National Library of Energy BETA

Sample records for oxygen weight percent

  1. MFT homogeneity study at TNX: Final report on the low weight percent solids concentration

    SciTech Connect (OSTI)

    Jenkins, W.J.

    1993-09-21

    A statistical design and analysis of both elemental analyses and weight percent solids analyses data was utilized to evaluate the MFT homogeneity at low heel levels and low agitator speed at both high and low solids feed concentrations. The homogeneity was also evaluated at both low and high agitator speed at the 6000+ gallons static level. The dynamic level portion of the test simulated feeding the Melter from the MFT to evaluate the uniformity of the solids slurry composition (Frit-PHA-Sludge) entering the melter from the MFT. This final report provides the results and conclusions from the second half of the study, the low weight percent solids concentration portion, as well as a comparison with the results from the first half of the study, the high weight percent solids portion.

  2. Oxygen enriched combustion system performance study. Phase 2: 100 percent oxygen enriched combustion in regenerative glass melters, Final report

    SciTech Connect (OSTI)

    Tuson, G.B.; Kobayashi, H.; Campbell, M.J.

    1994-08-01

    The field test project described in this report was conducted to evaluate the energy and environmental performance of 100% oxygen enriched combustion (100% OEC) in regenerative glass melters. Additional objectives were to determine other impacts of 100% OEC on melter operation and glass quality, and to verify on a commercial scale that an on-site Pressure Swing Adsorption oxygen plant can reliably supply oxygen for glass melting with low electrical power consumption. The tests constituted Phase 2 of a cooperative project between the United States Department of Energy, and Praxair, Inc. Phase 1 of the project involved market and technical feasibility assessments of oxygen enriched combustion for a range of high temperature industrial heating applications. An assessment of oxygen supply options for these applications was also performed during Phase 1, which included performance evaluation of a pilot scale 1 ton per day PSA oxygen plant. Two regenerative container glass melters were converted to 100% OEC operation and served as host sites for Phase 2. A 75 ton per day end-fired melter at Carr-Lowrey Glass Company in Baltimore, Maryland, was temporarily converted to 100% OEC in mid- 1990. A 350 tpd cross-fired melter at Gallo Glass Company in Modesto, California was rebuilt for permanent commercial operation with 100% OEC in mid-1991. Initially, both of these melters were supplied with oxygen from liquid storage. Subsequently, in late 1992, a Pressure Swing Adsorption oxygen plant was installed at Gallo to supply oxygen for 100% OEC glass melting. The particular PSA plant design used at Gallo achieves maximum efficiency by cycling the adsorbent beds between pressurized and evacuated states, and is therefore referred to as a Vacuum/Pressure Swing Adsorption (VPSA) plant.

  3. "Variable","Average Absolute Percent Differences","Percent of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual Energy Outlook Retrospective Review, 2014" "Variable","Average Absolute Percent Differences","Percent of Projections Over- Estimated" "Gross Domestic Product" "Real Gross ...

  4. spaceheat_percent2001.pdf

    U.S. Energy Information Administration (EIA) Indexed Site

    Space Heating Tables (Percent of U.S. Households; 24 pages, 133 kb) Contents Pages HC3-1b. Space Heating by Climate Zone, Percent of U.S. Households, 2001 2 HC3-2b. Space Heating by Year of Construction, Percent of U.S. Households, 2001 2 HC3-3b. Space Heating by Household Income, Percent of U.S. Households, 2001 2 HC3-4b. Space Heating by Type of Housing Unit, Percent of U.S. Households, 2001 2 HC3-5b. Space Heating by Type of Owner-Occupied Housing Unit, Percent of U.S. Households, 2001 2

  5. Variable Average Absolute Percent Differences

    U.S. Energy Information Administration (EIA) Indexed Site

    Variable Average Absolute Percent Differences Percent of Projections Over- Estimated Gross Domestic Product Real Gross Domestic Product (Average Cumulative Growth)* (Table 2) 0.9 45.8 Petroleum Imported Refiner Acquisition Cost of Crude Oil (Constant $) (Table 3a) 37.7 17.3 Imported Refiner Acquisition Cost of Crude Oil (Nominal $) (Table 3b) 36.6 18.7 Total Petroleum Consumption (Table 4) 7.9 70.7 Crude Oil Production (Table 5) 8.1 51.1 Petroleum Net Imports (Table 6) 24.7 73.8 Natural Gas

  6. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 New Hampshire - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle ...

  7. Norwich Public Utilities- Zero Percent Financing Program

    Broader source: Energy.gov [DOE]

    In partnership with several local banks, Norwich Public Utilities (NPU) is offering a zero percent loan to commercial and industrial customers for eligible energy efficiency improvement projects....

  8. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Table S22. Summary statistics for natural gas - Maryland, 2010-2014 - continued -- Not applicable. < Percentage is less than 0.05 percent. E Estimated data. R Revised data. W ...

  9. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    statistics for natural gas - Delaware, 2010-2014 - continued * Volume is less than 500,000 cubic feet. -- Not applicable. < Percentage is less than 0.05 percent. R Revised ...

  10. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Table S47. Summary statistics for natural gas - Vermont, 2010-2014 - continued -- Not applicable. < Percentage is less than 0.05 percent. R Revised data. W Withheld. a Pipeline and ...

  11. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Alaska - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S2. Summary statistics for natural gas - Alaska, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 269 277 185 R 159 170 Production (million cubic feet) Gross Withdrawals From Gas Wells 127,417 112,268

  12. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 District of Columbia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells

  13. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Indiana - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S16. Summary statistics for natural gas - Indiana, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 620 914 819 R 921 895 Production (million cubic feet) Gross Withdrawals From Gas Wells 6,802 9,075

  14. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Massachusetts - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0

  15. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Nebraska - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S29. Summary statistics for natural gas - Nebraska, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 276 322 270 R 357 310 Production (million cubic feet) Gross Withdrawals From Gas Wells 2,092 1,854

  16. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    50 North Dakota - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S36. Summary statistics for natural gas - North Dakota, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 188 239 211 200 200 Production (million cubic feet) Gross Withdrawals From Gas Wells

  17. District of Columbia Natural Gas Percent Sold to The Commercial...

    U.S. Energy Information Administration (EIA) Indexed Site

    by Local Distribution Companies (Percent) District of Columbia Natural Gas Percent Sold to The Commercial Sectors by Local Distribution Companies (Percent) Decade Year-0 ...

  18. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Alabama - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S1. Summary statistics for natural gas - Alabama, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 7,026 7,063 6,327 R 6,165 6,118 Production (million cubic feet) Gross Withdrawals From Gas Wells

  19. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Arkansas - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S4. Summary statistics for natural gas - Arkansas, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 7,397 8,388 8,538 R 9,843 10,150 Production (million cubic feet) Gross Withdrawals From Gas Wells

  20. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 California - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S5. Summary statistics for natural gas - California, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 1,580 1,308 1,423 R 1,335 1,118 Production (million cubic feet) Gross Withdrawals From Gas

  1. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Colorado - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S6. Summary statistics for natural gas - Colorado, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 28,813 30,101 32,000 R 32,468 38,346 Production (million cubic feet) Gross Withdrawals From Gas

  2. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Florida - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S10. Summary statistics for natural gas - Florida, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 17,182 16,459 19,742

  3. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Georgia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S11. Summary statistics for natural gas - Georgia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells

  4. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Idaho - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S14. Summary statistics for natural gas - Idaho, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0

  5. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Illinois - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S15. Summary statistics for natural gas - Illinois, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 50 40 40 R 34 36 Production (million cubic feet) Gross Withdrawals From Gas Wells E 1,697 2,114

  6. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Iowa - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S17. Summary statistics for natural gas - Iowa, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0

  7. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Kansas - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S18. Summary statistics for natural gas - Kansas, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 22,145 25,758 24,697 R 23,792 24,354 Production (million cubic feet) Gross Withdrawals From Gas Wells

  8. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Kentucky - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S19. Summary statistics for natural gas - Kentucky, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 17,670 14,632 17,936 R 19,494 19,256 Production (million cubic feet) Gross Withdrawals From Gas

  9. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Louisiana - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S20. Summary statistics for natural gas - Louisiana, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 19,137 21,235 19,792 R 19,528 19,251 Production (million cubic feet) Gross Withdrawals From Gas

  10. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Maine - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S21. Summary statistics for natural gas - Maine, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0

  11. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Michigan - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S24. Summary statistics for natural gas - Michigan, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 10,100 11,100 10,900 R 10,550 10,500 Production (million cubic feet) Gross Withdrawals From Gas

  12. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Mississippi - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S26. Summary statistics for natural gas - Mississippi, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 1,979 5,732 1,669 R 1,967 1,645 Production (million cubic feet) Gross Withdrawals From Gas

  13. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Missouri - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S27. Summary statistics for natural gas - Missouri, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 53 100 R 26 28 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 R 8 8 From

  14. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Montana - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S28. Summary statistics for natural gas - Montana, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 6,059 6,477 6,240 5,754 5,754 Production (million cubic feet) Gross Withdrawals From Gas Wells

  15. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Nevada - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S30. Summary statistics for natural gas - Nevada, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 R 4 4 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 3 From Oil Wells

  16. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 New Mexico - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S33. Summary statistics for natural gas - New Mexico, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 44,748 32,302 28,206 R 27,073 27,957 Production (million cubic feet) Gross Withdrawals From

  17. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 New York - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S34. Summary statistics for natural gas - New York, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 6,736 6,157 7,176 R 6,902 7,119 Production (million cubic feet) Gross Withdrawals From Gas Wells

  18. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Ohio - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S37. Summary statistics for natural gas - Ohio, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 34,931 46,717 35,104 R 32,664 32,967 Production (million cubic feet) Gross Withdrawals From Gas Wells

  19. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Oklahoma - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S38. Summary statistics for natural gas - Oklahoma, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 44,000 41,238 40,000 39,776 40,070 Production (million cubic feet) Gross Withdrawals From Gas

  20. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Oregon - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 26 24 27 R 26 28 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,407 1,344 770 770

  1. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Pennsylvania - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S40. Summary statistics for natural gas - Pennsylvania, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 44,500 54,347 55,136 R 53,762 70,400 Production (million cubic feet) Gross Withdrawals

  2. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Tennessee - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S44. Summary statistics for natural gas - Tennessee, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 230 210 212 R 1,089 1,024 Production (million cubic feet) Gross Withdrawals From Gas Wells 5,144

  3. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Texas - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S45. Summary statistics for natural gas - Texas, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 95,014 100,966 96,617 97,618 98,279 Production (million cubic feet) Gross Withdrawals From Gas Wells

  4. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Utah - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S46. Summary statistics for natural gas - Utah, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 6,075 6,469 6,900 R 7,030 7,275 Production (million cubic feet) Gross Withdrawals From Gas Wells 328,135

  5. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Virginia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S48. Summary statistics for natural gas - Virginia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 7,470 7,903 7,843 R 7,956 7,961 Production (million cubic feet) Gross Withdrawals From Gas Wells

  6. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 West Virginia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S50. Summary statistics for natural gas - West Virginia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 52,498 56,813 50,700 R 54,920 60,000 Production (million cubic feet) Gross Withdrawals

  7. Percent of Industrial Natural Gas Deliveries in New Mexico Represented...

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico Represented by the Price (Percent) Percent of Industrial Natural Gas Deliveries in New Mexico Represented by the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct ...

  8. Federal Government Increases Renewable Energy Use Over 1000 Percent...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Government Increases Renewable Energy Use Over 1000 Percent since 1999; Exceeds Goal Federal Government Increases Renewable Energy Use Over 1000 Percent since 1999; Exceeds Goal ...

  9. Federal Government Increases Renewable Energy Use Over 1000 Percent...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Government Increases Renewable Energy Use Over 1000 Percent since 1999; Exceeds Goal Federal Government Increases Renewable Energy Use Over 1000 Percent since 1999; Exceeds Goal...

  10. Maine Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Maine Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  11. Connecticut Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Connecticut Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  12. Los Alamos reduces water use by 26 percent in 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos reduces water use Los Alamos reduces water use by 26 percent in 2014 The Lab decreased its water usage by 26 percent, with about one-third of the reduction attributable ...

  13. Kansas Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Kansas Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  14. Arizona Natural Gas % of Total Residential Deliveries (Percent...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    % of Total Residential Deliveries (Percent) Arizona Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  15. Waste Isolation Pilot Plant Contractor Receives 86 Percent of...

    Office of Environmental Management (EM)

    Waste Isolation Pilot Plant Contractor Receives 86 Percent of Available Fee April 27, 2016 - 12:20pm Addthis Nuclear Waste Partnership received about 86 percent of the available ...

  16. Alabama Natural Gas Percentage Total Industrial Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    Industrial Deliveries (Percent) Alabama Natural Gas Percentage Total Industrial Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  17. Monolithic solid electrolyte oxygen pump

    DOE Patents [OSTI]

    Fee, Darrell C.; Poeppel, Roger B.; Easler, Timothy E.; Dees, Dennis W.

    1989-01-01

    A multi-layer oxygen pump having a one-piece, monolithic ceramic structure affords high oxygen production per unit weight and volume and is thus particularly adapted for use as a portable oxygen supply. The oxygen pump is comprised of a large number of small cells on the order of 1-2 millimeters in diameter which form the walls of the pump and which are comprised of thin, i.e., 25-50 micrometers, ceramic layers of cell components. The cell components include an air electrode, an oxygen electrode, an electrolyte and interconnection materials. The cell walls form the passages for input air and for exhausting the oxygen which is transferred from a relatively dilute gaseous mixture to a higher concentration by applying a DC voltage across the electrodes so as to ionize the oxygen at the air electrode, whereupon the ionized oxygen travels through the electrolyte and is converted to oxygen gas at the oxygen electrode.

  18. Federal Government Increases Renewable Energy Use Over 1000 Percent since

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1999; Exceeds Goal | Department of Energy Government Increases Renewable Energy Use Over 1000 Percent since 1999; Exceeds Goal Federal Government Increases Renewable Energy Use Over 1000 Percent since 1999; Exceeds Goal November 3, 2005 - 12:35pm Addthis WASHINGTON, DC - The Department of Energy (DOE) announced today that the federal government has exceeded its goal of obtaining 2.5 percent of its electricity needs from renewable energy sources by September 30, 2005. The largest energy

  19. Dismantlements of Nuclear Weapons Jump 50 Percent | National...

    National Nuclear Security Administration (NNSA)

    Dismantlements of Nuclear Weapons Jump 50 Percent June 07, 2007 WASHINGTON, D.C. -- Meeting President Bush's directive to reduce the country's nuclear arsenal, the Department of ...

  20. Nuclear Weapons Dismantlement Rate Up 146 Percent | National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Weapons Dismantlement Rate Up 146 Percent October 01, 2007 WASHINGTON, D.C. -- The United States significantly increased its rate of dismantled nuclear weapons during ...

  1. Better Buildings Challenge Partners Pledge 20 Percent Energy...

    Broader source: Energy.gov (indexed) [DOE]

    The company is committed to reducing its consumption by at least 20 percent within the ... Atlanta's Better Building Challenge aims to reduce energy and water consumption across a ...

  2. Oxygen analyzer

    DOE Patents [OSTI]

    Benner, William H.

    1986-01-01

    An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N.sub.2), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable oxygen obtained by decomposing the sample at 1135.degree. C., or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135.degree. C. as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N.sub.2, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

  3. Table 2. Percent of Households with Vehicles, Selected Survey...

    U.S. Energy Information Administration (EIA) Indexed Site

    Percent of Households with Vehicles, Selected Survey Years " ,"Survey Years" ,1983,1985,1988,1991,1994,2001 "Total",85.5450237,89.00343643,88.75545852,89.42917548,87.25590956,92.08...

  4. New York Natural Gas % of Total Residential Deliveries (Percent...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    New York Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 ... Share of Total U.S. Natural Gas Residential Deliveries New York Share of Total U.S. ...

  5. New Mexico Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    New Mexico Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 ... Share of Total U.S. Natural Gas Residential Deliveries New Mexico Share of Total U.S. ...

  6. New Jersey Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    New Jersey Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 ... Share of Total U.S. Natural Gas Residential Deliveries New Jersey Share of Total U.S. ...

  7. BOSS Measures the Universe to One-Percent Accuracy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This and future measures at this precision are the key to determining the nature of dark energy. "One-percent accuracy in the scale of the universe is the most precise such ...

  8. Minnesota Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    Minnesota Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 ... Share of Total U.S. Natural Gas Residential Deliveries Minnesota Share of Total U.S. ...

  9. Arizona - Natural Gas 2014 Million Cu. Feet Percent of

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Arizona - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S3. Summary statistics for natural gas - Arizona, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 5 5 5 5 5 Production (million cubic feet) Gross Withdrawals From Gas Wells 183 168 117 72 106 From

  10. Oxygen analyzer

    DOE Patents [OSTI]

    Benner, W.H.

    1984-05-08

    An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N/sub 2/), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable obtained by decomposing the sample at 1135/sup 0/C, or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135/sup 0/C as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N/sub 2/, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

  11. U.S. Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Deliveries (Percent) U.S. Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 100 100 100 100 100 100 100 2000's 100 100 100 100 100 100 100 100 100 100 2010's 100 100 100 100 100 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Share of Total U.S. Natural Gas

  12. PERCENT FEDERAL LAND FOR OIL/GAS FIELD OUTLINES

    U.S. Energy Information Administration (EIA) Indexed Site

    PERCENT FEDERAL LAND FOR OIL/GAS FIELD OUTLINES The VBA code below calculates the area percent of a first polygon layer (e.g. oil/gas field outlines) that are within a second polygon layer (e.g. federal land) and writes out the fraction as an attribute for the first polygon layer. If you make buffered well field outline polygons using the VBA code in BUFFERED_WELL_FIELD_OUTLINES.doc, you will have a feature class with the attribute PCTFEDLAND to use as the first polygon layer. If not, add the

  13. BOSS Measures the Universe to One-Percent Accuracy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BOSS Measures the Universe to One-Percent Accuracy BOSS Measures the Universe to One-Percent Accuracy The Baryon Oscillation Spectroscopic Survey makes the most precise calibration yet of the universe's "standard ruler" January 8, 2014 Contact: Paul Preuss, Paul_Preuss@lbl.gov , +1 415-272-3253 BOSS-BAOv1.jpg Baryon acoustic oscillations (gray spheres), which descend from waves of increased density in the very early universe, are where galaxies have a tendency to cluster or align -- an

  14. Percent of Industrial Natural Gas Deliveries in District of Columbia

    U.S. Energy Information Administration (EIA) Indexed Site

    Represented by the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 0 0 2000's 0 0 0 -- -- 0 0 0 0 0 2010's 0 0 0 0 0 0

  15. Alabama Natural Gas % of Total Electric Utility Deliveries (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Electric Utility Deliveries (Percent) Alabama Natural Gas % of Total Electric Utility Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.17 0.13 0.23 0.23 0.29 0.60 0.53 2000's 0.81 1.29 1.98 1.68 2.14 1.79 2.34 2.57 2.46 3.30 2010's 3.81 4.53 4.40 4.08 4.23 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016

  16. Alabama Natural Gas % of Total Residential Deliveries (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Deliveries (Percent) Alabama Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.04 1.03 1.02 1.08 0.97 1.03 0.90 2000's 0.95 1.03 0.95 0.92 0.90 0.87 0.87 0.75 0.77 0.75 2010's 0.88 0.78 0.66 0.72 0.77 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages:

  17. Alabama Natural Gas % of Total Vehicle Fuel Deliveries (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Deliveries (Percent) Alabama Natural Gas % of Total Vehicle Fuel Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.44 0.20 0.15 0.08 0.71 0.57 0.57 2000's 0.57 0.52 0.52 0.52 0.52 0.67 0.47 0.36 0.32 0.29 2010's 0.37 0.64 0.64 0.63 0.63 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring

  18. Alabama Natural Gas Percentage Total Commercial Deliveries (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Deliveries (Percent) Alabama Natural Gas Percentage Total Commercial Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.90 0.88 0.87 0.92 1.01 0.86 0.91 2000's 0.80 0.87 0.80 0.80 0.85 0.84 0.86 0.78 0.80 0.78 2010's 0.87 0.80 0.74 0.77 0.79 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring

  19. Alaska Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Alaska Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.28 0.31 0.31 0.31 0.30 0.35 0.37 2000's 0.32 0.35 0.33 0.33 0.37 0.37 0.47 0.42 0.44 0.42 2010's 0.39 0.43 0.52 0.39 0.35 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016

  20. Hawaii Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,056 1,055 1,057 1,043 983 983 983 983 983 983 983 983 2014 947 946 947 947 947 947 951 978 990 968 974 962 2015 968 954 947 959 990 1,005 1,011 965 989 996 996 997 2016 998 1,004 1,003 992 1,018 1,050

    % of Total Residential Deliveries (Percent) Hawaii Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.01 0.01 0.01 0.01 0.01 0.01 0.01

  1. Percent of Commercial Natural Gas Deliveries in California Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 86.6 77.8 74.5 76.9 48.8 52.1 54.9 50.4 48.7 57.1 2000's 57.1 62.6 68.6 70.3 71.2 68.7 64.7 60.7 56.7 54.9 2010's 54.1 54.3 50.0 49.9 48.4 50.0

  2. Percent of Commercial Natural Gas Deliveries in District of Columbia

    U.S. Energy Information Administration (EIA) Indexed Site

    Represented by the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 100.0 97.3 99.0 98.0 90.9 76.8 70.5 54.9 52.3 45.9 2000's 35.6 22.4 23.5 30.5 23.3 100.0 100.0 100.0 100.0 100.0 2010's 100.0 16.9 17.9 19.1 19.9 21.4

  3. Percent of Commercial Natural Gas Deliveries in Louisiana Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 100.0 99.1 87.5 98.1 97.9 98.1 98.3 95.9 94.6 93.8 2000's 96.3 96.5 99.0 98.8 98.6 98.6 98.4 98.0 98.4 92.0 2010's 85.9 83.6 78.0 77.7 78.9 79.1

  4. Percent of Commercial Natural Gas Deliveries in Massachusetts Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 99.9 99.8 99.8 97.5 76.2 84.9 74.7 62.6 57.9 59.8 2000's 63.0 62.1 57.4 68.7 71.3 70.5 70.6 65.3 57.9 56.9 2010's 52.1 50.0 48.6 39.4 42.3 NA

  5. Percent of Commercial Natural Gas Deliveries in Mississippi Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 95.6 95.9 96.4 96.6 96.6 97.0 97.4 94.8 94.8 96.0 2000's 95.6 95.7 96.7 95.9 95.7 95.7 94.9 88.8 90.4 91.0 2010's 90.6 89.8 89.0 89.1 87.5 NA

  6. Percent of Commercial Natural Gas Deliveries in North Carolina Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 94.6 95.0 95.9 98.5 96.6 92.4 96.5 94.4 90.6 93.8 2000's 96.5 94.0 90.8 92.2 89.0 87.6 83.2 83.0 84.5 85.2 2010's 84.8 84.4 83.5 84.5 84.9 NA

  7. Percent of Commercial Natural Gas Deliveries in Pennsylvania Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 78.4 77.3 75.8 77.4 74.4 68.4 70.4 63.6 56.8 56.9 2000's 60.5 63.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2010's 100.0 48.5 42.1 40.2 41.4 NA

  8. Percent of Commercial Natural Gas Deliveries in South Carolina Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 97.8 98.2 98.6 99.2 98.5 96.4 99.0 98.8 97.9 97.1 2000's 98.7 97.5 98.5 96.6 96.4 96.2 95.0 94.9 94.9 93.5 2010's 92.7 91.1 90.6 91.7 92.8 91.3

  9. Percent of Commercial Natural Gas Deliveries in Tennessee Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 97.5 95.7 96.4 95.8 94.1 93.8 94.3 92.2 87.3 88.8 2000's 92.5 93.6 90.9 90.5 92.2 92.2 92.0 91.9 91.7 90.2 2010's 90.8 89.9 88.8 90.0 90.7 88.6

  10. Percent of Commercial Natural Gas Deliveries in Washington Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 93.6 92.2 87.3 93.9 95.4 91.8 85.9 84.1 86.8 89.3 2000's 92.7 94.0 89.8 88.0 88.5 88.8 88.9 89.2 89.0 88.7 2010's 87.8 88.4 87.4 86.8 86.0 85.4

  11. Percent of Commercial Natural Gas Deliveries in West Virginia Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 58.1 54.9 56.9 54.3 55.2 51.6 56.3 54.5 49.5 51.8 2000's 56.6 63.9 57.4 60.2 57.1 58.2 56.0 58.6 53.5 53.6 2010's 51.0 49.2 48.9 52.9 56.7 53.3

  12. Percent of Commercial Natural Gas Deliveries in Wisconsin Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 90.7 91.0 91.3 94.4 93.5 92.0 91.6 82.1 74.0 79.0 2000's 78.1 77.2 75.9 79.1 79.7 79.0 76.0 75.5 76.8 76.8 2010's 76.2 76.4 74.4 77.7 77.0 NA

  13. Percent of Industrial Natural Gas Deliveries in California Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 9.0 10.4 12.9 2000's 8.7 9.1 7.7 4.9 5.2 5.5 5.7 5.3 5.1 4.7 2010's 4.6 4.5 4.2 4.0 3.7 3.8

  14. Percent of Industrial Natural Gas Deliveries in Connecticut Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 66.4 55.8 55.8 2000's 47.3 54.0 48.9 45.3 44.0 46.4 48.5 50.0 47.3 37.5 2010's 31.1 31.0 32.3 33.4 39.4 47.2

  15. Percent of Industrial Natural Gas Deliveries in Louisiana Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 10.1 9.2 8.5 2000's 10.8 8.3 13.4 13.4 21.6 27.9 28.4 25.9 21.4 18.3 2010's 16.7 13.7 14.7 14.2 11.9 2.0

  16. Percent of Industrial Natural Gas Deliveries in Massachusetts Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 33.8 26.2 36.9 2000's 27.3 26.3 20.0 45.4 38.2 36.5 34.4 29.9 20.6 21.1 2010's 19.4 20.6 17.7 18.3 22.3 26.3

  17. Percent of Industrial Natural Gas Deliveries in Mississippi Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 39.6 37.6 26.3 2000's 26.9 28.8 25.9 33.7 34.4 25.2 20.0 15.0 12.2 10.1 2010's 9.6 9.7 9.6 10.6 9.9 9.0

  18. Percent of Industrial Natural Gas Deliveries in North Carolina Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 45.5 32.1 47.8 2000's 52.2 30.5 39.2 36.9 29.1 26.4 20.8 21.2 19.1 13.6 2010's 11.6 9.7 8.8 9.2 10.2 10.9

  19. Percent of Industrial Natural Gas Deliveries in Pennsylvania Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 14.3 13.1 11.8 2000's 11.8 9.9 7.3 6.6 6.4 7.0 5.5 5.4 5.7 4.5 2010's 3.8 2.0 1.3 1.3 1.2 1.0

  20. Percent of Industrial Natural Gas Deliveries in South Carolina Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 86.9 86.7 86.1 2000's 86.5 82.1 87.7 78.5 77.8 77.4 71.4 47.3 47.3 47.6 2010's 46.3 45.4 45.1 45.6 43.6 42.1

  1. Percent of Industrial Natural Gas Deliveries in Tennessee Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 38.3 33.1 34.7 2000's 38.5 36.2 36.0 39.9 40.5 42.4 38.9 38.2 39.9 38.2 2010's 35.7 29.7 29.4 29.7 30.0 29.6

  2. Percent of Industrial Natural Gas Deliveries in Washington Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 23.5 20.1 24.0 2000's 34.5 38.2 27.4 20.1 17.3 15.8 20.2 17.4 12.9 8.7 2010's 8.3 7.5 7.3 6.7 6.5 6.2

  3. Percent of Industrial Natural Gas Deliveries in West Virginia Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 12.2 6.3 10.8 2000's 13.8 16.6 12.7 14.0 13.4 17.0 17.0 16.2 19.0 17.4 2010's 14.7 15.6 16.3 18.0 15.6 NA

  4. Percent of Industrial Natural Gas Deliveries in Wisconsin Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 27.1 22.0 20.2 2000's 22.1 19.5 21.4 20.2 18.8 18.1 18.3 18.5 18.3 18.1 2010's 17.4 17.8 17.6 18.8 19.6

  5. Arkansas Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,016 1,016 1,016 1,017 1,018 1,016 1,016 1,014 1,012 1,012 1,015 2014 1,017 1,015 1,015 1,018 1,017 1,019 1,021 1,021 1,019 1,018 1,011 1,017 2015 1,021 1,023 1,023 1,025 1,022 1,020 1,023 1,022 1,019 1,029 1,014 1,015 2016 1,019 1,015 1,017 1,019 1,018 1,020

    % of Total Residential Deliveries (Percent) Arkansas Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5

  6. California Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,025 1,025 1,027 1,027 1,027 1,031 1,028 1,026 1,026 1,025 1,024 1,025 2014 1,025 1,023 1,024 1,028 1,029 1,028 1,028 1,031 1,033 1,034 1,035 1,034 2015 1,034 1,035 1,033 1,034 1,033 1,037 1,037 1,037 1,037 1,035 1,037 1,037 2016 1,038 1,036 1,034 1,035 1,021 1,042

    % of Total Residential Deliveries (Percent) California Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4

  7. Colorado Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,023 1,032 1,030 1,033 1,040 1,051 1,056 1,057 1,058 1,037 1,032 1,033 2014 1,030 1,036 1,038 1,041 1,051 1,050 1,048 1,048 1,050 1,055 1,042 1,051 2015 1,046 1,044 1,051 1,059 1,059 1,070 1,073 1,069 1,076 1,069 1,060 1,051 2016 1,050 1,052 1,055 1,065 1,066 1,071

    % of Total Residential Deliveries (Percent) Colorado Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5

  8. Delaware Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,050 1,049 1,046 1,048 1,041 1,049 1,058 1,054 1,065 1,064 1,067 1,057 2014 1,052 1,048 1,048 1,051 1,045 1,049 1,063 1,065 1,062 1,063 1,063 1,064 2015 1,061 1,061 1,062 1,051 1,055 1,055 1,044 1,044 1,043 1,051 1,051 1,049 2016 1,055 1,050 1,043 1,044 1,042 1,042

    % of Total Residential Deliveries (Percent) Delaware Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5

  9. Florida Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,016 1,015 1,016 1,015 1,016 1,015 1,016 1,016 1,017 1,017 1,018 1,018 2014 1,018 1,018 1,018 1,019 1,019 1,019 1,022 1,023 1,024 1,023 1,024 1,025 2015 1,024 1,025 1,024 1,024 1,026 1,026 1,026 1,024 1,024 1,023 1,023 1,023 2016 1,015 1,025 1,024 1,023 1,021 1,020

    % of Total Residential Deliveries (Percent) Florida Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5

  10. Georgia Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,014 1,015 1,016 1,015 1,014 1,015 1,016 1,019 1,017 1,016 1,017 1,017 2014 1,018 1,018 1,018 1,018 1,021 1,022 1,023 1,023 1,027 1,026 1,026 1,025 2015 1,025 1,026 1,025 1,026 1,028 1,031 1,030 1,028 1,029 1,028 1,026 1,027 2016 1,029 1,030 1,030 1,028 1,030 1,027

    % of Total Residential Deliveries (Percent) Georgia Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5

  11. Idaho Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,015 1,031 1,021 1,010 997 988 994 1,001 1,026 1,034 1,054 2014 1,048 1,036 1,030 1,022 1,006 993 984 996 1,005 1,019 1,046 1,039 2015 1,047 1,037 1,030 1,023 1,000 1,010 1,034 1,028 1,024 1,033 1,035 1,041 2016 1,034 1,038 1,044 1,056 1,044 1,035

    % of Total Residential Deliveries (Percent) Idaho Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7

  12. Illinois Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,013 1,013 1,014 1,015 1,015 1,014 1,015 1,015 1,016 1,017 1,019 1,018 2014 1,020 1,020 1,020 1,020 1,020 1,020 1,022 1,020 1,021 1,021 1,023 1,024 2015 1,027 1,030 1,029 1,028 1,029 1,027 1,027 1,027 1,028 1,028 1,030 1,030 2016 1,031 1,031 1,030 1,032 1,032 1,027

    % of Total Residential Deliveries (Percent) Illinois Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5

