of Texas at Austin. The project is located at the BP Refinery at Texas City, Texas. Praxair owns and operates a large hydrogen production facility within the refinery. As part of the project, Praxair would construct a CO2 capture and compression facility. The project aimed at demonstrating a novel vacuum pressure swing adsorption (VPSA) based technology to remove CO2 from the Steam Methane Reformers (SMR) process gas. The captured CO2 would be purified using refrigerated partial condensation separation (i.e., cold box). Denbury would purchase the CO2 from the project and inject the CO2 as part of its independent commercial EOR projects. The Gulf Coast Carbon Center at the Bureau of Economic Geology, a unit of University of Texas at Austin, would manage the research monitoring, verification and accounting (MVA) project for the sequestered CO2, in conjunction with Denbury. The sequestration and associated MVA activities would be carried out in the Hastings field at Brazoria County, TX. The project would exceed DOEs target of capturing one million tons of CO2 per year (MTPY) by 2015. Phase 1 of the project (Project Definition) is being completed. The key objective of Phase 1 is to define the project in sufficient detail to enable an economic decision with regard to proceeding with Phase 2. This topical report summarizes the administrative, programmatic and technical accomplishments completed in Phase 1 of the project. It describes the work relative to project technical and design activities (associated with CO2 capture technologies and geologic sequestration MVA), and Environmental Information Volume. Specific accomplishments of this Phase include: 1. Finalization of the Project Management Plan 2. Development of engineering designs in sufficient detail for defining project performance and costs 3. Preparation of Environmental Information Volume 4. Completion of Hazard Identification Studies 5. Completion of control cost estimates and preparation of business plan During the Phase 1 detailed cost estimate, project costs increased substantially from the previous estimate. Furthermore, the detailed risk assessment identified integration risks associated with potentially impacting the steam methane reformer operation. While the Phase 1 work identified ways to mitigate these integration risks satisfactorily from an operational perspective, the associated costs and potential schedule impacts contributed to the decision not to proceed to Phase 2. We have concluded that the project costs and integration risks at Texas City are not commensurate with the potential benefits of the project at this time.

  3. MTBE, Oxygenates, and Motor Gasoline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MTBE, Oxygenates, and Motor Gasoline Contents * Introduction * Federal gasoline product quality regulations * What are oxygenates? * Who gets gasoline with oxygenates? * Which areas get MTBE? * How much has been invested in MTBE production capacity? * What does new Ethanol capacity cost? * What would an MTBE ban cost? * On-line information resources * Endnotes * Summary of revisions to this analysis Introduction The blending of methyl tertiary butyl ether (MTBE) into motor gasoline has increased

  4. Laser Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Facilities Current Schedule of Experiments Operation Schedule Janus Titan Europa COMET Facility Floorplan

  5. Synthesis of oxygenate products for high volume fuels applications. Quarterly status report No. 5 for the period October through December 1995

    SciTech Connect (OSTI)

    Not Available

    1996-02-15

    A process variables study was carried out with crude DME as feed for the condensation with acetylene to C{sub 2} and higher alcohols. The addition of water to crude DME had a marked effect of promoting selectivity to ethanol, especially at the lower reaction temperatures tested. Experiments designed to reveal the effect of reactor flow rate and temperature demonstrated that lower rates and higher temperatures favored selectivity to propanol and butanol up to a maximum temperature of 460{degrees}C, beyond which selectivity diminished via decomposition reactions. Faster rates and lower temperatures favored selectivity to ethanol. Reactor conditions and feed compositions for optimum target alcohol selectivities have been identified. the overall objective of this project is to develop catalyst and process technology for evaluation as potential routes for the production of high volume fuel oxygenates.

  6. Synthesis of oxygenate products for high volume fuels applications. Quarterly status report No. 3 for the period April through June 1995

    SciTech Connect (OSTI)

    Not Available

    1995-09-26

    A rudimentary process variables study of the reaction of acetylene with methanol indicates high activity for the formation of ethanol, n- propanol, and i-butanol with a pure low temperature activated MgO catalyst. Initial results indicate that higher conversions and space- time yields may be obtainable by operation at higher temperatures and reactant feed rates, respectively. Also, ethanol formation was consistently observed to rise with decreasing reaction temperature between 454{degrees}C and 370{degrees}C. A 10% Al{sub 2}O{sub 3}/MgO catalyst exhibited high activity for methanol-dimethyl ether interconversion but was not very active for the condensation of these reactants to either the product alcohols or their methyl ethers. Neither catalyst exhibited significant activity for the condensation to dimethyl ether/water with acetylene to form such products. This lack of activity in the ether systems is attributed to insufficient hydrolysis of dimethyl ether to methanol, and it is expected that feeds containing additional water or methanol (which produces water via condensation) will exhibit higher activity. The aluminum- containing catalyst exhibited diminished condensation activity possibly as a result of deactivation of Mg sites by Al sites. The overall objective of this project is to develop catalyst and process technology for evaluation as potential routes for the production of high volume fuel oxygenates.

  7. Synthesis of oxygenate products for high volume fuels applications. Quarterly status report No. 4 for the period July through September 1995

    SciTech Connect (OSTI)

    Not Available

    1995-12-29

    A rudimentary process variables study of the reaction of acetylene with methanol indicates high activity for the formation of ethanol, n- propanol, and i-butanol with a pure low temperature activated MgO catalyst. Initial results indicate that higher conversions and space- time yields may be obtainable by operation at higher temperatures and reactant feed rates, respectively. Also, ethanol formation was consistently observed to rise with decreasing reaction temperature between 454{degrees}C and 370{degrees}C. A 10% Al{sub 2}O{sub 3}/MgO catalyst exhibited high activity for methanol-dimethyl ether interconversion but was not very active for the condensation of these reactants to either the product alcohols or their methyl ethers. Neither catalyst exhibited significant activity for the condensation of dimethyl ether/water with acetylene to form such products. This lack of activity in the ether systems us attributed to insufficient hydrolysis of dimethyl ether to methanol, and it is expected that feeds containing additional water or methanol (which produces water via condensation) will exhibit higher activity. The aluminum- containing catalyst exhibited diminished condensation activity possibly as the result of deactivation of Mg sites by Al sites. The overall objective of this project is to develop catalyst and process technology for evaluation as potential routes for the production of high volume fuel oxygenates.

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Share Recently, several new Sun servers joined the production system at the ARM Data Management Facility (DMF). These servers provide much needed cpu-the Central Processing...

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2007 Data Announcements, Facility News New, Improved Algorithm for Retrieving Liquid Water Path Now Available at the ARM Data Archive Bookmark and Share The MWRRET product...

  10. Development of ITM oxygen technology for integration in IGCC and other advanced power generation

    SciTech Connect (OSTI)

    Armstrong, Phillip A.

    2015-03-31

    Ion Transport Membrane (ITM) technology is based on the oxygen-ion-conducting properties of certain mixed-metal oxide ceramic materials that can separate oxygen from an oxygen-containing gas, such as air, under a suitable driving force. The “ITM Oxygen” air separation system that results from the use of such ceramic membranes produces a hot, pure oxygen stream and a hot, pressurized, oxygen-depleted stream from which significant amounts of energy can be extracted. Accordingly, the technology integrates well with other high-temperature processes, including power generation. Air Products and Chemicals, Inc., the Recipient, in conjunction with a dozen subcontractors, developed ITM Oxygen technology under this five-phase Cooperative Agreement from the laboratory bench scale to implementation in a pilot plant capable of producing power and 100 tons per day (TPD) of purified oxygen. A commercial-scale membrane module manufacturing facility (the “CerFab”), sized to support a conceptual 2000 TPD ITM Oxygen Development Facility (ODF), was also established and operated under this Agreement. In the course of this work, the team developed prototype ceramic production processes and a robust planar ceramic membrane architecture based on a novel ceramic compound capable of high oxygen fluxes. The concept and feasibility of the technology was thoroughly established through laboratory pilot-scale operations testing commercial-scale membrane modules run under industrial operating conditions with compelling lifetime and reliability performance that supported further scale-up. Auxiliary systems, including contaminant mitigation, process controls, heat exchange, turbo-machinery, combustion, and membrane pressure vessels were extensively investigated and developed. The Recipient and subcontractors developed efficient process cycles that co-produce oxygen and power based on compact, low-cost ITMs. Process economics assessments show significant benefits relative to state-of-the-art cryogenic air separation technology in energy-intensive applications such as IGCC with and without carbon capture.

  11. Facility Type!

    Office of Legacy Management (LM)

    ITY: --&L~ ----------- srct-r~ -----------~------~------- if yee, date contacted ------------- cl Facility Type! i I 0 Theoretical Studies Cl Sample 84 Analysis ] Production 1 Diepasal/Storage 'YPE OF CONTRACT .--------------- 1 Prime J Subcontract&- 1 Purchase Order rl i '1 ! Other information (i.e., ---------~---~--~-------- :ontrait/Pirchaee Order # , I C -qXlJ- --~-------~~-------~~~~~~ I I ~~~---~~~~~~~T~~~ FONTRACTING PERIODi IWNERSHIP: ,I 1 AECIMED AECMED GOVT GOUT &NTtiAC+OR

  12. Screening study for waste biomass to ethanol production facility using the Amoco process in New York State. Appendices to the final report

    SciTech Connect (OSTI)

    1995-08-01

    The final report evaluates the economic feasibility of locating biomass-to-ethanol waste conversion facilities in New York State. Part 1 of the study evaluates 74 potential sites in New York City and identifies two preferred sites on Staten Island, the Proctor and Gamble and the Arthur Kill sites for further consideration. Part 2 evaluates upstate New York and determines that four regions surrounding the urban centers of Albany, Buffalo, Rochester, and Syracuse provide suitable areas from which to select specific sites for further consideration. A conceptual design and economic viability evaluation were developed for a minimum-size facility capable of processing 500 tons per day (tpd) of biomass consisting of wood or paper, or a combination of the two for upstate regions. The facility would use Amoco`s biomass conversion technology and produce 49,000 gallons per day of ethanol and approximately 300 tpd of lignin solid by-product. For New York City, a 1,000-tpd processing facility was also evaluated to examine effects of economies of scale. The reports evaluate the feasibility of building a biomass conversion facility in terms of city and state economic, environmental, and community factors. Given the data obtained to date, including changing costs for feedstock and ethanol, the project is marginally attractive. A facility should be as large as possible and located in a New York State Economic Development Zone to take advantage of economic incentives. The facility should have on-site oxidation capabilities, which will make it more financially viable given the high cost of energy. This appendix to the final report provides supplemental material supporting the evaluations.

  13. Process Flow Chart for Immobilizing of Radioactive High Concentration Sodium Hydroxide Product from the Sodium Processing Facility at the BN-350 Nuclear power plant in Aktau, Kazakhstan

    SciTech Connect (OSTI)

    Burkitbayev, M.; Omarova, K.; Tolebayev, T.; Galkin, A.; Bachilova, N.; Blynskiy, A.; Maev, V.; Wells, D.; Herrick, A.; Michelbacher, J.

    2008-07-01

    This paper describes the results of a joint research investigations carried out by the group of Kazakhstan, British and American specialists in development of a new material for immobilization of radioactive 35% sodium hydroxide solutions from the sodium coolant processing facility of the BN-350 nuclear power plant. The resulting solid matrix product, termed geo-cement stone, is capable of isolating long lived radionuclides from the environment. The physico-mechanical properties of geo-cement stone have been investigated and the flow chart for its production verified in a full scale experiments. (author)

  14. Remote-controlled NDA (nondestructive assay) systems for feed and product storage at an automated MOX (mixed oxide) facility

    SciTech Connect (OSTI)

    Menlove, H.O.; Augustson, R.H.; Ohtani, T.; Seya, M.; Takahashi, S.; Abedin-Zadeh, R.; Hassan, B.; Napoli, S.

    1989-01-01

    Nondestructive assay (NDA) systems have been developed for use in an automated mixed oxide (MOX) fabrication facility. Unique features have been developed for the NDA systems to accommodate robotic sample handling and remote operation. In addition, the systems have been designed to obtain International Atomic Energy Agency inspection data without the need for an inspector at the facility at the time of the measurements. The equipment is being designed to operate continuously in an unattended mode with data storage for periods of up to one month. The two systems described in this paper include a canister counter for the assay of MOX powder at the input to the facility and a capsule counter for the assay of complete liquid-metal fast breeder reactor fuel assemblies at the output of the plant. The design, performance characteristics, and authentication of the two systems will be described. The data related to reliability, precision, and stability will be presented. 5 refs., 10 figs., 4 tabs.

  15. ARM - SGP Central Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Central Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration...

  16. Oxygenate Supply/Demand Balances

    Gasoline and Diesel Fuel Update (EIA)

    Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model By Tancred C.M. Lidderdale This article first appeared in the Short-Term Energy Outlook Annual Supplement 1995, Energy Information Administration, DOE/EIA-0202(95) (Washington, DC, July 1995), pp. 33-42, 83-85. The regression results and historical data for production, inventories, and imports have been updated in this presentation. Contents * Introduction o Table 1. Oxygenate production capacity and demand *

  17. Wheelabrator Sherman Energy Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    Sherman Energy Facility Biomass Facility Jump to: navigation, search Name Wheelabrator Sherman Energy Facility Biomass Facility Facility Wheelabrator Sherman Energy Facility Sector...

  18. Huntington Resource Recovery Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    Resource Recovery Facility Biomass Facility Jump to: navigation, search Name Huntington Resource Recovery Facility Biomass Facility Facility Huntington Resource Recovery Facility...

  19. Jupiter Oxygen Corporation | Open Energy Information

    Open Energy Info (EERE)

    Place: Schiller Park, Illinois Zip: 60176 Product: Illinois-based oxy-fuel combustion company involved in the capture of CO2. References: Jupiter Oxygen Corporation1...

  20. Byron Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Byron Extended Facility Map

  1. Ashton Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ashton Extended Facility Map

  2. User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Facilities User Facilities User facility agreements allow Los Alamos partners and other entities to conduct research at our unique facilities. In 2011, LANL hosted more than 1,200 users at CINT, LANSCE, and NHMFL. Users came from across the DOE complex, from international academia, and from industrial companies from 45 states across the U.S. Unique world-class user facilities foster rich research opportunities Through its technology transfer efforts, LANL can implement user facility

  3. Oxygen-Enriched Combustion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oxygen-Enriched Combustion Oxygen-Enriched Combustion This tip sheet discusses how an increase in oxygen in combustion air can reduce the energy loss in the exhaust gases and increase process heating system efficiency. PROCESS HEATING TIP SHEET #3 PDF icon Oxygen-Enriched Combustion (September 2005) More Documents & Publications Save Energy Now in Your Process Heating Systems Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A

  4. Mobile Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 Mobile Facilities Pictured here in Gan, the second mobile facility...

  5. Facility Representatives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-03-01

    This standard, DOE-STD-1063, Facility Representatives, defines the duties, responsibilities and qualifications for Department of Energy (DOE) Facility Representatives, based on facility hazard classification; risks to workers, the public, and the environment; and the operational activity level. This standard provides the guidance necessary to ensure that DOEs hazardous nuclear and non-nuclear facilities have sufficient staffing of technically qualified facility representatives (FRs) to provide day-to-day oversight of contractor operations.

  6. User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Facilities /collaboration/_assets/images/icon-collaboration.jpg User Facilities A new research frontier awaits! Our door is open and we thrive on mutually beneficial partnerships, collaborations that drive innovations and new technologies. Unique world-class user facilities foster rich research opportunities Through its technology transfer efforts, LANL can implement user facility agreements that allow its partners and other entities to conduct research at many of its unique facilities.

  7. Siting algae cultivation facilities for biofuel production in the United States: trade-offs between growth rate, site constructability, water availability, and infrastructure

    SciTech Connect (OSTI)

    Venteris, Erik R.; McBride, Robert; Coleman, Andre M.; Skaggs, Richard; Wigmosta, Mark S.

    2014-02-21

    Locating sites for new algae cultivation facilities is a complex task. The climate must support high growth rates, and cultivation ponds require appropriate land and water resources as well as key utility and transportation infrastructure. We employ our spatiotemporal Biomass Assessment Tool (BAT) to select promising locations based on the open-pond cultivation of Arthrospira sp. and a strain of the order Desmidiales. 64,000 potential sites across the southern United States were evaluated. We progressively apply a range of screening criteria and track their impact on the number of selected sites, geographic location, and biomass productivity. Both strains demonstrate maximum productivity along the Gulf of Mexico coast, with the highest values on the Florida peninsula. In contrast, sites meeting all selection criteria for Arthrospira were located along the southern coast of Texas and for Desmidiales were located in Louisiana and southern Arkansas. Site selection was driven mainly by the lack of oil pipeline access in Florida and elevated groundwater salinity in southern Texas. The requirement for low salinity freshwater (<400 mg L-1) constrained Desmidiales locations; siting flexibility is greater for salt-tolerant species such as Arthrospira. Combined siting factors can result in significant departures from regions of maximum productivity but are within the expected range of site-specific process improvements.

  8. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-24

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  9. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-11-16

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  10. ORISE: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORISE Facilities Unique laboratories and training centers among the assets managed on behalf of the U.S. Department of Energy The Oak Ridge Institute for Science and Education (ORISE) is home to a number of on- and off-site facilities that support the U.S. Department of Energy's (DOE) science education and research mission. From on-site medical laboratories to radiation emergency medicine training facilities, ORISE facilities are helping to address national needs in the following areas:

  11. NREL: Research Facilities - Laboratories and Facilities by Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories and Facilities by Technology The following NREL research programs have laboratory, and/or test and user facility capabilities for researching, developing, and testing a variety of renewable energy and energy efficiency technologies. Biomass Our biomass research laboratory capabilities include user facilities for converting renewable feedstocks into a variety of products such as transportation fuels, high-value chemicals, and electricity. These facilities and labs can be used to test

  12. Product/Process (P/P) Models For The Defense Waste Processing Facility (DWPF): Model Ranges And Validation Ranges For Future Processing

    SciTech Connect (OSTI)

    Jantzen, C.; Edwards, T.

    2015-09-25

    Radioactive high level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique feed forward statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition models form the basis for the feed forward SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository.

  13. Wheelabrator Millbury Facility Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Facility Facility Wheelabrator Millbury Facility Sector Biomass Facility Type Municipal Solid Waste Location Worcester County, Massachusetts Coordinates 42.4096528, -71.8571331...

  14. Artificial oxygen transport protein

    DOE Patents [OSTI]

    Dutton, P. Leslie

    2014-09-30

    This invention provides heme-containing peptides capable of binding molecular oxygen at room temperature. These compounds may be useful in the absorption of molecular oxygen from molecular oxygen-containing atmospheres. Also included in the invention are methods for treating an oxygen transport deficiency in a mammal.

  15. Oxygen Catalysis: The Other Half of the Equation

    SciTech Connect (OSTI)

    Turner, J.

    2008-10-01

    Artificial photosynthesis--splitting water with light--is an attractive way to make hydrogen, but what happens to the oxygen? A catalyst that aids in the efficient production of gaseous oxygen improves the viability of this approach.

  16. Beamlines & Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Group: Beamlines The X-ray Micrscopy and Imaging Group operates several beamlines and facilities. The bending magnet beamline (2-BM) entertaines 2 general user programs in...

  17. Absorption process for producing oxygen and nitrogen and solution therefor

    DOE Patents [OSTI]

    Roman, I.C.; Baker, R.W.

    1990-09-25

    Process for the separation and purification of oxygen and nitrogen is disclosed which utilizes solutions of oxygen carriers to selectively absorb oxygen from a gaseous stream, leaving nitrogen as a byproduct. In the process, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a solvent solution, which absorbs oxygen from an oxygen-containing gaseous feed stream such as atmospheric air and desorbs oxygen to a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form during desorption. In an alternate mode of operation, the carrier solution is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, and at a sufficiently high temperature to keep the carrier in its deoxygenated form during desorption. Under such conditions, exceptionally high oxygen concentrations on the order of 95% to 99% are obtained, as well as a long carrier lifetime in excess of 3 months, making the process commercially feasible. 1 figure

  18. Methods and systems for the production of hydrogen

    DOE Patents [OSTI]

    Oh, Chang H. (Idaho Falls, ID); Kim, Eung S. (Ammon, ID); Sherman, Steven R. (Augusta, GA)

    2012-03-13

    Methods and systems are disclosed for the production of hydrogen and the use of high-temperature heat sources in energy conversion. In one embodiment, a primary loop may include a nuclear reactor utilizing a molten salt or helium as a coolant. The nuclear reactor may provide heat energy to a power generation loop for production of electrical energy. For example, a supercritical carbon dioxide fluid may be heated by the nuclear reactor via the molten salt and then expanded in a turbine to drive a generator. An intermediate heat exchange loop may also be thermally coupled with the primary loop and provide heat energy to one or more hydrogen production facilities. A portion of the hydrogen produced by the hydrogen production facility may be diverted to a combustor to elevate the temperature of water being split into hydrogen and oxygen by the hydrogen production facility.

  19. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22

    This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

  20. Solid state oxygen sensor

    DOE Patents [OSTI]

    Garzon, F.H.; Chung, B.W.; Raistrick, I.D.; Brosha, E.L.

    1996-08-06

    Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer. 4 figs.

  1. Solid state oxygen sensor

    DOE Patents [OSTI]

    Garzon, Fernando H. (Sante Fe, NM); Chung, Brandon W. (Los Alamos, NM); Raistrick, Ian D. (Los Alamos, NM); Brosha, Eric L. (Los Alamos, NM)

    1996-01-01

    Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer.

  2. Total Energy Facilities Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Energy Facilities Biomass Facility Jump to: navigation, search Name Total Energy Facilities Biomass Facility Facility Total Energy Facilities Sector Biomass Facility Type...

  3. Gas Utilization Facility Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Gas Utilization Facility Biomass Facility Jump to: navigation, search Name Gas Utilization Facility Biomass Facility Facility Gas Utilization Facility Sector Biomass Facility Type...

  4. Solid state oxygen sensor

    DOE Patents [OSTI]

    Garzon, Fernando H. (Santa Fe, NM); Brosha, Eric L. (Los Alamos, NM)

    1997-01-01

    A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures.

  5. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-05-20

    To establish facility safety requirements for the Department of Energy, including National Nuclear Security Administration. Cancels DOE O 420.1. Canceled by DOE O 420.1B.

  6. Research Facility,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Delivering the Data As a general condition for use of the ARM Climate Research Facility, users are required to include their data in the ARM Data Archive. All data acquired...

  7. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-06-21

    DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and approval formally document the basis for DOE, concluding that a facility can be operated safely in a manner that adequately protects workers, the public, and the environment. Therefore, it is appropriate to formally require implementation of the review methodology and criteria contained in DOE-STD-1104.

  8. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-11-20

    The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

  9. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22

    The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

  10. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 ARM Climate Research Facility Quarterly Value-Added Product Report Chitra Sivaraman October 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would

  11. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman February 2012 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

  12. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman November 2012 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

  13. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman January 2013 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

  14. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman October 2013 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

  15. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman January 2014 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

  16. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman October 2014 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

  17. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman January 2015 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

  18. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman July 2015 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

  19. Working with SRNL - Our Facilities - Glovebox Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SRNL Our Facilities - Glovebox Facilities Govebox Facilities are sealed, protectively-lined compartments with attached gloves, allowing workers to safely handle dangerous materials...

  20. Data Management Facility Operations Plan

    SciTech Connect (OSTI)

    Keck, Nicole N

    2014-06-30

    The Data Management Facility (DMF) is the data center that houses several critical Atmospheric Radiation Measurement (ARM) Climate Research Facility services, including first-level data processing for the ARM Mobile Facilities (AMFs), Eastern North Atlantic (ENA), North Slope of Alaska (NSA), Southern Great Plains (SGP), and Tropical Western Pacific (TWP) sites, as well as Value-Added Product (VAP) processing, development systems, and other network services.

  1. Sandia National Laboratories: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Bioscience Computing and Information Science Electromagnetics Facilities Electromagnetic Environments Simulator (EMES) Mode Stirred Chamber Lightning Facility...

  2. Engine Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engine Research Facility Argonne's Engine Research Facility allows scientists and engineers to study in-cylinder combustion and emissions under realistic operating conditions. The facility's engines range in size from automobile- to locomotive-sized, as well as stationary electric power production engines. The facility is used to discover and evaluate new technologies to determine their technical feasibility and commercial viability. In addition, Argonne researchers use the facility's engines to

  3. SLAC Accelerator Test Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FACET & TF Careers & Education Archived FACET User Facility Quick Launch About FACET & Test Facilities Expand About FACET & Test Facilities FACET & Test Facilities User Portal...

  4. Oxygen partial pressure sensor

    DOE Patents [OSTI]

    Dees, D.W.

    1994-09-06

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured. 1 fig.

  5. Oxygen partial pressure sensor

    DOE Patents [OSTI]

    Dees, Dennis W.

    1994-01-01

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured.

  6. EIS-0310: Accomplishing Expanded Civilian Nuclear Energy Research and Development and Isotope Production Missions in the United States, Including the Role of the Fast Flux Test Facility

    Broader source: Energy.gov [DOE]

    This PEIS will evaluate the potential environmental impacts of the proposed enhancement of the existing infrastructure, including the possible role of the Fast Flux Test Facility (FFTF), located at...

  7. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana

    2003-08-07

    In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/ Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Existing facilities were modified for evaluation of environmental assisted slow crack growth and creep in flexural mode. Processing of perovskites of LSC, LSF and LSCF composition were continued for evaluation of mechanical properties as a function of environment. These studies in parallel to those on the LSFCO composition is expect to yield important information on questions such as the role of cation segregation and the stability of the perovskite structure on crack initiation vs. crack growth. Studies have been continued on the La{sub 1-x}Sr{sub x}FeO{sub 3-d} composition using neutron diffraction and TGA studies. A transition from p-type to n-type of conductor was observed at relative low pO{sub 2}, at which the majority carriers changed from the holes to electrons because of the valence state decreases in Fe due to the further loss of oxygen. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport. Data obtained at 850 C show that the stoichiometry in La{sub 0.2}Sr{sub 0.8}Fe{sub 0.8}Cr{sub 0.2}O{sub 3-x} vary from {approx}2.85 to 2.6 over the pressure range studied. From the stoichiometry a lower limit of 2.6 corresponding to the reduction of all Fe{sup 4+} to Fe{sup 3+} and no reduction of Cr{sup 3+} is expected.

  8. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David

    2005-07-12

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  9. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Carter, J. David; Wang, Xiaoping; Vaughey, John; Krumpelt, Michael

    2004-11-23

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  10. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Vaughey, John (Elmhurst, IL); Krumpelt, Michael (Naperville, IL); Wang, Xiaoping (Downers Grove, IL); Carter, J. David (Bolingbrook, IL)

    2003-01-01

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  11. Integrated turbomachine oxygen plant

    SciTech Connect (OSTI)

    Anand, Ashok Kumar; DePuy, Richard Anthony; Muthaiah, Veerappan

    2014-06-17

    An integrated turbomachine oxygen plant includes a turbomachine and an air separation unit. One or more compressor pathways flow compressed air from a compressor through one or more of a combustor and a turbine expander to cool the combustor and/or the turbine expander. An air separation unit is operably connected to the one or more compressor pathways and is configured to separate the compressed air into oxygen and oxygen-depleted air. A method of air separation in an integrated turbomachine oxygen plant includes compressing a flow of air in a compressor of a turbomachine. The compressed flow of air is flowed through one or more of a combustor and a turbine expander of the turbomachine to cool the combustor and/or the turbine expander. The compressed flow of air is directed to an air separation unit and is separated into oxygen and oxygen-depleted air.

  12. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-13

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. Cancels DOE 5480.7A, DOE 5480.24, DOE 5480.28 and Division 13 of DOE 6430.1A. Canceled by DOE O 420.1A.

  13. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

  14. Solid state oxygen sensor

    DOE Patents [OSTI]

    Garzon, F.H.; Brosha, E.L.

    1997-12-09

    A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures. 6 figs.

  15. Metro Methane Recovery Facility Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Methane Recovery Facility Biomass Facility Jump to: navigation, search Name Metro Methane Recovery Facility Biomass Facility Facility Metro Methane Recovery Facility Sector Biomass...

  16. Petrochemical feedstock from basic oxygen steel furnace

    SciTech Connect (OSTI)

    Greenwood, C.W.; Hardwick, W.E.

    1983-10-01

    Iron bath gasification in which coal, lime, steam and oxygen are injected into a bath of molten iron for the production of a medium-Btu gas is described. The process has its origin in basic oxygen steelmaking. It operates at high temperatures and is thus not restrictive on the type of coal used. The ash is retained in the slag. The process is also very efficient. The authors suggest that in the present economic climate in the iron and steel industry, such a plant could be sited where existing coal-handling, oxygen and steelmaking equipment are available.

  17. Comprehensive facilities plan

    SciTech Connect (OSTI)

    1997-09-01

    The Ernest Orlando Lawrence Berkeley National Laboratory`s Comprehensive Facilities Plan (CFP) document provides analysis and policy guidance for the effective use and orderly future development of land and capital assets at the Berkeley Lab site. The CFP directly supports Berkeley Lab`s role as a multiprogram national laboratory operated by the University of California (UC) for the Department of Energy (DOE). The CFP is revised annually on Berkeley Lab`s Facilities Planning Website. Major revisions are consistent with DOE policy and review guidance. Facilities planing is motivated by the need to develop facilities for DOE programmatic needs; to maintain, replace and rehabilitate existing obsolete facilities; to identify sites for anticipated programmatic growth; and to establish a planning framework in recognition of site amenities and the surrounding community. The CFP presents a concise expression of the policy for the future physical development of the Laboratory, based upon anticipated operational needs of research programs and the environmental setting. It is a product of the ongoing planning processes and is a dynamic information source.

  18. ARM - SGP Intermediate Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intermediate Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site SGP Fact Sheet Images Information for Guest Scientists Contacts SGP Intermediate Facility For over 20 years, 3 intermediate facilities, within 6.2 miles (10 km) of the Central Facility, provided a

  19. ARM - Guest Instrument Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PlainsGuest Instrument Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site SGP Fact Sheet Images Information for Guest Scientists Contacts Guest Instrument Facility ARM's Guest Instrument Facility at the SGP site near Lamont, Oklahoma. ARM's Guest Instrument Facility at

  20. NREL: Research Facilities - Working with Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    viable energy products, organizations may partner with NREL to use our state-of-the-art laboratories, testing and user facilities. We typically develop technology partnership...

  1. Oxy-Combustion Burner and Integrated Pollutant Removal Research and Development Test Facility

    SciTech Connect (OSTI)

    Mark Schoenfield; Manny Menendez; Thomas Ochs; Rigel Woodside; Danylo Oryshchyn

    2012-09-30

    A high flame temperature oxy-combustion test facility consisting of a 5 MWe equivalent test boiler facility and 20 KWe equivalent IPR® was constructed at the Hammond, Indiana manufacturing site. The test facility was operated natural gas and coal fuels and parametric studies were performed to determine the optimal performance conditions and generated the necessary technical data required to demonstrate the technologies are viable for technical and economic scale-up. Flame temperatures between 4930-6120F were achieved with high flame temperature oxy-natural gas combustion depending on whether additional recirculated flue gases are added to balance the heat transfer. For high flame temperature oxy-coal combustion, flame temperatures in excess of 4500F were achieved and demonstrated to be consistent with computational fluid dynamic modeling of the burner system. The project demonstrated feasibility and effectiveness of the Jupiter Oxygen high flame temperature oxy-combustion process with Integrated Pollutant Removal process for CCS and CCUS. With these technologies total parasitic power requirements for both oxygen production and carbon capture currently are in the range of 20% of the gross power output. The Jupiter Oxygen high flame temperature oxy-combustion process has been demonstrated at a Technology Readiness Level of 6 and is ready for commencement of a demonstration project.

  2. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 ARM Climate Research Facility Quarterly Ingest Status Report A Koontz C Sivaraman January 2014 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

  3. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Climate Research Facility Quarterly Ingest Status Report A Koontz C Sivaraman April 2014 DOE/SC-ARM-14-014 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that

  4. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 ARM Climate Research Facility Quarterly Ingest Status Report A Koontz C Sivaraman July 2014 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

  5. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 ARM Climate Research Facility Quarterly Ingest Status Report A Koontz C Sivaraman January 2015 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

  6. SGP Central Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Central Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site SGP Fact Sheet Images Information for Guest Scientists Contacts SGP Central Facility The ARM Climate Research Facility deploys specialized remote sensing instruments in a fixed location at the site to gather

  7. ARM - SGP Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extended Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site SGP Fact Sheet Images Information for Guest Scientists Contacts SGP Extended Facility For over 20 years, 23 extended facilities were distributed evenly throughout a 55,000-square-mile domain and at the corners of

  8. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect (OSTI)

    David R. Thompson; Lawrence E. Bool; Jack C. Chen

    2004-04-01

    Conventional wisdom says adding oxygen to a combustion system enhances product throughput, system efficiency, and, unless special care is taken, increases NOx emissions. This increase in NOx emissions is typically due to elevated flame temperatures associated with oxygen use leading to added thermal NOx formation. Innovative low flame temperature oxy-fuel burner designs have been developed and commercialized to minimize both thermal and fuel NOx formation for gas and oil fired industrial furnaces. To be effective these systems require close to 100% oxy-fuel combustion and the cost of oxygen is paid for by fuel savings and other benefits. For applications to coal-fired utility boilers at the current cost of oxygen, however, it is not economically feasible to use 100% oxygen for NOx control. In spite of this conventional wisdom, Praxair and its team members, in partnership with the US Department of Energy National Energy Technology Laboratory, have developed a novel way to use oxygen to reduce NOx emissions without resorting to complete oxy-fuel conversion. In this concept oxygen is added to the combustion process to enhance operation of a low NOx combustion system. Only a small fraction of combustion air is replaced with oxygen in the process. By selectively adding oxygen to a low NOx combustion system it is possible to reduce NOx emissions from nitrogen-containing fuels, including pulverized coal, while improving combustion characteristics such as unburned carbon. A combination of experimental work and modeling was used to define how well oxygen enhanced combustion could reduce NOx emissions. The results of this work suggest that small amounts of oxygen replacement can reduce the NOx emissions as compared to the air-alone system. NOx emissions significantly below 0.15 lbs/MMBtu were measured. Oxygen addition was also shown to reduce carbon in ash. Comparison of the costs of using oxygen for NOx control against competing technologies, such as SCR, show that this concept offers substantial savings over SCR and is an economically attractive alternative to purchasing NOx credits or installing other conventional technologies. In conjunction with the development of oxygen based low NOx technology, Praxair also worked on developing the economically enhancing oxygen transport membrane (OTM) technology which is ideally suited for integration with combustion systems to achieve further significant cost reductions and efficiency improvements. This OTM oxygen production technology is based on ceramic mixed conductor membranes that operate at high temperatures and can be operated in a pressure driven mode to separate oxygen with infinite selectivity and high flux. An OTM material was selected and characterized. OTM elements were successfully fabricated. A single tube OTM reactor was designed and assembled. Testing of dense OTM elements was conducted with promising oxygen flux results of 100% of target flux. However, based on current natural gas prices and stand-alone air separation processes, ceramic membranes do not offer an economic advantage for this application. Under a different DOE-NETL Cooperative Agreement, Praxair is continuing to develop oxygen transport membranes for the Advanced Boiler where the economics appear more attractive.

  9. Projects & Facilities - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities About Us Projects & Facilities Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size Projects & Facilities 100 Area 118-K-1 Burial Ground 200...

  10. Solar production of industrial process steam. Phase III. Operation and evaluation of the Johnson and Johnson solar facility. Final report, January 1, 1980-March 31, 1981

    SciTech Connect (OSTI)

    Brink, D.F.; Kendall, J.M.; Youngblood, S.B.

    1981-03-01

    A solar facility that generates 177/sup 0/C (350/sup 0/F) process steam has been designed and constructed by Acurex Corporation and has operated for 1 yr supplying steam to the Johnson and Johnson manufacturing plant in Sherman, Texas. The facility consists of 1068 m/sup 2/ (11,520 ft/sup 2/) of parabolic trough concentrating collectors, a 18,900 1 (5000 gal) flash boiler, and an 18.6 kW (25 hp) circulating pump. In the first year of operation the system was available 97 percent of the days, and with sufficient solar radiation available it operated 70 percent of the days during this period. The measured data showed that the collector field operated at an efficiency of 25.4 percent for the year, and that at least 75 percent of the energy reaching the flash boiler was delivered to the plant as steam. A total of 309,510 kg (682,400 lb) of steam was produced by the solar facility for the first year. An analysis of the data showed that the delivered energy was within 90 to 100 percent of the predicted value. The successful completion of the first year of operation has demonstrated the technical feasibility of generating industrial process steam with solar energy.

  11. Site maps and facilities listings

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    In September 1989, a Memorandum of Agreement among DOE offices regarding the environmental management of DOE facilities was signed by appropriate Assistant Secretaries and Directors. This Memorandum of Agreement established the criteria for EM line responsibility. It stated that EM would be responsible for all DOE facilities, operations, or sites (1) that have been assigned to DOE for environmental restoration and serve or will serve no future production need; (2) that are used for the storage, treatment, or disposal of hazardous, radioactive, and mixed hazardous waste materials that have been properly characterized, packaged, and labelled, but are not used for production; (3) that have been formally transferred to EM by another DOE office for the purpose of environmental restoration and the eventual return to service as a DOE production facility; or (4) that are used exclusively for long-term storage of DOE waste material and are not actively used for production, with the exception of facilities, operations, or sites under the direction of the DOE Office of Civilian Radioactive Waste Management. As part of the implementation of the Memorandum of Agreement, Field Offices within DOE submitted their listings of facilities, systems, operation, and sites for which EM would have line responsibility. It is intended that EM facility listings will be revised on a yearly basis so that managers at all levels will have a valid reference for the planning, programming, budgeting and execution of EM activities.