  13. Indiana Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,011 1,012 1,013 1,015 1,019 1,020 1,019 1,021 1,020 1,018 1,015 1,014 2014 1,016 1,017 1,019 1,019 1,023 1,023 1,025 1,030 1,028 1,027 1,025 1,029 2015 1,028 1,029 1,031 1,039 1,037 1,043 1,043 1,044 1,041 1,039 1,034 1,033 2016 1,030 1,033 1,032 1,034 1,038 1,042

    % of Total Residential Deliveries (Percent) Indiana Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5

  14. Iowa Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,025 1,029 1,029 1,030 1,031 1,030 1,030 1,027 1,028 1,032 1,033 1,032 2014 1,034 1,033 1,034 1,036 1,040 1,039 1,043 1,047 1,044 1,046 1,044 1,045 2015 1,045 1,047 1,047 1,051 1,054 1,060 1,059 1,059 1,058 1,058 1,057 1,056 2016 1,053 1,052 1,052 1,053 1,057 1,058

    % of Total Residential Deliveries (Percent) Iowa Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6

  15. Kentucky Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,023 1,022 1,023 1,025 1,026 1,027 1,028 1,030 1,031 1,028 1,028 1,033 2014 1,029 1,024 1,026 1,028 1,031 1,037 1,034 1,036 1,038 1,022 1,017 1,019 2015 1,023 1,018 1,015 1,016 1,023 1,021 1,024 1,015 1,020 1,024 1,021 1,024 2016 1,027 1,025 1,023 1,026 1,01

    % of Total Residential Deliveries (Percent) Kentucky Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6

  16. Louisiana Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,013 1,015 1,015 1,015 1,016 1,016 1,017 1,017 1,016 1,018 1,019 2014 1,017 1,016 1,018 1,021 1,028 1,025 1,029 1,029 1,031 1,034 1,037 1,038 2015 1,030 1,031 1,029 1,029 1,028 1,027 1,028 1,024 1,023 1,023 1,022 1,023 2016 1,024 1,025 1,022 1,021 1,022 1,023

    % of Total Residential Deliveries (Percent) Louisiana Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4

  17. Maryland Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,041 1,037 1,032 1,027 1,037 1,042 1,060 1,056 1,062 1,059 1,061 1,059 2014 1,053 1,048 1,045 1,049 1,047 1,052 1,051 1,051 1,049 1,052 1,057 1,057 2015 1,059 1,061 1,058 1,051 1,058 1,057 1,055 1,049 1,050 1,053 1,049 1,050 2016 1,061 1,055 1,050 1,048 1,047 1,046

    % of Total Residential Deliveries (Percent) Maryland Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5

  18. Massachusetts Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,037 1,033 1,032 1,033 1,035 1,032 1,033 1,034 1,036 1,038 1,033 1,030 2014 1,035 1,032 1,031 1,030 1,030 1,031 1,030 1,029 1,029 1,028 1,029 1,028 2015 1,035 1,035 1,030 1,029 1,027 1,027 1,029 1,028 1,027 1,028 1,029 1,030 2016 1,031 1,032 1,030 1,029 1,029 1,029

    % of Total Residential Deliveries (Percent) Massachusetts Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4

  19. Michigan Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,021 1,021 1,022 1,026 1,020 1,022 1,024 1,021 1,019 1,019 1,017 1,019 2014 1,019 1,021 1,021 1,017 1,020 1,019 1,015 1,028 1,022 1,023 1,026 1,029 2015 1,027 1,026 1,030 1,035 1,028 1,033 1,034 1,035 1,036 1,034 1,041 1,040 2016 1,040 1,038 1,036 1,040 1,038 1,04

    % of Total Residential Deliveries (Percent) Michigan Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5

  20. Mississippi Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,013 1,013 1,014 1,014 1,015 1,018 1,018 1,021 1,022 1,025 1,020 1,020 2014 1,019 1,014 1,019 1,026 1,030 1,034 1,035 1,036 1,035 1,033 1,035 1,034 2015 1,036 1,033 1,031 1,037 1,032 1,030 1,030 1,029 1,031 1,028 1,029 1,030 2016 1,031 1,032 1,039 1,033 1,036 1,030

    % of Total Residential Deliveries (Percent) Mississippi Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4

  1. Missouri Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,014 1,014 1,013 1,014 1,013 1,017 1,015 1,016 1,019 1,013 1,014 2014 1,013 1,013 1,014 1,014 1,011 1,016 1,016 1,018 1,017 1,018 1,017 1,017 2015 1,017 1,020 1,025 1,026 1,024 1,026 1,026 1,026 1,026 1,025 1,024 1,023 2016 1,024 1,023 1,024 1,024 1,021 1,022

    % of Total Residential Deliveries (Percent) Missouri Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5

  2. Montana Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,044 1,040 1,032 1,034 1,034 1,044 1,048 1,043 1,047 1,041 1,032 1,031 2014 1,034 1,030 1,030 1,027 1,032 1,030 1,038 1,036 1,040 1,031 1,026 1,030 2015 1,028 1,029 1,028 1,021 1,019 1,030 1,031 1,033 1,032 1,032 1,034 1,034 2016 1,033 1,030 1,027 1,023 1,023

    % of Total Residential Deliveries (Percent) Montana Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6

  3. Nebraska Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,030 1,031 1,032 1,033 1,036 1,035 1,029 1,032 1,038 1,040 1,041 1,036 2014 1,034 1,034 1,037 1,043 1,043 1,047 1,051 1,052 1,050 1,053 1,049 1,052 2015 1,052 1,054 1,053 1,057 1,061 1,063 1,068 1,071 1,068 1,060 1,055 1,053 2016 1,054 1,054 1,048 1,062 1,064 1,064

    % of Total Residential Deliveries (Percent) Nebraska Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5

  4. Nevada Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,037 1,039 1,037 1,034 1,031 1,032 1,031 1,033 1,039 1,032 1,029 1,034 2014 1,033 1,033 1,032 1,034 1,032 1,033 1,033 1,035 1,033 1,036 1,036 1,037 2015 1,040 1,040 1,041 1,043 1,043 1,045 1,044 1,043 1,044 1,043 1,043 1,042 2016 1,043 1,042 1,037 1,042 1,039 1,038

    % of Total Residential Deliveries (Percent) Nevada Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6

  5. North Dakota Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,082 1,093 1,096 1,091 1,068 1,131 1,140 1,077 1,013 1,099 1,112 1,089 2014 1,087 1,084 1,074 1,077 1,083 1,079 1,078 1,106 1,123 1,100 1,105 1,096 2015 1,036 1,078 1,072 1,084 1,084 1,089 1,117 1,095 1,078 1,093 1,097 1,112 2016 1,095 1,095 1,099 1,108 1,091 1,070

    % of Total Residential Deliveries (Percent) North Dakota Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4

  6. Ohio Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,034 1,033 1,033 1,035 1,035 1,038 1,037 1,044 1,045 1,044 1,043 1,044 2014 1,044 1,042 1,041 1,050 1,047 1,048 1,053 1,052 1,052 1,054 1,057 1,060 2015 1,065 1,062 1,062 1,073 1,072 1,068 1,069 1,068 1,071 1,071 1,077 1,077 2016 1,073 1,072 1,070 1,068 1,070 1,069

    % of Total Residential Deliveries (Percent) Ohio Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6

  7. Oklahoma Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,040 1,037 1,038 1,039 1,041 1,043 1,044 1,042 1,042 1,044 1,043 1,042 2014 1,036 1,036 1,039 1,037 1,040 1,043 1,042 1,042 1,044 1,043 1,041 1,041 2015 1,042 1,043 1,044 1,045 1,048 1,049 1,050 1,047 1,049 1,049 1,047 1,050 2016 1,049 1,047 1,048 1,044 1,047 1,046

    % of Total Residential Deliveries (Percent) Oklahoma Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5

  8. Oregon Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,011 1,010 1,012 1,011 1,017 1,020 1,020 1,023 1,021 1,014 1,013 1,013 2014 1,013 1,012 1,010 1,034 1,041 1,044 1,029 1,035 1,033 1,029 1,028 1,028 2015 1,031 1,031 1,032 1,035 1,039 1,042 1,039 1,039 1,038 1,036 1,035 1,036 2016 1,033 1,034 1,036 1,038 1,043 1,044

    % of Total Residential Deliveries (Percent) Oregon Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6

  9. Pennsylvania Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,047 1,046 1,047 1,047 1,047 1,048 1,051 1,048 1,049 1,049 1,054 1,053 2014 1,052 1,050 1,048 1,046 1,044 1,044 1,046 1,046 1,045 1,044 1,049 1,052 2015 1,053 1,054 1,049 1,049 1,050 1,046 1,044 1,044 1,044 1,045 1,046 1,046 2016 1,048 1,045 1,042 1,042 1,042 1,041

    % of Total Residential Deliveries (Percent) Pennsylvania Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4

  10. Rhode Island Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,030 1,030 1,030 1,032 1,034 1,031 1,032 1,032 1,033 1,034 1,031 1,031 2014 1,031 1,032 1,031 1,030 1,028 1,023 1,029 1,029 1,027 1,030 1,029 1,029 2015 1,029 1,029 1,029 1,029 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 2016 1,032 1,027 1,025 1,034

    % of Total Residential Deliveries (Percent) Rhode Island Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6

  11. South Carolina Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,021 1,020 1,021 1,019 1,019 1,017 1,019 1,020 1,020 1,020 1,020 1,020 2014 1,022 1,021 1,022 1,022 1,022 1,023 1,022 1,024 1,028 1,027 1,028 1,029 2015 1,030 1,028 1,028 1,029 1,030 1,030 1,031 1,029 1,031 1,031 1,030 1,030 2016 1,031 1,031 1,029 1,031 1,030 1,029

    % of Total Residential Deliveries (Percent) South Carolina Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4

  12. South Dakota Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,028 1,030 1,029 1,028 1,028 1,029 1,031 1,030 1,029 1,031 1,030 1,034 2014 1,034 1,034 1,035 1,036 1,039 1,041 1,039 1,045 1,045 1,049 1,048 1,048 2015 1,048 1,048 1,047 1,051 1,054 1,059 1,062 1,060 1,056 1,053 1,053 1,058 2016 1,060 1,058 1,053 1,052 1,054 1,058

    % of Total Residential Deliveries (Percent) South Dakota Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4

  13. Tennessee Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,013 1,012 1,016 1,019 1,018 1,021 1,023 1,028 1,028 1,025 1,024 1,022 2014 1,020 1,020 1,021 1,027 1,032 1,031 1,032 1,020 1,024 1,027 1,029 1,028 2015 1,028 1,029 1,029 1,027 1,025 1,025 1,027 1,023 1,025 1,032 1,031 1,034 2016 1,035 1,035 1,034 1,031 1,031 1,024

    % of Total Residential Deliveries (Percent) Tennessee Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4

  14. Texas Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,023 1,024 1,024 1,025 1,027 1,026 1,024 1,025 1,024 1,025 1,024 1,025 2014 1,027 1,022 1,028 1,026 1,029 1,032 1,033 1,036 1,033 1,033 1,031 1,030 2015 1,026 1,028 1,029 1,034 1,036 1,036 1,036 1,035 1,036 1,036 1,033 1,030 2016 1,029 1,028 1,030 1,032 1,029 1,027

    % of Total Residential Deliveries (Percent) Texas Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6

  15. Utah Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,050 1,050 1,049 1,047 1,048 1,048 1,046 1,041 1,044 1,043 1,045 1,044 2014 1,044 1,044 1,045 1,044 1,038 1,036 1,038 1,040 1,040 1,041 1,038 1,037 2015 1,039 1,046 1,047 1,049 1,043 1,043 1,043 1,043 1,042 1,044 1,044 1,046 2016 1,046 1,043 1,041 1,042 1,041 1,040

    % of Total Residential Deliveries (Percent) Utah Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6

  16. Vermont Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,013 1,014 1,016 1,016 1,021 1,016 1,015 1,011 1,012 1,014 1,015 1,014 2014 1,013 1,009 1,015 1,014 1,026 1,031 1,011 1,018 1,015 1,015 1,019 1,021 2015 1,026 1,035 1,027 1,024 1,021 1,021 1,022 1,019 1,020 1,030 1,027 1,027 2016 1,029 1,032 1,030 1,028 1,023 1,025

    % of Total Residential Deliveries (Percent) Vermont Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5

  17. Virginia Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,038 1,032 1,033 1,028 1,030 1,039 1,043 1,038 1,043 1,042 1,046 1,045 2014 1,044 1,040 1,039 1,041 1,038 1,040 1,041 1,040 1,038 1,046 1,055 1,054 2015 1,056 1,053 1,051 1,045 1,055 1,055 1,056 1,054 1,055 1,053 1,051 1,057 2016 1,055 1,055 1,056 1,052 1,054 1,052

    % of Total Residential Deliveries (Percent) Virginia Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5

  18. Washington Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,027 1,026 1,026 1,030 1,032 1,037 1,032 1,033 1,038 1,035 1,030 1,034 2014 1,035 1,037 1,041 1,042 1,045 1,050 1,049 1,047 1,046 1,045 1,049 1,050 2015 1,052 1,054 1,060 1,062 1,065 1,069 1,070 1,065 1,066 1,064 1,069 1,073 2016 1,070 1,075 1,077 1,078 1,078 1,080

    % of Total Residential Deliveries (Percent) Washington Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4

  19. West Virginia Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,071 1,071 1,070 1,083 1,088 1,099 1,099 1,119 1,082 1,097 1,086 1,079 2014 1,073 1,073 1,065 1,111 1,094 1,095 1,099 1,106 1,119 1,082 1,077 1,094 2015 1,097 1,084 1,069 1,103 1,107 1,096 1,099 1,099 1,102 1,090 1,114 1,090 2016 1,092 1,096 1,096 1,096 1,096 1,118

    % of Total Residential Deliveries (Percent) West Virginia Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4

  20. Wisconsin Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,028 1,026 1,025 1,030 1,027 1,026 1,026 1,023 1,026 1,027 1,027 1,027 2014 1,031 1,033 1,035 1,032 1,033 1,032 1,029 1,034 1,034 1,034 1,035 1,038 2015 1,042 1,044 1,040 1,039 1,038 1,040 1,036 1,040 1,034 1,045 1,043 1,044 2016 1,045 1,046 1,038 1,038 1,037 1,033

    % of Total Residential Deliveries (Percent) Wisconsin Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4

  1. Wyoming Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,043 1,040 1,041 1,042 1,043 1,045 1,040 1,040 1,041 1,038 1,035 1,030 2014 1,034 1,032 1,030 1,031 1,029 1,026 1,025 1,031 1,031 1,030 1,033 1,036 2015 1,043 1,041 1,042 1,043 1,045 1,045 1,042 1,044 1,041 1,040 1,046 1,054 2016 1,056 1,052 1,071 1,055 1,053 1,048

    % of Total Residential Deliveries (Percent) Wyoming Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5

  2. Corrosion resistance and behavioral characteristics of metals exposed to 70 percent by weight sulfuric acid at elevated temperatures

    SciTech Connect (OSTI)

    Nguyen, D.T.; Farina, G.E.

    1994-10-01

    The development of a concentrated acid hydrolysis process may necessitate the storage, handling, and processing of concentrated solution of sulfuric acid at temperatures in excess of 70{degrees}C. Due to the corrosivity of the sulfuric acid at elevated temperatures, a series of corrosion tests was conducted to determine the corrosion performance and behavior of various construction materials using immersion and electrochemical techniques. Test results showed that among the stainless steels tested, only Carpenter 20Mo-6 performed satisfactorily up to 70{degrees}C. It passivated spontaneously and corroded at a rate less than 40 {mu}m/yr (1.6 mpy). Among numerous nickel-based alloys tested, only Hastelloy B-2 had excellent corrosion resistance up to 100{degrees}C with a corrosion rate less than 50 {mu}/yr (2 mpy), although the alloy did not passivate. Zirconium alloy Zr 702 provided excellent corrosion resistance to 100{degrees}C. The alloy passivated spontaneously, but its passive range decreased, evidently with increase in temperature. Tantalum and KBI-40 provided excellent corrosion protection at all test temperatures. The materials passivated spontaneously with a wide passive range.

  3. Table B28. Percent of Floorspace Heated, Number of Buildings and Floorspace, 199

    U.S. Energy Information Administration (EIA) Indexed Site

    8. Percent of Floorspace Heated, Number of Buildings and Floorspace, 1999" ,"Number of Buildings (thousand)",,,,,"Total Floorspace (million square feet)" ,"All Buildings","Not Heated","1 to 50 Percent Heated","51 to 99 Percent Heated","100 Percent Heated","All Buildings","Not Heated","1 to 50 Percent Heated","51 to 99 Percent Heated","100 Percent Heated" "All

  4. Table B30. Percent of Floorspace Lit When Open, Number of Buildings and Floorspa

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Percent of Floorspace Lit When Open, Number of Buildings and Floorspace, 1999" ,"Number of Buildings (thousand)",,,,,"Total Floorspace (million square feet)" ,"All Buildings","Not Lita","1 to 50 Percent Lit","51 to 99 Percent Lit","100 Percent Lit","All Buildings","Not Lita","1 to 50 Percent Lit","51 to 99 Percent Lit","100 Percent Lit" "All Buildings

  5. Percent of Industrial Natural Gas Deliveries in Connecticut Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 66.1 48.5 50.9 50.2 58.7 44.3 34.1 58.5 55.7 73.8 58.9 51.8 2002 45.0 47.4 53.0 41.3 52.5 50.1 38.1 49.3 53.9 52.2 49.1 54.2 2003 45.5 42.0 48.4 45.5 43.4 42.2 40.0 38.9 41.2 44.0 55.4 54.2 2004 41.0 40.9 39.5 45.6 43.7 45.0 47.5 44.3 43.7 47.4 46.5 46.2 2005 51.3 45.1 46.1 48.5 45.8 42.9 43.2 42.6 48.1 48.4 49.1 44.9 2006 49.2 48.5 45.1 47.1 50.0 49.0 51.8 49.9 50.5 52.2 42.5 47.8 2007 50.6 50.0 47.4 49.5 51.1

  6. Percent of Industrial Natural Gas Deliveries in District of Columbia

    U.S. Energy Information Administration (EIA) Indexed Site

    Represented by the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 -- -- -- -- -- -- -- -- -- -- -- -- 2004 -- -- -- -- -- -- -- -- -- -- -- -- 2005 0 0 0 0 -- -- 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014

  7. Percent of Industrial Natural Gas Deliveries in Mississippi Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 28.2 32.5 24.3 32.8 25.6 33.3 27.5 30.2 28.5 21.2 31.3 31.1 2002 27.5 29.8 27.4 27.0 23.9 26.2 24.1 25.8 24.2 23.9 26.3 25.2 2003 32.3 39.3 37.3 34.5 31.8 37.2 34.6 32.3 32.7 28.6 27.0 35.7 2004 39.9 36.9 33.0 32.8 29.8 33.8 32.8 33.7 36.7 31.0 33.7 38.8 2005 26.7 24.2 23.6 24.4 23.7 22.1 23.2 22.8 42.3 24.8 28.8 23.7 2006 24.7 28.1 24.8 23.5 19.5 19.2 18.1 17.2 16.6 17.5 15.6 18.0 2007 18.4 19.6 17.4 15.6 13.4

  8. Percent of Industrial Natural Gas Deliveries in Tennessee Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 48.0 40.7 40.0 33.7 32.1 29.6 33.1 33.6 35.5 29.3 37.7 38.4 2002 36.3 39.0 44.3 34.8 36.6 33.0 32.5 31.8 33.8 35.5 33.9 38.2 2003 36.7 41.2 40.2 37.2 35.5 33.9 38.7 40.5 42.6 44.0 42.1 46.8 2004 44.2 43.4 42.1 40.5 41.0 36.5 36.4 34.6 37.0 38.3 41.5 47.1 2005 39.9 40.5 44.7 47.3 42.5 39.5 39.5 43.3 42.8 41.5 39.7 46.7 2006 40.9 44.6 40.1 37.3 37.4 39.1 35.5 35.5 34.9 38.2 41.6 39.2 2007 38.8 44.2 40.4 35.4 37.8

  9. Percent of Commercial Natural Gas Deliveries in California Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 94.6 95.1 93.0 88.3 94.8 92.8 89.4 87.8 91.0 88.5 90.1 92.2 1990 95.8 81.1 94.4 90.4 90.2 85.6 78.0 82.6 79.1 82.3 85.6 88.3 1991 90.5 88.4 90.2 71.0 82.2 71.0 68.0 85.8 68.0 64.7 69.8 80.3 1992 86.6 65.6 75.7 79.0 63.5 74.5 60.9 64.6 79.7 79.0 76.7 81.4 1993 79.9 82.3 77.6 80.7 76.8 71.4 76.4 70.3 70.6 73.8 75.7 78.8 1994 51.3 47.2 50.6 40.5 47.4 32.2 36.4 46.5 46.0 52.2 57.8 68.2 1995 61.3 58.6 64.7 56.8 50.3

  10. Percent of Commercial Natural Gas Deliveries in Connecticut Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100.0 100.0 98.4 90.0 81.6 76.5 74.5 80.4 74.8 85.5 90.8 99.5 1990 100.0 100.0 98.7 95.9 92.3 89.9 87.5 86.9 87.2 91.3 98.3 99.1 1991 99.4 99.4 97.5 92.5 85.9 79.2 76.2 77.1 77.9 85.9 93.0 96.6 1992 97.7 97.2 95.6 94.4 93.6 87.2 95.8 98.8 98.7 97.8 98.2 98.4 1993 97.2 97.7 97.2 98.1 99.4 99.3 88.3 98.4 99.6 100.0 100.0 100.0 1994 89.2 90.7 88.4 88.8 74.2 67.8 62.4 61.1 57.4 68.8 77.9 83.4 1995 86.7 88.1 85.7 81.6

  11. Percent of Commercial Natural Gas Deliveries in District of Columbia

    U.S. Energy Information Administration (EIA) Indexed Site

    Represented by the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1990 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1991 100.0 100.0 100.0 100.0 100.0 92.4 86.7 89.4 90.6 91.1 95.7 99.5 1992 99.6 100.0 100.0 97.4 97.6 100.0 91.4 99.5 99.0 100.0 100.0 100.0 1993 100.0 100.0 100.0 100.0 100.0 99.8 96.8 88.4 90.1 92.6 95.9 97.1 1994 99.8 99.8 100.0 98.8 95.7 94.4 76.6

  12. Percent of Commercial Natural Gas Deliveries in Louisiana Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 1990 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1991 100.0 100.0 100.0 100.0 100.0 98.5 98.6 98.4 98.5 98.4 97.4 97.6 1992 82.3 87.7 88.7 90.6 90.5 90.1 90.6 90.2 91.1 90.6 81.4 86.4 1993 97.4 97.9 98.1 98.6 98.9 98.9 98.8 98.8 98.8 98.2 97.1 97.5 1994 97.7 98.1 98.1 98.0 98.0 97.9 98.4 97.6 98.1 97.9 97.9 97.5 1995 97.8 98.2

  13. Percent of Commercial Natural Gas Deliveries in Massachusetts Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 1990 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.8 99.8 99.8 99.7 99.7 1991 99.8 99.8 99.9 99.9 99.9 99.8 99.7 99.6 99.6 99.8 99.9 99.9 1992 99.9 99.9 99.8 99.8 99.7 99.8 99.7 99.6 99.6 99.6 99.7 99.8 1993 98.9 98.7 98.5 97.7 96.5 97.7 96.8 89.2 97.5 96.7 96.9 97.8 1994 75.2 78.4 72.5 69.8 69.8 61.2 67.0 86.0 79.7 90.6 81.2 87.1 1995 87.9 89.4 92.0

  14. Percent of Commercial Natural Gas Deliveries in Minnesota Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 97.3 97.4 97.0 95.8 95.0 92.4 89.4 89.9 92.7 91.9 94.9 97.0 1990 97.7 96.4 95.9 94.9 94.9 91.4 86.2 89.9 90.1 92.8 97.9 98.7 1991 96.8 96.3 97.6 95.9 89.2 80.9 79.3 81.5 90.5 97.8 97.0 99.0 1992 99.6 95.3 96.0 95.5 92.2 88.3 93.1 89.8 93.0 99.4 96.5 97.6 1993 98.7 96.9 96.3 99.2 99.2 93.4 88.2 87.1 96.2 95.3 96.5 99.1 1994 97.2 97.6 97.3 96.8 98.5 91.4 97.0 91.8 89.8 91.9 95.6 95.2 1995 93.3 93.6 95.0 96.2 95.5

  15. Percent of Commercial Natural Gas Deliveries in Mississippi Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1990 97.6 96.0 95.7 95.6 94.5 94.3 93.7 93.5 93.9 94.4 95.2 95.8 1991 96.6 97.0 96.3 95.9 94.5 94.9 94.3 94.6 95.1 94.9 95.5 96.4 1992 96.9 97.3 96.4 96.6 95.2 95.4 95.5 94.8 95.6 95.6 95.9 97.4 1993 97.3 97.3 97.2 97.1 96.1 96.0 96.0 95.7 95.5 95.4 96.1 96.5 1994 97.2 97.6 97.1 96.9 96.1 96.9 97.1 95.1 94.9 94.3 96.2 96.6 1995 96.4 97.4 98.2

  16. Percent of Commercial Natural Gas Deliveries in New Hampshire Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1990 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1991 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1992 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1993 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1994 100.0 100.0 100.0 100.0 100.0

  17. Percent of Commercial Natural Gas Deliveries in North Carolina Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 98.7 98.9 94.9 92.4 89.6 87.7 80.1 84.2 84.4 86.3 97.1 98.1 1990 98.6 98.3 98.0 97.0 89.1 86.3 85.3 85.0 84.7 84.0 98.7 99.1 1991 99.3 99.3 99.0 89.0 87.3 86.1 84.4 86.3 85.0 98.0 99.0 99.3 1992 99.3 99.2 99.2 93.1 88.3 85.8 84.3 86.2 89.2 99.9 100.0 100.0 1993 100.0 100.0 100.0 100.0 100.0 95.4 95.4 95.2 99.7 89.7 96.1 100.0 1994 100.0 100.0 100.0 95.3 94.0 92.1 91.8 90.4 88.3 88.0 94.1 99.4 1995 95.7 96.0 94.5

  18. Percent of Commercial Natural Gas Deliveries in Pennsylvania Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 89.4 88.9 88.7 87.4 81.7 76.8 79.6 77.2 76.4 80.3 82.9 85.3 1990 85.9 83.6 80.9 80.0 74.0 70.2 68.5 68.3 67.2 69.6 74.9 79.2 1991 82.2 79.4 78.8 77.7 72.1 72.9 70.6 71.6 72.2 72.9 76.4 76.7 1992 77.1 79.6 76.6 75.1 71.8 73.1 68.1 67.2 69.4 74.0 74.1 79.4 1993 80.5 79.7 79.5 78.2 72.1 72.9 72.9 69.7 70.3 76.5 75.9 77.0 1994 79.0 80.2 77.5 73.9 71.6 70.8 67.1 71.4 67.9 62.7 68.7 72.1 1995 75.1 74.4 74.9 71.4 68.7

  19. Percent of Commercial Natural Gas Deliveries in South Carolina Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 98.5 98.5 98.6 98.3 98.1 98.2 98.1 97.7 97.7 97.8 98.0 97.3 1990 98.6 98.4 98.3 98.1 92.2 97.6 97.6 97.5 97.9 97.3 98.0 98.6 1991 98.7 98.9 98.7 96.9 97.4 97.5 97.3 97.7 97.7 97.4 98.9 98.9 1992 99.1 99.1 98.9 98.6 98.5 95.8 95.5 95.8 97.0 99.7 100.0 100.0 1993 100.0 100.0 100.0 100.0 100.0 100.0 95.1 94.6 100.0 95.3 100.0 100.0 1994 100.0 100.0 100.0 99.7 97.8 98.3 97.0 95.7 95.2 95.6 96.2 99.9 1995 97.8 97.5

  20. Percent of Commercial Natural Gas Deliveries in Tennessee Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 99.1 98.9 98.9 97.5 96.8 95.9 96.7 95.8 96.9 97.1 97.4 99.1 1990 98.9 98.5 98.7 97.9 95.4 95.4 95.1 95.9 95.1 95.5 96.5 97.5 1991 97.9 94.6 93.6 96.0 94.8 94.3 93.8 93.8 94.0 95.3 97.1 97.8 1992 96.6 97.1 96.8 97.2 93.7 95.8 97.3 90.4 91.6 97.3 97.5 97.4 1993 96.6 96.9 96.6 96.5 97.7 91.3 91.6 91.1 91.4 92.3 94.7 98.9 1994 96.7 98.5 97.9 93.0 90.0 89.4 87.2 87.1 89.3 88.4 91.7 94.4 1995 95.5 95.8 93.4 90.8 89.6

  1. Percent of Commercial Natural Gas Deliveries in Washington Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 95.5 94.8 96.9 93.2 93.0 89.7 87.0 92.6 87.3 93.0 93.6 96.5 1990 96.2 95.9 93.2 92.1 90.9 88.9 88.3 88.4 90.1 91.7 95.7 96.5 1991 97.8 94.9 94.3 93.2 91.2 90.5 88.3 87.2 85.6 85.2 88.7 92.1 1992 92.1 89.0 88.7 85.5 83.5 80.7 78.5 80.3 81.6 83.4 86.8 92.3 1993 93.8 93.2 93.9 93.6 90.8 89.8 90.5 90.4 90.6 94.8 97.4 98.0 1994 97.6 97.6 97.6 97.4 92.1 92.1 92.4 91.7 94.4 93.8 94.1 94.7 1995 94.3 94.0 94.2 92.6 91.8

  2. Percent of Commercial Natural Gas Deliveries in Wisconsin Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 94.1 94.2 94.5 94.0 92.6 87.7 86.1 84.2 84.2 84.3 91.1 95.0 1990 91.6 91.5 91.9 91.9 90.3 86.5 83.1 82.4 82.6 87.5 90.1 93.3 1991 93.8 92.3 92.9 91.2 88.8 83.8 80.7 84.7 83.6 86.7 91.5 92.1 1992 92.7 92.1 91.6 90.0 85.8 82.3 83.3 84.1 85.2 90.7 93.4 95.1 1993 95.2 96.0 95.3 93.5 92.1 90.8 89.2 88.5 90.0 92.6 95.2 96.0 1994 97.1 97.6 97.4 96.6 91.8 89.9 83.5 87.1 87.8 90.8 94.4 84.4 1995 93.5 94.0 93.2 92.4 90.0

  3. Percent of Industrial Natural Gas Deliveries in Washington Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 40.1 37.3 39.3 33.9 31.2 31.0 27.1 35.1 34.9 46.1 46.5 46.1 2002 25.9 28.6 29.4 32.8 30.0 24.4 27.5 20.7 24.7 25.4 31.6 26.9 2003 26.3 26.9 25.5 19.5 18.5 15.1 13.6 15.3 17.5 18.9 18.7 22.2 2004 20.9 21.0 21.4 19.1 15.8 16.0 13.2 17.1 15.0 16.2 14.5 15.6 2005 15.1 14.4 15.2 12.9 11.7 11.7 11.0 15.0 15.5 18.8 20.6 25.3 2006 22.9 22.8 22.6 19.7 19.5 17.8 17.2 16.8 17.1 19.2 21.8 22.3 2007 23.5 22.4 23.2 18.7 16.9

  4. Percent of Industrial Natural Gas Deliveries in Wisconsin Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 25.3 26.6 26.1 18.3 12.5 11.2 12.3 12.4 10.9 15.9 19.9 23.0 2002 25.3 23.6 25.8 21.2 18.5 14.3 11.1 13.3 14.7 20.9 24.7 28.9 2003 27.0 27.3 25.9 18.8 15.3 11.7 10.7 11.7 12.2 17.7 21.3 26.2 2004 26.4 24.1 23.9 19.3 13.5 14.1 12.9 10.4 12.4 17.6 19.6 18.6 2005 21.7 20.9 20.8 15.9 13.4 11.2 12.3 13.2 13.9 16.4 21.9 25.1 2006 21.6 21.7 23.0 13.3 14.1 13.5 11.1 12.3 13.3 18.2 22.8 24.2 2007 22.3 23.7 24.1 17.8 13.6