  12. Facility Representatives

    Office of Environmental Management (EM)

    DOE-STD-1063-2006 April 2006 Superseding DOE-STD-1063-2000 March 2000 DOE STANDARD FACILITY REPRESENTATIVES U.S. Department of Energy AREA MGMT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-STD-1063-2006 ii Available on the Department of Energy Technical Standards Program web site at http://www.eh.doe.gov/techstds/ DOE-STD-1063-2006 iii FOREWORD 1. This Department of Energy standard is approved for use by

  13. Facility Representatives

    Office of Environmental Management (EM)

    063-2011 February 2011 Superseding DOE-STD-1063-2006 April 2006 DOE STANDARD FACILITY REPRESENTATIVES U.S. Department of Energy AREA MGMT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-STD-1063-2011 ii Available on the Department of Energy Technical Standards Program Web site at http://www.hss.doe.gov/nuclearsafety/ns/techstds/ DOE-STD-1063-2011 iii FOREWORD 1. This Department of Energy (DOE) standard is

  14. Harrisburg Facility Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    2006 Database Retrieved from "http:en.openei.orgwindex.php?titleHarrisburgFacilityBiomassFacility&oldid397545" Feedback Contact needs updating Image needs updating...

  15. Brookhaven Facility Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    2006 Database Retrieved from "http:en.openei.orgwindex.php?titleBrookhavenFacilityBiomassFacility&oldid397235" Feedback Contact needs updating Image needs updating...

  16. Radiation Effects Facility - Facilities - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Effects Facility Typical DUT(device under test) set-up at the end of the Radiation Effects beamline. The Radiation Effects Facility is available for commercial,...

  17. Researchers Directly Observe Oxygen Signature in the Oxygen-evolving...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers Directly Observe Oxygen Signature in the Oxygen-evolving Complex of Photosynthesis Arguably the most important chemical reaction on earth is the photosynthetic...

  18. High Selectivity Oxygen Delignification

    SciTech Connect (OSTI)

    Lucian A. Lucia

    2005-11-15

    Project Objective: The objectives of this project are as follows: (1) Examine the physical and chemical characteristics of a partner mill pre- and post-oxygen delignified pulp and compare them to lab generated oxygen delignified pulps; (2) Apply the chemical selectivity enhancement system to the partner pre-oxygen delignified pulps under mill conditions (with and without any predetermined amounts of carryover) to determine how efficiently viscosity is preserved, how well selectivity is enhanced, if strength is improved, measure any yield differences and/or bleachability differences; and (3) Initiate a mill scale oxygen delignification run using the selectivity enhancement agent, collect the mill data, analyze it, and propose any future plans for implementation.

  19. Kent County Waste to Energy Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    County Waste to Energy Facility Biomass Facility Jump to: navigation, search Name Kent County Waste to Energy Facility Biomass Facility Facility Kent County Waste to Energy...

  20. Stockton Regional Water Control Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    Stockton Regional Water Control Facility Biomass Facility Jump to: navigation, search Name Stockton Regional Water Control Facility Biomass Facility Facility Stockton Regional...

  1. Environmental assessment operation of the HB-Line facility and frame waste recovery process for production of Pu-238 oxide at the Savannah River Site

    SciTech Connect (OSTI)

    1995-04-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0948, addressing future operations of the HB-Line facility and the Frame Waste Recovery process at the Savannah River Site (SRS), near Aiken, South Carolina. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, DOE has concluded that, the preparation of an environmental impact statement is not required, and is issuing this Finding of No Significant Impact.

  2. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 4, 2010 [Facility News] Request for Proposals Now Open Bookmark and Share The ARM Climate Research Facility is now accepting applications for use of the ARM mobile facilities, aerial facility, and fixed sites. Proposals are welcome from all members of the scientific community for conducting field campaigns and scientific research using the ARM Facility. Facility availability is as follows: ARM Mobile Facility 2 (AMF2) available FY2013 ARM Mobile Facility 1 (AMF1) available March 2015

  3. Renewable Energy Products LLC | Open Energy Information

    Open Energy Info (EERE)

    Products, LLC Place: Santa Fe Springs, California Zip: 90670 Product: Own and operate a biodiesel production facility in California. References: Renewable Energy Products, LLC1...

  4. Development of ITM Oxygen Technology for Low-cost and Low-emission Gasification and Other Industrial Applications

    SciTech Connect (OSTI)

    Armstrong, Phillip

    2014-11-01

    Air Products is carrying out a scope of work under DOE Award No. DE-FE0012065 “Development of ITM Oxygen Technology for Low-cost and Low-emission Gasification and Other Industrial Applications.” The Statement of Project Objectives (SOPO) includes a Task 4f in which a Decision Point shall be reached, necessitating a review of Tasks 2-5 with an emphasis on Task 4f. This Topical Report constitutes the Decision Point Application pertaining to Task 4f. The SOPO under DOE Award No. DE-FE0012065 is aimed at furthering the development of the Ion Transport Membrane (ITM) Oxygen production process toward a demonstration scale facility known as the Oxygen Development Facility (ODF). It is anticipated that the completion of the current SOPO will advance the technology significantly along a pathway towards enabling the design and construction of the ODF. Development progress on several fronts is critical before an ODF project can commence; this Topical Report serves as an early update on the progress in critical development areas. Progress was made under all tasks, including Materials Development, Ceramic Processing Development, Engineering Development, and Performance Testing. Under Task 4f, Air Products carried out a cost and performance study in which several process design and cost parameters were varied and assessed with a process model and budgetary costing exercise. The results show that the major variables include ceramic module reliability, ITM operating temperature, module production yield, and heat addition strategy. High-temperature compact heat exchangers are shown to contribute significant cost benefits, while directly firing into the feed stream to an ITM are even a mild improvement on the high-temperature recuperation approach. Based on the findings to-date, Air Products recommends no changes to the content or emphasis in the current SOPO and recommends its completion prior to another formal assessment of these factors.

  5. Optical oxygen concentration monitor

    DOE Patents [OSTI]

    Kebabian, P.

    1997-07-22

    A system for measuring and monitoring the concentration of oxygen uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to one of oxygen`s A-band absorption lines. In a preferred embodiment, the argon line is split into sets of components of shorter and longer wavelengths by a magnetic field of approximately 2,000 Gauss that is parallel to the light propagation from the lamp. The longer wavelength components are centered on an absorption line of oxygen and thus readily absorbed, and the shorter wavelength components are moved away from that line and minimally absorbed. A polarization modulator alternately selects the set of the longer wavelength, or upshifted, components or the set of the shorter wavelength, or downshifted, components and passes the selected set to an environment of interest. After transmission over a path through that environment, the transmitted optical flux of the argon line varies as a result of the differential absorption. The system then determines the concentration of oxygen in the environment based on the changes in the transmitted optical flux between the two sets of components. In alternative embodiments modulation is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to either the emitting plasma of the lamp or the environment of interest. 4 figs.

  6. Oxygen Handling and Cooling Options in High Temperature Electrolysis Plants

    SciTech Connect (OSTI)

    Manohar S. Sohal; J. Stephen Herring

    2008-07-01

    Idaho National Laboratory is working on a project to generate hydrogen by high temperature electrolysis (HTE). In such an HTE system, safety precautions need to be taken to handle high temperature oxygen at ~830C. This report is aimed at addressing oxygen handling in a HTE plant.. Though oxygen itself is not flammable, most engineering material, including many gases and liquids, will burn in the presence of oxygen under some favorable physicochemical conditions. At present, an absolute set of rules does not exist that can cover all aspects of oxygen system design, material selection, and operating practices to avoid subtle hazards related to oxygen. Because most materials, including metals, will burn in an oxygen-enriched environment, hazards are always present when using oxygen. Most materials will ignite in an oxygen-enriched environment at a temperature lower than that in air, and once ignited, combustion rates are greater in the oxygen-enriched environment. Even many metals, if ignited, burn violently in an oxygen-enriched environment. However, these hazards do not preclude the operations and systems involving oxygen. Oxygen can be safely handled and used if all the materials in a system are not flammable in the end-use environment or if ignition sources are identified and controlled. In fact, the incidence of oxygen system fires is reported to be low with a probability of about one in a million. This report is a practical guideline and tutorial for the safe operation and handling of gaseous oxygen in high temperature electrolysis system. The intent is to provide safe, practical guidance that permits the accomplishment of experimental operations at INL, while being restrictive enough to prevent personnel endangerment and to provide reasonable facility protection. Adequate guidelines are provided to govern various aspects of oxygen handling associated with high temperature electrolysis system to generate hydrogen. The intent here is to present acceptable oxygen standards and practices for minimum safety requirements. A summary of operational hazards, along with oxygen safety and emergency procedures, are provided.

  7. NREL: Wind Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Our facilities are designed to meet the wind industry's critical research needs with state-of-the-art design and testing facilities. NREL's unique and highly versatile facilities at the National Wind Technology Center offer research and analysis of wind turbine components and prototypes rated from 400 watts to 3 megawatts. Satellite facilities support the growth of wind energy development across the United States. National Wind Technology Center Facilities Our facilities are contained

  8. Oxygen generator for medical applications (USIC)

    SciTech Connect (OSTI)

    Staiger, C. L.

    2012-03-01

    The overall Project objective is to develop a portable, non-cryogenic oxygen generator capable of supplying medical grade oxygen at sufficient flow rates to allow the field application of the Topical Hyperbaric Oxygen Therapy (THOT{reg_sign}) developed by Numotech, Inc. This project was sponsored by the U.S. Department of Energy Global Initiatives for Proliferation Prevention (GIPP) and is managed by collaboration between Sandia National Laboratories (SNL), Numotech, Inc, and LLC SPE 'Spektr-Conversion.' The project had two phases, with the objective of Phase I being to develop, build and test a laboratory prototype of the membrane-pressure swing adsorber (PSA) system producing at 15 L/min of oxygen with a minimum of 98% oxygen purity. Phase II objectives were to further refine and identify the pre-requisites needed for a commercial product and to determine the feasibility of producing 15 L/min of oxygen with a minimum oxygen purity of 99%. In Phase I, Spektr built up the necessary infrastructure to perform experimental work and proceeded to build and demonstrate a membrane-PSA laboratory prototype capable of producing 98% purity oxygen at a flow rate of 5 L/min. Spektr offered a plausible path to scale up the process for 15 L/min. Based on the success and experimental results obtained in Phase I, Spektr performed work in three areas for Phase II: construction of a 15 L/min PSA; investigation of compressor requirements for the front end of the membrane/PSA system; and performing modeling and simulation of assess the feasibility of producing oxygen with a purity greater than 99%. Spektr successfully completed all of the tasks under Phase II. A prototype 15 L/min PSA was constructed and operated. Spektr determined that no 'off the shelf' air compressors met all of the specifications required for the membrane-PSA, so a custom compressor will likely need to be built. Modeling and simulation concluded that production of oxygen with purities greater than 99% was possible using a Membrane-PSA system.

  9. Analysis of a Nuclear Accident: Fission and Activation Product Releases from the Fukushima Daiichi Nuclear Facility as Remote Indicators of Source Identification, Extent of Release, and State of Damaged Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Schwantes, Jon M.; Orton, Christopher R.; Clark, Richard A.

    2012-09-10

    Measurements of several radionuclides within environmental samples taken from the Fukushima Daiichi nuclear facility and reported on the Tokyo Electric Power Company website following the recent tsunami-initiated catastrophe were evaluated for the purpose of identifying the source term, reconstructing the release mechanisms, and estimating the extent of the release. 136Cs/137Cs and 134Cs/137Cs ratios identified Units 1-3 as the major source of radioactive contamination to the surface soil close to the facility. A trend was observed between the fraction of the total core inventory released for a number of fission product isotopes and their corresponding Gibbs Free Energy of formation for the primary oxide form of the isotope, suggesting that release was dictated primarily by chemical volatility driven by temperature and reduction potential within the primary containment vessels of the vented reactors. The absence of any major fractionation beyond volatilization suggested all coolant had evaporated by the time of venting. High estimates for the fraction of the total inventory released of more volatile species (Te, Cs, I) indicated the damage to fuel bundles was likely extensive, minimizing any potential containment due to physical migration of these species through the fuel matrix and across the cladding wall. 238Pu/239,240Pu ratios close-in and at 30 km from the facility indicated that the damaged reactors were the major contributor of Pu to surface soil at the source but that this contribution likely decreased rapidly with distance from the facility. The fraction of the total Pu inventory released to the environment from venting units 1 and 3 was estimated to be ~0.003% based upon Pu/Cs isotope ratios relative to the within-reactor modeled inventory prior to venting and was consistent with an independent model evaluation that considered chemical volatility based upon measured fission product release trends. Significant volatile radionuclides within the spent fuel at the time of venting but not as yet observed and reported within environmental samples are suggested as potential analytes of concern for future environmental surveys around the site.

  10. Palladium-cobalt particles as oxygen-reduction electrocatalysts

    DOE Patents [OSTI]

    Adzic, Radoslav (East Setauket, NY); Huang, Tao (Manorville, NY)

    2009-12-15

    The present invention relates to palladium-cobalt particles useful as oxygen-reducing electrocatalysts. The invention also relates to oxygen-reducing cathodes and fuel cells containing these palladium-cobalt particles. The invention additionally relates to methods for the production of electrical energy by using the palladium-cobalt particles of the invention.

  11. Optical oxygen concentration monitor

    DOE Patents [OSTI]

    Kebabian, Paul (Acton, MA)

    1997-01-01

    A system for measuring and monitoring the concentration of oxygen uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to one of oxygen's A-band absorption lines. In a preferred embodiment, the argon line is split into sets of components of shorter and longer wavelengths by a magnetic field of approximately 2000 Gauss that is parallel to the light propagation from the lamp. The longer wavelength components are centered on an absorption line of oxygen and thus readily absorbed, and the shorter wavelength components are moved away from that line and minimally absorbed. A polarization modulator alternately selects the set of the longer wavelength, or upshifted, components or the set of the shorter wavelength, or downshifted, components and passes the selected set to an environment of interest. After transmission over a path through that environment, the transmitted optical flux of the argon line varies as a result of the differential absorption. The system then determines the concentration of oxygen in the environment based on the changes in the transmitted optical flux between the two sets of components. In alternative embodiments modulation is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to either the emitting plasma of the lamp or the environment of interest.

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 16, 2005 Facility News Mobile Facility Arrives Safe and Sound in Point Reyes Bookmark and Share Image - The ARM Mobile Facility in Point Reyes, California Safe and sound...

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20, 2010 Facility News ARM Mobile Facility Blogs from Steamboat Springs Bookmark and Share This month, team members for the second ARM Mobile Facility (AMF2) are in Steamboat...

  14. Power Systems Development Facility

    SciTech Connect (OSTI)

    None

    2003-07-01

    This report discusses Test Campaign TC12 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (SW) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC12 began on May 16, 2003, with the startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until May 24, 2003, when a scheduled outage occurred to allow maintenance crews to install the fuel cell test unit and modify the gas clean-up system. On June 18, 2003, the test run resumed when operations relit the start-up burner, and testing continued until the scheduled end of the run on July 14, 2003. TC12 had a total of 733 hours using Powder River Basin (PRB) subbituminous coal. Over the course of the entire test run, gasifier temperatures varied between 1,675 and 1,850 F at pressures from 130 to 210 psig.

  15. Direct Observation of the Oxygenated Species during Oxygen Reduction...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Observation of the Oxygenated Species during Oxygen Reduction on a Platinum Fuel Cell Cathode Friday, December 20, 2013 Fuel Cell Figure 1 Figure 1. In situ x-ray...

  16. McKay Bay Facility Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Biomass Facility Facility McKay Bay Facility Sector Biomass Facility Type Municipal Solid Waste Location Hillsborough County, Florida Coordinates 27.9903597, -82.3017728...

  17. Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Some of the nation's most powerful and sophisticated facilities for energy research Argonne National Laboratory is home to some of the nation's most powerful and sophisticated research facilities. As a U.S. Department of Energy national laboratory, Argonne offers access to the facilities listed below through a variety of arrangements. Advanced Powertrain Research Facility Center for Transportation Research Materials Engineering Research Facility Distributed Energy Research Center

  18. National User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National User Facilities Our Vision National User Facilities Research Areas In Focus Global Solutions ⇒ Navigate Section Our Vision National User Facilities Research Areas In Focus Global Solutions Berkeley Lab's User Facilities-Engines of Discovery Berkeley Lab's User Facilities provide state-of-the-art resources for scientists across the nation and around the world. About 10,000 researchers a year use these facilities, representing nearly one third of the total for all Department of Energy

  19. Oxygen ion-beam microlithography

    DOE Patents [OSTI]

    Tsuo, Y.S.

    1991-08-20

    A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used. 5 figures.

  20. A Proposal for Study of Structure and Dynamics of Energy/Matter Based on Production of Gamma-Ray at SLAC Facility

    SciTech Connect (OSTI)

    Decker, F.-J.; Krasnykh, Anatoly; Perelstein, M.; Shramenko, B.; /Kharkov, KIPT

    2011-12-13

    The success of this proposal will open new areas of Chemistry with antimatter: (1) new chemical dynamics; (2) exclusive production of parent ions by energy-tuning the positrons; (3) formation of antimatter compounds; (4) nano- and microscopic imaging of molecules, cells, and tumors (5) multi-positron systems and their thermodynamics and chemical kinetics. Also with o-Ps and p-Ps physics including speculations of dark mater (PAMELA & ATIC reported excesses in the e{sup +}e{sup -} cosmic rays).

  1. Mass Spectrometer Facility | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mass Spectrometer Facility Mass Spectrometer Facility The PARC Mass Spectrometer Facility uses customized instrumentation to directly measure the individual polypeptide mass of different light-harvesting complexes to do assignment to specific gene products and investigate protein processing. Newly developed techniques are also applied to measure the mass of native protein complexes. Structural information of complexes is extracted by combining protein chemical modification and H/D exchange

  2. Cancer-fighting treatment gets boost from Isotope Production...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cancer-fighting treatment gets boost from Isotope Production Facility Cancer-fighting treatment gets boost from Isotope Production Facility New capability expands existing program,...

  3. ARM - NSA Barrow Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Barrow Facility NSA Related Links Facilities and Instruments Barrow Atqasuk Oliktok Point (AMF3) ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site NSA...

  4. NSA Barrow Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Barrow Facility NSA Related Links Facilities and Instruments Barrow Atqasuk Oliktok Point (AMF3) ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site NSA...

  5. NREL: Biomass Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities At NREL's state-of-the-art biomass research facilities, researchers design and optimize processes to convert renewable biomass feedstocks into transportation fuels and...

  6. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    facility use by total visitor days and facility to track actual visitors and active user research computer accounts. Historical data show an apparent relationship between the...

  7. Central Receiver Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Receiver Test Facility - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Applications National Solar Thermal Test Facility Nuclear Energy Systems ...

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (BERAC) published findings and recommendations from their assessment of the effectiveness of ARM Climate Research Facility as a national scientific user facility. Based on...

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    years, DOE Office of Science user facilities undergo a review to evaluate their effectiveness in contributing to their respective science areas. The latest ARM Facility review...

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    30, 2009 Facility News ARM Aerial Facility Leads International Discussions on Aircraft Research Bookmark and Share Five research aircraft participated in the VAMOS...

  11. Research Facilities | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and systems, ensuring integration with the U.S. electric grid. Learn more Integrated Biorefinery Research Facility (IBRF) Integrated Biorefinery Research Facility (IBRF) Work with...

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to our new ARM News Center. The RSS feed will alert readers to the latest ARM science and ARM Climate Research Facility news, events, feature stories, facility updates,...

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of instruments collecting data for the ARM Mobile Facility field campaign at Point Reyes National Seashore. Since March 2005, the ARM Mobile Facility (AMF) has been at Point...

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the SGP site, and will begin in March for the ARM Mobile Facility deployment in Point Reyes, California. Launches for the ARM Climate Research Facility Tropical Western Pacific...

  15. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a number of other guest instruments at the ARM Mobile Facility deployment site at Point Reyes National Seashore in California. The ARM Mobile Facility's (AMF's) inaugural field...

  16. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 15, 2008 Facility News National User Facility Organization Meets to Discuss Progress and Ideas Bookmark and Share In late April, the ARM Technical Director attended an annual...

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    30, 2007 Facility News Interferometers Compared for ARM Mobile Facility Deployment in China Bookmark and Share During the 2-week instrument comparison, the AERI planned for Linze...

  18. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Announcements, Facility News Data Available from ARM Mobile Facility Deployment in China Bookmark and Share The Study of Aerosol Indirect Effects in China was anchored by the...

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 2008 Facility News Mobile Facility Anchors Multi-site Aerosol Study in China Bookmark and Share The AMF installation in Shouxian includes the primary shelters and operations...

  20. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15, 2005 Facility News Aging, Overworked Computer Network at SGP Gets Overhauled Bookmark and Share This aerial map of instruments deployed at the SGP Central Facility provides...

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 15, 2008 Facility News ARM Mobile Facility Completes Field Campaign in Germany Bookmark and Share Researchers will study severe precipitation events that occurred in...

  2. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News ARM Mobile Facility Completes Extended Campaign in the Azores; Next Stop-India Bookmark and Share The ARM Mobile Facility obtained data on Graciosa Island in the...

  3. High pressure oxygen furnace

    DOE Patents [OSTI]

    Morris, Donald E. (Kensington, CA)

    1992-01-01

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  4. High pressure oxygen furnace

    DOE Patents [OSTI]

    Morris, D.E.

    1992-07-14

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized, the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 5 figs.

  5. Fuel cell oxygen electrode

    DOE Patents [OSTI]

    Shanks, Howard R. (Ames, IA); Bevolo, Albert J. (Ames, IA); Danielson, Gordon C. (Ames, IA); Weber, Michael F. (Wichita, KS)

    1980-11-04

    An oxygen electrode for a fuel cell utilizing an acid electrolyte has a substrate of an alkali metal tungsten bronze of the formula: A.sub.x WO.sub.3 where A is an alkali metal and x is at least 0.2, which is covered with a thin layer of platinum tungsten bronze of the formula: Pt.sub.y WO.sub.3 where y is at least 0.8.

  6. ARM - SGP Radiometric Calibration Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiometric Calibration Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site SGP Fact Sheet Images Information for Guest Scientists Contacts SGP Radiometric Calibration Facility The Radiometric Calibration Facility (RCF) provides shortwave radiometer calibrations traceable

  7. Guide to research facilities

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

  8. Facile preparation and improved photocatalytic H{sub 2}-production of Pt-decorated CdS/TiO{sub 2} nanorods

    SciTech Connect (OSTI)

    Yu, Qi; Xu, Jie; Wang, Wenzhong; Lu, Chunli

    2014-03-01

    Graphical abstract: - Highlights: Pt-CdS/TiO{sub 2} nanorods were firstly realized by electrospinning. They exhibited high photocatalytic H{sub 2} production activity. The mechanism of the high performance was discussed. - Abstract: Pt-CdS/TiO{sub 2} nanorods with different molar ratios of Cd:Ti were prepared through an electrospinning method followed by sulfidation treatment and photodeposition. The nanorod-like samples were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), photoluminescence spectra (PL), and UVvis diffuse reflectance spectroscopy (DRS). The results indicated that the as-prepared samples exhibited wider light absorption range and lower recombination rate of photogenerated electronhole pairs after the introduction of Pt and CdS. The photocatalysis experiments showed that Pt-modified CdS/TiO{sub 2} nanorods exhibited much higher activities than pure TiO{sub 2} in the evolution of hydrogen under simulated solar light irradiation.

  9. Oxygen Transport Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay

    2008-08-30

    The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the small polaron conduction mechanism. Scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) were used to develop strategies to detect and characterize vacancy creation, dopant segregations and defect association in the oxygen conducting membrane material. The pO{sub 2} and temperature dependence of the conductivity, non-stoichiometry and thermal-expansion behavior of compositions with increasing complexity of substitution on the perovskite A and B sites were studied. Studies with the perovskite structure show anomalous behavior at low oxygen partial pressures (<10{sup -5} atm). The anomalies are due to non-equilibrium effects and can be avoided by using very strict criteria for the attainment of equilibrium. The slowness of the oxygen equilibration kinetics arises from two different mechanisms. In the first, a two phase region occurs between an oxygen vacancy ordered phase such as brownmillerite SrFeO{sub 2.5} and perovskite SrFeO{sub 3-x}. The slow kinetics is associated with crossing the two phase region. The width of the miscibility gap decreases with increasing temperature and consequently the effect is less pronounced at higher temperature. The preferred kinetic pathway to reduction of perovskite ferrites when the vacancy concentration corresponds to the formation of significant concentrations of Fe{sup 2+} is via the formation of a Ruddlesden-Popper (RP) phases as clearly observed in the case of La{sub 0.5}Sr{sub 0.5}FeO{sub 3-x} where LaSrFeO{sub 4} is found together with Fe. In more complex compositions, such as LSFTO, iron or iron rich phases are observed locally with no evidence for the presence of discrete RP phase. Fracture strength of tubular perovskite membranes was determined in air and in reducing atmospheric conditions. The strength of the membrane decreased with temperature and severity of reducing conditions although the strength distribution (Weibull parameter, m) was relatively unaltered. Surface and volume dominated the fracture origins and the overall fracture was purely transgranular. The dual phase membranes have been evaluated for structural properties. An increasing crack growth resistance was observed for the membranes heat-treated at 1000 C in air and N{sub 2} with increasing crack length. The combined effect of thermal and elastic mismatch stresses on the crack path was studied and the fracture behavior of the dual phase composite at the test conditions was analyzed. Ceramic/metal (C/M) seals are needed to form a leak-tight interface between the OTM and a nickel-base super alloy. It was concluded that Ni-based brazing alloys provided the best option in terms of brazing temperature and final operating conditions after analyzing several possible brazing systems. A mechanical testing procedure has been developed. This model was tested with model ceramic/metal systems but it is expected to be useful for testing concentric perovskite/metal seals.

  10. Security Administration Production Office,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Services: Victoria Steward 43 years Facilities, Infrastructure and Services: Erby L. Harris and David Vann Production: Charles H. Neal Quality Assurance: Gary W. Eckert 41...

  11. Sales Tax Exemption for Manufacturing Facilities

    Broader source: Energy.gov [DOE]

    Energy efficiency projects must decrease the measurable amount of energy used by the facility by at least 15% percent while maintaining or increasing the production for the same period.

  12. NREL: Energy Systems Integration Facility - Facility Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility Design Throughout the Energy Systems Integration Facility design process, the National Renewable Energy Laboratory hosted workshops in which stakeholders from across the country provided feedback on the proposed design and functionality. The resulting capabilities, both human and equipment, provide high-value assets that might otherwise be cost-prohibitive for private-sector organizations to build, maintain, and operate on their own. Planning for the research facility and its innovative

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    22, 2011 [Facility News] Request for Proposals Now Open Bookmark and Share The ARM Climate Research Facility is now accepting applications for use of an ARM mobile facility (AMF), the ARM aerial facility (AAF), and fixed sites. Proposals are welcome from all members of the scientific community for conducting field campaigns and scientific research using the ARM Facility, with availability as follows: AMF2 available December 2013 AMF1 available March 2015 AAF available between June and October

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10, 2016 [Facility News] Opportunity for Cloud Properties Retrieval Algorithm Development: Request for Interest Opened Bookmark and Share The ARM Facility is seeking a scientific consultant to develop an operational cloud property algorithm, using data from ARM facilities and instruments like these scanning cloud radars. The ARM Facility is seeking a scientific consultant to develop an operational cloud property algorithm, using data from ARM facilities and instruments like these scanning cloud

  15. NREL: Research Facilities - Test and User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Test and User Facilities NREL has test and user facilities available to industry and other organizations for researching, developing, and evaluating renewable energy and energy efficiency technologies. Here you'll find an alphabetical listing and brief descriptions of NREL's test and user facilities. A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z A Advanced Research Turbines At our wind testing facilities, we have turbines available to test

  16. FACILITY SURVEY & TRANSFER Facility Survey & Transfer Overview

    Office of Environmental Management (EM)

    will become candidate for transfer to DOE-EM for deactivation and decommissioning. ... used for transferring facilities from a transition status to a deactivation status. ...

  17. Support - Facilities - Radiation Effects Facility / Cyclotron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chamber In-Air Station Software Support Support During experiments at the Radiation Effects Facility users are assisted by the experienced on-site support staff. Our...

  18. Capsule review of the DOE research and development and field facilities

    SciTech Connect (OSTI)

    1980-09-01

    A description is given of the roles of DOE's headquarters, field offices, major multiprogram laboratories, Energy Technology and Mining Technology Centers, and other government-owned, contractor-operated facilities, which are located in all regions of the US. Descriptions of DOE facilities are given for multiprogram laboratories (12); program-dedicated facilities (biomedical and environmental facilities-12, fossil energy facilities-7, fusion energy facility-1, nuclear development facilities-3, physical research facilities-4, safeguards facility-1, and solar facilities-2); and Production, Testing, and Fabrication Facilities (nuclear materials production facilities-5, weapon testing and fabrication complex-8). Three appendices list DOE field and project offices; DOE field facilities by state or territory, names, addresses, and telephone numbers; DOE R and D field facilities by type, contractor names, and names of directors. (MCW)

  19. Method and apparatus for producing oxygen and nitrogen and membrane therefor

    DOE Patents [OSTI]

    Roman, I.C.; Baker, R.W.

    1985-09-17

    Process and apparatus for the separation and purification of oxygen and nitrogen as well as a novel membrane useful therein are disclosed. The process utilizes novel facilitated transport membranes to selectively transport oxygen from one gaseous stream to another, leaving nitrogen as a byproduct. In the method, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a polar organic membrane which separates a gaseous feed stream such as atmospheric air and a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form at the interface of the feed stream with the membrane, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form at the interface of the product stream with the membrane. In an alternate mode of operation, the feed stream is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form at the interface of the feed stream with the membrane and the product stream is maintained at a sufficiently high temperature to keep the carrier in its deoxygenated form at the interface of the product stream with the membrane. Under such conditions, the carrier acts as a shuttle, picking up oxygen at the feed side of the membrane, diffusing across the membrane as the oxygenated complex, releasing oxygen to the product stream, and then diffusing back to the feed side to repeat the process. Exceptionally and unexpectedly high O[sub 2]/N[sub 2] selectivity, on the order of 10 to 30, is obtained, as well as exceptionally high oxygen permeability, on the order of 6 to 15 [times] 10[sup [minus]8] cm[sup 3]-cm/cm[sup 2]-sec-cmHg, as well as a long membrane life of in excess of 3 months, making the process commercially feasible. 2 figs.

  20. Method and apparatus for producing oxygen and nitrogen and membrane therefor

    DOE Patents [OSTI]

    Roman, Ian C. (Bend, OR); Baker, Richard W. (Bend, OR)

    1985-01-01

    Process and apparatus for the separation and purification of oxygen and nitrogen as well as a novel membrane useful therein are disclosed. The process utilizes novel facilitated transport membranes to selectively transport oxygen from one gaseous stream to another, leaving nitrogen as a byproduct. In the method, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a polar organic membrane which separates a gaseous feed stream such as atmospheric air and a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form at the interface of the feed stream with the membrane, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form at the interface of the product stream with the membrane. In an alternate mode of operation, the feed stream is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form at the interface of the feed stream with the membrane and the product stream is maintained at a sufficiently high temperature to keep the carrier in its deoxygenated form at the interface of the product stream with the membrane. Under such conditions, the carrier acts as a shuttle, picking up oxygen at the feed side of the membrane, diffusing across the membrane as the oxygenated complex, releasing oxygen to the product stream, and then diffusing back to the feed side to repeat the process. Exceptionally and unexpectedly high O.sub.2 /N.sub.2 selectivity, on the order of 10 to 30, is obtained, as well as exceptionally high oxygen permeability, on the order of 6 to 15.times.10.sup.-8 cm.sup.3 -cm/cm.sup.2 -sec-cmHg, as well as a long membrane life of in excess of 3 months, making the process commercially feasible.

  1. Calibration Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Calibration Facilities Calibration Facilities Calibration Facilities Calibration Facilities Calibration Facilities Calibration Facilities DOE supports the development, standardization, and maintenance of calibration facilities for environmental radiation sensors. Radiation standards at the facilities are primarily used to calibrate portable surface gamma-ray survey meters and borehole logging instruments used for uranium and other mineral exploration and remedial action measurements. Standards

  2. DME-to-oxygenates process studies

    SciTech Connect (OSTI)

    Tartamella, T.L.; Sardesai, A.; Lee, S.; Kulik, C.J.

    1994-12-31

    The feasibility of the production of hydrocarbons from dimethyl ether (DNM) has been illustrated in a fixed bed micro-reactor as well as a bench scale fluidized bed reactor by the University of Akron/EPRI DME-to-Hydrocarbon (DTG) Process. The DTG process has distinct advantages over its methanol based counterpart. Specifically, the DTG process excels in the area of higher productivity, higher per-pass conversion, and lower heat duties than the MTG process. Also of special importance is the production of oxygenates -- including MTBE, ETBE, and TAME. DME may be reacted with isobutylene to produce a mixture of MTBE and ETBE. The properties of ETBE excel over MTBE in the areas of lower RVP and higher RON. According to industrial reports, MTBE is the fastest growing chemical (1992 US capacity 135,350 BPD, with expected growth of 34%/year to 1997). Also, recent renewed interest as an octane-enhancer and as a source of oxygen has spurred a growing interest in nonrefinery synthesis routes to ETBE. TAME, with its lower RVP and higher RON has proven useful as a gasoline blending agent and octane enhancer and may also be produced directly from DME. DME, therefore, serves as a valuable feedstock in the conversion of may oxygenates with wide-scale industrial importance. It should be also noted that the interest in the utilization of DME as process feedstock is based on the favorable process economics of EPRI/UA`s liquid phase DME process.

  3. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect (OSTI)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  4. Composite oxygen transport membrane

    DOE Patents [OSTI]

    Christie, Gervase Maxwell; Lane, Jonathan A.

    2014-08-05

    A method of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. In the porous fuel oxidation layer and the optional porous surface exchange layer, A is Calcium and in the dense separation layer A is not Calcium and, preferably is Strontium. Preferred materials are (La.sub.0.8Ca.sub.0.2).sub.0.95Cr.sub.0.5Mn.sub.0.5O.sub.3-.delta. for the porous fuel oxidation and optional porous surface exchange layers and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer. The use of such materials allows the membrane to sintered in air and without the use of pore formers to reduce membrane manufacturing costs. The use of materials, as described herein, for forming the porous layers have application for forming any type of porous structure, such as a catalyst support.

  5. High Selectivity Oxygen Delignification

    SciTech Connect (OSTI)

    Arthur J. Ragauskas Lucian A. Lucia Hasan Jameel

    2005-09-30

    The overall objective of this program was to develop improved extended oxygen delignification (EOD) technologies for current U.S. pulp mill operations. This was accomplished by: (1) Identifying pulping conditions that optimize O and OO performance; (2) Identifying structural features of lignin that enhance reactivity towards EOD of high kappa pulps; (3) Identifying factors minimizing carbohydrate degradation and improve pulp strength of EOD high kappa pulps; (4) Developing a simple, reproducible method of quantifying yield gains from EOD; and (5) Developing process conditions that significantly reduce the capital requirements of EOD while optimizing the yield benefits. Key research outcomes included, demonstrating the use of a mini-O sequence such as (E+O)Dkf:0.05(E+O) or Dkf:0.05(E+O)(E+O) without interstage washing could capture approximately 60% of the delignification efficiency of a conventional O-stage without the major capital requirements associated with an O-stage for conventional SW kraft pulps. The rate of formation and loss of fiber charge during an O-stage stage can be employed to maximize net fiber charge. Optimal fiber charge development and delignification are two independent parameters and do not parallel each other. It is possible to utilize an O-stage to enhance overall cellulosic fiber charge of low and high kappa SW kraft pulps which is beneficial for physical strength properties. The application of NIR and multi-variant analysis was developed into a rapid and simple method of determining the yield of pulp from an oxygen delignification stage that has real-world mill applications. A focus point of this program was the demonstration that Kraft pulping conditions and oxygen delignification of high and low-kappa SW and HW pulps are intimately related. Improved physical pulp properties and yield can be delivered by controlling the H-factor and active alkali charge. Low AA softwood kraft pulp with a kappa number 30 has an average improvement of 2% in yield and 4 cP in viscosity in comparison to high AA pulp for the oxygen delignification. This difference is also seen for high-kappa SW kraft pulps with an average improvement of {approx}3% in yield and 3 cP in viscosity for low AA high kappa number 50 pulp. Low AA hardwood kappa number 20 pulp had an average improvement of {approx}4% in yield and 6-12 cP in viscosity as compared to high AA pulp. Lower kraft cooking temperature (160 vs. 170 C) in combination with the medium AA provides a practical approach for integrating high kappa pulping of hardwoods (i.e., low rejects) with an advanced extended oxygen delignification stage. ECF pulp bleaching of low and high kappa kraft SW and HW pulps exhibit comparable optical and physical strength properties when bleached D(EPO)D.

  6. Environmental analysis of biomass-ethanol facilities

    SciTech Connect (OSTI)

    Corbus, D.; Putsche, V.

    1995-12-01

    This report analyzes the environmental regulatory requirements for several process configurations of a biomass-to-ethanol facility. It also evaluates the impact of two feedstocks (municipal solid waste [MSW] and agricultural residues) and three facility sizes (1000, 2000, and 3000 dry tons per day [dtpd]) on the environmental requirements. The basic biomass ethanol process has five major steps: (1) Milling, (2) Pretreatment, (3) Cofermentation, (4) Enzyme production, (5) Product recovery. Each step could have environmental impacts and thus be subject to regulation. Facilities that process 2000 dtpd of MSW or agricultural residues would produce 69 and 79 million gallons of ethanol, respectively.

  7. CRAD, Facility Safety- Nuclear Facility Design

    Office of Energy Efficiency and Renewable Energy (EERE)

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Design.

  8. CRAD, Facility Safety- Nuclear Facility Safety Basis

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Safety Basis.