  5. Hybrid System for Separating Oxygen from Air - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Hydrogen and Fuel Cell Energy Storage Energy Storage Find More Like This Return to Search Hybrid System for Separating Oxygen from Air Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (765 KB) Technology Marketing Summary Sandia has developed a portable, oxygen generation system capable of delivering oxygen gas at purities greater than 98 percent and flow rates significantly greater than commercially

  6. Percent of Industrial Natural Gas Deliveries in California Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 14.3 12.9 13.0 10.4 9.0 7.7 6.6 6.7 6.4 8.0 8.2 8.0 2002 8.0 9.4 8.8 7.4 9.5 7.0 6.6 6.9 6.7 7.7 7.2 8.1 2003 3.3 7.1 4.9 5.8 5.1 4.6 4.0 4.8 4.3 4.1 5.3 6.2 2004 5.2 8.3 5.8 5.2 5.3 3.8 4.6 4.4 4.3 5.0 5.3 5.9 2005 5.6 6.6 4.8 5.3 5.2 5.1 4.5 4.8 5.2 5.8 5.9 6.7 2006 6.2 7.2 5.7 5.9 6.0 5.4 4.6 4.7 4.9 5.3 6.1 6.2 2007 6.0 7.2 6.5 5.3 5.6 4.9 4.5 4.3 4.3 5.1 4.8 5.3 2008 5.7 6.6 5.9 5.6 5.6 4.5 4.4 4.3 4.4 4.7 4.7

  7. Percent of Industrial Natural Gas Deliveries in Louisiana Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 8.2 7.6 6.3 8.0 7.2 5.9 9.1 9.6 9.0 8.6 10.0 9.1 2002 13.4 13.3 13.0 13.6 14.3 13.5 12.2 13.1 12.9 12.7 13.4 14.8 2003 12.0 13.2 12.0 13.5 13.7 13.7 11.8 12.8 13.4 14.1 16.3 14.3 2004 14.5 15.7 16.4 22.9 22.7 23.7 23.3 22.9 22.8 23.3 25.2 26.0 2005 26.3 25.9 27.3 27.8 28.6 28.2 27.2 28.9 29.0 28.8 28.8 29.0 2006 29.4 28.6 29.2 26.8 28.8 28.3 28.0 29.5 26.3 25.7 28.6 31.5 2007 29.7 31.7 27.3 28.8 29.9 33.6 23.9 23.8

  8. Percent of Industrial Natural Gas Deliveries in Massachusetts Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 36.9 37.4 48.4 27.7 23.2 18.9 14.1 10.3 18.5 18.6 29.5 21.8 2002 27.5 26.6 23.0 21.7 16.9 14.0 16.5 11.1 9.4 14.8 21.7 28.6 2003 40.7 44.0 44.6 41.6 37.9 36.3 38.9 42.3 35.8 78.7 23.9 36.9 2004 47.9 47.2 45.8 39.9 36.5 34.4 31.3 27.0 23.1 29.2 23.2 40.5 2005 40.9 43.4 42.6 37.2 32.0 29.0 26.8 22.1 22.3 26.9 33.6 40.9 2006 42.4 41.0 40.2 36.9 31.5 28.6 25.2 26.5 26.5 23.7 32.2 31.2 2007 34.8 36.0 37.0 30.2 29.7

  9. Percent of Industrial Natural Gas Deliveries in North Carolina Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 43.8 39.0 34.6 41.8 30.0 28.6 27.2 30.1 21.4 17.7 27.3 30.7 2002 31.5 26.5 28.6 41.0 46.4 45.1 46.2 38.8 46.3 45.1 40.1 38.9 2003 43.9 46.9 48.3 29.8 35.3 34.9 37.5 37.1 35.9 35.9 25.0 28.2 2004 39.9 33.5 26.0 26.6 24.1 36.5 32.4 18.7 25.1 22.5 34.8 27.0 2005 20.8 31.7 23.3 19.2 22.7 20.3 20.8 16.6 38.0 49.2 24.8 30.5 2006 29.4 24.1 25.2 20.4 18.6 17.2 17.3 18.1 16.4 16.9 22.0 22.6 2007 22.2 23.1 25.1 24.0 24.1

  10. Percent of Industrial Natural Gas Deliveries in Pennsylvania Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 17.0 16.4 11.3 10.2 7.7 5.1 7.3 7.5 8.2 8.8 7.3 8.4 2002 8.8 8.3 7.0 5.9 5.7 5.5 4.8 5.0 7.2 7.5 8.1 11.4 2003 8.5 8.5 8.8 7.3 5.7 5.4 5.2 5.0 5.2 5.5 5.9 6.5 2004 7.7 8.1 7.3 6.8 5.3 4.8 4.8 5.1 5.2 4.7 6.5 8.3 2005 8.8 8.4 8.2 7.0 6.1 5.5 5.9 7.1 5.2 5.2 6.7 8.2 2006 8.2 7.3 7.1 5.3 4.8 4.2 4.1 4.1 6.2 4.2 4.6 5.4 2007 6.7 8.5 8.3 5.9 5.6 3.7 3.3 3.2 4.1 3.1 4.5 6.6 2008 7.7 7.3 7.3 6.9 5.7 4.8 4.4 4.3 3.8 3.9

  11. Percent of Industrial Natural Gas Deliveries in South Carolina Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 91.8 86.4 82.7 82.0 77.6 80.8 80.2 80.2 80.3 79.8 82.4 84.4 2002 89.9 87.6 85.4 88.3 90.4 87.4 90.5 84.4 90.3 90.3 84.3 82.9 2003 79.4 79.6 75.8 79.3 81.8 81.7 78.9 77.3 78.4 77.0 76.5 75.9 2004 76.9 75.6 77.0 79.2 79.0 78.2 78.5 79.0 78.6 78.3 77.2 76.4 2005 78.2 78.8 78.0 77.4 78.1 78.2 78.8 78.7 73.2 76.4 67.9 81.3 2006 80.1 78.6 74.0 80.2 71.2 75.3 75.9 77.2 70.6 74.8 48.6 44.6 2007 48.9 48.4 47.5 46.1 47.5

  12. Percent of Commercial Natural Gas Deliveries in West Virginia Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 68.6 69.0 65.3 63.9 55.0 45.3 39.8 39.5 40.5 49.5 58.6 71.5 1990 72.4 67.8 64.6 60.4 53.8 41.6 34.0 37.7 34.7 38.3 56.1 61.2 1991 64.6 65.8 65.4 54.5 42.1 34.1 31.0 33.9 36.5 45.2 55.6 58.0 1992 65.0 65.9 59.9 63.0 54.5 39.3 35.8 33.6 33.4 48.1 56.8 58.9 1993 60.7 61.3 61.7 60.2 47.5 33.6 30.3 30.6 33.0 46.8 54.9 60.1 1994 67.4 65.2 61.9 58.3 47.8 39.6 29.5 34.3 34.2 41.3 47.5 55.7 1995 55.5 59.5 56.1 50.6 42.2

  13. Percent of Industrial Natural Gas Deliveries in West Virginia Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 11.2 6.1 6.1 8.6 8.2 7.3 7.7 8.9 5.9 60.8 7.0 62.1 2002 12.1 12.6 11.7 15.0 12.6 12.1 14.7 13.0 16.1 10.7 13.1 10.4 2003 14.3 12.6 20.3 13.9 14.0 14.7 13.6 13.5 14.6 12.9 14.1 10.9 2004 10.7 10.5 11.4 11.5 19.8 15.0 15.7 15.3 14.3 14.8 14.7 12.8 2005 11.4 12.8 12.5 13.7 17.4 21.1 23.5 20.4 22.1 23.0 20.7 18.5 2006 16.3 14.8 17.3 18.6 16.9 20.3 15.7 16.4 19.0 16.7 16.4 16.7 2007 15.2 13.4 15.9 16.3 17.8 18.5 18.5

  14. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-02-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. Thermogravimetric analysis (TGA) was carried out on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} to investigate oxygen deficiency ({delta}) of the sample. The TGA was performed in a controlled atmosphere using oxygen, argon, carbon monoxide and carbon dioxide with adjustable gas flow rates. In this experiment, the weight loss and gain of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} was directly measured by TGA. The weight change of the sample was evaluated at between 600 and 1250 C in air or 1000 C as a function of oxygen partial pressure. The oxygen deficiencies calculated from TGA data as a function of oxygen activity and temperature will be estimated and compared with that from neutron diffraction measurement in air. The LSFT and LSFT/CGO membranes were fabricated from the powder obtained from Praxair Specialty Ceramics. The sintered membranes were subjected to microstructure analysis and hardness analysis. The LSFT membrane is composed of fine grains with two kinds of grain morphology. The grain size distribution was characterized using image analysis. In LSFT/CGO membrane a lot of grain pullout was observed from the less dense, porous phase. The hardness of the LSFT and dual phase membranes were studied at various loads. The hardness values obtained from the cross section of the membranes were also compared to that of the values obtained from the surface. An electrochemical cell has been designed and built for measurements of the Seebeck coefficient as a function of temperature and pressure. Measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} as a function of temperature an oxygen partial pressure are reported. Further analysis of the dilatometry data obtained previously is presented. A series of isotope transients

  15. Fact #720: March 26, 2012 Eleven Percent of New Light Trucks...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: March 26, 2012 Eleven Percent of New Light Trucks Sold have Gasoline Direct Injection Fact 720: March 26, 2012 Eleven Percent of New Light Trucks Sold have Gasoline Direct Injection ...

  16. Recovery Act Exceeds Major Cleanup Milestone, DOE Complex Now 74 Percent

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Remediated | Department of Energy Recovery Act Exceeds Major Cleanup Milestone, DOE Complex Now 74 Percent Remediated Recovery Act Exceeds Major Cleanup Milestone, DOE Complex Now 74 Percent Remediated The Office of Environmental Management's (EM) American Recovery and Reinvestment Act Program recently achieved 74 percent footprint reduction, exceeding the originally established goal of 40 percent. EM has reduced its pre-Recovery Act footprint of 931 square miles, established in 2009, by 688

  17. Waste Isolation Pilot Plant Contractor Receives 86 Percent of Available Fee

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Plant Contractor Receives 86 Percent of Available Fee Waste Isolation Pilot Plant Contractor Receives 86 Percent of Available Fee April 27, 2016 - 12:20pm Addthis Nuclear Waste Partnership received about 86 percent of the available fee for the performance period as the Waste Isolation Pilot Plant management and operations contractor. Nuclear Waste Partnership received about 86 percent of the available fee for the performance period as the Waste Isolation Pilot Plant

  18. Near Zero Emissions at 50 Percent Thermal Efficiency

    SciTech Connect (OSTI)

    None, None

    2012-12-31

    Detroit Diesel Corporation (DDC) has successfully completed a 10 year DOE sponsored heavy-duty truck engine program, hereafter referred to as the NZ-50 program. This program was split into two major phases. The first phase was called Near-Zero Emission at 50 Percent Thermal Efficiency, and was completed in 2007. The second phase was initiated in 2006, and this phase was named Advancements in Engine Combustion Systems to Enable High-Efficiency Clean Combustion for Heavy-Duty Engines. This phase was completed in September, 2010. The key objectives of the NZ-50 program for this first phase were to: Quantify thermal efficiency degradation associated with reduction of engine-out NOx emissions to the 2007 regulated level of ~1.1 g/hp-hr. Implement an integrated analytical/experimental development plan for improving subsystem and component capabilities in support of emerging engine technologies for emissions and thermal efficiency goals of the program. Test prototype subsystem hardware featuring technology enhancements and demonstrate effective application on a multi-cylinder, production feasible heavy-duty engine test-bed. Optimize subsystem components and engine controls (calibration) to demonstrate thermal efficiency that is in compliance with the DOE 2005 Joule milestone, meaning greater than 45% thermal efficiency at 2007 emission levels. Develop technology roadmap for meeting emission regulations of 2010 and beyond while mitigating the associated degradation in engine fuel consumption. Ultimately, develop technical prime-path for meeting the overall goal of the NZ-50 program, i.e., 50% thermal efficiency at 2010 regulated emissions. These objectives were successfully met during the course of the NZ-50 program. The most noteworthy achievements in this program are summarized as follows: Demonstrated technologies through advanced integrated experiments and analysis to achieve the technical objectives of the NZ-50 program with 50.2% equivalent thermal efficiency under

  19. EECBG 11-002 Clarification of Ten Percent Limitation on Use of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency and Conservation Block Grant Program (EECBG), ten percent ... Guidance For Energy Efficiency And Conservation Block Grant Grantees On Financing Programs ...

  20. Artificial oxygen transport protein

    DOE Patents [OSTI]

    Dutton, P. Leslie

    2014-09-30

    This invention provides heme-containing peptides capable of binding molecular oxygen at room temperature. These compounds may be useful in the absorption of molecular oxygen from molecular oxygen-containing atmospheres. Also included in the invention are methods for treating an oxygen transport deficiency in a mammal.

  1. Solid state oxygen sensor

    DOE Patents [OSTI]

    Garzon, F.H.; Chung, B.W.; Raistrick, I.D.; Brosha, E.L.

    1996-08-06

    Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer. 4 figs.

  2. Solid state oxygen sensor

    DOE Patents [OSTI]

    Garzon, Fernando H.; Chung, Brandon W.; Raistrick, Ian D.; Brosha, Eric L.

    1996-01-01

    Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer.

  3. Fact #727: May 14, 2012 Nearly Twenty Percent of Households Own Three or

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Vehicles | Department of Energy 7: May 14, 2012 Nearly Twenty Percent of Households Own Three or More Vehicles Fact #727: May 14, 2012 Nearly Twenty Percent of Households Own Three or More Vehicles Household vehicle ownership has changed over the last six decades. In 1960, over twenty percent of households did not own a vehicle, but by 2010, that number fell to less than 10%. The number of households with three or more vehicles grew from 2% in 1960 to nearly 20% in 2010. Before 1990,

  4. Fact #924: May 9, 1916 Twenty Percent of New Cars in 2015 Had Turbochargers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Dataset | Department of Energy 4: May 9, 1916 Twenty Percent of New Cars in 2015 Had Turbochargers - Dataset Fact #924: May 9, 1916 Twenty Percent of New Cars in 2015 Had Turbochargers - Dataset Excel file and dataset for Twenty Percent of New Cars in 2015 Had Turbochargers fotw#924_web.xlsx (19.24 KB) More Documents & Publications Fact #923: May 2, 2016 Cylinder Deactivation was Used in More than a Quarter of New Light Trucks Produced in 2015 - Dataset Fact #869: April 20, 2015

  5. Solid state oxygen sensor

    DOE Patents [OSTI]

    Garzon, Fernando H.; Brosha, Eric L.

    1997-01-01

    A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures.

  6. Experiments on oxygen desorption from surface warm seawater under open-cycle ocean thermal energy conversion

    SciTech Connect (OSTI)

    Pesaran, A.A. )

    1992-11-01

    This paper presents the results of scoping deaeration experiments conducted with warm surface seawater under open-cycle ocean thermal energy conversion (OC-OTEC) conditions. Concentrations of dissolved oxygen in seawater at three locations (in the supply water, water leaving the predeaerator, and discharge water from an evaporator) were measured and used to estimate oxygen desorption levels. The results suggest that 7 percent to 60 percent of the dissolved oxygen in the supply water was desorbed from seawater in the predeaerator for pressures ranging from 35 to 9 kPa. Bubble injection in the upcomer increased the oxygen desorption rate by 20 percent to 60 percent. The data also indicated that at typical OC-OTEC evaporator pressures, when flash evaporation in the evaporator occurred, 75 percent to 95 percent of the dissolved oxygen was desorbed overall from the warm seawater. The results were used to find the impact of a single-stage predeaeration scheme on the power to remove noncondensable gases in an OC-OTEC plant.

  7. If I generate 20 percent of my national electricity from wind...

    Open Energy Info (EERE)

    If I generate 20 percent of my national electricity from wind and solar - what does it do to my GDP and Trade Balance ? Home I think that the economics of fossil fuesl are well...

  8. Impacts of Increasing Natural Gas Fueled CHP from 20 to 35 Percent...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impacts of Increasing Natural Gas Fueled CHP from 20 to 35 Percent of Total Electricity Production in Texas, April 2011 Impacts of Increasing Natural Gas Fueled CHP from 20 to 35 ...

  9. EECBG 11-002 Clarification of Ten Percent Limitation on Use of Funds for Administrative Expenses

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Energy Efficiency and Conservation Block Grant Program (EECBG), ten percent limitation, administrative expenses, the Energy Independence and Security Act of 2007.

  10. Fact #924: May 9, 1916 Twenty Percent of New Cars in 2015 Had...

    Broader source: Energy.gov (indexed) [DOE]

    Twenty Percent of New Cars in 2015 Had Turbochargers File fotw924web.xlsx More Documents & Publications Fact 923: May 2, 2016 Cylinder Deactivation was Used in More than a ...

  11. Evaluation Prompts ENERGY STAR Program to Replace Web Tool, Saving 90 Percent of Annual Costs

    Office of Energy Efficiency and Renewable Energy (EERE)

    This document, from the U.S. Environmental Protection Agency's ENERGY STAR Residential Program, is part of the Case Study Series, highlighting how "Evaluation Prompts ENERGY STAR Program to Replace Web Tool, Saving 90 Percent of Annual Costs."

  12. EECBG 11-002 Clarification of Ten Percent Limitation on Use of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EECBG PROGRAM NOTICE 11-002 EFFECTIVE DATE: July 28, 2011 SUBJECT: CLARIFICATION OF TEN PERCENT LIMATION ON USE OF FUNDS FOR ADMINISTRATIVE EXPENSES PURPOSE To provide guidance to...

  13. NREL Study Shows 20 Percent Wind is Possible by 2024 - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Study Shows 20 Percent Wind is Possible by 2024 Analysis Shows Transmission Upgrades, Offshore Wind, and Operational Changes Needed to Incorporate 20 to 30 Percent Wind January 20, 2010 Today, the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) released the Eastern Wind Integration and Transmission Study (EWITS). This unprecedented two-and-a-half year technical study of future high-penetration wind scenarios was designed to analyze the economic, operational,

  14. NREL Study: Hybrid Delivery Vans Show Nearly 20 Percent Higher Fuel Economy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - News Releases | NREL Study: Hybrid Delivery Vans Show Nearly 20 Percent Higher Fuel Economy September 28, 2012 The U.S. Department of Energy's (DOE)'s National Renewable Energy Laboratory (NREL) recently completed a performance evaluation report that showed significant fuel economy benefits of hybrid electric delivery vans compared to similar conventional vans. "During the on-road portion of our study, the hybrid vans demonstrated a 13 to 20 percent higher fuel economy than the

  15. Impacts of Increasing Natural Gas Fueled CHP from 20 to 35 Percent of Total

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Production in Texas, April 2011 | Department of Energy Impacts of Increasing Natural Gas Fueled CHP from 20 to 35 Percent of Total Electricity Production in Texas, April 2011 Impacts of Increasing Natural Gas Fueled CHP from 20 to 35 Percent of Total Electricity Production in Texas, April 2011 This report is an examination of the possible impacts, implications, and practicality of increasing the amount of electrical energy produced from combined heat and power (CHP) facilities

  16. Oxygen partial pressure sensor

    DOE Patents [OSTI]

    Dees, D.W.

    1994-09-06

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured. 1 fig.

  17. Oxygen partial pressure sensor

    DOE Patents [OSTI]

    Dees, Dennis W.

    1994-01-01

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured.

  18. Simulation studies of diesel engine performance with oxygen enriched air and water emulsified fuels

    SciTech Connect (OSTI)

    Assanis, D.N.; Baker, D. ); Sekar, R.R.; Siambekos, C.T.; Cole, R.L.; Marciniak, T.J. )

    1990-01-01

    A computer simulation code of a turbocharged, turbocompound diesel engine was modified to study the effects of using oxygen-enriched combustion air and water-emulsified diesel fuels. Oxygen levels of 21 percent to 40 percent by volume in the combustion air were studied. Water content in the fuel was varied from 0 percent to 50 percent mass. Simulation studies and a review and analysis of previous work in this area led to the following conclusions about expected engine performance and emissions: the power density of the engine is significantly increased by oxygen enrichment. Ignition delay and particulate emissions are reduced. Combustion temperatures and No{sub x} emissions are increased with oxygen enrichment but could be brought back to the base levels by introducing water in the fuel. The peak cylinder pressure which increases with the power output level might result in mechanical problems with engine components. Oxygen enrichment also provides an opportunity to use cheaper fuel such as No. 6 diesel fuel. Overall, the adverse effects of oxygen enrichment could be countered by the addition of water and it appears that an optimum combination of water content, oxygen level, and base diesel fuel quality may exist. This could yield improved performance and emissions characteristics compared to a state-of-the-art diesel engine. 9 refs., 8 figs.

  19. Integrated turbomachine oxygen plant

    SciTech Connect (OSTI)

    Anand, Ashok Kumar; DePuy, Richard Anthony; Muthaiah, Veerappan

    2014-06-17

    An integrated turbomachine oxygen plant includes a turbomachine and an air separation unit. One or more compressor pathways flow compressed air from a compressor through one or more of a combustor and a turbine expander to cool the combustor and/or the turbine expander. An air separation unit is operably connected to the one or more compressor pathways and is configured to separate the compressed air into oxygen and oxygen-depleted air. A method of air separation in an integrated turbomachine oxygen plant includes compressing a flow of air in a compressor of a turbomachine. The compressed flow of air is flowed through one or more of a combustor and a turbine expander of the turbomachine to cool the combustor and/or the turbine expander. The compressed flow of air is directed to an air separation unit and is separated into oxygen and oxygen-depleted air.

  20. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Carter, J. David; Wang, Xiaoping; Vaughey, John; Krumpelt, Michael

    2004-11-23

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  1. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David

    2005-07-12

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  2. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David

    2003-01-01

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  3. Light weight phosphate cements

    DOE Patents [OSTI]

    Wagh, Arun S.; Natarajan, Ramkumar,; Kahn, David

    2010-03-09

    A sealant having a specific gravity in the range of from about 0.7 to about 1.6 for heavy oil and/or coal bed methane fields is disclosed. The sealant has a binder including an oxide or hydroxide of Al or of Fe and a phosphoric acid solution. The binder may have MgO or an oxide of Fe and/or an acid phosphate. The binder is present from about 20 to about 50% by weight of the sealant with a lightweight additive present in the range of from about 1 to about 10% by weight of said sealant, a filler, and water sufficient to provide chemically bound water present in the range of from about 9 to about 36% by weight of the sealant when set. A porous ceramic is also disclosed.

  4. Generalized constructive tree weights

    SciTech Connect (OSTI)

    Rivasseau, Vincent E-mail: adrian.tanasa@ens-lyon.org; Tanasa, Adrian E-mail: adrian.tanasa@ens-lyon.org

    2014-04-15

    The Loop Vertex Expansion (LVE) is a quantum field theory (QFT) method which explicitly computes the Borel sum of Feynman perturbation series. This LVE relies in a crucial way on symmetric tree weights which define a measure on the set of spanning trees of any connected graph. In this paper we generalize this method by defining new tree weights. They depend on the choice of a partition of a set of vertices of the graph, and when the partition is non-trivial, they are no longer symmetric under permutation of vertices. Nevertheless we prove they have the required positivity property to lead to a convergent LVE; in fact we formulate this positivity property precisely for the first time. Our generalized tree weights are inspired by the Brydges-Battle-Federbush work on cluster expansions and could be particularly suited to the computation of connected functions in QFT. Several concrete examples are explicitly given.

  5. Solid state oxygen sensor

    DOE Patents [OSTI]

    Garzon, F.H.; Brosha, E.L.

    1997-12-09

    A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures. 6 figs.

  6. NREL Solar Cell Sets World Efficiency Record at 40.8 Percent - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL NREL Solar Cell Sets World Efficiency Record at 40.8 Percent August 13, 2008 Scientists at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) have set a world record in solar cell efficiency with a photovoltaic device that converts 40.8 percent of the light that hits it into electricity. This is the highest confirmed efficiency of any photovoltaic device to date. The inverted metamorphic triple-junction solar cell was designed, fabricated and

  7. NNSA hits 21 percent of CFC goal | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    | (NNSA) hits 21 percent of CFC goal Monday, October 27, 2014 - 5:14pm NNSA Blog As of today, NNSA has collected slightly more than 21 percent of its goal of $174,000 for this year's Combined Federal Campaign (CFC). With seven weeks remaining before the campaign closes on Dec. 15, 2014, everyone is encouraged to join those who have become a "Super Hero" and help push NNSA over its goal. Contributions can go to any of more than 20,000 tax-exempt organizations. Each individual can

  8. U.S. Parking Facilities Cut Energy Use by 90 Percent, Switch 270 Million

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Square Feet to Energy Efficient Lighting | Department of Energy Parking Facilities Cut Energy Use by 90 Percent, Switch 270 Million Square Feet to Energy Efficient Lighting U.S. Parking Facilities Cut Energy Use by 90 Percent, Switch 270 Million Square Feet to Energy Efficient Lighting April 16, 2014 - 10:55am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of the Energy Department's commitment to helping U.S. businesses save money by saving energy, the Department's Better

  9. Fact #763: January 21, 2013 Eighty-four Percent of Scrapped Tires Are

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recycled | Department of Energy 3: January 21, 2013 Eighty-four Percent of Scrapped Tires Are Recycled Fact #763: January 21, 2013 Eighty-four Percent of Scrapped Tires Are Recycled There were 263 million tires scrapped in 2009 (latest available data) which amounts to more than 4.7 million tons of waste. Fortunately, 84% of that waste was recycled. Most of the recycled tires were used to make fuel for industries such as pulp and paper mills, cement kilns, and electric utilities. Ground

  10. Fact #924: May 9, 1916 Twenty Percent of New Cars in 2015 Had Turbochargers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 4: May 9, 1916 Twenty Percent of New Cars in 2015 Had Turbochargers Fact #924: May 9, 1916 Twenty Percent of New Cars in 2015 Had Turbochargers SUBSCRIBE to the Fact of the Week Turbocharging is not a new technology, but has grown in new light vehicle market share over the last five years. In 2015, more than 20% of new cars and nearly 14% of new light trucks had turbocharged engines (turbos). Turbocharging, often paired with gasoline direct injection (GDI), has allowed

  11. EM's Oak Ridge Cleanup Contractor Earns 93 Percent of Available Fee |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Oak Ridge Cleanup Contractor Earns 93 Percent of Available Fee EM's Oak Ridge Cleanup Contractor Earns 93 Percent of Available Fee July 28, 2016 - 12:45pm Addthis UCOR’s K-27 Building demolition project, pictured here, is ahead of schedule with actual costs projected to be less than planned, according to OREM’s correspondence regarding the contractor’s fee determination. UCOR's K-27 Building demolition project, pictured here, is ahead of schedule with

  12. WPN 94-8: 40 Percent Waiver Provisions for Mobile Home Units

    Broader source: Energy.gov [DOE]

    This program notice provides clarifying guidance previously issued under Weatherization Program Notice 93-14 on mobile home units weatherized by states which adopt the approved 4.0 version of NEAT or other similar approved energy audits and receive a waiver of the 40 percent requirement from DOE.

  13. WPN 93-14: 40 Percent Waiver Provisions for Multifamily and Mobile Home Units

    Broader source: Energy.gov [DOE]

    This program notice provides guidance on multifamily and mobile home units weatherized by states, which adopt the approved 4.0 version of NEAT or other similar approved energy audits and receive a waiver of the 40 percent requirement from DOE.

  14. Percent of Commercial Natural Gas Deliveries in Hawaii Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 100 100 100 100 100 100 100 100 100 100 2000's 100 100 100 100 100 100 100 100 100 100 2010's

  15. Percent of Commercial Natural Gas Deliveries in Vermont Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 100 100 100 100 100 100 100 100 100 100 2000's 100 100 100 100 100 100 100 100 100 100 2010's 100 100 100 100 100 NA

  16. Percent of Industrial Natural Gas Deliveries in Hawaii Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 100 100 100 2000's 100 100 100 100 100 100 100 100 100 100 2010's

  17. EM’s West Valley Cleanup Contactor Receives 85 Percent of Available Fee Award

    Broader source: Energy.gov [DOE]

    EST VALLEY, N.Y. – EM announced that the contractor at its West Valley Demonstration Project (WVDP) cleanup earned $250,000, or nearly 85 percent of the available fee award of $295,495 for the six-month period ending Feb. 29 this year.

  18. Figure 5. Production Schedules at Two Development Rates for the 5 Percent

    U.S. Energy Information Administration (EIA) Indexed Site

    Probability of Recovering 16.0 Billion Barrels 5. Production Schedules at Two Development Rates for the 5 Percent Probability of Recovering 16.0 Billion Barrels of Technically Recoverable Oil from the ANWR Coastal Plain of Alaska fig5.jpg (3770

  19. THE ATOMIC WEIGHTS COMMISSION AND ISOTOPIC ABUNDANCE RATIO DETERMINATIONS.

    SciTech Connect (OSTI)

    HOLDEN, N.E.

    2005-08-07

    Following Thomson's discovery of stable isotopes in non-radioactive chemical elements, the derivation of atomic weight values from mass spectrometric measurements of isotopic abundance ratios moved very slowly. Forty years later, only 3 1/2 % of the recommended values were based on mass spectrometric measurements and only 38% in the first half century. It might be noted that two chemical elements (tellurium and mercury) are still based on chemical measurements, where the atomic weight value calculated from the relative isotopic abundance measurement either agrees with the value from the chemical measurement or the atomic weight value calculated from the relative isotopic abundance measurement falls within the uncertainty of the chemical measurement of the atomic weight. Of the 19 chemical elements, whose atomic weight is based on non-corrected relative isotopic abundance measurements, five of these are two isotope systems (indium, iridium, lanthanum, lutetium and tantalum) and one is a three-isotope system (oxygen).

  20. High Selectivity Oxygen Delignification

    SciTech Connect (OSTI)

    Lucian A. Lucia

    2005-11-15

    Project Objective: The objectives of this project are as follows: (1) Examine the physical and chemical characteristics of a partner mill pre- and post-oxygen delignified pulp and compare them to lab generated oxygen delignified pulps; (2) Apply the chemical selectivity enhancement system to the partner pre-oxygen delignified pulps under mill conditions (with and without any predetermined amounts of carryover) to determine how efficiently viscosity is preserved, how well selectivity is enhanced, if strength is improved, measure any yield differences and/or bleachability differences; and (3) Initiate a mill scale oxygen delignification run using the selectivity enhancement agent, collect the mill data, analyze it, and propose any future plans for implementation.

  1. Percent of Industrial Natural Gas Deliveries in Alaska Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 97.8 99.4 99.1 2000's 99.8 96.2 90.2 72.2 66.9 68.6 63.1 70.0 78.2 72.5 2010's 70.5 60.8 100.0 9

  2. Percent of Industrial Natural Gas Deliveries in Vermont Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 100.0 100.0 76.6 2000's 83.8 75.4 74.7 78.8 78.3 81.7 78.4 78.0 79.6 77.9 2010's 77.1 80.9

  3. Country/Continent Total Percent of U.S. Total Africa/Europe

    U.S. Energy Information Administration (EIA) Indexed Site

    peak kilowatts Country/Continent Total Percent of U.S. Total Africa/Europe 53,898 29% Asia/Australia 107,460 59% South/Central America 11,692 6% Canada 4,378 2% Mexico 5,556 3% Total 182,984 100% Table 8. Destination of photovoltaic module export shipments, 2014 Source: U.S. Energy Information Administration, Form EIA-63B, 'Annual Photovoltaic Cell/Module Shipments Report.'

  4. Weighted Running Jobs by Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weighted Running Jobs by Group Weighted Running Jobs by Group Daily Graph: Weekly Graph: Monthly Graph: Yearly Graph: 2 Year Graph: Last edited: 2016-04-29 11:34:54

  5. Optical oxygen concentration monitor

    DOE Patents [OSTI]

    Kebabian, P.