  9. Glass Furnace Combustion and Melting Research Facility.

    SciTech Connect (OSTI)

    Connors, John J.; McConnell, John F.; Henry, Vincent I.; MacDonald, Blake A.; Gallagher, Robert J.; Field, William B.; Walsh, Peter M.; Simmons, Michael C.; Adams, Michael E.; Leadbetter, James M.; Tomasewski, Jack W.; Operacz, Walter J.; Houf, William G.; Davis, James W.; Marvin, Bart G.; Gunner, Bruce E.; Farrell, Rick G.; Bivins, David P.; Curtis, Warren; Harris, James E.

    2004-08-01

    The need for a Combustion and Melting Research Facility focused on the solution of glass manufacturing problems common to all segments of the glass industry was given high priority in the earliest version of the Glass Industry Technology Roadmap (Eisenhauer et al., 1997). Visteon Glass Systems and, later, PPG Industries proposed to meet this requirement, in partnership with the DOE/OIT Glass Program and Sandia National Laboratories, by designing and building a research furnace equipped with state-of-the-art diagnostics in the DOE Combustion Research Facility located at the Sandia site in Livermore, CA. Input on the configuration and objectives of the facility was sought from the entire industry by a variety of routes: (1) through a survey distributed to industry leaders by GMIC, (2) by conducting an open workshop following the OIT Glass Industry Project Review in September 1999, (3) from discussions with numerous glass engineers, scientists, and executives, and (4) during visits to glass manufacturing plants and research centers. The recommendations from industry were that the melting tank be made large enough to reproduce the essential processes and features of industrial furnaces yet flexible enough to be operated in as many as possible of the configurations found in industry as well as in ways never before attempted in practice. Realization of these objectives, while still providing access to the glass bath and combustion space for optical diagnostics and measurements using conventional probes, was the principal challenge in the development of the tank furnace design. The present report describes a facility having the requirements identified as important by members of the glass industry and equipped to do the work that the industry recommended should be the focus of research. The intent is that the laboratory would be available to U.S. glass manufacturers for collaboration with Sandia scientists and engineers on both precompetitive basic research and the solution of proprietary glass production problems. As a consequence of the substantial increase in scale and scope of the initial furnace concept in response to industry recommendations, constraints on funding of industrial programs by DOE, and reorientation of the Department's priorities, the OIT Glass Program is unable to provide the support for construction of such a facility. However, it is the present investigators' hope that a group of industry partners will emerge to carry the project forward, taking advantage of the detailed furnace design presented in this report. The engineering, including complete construction drawings, bill of materials, and equipment specifications, is complete. The project is ready to begin construction as soon as the quotations are updated. The design of the research melter closely follows the most advanced industrial practice, firing by natural gas with oxygen. The melting area is 13 ft x 6 ft, with a glass depth of 3 ft and an average height in the combustion space of 3 ft. The maximum pull rate is 25 tons/day, ranging from 100% batch to 100% cullet, continuously fed, with variable batch composition, particle size distribution, and raft configuration. The tank is equipped with bubblers to control glass circulation. The furnace can be fired in three modes: (1) using a single large burner mounted on the front wall, (2) by six burners in a staggered/opposed arrangement, three in each breast wall, and (3) by down-fired burners mounted in the crown in any combination with the front wall or breast-wall-mounted burners. Horizontal slots are provided between the tank blocks and tuck stones and between the breast wall and skewback blocks, running the entire length of the furnace on both sides, to permit access to the combustion space and the surface of the glass for optical measurements and sampling probes. Vertical slots in the breast walls provide additional access for measurements and sampling. The furnace and tank are to be fully instrumented with standard measuring equipment, such as flow meters, thermocouples, continuous gas composition

  10. Surface oxygen micropatterns on glow discharge polymer targets by photo irradiation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Reynolds, Hannah; Baxamusa, Salmaan; Haan, Steven W.; Fitzsimmons, Paul; Carlson, Lane; Farrell, Mike; Nikroo, Abbas; Watson, Brian J.

    2016-02-24

    Recent simulations predict surface oxygen may be a significant source of disruptive perturbations in the implosion process of glow-discharge polymers (GDP) ablators at the National Ignition Facility. GDP material held in ambient atmospheric conditions showed an increase in mass when stored in light transparent containers, which suggests that photo exposure is a driving force for oxygen absorption. To investigate if surface oxygen is a contributing factor of disruptive perturbations during implosion, we developed a method to imprint a periodic micropattern of oxygen on the surface of GDP and used it to fabricate a flat sample for empirical testing.

  11. Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on High-Stability-Low-Cost Supports Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on...

  12. Construction on Pantex High Explosives Pressing Facility Reaches...

    National Nuclear Security Administration (NNSA)

    Field Offices Welcome to the NNSA Production Office NPO News Releases Construction on Pantex High Explosives Pressing Facility ... Construction on Pantex High Explosives...

  13. Y-12 Removes Nuclear Materials from Two Facilities to Reduce...

    National Nuclear Security Administration (NNSA)

    Blog Home Field Offices Welcome to the NNSA Production Office NPO News Releases Y-12 Removes Nuclear Materials from Two Facilities ... Y-12 Removes Nuclear Materials from...

  14. Sandia Energy - Increasing the Scaled Wind Farm Technology Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Production Home Renewable Energy Energy SWIFT Facilities Partnership News Wind Energy News & Events Systems Analysis Increasing the Scaled Wind Farm Technology...

  15. Canyon Facilities - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Us Projects & Facilities Canyon Facilities About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental

  16. ORPS Facility Registration Form

    Energy Savers [EERE]

    ORPS FACILITY REGISTRATION FORM Submit completed form to: U.S. Department of Energy AU User Support EMAIL: ORPSsupport@hq.doe.gov PHONE: 800-473-4375 FAX: 301-903-9823 Note:  Only one facility per form  Type or print all entries 1. TYPE OF CHANGE  Add a Facility (Complete Section 1.A, then go to Section 2)  Change a Facility (Complete Section 1.B, then go to Section)  Delete a Facility (Complete Section 1.C, then go to Section 2) A. Add a New Facility Use this section if you are

  17. Oxygenates from synthesis gas

    SciTech Connect (OSTI)

    Falter, W.; Keim, W.

    1994-12-31

    The direct synthesis of oxygenates starting from synthesis gas is feasible by homogeneous and heterogeneous catalysis. Homogeneous Rh and Ru based catalysts yielding methyl formate and alcohols will be presented. Interestingly, modified heterogeneous catalysts based on {open_quotes}Isobutyl Oel{close_quotes} catalysis, practized in Germany (BRD) up to 1952 and in the former DDR until recently, yield isobutanol in addition to methanol. These {open_quotes}Isobutyl Oel{close_quotes} catalysts are obtained by adding a base such as Li < Na < K < Cs to a Zn-Cr{sub 2}O{sub 3} methanol catalyst. Isobutanol is obtained in up to 15% yield. Our best catalyst a Zr-Zn-Mn-Li-Pd catalyst produced isobotanol up to 60% at a rate of 740g isobutanol per liter catalyst and hour.

  18. Oxygen-reducing catalyst layer

    DOE Patents [OSTI]

    O'Brien, Dennis P. (Maplewood, MN); Schmoeckel, Alison K. (Stillwater, MN); Vernstrom, George D. (Cottage Grove, MN); Atanasoski, Radoslav (Edina, MN); Wood, Thomas E. (Stillwater, MN); Yang, Ruizhi (Halifax, CA); Easton, E. Bradley (Halifax, CA); Dahn, Jeffrey R. (Hubley, CA); O'Neill, David G. (Lake Elmo, MN)

    2011-03-22

    An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

  19. Uranium Processing Facility Site Readiness Subproject Completed on Time and

    National Nuclear Security Administration (NNSA)

    Under Budget | National Nuclear Security Administration Field Offices / Welcome to the NNSA Production Office / NPO News Releases / Uranium Processing Facility Site Readiness Subproject Completed ... Uranium Processing Facility Site Readiness Subproject Completed on Time and Under Budget The Uranium Processing Facility (UPF) project celebrates its first major milestone with the completion of site readiness work, delivered on time and under budget.

  20. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 30, 2008 Facility News ARM Outreach Materials Chosen for Earth Day Display in Washington DC Bookmark and Share Posters for the ARM Mobile Facility and ARM Education and...

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    radiation. This photo shows the sun setting through a dusty atmosphere near Niamey, Niger, where the mobile facility was deployed for one year. In 2006, the ARM Mobile Facility...

  2. Facilities | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JLab Buildings Facilities Management & Logistics is responsible for performing or specifying performance of all Jefferson Lab facility maintenance. A D D I T I O N A L L I N K S:...

  3. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 11, 2007 Facility News ARM Mobile Facility Moves to China in 2008 for Study of Aerosol Impacts on Climate Bookmark and Share Onshore winds and a mountain range to the...

  4. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Farewell to Dan Nelson, SGP Facilities Manager Bookmark and Share Dan Nelson Dan Nelson Dan Nelson, long-time facilities manager at the ARM Southern Great Plains site, is heading...

  5. Biomass Feedstock National User Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Feedstock National User Facility Kevin L. Kenney July 29, 2014 Mission: Engage commercial, industrial, governmental, and educational entities through the utilization/deployment of DOE-BETO developed capabilities What's New? New tools for capability deployment Approach: Active industry engagement to establish a partnership between DOE and industry * Satisfy DOE-BETO interests * Provide products that reduce risk and guide industrial technologies Biomass Feedstock Process Demonstration Unit

  6. Sandia National Laboratories: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities State-Of-The-Art Supporting all elements of IMS projects Facilities Labs and Test Sites Integrated Military Systems maintains a number of state-of-the-art testing and fabrication facilities. Supporting all elements of IMS projects including design, prototyping, fabrication, development, testing, and assessments, these facilities enable customers to quickly realize their projects and get the information they need in a fast and effective way. Use the "left" and

  7. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Backup Software Improves Processing, Reliability at Data Management Facility Bookmark and Share Real-time data from all three of the ARM Climate Research Facility sites (North Slope of Alaska, Southern Great Plains, and Tropical Western Pacific) are collected and processed at the ARM Climate Research Facility Data Management Facility (DMF) each day. Processing involves the application of algorithms for performing simple averaging routines, qualitative comparisons, or more complicated

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    25, 2013 [Education, Facility News] Junior Rangers Enjoy Science Education at ARM Facility on Cape Cod Bookmark and Share Children and adults join in the balloon launch countdown at the ARM Mobile Facility site at Cape Cod National Seashore. Weather balloons are launched at regular intervals four times per day throughout the one-year campaign. Children and adults join in the balloon launch countdown at the ARM Mobile Facility site at Cape Cod National Seashore. Weather balloons are launched at

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 30, 2008 [Facility News] Team Scouts Graciosa Island for 2009 Mobile Facility Deployment Site Bookmark and Share A location near the airport on the northern end of Graciosa Island was identified as an excellent location for operating the ARM Mobile Facility. Image source: Luis Miguens Indications from a scouting trip by the ARM Mobile Facility (AMF) science and operations management team are that an excellent site for the 2009 deployment may have been found. From April 8 through April 16,

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 21, 2014 [Facility News] ARM Facility Embarks on Expansion in the United States Bookmark and Share A reconfiguration plan is being set in motion for the ARM Facility that will result in even better observations of atmospheric processes at the SGP site. A reconfiguration plan is being set in motion for the ARM Facility that will result in even better observations of atmospheric processes at the SGP site. Through 20 years of measurements at its observations sites around the world, the ARM

  11. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 24, 2009 [Facility News] Mobile Facility Deployments Featured in ClimateWire Bookmark and Share Several ARM science team members are quoted in an article published in ClimateWire, an online publication devoted to climate change issues and their effects on business, the environment, and society. The article highlights deployments of the ARM Mobile Facility and its contribution to the overall climate record obtained through the ARM Climate Research Facility. ClimateWire is one of several

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 21, 2015 [Facility News] First Ever ARM / ASR Joint User Facility PI Meeting Bookmark and Share Over 300 ARM Facility users and ASR scientists participated in the first ever ARM / ASR joint meeting, beginning with opening plenary March 17. Over 300 ARM Facility users and ASR scientists participated in the first ever ARM / ASR joint meeting, beginning with opening plenary March 17. A recent joint meeting of the users and staff from the Atmospheric Radiation Measurement (ARM) Climate

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2015 [Facility News] New Science Board Members Tackle ARM's Expanding Landscape Bookmark and Share With facilities around the world hosting field campaigns on a regular basis, the ARM Climate Research Facility continues to be an important resource to the scientific community. Thanks to the vigilance of the ARM Science Board, the ARM Facility is able to support quality science with over 70 campaigns a year. Comprised of highly-respected scientists from the external climate research community,

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 13, 2008 [Facility News] Facility Update Highlights Progress Bookmark and Share As the ARM Climate Research Facility has grown, so has its bimonthly report. With key accomplishments and activities encompassing the entire ARM infrastructure, the "Operations Update" report has been renamed "Facility Update." Along with this change, the report's web page has a new, more streamlined look that provides more information at a glance. Stay tuned for a more detailed

  15. Expertise & Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Expertise & Facilities Expertise & Facilities Our full spectrum of end-to-end integrated capabilities in explosives make Los Alamos the ideal place to develop, characterize, and test all types of explosives and explosives threat scenarios. v Award-winning scientists, state-of-the-art facilities LACED is built upon Los Alamos' unparalleled explosives detection capabilities derived from the expertise of award-winning scientists and state-of-the-art facilities. LACED is made up of 57

  16. Jupiter Laser Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supporting the broad community of high-energy-density researchers The Jupiter Laser Facility is an institutional user facility in the Physical and Life Sciences Directorate at Lawrence Livermore National Laboratory (LLNL). The facility is designed to provide a high degree of experimental flexibility and high laser shot rates, and to allow direct user operation of experiments. The Jupiter Laser Facilities missions are to support lab-wide research pertinent to LLNL programs (e.g. High Energy

  17. CMI Unique Facility: Bulk Combinatoric Materials Synthesis Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bulk Combinatoric Materials Synthesis Facility The Bulk Combinatoric Materials Synthesis Facility is one of half a dozen unique facilities developed by the Critical Materials...

  18. Manufacturing Demonstration Facility

    Office of Environmental Management (EM)

    ORNL is managed by UT-Battelle for the US Department of Energy Manufacturing Demonstration Facility DOE Advanced Manufacturing Office Merit Review Craig Blue Director, Manufacturing Demonstration Facility Energy and Environmental Sciences Directorate May 6-7, 2014 Washington, DC This presentation does not include proprietary, confidential, or otherwise restricted information. Outline * Manufacturing Demonstration Facility * Impacts with Industry - Metal additive manufacturing - Polymer additive

  19. THERMOCHEMICAL CONVERSION OF FERMENTATION-DERIVED OXYGENATES TO FUELS

    SciTech Connect (OSTI)

    Ramasamy, Karthikeyan K.; Wang, Yong

    2013-06-01

    At present ethanol generated from renewable resources through fermentation process is the dominant biofuel. But ethanol suffers from undesirable fuel properties such as low energy density and high water solubility. The production capacity of fermentation derived oxygenates are projected to rise in near future beyond the current needs. The conversion of oxygenates to hydrocarbon compounds that are similar to gasoline, diesel and jet fuel is considered as one of the viable option. In this chapter the thermo catalytic conversion of oxygenates generated through fermentation to fuel range hydrocarbons will be discussed.

  20. Ultrafast kinetics subsequent to shock in an unreacted, oxygen balanced

    Office of Scientific and Technical Information (OSTI)

    mixture of nitromethane and hydrogen peroxide (Conference) | SciTech Connect kinetics subsequent to shock in an unreacted, oxygen balanced mixture of nitromethane and hydrogen peroxide Citation Details In-Document Search Title: Ultrafast kinetics subsequent to shock in an unreacted, oxygen balanced mixture of nitromethane and hydrogen peroxide × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and

  1. Nuclear Facilities | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Nuclear Facilities Locator Map Numerical map data points indicate two or more nuclear facilities in the same geographic location. Nuclear Facilities List: Argonne National ...

  2. ARM - Facility News Archive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Archive Media Contact Hanna Goss hanna-dot-goss-at-pnnl-dot-gov @armnewsteam Field Notes Blog Topics Field Notes107 AGU 3 AMIE 10 ARM Aerial Facility 2 ARM Mobile Facility 1 6 ARM Mobile Facility 2 47 ARM Mobile Facility 3 1 BAECC 1 BBOP 4 ENA 1 GOAMAZON 7 MAGIC 15 MC3E 17 PECAN 3 SGP 7 STORMVEX 29 TCAP 3 Search News Search Blog News Center All Categories What's this? Social Media Guidance News Center All Categories Features and Releases Facility News Field Notes Blog Events Employment Research

  3. ARM - Facility News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Media Contact Hanna Goss hanna-dot-goss-at-pnnl-dot-gov @armnewsteam Field Notes Blog Topics Field Notes107 AGU 3 AMIE 10 ARM Aerial Facility 2 ARM Mobile Facility 1 6 ARM Mobile Facility 2 47 ARM Mobile Facility 3 1 BAECC 1 BBOP 4 ENA 1 GOAMAZON 7 MAGIC 15 MC3E 17 PECAN 3 SGP 7 STORMVEX 29 TCAP 3 Search News Search Blog News Center All Categories What's this? Social Media Guidance News Center All Categories Features and Releases Facility News Field Notes Blog Events Employment Research

  4. Novel Membranes and Processes for Oxygen Enrichment

    SciTech Connect (OSTI)

    Lin, Haiqing

    2011-11-15

    The overall goal of this project is to develop a membrane process that produces air containing 25-35% oxygen, at a cost of $25-40/ton of equivalent pure oxygen (EPO2). Oxygen-enriched air at such a low cost will allow existing air-fueled furnaces to be converted economically to oxygen-enriched furnaces, which in turn will improve the economic and energy efficiency of combustion processes significantly, and reduce the cost of CO{sub 2} capture and sequestration from flue gases throughout the U.S. manufacturing industries. During the 12-month Concept Definition project: We identified a series of perfluoropolymers (PFPs) with promising oxygen/nitrogen separation properties, which were successfully made into thin film composite membranes. The membranes showed oxygen permeance as high as 1,200 gpu and oxygen/nitrogen selectivity of 3.0, and the permeance and selectivity were stable over the time period tested (60 days). We successfully scaled up the production of high-flux PFP-based membranes, using MTR's commercial coaters. Two bench-scale spiral-wound modules with countercurrent designs were made and parametric tests were performed to understand the effect of feed flow rate and pressure, permeate pressure and sweep flow rate on the membrane module separation properties. At various operating conditions that modeled potential industrial operating conditions, the module separation properties were similar to the pure-gas separation properties in the membrane stamps. We also identified and synthesized new polymers [including polymers of intrinsic microporosity (PIMs) and polyimides] with higher oxygen/nitrogen selectivity (3.5-5.0) than the PFPs, and made these polymers into thin film composite membranes. However, these membranes were susceptible to severe aging; pure-gas permeance decreased nearly six-fold within two weeks, making them impractical for industrial applications of oxygen enrichment. We tested the effect of oxygen-enriched air on NO{sub x} emissions using a Bloom baffle burner at GTI. The results are positive and confirm that oxygen-enriched combustion can be carried out without producing higher levels of NOx than normal air firing, if lancing of combustion air is used and the excess air levels are controlled. A simple economic study shows that the membrane processes can produce O{sub 2} at less than $40/ton EPO{sub 2} and an energy cost of 1.1-1.5 MMBtu/ton EPO{sub 2}, which are very favorable compared with conventional technologies such as cryogenics and vacuum pressure swing adsorption processes. The benefits of integrated membrane processes/combustion process trains have been evaluated, and show good savings in process costs and energy consumption, as well as reduced CO{sub 2} emissions. For example, if air containing 30% oxygen is used in natural gas furnaces, the net natural gas savings are an estimated 18% at a burner temperature of 2,500 F, and 32% at a burner temperature of 3,000 F. With a 20% market penetration of membrane-based oxygen-enriched combustion in all combustion processes by 2020, the energy savings would be 414-736 TBtu/y in the U.S. The comparable net cost savings are estimated at $1.2-2.1 billion per year by 2020, calculated as the value of fuel savings subtracted from the cost of oxygen production. The fuel savings of 18%-32% by the membrane/oxygen-enriched combustion corresponds to an 18%-32% reduction in CO{sub 2} emissions, or 23-40 MM ton/y less CO{sub 2} from natural gas-fired furnaces by 2020. In summary, results from this project (Concept Definition phase) are highly promising and clearly demonstrate that membrane processes can produce oxygen-enriched air in a low cost manner that will lower operating costs and energy consumption in industrial combustion processes. Future work will focus on proof-of-concept bench-scale demonstration in the laboratory.

  5. Wheelabrator Westchester Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Westchester Biomass Facility Jump to: navigation, search Name Wheelabrator Westchester Biomass Facility Facility Wheelabrator Westchester Sector Biomass Facility Type Municipal...

  6. Hydrodynamic Testing Facilities Database | Open Energy Information

    Open Energy Info (EERE)

    Hydrodynamic Testing Facilities Database (Redirected from Hydrodynamic Testing Facilities) Jump to: navigation, search Facility Operators By viewing Hydrodynamic Testing Facilities...

  7. Oxygen detection using evanescent fields

    DOE Patents [OSTI]

    Duan, Yixiang (Los Alamos, NM); Cao, Weenqing (Los Alamos, NM)

    2007-08-28

    An apparatus and method for the detection of oxygen using optical fiber based evanescent light absorption. Methylene blue was immobilized using a sol-gel process on a portion of the exterior surface of an optical fiber for which the cladding has been removed, thereby forming an optical oxygen sensor. When light is directed through the optical fiber, transmitted light intensity varies as a result of changes in the absorption of evanescent light by the methylene blue in response to the oxygen concentration to which the sensor is exposed. The sensor was found to have a linear response to oxygen concentration on a semi-logarithmic scale within the oxygen concentration range between 0.6% and 20.9%, a response time and a recovery time of about 3 s, ant to exhibit good reversibility and repeatability. An increase in temperature from 21.degree. C. to 35.degree. C. does not affect the net absorption of the sensor.

  8. Working with SRNL - Our Facilities- Rapid Fabrication Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rapid Fabrication Facility Working with SRNL Our Facilities - Rapid Fabrication Facility At SRNL's Rapid Fabrication Facility, low-cost prototypes are produced, as well as parts and complete working models

  9. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    DOE Patents [OSTI]

    Kelly, Sean M; Kromer, Brian R; Litwin, Michael M; Rosen, Lee J; Christie, Gervase Maxwell; Wilson, Jamie R; Kosowski, Lawrence W; Robinson, Charles

    2014-01-07

    A method and apparatus for producing heat used in a synthesis gas production is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the stream reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5.

  10. NATIONAL IGNITION FACILITY | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NATIONAL IGNITION FACILITY American Fusion News Category: National Ignition Facility Link: NATIONAL IGNITION FACILITY

  11. Department of Energy Facilities | Department of Energy

    Energy Savers [EERE]

    Department of Energy Facilities Department of Energy Facilities Department of Energy Facilities View All Maps Addthis...

  12. Department of Energy Facilities | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Facilities Department of Energy Facilities Department of Energy Facilities

  13. Hanford Facility Beryllium Fact Sheet Building Number/Name:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    36Z Plutonium Storage Facility June 30, 2004 January 26, 2012 CHPRC Kristy Kimmerle, CIH PAST OPERATIONS Beryllium brought in facility: YES Form of beryllium: SOLID Period of beryllium operations (dates): Built in 1971. Unknown Location(s) in facility that contained beryllium materials: Miscellaneous plutonium products potentially containing trace quantities of beryllium were stored in sealed 3013-type containers within vaults 1, 3 and 4. Plutonium products stored in sealed containers in 2736Z

  14. Oxygen-enriched coincineration of MSW and sewage sludge: Final report

    SciTech Connect (OSTI)

    1994-01-01

    Federal regulations banning ocean dumping of sewage sludge coupled with stricter regulations on the disposal of sewage sludge in landfills have forced municipalities, especially those in the northeast United States, to consider alternate methods for disposal of this solid waste. Coincineration of municipal solid waste (MSW) and sludge has proven to be economically attractive for both Europe and Japan, but has not yet proven to be a viable sludge disposal technology in the United States because of a history of operational problems in existing facilities. The most prevalent problem in coincinerating MSW and a dewatered sewage sludge (15 to 25% solids) is incomplete sludge combustion. Incomplete sludge combustion is primarily a function of sludge particle size, occurring when the surface of the sludge particle dries and hardens, while the inner mass is unaffected. This phenomenon is commonly referred to in the industry as the {open_quotes}hamburger effect.{close_quotes} In an effort to promote technology development in this area, Air Products and Chemicals, Inc. teamed with the US Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL) to evaluate a new process being developed for the disposal of a dewatered sewage sludge, {open_quotes}Oxygen-Enriched Coincineration of MSW and Sewage Sludge.{close_quotes} This report provides a comprehensive summary of the pilot demonstration test program for oxygen-enriched coincineration of MSW and sewage sludge. This report describes the pilot test facility, instrumentation, and methods of data collection and data analyses; describes how the tests were executed; and discusses the test results. Recommendations for the future development of this technology in the current marketplace are also provided.

  15. Kammerer Solar Power Facility | Open Energy Information

    Open Energy Info (EERE)

    Power Facility Facility Kammerer Solar Power Facility Sector Solar Facility Type Photovoltaics Facility Status In Service Developer Recurrent Energy Energy Purchaser Sacramento...

  16. Spearville Wind Energy Facility | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Facility Jump to: navigation, search Name Spearville Wind Energy Facility Facility Spearville Wind Energy Facility Sector Wind energy Facility Type Commercial Scale...

  17. Baseline Wind Energy Facility | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Facility Jump to: navigation, search Name Baseline Wind Energy Facility Facility Baseline Wind Energy Facility Sector Wind energy Facility Type Commercial Scale Wind...

  18. Ainsworth Wind Energy Facility | Open Energy Information

    Open Energy Info (EERE)

    Ainsworth Wind Energy Facility Jump to: navigation, search Name Ainsworth Wind Energy Facility Facility Ainsworth Wind Energy Facility Sector Wind energy Facility Type Commercial...

  19. Searsburg Wind Energy Facility | Open Energy Information

    Open Energy Info (EERE)

    Searsburg Wind Energy Facility Jump to: navigation, search Name Searsburg Wind Energy Facility Facility Searsburg Wind Energy Facility Sector Wind energy Facility Type Commercial...

  20. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Quality Improvement Inspections Take Place Bookmark and Share During the SGP site audit conducted in April 2005, a member of the Continuous Quality Improvement Program team is accompanied by a local jackrabbit at the Ringwood Extended Facility. The Continuous Quality Improvement Program (CQIP) implemented by the ARM Program in 1998 requires annual audits and inspection visits to each of the ARM Climate Research Facility Southern Great Plains (SGP) site's 27 field facilities located in

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, 2011 [Facility News] Data from Field Campaign in Black Forest, Germany, are Red Hot Bookmark and Share During COPS, the ARM Mobile Facility operated in Heselbach, Germany, obtaining measurements encompassing the entire life cycle of precipitation. The AMF site also hosted a number of guest instruments for supplemental field campaigns throughout the deployment. During COPS, the ARM Mobile Facility operated in Heselbach, Germany, obtaining measurements encompassing the entire life cycle of

  2. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    14, 2012 [Facility News] Data Collection from Mobile Facility on Gan Island Suspended Bookmark and Share Local weather balloon launch volunteers pose with the AMF team on Gan Island after completing their training. Local weather balloon launch volunteers pose with the AMF team on Gan Island after completing their training. Due to sudden unrest in the Maldives in early February, operations of the ARM Mobile Facility on Gan Island were suspended on February 9, 2012, and all instruments have been

  3. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 1, 2012 [Facility News] Arctic Storm Samples Show Relationship Between Sea Ice and Precipitation Over Land Bookmark and Share Walter Brower, Barrow site facilities manager for ARM, cleans the sampling surface in preparation for the next snow storm. Visible in the background is the site's automated weather balloon launcher. Walter Brower, Barrow site facilities manager for ARM, cleans the sampling surface in preparation for the next snow storm. Visible in the background is the site's

  4. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9, 2007 [Facility News] Field Campaigns Selected for Fiscal Year 2009 Bookmark and Share The U.S. Department of Energy program directors for the ARM Climate Research Facility and ARM Aerial Vehicles Program announced the following field campaign selections for fiscal year 2009: The ARM Mobile Facility will be deployed in the Azores to support the Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CLAP-MBL) field campaign. From April through December, the AMF will be located on

  5. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2012 [Data Announcements, Facility News] New Data from Greenland for Arctic Climate Research Bookmark and Share Instruments for ICECAPS operate on top and inside of the Mobile Science Facility at Summit Station in Greenland. Instruments for ICECAPS operate on top and inside of the Mobile Science Facility at Summit Station in Greenland. In 2010, researchers installed a powerful suite of climate and weather instruments at Greenland's frozen research outpost, Summit Station, for a long-term

  6. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 10, 2007 [Facility News] Jim Mather Selected as New ARM Technical Director Bookmark and Share Congratulations to Dr. Jim Mather, who will take the position of Technical Director of the ARM Climate Research Facility effective August 1, 2007. The Technical Director is responsible and accountable for the successful overall management of the user facility and works with the other ARM managers to this end. Jim's leadership will be critical for the successful development and evolution of the

  7. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9, 2014 [Facility News] Workshops Begin for ARM Megasites Bookmark and Share While the mission of the ARM Climate Research Facility has not changed, it is undergoing a reconfiguration to better support the linking of ARM measurements with process-oriented models. The facility reconfiguration, presented at the recent Atmospheric System Research meeting, will involve three main components: Augmenting measurements at the ARM Southern Great Plains site and the two sites on the North Slope of Alaska,

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    13, 2014 [Facility News] Characterizing Ice Nuclei Over Southern Great Plains Bookmark and Share Placed on the upper platform of the SGP Guest Instrument Facility, this filter collects air samples that will be processed for concentrations of ice nucleating particles later in a lab at Colorado State University. Placed on the upper platform of the SGP Guest Instrument Facility, this filter collects air samples that will be processed for concentrations of ice nucleating particles later in a lab at

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 13, 2014 [Facility News] ARM Facility Insights at the 2014 AGU Fall Meeting Bookmark and Share 1012541_796245997058840_743936320_n At the 2014 American Geophysical Union Fall Meeting in San Francisco, December 15-19, nearly 24,000 scientists from around the world are gathering to share their latest research results in all areas of Earth science. Find out how researchers are using data from U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility-the

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    26, 2015 [Facility News, Publications] Aerosol Measurement Science Group Charter Now Available Bookmark and Share Allison McComiskey, Science Co-Chair Allison McComiskey, Science Co-Chair The Atmospheric Radiation Measurement (ARM) Climate Research Facility has established a charter for a new Aerosol Measurement Science Group (AMSG). Tasked with providing enhanced coordination of ARM Facility observations of aerosols and atmospheric trace gases with the needs of its users, the group's main

  11. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9, 2015 [Facility News] Insights to ARM Facility Activities at 2015 AGU Fall Meeting Bookmark and Share 1012541_796245997058840_743936320_n At the 2015 American Geophysical Union Fall Meeting in San Francisco, December 14-18, nearly 24,000 scientists from around the world are gathering to share their latest research results in all areas of Earth science. Find out how researchers are using data from U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility-the

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 15, 2008 [Facility News] Future of User Facility Discussed at Fall Workshop Bookmark and Share As a national user facility, ARM is accessible to scientists around the globe for interdisciplinary research related to earth systems. In a continuing effort to meet users' scientific needs, as well as to provide measurable progress related to the U.S. Department of Energy's climate change research missions, ARM sponsored a "User Workshop" on October 31 and November 1, 2007.

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2009 [Facility News] Town Hall Meeting at AGU 2009 Fall Meeting Bookmark and Share ARM Climate Research Facility - New Measurement Capabilities for Climate Research Thursday, December 17, 6:15-7:15 pm, Moscone West Room 2002 American Recovery and Reinvestment Act American Recovery and Reinvestment Act Scientists from around the world use data from the ARM Climate Research Facility to study the interactions between clouds, aerosol and radiation. Through the American Recovery and Reinvestment

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15, 2006 [Facility News] Radar Wind Profiler Joins ARM Mobile Facility Instrument Suite Bookmark and Share This spring, a 915 MHz radar wind profiler (RWP) was successfully installed at the ARM Mobile Facility (AMF) site in Niamey, Niger, West Africa, for the remainder of the 1-year RADAGAST field campaign which started in January. The RWP will provide information about wind speed, wind direction, and wind shear, and also enable measurements of the turbulence in the lower part of the

  15. Jupiter Laser Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jupiter Laser Facility The commissioning of the Titan Petawatt-Class laser to LLNL's Jupiter Laser Facility (JLF) has provided a unique platform for the use of petawatt (PW)-class lasers to explore laser-matter interactions under extreme conditions. The JLF includes the Janus, Callisto, Europa, Titan, and COMET lasers and associated target chambers (see Laser Facilities). Commissioned in 2007, Titan was the first to offer synchronized operation of both a short-pulse PW beam and a long-pulse

  16. Joint Facilities User Forum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Forum on Data-Intensive Computing Panel: 20 Minutes Into Our Future Near-term technology panel discussion between facility operations, applications developer, and users 2 Joint Facilities User Forum Guiding Thoughts of this Panel * Talking to the Compute, Store, Analyze cycle - Users - Developers - Operators/integrators * What problems have we solved? * What problems have we found? * How do we inspire interesting dinner conversation for participants? 3 Joint Facilities User Forum Format *

  17. Tribal Facilities Retrofits

    Energy Savers [EERE]

    up resources through reduced demand" Elias Duran - Property Manager  Day to day operations of facilities  Budget control over facilities  Project needs for future space requirements  Maintenance  Capital improvements  Brief history of the Tlingit & Haida Tribes  Tour of our Juneau facilities  Historical utility cost data  Summary of Project Objectives  Expected cost and emission reductions  Strategic planning for future implementation Two separate

  18. NEAC Facilities Subcommittee Report

    Office of Environmental Management (EM)

    Report Presentation to the NEAC Committee 12/11/2015 John I. Sackett Facilities Subcommittee Members * John Ahearne * Dana Christensen * Tom Cochran * Mike Corradini * Dave Hill * Hussein Khalil * Andy Klein * Paul Murray * John Sackett, chair Subcommittee Objectives * The objective of our deliberations has been to help DOE-NE develop a means to identify, prioritize and make available those facilities important to Nuclear Energy Research and Development. - All facilities have been considered,

  19. Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities Facilities Deposition of Inconel coating on a steel substrate using laser additive manufacturing technology from DM3D. <em>Photo courtesy of Oak Ridge National Laboratory</em> Deposition of Inconel coating on a steel substrate using laser additive manufacturing technology from DM3D. Photo courtesy of Oak Ridge National Laboratory AMO Facilities are collaborative communities that provide participants with affordable access to physical and virtual tools and enable

  20. High Exposure Facility Technical Description

    SciTech Connect (OSTI)

    Carter, Gregory L.; Stithem, Arthur R.; Murphy, Mark K.; Smith, Alex K.

    2008-02-12

    The High Exposure Facility is a collimated high-level gamma irradiator that is located in the basement of the 318 building. It was custom developed by PNNL back in 1982 to meet the needs for high range radiological instrument calibrations and dosimeter irradiations. At the time no commercially available product existed that could create exposure rates up to 20,000 R/h. This document is intended to pass on the design criteria that was employed to create this unique facility, while maintaining compliance with ANSI N543-1974, "General Safety Standard for Installations Using Non-Medical X-Ray and Sealed Gamma-Ray Sources, Energies up to 10 MeV."

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    about using the ARM in between sessions. Visitors to the booth were interested in learning about the latest ARM Mobile Facility deployment, the ongoing field campaign...

  2. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    30, 2007 Facility News High-Speed Internet Deflects Information Overload Bookmark and Share Covering approximately 143,000 square kilometers in Oklahoma and Kansas, instruments...

  3. About the Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Test Facility Nuclear Energy Systems LaboratoryBrayton Lab Photovoltaic Systems Evaluation Laboratory PV Regional Test Centers Scaled Wind Farm ...

  4. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    31, 2004 [Facility News] ARM Climate Research Facility Achieves User Milestone Three Months Ahead of Schedule Bookmark and Share Summary of the ARM Climate Research Facility User Site Visits, Archive Accounts, and Research Computer Accounts for the Period of October 1, 2003 - June 30, 2004. Far exceeding the established milestone of 800 users in fiscal year 2004, at the end of June the ARM Climate Research Facility reported a cumulative total of 940 users for the year so far. The U.S. Department

  5. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4, 2013 [Facility News] Work Cut Out for ARM Science Board Bookmark and Share With a new fixed site on the horizon in the Azores, a third ARM Mobile Facility gearing up for action in the Arctic, and more aircraft probes and sensors than scientists can shake a stick at, the ARM Facility continues to expand its considerable suite of assets for conducting climate research. Along with this impressive inventory comes the responsibility to ensure the Facility is supporting the highest-value science

  6. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3, 2015 [Facility News] New Radar Facilities for Remote Areas Bookmark and Share Next generation technology and deployments around the globe will fill in data gaps Beginning January 1, 2016, ARM Facility radars will be deployed at McMurdo Station, seen here in the distance from Observation Hill, in Antarctica for one year. Image courtesy of Dan Lubin. Beginning January 1, 2016, ARM Facility radars will be deployed at McMurdo Station, seen here in the distance from Observation Hill, in Antarctica

  7. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15 and 21 will remain intact, along with the Central Facility (C1) near Lamont. Instrumentation at the remaining sites will be consolidated into the new, smaller footprint....

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 30, 2004 Facility News New Instrumentation on Proteus Aircraft Tested Bookmark and Share This fall, the ARM-Unmanned Aerospace Vehicle Program-specifically, the Proteus...

  9. NERSC Central Login Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Login Facility Please login below with your NIM username and password to access pages with personalized information and NERSC user-only content. Username: Password: Login Need to...