    1997-07-22

    A system for measuring and monitoring the concentration of oxygen uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to one of oxygen`s A-band absorption lines. In a preferred embodiment, the argon line is split into sets of components of shorter and longer wavelengths by a magnetic field of approximately 2,000 Gauss that is parallel to the light propagation from the lamp. The longer wavelength components are centered on an absorption line of oxygen and thus readily absorbed, and the shorter wavelength components are moved away from that line and minimally absorbed. A polarization modulator alternately selects the set of the longer wavelength, or upshifted, components or the set of the shorter wavelength, or downshifted, components and passes the selected set to an environment of interest. After transmission over a path through that environment, the transmitted optical flux of the argon line varies as a result of the differential absorption. The system then determines the concentration of oxygen in the environment based on the changes in the transmitted optical flux between the two sets of components. In alternative embodiments modulation is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to either the emitting plasma of the lamp or the environment of interest. 4 figs.

  6. Quantitative analysis of oxygen content in copper oxide films using ultra microbalance

    SciTech Connect (OSTI)

    Shu, Yonghua; Wang, Lianhong; Liu, Chong; Fan, Jing

    2014-12-09

    Copper oxide films were prepared on quartz substrates through electron beam physical vapor deposition in a vacuum chamber, and the films were observed using X-ray diffraction (XRD) and scanning electron microscope (SEM). The oxygen content of the films were analyzed using an ultra microbalance. Results indicated that when the substrate was heated to 600°C and the oxygen flow rate was 5 sccm, the film was composed of 47% Cu and 53% Cu2O (mass percent), and the oxidation ratio of copper was 25%. After the deposition process at the same condition, i.e. the substrate at temperature of 600°C and blowed by oxygen flowrate of 5 sccm, then in-stu annealed at 600°C in low oxygen pressure of 10 Pa for 30 minutes, the film composition became 22% Cu2O and 78% CuO (mass percent), and the oxidation ratio of copper greatly increased to about 88%.

  7. Percent of Commercial Natural Gas Deliveries in Alabama Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 79.6 82.7 80.7 80.8 80.3 80.1 81.1 64.7 80.5 70.5 2000's 81.4 82.5 80.5 81.8 82.1 80.5 80.2 79.8 80.2 78.8 2010's 79.3 78.9 76.2 76.6 78.4 77.6

  8. Percent of Commercial Natural Gas Deliveries in Alaska Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 100.0 100.0 100.0 100.0 100.0 79.9 63.4 54.5 49.6 55.4 2000's 59.3 60.5 60.0 59.1 55.5 51.2 56.3 76.0 74.9 85.3 2010's 87.7 88.6 94.9 94.5 94.5 98.1

  9. Percent of Commercial Natural Gas Deliveries in Arkansas Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 92.3 91.5 90.7 91.8 95.1 96.0 95.0 94.2 90.8 89.3 2000's 89.9 87.0 80.8 81.9 80.3 74.1 71.7 70.4 64.5 59.4 2010's 55.6 51.5 40.2 43.7 45.5 42.5

  10. Percent of Commercial Natural Gas Deliveries in Colorado Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 97.3 96.0 95.5 95.5 94.8 94.2 93.2 92.8 94.3 97.5 2000's 97.4 95.6 95.3 95.3 94.7 95.2 95.4 95.7 95.2 94.8 2010's 94.6 93.8 92.2 94.7 94.5 NA

  11. Percent of Commercial Natural Gas Deliveries in Delaware Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 98.8 2000's 98.0 98.3 82.8 82.8 81.6 83.3 77.5 74.8 70.6 53.5 2010's 49.8 53.4 43.7 45.0 46.2 45.7

  12. Percent of Commercial Natural Gas Deliveries in Florida Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 97.6 97.4 97.7 97.8 97.9 97.6 97.1 97.5 96.6 94.5 2000's 67.4 56.6 42.3 42.3 41.2 100.0 100.0 100.0 100.0 100.0 2010's 100.0 38.5 37.0 33.3 32.3 NA

  13. Percent of Commercial Natural Gas Deliveries in Georgia Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 88.4 87.5 88.1 90.5 92.0 93.5 94.1 89.1 83.6 61.0 2000's 17.1 20.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2010's

  14. Percent of Commercial Natural Gas Deliveries in Idaho Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 87.9 87.6 85.7 86.8 85.9 86.0 86.6 86.1 86.4 85.9 2000's 86.3 86.3 85.9 85.2 85.7 85.6 85.8 84.8 86.0 83.7 2010's 82.0 80.8 77.0 77.4 76.6 74.6

  15. Percent of Commercial Natural Gas Deliveries in Illinois Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 57.6 59.0 57.7 55.3 52.8 50.4 53.9 54.3 47.4 42.8 2000's 41.9 41.1 40.9 43.1 41.2 41.5 39.7 42.2 43.3 41.3 2010's 42.3 38.1 36.8 38.4 38.5 36.1

  16. Percent of Commercial Natural Gas Deliveries in Indiana Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 95.7 94.2 96.8 95.2 92.3 87.8 96.3 89.9 79.2 78.3 2000's 78.0 77.1 78.4 79.8 78.2 82.1 79.4 78.1 77.9 73.9 2010's 72.5 70.2 67.4 68.2 67.6 67.0

  17. Percent of Commercial Natural Gas Deliveries in Iowa Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 97.6 97.7 95.7 94.7 90.4 89.3 87.7 88.2 85.8 83.4 2000's 81.1 82.0 81.4 78.0 78.3 78.3 77.3 77.7 75.8 72.5 2010's 72.0 72.1 72.2 72.5 74.4 NA

  18. Percent of Commercial Natural Gas Deliveries in Kansas Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 91.6 89.2 84.4 82.6 78.4 73.6 71.7 70.3 69.5 66.7 2000's 57.3 63.1 58.9 59.1 57.3 68.5 65.4 64.8 64.9 65.7 2010's 66.0 62.6 59.8 61.4 59.3 57.0

  19. Percent of Commercial Natural Gas Deliveries in Kentucky Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 95.0 94.0 93.1 92.6 91.4 89.2 90.8 90.0 87.4 87.9 2000's 85.6 81.8 78.9 79.2 78.7 79.7 81.3 81.7 82.0 80.1 2010's 80.5 79.2 77.4 78.8 80.5 79.2

  20. Percent of Commercial Natural Gas Deliveries in Maine Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2000's 100.0 100.0 61.6 70.2 64.6 59.9 48.7 46.2 45.0 51.0 2010's 45.0 45.8 42.1 42.6 49.1 51.5

  1. Percent of Commercial Natural Gas Deliveries in Maryland Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 95.6 96.6 96.0 96.6 97.1 96.9 91.9 67.1 36.6 33.4 2000's 39.1 32.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2010's 100.0 27.3 24.7 26.2 27.3 27.4

  2. Percent of Commercial Natural Gas Deliveries in Michigan Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 69.9 68.3 68.8 68.6 65.7 66.4 66.9 63.7 59.7 56.6 2000's 58.8 63.5 62.9 64.2 65.6 100.0 100.0 100.0 100.0 100.0 2010's 100.0 54.1 51.0 53.2 55.2 55.4

  3. Percent of Commercial Natural Gas Deliveries in Missouri Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 86.0 85.9 85.5 84.6 83.3 83.3 82.2 79.9 78.3 78.6 2000's 80.0 80.8 80.0 80.5 77.4 77.1 76.4 76.9 77.5 76.7 2010's 76.5 73.1 69.2 72.3 70.5 71.1

  4. Percent of Commercial Natural Gas Deliveries in Montana Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 97.9 97.5 95.4 93.2 91.8 91.6 91.5 91.5 77.2 79.8 2000's 73.5 76.1 75.1 68.8 76.0 77.4 76.9 78.5 79.6 49.2 2010's 54.6 53.3 52.8 53.3 53.5 NA

  5. Percent of Commercial Natural Gas Deliveries in Nebraska Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 93.9 91.8 88.2 91.0 80.2 77.1 70.0 74.2 72.5 66.6 2000's 61.1 63.7 63.7 65.4 63.5 64.5 65.1 63.9 57.5 61.3 2010's 60.6 60.6 55.8 57.3 56.4 56.1

  6. Percent of Commercial Natural Gas Deliveries in Nevada Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 97.7 90.8 88.3 92.7 82.5 76.5 74.2 71.3 70.2 60.9 2000's 54.6 73.9 78.5 67.2 67.9 68.1 68.2 67.0 67.0 65.1 2010's 65.4 64.3 61.4 60.1 58.4 57.9

  7. Percent of Commercial Natural Gas Deliveries in New Jersey Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 94.8 93.9 92.4 91.6 91.6 86.3 73.3 56.2 60.5 56.0 2000's 56.9 57.5 49.1 50.7 48.1 51.6 46.9 44.2 42.1 38.3 2010's 36.1 32.6 30.8 35.2 32.0 NA

  8. Percent of Commercial Natural Gas Deliveries in New Mexico Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 83.1 77.7 70.0 62.5 62.4 60.3 64.7 71.0 67.0 63.0 2000's 62.2 67.3 72.5 70.3 69.0 69.0 65.0 64.2 62.6 58.2 2010's 60.7 59.8 57.0 57.0 54.4 NA

  9. Percent of Commercial Natural Gas Deliveries in New York Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 83.6 80.7 77.7 77.2 79.6 76.2 77.0 64.7 53.1 57.2 2000's 40.1 45.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2010's

  10. Percent of Commercial Natural Gas Deliveries in North Dakota Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 74.8 70.0 68.9 72.7 79.6 80.9 88.0 88.9 83.8 88.2 2000's 89.5 90.1 91.6 94.4 92.6 92.9 93.0 93.3 93.4 92.9 2010's 92.6 92.8 91.9 92.6 93.1 93.0

  11. Percent of Commercial Natural Gas Deliveries in Ohio Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 87.3 86.7 85.6 84.6 81.5 76.3 71.8 65.5 55.0 46.4 2000's 45.2 41.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2010's

  12. Percent of Commercial Natural Gas Deliveries in Oklahoma Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 92.1 91.3 88.5 90.0 88.5 85.2 84.5 81.8 73.2 71.6 2000's 72.4 74.0 71.0 71.3 61.6 53.1 49.9 48.1 51.3 46.4 2010's 47.5 46.3 41.1 44.6 45.3 44.1

  13. Percent of Commercial Natural Gas Deliveries in Oregon Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 97.7 97.9 97.8 97.9 98.1 98.1 98.3 98.5 99.0 98.8 2000's 98.8 99.3 98.7 98.4 98.6 98.6 98.5 98.5 98.5 98.4 2010's 97.4 97.4 96.9 96.6 96.0 NA

  14. Percent of Commercial Natural Gas Deliveries in Rhode Island Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 95.9 100.0 100.0 100.0 100.0 100.0 91.8 80.5 59.2 53.2 2000's 53.2 58.0 65.9 72.1 73.3 74.3 73.1 66.5 66.2 68.0 2010's 61.2 56.9 55.4 54.5 52.2 53.9

  15. Percent of Commercial Natural Gas Deliveries in South Dakota Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 86.4 81.8 82.4 83.9 89.1 86.9 82.7 83.3 84.2 81.2 2000's 83.1 84.2 83.1 82.3 82.3 83.5 82.1 81.2 83.0 82.2 2010's 80.9 81.7 81.6 81.6 81.6 81.0

  16. Percent of Commercial Natural Gas Deliveries in Texas Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 89.8 89.3 79.7 83.8 82.4 68.6 83.5 61.4 81.0 77.3 2000's 79.0 88.4 71.8 73.7 74.6 79.5 82.0 81.9 82.5 78.3 2010's 76.4 73.4 72.4 72.8 72.6

  17. Percent of Commercial Natural Gas Deliveries in Utah Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 100.0 100.0 100.0 100.0 83.3 81.8 81.9 83.2 82.5 82.9 2000's 83.9 84.4 83.7 84.4 84.4 86.8 86.8 86.9 86.4 85.6 2010's 86.2 86.7 83.9 81.8 78.3 77.0

  18. Percent of Commercial Natural Gas Deliveries in Virginia Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 93.2 93.6 90.7 88.8 86.7 84.1 85.3 77.9 72.1 67.4 2000's 66.4 65.8 61.4 65.7 63.6 100.0 100.0 100.0 100.0 100.0 2010's 100.0 54.1 52.1 54.6 55.8 54.2

  19. Percent of Commercial Natural Gas Deliveries in Wyoming Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 99.8 99.0 98.0 98.0 96.1 93.6 85.9 84.1 90.5 89.1 2000's 90.0 86.5 48.7 51.7 51.4 49.3 47.8 49.3 65.6 65.5 2010's 65.3 64.0 62.6 62.9 60.8 NA

  20. Percent of Industrial Natural Gas Deliveries in Alabama Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 24.6 23.3 21.8 2000's 22.4 22.2 21.6 21.2 20.8 23.6 23.5 24.0 27.2 27.9 2010's 23.7 23.5 22.1 23.6 23.3 23.3

  1. Percent of Industrial Natural Gas Deliveries in Arizona Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 25.1 33.4 36.2 2000's 26.8 46.4 41.2 40.0 55.1 43.6 37.9 31.3 29.6 29.1 2010's 25.5 24.2 21.4 16.6 12.8 NA

  2. Percent of Industrial Natural Gas Deliveries in Arkansas Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 10.7 9.5 10.1 2000's 8.3 6.0 5.0 5.4 5.9 5.2 4.8 4.2 3.9 3.7 2010's 2.8 2.1 1.8 1.7 1.8 1.7

  3. Percent of Industrial Natural Gas Deliveries in Colorado Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 7.3 7.6 7.1 2000's 1.8 0.7 1.2 0.9 0.8 0.6 0.6 0.5 0.6 0.5 2010's 5.2 7.5 6.8 7.2 7.7 NA

  4. Percent of Industrial Natural Gas Deliveries in Delaware Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 31.0 22.4 16.6 2000's 10.6 16.1 13.4 15.6 11.7 12.2 9.0 9.8 5.8 2.1 2010's 5.3 1.6 0.3 0.3 0.3 NA

  5. Percent of Industrial Natural Gas Deliveries in Florida Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 10.5 7.3 5.0 2000's 5.2 3.8 3.8 3.9 3.7 3.4 3.1 3.1 3.0 3.2 2010's 3.0 3.0 2.7 3.2 3.5 NA

  6. Percent of Industrial Natural Gas Deliveries in Georgia Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 26.7 25.3 23.9 2000's 20.2 19.9 19.2 15.9 16.4 17.1 17.0 17.2 16.1 17.6 2010's 18.2 18.2 20.0 18.9 20.0 NA

  7. Percent of Industrial Natural Gas Deliveries in Idaho Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.0 2.5 2.7 2000's 2.7 2.2 2.0 2.1 2.4 2.3 2.1 2.0 1.9 1.7 2010's 1.8 2.0 1.9 2.5 2.8 2.4

  8. Percent of Industrial Natural Gas Deliveries in Illinois Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 11.5 9.3 9.1 2000's 9.0 9.9 9.3 9.9 9.0 9.5 8.7 9.5 9.4 7.7 2010's 7.4 6.3 6.0 6.8 6.4 5.9

  9. Percent of Industrial Natural Gas Deliveries in Indiana Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 16.0 9.3 5.8 2000's 10.3 7.7 8.6 9.0 8.3 7.9 7.2 7.4 6.7 7.0 2010's 5.6 3.5 1.9 2.0 2.1 1.9

  10. Percent of Industrial Natural Gas Deliveries in Iowa Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 8.7 6.8 7.4 2000's 7.0 7.5 7.6 7.9 8.4 9.8 8.5 6.5 6.6 6.4 2010's 5.8 5.5 5.2 5.6 4.8 NA

  11. Percent of Industrial Natural Gas Deliveries in Kansas Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 9.2 9.9 10.1 2000's 10.4 9.3 10.8 7.9 6.9 6.3 7.3 5.9 7.8 6.7 2010's 7.0 9.5 9.7 9.3 8.3 NA

  12. Percent of Industrial Natural Gas Deliveries in Kentucky Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 19.2 17.8 17.5 2000's 19.0 18.7 17.7 18.8 16.9 16.9 15.8 16.6 17.5 18.1 2010's 17.9 17.6 17.8 18.3 17.2 16.0

  13. Percent of Industrial Natural Gas Deliveries in Maine Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 91.4 87.4 78.2 2000's 13.1 8.1 10.7 10.5 1.7 3.1 0.9 0.8 0.8 1.2 2010's 0.6 0.5 0.4 0.9 1.9

  14. Percent of Industrial Natural Gas Deliveries in Maryland Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 7.4 7.0 6.5 2000's 6.1 8.5 8.0 10.0 8.2 8.2 6.7 7.8 6.3 5.3 2010's 5.3 5.5 5.1 6.8 7.3

  15. Percent of Industrial Natural Gas Deliveries in Michigan Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 12.5 10.8 11.1 2000's 10.2 11.3 10.2 10.9 10.7 10.1 10.2 12.6 12.5 11.8 2010's 8.8 9.3 7.4 7.4 7.6 NA

  16. Percent of Industrial Natural Gas Deliveries in Missouri Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 21.5 18.2 18.5 2000's 16.8 16.5 16.0 14.8 13.8 14.2 13.2 12.8 13.9 13.2 2010's 13.1 13.4 12.5 13.9 14.0 12.3

  17. Percent of Industrial Natural Gas Deliveries in Montana Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3.1 1.5 1.7 2000's 1.9 2.2 2.1 1.8 1.6 1.8 0.7 0.8 1.0 1.1 2010's 1.5 1.3 1.0 1.2 1.4

  18. Percent of Industrial Natural Gas Deliveries in Nebraska Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 27.0 12.7 14.2 2000's 15.4 18.0 15.7 16.5 16.5 16.3 11.6 9.7 10.2 8.9 2010's 8.2 7.6 6.8 7.8 7.4 7.1

  19. Percent of Industrial Natural Gas Deliveries in Nevada Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 6.3 15.5 22.5 2000's 18.1 33.3 34.3 19.1 16.5 17.2 16.8 17.1 17.8 17.3 2010's 18.4 17.8 15.5 15.7 15.5 NA

  20. Percent of Industrial Natural Gas Deliveries in New Jersey Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 49.3 49.5 47.9 2000's 23.5 21.6 20.8 19.5 16.4 19.9 19.5 20.6 11.0 9.0 2010's 8.4 8.2 6.5 6.1 6.6 NA

  1. Percent of Industrial Natural Gas Deliveries in New Mexico Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 9.5 9.8 16.4 2000's 16.5 10.1 15.6 12.3 11.2 8.4 11.6 10.6 10.0 11.9 2010's 12.4 10.2 7.9 8.0 7.5 6.4

  2. Percent of Industrial Natural Gas Deliveries in New York Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 12.7 8.3 14.3 2000's 11.3 10.8 11.0 10.6 10.7 14.7 11.7 12.3 11.4 11.7 2010's 10.6 7.9 6.8 6.3 6.1

  3. Percent of Industrial Natural Gas Deliveries in North Dakota Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 18.5 14.6 14.9 2000's 13.9 9.8 9.2 45.9 51.1 27.5 42.3 48.1 46.2 34.8 2010's 29.7 37.4 34.7 37.9 34.7 39.6

  4. Percent of Industrial Natural Gas Deliveries in Ohio Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 5.7 4.3 4.1 2000's 5.3 6.5 4.0 3.9 3.5 3.6 3.0 2.7 2.7 2.8 2010's 2.1 2.0 1.6 2.2 2.0

  5. Percent of Industrial Natural Gas Deliveries in Oklahoma Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4.7 3.6 3.9 2000's 4.2 4.2 3.3 2.4 1.6 1.6 1.1 0.9 0.6 0.5 2010's 0.5 0.6 0.5 0.7 0.8 0.6

  6. Percent of Industrial Natural Gas Deliveries in Oregon Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 16.3 14.3 13.6 2000's 17.7 21.5 14.4 17.5 24.9 33.2 26.6 21.8 20.1 18.9 2010's 17.1 17.1 16.7 16.9 17.2 16

  7. Percent of Industrial Natural Gas Deliveries in Rhode Island Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 17.4 7.4 6.5 2000's 34.0 27.3 27.3 18.9 15.7 15.3 13.6 11.6 11.7 9.2 2010's 6.5 6.0 6.3 9.0 8.1 5.3

  8. Percent of Industrial Natural Gas Deliveries in South Dakota Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 24.1 35.6 37.0 2000's 41.9 42.1 19.4 25.5 28.2 30.2 33.6 17.8 16.9 14.4 2010's 10.4 4.7 4.3 5.2 4.6 4.1

  9. Percent of Industrial Natural Gas Deliveries in Texas Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 17.2 14.1 23.7 2000's 29.6 35.0 43.0 43.9 48.8 54.6 55.4 54.7 50.4 47.2 2010's 48.6 39.0 39.4 41.7 40.3 40.7

  10. Percent of Industrial Natural Gas Deliveries in Utah Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 8.9 8.6 9.5 2000's 10.0 10.4 13.6 13.6 19.8 19.5 20.1 14.1 12.7 12.2 2010's 12.1 12.7 11.0 11.1 10.5 8.6

  11. Percent of Industrial Natural Gas Deliveries in Virginia Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 13.0 12.8 12.1 2000's 17.6 17.3 15.3 17.3 16.0 17.1 13.9 14.1 17.3 15.8 2010's 15.3 13.6 10.9 10.3 11.1

  12. Method to produce alumina aerogels having porosities greater than 80 percent

    DOE Patents [OSTI]

    Poco, John F.; Hrubesh, Lawrence W.

    2003-09-16

    A two-step method for producing monolithic alumina aerogels having porosities of greater than 80 percent. Very strong, very low density alumina aerogel monoliths are prepared using the two-step sol-gel process. The method of preparing pure alumina aerogel modifies the prior known sol method by combining the use of substoichiometric water for hydrolysis, the use of acetic acid to control hydrolysis/condensation, and high temperature supercritical drying, all of which contribute to the formation of a polycrystalline aerogel microstructure. This structure provides exceptional mechanical properties of the alumina aerogel, as well as enhanced thermal resistance and high temperature stability.

  13. Percent of Industrial Natural Gas Deliveries in U.S. Total Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 18.1 16.1 18.8 2000's 19.8 20.8 22.7 22.1 23.6 24.0 23.4 22.2 20.4 18.8 2010's 18.0 16.3 16.2 16.6 15.9 14.7

  14. New Water Booster Pump System Reduces Energy Consumption by 80 Percent and Increases Reliability

    Office of Energy Efficiency and Renewable Energy (EERE)

    This case study outlines how General Motors (GM) developed a highly efficient pumping system for their Pontiac Operations Complex in Pontiac, Michigan. In short, GM was able to replace five original 60- to 100-hp pumps with three 15-hp pumps whose speed could be adjusted to meet plant requirements. As a result, the company reduced pumping system energy consumption by 80 percent (225,100 kWh per year), saving an annual $11,255 in pumping costs. With a capital investment of $44,966 in the energy efficiency portion of their new system, GM projected a simple payback of 4 years.

  15. Percent of Industrial Natural Gas Deliveries in Wyoming Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.5 2.0 2.9 2000's 2.6 2.5 2.9 1.8 2.1 3.7 3.5 3.0 3.2 3.1 2010's 1.1 1.0 0.9 1.2 1.3

  16. Optical oxygen concentration monitor

    DOE Patents [OSTI]

    Kebabian, Paul

    1997-01-01

    A system for measuring and monitoring the concentration of oxygen uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to one of oxygen's A-band absorption lines. In a preferred embodiment, the argon line is split into sets of components of shorter and longer wavelengths by a magnetic field of approximately 2000 Gauss that is parallel to the light propagation from the lamp. The longer wavelength components are centered on an absorption line of oxygen and thus readily absorbed, and the shorter wavelength components are moved away from that line and minimally absorbed. A polarization modulator alternately selects the set of the longer wavelength, or upshifted, components or the set of the shorter wavelength, or downshifted, components and passes the selected set to an environment of interest. After transmission over a path through that environment, the transmitted optical flux of the argon line varies as a result of the differential absorption. The system then determines the concentration of oxygen in the environment based on the changes in the transmitted optical flux between the two sets of components. In alternative embodiments modulation is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to either the emitting plasma of the lamp or the environment of interest.

  17. Percent of Industrial Natural Gas Deliveries in Hawaii Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 100 100 100 100 100 100 100 100 100 100 100 100 2002 100 100 100 100 100 100 100 100 100 100 100 100 2003 100 100 100 100 100 100 100 100 100 100 100 100 2004 100 100 100 100 100 100 100 100 100 100 100 100 2005 100 100 100 100 100 100 100 100 100 100 100 100 2006 100 100 100 100 100 100 100 100 100 100 100 100 2007 100 100 100 100 100 100 100 100 100 100 100 100 2008 100 100 100 100 100 100 100 100 100 100 100 100

  18. Percent of Commercial Natural Gas Deliveries in U.S. Total Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 93.1 90.8 89.1 1990's 86.6 85.1 83.2 83.9 79.3 76.7 77.6 70.8 67.0 66.1 2000's 63.9 66.0 77.4 78.2 78.0 82.1 80.8 80.4 79.7 77.8 2010's 77.5 67.3 65.2 65.8 65.8 65.9

  19. Percent of Commercial Natural Gas Deliveries in Hawaii Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100 100 100 100 100 100 100 100 100 100 100 100 1990 100 100 100 100 100 100 100 100 100 100 100 100 1991 100 100 100 100 100 100 100 100 100 100 100 100 1992 100 100 100 100 100 100 100 100 100 100 100 100 1993 100 100 100 100 100 100 100 100 100 100 100 100 1994 100 100 100 100 100 100 100 100 100 100 100 100 1995 100 100 100 100 100 100 100 100 100 100 100 100 1996 100 100 100 100 100 100 100 100 100 100 100 100

  20. Percent of Commercial Natural Gas Deliveries in Vermont Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100 100 100 100 100 100 100 100 100 100 100 100 1990 100 100 100 100 100 100 100 100 100 100 100 100 1991 100 100 100 100 100 100 100 100 100 100 100 100 1992 100 100 100 100 100 100 100 100 100 100 100 100 1993 100 100 100 100 100 100 100 100 100 100 100 100 1994 100 100 100 100 100 100 100 100 100 100 100 100 1995 100 100 100 100 100 100 100 100 100 100 100 100 1996 100 100 100 100 100 100 100 100 100 100 100 100

  1. High pressure oxygen furnace

    DOE Patents [OSTI]

    Morris, D.E.

    1992-07-14

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized, the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 5 figs.

  2. High pressure oxygen furnace

    DOE Patents [OSTI]

    Morris, Donald E.

    1992-01-01

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  3. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-08-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the previous research, the reference point of oxygen occupancy was determined and verified. In the current research, the oxygen occupancy was investigated at 1200 C as a function of oxygen activity and compared with that at 1000 C. The cause of bumps at about 200 C was also investigated by using different heating and cooling rates during TGA. The fracture toughness of LSFT and dual phase membranes at room temperature is an important mechanical property. Vicker's indentation method was used to evaluate this toughness. Through this technique, a K{sub Ic} (Mode-I Fracture Toughness) value is attained by means of semi-empirical correlations between the indentation load and the length of the cracks emanating from the corresponding Vickers indentation impression. In the present investigation, crack propagation behavior was extensively analyzed in order to understand the strengthening mechanisms involved in the non-transforming La based ceramic composites. Cracks were generated using Vicker's indenter and used to identify and evaluate the toughening mechanisms involved. Preliminary results of an electron microscopy study of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Modeling of the isotopic transients on operating membranes (LSCrF-2828 at 900 C) and a ''frozen'' isotope profile have been analyzed in conjunction with a 1-D model to reveal the gradient in oxygen diffusivity through the membrane under conditions of high chemical gradients.

  4. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-02-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. The in situ electrical conductivity and Seebeck coefficient measurements were made on LSFT at 1000 and 1200 C over the oxygen activity range from air to 10{sup -15} atm. The electrical conductivity measurements exhibited a p to n type transition at an oxygen activity of 1 x 10{sup -10} at 1000 C and 1 x 10{sup -6} at 1200 C. Thermogravimetric studies were also carried out over the same oxygen activities and temperatures. Based on the results of these measurements, the chemical and mechanical stability range of LSFT were determined and defect structure was established. The studies on the fracture toughness of the LSFT and dual phase membranes exposed to air and N{sub 2} at 1000 C was done and the XRD and SEM analysis of the specimens were carried out to understand the structural and microstructural changes. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affect the mechanical properties. A complete transformation of fracture behavior was observed in the N{sub 2} treated LSFT samples. Further results to investigate the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Recent results on transient kinetic data are presented. The 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model is used to study ''frozen'' profiles in patterned or composite membranes.

  5. Fuel cell oxygen electrode

    DOE Patents [OSTI]

    Shanks, H.R.; Bevolo, A.J.; Danielson, G.C.; Weber, M.F.

    An oxygen electrode for a fuel cell utilizing an acid electrolyte has a substrate of an alkali metal tungsten bronze of the formula: A/sub x/WO/sub 3/ where A is an alkali metal and x is at least 0.2, which is covered with a thin layer of platinum tungsten bronze of the formula: Pt/sub y/WO/sub 3/ where y is at least 0.8.

  6. Fuel cell oxygen electrode

    DOE Patents [OSTI]

    Shanks, Howard R.; Bevolo, Albert J.; Danielson, Gordon C.; Weber, Michael F.

    1980-11-04

    An oxygen electrode for a fuel cell utilizing an acid electrolyte has a substrate of an alkali metal tungsten bronze of the formula: A.sub.x WO.sub.3 where A is an alkali metal and x is at least 0.2, which is covered with a thin layer of platinum tungsten bronze of the formula: Pt.sub.y WO.sub.3 where y is at least 0.8.

  7. Oxygen Transport Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay

    2008-08-30

    The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the

  8. Possibility of using cylindrical ionization chambers for percent depth-dose measurements in clinical electron beams

    SciTech Connect (OSTI)

    Ono, Takeshi; Araki, Fujio; Yoshiyama, Fumiaki

    2011-08-15

    Purpose: This study investigated the possibility of using cylindrical ionization chambers for percent depth-dose (PDD) measurements in high-energy clinical electron beams. Methods: The cavity correction factor, P{sub cav}, for cylindrical chambers with various diameters was calculated as a function of depth from the surface to R{sub 50}, in the energy range of 6-18 MeV electrons with the EGSnrc C ++ -based user-code CAVITY. The results were compared with those for IBA NACP-02 and PTW Roos parallel-plate ionization chambers. The effective point of measurement (EPOM) for the cylindrical chamber and the parallel-plate chamber was positioned according to the IAEA TRS-398 code of practice. The overall correction factor, P{sub Q}, and the percent depth-ionization (PDI) curve for a PTW30013 Farmer-type chamber were also compared with those of NACP-02 and Roos chambers. Results: The P{sub cav} values at depths between the surface and R{sub 50} for cylindrical chambers were all lower than those with parallel-plate chambers. However, the variation in depth for cylindrical chambers equal to or less than 4 mm in diameter was equivalent to or smaller than that for parallel-plate chambers. The P{sub Q} values for the PTW30013 chamber mainly depended on P{sub cav}, and for parallel-plate chambers depended on the wall correction factor, P{sub wall}, rather than P{sub cav}. P{sub Q} at depths from the surface to R{sub 50} for the PTW30013 chamber was consequently a lower value than that with parallel-plate chambers. However, the variation in depth was equivalent to that of parallel-plate chambers at electron energies equal to or greater than 9 MeV. The shift to match calculated PDI curves for the PTW30013 chamber and water (perturbation free) varied from 0.65 to 0 mm between 6 and 18 MeV beams. Similarly, the shifts for NACP-02 and Roos chambers were 0.5-0.6 mm and 0.2-0.3 mm, respectively, and were nearly independent of electron energy. Conclusions: Calculated PDI curves for PTW

  9. Fact #625: May 31, 2010 Distribution of Trucks by On-Road Vehicle Weight |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 5: May 31, 2010 Distribution of Trucks by On-Road Vehicle Weight Fact #625: May 31, 2010 Distribution of Trucks by On-Road Vehicle Weight According to weigh-in-motion data collected by fifteen states, the majority of 5-axle tractor-trailers on the road weigh between 33,000 and 73,000 lbs.Eleven percent of the tractor-trailers had weight recorded around 72,800 lbs and 10% around 68,300 lbs. Another 10% of tractor-trailers were on the lighter end of the scale - around

  10. Percent of Industrial Natural Gas Deliveries in New Jersey Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 29.3 31.1 27.6 21.9 21.2 19.6 18.6 15.6 18.5 16.8 15.6 21.1 2002 23.5 22.2 23.5 21.5 18.7 18.3 17.4 16.9 18.0 18.5 22.1 26.0 2003 21.1 23.1 26.0 26.8 23.9 18.0 15.3 17.3 13.3 14.9 13.0 18.4 2004 19.5 22.5 18.1 16.6 15.0 13.7 11.6 15.1 13.6 13.6 15.4 18.5 2005 22.4 22.7 21.9 17.6 15.7 15.4 17.7 20.4 16.9 19.4 20.1 25.4 2006 23.6 22.4 21.6 19.0 17.0 16.3 18.5 19.1 15.6 16.6 19.9 21.8 2007 21.5 23.6 20.8 23.0 17.1

  11. Percent of Commercial Natural Gas Deliveries in U.S. Total Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1983 NA NA NA NA NA NA NA NA NA NA NA NA 1984 NA NA NA NA NA NA NA NA NA NA NA NA 1985 NA NA NA NA NA NA NA NA NA NA NA NA 1986 NA NA NA NA NA NA NA NA NA NA NA NA 1987 NA NA NA NA NA NA NA NA NA NA NA NA 1988 93.8 93.3 92.5 91.7 89.4 87.5 86.3 87.2 87.6 87.4 88.7 89.7 1989 91.0 91.2 90.8 89.2 88.2 86.1 85.1 85.1 84.6 85.2 87.7 90.7 1990 90.8 88.8 88.3 86.9 85.5 83.8 81.8 81.7 80.3 81.2 84.7 87.9 1991 89.4 88.5 87.8

  12. Percent of Industrial Natural Gas Deliveries in U.S. Total Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 23.5 23.2 22.0 21.0 19.5 19.2 20.2 19.6 19.8 20.3 20.2 20.7 2002 20.3 20.5 20.2 26.3 23.9 25.5 24.0 22.5 22.5 21.7 21.8 23.1 2003 21.4 22.1 21.3 20.9 20.3 19.1 24.7 22.9 22.9 23.3 22.7 23.5 2004 23.1 23.6 22.8 23.3 23.4 25.0 24.9 24.0 22.8 22.6 23.5 24.5 2005 24.8 24.3 24.6 23.9 24.2 23.7 24.5 24.6 23.2 23.2 23.4 23.7 2006 23.7 23.7 23.8 23.5 23.8 23.3 23.6 23.7 22.0 22.9 23.0 23.4 2007 22.7 23.0 22.4 22.3 23.2

  13. Percent of Commercial Natural Gas Deliveries in Alaska Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1990 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1991 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1992 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1993 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1994 100.0 100.0 100.0 100.0 100.0 100.0

  14. Percent of Commercial Natural Gas Deliveries in Delaware Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1990 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1991 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1992 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1993 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1994 100.0 100.0 100.0 100.0 100.0 100.0

  15. Percent of Commercial Natural Gas Deliveries in Florida Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1990 100.0 100.0 100.0 100.0 96.2 96.1 96.3 96.1 96.4 96.0 96.7 94.9 1991 96.5 97.0 97.5 98.1 97.8 97.8 97.9 97.8 98.2 97.8 96.8 96.8 1992 96.8 97.2 97.4 98.2 98.3 98.2 98.1 98.1 98.3 98.2 97.4 97.0 1993 97.2 97.2 97.2 98.3 98.4 98.4 98.3 98.3 98.3 98.2 97.3 97.0 1994 97.3 97.6 97.8 98.3 97.6 98.3 98.2 98.4 98.5 97.9 97.8 97.0 1995 96.7 97.3 97.5

  16. Percent of Commercial Natural Gas Deliveries in Maine Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1990 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1991 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1992 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1993 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1994 100.0 100.0 100.0 100.0 100.0 100.0

  17. Percent of Commercial Natural Gas Deliveries in New Jersey Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 99.0 98.9 98.7 98.3 96.2 94.7 94.2 93.4 93.5 94.7 99.0 99.7 1990 99.6 99.3 96.6 94.4 94.3 93.2 89.3 86.4 87.1 86.2 91.7 96.5 1991 98.1 96.5 95.8 91.8 92.3 89.1 89.5 80.6 89.2 90.0 93.2 97.0 1992 96.9 95.7 92.1 87.7 94.1 91.3 88.6 80.7 80.7 86.4 94.8 96.9 1993 93.6 94.0 93.7 91.2 88.5 86.4 87.1 79.8 84.6 90.0 92.4 93.8 1994 94.9 96.2 96.3 89.8 87.4 85.1 81.4 82.2 83.6 88.0 89.6 92.1 1995 93.7 92.4 91.3 87.4 84.5

  18. Percent of Commercial Natural Gas Deliveries in North Dakota Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 81.7 84.8 84.0 83.9 80.6 74.8 69.2 64.9 71.4 70.9 74.8 81.6 1990 83.9 82.5 78.4 76.0 75.4 69.7 54.3 53.3 57.4 58.4 69.8 75.8 1991 79.4 79.9 74.9 71.7 70.6 59.0 49.6 47.6 49.6 48.7 67.6 70.1 1992 71.7 73.7 72.0 71.6 73.6 63.8 61.6 58.8 57.2 56.8 67.3 68.9 1993 77.1 73.8 77.4 76.8 73.3 62.6 58.1 54.0 53.5 56.0 74.2 78.9 1994 82.6 86.8 83.1 82.1 78.4 69.7 66.2 63.2 61.8 64.0 82.2 76.9 1995 84.3 85.9 84.3 83.2 80.0

  19. Percent of Commercial Natural Gas Deliveries in Rhode Island Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100.0 100.0 100.0 87.1 83.9 47.7 48.9 40.4 44.6 82.7 100.0 100.0 1990 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 75.5 80.2 97.3 91.1 1991 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1992 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1993 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1994 100.0 100.0 100.0 100.0 100.0 100.0 100.0

  20. Percent of Commercial Natural Gas Deliveries in South Dakota Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 92.8 93.1 92.8 92.1 92.5 91.6 90.2 89.4 90.0 89.6 91.1 92.0 1990 90.7 90.1 90.2 88.0 78.4 83.0 81.9 82.4 82.0 77.7 82.0 86.3 1991 84.8 83.0 80.5 83.4 79.5 74.9 74.3 74.3 74.5 76.7 83.4 85.2 1992 87.0 83.3 85.6 83.1 80.7 73.5 72.3 74.6 78.0 76.5 81.8 84.7 1993 86.5 83.9 84.4 81.2 76.4 73.3 74.9 72.9 75.8 78.7 90.0 91.2 1994 92.9 92.3 92.6 88.4 84.7 74.7 72.7 82.0 79.0 83.4 88.4 92.1 1995 92.1 90.8 89.7 87.2 82.8

  1. Percent of Commercial Natural Gas Deliveries in Utah Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1990 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1991 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1992 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1993 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1994 83.8 85.2 82.9 82.4 77.7 77.9 76.4

  2. Percent of Commercial Natural Gas Deliveries in Wyoming Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.8 99.6 99.7 99.7 1990 99.7 99.7 99.7 99.8 99.7 99.7 99.6 99.6 99.5 99.5 99.7 99.7 1991 99.9 99.9 99.4 98.9 99.0 98.2 97.4 98.3 97.2 98.4 98.6 98.5 1992 98.6 98.1 97.8 98.4 97.9 97.2 96.5 97.1 97.4 97.2 98.2 98.3 1993 98.8 98.2 98.4 98.1 98.2 96.9 97.1 96.5 95.0 97.1 97.2 99.0 1994 98.1 96.0 96.9 97.3 95.2 91.7 93.4 92.1 93.5 95.6 96.1 96.8 1995 88.4 98.2 93.6 92.4 89.2

  3. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect (OSTI)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  4. Composite oxygen transport membrane

    DOE Patents [OSTI]

    Christie, Gervase Maxwell; Lane, Jonathan A.

    2014-08-05

    A method of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. In the porous fuel oxidation layer and the optional porous surface exchange layer, A is Calcium and in the dense separation layer A is not Calcium and, preferably is Strontium. Preferred materials are (La.sub.0.8Ca.sub.0.2).sub.0.95Cr.sub.0.5Mn.sub.0.5O.sub.3-.delta. for the porous fuel oxidation and optional porous surface exchange layers and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer. The use of such materials allows the membrane to sintered in air and without the use of pore formers to reduce membrane manufacturing costs. The use of materials, as described herein, for forming the porous layers have application for forming any type of porous structure, such as a catalyst support.

  5. High Selectivity Oxygen Delignification

    SciTech Connect (OSTI)

    Arthur J. Ragauskas Lucian A. Lucia Hasan Jameel

    2005-09-30

    The overall objective of this program was to develop improved extended oxygen delignification (EOD) technologies for current U.S. pulp mill operations. This was accomplished by: (1) Identifying pulping conditions that optimize O and OO performance; (2) Identifying structural features of lignin that enhance reactivity towards EOD of high kappa pulps; (3) Identifying factors minimizing carbohydrate degradation and improve pulp strength of EOD high kappa pulps; (4) Developing a simple, reproducible method of quantifying yield gains from EOD; and (5) Developing process conditions that significantly reduce the capital requirements of EOD while optimizing the yield benefits. Key research outcomes included, demonstrating the use of a mini-O sequence such as (E+O)Dkf:0.05(E+O) or Dkf:0.05(E+O)(E+O) without interstage washing could capture approximately 60% of the delignification efficiency of a conventional O-stage without the major capital requirements associated with an O-stage for conventional SW kraft pulps. The rate of formation and loss of fiber charge during an O-stage stage can be employed to maximize net fiber charge. Optimal fiber charge development and delignification are two independent parameters and do not parallel each other. It is possible to utilize an O-stage to enhance overall cellulosic fiber charge of low and high kappa SW kraft pulps which is beneficial for physical strength properties. The application of NIR and multi-variant analysis was developed into a rapid and simple method of determining the yield of pulp from an oxygen delignification stage that has real-world mill applications. A focus point of this program was the demonstration that Kraft pulping conditions and oxygen delignification of high and low-kappa SW and HW pulps are intimately related. Improved physical pulp properties and yield can be delivered by controlling the H-factor and active alkali charge. Low AA softwood kraft pulp with a kappa number 30 has an average improvement of 2% in

  6. Percent of Industrial Natural Gas Deliveries in Alabama Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 26.4 25.4 21.7 22.1 19.5 21.1 21.0 21.8 21.4 20.8 22.1 21.9 2002 24.1 22.3 22.5 20.1 18.3 19.6 20.7 21.4 20.0 21.4 24.2 23.5 2003 22.3 22.2 23.9 21.3 20.5 20.8 21.8 18.1 19.7 19.6 21.6 22.3 2004 22.6 23.2 21.9 19.9 20.2 20.8 19.1 19.9 19.1 19.7 20.2 21.8 2005 22.9 23.8 21.3 23.1 23.1 22.6 24.8 22.8 26.3 23.5 23.2 26.2 2006 22.8 23.1 22.4 24.1 23.9 22.2 22.5 23.0 23.4 24.5 24.6 25.6 2007 24.1 24.8 24.4 23.9 24.8 23.9

  7. Percent of Industrial Natural Gas Deliveries in Alaska Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 99.6 99.6 99.6 99.7 97.1 92.7 90.5 89.6 94.4 94.9 99.3 99.3 2002 99.3 99.2 99.2 99.3 80.9 79.0 78.8 78.4 86.9 99.4 96.3 99.6 2003 97.3 98.3 81.5 78.0 62.0 62.8 61.5 54.7 55.2 70.5 100.0 95.4 2004 94.3 77.2 72.2 65.1 68.5 66.1 60.9 54.9 55.5 58.7 76.9 73.3 2005 76.0 75.0 71.9 66.3 71.4 64.0 61.8 63.1 67.6 76.6 70.9 69.0 2006 66.8 63.2 71.2 60.6 60.5 63.6 55.1 60.2 64.8 61.6 78.2 70.2 2007 77.8 76.7 78.2 73.6 78.3 72.5

  8. Percent of Industrial Natural Gas Deliveries in Arizona Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 33.6 44.6 45.1 46.7 45.0 48.3 48.5 41.4 43.8 54.6 54.8 55.3 2002 55.5 54.5 47.0 46.9 41.4 41.7 36.1 34.9 36.7 33.1 32.9 33.0 2003 37.3 38.2 36.6 36.4 36.4 35.7 37.7 38.8 44.8 45.3 45.3 48.8 2004 58.9 65.1 52.4 51.8 51.2 55.8 50.6 52.0 51.7 53.3 55.4 57.8 2005 47.4 48.2 43.8 47.9 46.2 40.8 40.9 38.2 40.1 40.3 42.7 43.5 2006 37.1 41.1 37.8 37.6 36.4 37.6 38.3 35.9 37.9 39.7 37.1 37.6 2007 36.3 35.8 34.0 35.0 32.8 32.4

  9. Percent of Industrial Natural Gas Deliveries in Arkansas Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 6.8 10.0 9.1 4.6 6.6 4.9 5.5 3.8 4.0 5.6 5.3 5.4 2002 6.1 6.1 6.5 5.0 4.1 3.9 5.1 3.8 3.8 5.0 4.8 4.9 2003 5.4 5.9 5.8 4.6 4.0 3.8 4.5 5.2 5.9 6.5 6.2 6.1 2004 6.5 6.8 6.3 5.7 5.1 6.0 5.8 4.4 4.9 7.2 7.0 5.0 2005 5.5 6.2 5.6 5.3 4.7 4.6 4.3 3.8 4.6 6.8 5.5 5.1 2006 5.3 5.7 5.2 4.6 4.0 4.1 3.7 3.3 4.1 5.4 5.5 5.8 2007 4.5 5.6 4.4 4.2 3.8 3.8 3.3 3.4 3.7 4.5 4.5 3.7 2008 4.1 4.6 3.9 4.0 3.1 2.8 3.0 2.9 3.2 4.8 5.4 4.4

  10. Percent of Industrial Natural Gas Deliveries in Colorado Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 0.0 0.1 0.0 0.2 0.6 1.2 2.9 2.8 1.7 0.4 0.4 0.1 2002 0.1 0.1 1.4 1.1 1.9 1.7 2.1 3.3 1.7 0.7 0.6 0.6 2003 0.1 0.0 0.3 1.2 0.8 0.9 1.9 3.0 2.7 0.9 0.4 0.1 2004 0.1 0.1 0.3 1.1 0.8 1.5 1.5 2.3 2.0 0.3 0.2 0.0 2005 0.8 0.8 0.6 0.7 0.6 0.4 0.3 0.6 0.5 0.4 0.5 0.7 2006 0.1 0.1 0.2 0.6 1.1 1.5 1.6 2.0 1.0 0.3 0.1 0.1 2007 0.1 0.1 0.1 0.2 0.5 0.8 1.3 1.5 0.7 0.2 0.2 0.1 2008 0.7 0.8 0.7 0.5 0.5 0.5 0.5 0.5 0.4 0.4 0.6 0.5

  11. Percent of Industrial Natural Gas Deliveries in Delaware Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 10.8 29.0 19.8 13.0 14.8 20.4 15.1 11.6 14.2 11.7 14.9 16.3 2002 18.4 19.6 20.4 17.5 21.7 15.6 11.9 9.9 8.0 8.6 10.6 10.3 2003 11.8 16.2 16.3 23.7 21.2 13.2 16.1 11.2 12.5 21.3 14.0 15.5 2004 10.7 11.4 12.2 12.8 9.4 14.4 11.1 12.1 11.5 12.2 10.9 12.8 2005 9.4 13.1 14.7 14.0 10.2 13.3 12.8 10.9 13.5 11.5 12.4 12.5 2006 10.7 9.8 9.6 11.0 8.9 6.2 7.6 7.5 8.5 9.3 8.3 10.7 2007 9.7 14.7 14.4 12.2 8.5 9.2 8.1 8.2 9.2 7.1 8.8

  12. Percent of Industrial Natural Gas Deliveries in Florida Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 6.1 4.5 3.5 4.7 5.9 3.6 1.9 2.9 2.5 2.5 3.3 4.0 2002 4.1 4.5 4.1 3.6 3.5 4.2 3.2 3.5 3.9 3.4 3.8 4.4 2003 4.2 5.9 4.4 3.9 3.5 3.7 3.3 2.6 3.7 3.2 4.4 3.3 2004 4.6 3.8 4.2 3.3 3.3 3.7 2.9 3.2 4.4 3.3 4.1 3.6 2005 2.7 4.1 3.8 3.4 3.1 3.2 3.4 3.5 3.4 3.7 3.5 3.6 2006 3.0 2.8 3.0 2.8 2.3 2.4 5.3 2.9 3.0 2.4 4.2 3.1 2007 2.6 3.1 3.5 2.3 2.9 4.0 2.8 2.6 3.6 2.5 3.7 3.6 2008 2.9 3.3 3.4 2.5 2.9 2.4 2.8 2.5 3.2 3.0 3.3 3.3

  13. Percent of Industrial Natural Gas Deliveries in Georgia Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 28.1 24.7 21.2 18.5 19.8 19.2 17.1 18.0 16.4 17.5 19.5 19.7 2002 20.2 20.6 21.4 19.5 18.0 19.2 17.7 17.9 18.5 18.2 19.4 19.5 2003 16.7 19.1 17.2 16.0 16.8 14.4 12.6 13.4 14.2 15.3 16.5 18.0 2004 18.2 17.2 17.4 15.5 14.9 15.8 15.9 15.1 15.6 13.9 14.0 22.4 2005 19.9 18.4 15.9 17.9 13.7 14.6 12.9 15.6 19.7 18.7 19.4 18.3 2006 18.3 25.0 17.2 12.5 12.7 16.7 15.2 16.2 15.7 18.0 17.8 17.0 2007 17.2 19.3 17.9 18.7 16.7 16.6

  14. Percent of Industrial Natural Gas Deliveries in Idaho Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 3.3 3.2 2.5 2.2 1.9 1.6 1.5 1.8 1.6 1.5 1.8 2.3 2002 2.7 2.9 2.7 2.5 0.9 1.9 1.8 2.0 1.4 1.6 1.3 2.3 2003 2.2 2.5 2.1 1.8 1.7 1.6 2.0 2.2 1.8 2.0 2.4 3.1 2004 3.2 2.9 2.8 2.0 2.1 2.0 1.9 1.9 1.6 1.5 2.5 3.2 2005 3.0 2.7 2.7 2.4 1.8 1.7 1.6 1.6 2.0 1.7 2.4 3.0 2006 2.5 2.6 2.3 2.0 1.8 1.5 1.6 1.6 1.5 2.0 2.3 2.6 2007 2.3 2.1 1.7 1.8 1.7 1.9 1.7 1.5 1.7 2.0 2.2 2.4 2008 2.2 2.3 2.4 1.8 1.4 1.7 1.6 1.9 1.4 1.8 2.3 2.1

  15. Percent of Industrial Natural Gas Deliveries in Illinois Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 14.3 14.6 11.7 8.9 7.1 6.7 5.8 6.1 7.5 8.7 10.3 12.1 2002 11.2 11.2 11.1 10.3 7.6 7.2 3.9 5.4 6.6 9.4 10.7 12.6 2003 13.4 13.4 12.9 9.2 7.9 6.9 5.7 7.6 5.3 9.1 10.5 10.6 2004 13.5 12.0 9.7 8.1 5.8 6.1 6.4 5.7 5.0 8.3 10.4 11.5 2005 12.9 11.8 10.7 8.2 6.0 4.7 6.3 6.0 6.8 10.6 11.6 12.5 2006 12.3 11.9 11.1 8.8 7.4 4.9 5.3 6.4 6.6 8.5 7.7 9.6 2007 11.5 12.7 12.8 10.6 10.3 7.8 6.0 5.4 6.4 7.5 7.7 10.4 2008 11.7 12.9 12.9

  16. Percent of Industrial Natural Gas Deliveries in Indiana Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 15.1 14.0 7.1 7.1 4.2 3.7 5.2 1.0 5.5 8.3 6.6 10.2 2002 8.4 8.1 10.1 6.4 5.3 6.2 5.3 5.9 6.6 12.5 12.6 12.4 2003 14.2 12.9 8.9 7.2 7.0 5.9 6.2 5.7 9.3 6.2 11.3 9.3 2004 9.2 8.9 8.9 6.9 6.4 6.2 6.9 6.5 7.3 7.9 10.4 11.6 2005 9.8 7.7 9.6 5.8 6.3 5.5 5.5 6.7 8.2 8.2 10.6 8.9 2006 8.2 9.3 7.4 4.3 7.0 5.0 6.4 5.9 6.3 8.2 8.3 8.4 2007 9.3 9.4 5.8 7.6 6.1 5.5 6.0 5.0 6.9 6.8 9.5 9.1 2008 8.4 7.5 7.0 6.7 5.5 4.5 4.7 4.7 5.3

  17. Percent of Industrial Natural Gas Deliveries in Iowa Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 9.5 10.3 7.4 5.5 6.3 3.3 6.0 4.5 5.4 7.8 10.9 9.9 2002 8.5 5.3 8.3 6.1 4.9 5.4 5.4 5.2 5.6 10.4 12.8 10.2 2003 10.3 8.9 9.3 6.7 5.2 6.0 5.5 5.6 6.3 8.8 10.6 9.1 2004 10.4 8.9 8.8 5.7 4.9 5.3 4.0 4.8 5.1 8.4 16.2 12.9 2005 11.8 9.6 9.8 7.7 7.8 8.0 8.8 8.3 9.1 11.5 12.5 10.7 2006 10.3 9.5 9.6 6.1 7.4 6.4 5.7 6.7 7.1 9.4 11.9 10.2 2007 8.9 8.1 6.4 6.1 5.8 5.2 4.2 5.0 5.8 6.6 7.0 7.5 2008 7.9 6.5 5.8 5.0 6.0 5.0 4.6 5.0

  18. Percent of Industrial Natural Gas Deliveries in Kansas Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 3.0 2.9 3.2 2.9 7.8 9.4 18.1 21.2 16.4 7.7 7.9 4.4 2002 5.0 5.1 6.6 13.0 12.4 16.1 22.4 18.5 11.6 5.7 4.3 4.3 2003 2.4 3.4 3.2 8.2 11.0 6.9 14.8 21.1 9.1 5.3 5.0 3.1 2004 2.7 2.8 4.6 10.3 9.4 14.0 13.4 11.0 9.2 2.6 2.4 2.3 2005 1.7 1.4 1.4 3.2 6.6 8.2 16.3 19.2 9.0 3.8 2.5 1.7 2006 1.7 2.0 3.2 5.7 9.4 12.9 16.2 16.9 9.4 3.6 2.1 2.1 2007 1.3 1.5 1.5 1.4 4.9 9.8 16.2 17.3 9.6 4.0 2.8 1.7 2008 1.6 1.5 2.7 7.5 10.4 13.4

  19. Percent of Industrial Natural Gas Deliveries in Kentucky Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 27.3 21.8 18.9 13.8 17.8 15.8 17.4 17.4 17.3 19.6 16.5 16.9 2002 16.8 18.2 18.9 17.2 15.5 16.5 18.0 19.1 16.3 18.0 18.8 18.4 2003 20.6 20.1 18.7 19.5 19.2 20.3 16.6 16.0 18.1 18.2 18.1 18.4 2004 18.8 18.3 16.3 16.0 14.6 16.6 16.2 15.2 15.5 15.6 17.5 20.3 2005 16.5 17.5 17.3 16.0 15.8 15.2 16.1 14.9 17.4 17.9 17.2 19.7 2006 15.6 16.9 17.6 14.8 14.9 14.2 16.0 15.7 14.6 15.7 15.5 17.6 2007 16.6 18.1 17.0 17.7 16.1 17.5

  20. Percent of Industrial Natural Gas Deliveries in Maine Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 7.1 9.5 8.2 5.5 7.6 14.7 17.1 12.4 4.5 8.9 4.5 3.6 2002 13.5 1.7 6.8 1.5 1.6 1.2 100.0 0.8 100.0 0.7 0.8 1.0 2003 10.9 12.0 11.3 10.5 11.9 9.1 7.6 10.1 9.0 7.3 9.2 16.5 2004 2.0 1.7 1.5 1.7 1.8 2.3 1.3 2.0 1.6 1.5 1.6 1.8 2005 3.8 4.1 3.6 3.0 2.8 2.5 3.2 2.0 1.4 3.4 3.2 3.8 2006 1.3 1.3 0.8 0.9 0.8 0.8 0.8 0.8 0.7 1.0 0.9 0.8 2007 0.9 1.0 4.3 0.9 0.4 0.3 0.6 0.4 0.5 0.7 0.6 1.3 2008 1.1 0.9 1.5 0.6 0.5 0.3 0.8 0.6 0.6

  1. Percent of Industrial Natural Gas Deliveries in Maryland Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 15.4 11.4 9.7 7.2 6.7 4.5 9.7 6.3 6.3 7.0 6.6 10.3 2002 10.3 11.3 13.0 5.3 5.8 6.0 4.5 5.8 4.3 6.9 7.1 11.9 2003 10.5 13.2 11.4 9.1 7.8 6.6 6.3 6.2 7.1 12.1 11.9 12.9 2004 11.2 10.7 8.8 9.1 6.4 4.7 5.0 5.6 7.2 7.2 9.4 10.9 2005 11.3 11.5 11.3 9.8 5.5 5.1 4.9 5.3 5.2 6.2 9.4 10.7 2006 8.7 10.4 8.9 6.1 4.5 4.4 3.7 3.9 6.5 5.8 7.7 9.2 2007 13.1 13.7 11.0 9.9 6.1 3.7 4.5 3.8 6.9 3.5 8.4 10.4 2008 9.5 10.4 7.5 6.6 4.7 3.1

  2. Percent of Industrial Natural Gas Deliveries in Michigan Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 18.6 17.2 15.3 13.3 9.0 5.7 5.4 5.8 6.0 7.3 9.9 12.0 2002 14.4 13.3 14.0 11.4 8.1 5.7 4.3 5.2 3.9 6.5 10.9 17.6 2003 15.4 14.6 15.1 11.9 8.7 5.9 6.1 3.8 6.7 6.9 9.6 14.4 2004 14.6 15.9 18.0 11.4 7.4 5.7 5.0 4.9 5.0 6.1 9.2 13.3 2005 14.3 17.0 15.8 10.7 8.1 5.3 4.0 3.8 4.6 7.2 9.8 13.8 2006 15.4 16.4 13.5 10.8 7.3 5.1 3.8 4.5 5.2 7.0 10.6 13.6 2007 14.8 17.3 16.9 13.5 11.5 8.4 6.3 6.0 6.2 7.4 11.4 16.6 2008 16.4 17.4

  3. Percent of Industrial Natural Gas Deliveries in Missouri Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 25.6 17.3 19.1 14.4 11.1 10.2 9.5 8.1 9.5 10.2 12.4 32.9 2002 21.7 26.8 26.8 15.8 10.2 9.8 9.3 9.8 10.9 9.0 14.0 18.7 2003 18.8 21.0 19.0 13.6 12.1 12.4 12.5 8.8 10.3 11.1 13.1 16.8 2004 17.4 20.0 16.1 14.7 11.4 10.1 9.6 9.7 10.5 11.0 12.6 15.4 2005 20.1 18.4 16.4 13.9 11.9 9.6 10.1 9.4 10.5 11.2 13.0 17.9 2006 17.2 17.0 14.8 13.7 10.5 10.2 9.9 9.6 10.2 10.8 13.2 16.7 2007 15.4 18.5 16.7 12.3 10.6 10.1 9.7 8.4 8.7 10.3

  4. Percent of Industrial Natural Gas Deliveries in Montana Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 3.0 3.1 2.8 2.6 2.3 1.9 0.9 0.8 1.0 1.2 1.9 3.0 2002 3.0 2.9 3.6 2.3 2.0 1.2 0.9 0.7 0.8 1.1 2.1 3.4 2003 2.9 2.8 3.3 2.1 1.8 1.0 1.0 0.8 0.8 0.6 1.2 1.6 2004 1.8 2.4 1.9 1.0 1.5 1.4 1.1 0.7 0.8 1.1 1.8 2.4 2005 3.1 2.9 2.2 2.3 1.8 1.4 0.9 0.6 0.7 1.0 1.3 2.3 2006 1.3 1.0 1.1 0.9 0.6 0.4 0.2 0.1 0.2 0.3 0.6 1.0 2007 1.0 1.2 0.9 0.9 0.5 0.4 0.3 0.3 0.4 0.5 0.7 1.0 2008 1.3 1.4 1.8 1.1 0.9 0.5 0.6 0.5 0.5 0.4 0.8 0.9

  5. Percent of Industrial Natural Gas Deliveries in Nebraska Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 25.7 29.6 30.3 21.0 19.7 16.7 8.3 12.9 13.3 18.6 12.0 18.7 2002 22.6 19.5 29.3 17.6 15.0 24.0 7.4 8.4 8.8 16.4 18.9 19.6 2003 20.3 22.7 24.9 19.3 17.1 24.1 8.7 9.7 10.9 15.7 17.7 19.4 2004 19.7 21.4 24.7 19.0 18.3 14.2 9.2 10.6 16.5 18.8 16.0 16.6 2005 24.4 20.0 24.6 18.5 19.0 18.2 10.0 8.6 12.9 15.1 14.2 18.3 2006 13.8 15.1 17.1 13.3 13.0 9.8 8.3 7.7 10.5 11.5 10.2 12.4 2007 12.1 13.0 14.5 11.6 9.7 8.9 7.1 6.4 6.9 9.8

  6. Percent of Industrial Natural Gas Deliveries in Nevada Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 32.2 25.0 16.8 19.7 13.2 12.9 38.9 31.5 31.7 41.7 48.4 68.2 2002 58.3 44.3 59.1 37.8 44.2 40.0 17.5 18.2 19.5 21.2 23.0 28.8 2003 25.6 28.9 20.3 22.8 14.8 13.2 13.6 11.9 12.5 15.8 23.9 21.7 2004 21.4 23.6 14.9 15.1 12.4 11.3 10.7 11.5 13.4 15.9 20.9 22.6 2005 24.3 25.3 17.8 18.4 14.8 14.1 9.6 12.3 13.6 15.9 18.3 19.5 2006 20.9 21.8 22.3 14.7 14.8 11.9 11.7 10.6 11.5 16.9 16.6 23.7 2007 22.1 26.8 17.9 16.6 14.8 11.6

  7. Percent of Industrial Natural Gas Deliveries in New York Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 13.3 14.8 13.4 11.3 10.4 10.0 9.2 10.2 4.2 4.8 15.5 9.7 2002 12.2 12.1 11.1 11.1 11.9 10.9 9.4 10.4 13.5 7.7 9.4 11.2 2003 11.5 11.6 12.1 10.9 10.9 12.3 10.5 12.0 8.0 5.8 10.5 10.1 2004 12.4 13.5 11.5 13.0 11.1 11.5 9.3 8.7 8.0 7.6 8.7 9.8 2005 17.0 16.9 17.4 14.3 10.2 11.1 15.9 16.5 14.3 11.9 12.4 14.8 2006 14.8 14.0 11.5 9.6 7.6 11.4 11.0 9.9 9.6 10.8 13.6 13.7 2007 13.5 18.5 12.7 13.3 10.1 7.8 10.2 9.0 11.0 9.7 11.2

  8. Percent of Industrial Natural Gas Deliveries in North Dakota Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 15.2 13.8 16.8 8.2 5.8 5.5 1.1 4.7 8.0 12.1 13.4 17.9 2002 9.8 10.6 12.6 10.1 7.4 4.8 5.1 5.2 6.7 11.6 14.4 13.2 2003 35.1 44.0 60.0 30.9 17.9 17.7 25.0 32.3 22.3 25.2 44.1 87.2 2004 54.7 46.4 57.3 56.1 36.3 16.0 13.5 58.7 63.2 58.6 55.3 53.4 2005 25.1 17.0 17.7 14.7 9.6 4.4 10.3 15.1 51.6 58.4 45.9 23.2 2006 26.1 18.4 28.8 53.1 58.6 61.2 13.1 13.9 43.4 56.3 52.6 19.1 2007 26.6 28.8 24.7 58.5 61.4 46.9 11.0 38.6