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping It Up With Google Bookmark and Share "Thumbtacks" help ARM website users identify where the ARM sites are, including the ARM Mobile Facility deployments. The online ARM...

  11. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sahel from January through December 2006, with the primary facility at the Niamey airport, and an ancillary site in Banizoumbou. The AMF recorded a major dust storm that...

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Begins Marine Cloud Study in the Azores Bookmark and Share Located next to the airport on Graciosa Island, the ARM Mobile Facility's comprehensive and sophisticated...

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 15, 2007 Facility News Radar Antenna Replacement Effort Begins at Barrow Bookmark and Share On November 28, 2007, ARM operations and engineering staff braved -15F...

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 16, 2007 Facility News The Southern Great Plains Site Welcomes Keith Richardson Bookmark and Share Keith Richardson was hired as a Computer Network Manager at the SGP...

  15. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 16, 2007 Facility News ARM Education and Outreach Program Awarded Funding by National Science Foundation Bookmark and Share Andrea Maestas, ARM Education and Outreach...

  16. NREL: Photovoltaics Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technologies and applications. These facilities within the National Center for Photovoltaics (NCPV) serve both multi-use and dedicated-use functions. We encourage our research...

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 26, 2008 Facility News Tomlinson to Lead National Research Aircraft Committee Bookmark and Share Jason Tomlinson Jason Tomlinson In October, Jason Tomlinson, operations...

  18. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    , 2011 Facility News Snazzy New Spectroradiometers Sport Same Body, Different Mind Bookmark and Share Connor Flynn, a scientist at Pacific Northwest National Laboratory and the...

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    user facility, this unique asset provides the opportunity for a broader national and international research community to study global change. The goal of the ARM Climate...

  20. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instrument States Database Up and Running Bookmark and Share At the three ARM Climate Research Facility locales (Southern Great Plains, Tropical Western Pacific, and North Slope of...

  1. ARM Mobile Facilities

    ScienceCinema (OSTI)

    Orr, Brad; Coulter, Rich

    2014-09-15

    This video provides an overview of the ARM Mobile Facilities, two portable climate laboratories that can deploy anywhere in the world for campaigns of at least six months.

  2. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2, 2015 Facility News, Publications LASSO Implementation Strategy Report Available Bookmark and Share "Data cubes" that combine observations, model output, and metrics will be...

  3. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 30, 2008 Facility News Education and Outreach Activities in the Tropics Get a Tune-up Bookmark and Share Leonard Jonli (right), Assistant Administrator for Education on...

  4. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2, 2014 Data Announcements, Facility News ARM Data Archive Registered with Elsevier Bookmark and Share Increased visibility via Elsevier's data repository presents an opportunity...

  5. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mother Nature Tests Emergency Preparedness at North Slope of Alaska Bookmark and Share Vigilant facility personnel and hardy local utility workers helped avert what could have been...

  6. Carbon Fiber Technology Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    occupancy * Equipment installation complete * Start-up testing and commissioning * 35 million DOE investment under ARRA * 42,000 sf facility with 390-ft. long processing line. ...

  7. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5-Year Budget plan, which includes BER's goals for the ARM Program, including a second ARM Mobile Facility and continuing advances in climate model development, testing, and...

  8. Lighting Test Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lighting-Test-Facilities Sign In About | Careers | Contact | Investors | bpa.gov Search Policy & Reporting Expand Policy & Reporting EE Sectors Expand EE Sectors Technology &...

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 2008 Facility News Talk About Climate Change: Radiometer Moves from Arctic to South America Bookmark and Share Dockside in Charleston, South Carolina, the newly installed GVRP...

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9, 2009 Facility News Climate Change Prediction Program Funding Opportunity Announced Bookmark and Share The U.S. Department of Energy's Office of Science is now accepting...

  11. Wind Manufacturing Facilities

    Broader source: Energy.gov [DOE]

    America's wind energy industry supports a growing domestic industrial base. Check out this map to find manufacturing facilities in your state.

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM's two mobile facilities have completed field campaigns in the United States, Africa, Germany, the Azores, India, and the Maldives. They are currently preparing for yearlong...

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the startup process did not include access to the highly precise global positioning system (GPS) time signal available from the GPS receivers at each facility. In cooperation...

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 15, 2004 Facility News Data Quality Application Gives Data Browsers a New View Bookmark and Share Plot Browser, now available through the Data Quality Health and Status...

  15. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    25, 2011 Education, Facility News Remote Schools Welcome Much-Needed Resources Bookmark and Share Students at the Children's Academy Centre in Lorengau gather as Jacklyn Soko,...

  16. Existing Facilities Rebate Program

    Broader source: Energy.gov [DOE]

    The NYSERDA Existing Facilities program merges the former Peak Load Reduction and Enhanced Commercial and Industrial Performance programs. The new program offers a broad array of different...

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Numerous other instruments are situated nearby. In September 2004, the ARM Climate Research Facility Operations staff installed a new 2-channel Narrow Field of View (NFOV)...

  18. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ER-AERI Bookmark and Share Thanks to quick actions on the part of numerous ARM Climate Research Facility operations staff, an Extended Range Atmospheric Emitted Radiance...

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in a first person view, using curiosity as their guide. Vivid Learning Systems' Nick Bauer takes stills on top of the Radiometric Calibration Facility. Vivid Learning Systems'...

  20. Biomass -Feedstock User Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... quantify variability affects on preprocessing - Drying data to support Algae blending TEA 17 | Bioenergy Technologies Office 4 - Relevance * User Facility projects highlight the ...

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    collaboration that began with the ARM Mobile Facility deployment to Niamey, Niger, in 2006, meteorologist Hama Hamidou from the University of Niamey recently arrived at...

  2. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    triangles indicate ECMWF stations. New climate datastreams are now available from Point Reyes National Seashore in California, where the first deployment of the ARM Mobile Facility...

  3. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility (AMF) is being packed up and shipped from Richland, Washington, to the Point Reyes National Seashore north of San Francisco, California. There, it will be reassembled in...

  4. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility (AMF), an identical CCN instrument was deployed in 2005 during the AMF field campaign at Point Reyes, California, and is currently operating at Niamey, Niger, West Africa...

  5. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Africa Bookmark and Share ARM operations staff prepare the ARM Mobile Facility in Point Reyes, California, for delivery to Africa, upon the successful conclusion of the first field...

  6. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of ARM Mobile Facility to Occur on California Coast Bookmark and Share Image - Point Reyes Beach Point Reyes National Seashore, on the California coast north of San Francisco,...

  7. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mixed-Phase Arctic Cloud Experiment, and the ARM Mobile Facility's deployments at Point Reyes National Seashore and Niamey, Niger, West Africa. ARM researchers, including ARM's...

  8. NREL: Buildings Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    building technologies and innovations that deliver significant energy savings in buildings, and the new facilities further extend those capabilities. In addition, the NREL...

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 21, 2008 Facility News ARM Kicks Off 88th American Meteorological Society Annual Meeting at WeatherFest Bookmark and Share Jim Mather, ARM Technical Director,...

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 30, 2010 Data Announcements, Facility News Tandem Differential Mobility Analyzer (TDMA) Data Available at the ARM Data Archive Bookmark and Share Dry samples are collected...

  11. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Records Set Again; New Process Enhances Reporting of User Facility Statistics Bookmark and Share The 2006 year-end ARM statistics included a spatial distribution of global (shown...

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 27, 2007 Data Announcements, Facility News Data from the NOAA Climate Reference Network for Barrow, AK, and Stillwater, OK, are Available Through the External Data Center...

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    17, 2013 Facility News Data Sharing for Climate Research with India Now Official Bookmark and Share Aerosol instruments operate at the IISc Challakere campus, located about 150...

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 13, 2014 Education, Facility News ARM Educational Outreach Celebrates Earth Science Week 2014 Bookmark and Share This week, Professor Polar Bear and the Climate Kids are...

  15. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0, 2014 Education, Facility News ARM's Educational Outreach Recognized Bookmark and Share Resources selected by the Climate Literacy and Energy Awareness Network (CLEAN) must...

  16. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    14, 2012 Education, Facility News ARM Education Receives Seal of Approval Bookmark and Share Resources selected by the Climate Literacy and Energy Awareness Network (CLEAN) must...

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of interest to the ARM Facility, as needed. The UAS Advisory Group includes: Tim Bates Tim Bates, atmospheric chemist at NOAA's Pacific Marine Environmental Laboratory and...

  18. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    21, 2014 Facility News DOE Early Career Research Awardee to Study Water Cycle Bookmark and Share Mike Pritchard Mike Pritchard Recently announced by the DOE Office of Science...

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Early Career Research Program Bookmark and Share Pierre Gentine, Columbia University in New York Pierre Gentine, Columbia University in New York Two ARM Facility users and...

  20. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15, 2007 Facility News Microwave Radiometers Put to the Test in Germany Bookmark and Share A 2-channel microwave radiometer (left) and a 12-channel microwave radiometer profiler...

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News New Ceilometer Evaluated at Southern Great Plains Site Bookmark and Share Dan Nelson, SGP facilities manager, inspects the new ceilometer during its evaluation period on...

  2. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This report reflects the ARM Facility's contributions to climate model improvements and leadership in providing advanced scientific capabilities for understanding atmospheric...

  3. ARM Mobile Facilities

    SciTech Connect (OSTI)

    Orr, Brad; Coulter, Rich

    2010-12-13

    This video provides an overview of the ARM Mobile Facilities, two portable climate laboratories that can deploy anywhere in the world for campaigns of at least six months.

  4. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and many friendships throughout the ARM Facility and scientific community are a testament to his passion and dedication to climate research. A native of New Zealand, Lamb...

  5. Hybrid membrane--PSA system for separating oxygen from air

    DOE Patents [OSTI]

    Staiger, Chad L. (Albuquerque, NM); Vaughn, Mark R. (Albuquerque, NM); Miller, A. Keith (Albuquerque, NM); Cornelius, Christopher J. (Blackburg, VA)

    2011-01-25

    A portable, non-cryogenic, oxygen generation system capable of delivering oxygen gas at purities greater than 98% and flow rates of 15 L/min or more is described. The system consists of two major components. The first component is a high efficiency membrane capable of separating argon and a portion of the nitrogen content from air, yielding an oxygen-enriched permeate flow. This is then fed to the second component, a pressure swing adsorption (PSA) unit utilizing a commercially available, but specifically formulated zeolite compound to remove the remainder of the nitrogen from the flow. The system is a unique gas separation system that can operate at ambient temperatures, for producing high purity oxygen for various applications (medical, refining, chemical production, enhanced combustion, fuel cells, etc . . . ) and represents a significant advance compared to current technologies.

  6. ARM - SGP Geographic Information By Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geographic Information By Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site SGP Fact Sheet Images Information for Guest Scientists Contacts SGP Geographic Information By Facility Note: BF = Boundary Facility, EF = Extended Facility, and IF = Intermediate Facility Site

  7. Oxygen-resistant hydrogenases and methods for designing and making same

    DOE Patents [OSTI]

    King, Paul; Ghirardi, Maria L; Seibert, Michael

    2009-03-10

    The invention provides oxygen- resistant iron-hydrogenases ([Fe]-hydrogenases) for use in the production of H2. Methods used in the design and engineering of the oxygen-resistant [Fe]-hydrogenases are disclosed, as are the methods of transforming and culturing appropriate host cells with the oxygen-resistant [Fe]-hydrogenases. Finally, the invention provides methods for utilizing the transformed, oxygen insensitive, host cells in the bulk production of H.sub.2 in a light catalyzed reaction having water as the reactant.

  8. Oxygen-resistant hydrogenases and methods for designing and making same

    DOE Patents [OSTI]

    King, Paul; Ghirardi, Maria Lucia; Seibert, Michael

    2014-03-04

    The invention provides oxygen-resistant iron-hydrogenases ([Fe]-hydrogenases) for use in the production of H.sub.2. Methods used in the design and engineering of the oxygen-resistant [Fe]-hydrogenases are disclosed, as are the methods of transforming and culturing appropriate host cells with the oxygen-resistant [Fe]-hydrogenases. Finally, the invention provides methods for utilizing the transformed, oxygen insensitive, host cells in the bulk production of H.sub.2 in a light catalyzed reaction having water as the reactant.

  9. Development of manufacturing capability for the fabrication of the Nb/sub 3/Sn superconductor for the High Field Test Facility. Final report

    SciTech Connect (OSTI)

    Spencer, C R

    1981-01-01

    Construction of High Field Test Facility (HFTF) at Lawrence Livermore Laboratory (LLNL) requires an extended surface Nb/sub 3/Sn superconductor cable of carrying currents in excess of 7500 amperes in a 12 Tesla magnetic field. This conductor consists of a 5.4 mm x 11.0 mm superconducting core onto whose broad surfaces are soldered embossed oxygen free copper strips. Two different core designs have been developed and the feasibility of each design evaluated. Equipment necessary to produce the conductor were developed and techniques of production were explored.

  10. HYDROGEN IGNITION MECHANISM FOR EXPLOSIONS IN NUCLEAR FACILITY PIPE SYSTEMS

    SciTech Connect (OSTI)

    Leishear, R

    2010-05-02

    Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions exist. Pipe ruptures at nuclear facilities were attributed to hydrogen explosions inside pipelines, in nuclear facilities, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents an ignition source for hydrogen was questionable, but these accidents, demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein.

  11. U.S. Plutonium "Pit" Production: Additional Facilities, Production

    National Nuclear Security Administration (NNSA)

    ... investment over contingency planning signals an intent to produce new-design warheads ... process, and prepare metal 4. Cast and machine new plutonium pit 5. Fabricate other pit ...

  12. Platinum Monolayer Electrocatalysts for Oxygen Reduction Reaction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Platinum Monolayer Electrocatalysts for Oxygen Reduction Reaction Platinum Monolayer Electrocatalysts for Oxygen Reduction Reaction Download presentation slides from the June 19,...

  13. Emergency Facilities and Equipment

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21

    This volume clarifies requirements of DOE O 151.1 to ensure that emergency facilities and equipment are considered as part of emergency management program and that activities conducted at these emergency facilities are fully integrated. Canceled by DOE G 151.1-4.

  14. Nuclear Facility Risk Ranking

    Broader source: Energy.gov [DOE]

    The CNS has purview of over ninety EM nuclear facilities across the DOE complex. To ensure that limited resources are applied in a risk-informed and balanced approach, the CNS performed a methodical assessment of the EM nuclear facilities. This risk-informed approach provides a data-driven foundation on which to construct a balanced set of operating plans and staff assignments.

  15. Kauai Test Facility

    SciTech Connect (OSTI)

    Hay, R.G.

    1982-01-01

    The Kauai Test Facility (KTF) is a Department of Energy rocket launch facility operated by Sandia National Laboratories. Originally it was constructed in support of the high altitude atmospheric nuclear test phase of operation Dominic in the early 1960's. Later, the facility went through extensive improvement and modernization to become an integral part of the Safeguard C readiness to resume nuclear testing program. Since its inception and build up, in the decade of the sixties and the subsequent upgrades of the seventies, range test activities have shifted from full scale test to emphasis on research and development of materials and components, and to making high altitude scientific measurements. Primarily, the facility is intended to be utilized in support of development programs at the DOE weapons laboratories, however, other organizations may make use of the facility on a non-interface basis. The physical components at KTF and their operation are described.

  16. Facility deactivation and demolition

    SciTech Connect (OSTI)

    Cormier, S.L.; Adamowski, S.J.

    1994-12-31

    Today an improperly closed facility can be a liability to its owner, both financially and environmentally. A facility deactivation program must be planned and implemented to decrease liabilities, minimize operating costs, seek to reuse or sell processes or equipment, and ultimately aid in the sale and/or reuse of the facility and property whether or not the building(s) are demolished. These programs should be characterized within the deactivation plan incorporating the following major categories: Utility Usage; Environmental Decontamination; Ongoing Facility Management; Property Management/Real Estate Issues. This paper will outline the many facets of the facility deactivation and demolition programs implemented across the country for clients in the chemical, automotive, transportation, electronic, pharmaceutical, power, natural gas and petroleum industries. Specific emphasis will be placed on sampling and analysis plans, specification preparation, equipment and technologies utilized, ``how clean is clean`` discussions and regulatory guidelines applicable to these issues.

  17. Facilities | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Facilities PARC has three laboratories located in Brauer Hall on the Danforth Campus at Washington University in St. Louis. These labs are available to all PARC members and are used to further the goals of PARC: Ultrafast Laser Facility Photobioreactor Facility Mass Spectrometer Facility PARC's facilities are part of the Danforth Campus Green Labs Initiative which features real-time online energy usage graphs and a network of lab energy representatives. Facilities Ultrafast Laser

  18. EVALUATING AN INNOVATIVE OXYGEN SENSOR FOR REMOTE SUBSURFACE OXYGEN MEASUREMENTS

    SciTech Connect (OSTI)

    Millings, M; Brian Riha, B; Warren Hyde, W; Karen Vangelas, K; Brian02 Looney, B

    2006-10-12

    Oxygen is a primary indicator of whether anaerobic reductive dechlorination and similar redox based processes contribute to natural attenuation remedies at chlorinated solvent contaminated sites. Thus, oxygen is a viable indicator parameter for documenting that a system is being sustained in an anaerobic condition. A team of researchers investigated the adaptation of an optical sensor that was developed for oceanographic applications. The optical sensor, because of its design and operating principle, has potential for extended deployment and sensitivity at the low oxygen levels relevant to natural attenuation. The results of the research indicate this tool will be useful for in situ long-term monitoring applications, but that the traditional characterization tools continue to be appropriate for characterization activities.

  19. Facility overview for commercial application of selected Rocky Flats facilities

    SciTech Connect (OSTI)

    1996-11-01

    The purpose of this Facility Overview is to support the Rocky Flats Local Impacts Initiative`s Request for Interest, to solicit interest from commercial corporations for utilizing buildings 865 and 883, and the equipment contained within each building, for a commercial venture. In the following sections, this document describes the Rocky Flats Site, the buildings available for lease, the equipment within these buildings, the site services available to a tenant, the human resources available to support operations in buildings 865 and 883, and the environmental condition of the buildings and property. In addition, a brief description is provided of the work performed to date to explore the potential products that might be manufactured in Buildings 865 and 883, and the markets for these products.

  20. Aluminum Bronze Alloys to Improve the System Life of Basic Oxygen and Electric Arc Furnace Hoods, Roofs and Side Vents.

    SciTech Connect (OSTI)

    Lawrence C. Boyd Jr.; Dr. Vinod K. Sikka

    2006-12-29

    Energy Industries of Ohio was the lead organization for a consortium that examined the current situation involving the service life of electric arc and basic oxygen furnace hoods, roofs and side vents. Republic Engineered Products (REP), one of the project partners, installed a full-scale Al-Bronze “skirt” in their BOF at their Lorain OH facility, believed to be the first such installation of this alloy in this service. In 24 months of operation, the Al-Bronze skirt has processed a total of 4,563 heats, requiring only 2 shutdowns for maintenance, both related to physical damage to the skirt from operational mishaps. Yearly energy savings related to the REP facility are projected to be ~ 10 billion Btu's with significant additional environmental and productivity benefits. In recognition of the excellent results, this project was selected as the winner of the Ohio’s 2006 Governor’s Award for Excellence in Energy, the state’s award for outstanding achievements in energy efficiency.