  9. Percent of Industrial Natural Gas Deliveries in Ohio Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 13.1 9.8 10.4 6.2 3.9 3.4 1.5 4.8 1.2 2.9 5.6 6.4 2002 5.4 6.2 5.4 4.8 1.9 1.7 1.6 2.1 2.5 2.3 4.9 6.7 2003 6.3 7.0 5.4 4.0 1.8 2.4 2.0 1.7 1.7 2.4 3.3 4.6 2004 5.1 5.7 4.0 3.8 2.1 2.3 1.7 2.3 2.2 2.7 3.4 4.5 2005 5.7 6.6 4.5 2.6 2.0 1.6 2.1 2.0 1.9 2.6 3.3 4.8 2006 4.6 4.7 4.0 2.7 2.1 2.2 2.2 2.1 2.2 2.2 3.0 3.5 2007 3.9 4.8 3.5 2.6 1.8 1.8 1.9 1.4 1.5 1.2 2.2 3.7 2008 3.9 4.2 3.5 2.5 1.1 1.7 1.9 1.4 1.4 1.6 2.7 4.1

  10. Percent of Industrial Natural Gas Deliveries in Oklahoma Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 9.5 7.8 6.3 4.6 2.7 3.0 2.6 2.5 2.3 2.0 3.3 3.3 2002 5.2 6.1 5.0 3.4 2.4 2.0 1.5 2.7 2.7 1.4 2.9 3.8 2003 3.2 4.0 5.9 2.4 1.4 2.8 2.3 1.3 0.4 1.3 1.4 2.3 2004 2.5 3.0 2.6 1.1 1.1 0.7 1.4 1.3 1.2 1.0 1.1 2.2 2005 2.6 2.4 1.8 5.3 0.8 0.5 0.7 0.3 0.5 0.6 1.1 2.0 2006 2.0 1.4 1.1 1.0 0.7 0.8 0.4 0.8 0.9 1.3 1.3 1.2 2007 1.7 1.9 1.1 0.5 0.8 0.7 0.5 0.5 0.6 1.0 0.8 1.1 2008 1.0 1.5 1.0 0.5 0.6 0.5 0.3 0.2 0.2 0.1 0.3 0.8

  11. Percent of Industrial Natural Gas Deliveries in Oregon Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 27.2 17.0 18.7 20.3 20.5 20.7 23.5 26.8 24.2 21.1 20.6 21.4 2002 18.9 20.8 20.3 19.3 12.6 11.1 10.1 8.9 10.8 11.5 12.6 12.8 2003 13.8 14.3 13.8 12.7 16.1 16.2 15.5 15.6 19.2 21.1 24.5 25.4 2004 25.1 24.3 24.2 23.3 21.8 22.9 22.6 22.1 23.8 23.5 31.1 33.4 2005 34.3 34.3 32.7 31.0 30.2 30.1 31.4 32.1 33.6 35.0 34.8 38.2 2006 36.0 36.3 35.1 26.5 25.4 24.3 23.2 21.2 21.6 20.5 21.5 24.0 2007 23.6 24.3 22.9 21.8 20.8 21.8

  12. Percent of Industrial Natural Gas Deliveries in Rhode Island Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 41.4 29.5 26.1 37.6 29.0 29.3 26.0 26.2 22.4 26.8 29.3 13.6 2002 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 2003 15.7 18.9 21.5 19.6 26.7 11.7 16.8 18.8 18.6 22.1 18.5 22.3 2004 13.9 16.7 14.5 16.8 21.1 11.7 16.7 15.3 16.0 19.4 10.5 23.0 2005 17.8 14.7 15.9 11.0 16.3 16.5 12.9 13.8 16.3 13.2 16.5 19.7 2006 18.6 18.7 16.4 15.0 12.5 13.3 8.8 10.5 11.4 12.8 10.5 15.7 2007 13.0 19.0 15.1 12.7 10.1 14.3

  13. Percent of Industrial Natural Gas Deliveries in South Dakota Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 51.1 54.8 52.4 50.8 35.1 32.7 28.6 26.5 24.1 33.3 45.5 44.5 2002 16.4 18.6 13.2 18.4 14.1 10.7 9.5 9.0 19.5 27.6 30.6 34.9 2003 26.3 24.4 27.3 26.0 23.9 22.4 24.7 23.3 25.3 24.8 26.8 29.1 2004 29.0 28.5 30.0 24.4 26.1 28.2 22.6 27.6 24.8 27.2 33.3 31.0 2005 28.5 28.0 33.6 26.7 31.6 26.1 28.9 31.7 27.8 30.4 33.3 35.8 2006 38.6 36.4 37.5 31.3 39.2 30.3 27.6 30.1 27.8 31.5 33.7 35.4 2007 33.8 31.8 31.3 15.2 16.2 12.1

  14. Percent of Industrial Natural Gas Deliveries in Texas Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 35.8 35.7 33.7 34.2 32.9 34.2 36.5 34.8 37.5 36.0 35.1 34.5 2002 30.8 32.1 30.6 50.7 45.4 50.5 49.5 46.5 46.3 43.4 43.8 44.8 2003 40.1 39.5 39.1 39.5 39.8 36.1 50.7 46.2 49.0 47.8 47.2 48.2 2004 48.4 49.3 46.7 49.4 49.0 51.9 51.3 49.9 47.4 46.0 46.6 48.9 2005 58.7 57.0 56.9 55.8 55.8 54.9 56.8 55.0 52.5 49.7 51.1 49.5 2006 52.1 52.1 54.8 55.6 55.3 54.7 58.1 57.4 54.1 57.9 56.5 55.6 2007 52.7 51.6 52.4 53.0 54.2 56.0

  15. Percent of Industrial Natural Gas Deliveries in Utah Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 11.9 9.2 10.7 10.1 9.5 9.5 10.1 11.5 9.4 9.2 11.0 13.8 2002 14.0 13.8 12.6 15.8 13.0 13.4 12.1 13.6 13.5 12.8 15.0 13.7 2003 14.5 14.6 13.1 14.9 14.1 13.2 11.8 12.7 13.8 13.9 13.2 13.1 2004 13.8 15.2 13.3 14.6 12.7 12.7 18.4 46.5 26.9 24.3 23.4 23.8 2005 18.4 18.6 18.4 17.7 18.6 21.3 20.0 21.2 21.3 21.5 18.3 19.9 2006 22.3 23.2 22.5 24.0 24.0 24.7 24.2 13.9 13.4 15.3 15.8 16.0 2007 14.4 13.6 14.4 14.6 13.3 12.7 14.5

  16. Percent of Industrial Natural Gas Deliveries in Vermont Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 95.2 80.1 79.2 79.2 69.2 67.8 65.6 67.7 70.7 73.3 76.0 79.0 2002 77.7 78.3 78.6 78.2 72.6 66.8 66.7 65.1 66.8 72.6 76.2 85.5 2003 87.3 100.0 100.0 75.7 74.2 72.4 75.0 67.7 70.4 73.2 77.4 80.1 2004 79.9 84.7 80.7 82.2 78.6 73.8 70.0 68.3 69.2 76.4 82.1 83.7 2005 83.6 86.4 82.6 78.0 74.4 71.5 72.1 83.9 94.3 82.4 75.7 96.4 2006 93.0 87.6 82.4 77.2 73.3 72.9 71.7 69.7 71.5 76.3 75.1 79.5 2007 83.0 84.1 81.8 76.2 72.2 71.7

  17. Percent of Industrial Natural Gas Deliveries in Virginia Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 27.4 24.1 20.8 18.6 13.3 23.5 10.9 12.9 15.0 24.1 11.2 15.4 2002 16.8 19.7 18.3 14.0 14.1 10.8 10.7 11.0 13.2 16.0 19.3 22.9 2003 25.6 22.5 16.5 23.9 12.9 9.1 13.4 19.6 12.6 17.7 17.9 17.0 2004 21.5 18.8 18.7 16.8 14.9 11.2 15.6 14.5 8.9 15.1 16.1 21.1 2005 18.3 21.6 18.1 19.3 15.7 16.6 9.5 11.6 16.0 18.7 21.5 20.0 2006 21.6 17.0 16.0 13.2 13.8 10.4 9.5 8.0 12.7 14.5 16.0 15.7 2007 17.0 20.0 17.1 17.2 15.4 9.5 10.3

  18. Percent of Commercial Natural Gas Deliveries in Alabama Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 84.0 82.5 89.4 90.6 83.8 86.2 55.5 83.6 78.9 84.4 78.4 85.7 1990 86.9 82.1 80.0 76.8 74.9 79.8 76.8 73.3 76.5 78.0 69.7 81.4 1991 82.2 87.0 87.9 83.2 84.0 85.4 85.7 81.3 75.8 74.4 75.5 81.7 1992 83.7 86.8 84.0 83.2 79.0 77.6 75.3 74.7 74.4 73.2 74.2 80.6 1993 84.1 85.3 85.8 84.0 79.8 76.8 75.9 74.0 74.4 71.3 74.7 79.3 1994 86.1 87.7 84.1 83.1 78.0 76.5 74.8 71.8 64.7 70.0 73.6 76.7 1995 82.5 85.7 85.8 81.4 77.5 75.7

  19. Percent of Commercial Natural Gas Deliveries in Arkansas Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 95.3 95.6 95.9 94.3 91.3 91.5 87.2 86.2 88.2 87.5 90.7 93.4 1990 95.8 94.8 93.7 93.2 90.7 88.8 88.4 86.9 87.4 86.8 90.6 91.5 1991 93.8 94.7 96.1 91.0 87.7 85.1 84.8 85.5 85.9 86.5 90.5 92.3 1992 93.0 94.7 91.3 92.7 88.4 87.0 85.9 85.4 86.4 87.6 88.7 90.8 1993 92.5 93.0 92.8 91.8 87.6 84.2 85.9 84.7 85.7 87.8 92.7 98.7 1994 93.9 95.9 95.4 94.8 91.2 91.7 94.2 94.3 96.6 95.3 96.4 97.4 1995 97.2 98.0 96.3 95.1 93.3 93.1

  20. Percent of Commercial Natural Gas Deliveries in Colorado Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 98.0 98.1 98.3 97.8 97.3 97.3 95.0 91.8 95.8 95.6 96.9 97.2 1990 98.1 98.0 97.9 97.6 97.3 97.4 94.7 94.5 95.5 94.6 97.0 97.0 1991 96.8 97.1 96.1 96.2 96.9 97.2 93.7 93.9 93.6 92.3 94.7 96.3 1992 96.7 96.7 95.9 95.7 95.1 96.0 94.2 93.3 93.6 91.2 93.7 96.2 1993 96.6 96.4 96.5 95.8 95.2 95.5 93.0 93.1 95.2 90.6 94.1 95.9 1994 95.9 96.1 95.7 94.9 95.3 94.3 91.2 91.7 93.1 91.5 93.2 95.5 1995 95.9 96.0 95.1 94.3 95.1 95.5

  1. Percent of Commercial Natural Gas Deliveries in Georgia Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 96.6 93.6 89.7 88.2 85.3 81.7 80.7 80.2 83.0 86.4 89.4 96.8 1990 96.5 90.3 88.7 86.9 82.0 80.9 80.1 82.5 78.9 84.3 87.9 94.1 1991 92.1 90.7 88.8 84.7 81.6 79.7 79.6 80.3 78.8 82.8 90.7 92.5 1992 90.8 90.6 89.3 88.2 85.0 82.7 79.7 83.3 83.4 84.6 87.9 92.9 1993 91.5 92.9 94.6 90.9 86.5 83.0 85.4 84.9 85.6 86.0 91.2 93.0 1994 97.0 94.9 92.4 90.3 89.3 86.8 87.9 89.0 86.1 88.6 91.6 92.6 1995 96.1 97.1 93.3 90.7 89.7 88.4

  2. Percent of Commercial Natural Gas Deliveries in Idaho Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 88.9 90.2 90.6 89.0 82.8 85.9 86.8 83.0 84.1 79.3 84.6 87.4 1990 91.5 90.4 89.7 87.7 85.8 88.1 86.1 85.2 85.0 79.3 86.3 86.4 1991 91.0 91.7 88.5 87.4 87.4 86.8 84.7 84.0 82.9 73.6 85.1 87.5 1992 89.4 89.0 87.1 85.2 83.1 80.2 81.0 82.4 80.2 77.9 82.2 88.3 1993 89.4 89.9 91.0 87.9 87.4 82.3 82.8 81.3 79.2 77.7 81.5 87.8 1994 87.8 88.6 88.1 85.9 83.2 82.7 84.2 80.1 80.6 79.4 84.1 87.6 1995 89.7 89.1 86.5 85.5 86.0 85.3

  3. Percent of Commercial Natural Gas Deliveries in Illinois Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 71.8 73.5 69.8 69.6 67.5 59.7 50.2 47.4 62.4 64.5 68.9 74.5 1990 65.6 65.7 60.2 55.3 52.9 40.6 40.7 41.8 44.5 54.6 52.2 63.6 1991 66.1 62.7 61.0 56.7 49.1 45.4 39.4 43.5 55.0 54.8 60.4 60.3 1992 63.0 58.2 59.5 57.5 53.0 43.4 44.4 49.2 47.0 55.5 60.5 59.9 1993 61.0 58.4 58.3 56.3 51.5 43.4 42.9 38.3 50.0 50.2 53.7 56.0 1994 59.1 59.9 58.0 49.9 46.5 37.8 36.1 36.3 39.7 47.5 49.9 52.0 1995 54.8 53.2 52.9 49.3 40.2 42.9

  4. Percent of Commercial Natural Gas Deliveries in Indiana Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 94.1 93.9 94.3 92.6 92.6 97.2 96.7 96.8 89.1 91.9 97.7 98.9 1990 99.2 98.5 93.4 90.1 92.1 90.6 92.2 89.7 88.4 91.8 98.4 98.6 1991 94.2 93.3 93.2 93.2 92.6 89.2 89.9 89.6 92.6 98.5 97.9 95.4 1992 93.6 92.4 98.6 99.1 99.7 99.9 92.8 99.6 91.9 99.8 99.9 98.0 1993 94.5 94.1 99.6 99.5 100.0 91.9 90.4 91.1 92.9 90.7 92.2 96.1 1994 94.1 97.5 93.7 91.5 88.4 85.6 84.6 85.9 84.3 86.7 91.3 91.4 1995 89.7 89.9 89.5 87.0 83.4 76.1

  5. Percent of Commercial Natural Gas Deliveries in Iowa Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 98.4 98.4 98.5 98.0 97.0 96.3 95.4 95.0 95.2 96.6 97.6 98.3 1990 98.5 98.2 98.1 97.8 97.3 96.3 95.3 95.6 92.3 95.5 97.5 97.7 1991 98.4 98.4 98.2 97.3 96.7 95.7 94.9 91.5 96.0 96.3 98.5 98.0 1992 97.6 97.4 96.5 96.2 94.3 93.2 91.3 90.6 88.7 91.0 96.1 96.7 1993 96.6 96.6 95.8 96.4 92.9 90.8 90.2 88.3 88.9 92.8 95.2 93.2 1994 92.9 94.3 91.2 90.5 87.9 84.1 81.3 80.0 80.5 86.0 90.4 91.0 1995 91.7 92.0 91.1 88.8 86.1 81.9

  6. Percent of Commercial Natural Gas Deliveries in Kansas Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 94.8 94.4 94.1 94.6 92.9 89.2 93.7 94.7 91.8 88.9 88.2 92.9 1990 92.7 90.8 90.6 92.6 91.6 93.1 94.3 94.0 93.3 87.0 88.0 89.4 1991 92.5 91.6 87.9 91.2 88.5 87.1 91.3 89.7 86.9 82.0 87.7 85.3 1992 82.9 83.8 83.9 86.8 88.8 86.8 88.4 88.9 86.9 81.1 78.0 82.7 1993 84.3 83.1 86.1 84.4 85.3 83.0 84.4 86.3 81.3 72.2 75.5 79.9 1994 82.2 85.6 82.3 75.3 69.9 70.4 70.9 71.5 71.9 77.1 83.9 79.5 1995 87.8 73.6 83.2 69.5 62.9 64.8

  7. Percent of Commercial Natural Gas Deliveries in Kentucky Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 97.1 96.6 96.4 94.9 91.0 89.2 89.5 88.2 89.8 90.7 94.4 97.0 1990 97.2 96.9 96.3 94.8 91.6 91.6 89.5 89.5 89.1 93.3 95.0 96.2 1991 97.1 95.7 94.7 89.8 86.4 85.5 87.5 88.0 91.1 91.5 95.7 95.5 1992 95.4 94.2 93.6 91.9 87.9 86.9 86.7 87.4 87.9 93.0 94.6 94.9 1993 91.6 91.6 95.3 93.5 92.4 93.5 89.9 81.6 88.1 88.5 94.5 95.4 1994 93.6 95.9 94.6 92.1 88.2 85.4 83.0 83.5 83.4 87.6 87.9 89.9 1995 90.8 91.2 89.9 86.3 87.4 80.6

  8. Percent of Commercial Natural Gas Deliveries in Maryland Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 97.1 96.6 97.1 96.7 95.9 95.1 94.3 94.7 94.1 94.2 94.6 96.8 1990 97.6 97.1 96.0 95.7 94.3 94.5 93.6 93.1 92.6 93.3 94.7 95.6 1991 97.3 97.5 97.1 96.6 95.9 94.8 94.5 94.7 94.1 95.8 96.5 97.4 1992 97.2 97.2 96.3 95.6 94.1 92.8 93.1 92.7 94.1 95.0 97.0 97.4 1993 97.3 97.4 96.5 96.3 94.6 96.2 95.0 93.4 93.4 95.4 97.1 98.1 1994 98.1 98.3 98.2 95.8 95.8 95.4 95.2 94.1 95.2 96.2 96.5 97.8 1995 97.9 98.5 97.8 96.7 95.9 96.2

  9. Percent of Commercial Natural Gas Deliveries in Michigan Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 75.8 74.5 76.0 71.7 64.9 47.6 51.7 50.8 57.5 64.4 69.5 73.5 1990 73.1 74.0 74.5 72.3 67.4 58.1 49.6 51.5 52.2 62.1 70.1 74.6 1991 73.0 72.2 72.4 67.3 62.1 51.2 44.3 41.2 47.5 60.1 87.2 70.0 1992 73.7 74.5 71.4 70.5 66.6 55.5 48.5 51.6 49.9 61.1 68.6 73.1 1993 74.5 72.3 72.6 68.0 63.7 51.6 50.5 54.4 50.9 63.1 68.1 73.1 1994 73.7 71.6 70.8 66.3 60.1 45.7 41.7 42.3 45.4 55.4 63.4 69.8 1995 72.5 72.2 71.2 68.0 61.5 45.8

  10. Percent of Commercial Natural Gas Deliveries in Missouri Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 94.4 93.9 94.4 93.2 90.7 85.8 86.1 90.5 86.9 88.8 90.3 92.3 1990 93.7 90.7 89.2 88.2 82.5 77.4 70.9 70.8 72.6 74.8 83.8 85.9 1991 90.8 91.1 89.1 82.1 79.0 75.4 71.1 72.2 75.1 75.6 85.9 88.5 1992 89.7 90.1 89.1 88.1 82.7 80.6 71.9 75.8 74.5 76.1 81.0 87.2 1993 87.5 89.2 89.8 88.1 78.0 74.7 72.2 69.2 74.3 73.4 82.3 85.9 1994 88.8 87.2 87.6 85.1 79.0 75.0 70.2 70.0 68.2 70.2 77.0 82.0 1995 87.0 88.9 87.2 83.3 80.9 75.0

  11. Percent of Commercial Natural Gas Deliveries in Montana Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 98.3 98.9 98.8 98.6 97.4 96.8 96.4 96.3 96.3 97.5 97.9 98.1 1990 97.9 97.8 97.6 98.6 96.9 98.4 96.3 95.8 93.3 96.9 97.6 99.6 1991 98.5 98.1 98.0 97.7 97.8 96.9 95.8 95.8 95.8 96.3 96.5 97.2 1992 97.1 98.0 96.7 96.5 96.6 94.9 95.4 96.8 90.6 92.0 92.8 94.6 1993 95.4 94.0 94.9 93.9 94.9 91.1 91.2 91.2 87.5 88.8 91.5 93.5 1994 92.7 93.0 92.7 91.8 91.9 89.6 88.7 87.8 87.5 89.0 91.2 93.1 1995 93.0 92.5 92.5 91.9 92.0 90.1

  12. Percent of Commercial Natural Gas Deliveries in Nebraska Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 96.8 96.5 97.1 99.8 99.7 99.8 99.9 99.9 99.7 98.8 98.1 98.5 1990 95.6 95.3 94.1 93.2 92.3 89.6 96.9 94.2 93.0 90.2 89.9 93.5 1991 93.6 93.3 91.8 87.9 85.4 88.2 96.4 95.2 85.8 86.1 90.5 91.4 1992 91.7 91.6 89.9 90.9 88.7 81.7 85.6 83.6 80.5 84.5 87.1 90.9 1993 94.1 94.7 94.5 93.4 89.5 88.4 88.1 87.8 82.9 85.2 84.8 92.0 1994 88.2 88.9 85.8 82.3 79.2 72.9 75.9 77.8 65.1 62.2 73.5 80.7 1995 81.4 80.6 79.2 79.8 76.0 71.8

  13. Percent of Commercial Natural Gas Deliveries in Nevada Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 98.0 98.1 96.9 95.0 94.2 94.3 92.7 91.7 91.2 96.2 97.2 98.8 1990 99.1 99.4 97.7 97.0 96.4 96.7 95.7 95.0 95.1 96.8 98.4 99.1 1991 99.4 99.4 94.3 92.2 90.6 87.2 84.0 85.2 79.5 84.3 82.2 89.0 1992 90.6 89.5 88.3 87.2 83.7 84.0 84.8 81.4 82.7 88.9 88.5 95.4 1993 97.0 96.0 94.3 91.0 92.5 90.6 89.7 86.7 89.6 89.7 90.9 93.5 1994 93.8 89.3 86.1 81.3 80.1 79.6 76.4 74.5 76.4 73.9 76.7 81.4 1995 81.5 83.2 77.4 78.9 77.1 76.5

  14. Percent of Commercial Natural Gas Deliveries in New York Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 90.4 90.1 89.3 85.0 85.4 81.3 78.6 78.2 73.6 74.8 82.4 89.7 1990 90.5 92.3 85.6 85.3 78.9 77.8 80.2 80.1 76.5 75.8 80.7 81.5 1991 86.2 85.4 84.4 81.0 75.8 72.8 76.8 75.1 73.1 75.0 79.5 81.1 1992 81.0 78.9 79.5 77.3 72.4 70.9 72.9 69.3 69.3 76.0 82.6 81.5 1993 81.4 81.5 82.3 77.8 71.3 66.2 69.1 72.1 72.8 74.1 77.9 77.2 1994 83.7 83.4 83.3 77.7 73.4 73.2 74.7 73.4 75.1 76.4 78.0 81.9 1995 80.8 82.8 79.3 76.3 71.7 66.5

  15. Percent of Commercial Natural Gas Deliveries in Ohio Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 87.4 88.1 87.1 86.0 81.2 74.4 75.5 75.0 78.9 85.1 87.8 90.3 1990 89.9 89.2 89.9 86.4 82.4 78.5 77.0 75.6 77.7 83.0 87.9 91.4 1991 91.6 90.0 87.2 83.6 78.6 74.7 75.5 73.7 75.6 82.6 87.8 89.8 1992 89.1 88.0 88.4 85.7 78.9 73.9 72.0 73.5 73.1 84.2 85.7 88.5 1993 89.4 87.0 86.9 83.8 76.1 73.9 74.6 69.4 72.6 82.8 84.5 86.3 1994 87.4 86.5 84.9 78.4 75.9 70.5 66.7 67.5 66.5 75.1 78.7 81.5 1995 81.0 80.0 78.6 76.8 67.8 61.4

  16. Percent of Commercial Natural Gas Deliveries in Oklahoma Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 89.7 90.2 91.7 87.9 89.1 86.6 86.7 85.0 86.8 86.5 89.1 91.2 1990 94.8 93.2 92.0 93.2 92.6 90.6 89.1 89.5 88.5 87.8 89.9 90.6 1991 94.6 95.1 92.9 91.4 90.3 88.7 87.1 85.6 86.8 81.2 87.6 90.6 1992 91.6 92.3 87.7 90.9 85.4 84.1 80.2 85.7 84.3 85.3 86.9 88.1 1993 91.8 92.0 91.7 90.9 89.1 83.1 80.5 82.2 83.4 83.1 91.5 91.9 1994 90.7 93.8 93.1 89.6 88.0 81.3 74.6 73.8 76.1 78.1 85.0 91.2 1995 90.7 89.8 89.7 85.3 84.9 79.3

  17. Percent of Commercial Natural Gas Deliveries in Oregon Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 99.1 99.2 98.7 98.3 97.6 97.6 97.0 97.2 97.4 96.7 97.3 98.0 1990 98.2 98.6 98.4 97.4 97.4 97.5 96.6 96.6 96.9 95.6 96.5 98.1 1991 98.7 98.3 97.8 97.7 97.5 98.0 97.3 97.2 97.2 95.9 97.6 98.0 1992 98.6 98.4 97.4 97.7 97.7 97.8 97.9 96.7 97.8 94.6 97.4 98.4 1993 98.6 99.0 98.5 98.0 97.6 97.8 97.6 97.5 97.3 93.6 96.5 98.2 1994 98.5 98.6 98.3 97.4 97.6 97.7 98.1 97.7 97.9 97.0 97.8 98.6 1995 98.5 98.5 98.2 98.2 97.9 97.8

  18. Percent of Commercial Natural Gas Deliveries in Texas Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 87.2 92.4 93.7 92.5 90.6 89.6 93.3 91.2 83.1 87.3 87.9 93.2 1990 91.1 90.1 83.9 90.5 90.3 92.3 90.3 90.7 89.1 87.4 88.0 91.5 1991 92.1 91.3 91.8 92.1 87.7 91.4 91.1 90.4 87.3 80.7 84.8 87.6 1992 86.9 85.6 83.4 83.6 79.5 77.8 77.0 75.9 71.9 72.4 75.3 78.6 1993 85.5 86.7 85.6 85.2 80.1 81.0 82.7 85.1 80.7 81.1 84.2 84.0 1994 82.1 81.6 84.0 83.6 73.8 81.6 88.8 82.6 83.3 75.1 78.9 89.0 1995 72.8 71.3 73.6 70.2 55.0 72.7

  19. Percent of Commercial Natural Gas Deliveries in Virginia Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 98.3 98.4 98.1 97.1 96.4 96.4 93.9 94.1 95.4 93.3 96.4 97.9 1990 97.2 95.9 90.6 86.6 94.2 93.9 94.1 91.9 92.0 92.9 92.5 93.7 1991 95.9 96.9 95.2 93.6 91.8 90.8 91.3 89.5 90.2 92.6 90.9 93.5 1992 94.6 93.3 93.7 91.7 88.9 88.4 86.9 85.9 83.8 89.9 86.6 90.3 1993 90.2 91.8 89.8 87.6 90.1 87.6 85.4 77.2 85.9 79.8 88.8 93.2 1994 95.2 97.2 92.5 82.7 85.1 76.7 82.4 72.9 72.9 76.1 79.4 86.1 1995 90.8 90.0 88.7 77.6 76.2 74.7

  20. Percent of Industrial Natural Gas Deliveries in Wyoming Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 3.6 3.9 3.7 2.8 1.9 2.1 1.8 2.0 2.0 2.3 2.2 1.8 2002 3.3 3.6 3.6 3.0 3.6 2.4 2.6 2.8 2.8 3.2 2.1 2.5 2003 2.4 2.4 2.1 1.8 1.4 1.4 1.4 1.3 1.4 1.4 2.2 2.0 2004 2.0 1.9 2.2 1.9 1.9 1.9 2.7 1.7 2.3 2.0 2.3 2.4 2005 2.8 5.0 5.8 4.5 4.1 3.5 2.8 2.5 2.5 2.8 4.2 4.4 2006 4.4 4.5 4.2 3.9 3.3 2.7 2.2 2.3 2.8 3.3 3.8 3.7 2007 4.3 4.1 3.4 3.7 2.8 2.0 1.5 1.7 1.9 2.9 3.3 3.3 2008 3.8 3.7 3.9 3.9 2.9 2.1 2.0 1.7 2.5 3.0 3.6 3.9

  1. Apparatus for molecular weight separation

    DOE Patents [OSTI]

    Smith, Richard D.; Liu, Chuanliang

    2001-01-01

    The present invention relates generally to an apparatus and method for separating high molecular weight molecules from low molecular weight molecules. More specifically, the invention relates to the use of microdialysis for removal of the salt (low molecular weight molecules) from a nucleotide sample (high molecular weight molecules) for ESI-MS analysis. The dialysis or separation performance of the present invention is improved by (1) increasing dialysis temperature thereby increasing desalting efficiency and improving spectrum quality; (2) adding piperidine and imidazole to the dialysis buffer solution and reducing charge states and further increasing detection sensitivity for DNA; (3) using low concentrations (0-2.5 mM NH4OAc) of dialysis buffer and shifting the DNA negative ions to higher charge states, producing a nearly 10-fold increase in detection sensitivity and a slightly decreased desalting efficiency, (4) conducting a two-stage separation or (5) any combination of (1), (2), (3) and (4).

  2. Researchers Directly Observe Oxygen Signature in the Oxygen-evolving

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complex of Photosynthesis Researchers Directly Observe Oxygen Signature in the Oxygen-evolving Complex of Photosynthesis Arguably the most important chemical reaction on earth is the photosynthetic splitting of water to molecular oxygen by the Mn-containing oxygen-evolving complex (Mn-OEC) in the protein known as photosystem II (PSII). It is this reaction which has, over the course of some 3.8 billion years, gradually filled our atmosphere with O2 and consequently enabled and sustained the

  3. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-05-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, in situ neutron diffraction was used to characterize the chemical and structural properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} (here after as L2SF55T) specimen, which was subject to measurements of neutron diffraction from room temperature to 900 C. It was found that space group of R3c yielded a better refinement than a cubic structure of Pm3m. Oxygen occupancy was nearly 3 in the region from room temperature to 700 C, above which the occupancy decreased due to oxygen loss. Dense OTM bars provided by Praxair were loaded to fracture at varying stress rates. Studies were done at room temperature in air and at 1000 C in a specified environment to evaluate slow crack growth behavior. The X-Ray data and fracture mechanisms points to non-equilibrium decomposition of the LSFCO OTM membrane. The non-equilibrium conditions could probably be due to the nature of the applied stress field (stressing rates) and leads to transition in crystal structures and increased kinetics of decomposition. The formations of a Brownmillerite or Sr2Fe2O5 type structures, which are orthorhombic are attributed to the ordering of oxygen vacancies. The cubic to orthorhombic transitions leads to 2.6% increase in strains and thus residual stresses generated could influence the fracture behavior of the OTM membrane. Continued investigations on the thermodynamic properties (stability and phase-separation behavior) and total conductivity of prototype membrane materials were carried out. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previously characterization, stoichiometry and conductivity measurements for samples of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} were reported. In this report

  4. Oxygenates from synthesis gas

    SciTech Connect (OSTI)

    Falter, W.; Keim, W.

    1994-12-31

    The direct synthesis of oxygenates starting from synthesis gas is feasible by homogeneous and heterogeneous catalysis. Homogeneous Rh and Ru based catalysts yielding methyl formate and alcohols will be presented. Interestingly, modified heterogeneous catalysts based on {open_quotes}Isobutyl Oel{close_quotes} catalysis, practized in Germany (BRD) up to 1952 and in the former DDR until recently, yield isobutanol in addition to methanol. These {open_quotes}Isobutyl Oel{close_quotes} catalysts are obtained by adding a base such as Li < Na < K < Cs to a Zn-Cr{sub 2}O{sub 3} methanol catalyst. Isobutanol is obtained in up to 15% yield. Our best catalyst a Zr-Zn-Mn-Li-Pd catalyst produced isobotanol up to 60% at a rate of 740g isobutanol per liter catalyst and hour.

  5. Oxygen-reducing catalyst layer

    DOE Patents [OSTI]

    O'Brien, Dennis P.; Schmoeckel, Alison K.; Vernstrom, George D.; Atanasoski, Radoslav; Wood, Thomas E.; Yang, Ruizhi; Easton, E. Bradley; Dahn, Jeffrey R.; O'Neill, David G.

    2011-03-22

    An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

  6. MTBE, Oxygenates, and Motor Gasoline

    Gasoline and Diesel Fuel Update (EIA)

    MTBE, Oxygenates, and Motor Gasoline Contents * Introduction * Federal gasoline product quality regulations * What are oxygenates? * Who gets gasoline with oxygenates? * Which areas get MTBE? * How much has been invested in MTBE production capacity? * What does new Ethanol capacity cost? * What would an MTBE ban cost? * On-line information resources * Endnotes * Summary of revisions to this analysis Introduction The blending of methyl tertiary butyl ether (MTBE) into motor gasoline has increased

  7. Multicomponent phase diagrams for battery applications. II. Oxygen impurities in the Li(Si)/FeS/sub 2/ battery cathode

    SciTech Connect (OSTI)

    Aselage, T.L.; Hellstrom, E.E.

    1987-08-01

    The effect on the voltage response of the Li(Si)/FeS/sub 2/ thermal battery due to Fe/sub 2/O/sub 3/, FeSO/sub 4/, and Fe/sub 2/(SO/sub 4/)/sub 3/ impurities in the FeS/sub 2/ cathode has been studied. Calculations were made of the pertinent equilibrium phase relations in the Li-Fe-S-O system at 400/sup 0/C, and of the voltage of each of the four-phase regions vs. a Li(Si) anode (44 weight percent Li). The calculations showed that these impurities in the FeS/sub 2/ cathode can all cause voltages that are higher than the steady-state voltage of the battery. The study showed that equilibrating FeS/sub 2/ cathode material that contains oxygen impurities with a small amount of a compound containing Li shifts the overall cathode composition into one of three four-phase regions that exhibits the steady-state battery voltage.

  8. EIA-819, Monthly Oxygenate Report ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (EIA) Form EIA-819, "Monthly Biofuel and Oxygenate Report," is used to collect data on ethanol production capacity, as well as stocks, receipts, inputs, production, and blending of...

  9. Dilute Oxygen Combustion - Phase 3 Report

    SciTech Connect (OSTI)

    Riley, Michael F.

    2000-05-31

    Dilute Oxygen Combustion (DOC) burners have been successfully installed and operated in the reheat furnace at Auburn Steel Co., Inc., Auburn, NY, under Phase 3 of the Dilute Oxygen Combustion project. Two new preheat zones were created employing a total of eight 6.5 MMBtu/hr capacity burners. The preheat zones provide a 30 percent increase in maximum furnace production rate, from 75 tph to 100 tph. The fuel rate is essentially unchanged, with the fuel savings expected from oxy-fuel combustion being offset by higher flue gas temperatures. When allowance is made for the high nitrogen level and high gas phase temperature in the furnace, measured NOx emissions are in line with laboratory data on DOC burners developed in Phase 1 of the project. Burner performance has been good, and there have been no operating or maintenance problems. The DOC system continues to be used as part of Auburn Steel's standard reheat furnace practice. High gas phase temperature is a result of the high firing density needed to achieve high production rates, and little opportunity exists for improvement in that area. However, fuel and NOx performance can be improved by further conversion on furnace zones to DOC burners, which will lower furnace nitrogen levels. Major obstacles are cost and concern about increased formation of oxide scale on the steel. Oxide scale formation may be enhanced by exposure of the steel to higher concentrations of oxidizing gas components (primarily products of combustion) in the higher temperature zones of the furnace. Phase 4 of the DOC project will examine the rate of oxide scale formation in these higher temperature zones and develop countermeasures that will allow DOC burners to be used successfully in these furnace zones.

  10. Dilute Oxygen Combustion Phase 3 Final Report

    SciTech Connect (OSTI)

    Riley, M.F.; Ryan, H.M.

    2000-05-31

    Dilute Oxygen Combustion (DOC) burners have been successfully installed and operated in the reheat furnace at Auburn Steel Co., Inc., Auburn, NY, under Phase 3 of the Dilute Oxygen Combustion project. Two new preheat zones were created employing a total of eight 6.5 MMBtu/hr capacity burners. The preheat zones provide a 30 percent increase in maximum furnace production rate, from 75 tph to 100 tph. The fuel rate is essentially unchanged, with the fuel savings expected from oxy-fuel combustion being offset by higher flue gas temperatures. When allowance is made for the high nitrogen level and high gas phase temperature in the furnace, measured NOx emissions are in line with laboratory data on DOC burners developed in Phase 1 of the project. Burner performance has been good and there have been no operating or maintenance problems. The DOC system continues to be used as part of Auburn Steel?s standard reheat furnace practice. High gas phase temperature is a result of the high firing density needed to achieve high production rates, and little opportunity exists for improvement in that area. However, fuel and NOx performance can be improved by further conversion of furnace zones to DOC burners, which will lower furnace nitrogen levels. Major obstacles are cost and concern about increased formation of oxide scale on the steel. Oxide scale formation may be enhanced by exposure of the steel to higher concentrations of oxidizing gas components (primarily products of combustion) in the higher temperature zones of the furnace. Phase 4 of the DOC project will examine the rate of oxide scale formation in these higher temperature zones and develop countermeasures that will allow DOC burners to be used successfully in these furnace zones.

  11. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-10-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, Moessbauer spectroscopy was used to study the local environmentals of LSFT with various level of oxygen deficiency. Ionic valence state, magnetic interaction and influence of Ti on superexchange are discussed Stable crack growth studies on Dense OTM bars provided by Praxair were done at elevated temperature, pressure and elevated conditions. Post-fracture X-ray data of the OTM fractured at 1000 C in environment were refined by FullProf code and results indicate a distortion of the parent cubic perovskite to orthorhombic structure with reduced symmetry. TGA-DTA studies on the post-fracture samples also indicated residual effect arising from the thermal and stress history of the samples. An electrochemical cell has been designed and built for measurements of the Seebeck coefficient as a function of temperature and pressure. The initial measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} are reported. Neutron diffraction measurements of the same composition are in agreement with both the stoichiometry and the kinetic behavior observed in coulometric titration measurements. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The COCO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  12. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; W.B. Yelon; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-02-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and initial studies on newer composition of Ti doped LSF. Dense OTM bars provided by Praxair were loaded to fracture at varying stress rates. Studies were done at room temperature in air and at 1000 C in a specified environment to evaluate slow crack growth behavior. In addition, studies were also begun to obtain reliable estimates of fracture toughness and stable crack growth in specific environments. Newer composition of Ti doped LSF membranes were characterized by neutron diffraction analysis. Quench studies indicated an apparent correlation between the unit cell volume and oxygen occupancy. The studies however, indicated an anomaly of increasing Fe/Ti ratio with change in heat treatment. Ti doped LSF was also characterized for stoichiometry as a function of temp and pO{sub 2}. The non stoichiometry parameter {delta} was observed to increase almost linearly on lowering pO{sub 2} until a ideal stoichiometric composition of {delta} = 0.175 was approached.

  13. Oxygen detection using evanescent fields

    DOE Patents [OSTI]

    Duan, Yixiang; Cao, Weenqing

    2007-08-28

    An apparatus and method for the detection of oxygen using optical fiber based evanescent light absorption. Methylene blue was immobilized using a sol-gel process on a portion of the exterior surface of an optical fiber for which the cladding has been removed, thereby forming an optical oxygen sensor. When light is directed through the optical fiber, transmitted light intensity varies as a result of changes in the absorption of evanescent light by the methylene blue in response to the oxygen concentration to which the sensor is exposed. The sensor was found to have a linear response to oxygen concentration on a semi-logarithmic scale within the oxygen concentration range between 0.6% and 20.9%, a response time and a recovery time of about 3 s, ant to exhibit good reversibility and repeatability. An increase in temperature from 21.degree. C. to 35.degree. C. does not affect the net absorption of the sensor.

  14. Sandia Energy - More Energy with Less Weight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    More Energy with Less Weight Home Renewable Energy Energy News Wind Energy More Energy with Less Weight Previous Next More Energy with Less Weight The following is from an article...

  15. Mixed oxygen ion/electron-conducting ceramics for oxygen separation

    SciTech Connect (OSTI)

    Stevenson, J.W.; Armstrong, B.L.; Armstrong, T.R.; Bates, J.L.; Pederson, L.R.; Weber, W.J.

    1995-05-01

    Solid mixed-conducting electrolytes in the series La{sub l-x}A{sub x}Co{sub l-y}Fe{sub y}O{sub 3-{delta}} (A = Sr,Ca,Ba) are potentially useful as passive membranes to separate high purity oxygen from air and as cathodes in fuel cells. All of the compositions studied exhibited very high electrical conductivities. At lower temperatures, conductivities increased with increasing temperature, characterized by activation energies of 0.05 to 0.16 eV that are consistent with a small polaron (localized electronic carrier) conduction mechanism. At higher temperatures, electronic conductivities tended to decrease with increasing temperature, which is attributed to decreased electronic carrier populations associated with lattice oxygen loss. Oxygen ion conductivities were higher than that of yttria stabilized zirconia and increased with the cobalt content and also increased with the extent of divalent A-site substitution. Thermogravimetric studies were conducted to establish the extent of oxygen vacancy formation as a function of temperature, oxygen partial pressure, and composition. These vacancy populations strongly depend on the extent of A-site substitution. Passive oxygen permeation rates were established for each of the compositions as a function of temperature and oxygen partial pressure gradient. For 2.5 mm thick membranes in an oxygen vs nitrogen partial pressure gradient, oxygen fluxes at 900 C ranged from approximately 0.3 sccm/cm{sup 2} for compositions high in iron and with low amounts of strontium A-site substitution to approximately 0.8 sccm/cm{sup 2} for compositions high in cobalt and strontium. A-site substitution with calcium instead of strontium resulted in substantially lower fluxes.

  16. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-11-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the current research, the electrical conductivity and Seebeck coefficient were measured as a function of temperature in air. Based on these measurements, the charge carrier concentration, net acceptor dopant concentration, activation energy of conduction and mobility were estimated. The studies on the fracture toughness of the LSFT and dual phase membranes at room temperature have been completed and reported previously. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affects the mechanical properties. To study the effect of temperature on the membranes when exposed to an inert environment, the membranes (LAFT and Dual phase) were heat treated at 1000 C in air and N{sub 2} atmosphere and hardness and fracture toughness of the membranes were studied after the treatment. The indentation method was used to find the fracture toughness and the effect of the heat treatment on the mechanical properties of the membranes. Further results on the investigation of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appears to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model will serve to study ''frozen'' profiles in patterned or composite membranes.

  17. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana

    2003-08-07

    In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/ Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Existing facilities were modified for evaluation of environmental assisted slow crack growth and creep in flexural mode. Processing of perovskites of LSC, LSF and LSCF composition were continued for evaluation of mechanical properties as a function of environment. These studies in parallel to those on the LSFCO composition is expect to yield important information on questions such as the role of cation segregation and the stability of the perovskite structure on crack initiation vs. crack growth. Studies have been continued on the La{sub 1-x}Sr{sub x}FeO{sub 3-d} composition using neutron diffraction and TGA studies. A transition from p-type to n-type of conductor was observed at relative low pO{sub 2}, at which the majority carriers changed from the holes to electrons because of the valence state decreases in Fe due to the further loss of oxygen. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport. Data obtained at 850 C show that the stoichiometry in La{sub 0.2}Sr{sub 0.8}Fe{sub 0.8}Cr{sub 0.2}O{sub 3-x} vary from {approx}2.85 to 2.6 over the pressure range studied. From the stoichiometry a lower limit of 2.6 corresponding to the reduction of all Fe{sup 4+} to Fe{sup 3+} and no reduction of Cr{sup 3+} is expected.

  18. SAVANNAH RIVER SITE TANK CLEANING: CORROSION RATE FOR ONE VERSUS EIGHT PERCENT OXALIC ACID SOLUTION

    SciTech Connect (OSTI)

    Ketusky, E.; Subramanian, K.

    2011-01-20

    Until recently, the use of oxalic acid for chemically cleaning the Savannah River Site (SRS) radioactive waste tanks focused on using concentrated 4 and 8-wt% solutions. Recent testing and research on applicable dissolution mechanisms have concluded that under appropriate conditions, dilute solutions of oxalic acid (i.e., 1-wt%) may be more effective. Based on the need to maximize cleaning effectiveness, coupled with the need to minimize downstream impacts, SRS is now developing plans for using a 1-wt% oxalic acid solution. A technology gap associated with using a 1-wt% oxalic acid solution was a dearth of suitable corrosion data. Assuming oxalic acid's passivation of carbon steel was proportional to the free oxalate concentration, the general corrosion rate (CR) from a 1-wt% solution may not be bound by those from 8-wt%. Therefore, after developing the test strategy and plan, the corrosion testing was performed. Starting with the envisioned process specific baseline solvent, a 1-wt% oxalic acid solution, with sludge (limited to Purex type sludge-simulant for this initial effort) at 75 C and agitated, the corrosion rate (CR) was determined from the measured weight loss of the exposed coupon. Environmental variations tested were: (a) Inclusion of sludge in the test vessel or assuming a pure oxalic acid solution; (b) acid solution temperature maintained at 75 or 45 C; and (c) agitation of the acid solution or stagnant. Application of select electrochemical testing (EC) explored the impact of each variation on the passivation mechanisms and confirmed the CR. The 1-wt% results were then compared to those from the 8-wt%. The immersion coupons showed that the maximum time averaged CR for a 1-wt% solution with sludge was less than 25-mils/yr for all conditions. For an agitated 8-wt% solution with sludge, the maximum time averaged CR was about 30-mils/yr at 50 C, and 86-mils/yr at 75 C. Both the 1-wt% and the 8-wt% testing demonstrated that if the sludge was removed from

  19. Studies of transverse momentum dependent parton distributions and Bessel weighting

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aghasyan, M.; Avakian, H.; De Sanctis, E.; Gamberg, L.; Mirazita, M.; Musch, B.; Prokudin, A.; Rossi, P.

    2015-03-01

    In this paper we present a new technique for analysis of transverse momentum dependent parton distribution functions, based on the Bessel weighting formalism. The procedure is applied to studies of the double longitudinal spin asymmetry in semi-inclusive deep inelastic scattering using a new dedicated Monte Carlo generator which includes quark intrinsic transverse momentum within the generalized parton model. Using a fully differential cross section for the process, the effect of four momentum conservation is analyzed using various input models for transverse momentum distributions and fragmentation functions. We observe a few percent systematic offset of the Bessel-weighted asymmetry obtained from Montemore » Carlo extraction compared to input model calculations, which is due to the limitations imposed by the energy and momentum conservation at the given energy/Q2. We find that the Bessel weighting technique provides a powerful and reliable tool to study the Fourier transform of TMDs with controlled systematics due to experimental acceptances and resolutions with different TMD model inputs.« less

  20. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana; Thomas W. Eagar; Harold R. Larson; Raymundo Arroyave; X.-D Zhou; Y.-W. Shin; H.U. Anderson; Nigel Browning; Alan Jacobson; C.A. Mims

    2003-11-01

    The present quarterly report describes some of the initial studies on newer compositions and also includes newer approaches to address various materials issues such as in metal-ceramic sealing. The current quarter's research has also focused on developing a comprehensive reliability model for predicting the structural behavior of the membranes in realistic conditions. In parallel to industry provided compositions, models membranes have been evaluated in varying environment. Of importance is the behavior of flaws and generation of new flaws aiding in fracture. Fracture mechanics parameters such as crack tip stresses are generated to characterize the influence of environment. Room temperature slow crack growth studies have also been initiated in industry provided compositions. The electrical conductivity and defect chemistry of an A site deficient compound (La{sub 0.55}Sr{sub 0.35}FeO{sub 3}) was studied. A higher conductivity was observed for La{sub 0.55}Sr{sub 0.35}FeO{sub 3} than that of La{sub 0.60}Sr{sub 0.40}FeO{sub 3} and La{sub 0.80}Sr{sub 0.20}FeO{sub 3}. Defect chemistry analysis showed that it was primarily contributed by a higher carrier concentration in La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. Moreover, the ability for oxygen vacancy generation is much higher in La{sub 0.55}Sr{sub 0.35}FeO{sub 3} as well, which indicates a lower bonding strength between Fe-O and a possible higher catalytic activity for La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. The program continued to investigate the thermodynamic properties (stability and phase separation behavior) and total conductivity of prototype membrane materials. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previous report listed initial measurements on a sample of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-x} prepared in-house by Praxair. Subsequently, a second sample of powder from a larger batch of sample were characterized and compared with

  1. A lithium oxygen secondary battery

    SciTech Connect (OSTI)

    Semkow, K.W.; Sammells, A.F.

    1987-08-01

    In principle the lithium-oxygen couple should provide one of the highest energy densities yet investigated for advanced battery systems. The problem to this time has been one of identifying strategies for achieving high electrochemical reversibilities at each electrode under conditions where one might anticipate to also achieve long materials lifetimes. This has been addressed in recent work by us via the application of stabilized zirconia oxygen vacancy conducting solid electrolytes, for the effective separation of respective half-cell reactions.

  2. Platinum Monolayer Electrocatalysts for Oxygen Reduction Reaction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Platinum Monolayer Electrocatalysts for Oxygen Reduction Reaction Platinum Monolayer Electrocatalysts for Oxygen Reduction Reaction Download presentation slides from the June 19, ...

  3. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-05-01

    the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The CO-CO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  4. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-05-01

    been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The CO-CO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  5. EVALUATING AN INNOVATIVE OXYGEN SENSOR FOR REMOTE SUBSURFACE OXYGEN MEASUREMENTS

    SciTech Connect (OSTI)

    Millings, M; Brian Riha, B; Warren Hyde, W; Karen Vangelas, K; Brian02 Looney, B

    2006-10-12

    Oxygen is a primary indicator of whether anaerobic reductive dechlorination and similar redox based processes contribute to natural attenuation remedies at chlorinated solvent contaminated sites. Thus, oxygen is a viable indicator parameter for documenting that a system is being sustained in an anaerobic condition. A team of researchers investigated the adaptation of an optical sensor that was developed for oceanographic applications. The optical sensor, because of its design and operating principle, has potential for extended deployment and sensitivity at the low oxygen levels relevant to natural attenuation. The results of the research indicate this tool will be useful for in situ long-term monitoring applications, but that the traditional characterization tools continue to be appropriate for characterization activities.

  6. Electrochemical oxygen pumps. Final CRADA report.

    SciTech Connect (OSTI)

    Carter, J. D. Noble, J.

    2009-10-01

    All tasks of the Work Plan of ISTC Project 2277p have been completed, thus: (1) techniques of chemical synthesis were developed for more than ten recipes of electrolyte based on cerium oxide doped with 20 mole% of gadolinium (CeGd)O{sub 2}, doped by more than 10 oxide systems including 6 recipes in addition to the Work Plan; (2) electric conductivity and mechanical strength of CeGd specimens with additions of oxide systems were performed, two candidate materials for the electrolyte of electrochemical oxygen pump (pure CeGd and CeGd doped by 0.2 wt% of a transition metal) were chosen; (3) extended studies of mechanical strength of candidate material specimens were performed at room temperature and at 400, 600, 800 C; (4) fixtures for determination of mechanical strength of tubes by external pressure above 40 atmospheres at temperature up to 700 C were developed and fabricated; and (5) technology of slip casting of tubes from pure (Ce,Gd)O{sub 2} and of (Ce,Gd)O{sub 2} doped by 0.2 wt% of a transition metal, withstanding external pressure of minimum 40 atmospheres at temperature up to 700 C was developed, a batch of tubes was sent for testing to Argonne National Laboratory; (6) technology of making nanopowder from pure (Ce,Gd)O{sub 2} was developed based on chemical synthesis and laser ablation techniques, a batch of nanopowder with the weight 1 kg was sent for testing to Argonne National Laboratory; (7) a business plan for establishing a company for making powders of materials for electrochemical oxygen pump was developed; and (8) major results obtained within the Project were reported at international conferences and published in the Russian journal Electrochemistry. In accordance with the Work Plan a business trip of the following project participants was scheduled for April 22-29, 2006, to Tonawanda, NY, USA: Manager Victor Borisov; Leader of technology development Gennady Studenikin; Leader of business planning Elena Zadorozhnaya; Leader of production Vasily

  7. Process for selection of Oxygen-tolerant algal mutants that produce H.sub.2

    DOE Patents [OSTI]

    Ghirardi, Maria L.; Seibert, Michael

    1999-01-01

    A process for selection of oxygen-tolerant, H.sub.2 -producing algal mutant cells comprising: (a) growing algal cells photoautotrophically under fluorescent light to mid log phase; (b) inducing algal cells grown photoautrophically under fluorescent light to mid log phase in step (a) anaerobically by (1) resuspending the cells in a buffer solution and making said suspension anaerobic with an inert gas; (2) incubating the suspension in the absence of light at ambient temperature; (c) treating the cells from step (b) with metronidazole, sodium azide, and added oxygen to controlled concentrations in the presence of white light. (d) washing off metronidazole and sodium azide to obtain final cell suspension; (e) plating said final cell suspension on a minimal medium and incubating in light at a temperature sufficient to enable colonies to appear; (f) counting the number of colonies to determine the percent of mutant survivors; and (g) testing survivors to identify oxygen-tolerant H.sub.2 -producing mutants.

  8. Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight The gross weight of a vehicle (GVW) is the weight of the empty vehicle plus the weight of the maximum payload that the vehicle was designed to carry. In cars and small light trucks, the difference between the empty weight of the vehicle and the GVW is not significantly different (1,000 to 1,500 lbs). The largest trucks and tractor-trailers,

  9. Methods for separating oxygen from oxygen-containing gases

    DOE Patents [OSTI]

    Mackay, Richard; Schwartz, Michael; Sammells, Anthony F.

    2000-01-01

    This invention provides mixed conducting metal oxides particularly useful for the manufacture of catalytic membranes for gas-phase oxygen separation processes. The materials of this invention have the general formula: A.sub.x A'.sub.x A".sub.2-(x+x') B.sub.y B'.sub.y B".sub.2-(y+y') O.sub.5+z ; where x and x' are greater than 0; y and y' are greater than 0; x+x' is less than or equal to 2; y+y' is less than or equal to 2; z is a number that makes the metal oxide charge neutral; A is an element selected from the f block lanthanide elements; A' is an element selected from Be, Mg, Ca, Sr, Ba and Ra; A" is an element selected from the f block lanthanides or Be, Mg, Ca, Sr, Ba and Ra; B is an element selected from the group consisting of Al, Ga, In or mixtures thereof; and B' and B" are different elements and are independently selected from the group of elements Mg or the d-block transition elements. The invention also provides methods for oxygen separation and oxygen enrichment of oxygen deficient gases which employ mixed conducting metal oxides of the above formula. Examples of the materials used for the preparation of the membrane include A.sub.x Sr.sub.x' B.sub.y Fe.sub.y' Co.sub.2-(y+y') O.sub.5+z, where x is about 0.3 to about 0.5, x' is about 1.5 to about 1.7, y is 0.6, y' is between about 1.0 and 1.4 and B is Ga or Al.

  10. Catalyst containing oxygen transport membrane

    DOE Patents [OSTI]

    Christie, Gervase Maxwell; Wilson, Jamie Robyn; van Hassel, Bart Antonie

    2012-12-04

    A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a high average pore diameter and the intermediate porous layer has a lower permeability and lower pore diameter than the porous support layer. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.

  11. Composite oxygen ion transport element

    DOE Patents [OSTI]

    Chen, Jack C.; Besecker, Charles J.; Chen, Hancun; Robinson, Earil T.

    2007-06-12

    A composite oxygen ion transport element that has a layered structure formed by a dense layer to transport oxygen ions and electrons and a porous support layer to provide mechanical support. The dense layer can be formed of a mixture of a mixed conductor, an ionic conductor, and a metal. The porous support layer can be fabricated from an oxide dispersion strengthened metal, a metal-reinforced intermetallic alloy, a boron-doped Mo.sub.5Si.sub.3-based intermetallic alloy or combinations thereof. The support layer can be provided with a network of non-interconnected pores and each of said pores communicates between opposite surfaces of said support layer. Such a support layer can be advantageously employed to reduce diffusion resistance in any type of element, including those using a different material makeup than that outlined above.

  12. Oxygen transport properties estimation by DSMC-CT simulations

    SciTech Connect (OSTI)

    Bruno, Domenico; Frezzotti, Aldo; Ghiroldi, Gian Pietro

    2014-12-09

    Coupling DSMC simulations with classical trajectories calculations is emerging as a powerful tool to improve predictive capabilities of computational rarefied gas dynamics. The considerable increase of computational effort outlined in the early application of the method (Koura,1997) can be compensated by running simulations on massively parallel computers. In particular, GPU acceleration has been found quite effective in reducing computing time (Ferrigni,2012; Norman et al.,2013) of DSMC-CT simulations. The aim of the present work is to study rarefied Oxygen flows by modeling binary collisions through an accurate potential energy surface, obtained by molecular beams scattering (Aquilanti, et al.,1999). The accuracy of the method is assessed by calculating molecular Oxygen shear viscosity and heat conductivity following three different DSMC-CT simulation methods. In the first one, transport properties are obtained from DSMC-CT simulations of spontaneous fluctuation of an equilibrium state (Bruno et al, Phys. Fluids, 23, 093104, 2011). In the second method, the collision trajectory calculation is incorporated in a Monte Carlo integration procedure to evaluate the Taxman’s expressions for the transport properties of polyatomic gases (Taxman,1959). In the third, non-equilibrium zero and one-dimensional rarefied gas dynamic simulations are adopted and the transport properties are computed from the non-equilibrium fluxes of momentum and energy. The three methods provide close values of the transport properties, their estimated statistical error not exceeding 3%. The experimental values are slightly underestimated, the percentage deviation being, again, few percent.

  13. Oxygen-Enriched Combustion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oxygen-Enriched Combustion Oxygen-Enriched Combustion This tip sheet discusses how an increase in oxygen in combustion air can reduce the energy loss in the exhaust gases and increase process heating system efficiency. PROCESS HEATING TIP SHEET #3 Oxygen-Enriched Combustion (September 2005) (249.42 KB) More Documents & Publications Save Energy Now in Your Process Heating Systems Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A

  14. The effects of changing exercise levels on weight and age-relatedweight gain

    SciTech Connect (OSTI)

    Williams, Paul T.; Wood, Peter D.

    2004-06-01

    To determine prospectively whether physical activity canprevent age-related weight gain and whether changing levels of activityaffect body weight. DESIGN/SUBJECTS: The study consisted of 8,080 maleand 4,871 female runners who completed two questionnaires an average(+/-standard deviation (s.d.)) of 3.20+/-2.30 and 2.59+/-2.17 yearsapart, respectively, as part of the National Runners' Health Study.RESULTS: Changes in running distance were inversely related to changes inmen's and women's body mass indices (BMIs) (slope+/-standard error(s.e.): -0.015+/-0.001 and -0.009+/-0.001 kg/m(2) per Deltakm/week,respectively), waist circumferences (-0.030+/-0.002 and -0.022+/-0.005 cmper Deltakm/week, respectively) and percent changes in body weight(-0.062+/-0.003 and -0.041+/-0.003 percent per Deltakm/week,respectively, all P<0.0001). The regression slopes were significantlysteeper (more negative) in men than women for DeltaBMI and Deltapercentbody weight (P<0.0001). A longer history of running diminishedthe impact of changing running distance on men's weights. When adjustedfor Deltakm/week, years of aging in men and years of aging in women wereassociated with increases of 0.066+/-0.005 and 0.056+/-0.006 kg/m(2) inBMI, respectively, increases of 0.294+/-0.019 and 0.279+/-0.028 percentin Delta percentbody weight, respectively, and increases of 0.203+/-0.016and 0.271+/-0.033 cm in waist circumference, respectively (allP<0.0001). These regression slopes suggest that vigorous exercise mayneed to increase 4.4 km/week annually in men and 6.2 km/week annually inwomen to compensate for the expected gain in weight associated with aging(2.7 and 3.9 km/week annually when correct for the attenuation due tomeasurement error). CONCLUSIONS: Age-related weight gain occurs evenamong the most active individuals when exercise is constant.Theoretically, vigorous exercise must increase significantly with age tocompensate for the expected gain in weight associated withaging.

  15. Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation

    SciTech Connect (OSTI)

    Keller, Brad M.; Nathan, Diane L.; Wang Yan; Zheng Yuanjie; Gee, James C.; Conant, Emily F.; Kontos, Despina

    2012-08-15

    aggregated into a final dense tissue segmentation that is used to compute breast PD%. Our method is validated on a group of 81 women for whom bilateral, mediolateral oblique, raw and processed screening digital mammograms were available, and agreement is assessed with both continuous and categorical density estimates made by a trained breast-imaging radiologist. Results: Strong association between algorithm-estimated and radiologist-provided breast PD% was detected for both raw (r= 0.82, p < 0.001) and processed (r= 0.85, p < 0.001) digital mammograms on a per-breast basis. Stronger agreement was found when overall breast density was assessed on a per-woman basis for both raw (r= 0.85, p < 0.001) and processed (0.89, p < 0.001) mammograms. Strong agreement between categorical density estimates was also seen (weighted Cohen's {kappa}{>=} 0.79). Repeated measures analysis of variance demonstrated no statistically significant differences between the PD% estimates (p > 0.1) due to either presentation of the image (raw vs processed) or method of PD% assessment (radiologist vs algorithm). Conclusions: The proposed fully automated algorithm was successful in estimating breast percent density from both raw and processed digital mammographic images. Accurate assessment of a woman's breast density is critical in order for the estimate to be incorporated into risk assessment models. These results show promise for the clinical application of the algorithm in quantifying breast density in a repeatable manner, both at time of imaging as well as in retrospective studies.

  16. Production of high molecular weight polylactic acid

    DOE Patents [OSTI]

    Bonsignore, Patrick V.

    1995-01-01

    A degradable high molecular weight poly(lactic acid). A poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

  17. Production of high molecular weight polylactic acid

    DOE Patents [OSTI]

    Bonsignore, P.V.

    1995-11-28

    A degradable high molecular weight poly(lactic acid) is described. The poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

  18. Task-based weights for photon counting spectral x-ray imaging

    SciTech Connect (OSTI)

    Bornefalk, Hans

    2011-11-15

    Purpose: To develop a framework for taking the spatial frequency composition of an imaging task into account when determining optimal bin weight factors for photon counting energy sensitive x-ray systems. A second purpose of the investigation is to evaluate the possible improvement compared to using pixel based weights. Methods: The Fourier based approach of imaging performance and detectability index d' is applied to pulse height discriminating photon counting systems. The dependency of d' on the bin weight factors is made explicit, taking into account both differences in signal and noise transfer characteristics across bins and the spatial frequency dependency of interbin correlations from reabsorbed scatter. Using a simplified model of a specific silicon detector, d' values for a high and a low frequency imaging task are determined for optimal weights and compared to pixel based weights. Results: The method successfully identifies bins where a large point spread function degrades detection of high spatial frequency targets. The method is also successful in determining how to downweigh highly correlated bins. Quantitative predictions for the simplified silicon detector model indicate that improvements in the detectability index when applying task-based weights instead of pixel based weights are small for high frequency targets, but could be in excess of 10% for low frequency tasks where scatter-induced correlation otherwise degrade detectability. Conclusions: The proposed method makes the spatial frequency dependency of complex correlation structures between bins and their effect on the system detective quantum efficiency easier to analyze and allows optimizing bin weights for given imaging tasks. A potential increase in detectability of double digit percents in silicon detector systems operated at typical CT energies (100 kVp) merits further evaluation on a real system. The method is noted to be of higher relevance for silicon detectors than for cadmium (zink

  19. Oxygen permeation and coal-gas-assisted hydrogen production using...

    Office of Scientific and Technical Information (OSTI)

    Oxygen permeation and coal-gas-assisted hydrogen production using oxygen transport membranes Citation Details In-Document Search Title: Oxygen permeation and coal-gas-assisted ...

  20. The mechanisms of oxygen reduction and evolution reactions in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and evolution reactions in nonaqueous lithium-oxygen batteries A mechanistic understanding of the oxygen reductionevolution reaction in non-aqueous lithium-oxygen batteries. ...