  1. Risk analysis of an LPG facility

    SciTech Connect (OSTI)

    Daley, H.F.; Chapman, P.D.L.

    1986-01-01

    This paper describes methods used to conduct a safety review of an existing LPG loading, processing, and storage facility. An engineering team conducted a Hazard and Operability study of the plant to identify potential problems. A Probabilistic Risk Assessment was also made on the facility where the probability and consequences of worst case accidents were estimated. Stone and Webster recently completed an analysis of an LPG terminal to determine if there were any engineering, design, or operating deficiencies which could jeopardize the operability of the facility or make operation hazardous. The facility includes a dock for off-loading refrigerated propane and butane, transfer piping from the dock to storage, a heating system, pressurized storage, dehydration, product transfer and loading.

  2. STAR Facility Tritium Accountancy

    SciTech Connect (OSTI)

    R. J. Pawelko; J. P. Sharpe; B. J. Denny

    2007-09-01

    The Safety and Tritium Applied Research (STAR) facility has been established to provide a laboratory infrastructure for the fusion community to study tritium science associated with the development of safe fusion energy and other technologies. STAR is a radiological facility with an administrative total tritium inventory limit of 1.5g (14,429 Ci) [1]. Research studies with moderate tritium quantities and various radionuclides are performed in STAR. Successful operation of the STAR facility requires the ability to receive, inventory, store, dispense tritium to experiments, and to dispose of tritiated waste while accurately monitoring the tritium inventory in the facility. This paper describes tritium accountancy in the STAR facility. A primary accountancy instrument is the tritium Storage and Assay System (SAS): a system designed to receive, assay, store, and dispense tritium to experiments. Presented are the methods used to calibrate and operate the SAS. Accountancy processes utilizing the Tritium Cleanup System (TCS), and the Stack Tritium Monitoring System (STMS) are also discussed. Also presented are the equations used to quantify the amount of tritium being received into the facility, transferred to experiments, and removed from the facility. Finally, the STAR tritium accountability database is discussed.

  3. STAR facility tritium accountancy

    SciTech Connect (OSTI)

    Pawelko, R. J.; Sharpe, J. P.; Denny, B. J.

    2008-07-15

    The Safety and Tritium Applied Research (STAR) facility has been established to provide a laboratory infrastructure for the fusion community to study tritium science associated with the development of safe fusion energy and other technologies. STAR is a radiological facility with an administrative total tritium inventory limit of 1.5 g (14,429 Ci) [1]. Research studies with moderate tritium quantities and various radionuclides are performed in STAR. Successful operation of the STAR facility requires the ability to receive, inventory, store, dispense tritium to experiments, and to dispose of tritiated waste while accurately monitoring the tritium inventory in the facility. This paper describes tritium accountancy in the STAR facility. A primary accountancy instrument is the tritium Storage and Assay System (SAS): a system designed to receive, assay, store, and dispense tritium to experiments. Presented are the methods used to calibrate and operate the SAS. Accountancy processes utilizing the Tritium Cleanup System (TCS), and the Stack Tritium Monitoring System (STMS) are also discussed. Also presented are the equations used to quantify the amount of tritium being received into the facility, transferred to experiments, and removed from the facility. Finally, the STAR tritium accountability database is discussed. (authors)

  4. HYTEST Phase I Facility Commissioning and Modeling

    SciTech Connect (OSTI)

    Lee P. Shunn; Richard D. Boardman; Shane J. Cherry; Craig G. Rieger

    2009-09-01

    The purpose of this document is to report the first year accomplishments of two coordinated Laboratory Directed Research and Development (LDRD) projects that utilize a hybrid energy testing laboratory that couples various reactors to investigate system reactance behavior. This work is the first phase of a series of hybrid energy research and testing stations - referred to hereafter as HYTEST facilities that are planned for construction and operation at the Idaho National Laboratory (INL). A HYTEST Phase I facility was set up and commissioned in Bay 9 of the Bonneville County Technology Center (BCTC). The purpose of this facility is to utilize the hydrogen and oxygen that is produced by the High Temperature Steam Electrolysis test reactors operating in Bay 9 to support the investigation of kinetic phenomena and transient response of integrated reactor components. This facility provides a convenient scale for conducting scoping tests of new reaction concepts, materials performance, new instruments, and real-time data collection and manipulation for advance process controls. An enclosed reactor module was assembled and connected to a new ventilation system equipped with a variable-speed exhaust blower to mitigate hazardous gas exposures, as well as contract with hot surfaces. The module was equipped with a hydrogen gas pump and receiver tank to supply high quality hydrogen to chemical reactors located in the hood.

  5. Process for conversion of lignin to reformulated, partially oxygenated gasoline

    DOE Patents [OSTI]

    Shabtai, Joseph S. (Salt Lake City, UT); Zmierczak, Wlodzimierz W. (Salt Lake City, UT); Chornet, Esteban (Golden, CO)

    2001-01-09

    A high-yield process for converting lignin into reformulated, partially oxygenated gasoline compositions of high quality is provided. The process is a two-stage catalytic reaction process that produces a reformulated, partially oxygenated gasoline product with a controlled amount of aromatics. In the first stage of the process, a lignin feed material is subjected to a base-catalyzed depolymerization reaction, followed by a selective hydrocracking reaction which utilizes a superacid catalyst to produce a high oxygen-content depolymerized lignin product mainly composed of alkylated phenols, alkylated alkoxyphenols, and alkylbenzenes. In the second stage of the process, the depolymerized lignin product is subjected to an exhaustive etherification reaction, optionally followed by a partial ring hydrogenation reaction, to produce a reformulated, partially oxygenated/etherified gasoline product, which includes a mixture of substituted phenyl/methyl ethers, cycloalkyl methyl ethers, C.sub.7 -C.sub.10 alkylbenzenes, C.sub.6 -C.sub.10 branched and multibranched paraffins, and alkylated and polyalkylated cycloalkanes.

  6. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 5, 2011 [Facility News] New Aircraft Probes in Action Again Bookmark and Share In March, ARM Aerial Facility scientist Jason Tomlinson met with colleagues at the University of North Dakota to assist in the integration of the probes onto the Citation aircraft and to provide training on the operation of the UHSAS-A (back) and HVPS-3 (front) instruments. In March, ARM Aerial Facility scientist Jason Tomlinson met with colleagues at the University of North Dakota to assist in the integration of

  7. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 15, 2004 [Facility News] Mid-latitude Cirrus Cloud Experiment Underway Bookmark and Share NASA's WB-57F research aircraft can carry an instrument payload up to 6,000 lbs. In late April, scientific collaborators at the National Aeronautics and Space Administration (NASA) carried out two high-altitude flights over the ARM Climate Research Facility Southern Great Plains (SGP) central facility. The purpose of these flights was to use a new suite of cloud property probes on the WB-57F aircraft to

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 22, 2009 [Facility News] ARM Pioneers Reflect on Two Decades of Progress Bookmark and Share At the Southern Great Plains site in 1992, some freshly poured concrete and a trailer brought in by truck mark the modest beginnings of what would become a scientific user facility for global climate change research. At the Southern Great Plains site in 1992, some freshly poured concrete and a trailer brought in by truck mark the modest beginnings of what would become a scientific user facility for

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, 2015 [Facility News] Visiting the SGP Site? If It Rains, Use the Maps on the Website to Be Safe Bookmark and Share Use this map with directions from Exit 203 to the Southern Great Plains Central Facility. Click to enlarge image. Use this map with directions from Exit 203 to the Southern Great Plains Central Facility. Click to enlarge image. If you're planning to visit ARM's Southern Great Plains (SGP) site in Oklahoma and will drive the last leg of the trip, call first-especially if it is

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Data on Display at New Climate Research Facility Bookmark and Share Senator Stevens (second from left) and Max Ahgeak (far left) of the Ukpeagvik Iñupiat Corporation cut a red ribbon at the building's front door to commence the new science facility's opening ceremony. On June 1, Senator Ted Stevens (R-Alaska) joined Max Ahgeak of the Ukpeagvik Iñupiat Corporation to officially open the new Barrow Global Climate Change Research Facility in Alaska. ARM was represented by Mark Ivey, North

  11. Facility Data Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility Data Policy About ESnet Our Mission The Network ESnet History Governance & Policies ESnet Policy Board ESCC Acceptable Use Policy Data Privacy Policy Facility Data Policy Career Opportunities ESnet Staff & Org Chart Contact Us Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net Facility Data Policy ESnet Data

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2016 [Facility News] Discover What You Missed at AGU and AMS Bookmark and Share More than 500 people came by the ARM booth to ask questions of ARM Technical Director Jim Mather and the many other ARM Facility staff and researchers who use ARM data who volunteered at the exhibit. More than 500 people came by the ARM booth to ask questions of ARM Technical Director Jim Mather and the many other ARM Facility staff and researchers who use ARM data who volunteered at the exhibit. If you weren't

  13. NREL: Research Facilities - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webmaster Please enter your name and email address in the boxes provided, then type your message below. When you are finished, click "Send Message." NOTE: If you enter your e-mail address incorrectly, we will be unable to reply. Your name: Your email address: Your message: Send Message Printable Version Research Facilities Home Laboratories Test & User Facilities Laboratories & Facilities by Technology Working with Us Did you find what you needed? Yes 1 No 0 Thank you for your

  14. Process for production of a borohydride compound

    DOE Patents [OSTI]

    Chin, Arthur Achhing; Jain, Puja; Linehan, Suzanne; Lipiecki, Francis Joseph; Maroldo, Stephen Gerard; November, Samuel J; Yamamoto, John Hiroshi

    2013-02-19

    A process for production of a borohydride compound. The process comprises combining a compound comprising boron and oxygen with an adduct of alane.

  15. Total Blender Net Input of Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Product: Total Input Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquid Petroleum Gases Normal Butane Isobutane Other Liquids OxygenatesRenewables ...

  16. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 11, 2012 Education, Facility News Fairbanks Middle Schoolers Enjoy Field Trip to Barrow Bookmark and Share Watershed School's bundled-up 8th grade class and their chaperones...

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 31, 2007 Facility News Radiometers Operate in Low Water Vapor Conditions in Barrow, Alaska Bookmark and Share A researcher checks the GVR antennae on a cold, crisp day at...

  18. Photovoltaic Research Facilities

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) funds photovoltaic (PV) research and development (R&D) at its national laboratory facilities located throughout the country. To encourage further innovation,...

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2, 2014 Facility News First MAGIC Workshop Discusses Future of Marine Clouds Bookmark and Share MAGIC route with June-July-August average low-level cloud cover, GPCI transect,...

  20. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15, 2009 Facility News Internet Upgrade Speeds Data Transfer from Tropics Bookmark and Share http:images.arm.govarmimagesMMCR0MMCR.mpgView this video to see how the...

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, 2015 Facility News Submit Your AGU Presentation to ARM and ASR Bookmark and Share Submit your AGU presentations or posters by November 2 and we'll help get people to your...

  2. B Plant facility description

    SciTech Connect (OSTI)

    Chalk, S.E.

    1996-10-04

    Buildings 225B, 272B, 282B, 282BA, and 294B were removed from the B Plant facility description. Minor corrections were made for tank sizes and hazardous and toxic inventories.

  3. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Goes Offline Bookmark and Share Each of the 24 solar-powered GPS stations streamed data via a wireless network to the SGP Central Facility for data collection and storage....

  4. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    worth of planning and coordination to build the new facility on the sensitive Arctic tundra-not an easy feat Heavy, portable surface mats protected the tundra and provided a...

  5. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Share In April, operations personnel completed a series of cost-saving data communication changes at the ARM Climate Research Facility Southern Great Plains (SGP) locale. The T-1...

  6. PNNL: About PNNL - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PNNL, we offer scientific researchers access to unique equipment housed in state-of-the-art facilities as well as on-site experts to help visiting researchers take advantage of...

  7. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    file storage needs of the ARM Data Management Facility (DMF) and ARM Engineering computers, a Network Appliance (NetApp) file server with 2.68 terabytes, or 2.95 trillion...

  8. NETL - Fuel Reforming Facilities

    ScienceCinema (OSTI)

    None

    2014-06-27

    Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bookmark and Share On August 19, 2010, a legislative aide for Senator James Inhofe (R-Ok) visited the ARM Southern Great Plains (SGP) site to learn about the facility, its role...

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    18, 2015 Facility News ARM Data Developers Prepare for Next Generation of ARM Bookmark and Share Around 40 ARM staff attended the 2015 Data Developer's Meeting at the National...

  11. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 18, 2012 Facility News Building Blocks for Discovery: ARM Data Joins DataCite Open Access Registry Bookmark and Share DataCite is a not-for-profit organization that aims to...

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    held this year in Seattle from January 24-28, scientists are presenting dozens of oral and poster sessions describing their research using data from the user facility. Here...

  13. NETL - Fuel Reforming Facilities

    SciTech Connect (OSTI)

    2013-06-12

    Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 30, 2009 Facility News Climate Change Lesson Plan Selected for MyHealthySchool.com Bookmark and Share A lesson plan about climate change in the Arctic was selected by...

  15. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    31, 2010 Facility News Instruments on Mt. Pico to Supplement Measurements from Graciosa Island Bookmark and Share At an elevation of about 2225 meters-usually above the marine...

  16. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    30, 2006 Facility News Precipitation Sensor on Duty at North Slope of Alaska Bookmark and Share The precipitation sensor was installed about 5 feet above the surface on the...

  17. Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a n n u a l r e p o r t 2 0 1 2 Argonne Leadership Computing Facility Director's Message .............................................................................................................................1 About ALCF ......................................................................................................................................... 2 IntroDuCIng MIrA Introducing Mira

  18. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 29, 2008 Facility News Radar Focus Group Zeroes in on Data Quality Bookmark and Share On the roof of the radar instrument shelter at the ARM Southern Great Plains site,...

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to look at the science programs currently in place in Barrow, and to tour a proposed hospital site and the new Barrow Global Climate Change Research Facility currently under...

  20. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 2012 Facility News Gone Fishin'-Larry Jones, Stalwart of ARM Tropical Western Pacific Site Office, Retires Bookmark and Share Larry Jones Larry Jones After 15 years with the...

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the ARM Mobile Facility. ARM participated in the Student Exploration of Research in the Earth and Space Sciences (EXPRESS) program held on the last day of the 2005 AGU Fall...

  2. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2D video disdrometer is collecting precipitation data at Kessler Farm, near the SGP's Purcell Boundary Facility. In late April, an NCAR 2D video disdrometer was installed at...

  3. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility. Also during the conference, Dr. Edgerton was selected as Chair of the A&WMA Editorial Review Board, which oversees the editorial staff of the Journal of the A&WMA, as...

  4. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2010 Facility News TWP Site Scientist Selected for Journal's Editorial Board Bookmark and Share Dr. Long was recently selected as a member of the editorial board of The Open...

  5. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    13, 2006 Facility News Dr. Steve Ghan Appointed to Journal of Geophysical Research Editorial Board Bookmark and Share Dr. Steve Ghan was recently appointed as an editor for the...

  6. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to show Bamzai, her husband, and daughter around the site. From the warmth of the crew cab pickup, they toured the Central Facility, which is the heart of the SGP site, not to...

  7. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4, 2012 Facility News New Organization to Optimize ARM Radar Data Bookmark and Share Every ARM fixed and mobile site now includes both scanning (left) and zenith-pointing (right)...

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Share In January 2006, the ARM Mobile Facility (AMF) begins a year-long field campaign in Africa as part of a multi-year international experiment called the African...

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 2009 Facility News Turning a New Page with Facebook; Are You a Fan? Bookmark and Share Keep up with the ARM Climate Research Facilty via Facebook Keep up with the ARM Climate...

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 15, 2007 Facility News Kelle Smith Replaces Jan Gunter as ExtraView Administrator Bookmark and Share Kelle Smith assumed the duties of ExtraView administrator after Jan ...

  11. ARM Aerial Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Campaigns 1993 - 2006, 2015 Other Aircraft Campaigns 1993 - 2010 AAF Contacts Rickey Petty DOE AAF Program Director Beat Schmid Technical Director ARM Aerial Facility aaf-g1 As...

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 31, 2009 Facility News North Slope Operations Get a Big Lift Bookmark and Share Operations capabilities at the ARM site in Barrow now include a telehandler that can...

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preparations Underway for 2007 ARM Mobile Facility Deployment in Germany Bookmark and Share In the Black Forest region of Germany, the COPS field campaign will cover an area of...

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 28, 2010 Facility News First Data from Darwin Raman Lidar Bookmark and Share Since 1996, the ARM Southern Great Plains site has maintained one of the few operational...

  15. NREL: Research Facilities Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Research Facilities Here you'll find information about the National Renewable Energy Laboratory's R&D facility and laboratory capabilities. These state-of-the-art facilities...

  16. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    28, 2005 [Facility News] Readiness of New Lidar Evaluated at Southern Great Plains Site Bookmark and Share Aircraft for the Boundary Layer CO2 Intensive Operational Period will fly over the SGP Central Facility using both spirals and racetrack patterns. Data will be collected under a variety of cloud and meteorological conditions. As the focus of the Boundary Layer Carbon Dioxide (CO2) Intensive Operational Period (IOP) starting in March, science collaborators at ITT Industries and the National

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15, 2005 [Facility News] Instruments Added and Upgraded at Tropical Western Pacific Sites Bookmark and Share Challenges presented by the remoteness and environmental conditions at the ARM Climate Research Facility's Tropical Western Pacific locale are offset by the unique climatological data collected by the measurement instruments located at its sites, including Nauru Island shown above. Located about 8,000 miles from the United States along the equator near northern Australia, the Tropical

  18. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Climate Research Facility Lends Support to Military Flare Tests Bookmark and Share Prior to the flare tests, SGP personnel informed local landowners and fire departments about the nature of the tests, particularly the large amount of smoke anticipated from the flares. On October 19 and 20, 2004 a series of aircraft flares were ignited at the ARM Climate Research Facility Southern Great Plains (SGP) site on behalf of the U.S. Missile Defense Agency. While the flares burned, measurements were

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 15, 2004 [Facility News] Upgrades Improve Site Data System Reliability Bookmark and Share Measurements from field instruments, such as the radar wind profiler (center) and radio acoustic sounding system (perimeter) in Barrow, are collected and transmitted by the Site Data System. Site Data Systems are a critically important element of the ARM Climate Research Facility's ability to collect and transmit data on clouds and radiative properties from research instrumentation in the field.

  20. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 2011 [Facility News] Team Continues Campaign Planning on Gan Island Bookmark and Share Mike Ritsche, technical operations manager for the AMF2, discusses instrumentation specifics with Gan airport and MMS officials. Mike Ritsche, technical operations manager for the AMF2, discusses instrumentation specifics with Gan airport and MMS officials. For its first international field campaign, the second ARM Mobile Facility (AMF2) is scheduled to operate on Gan Island in the Indian Ocean for the ARM