  1. Commercialization Development of Oxygen Fired CFB for Greenhouse Gas Control

    SciTech Connect (OSTI)

    Nsakala ya Nsakala; Gregory N. Liljedahl; David G. Turek

    2007-03-31

    Given that fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic (i.e., man-made) CO{sub 2} emissions. In 2001, ALSTOM Power Inc. (ALSTOM) began a two-phase program to investigate the feasibility of various carbon capture technologies. This program was sponsored under a Cooperative Agreement from the US Department of Energy's National Energy Technology Laboratory (DOE). The first phase entailed a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants. Thirteen cases, representing various levels of technology development, were evaluated. Seven cases represented coal combustion in CFB type equipment. Four cases represented Integrated Gasification Combined Cycle (IGCC) systems. Two cases represented advanced Chemical Looping Combined Cycle systems. Marion, et al. reported the details of this work in 2003. One of the thirteen cases studied utilized an oxygen-fired circulating fluidized bed (CFB) boiler. In this concept, the fuel is fired with a mixture of oxygen and recirculated flue gas (mainly CO{sub 2}). This combustion process yields a flue gas containing over 80 percent (by volume) CO{sub 2}. This flue gas can be processed relatively easily to enrich the CO{sub 2} content to over 96 percent for use in enhanced oil or gas recovery (EOR or EGR) or simply dried for sequestration. The Phase I study identified the O{sub 2}-fired CFB as having a near term development potential, because it uses conventional commercial CFB technology and commercially available CO{sub 2} capture enabling technologies such as cryogenic air separation and simple rectification or distillation gas processing systems. In the long term, air separation technology

  2. Maintaining ideal body weight counseling sessions

    SciTech Connect (OSTI)

    Brammer, S.H.

    1980-10-09

    The purpose of this program is to provide employees with the motivation, knowledge and skills necessary to maintain ideal body weight throughout life. The target audience for this program, which is conducted in an industrial setting, is the employee 40 years of age or younger who is at or near his/her ideal body weight.

  3. Thermal performance measurements of a 100 percent polyester MLI (multilayer insulation) system for the Superconducting Super Collider

    SciTech Connect (OSTI)

    Boroski, W.N.; Gonczy, J.D.; Niemann, R.C.

    1989-09-01

    Thermal performance measurements of a 100 percent polyester multilayer insulation (MLI) system for the Superconducting Super Collider (SSC) were conducted in a Heat Leak Test Facility (HLTF) under three experimental test arrangements. Each experiment measured the thermal performance of a 32-layer MLI blanket instrumented with twenty foil sensors to measure interstitial layer temperatures. Heat leak values and sensor temperatures were monitored during transient and steady state conditions under both design and degraded insulating vacuums. Heat leak values were measured using a heatmeter. MLI interstitial layer temperatures were measured using Cryogenic Linear Temperature Sensors (CLTS). Platinum resistors monitored system temperatures. High vacuum was measured using ion gauges; degraded vacuum employed thermocouple gauges. A four-wire system monitored instrumentation sensors and calibration heaters. An on-line computerized data acquisition system recorded and processes data. This paper reports on the instrumentation and experimental preparation used in carrying out these measurements. In complement with this paper is an associate paper bearing the same title head, but with the title extension Part 2: Laboratory results (300K--80K). 13 refs., 7 figs.

  4. Guidance for growth factors, projections, and control strategies for the 15 percent rate-of-progress plans

    SciTech Connect (OSTI)

    Not Available

    1993-03-01

    Section 182(b)(1) of the Clean Air Act (Act) requires all ozone nonattainment areas classified as moderate and above to submit a State Implementation Plan (SIP) revision by November 15, 1993, which describes, in part, how the areas will achieve an actual volatile organic compound (VOC) emissions reduction of at least 15 percent during the first 6 years after enactment of the Clean Air Act Amendments of 1990 (CAAA). In addition, the SIP revision must describe how any growth in emissions from 1990 through 1996 will be fully offset. It is important to note that section 182(b)(1) also requires the SIP for moderate areas to provide for reductions in VOC and nitrogen oxides (NOx) emissions as necessary to attain the national primary ambient air quality standard for ozone by November 15, 1996. The guidance document focuses on the procedures for developing 1996 projected emissions inventories and control measures which moderate and above ozone nonattainment areas must include in their rate-of-progress plans. The document provides technical guidance to support the policy presented in the 'General Preamble: Implementation of Title I of the CAAA of 1990' (57 FR 13498).

  5. Validation of MCNP with X6.XS cross-section set on the SUN Sparc Station 1+ computer for nominally 5 weight percent {sup 235}U enriched uranium systems

    SciTech Connect (OSTI)

    Lewis, K.D.

    1994-09-01

    The national Atomic Vapor Laser Isotope Separation (AVLIS) project has conducted extensive nuclear criticality safety analyses both in the design of Uranium Demonstration System (UDS) equipment and in AVLIS plant design/plant deployment activities. Currently, the design limit of an AVLIS plant calls for uranium product enriched in {sup 235}U to 5 wt %. Since an objective of an AVLIS plant is to deliver its product in a form readily usable by customers, uranium enriched in {sup 235}U will appear in a variety of forms, including metallic; as oxides, e.g., UO{sub 2}, UO{sub 3}; as fluorides, e.g., UF{sub 6}, UF{sub 4}, UO{sub 2}F{sub 2}; as nitrates or nitrides, e.g., UO{sub 2} (NO{sub 3}){sub 2}; and perhaps as uranium salts mixed with hydrocarbons such as oil. A wide range of neutron moderation levels, ranging from zero to optimal, and beyond can also be anticipated in an AVLIS plant, because of decontamination and cleaning activities and other wet chemistry processes that may be required.

  6. Areas Participating in the Oxygenated Gasoline Program (Released in the STEO July 1999)

    Reports and Publications (EIA)

    1999-01-01

    Section 211(m) of the Clean Air Act (42 U.S.C. 7401-7671q) requires that gasoline containing at least 2.7% oxygen by weight is to be used in the wintertime in those areas of the county that exceed the carbon monoxide National Ambient Air Quality Standards (NAAQS). The winter oxygenated gasoline program applies to all gasoline sold in the larger of the Consolidated Metropolitan Statistical Area (CMSA) or Metropolitan Statistical Area (MSA) in which the nonattainment area is located.

  7. Weighting for godot: Learning heuristics for GSAT

    SciTech Connect (OSTI)

    Frank, J.

    1996-12-31

    We investigate an improvement to GSAT which associates a weight with each clause. GSAT moves to assignments maximizing the weight of satisfied clauses and this weight is incremented when GSAT moves to an assignment in which this clause is unsatisfied. We present results showing that this algorithm and its variants outperform one of the best known modifications of GSAT to date using two metrics: number of solved problems on a single try, and minimum mean number of flips to solve a test suite of problems.

  8. Device and method for separating oxygen isotopes

    DOE Patents [OSTI]

    Rockwood, Stephen D.; Sander, Robert K.

    1984-01-01

    A device and method for separating oxygen isotopes with an ArF laser which produces coherent radiation at approximately 193 nm. The output of the ArF laser is filtered in natural air and applied to an irradiation cell where it preferentially photodissociates molecules of oxygen gas containing .sup.17 O or .sup.18 O oxygen nuclides. A scavenger such as O.sub.2, CO or ethylene is used to collect the preferentially dissociated oxygen atoms and recycled to produce isotopically enriched molecular oxygen gas. Other embodiments utilize an ArF laser which is narrowly tuned with a prism or diffraction grating to preferentially photodissociate desired isotopes. Similarly, desired mixtures of isotopic gas can be used as a filter to photodissociate enriched preselected isotopes of oxygen.

  9. Oxygen ion-beam microlithography

    DOE Patents [OSTI]

    Tsuo, Y. Simon

    1991-01-01

    A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used.

  10. Oxygen ion-beam microlithography

    DOE Patents [OSTI]

    Tsuo, Y.S.

    1991-08-20

    A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used. 5 figures.

  11. Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Stability-Low-Cost Supports | Department of Energy Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on High-Stability-Low-Cost Supports Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on High-Stability-Low-Cost Supports Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 - October 1, 2009 adzic_bnl_kickoff.pdf (4.62 MB) More Documents & Publications Platinum Monolayer Electrocatalysts for Oxygen Reduction Reaction

  12. AISI/DOE Technology Roadmap Program Hot Oxygen Injection Into The Blast Furnace

    SciTech Connect (OSTI)

    Michael F. Riley

    2002-10-21

    Increased levels of blast furnace coal injection are needed to further lower coke requirements and provide more flexibility in furnace productivity. The direct injection of high temperature oxygen with coal in the blast furnace blowpipe and tuyere offers better coal dispersion at high local oxygen concentrations, optimizing the use of oxygen in the blast furnace. Based on pilot scale tests, coal injection can be increased by 75 pounds per ton of hot metal (lb/thm), yielding net savings of $0.84/tm. Potential productivity increases of 15 percent would yield another $1.95/thm. In this project, commercial-scale hot oxygen injection from a ''thermal nozzle'' system, patented by Praxair, Inc., has been developed, integrated into, and demonstrated on two tuyeres of the U.S. Steel Gary Works no. 6 blast furnace. The goals were to evaluate heat load on furnace components from hot oxygen injection, demonstrate a safe and reliable lance and flow control design, and qualitatively observe hot oxygen-coal interaction. All three goals have been successfully met. Heat load on the blowpipe is essentially unchanged with hot oxygen. Total heat load on the tuyere increases about 10% and heat load on the tuyere tip increases about 50%. Bosh temperatures remained within the usual operating range. Performance in all these areas is acceptable. Lance performance was improved during testing by changes to lance materials and operating practices. The lance fuel tip was changed from copper to a nickel alloy to eliminate oxidation problems that severely limited tip life. Ignition flow rates and oxygen-fuel ratios were changed to counter the effects of blowpipe pressure fluctuations caused by natural resonance and by coal/coke combustion in the tuyere and raceway. Lances can now be reliably ignited using the hot blast as the ignition source. Blowpipe pressures were analyzed to evaluate ht oxygen-coal interactions. The data suggest that hot oxygen increases coal combustion in the blow pipe and

  13. Microdialysis unit for molecular weight separation

    DOE Patents [OSTI]

    Smith, Richard D. (Richland, WA); Liu, Chuanliang (Richland, WA)

    1999-01-01

    The present invention relates generally to an apparatus and method for separating high molecular weight molecules from low molecular weight molecules. More specifically, the invention relates to the use of microdialysis for removal of the salt (low molecular weight molecules) from a nucleotide sample (high molecular weight molecules) for ESI-MS analysis. The dialysis or separation performance of the present invention is improved by (1) increasing dialysis temperature thereby increasing desalting efficiency and improving spectrum quality; (2) adding piperidine and imidazole to the dialysis buffer solution and reducing charge states and further increasing detection sensitivity for DNA; (3) using low concentrations (0-2.5 mM NH4OAc) of dialysis buffer and shifting the DNA negative ions to higher charge states, producing a nearly 10-fold increase in detection sensitivity and a slightly decreased desalting efficiency, or (4) any combination of (1), (2), and (3).

  14. Calculates Angular Quadrature Weights and Cosines.

    Energy Science and Technology Software Center (OSTI)

    1988-02-18

    DSNQUAD calculates the angular quadrature weights and cosines for use in CCC-254/ANISN-ORNL. The subroutines in DSNQUAD were lifted from the XSDRN-PM code, which is supplied with the CCC-475/ SCALIAS-77 package.

  15. Repository Waste Package Transporter Shielding Weight Optimization

    SciTech Connect (OSTI)

    C.E. Sanders; Shiaw-Der Su

    2005-02-02

    The Yucca Mountain repository requires the use of a waste package (WP) transporter to transport a WP from a process facility on the surface to the subsurface for underground emplacement. The transporter is a part of the waste emplacement transport systems, which includes a primary locomotive at the front end and a secondary locomotive at the rear end. The overall system with a WP on board weights over 350 metric tons (MT). With the shielding mass constituting approximately one-third of the total system weight, shielding optimization for minimal weight will benefit the overall transport system with reduced axle requirements and improved maneuverability. With a high contact dose rate on the WP external surface and minimal personnel shielding afforded by the WP, the transporter provides radiation shielding to workers during waste emplacement and retrieval operations. This paper presents the design approach and optimization method used in achieving a shielding configuration with minimal weight.

  16. Oxygen electrocatalysis on (001)-oriented manganese perovskite...

    Office of Scientific and Technical Information (OSTI)

    the nanoscale Citation Details In-Document Search Title: Oxygen electrocatalysis on (001)-oriented manganese perovskite films: Mn valency and charge transfer at the nanoscale ...

  17. DEVICE FOR CONTROL OF OXYGEN PARTIAL PRESSURE

    DOE Patents [OSTI]

    Bradner, H.; Gordon, H.S.

    1957-12-24

    A device is described that can sense changes in oxygen partial pressure and cause a corresponding mechanical displacement sufficient to actuate meters, valves and similar devices. A piston and cylinder arrangement contains a charge of crystalline metal chelate pellets which have the peculiar property of responding to variations in the oxygen content of the ambient atmosphere by undergoing a change in dimension. A lever system amplifies the relative displacement of the piston in the cylinder, and actuates the controlled valving device. This partial pressure oxygen sensing device is useful in controlled chemical reactions or in respiratory devices such as the oxygen demand meters for high altitude aircraft.

  18. Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Platinum Monolayer Electrocatalysts for Oxygen Reduction Reaction Advanced Materials and Concepts for Portable Power Fuel Cells Catalysis Working ...

  19. Jupiter Oxygen Corporation | Open Energy Information

    Open Energy Info (EERE)

    Place: Schiller Park, Illinois Zip: 60176 Product: Illinois-based oxy-fuel combustion company involved in the capture of CO2. References: Jupiter Oxygen Corporation1...

  20. Identification of an Archean marine oxygen oasis

    SciTech Connect (OSTI)

    Riding, Dr Robert E; Fralick, Dr Philip; Liang, Liyuan

    2014-01-01

    The early Earth was essentially anoxic. A number of indicators suggest the presence of oxygenic photosynthesis 2700 3000 million years (Ma) ago, but direct evidence for molecular oxygen (O2) in seawater has remained elusive. Here we report rare earth element (REE) analyses of 2800 million year old shallowmarine limestones and deep-water iron-rich sediments at Steep Rock Lake, Canada. These show that the seawater from which extensive shallow-water limestones precipitated was oxygenated, whereas the adjacent deeper waters where iron-rich sediments formed were not. We propose that oxygen promoted limestone precipitation by oxidative removal of dissolved ferrous iron species, Fe(II), to insoluble Fe(III) oxyhydroxide, and estimate that at least 10.25 M oxygen concentration in seawater was required to accomplish this at Steep Rock. This agrees with the hypothesis that an ample supply of dissolved Fe(II) in Archean oceans would have hindered limestone formation. There is no direct evidence for the oxygen source at Steep Rock, but organic carbon isotope values and diverse stromatolites in the limestones suggest the presence of cyanobacteria. Our findings support the view that during the Archean significant oxygen levels first developed in protected nutrient-rich shallow marine habitats. They indicate that these environments were spatially restricted, transient, and promoted limestone precipitation. If Archean marine limestones in general reflect localized oxygenic removal of dissolved iron at the margins of otherwise anoxic iron-rich seas, then early oxygen oases are less elusive than has been assumed.

  1. Homogeneously dispersed, multimetal oxygen-evolving catalysts...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Journal Article: Homogeneously dispersed, multimetal oxygen-evolving catalysts Citation ... Publication Date: 2016-03-24 OSTI Identifier: 1245398 Report ...

  2. Sandia Inverter Performance Test Protocol Efficiency Weighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inverter Performance Test Protocol Efficiency Weighting Alternatives Jeff Newmiller ∗ , William Erdman † , Joshua S. Stein ‡ , Sigifredo Gonzalez ‡ ∗ DNV GL, San Ramon, CA, US; † Cinch, Lafayette, CA, US; ‡ Sandia National Laboratories, Albuquerque, NM, US Abstract-The Sandia Inverter Performance Test Protocol defined two possible weighted-average efficiency values for use in comparing inverter performance, of which one definition was selected by the California Energy Commission

  3. Effects of Ionomer Morphology on Oxygen Reduction on Pt

    SciTech Connect (OSTI)

    Chlistunoff, Jerzy; Pivovar, Bryan

    2015-05-21

    In this paper, the oxygen reduction reaction (ORR) at the interface between platinum and Nafion 1100 equivalent weight was studied as a function of temperature (20–80 °C), humidity (10–100%), scan rate, the manner in which Nafion film was deposited, and the state of the Pt surface using ultramicroelectrodes employing cyclic voltammetry and chronoamperometry. ORR on smooth electrodes was strongly inhibited under specific conditions dependent on temperature, humidity, and scan rate. From the data presented, we postulate that dynamic changes in the molecular structure of the ionomer at the platinum interface result in differences in ORR voltammetry for films prepared and equilibrated under different conditions. The lack of similar changes for rough, platinized electrodes has been attributed to differences in initial ionomer structure and a higher energy barrier for ionomer restructuring. Finally, these model system studies yield insight into the ionomer-catalyst interface of particular interest for polymer electrolyte fuel cells.

  4. New Oxygen-Production Technology Proving Successful

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy's National Energy Technology Laboratory has partnered with Air Products and Chemicals Inc. of Allentown, Penn. to develop the Ion Transport Membrane (ITM) Oxygen, a revolutionary new oxygen-production technology that requires less energy and offers lower capital costs than conventional technologies.

  5. Modelling Hydrogen Reduction and Hydrodeoxygenation of Oxygenates

    SciTech Connect (OSTI)

    Zhao, Y.; Xu, Q.; Cheah, S.

    2013-01-01

    Based on Density Functional Theory (DFT) simulations, we have studied the reduction of nickel oxide and biomass derived oxygenates (catechol, guaiacol, etc.) in hydrogen. Both the kinetic barrier and thermodynamic favorability are calculated with respect to the modeled reaction pathways. In early-stage reduction of the NiO(100) surface by hydrogen, the pull-off of the surface oxygen atom and simultaneous activation of the nearby Ni atoms coordinately dissociate the hydrogen molecules so that a water molecule can be formed, leaving an oxygen vacancy on the surface. In hydrogen reaction with oxygenates catalyzed by transition metals, hydrogenation of the aromatic carbon ring normally dominates. However, selective deoxygenation is of particular interest for practical application such as biofuel conversion. Our modeling shows that doping of the transition metal catalysts can change the orientation of oxygenates adsorbed on metal surfaces. The correlation between the selectivity of reaction and the orientation of adsorption are discussed.

  6. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect (OSTI)

    David R. Thompson; Lawrence E. Bool; Jack C. Chen

    2001-04-01

    This quarterly technical progress report will summarize work accomplished for the Program through the fourth quarter January-March 2001 in the following task areas: Task 1 - Oxygen Enhanced Combustion, Task 2 - Oxygen Transport Membranes and Task 4 - Program Management. This report will also recap the results of the past year. The program is proceeding in accordance with the objectives for the first year. OTM material characterization was completed. 100% of commercial target flux was demonstrated with OTM disks. The design and assembly of Praxair's single tube high-pressure test facility was completed. The production of oxygen with a purity of better than 99.5% was demonstrated. Coal combustion testing was conducted at the University of Arizona. Modest oxygen enhancement resulted in NOx emissions reduction. The injector for oxygen enhanced coal based reburning was conducted at Praxair. Combustion modeling with Keystone boiler was completed. Pilot-scale combustion test furnace simulations continued this quarter.

  7. Oxygen ion-conducting dense ceramic

    DOE Patents [OSTI]

    Balachandran, Uthamalingam; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Morissette, Sherry L.; Pei, Shiyou

    1996-01-01

    Preparation, structure, and properties of mixed metal oxide compositions containing at least strontium, cobalt, iron and oxygen are described. The crystalline mixed metal oxide compositions of this invention have, for example, structure represented by Sr.sub..alpha. (Fe.sub.1-x Co.sub.x).sub..alpha.+.beta. O.sub..delta. where x is a number in a range from 0.01 to about 1, .alpha. is a number in a range from about 1 to about 4, .beta. is a number in a range upward from 0 to about 20, and .delta. is a number which renders the compound charge neutral, and wherein the composition has a non-perovskite structure. Use of the mixed metal oxides in dense ceramic membranes which exhibit oxygen ionic conductivity and selective oxygen separation, are described as well as their use in separation of oxygen from an oxygen-containing gaseous mixture.

  8. Oxygen ion-conducting dense ceramic

    DOE Patents [OSTI]

    Balachandran, Uthamalingam; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Morissette, Sherry L.; Pei, Shiyou

    1997-01-01

    Preparation, structure, and properties of mixed metal oxide compositions containing at least strontium, cobalt, iron and oxygen are described. The crystalline mixed metal oxide compositions of this invention have, for example, structure represented by Sr.sub..alpha. (Fe.sub.1-x Co.sub.x).sub..alpha.+.beta. O.sub..delta. where x is a number in a range from 0.01 to about 1, .alpha. is a number in a range from about 1 to about 4, .beta. is a number in a range upward from 0 to about 20, and .delta. is a number which renders the compound charge neutral, and wherein the composition has a non-perovskite structure. Use of the mixed metal oxides in dense ceramic membranes which exhibit oxygen ionic conductivity and selective oxygen separation, are described as well as their use in separation of oxygen from an oxygen-containing gaseous mixture.

  9. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect (OSTI)

    David R. Thompson; Lawrence E. Bool; Jack C. Chen

    2004-04-01

    Conventional wisdom says adding oxygen to a combustion system enhances product throughput, system efficiency, and, unless special care is taken, increases NOx emissions. This increase in NOx emissions is typically due to elevated flame temperatures associated with oxygen use leading to added thermal NOx formation. Innovative low flame temperature oxy-fuel burner designs have been developed and commercialized to minimize both thermal and fuel NOx formation for gas and oil fired industrial furnaces. To be effective these systems require close to 100% oxy-fuel combustion and the cost of oxygen is paid for by fuel savings and other benefits. For applications to coal-fired utility boilers at the current cost of oxygen, however, it is not economically feasible to use 100% oxygen for NOx control. In spite of this conventional wisdom, Praxair and its team members, in partnership with the US Department of Energy National Energy Technology Laboratory, have developed a novel way to use oxygen to reduce NOx emissions without resorting to complete oxy-fuel conversion. In this concept oxygen is added to the combustion process to enhance operation of a low NOx combustion system. Only a small fraction of combustion air is replaced with oxygen in the process. By selectively adding oxygen to a low NOx combustion system it is possible to reduce NOx emissions from nitrogen-containing fuels, including pulverized coal, while improving combustion characteristics such as unburned carbon. A combination of experimental work and modeling was used to define how well oxygen enhanced combustion could reduce NOx emissions. The results of this work suggest that small amounts of oxygen replacement can reduce the NOx emissions as compared to the air-alone system. NOx emissions significantly below 0.15 lbs/MMBtu were measured. Oxygen addition was also shown to reduce carbon in ash. Comparison of the costs of using oxygen for NOx control against competing technologies, such as SCR, show that this

  10. LightWeight KerneL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Catamount n-Way LightWeight KerneL 1 R&D 100 Entry Catamount n-Way LightWeight KerneL 2 R&D 100 Entry Submitting organization Sandia National Laboratories PO Box 5800 Albuquerque, NM 87185-1319 USA Ron Brightwell Phone: (505) 844-2099 Fax: (505) 845-7442 rbbrigh@sandia.gov AFFIRMATION: I affirm that all information submitted as a part of, or supplemental to, this entry is a fair and accurate representation of this product. _____________________________ Ron Brightwell Joint entry

  11. Selective photooxidation of hydrocarbons in zeolites by oxygen

    DOE Patents [OSTI]

    Frei, Heinz; Blatter, Fritz; Sun, Hai

    1998-01-01

    A selective photooxidation process for the conversion of hydrocarbon molecules to partially oxygenated derivatives, which comprises the steps of adsorbing a hydrocarbon and oxygen onto a dehydrated zeolite support matrix to form a hydrocarbon-oxygen contact pair, and subsequently exposing the hydrocarbon-oxygen contact pair to visible light, thereby forming a partially oxygenated derivative.

  12. Ethanol Demand in United States Production of Oxygenate-limited Gasoline

    SciTech Connect (OSTI)

    Hadder, G.R.

    2000-08-16

    Ethanol competes with methyl tertiary butyl ether (MTBE) to satisfy oxygen, octane, and volume requirements of certain gasolines. However, MTBE has water quality problems that may create significant market opportunities for ethanol. Oak Ridge National Laboratory (ORNL) has used its Refinery Yield Model to estimate ethanol demand in gasolines with restricted use of MTBE. Reduction of the use of MTBE would increase the costs of gasoline production and possibly reduce the gasoline output of U.S. refineries. The potential gasoline supply problems of an MTBE ban could be mitigated by allowing a modest 3 vol percent MTBE in all gasoline. In the U.S. East and Gulf Coast gasoline producing regions, the 3 vol percent MTBE option results in costs that are 40 percent less than an MTBE ban. In the U.S. Midwest gasoline producing region, with already high use of ethanol, an MTBE ban has minimal effect on ethanol demand unless gasoline producers in other regions bid away the local supply of ethanol. The ethanol/MTBE issue gained momentum in March 2000 when the Clinton Administration announced that it would ask Congress to amend the Clean Air Act to provide the authority to significantly reduce or eliminate the use of MTBE; to ensure that air quality gains are not diminished as MTBE use is reduced; and to replace the existing oxygenate requirement in the Clean Air Act with a renewable fuel standard for all gasoline. Premises for the ORNL study are consistent with the Administration announcement, and the ethanol demand curve estimates of this study can be used to evaluate the impact of the Administration principles and related policy initiatives.

  13. Petrochemical feedstock from basic oxygen steel furnace

    SciTech Connect (OSTI)

    Greenwood, C.W.; Hardwick, W.E.

    1983-10-01

    Iron bath gasification in which coal, lime, steam and oxygen are injected into a bath of molten iron for the production of a medium-Btu gas is described. The process has its origin in basic oxygen steelmaking. It operates at high temperatures and is thus not restrictive on the type of coal used. The ash is retained in the slag. The process is also very efficient. The authors suggest that in the present economic climate in the iron and steel industry, such a plant could be sited where existing coal-handling, oxygen and steelmaking equipment are available.

  14. The Light-Weight Group Library

    Energy Science and Technology Software Center (OSTI)

    2012-07-02

    The Light-Weight Group (LWGRP) bibrary provides data structures and collective routines to define and operate on groups of MPI processes. Groups can be created and freed efficiently in O(log N) time space requiring less overhead that constructing full MPI communicators. This facilitates faster development of applications and libraries that need to rapidly create, use, and destroy process groups.

  15. Molecular Weight Effects on Particle and Polymer Microstructure...

    Office of Scientific and Technical Information (OSTI)

    Molecular Weight Effects on Particle and Polymer Microstructure in Concentrated Polymer Solutions Citation Details In-Document Search Title: Molecular Weight Effects on Particle ...

  16. Light weight and economical exhaust heat exchanger for waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light weight and economical exhaust heat exchanger for waste heat recovery using mixed radiant and convective heat transfer Light weight and economical exhaust heat exchanger for ...

  17. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect (OSTI)

    David R. Thompson; Lawrence E. Bool; Jack C. Chen

    2003-08-01

    This quarterly technical progress report will summarize work accomplished for the Program through the thirteenth quarter, April-June 2003, in the following task areas: Task 1--Oxygen Enhanced Combustion, Task 3--Economic Evaluation and Task 4--Program Management. The program is proceeding in accordance with project objectives. REI's model was modified to evaluate mixing issues in the upper furnace of a staged unit. Analysis of the results, and their potential application to this unit is ongoing. Economic evaluation continues to confirm the advantage of oxygen-enhanced combustion. A contract for a commercial demonstration has been signed with the Northeast Generation Services Company to supply oxygen and license the oxygen enhanced low NOx combustor technology for use at the 147-megawatt coal fired Mt. Tom Station in Holyoke, MA. Commercial proposals have been submitted. Economic analysis of a beta site test performance was conducted.

  18. Oxygen ion-conducting dense ceramic

    DOE Patents [OSTI]

    Balachandran, Uthamalingam; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Morissette, Sherry L.; Pei, Shiyou

    1998-01-01

    Preparation, structure, and properties of mixed metal oxide compositions and their uses are described. Mixed metal oxide compositions of the invention have stratified crystalline structure identifiable by means of powder X-ray diffraction patterns. In the form of dense ceramic membranes, the present compositions demonstrate an ability to separate oxygen selectively from a gaseous mixture containing oxygen and one or more other volatile components by means of ionic conductivities.

  19. Magnetism in LithiumOxygen Discharge Product

    SciTech Connect (OSTI)

    Lu, Jun; Jung, Hun-Ji; Lau, Kah Chun; Zhang, Zhengcheng; Schlueter, John A.; Du, Peng; Assary, Rajeev S.; Greeley, Jeffrey P.; Ferguson, Glen A.; Wang, Hsien-Hau; Hassoun, Jusef; Iddir, Hakim; Zhou, Jigang; Zuin, Lucia; Hu, Yongfeng; Sun, Yang-Kook; Scrosati, Bruno; Curtiss, Larry A.; Amine, Khalil

    2013-05-13

    Nonaqueous lithiumoxygen batteries have a much superior theoretical gravimetric energy density compared to conventional lithium-ion batteries, and thus could render long-range electric vehicles a reality. A molecular-level understanding of the reversible formation of lithium peroxide in these batteries, the properties of major/minor discharge products, and the stability of the nonaqueous electrolytes is required to achieve successful lithiumoxygen batteries. We demonstrate that the major discharge product formed in the lithiumoxygen cell, lithium peroxide, exhibits a magnetic moment. These results are based on dc-magnetization measurements and a lithium oxygen cell containing an ether-based electrolyte. The results are unexpected because bulk lithium peroxide has a significant band gap. Density functional calculations predict that superoxide- type surface oxygen groups with unpaired electrons exist on stoichiometric lithium peroxide crystalline surfaces and on nanoparticle surfaces; these computational results are consistent with the magnetic measurement of the discharged lithium peroxide product as well as EPR measurements on commercial lithium peroxide. The presence of superoxide-type surface oxygen groups with spin can play a role in the reversible formation and decomposition of lithium peroxide as well as the reversible formation and decomposition of electrolyte molecules.

  20. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect (OSTI)

    David R. Thompson; Lawrence E. Bool; Jack C. Chen

    2002-01-01

    This quarterly technical progress report will summarize work accomplished for the Program in the seventh quarter October-December 2001 in the following task areas: Task 1 - Oxygen Enhanced Combustion, Task 2 - Oxygen Transport Membranes, Task 3 - Economic Evaluation and Task 4 - Program Management. Computational fluid dynamic (CFD) modeling of oxygen injection strategies was performed during the quarter resulting in data that suggest the oxygen injection reduces NOx emissions while reducing LOI. Pilot-scale testing activities concluded at the University of Utah this quarter. Testing demonstrated that some experimental conditions can lead to NOx emissions well below the 0.15 lb/MMBtu limit. Evaluation of alternative OTM materials with improved mechanical properties continued this quarter. Powder procedure optimization continued and sintering trial began on an element with a new design. Several OTM elements were tested in Praxair's single tube high-pressure test facility under various conditions. A modified PSO1d element demonstrated stable oxygen product purity of >98% and oxygen flux of 68% of target. Updated test results and projected economic performance have been reviewed with the Utility Industrial Advisors. The economic comparison remains very favorable for O{sub 2} enhanced combustion. Discussions regarding possible Beta sites have been held with three other utilities in addition to the industrial advisors. Proposals will be prepared after the completion of full scale burner testing. Beta test cost estimating work has been initiated.

  1. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect (OSTI)

    David R. Thompson; Lawrence E. Bool; Jack C. Chen

    2002-04-01

    This quarterly technical progress report will summarize work accomplished for the Program through the fourth quarter January-March 2002 in the following task areas: Task 1--Oxygen Enhanced Combustion, Task 2--Oxygen Transport Membranes, Task 3--Economic Evaluation and Task 4--Program Management. This report will also recap the results of the past year. The program is proceeding in accordance with the objectives for the second year. The first round of pilot scale testing with 3 bituminous coals was completed at the University of Utah. Full-scale testing equipment is in place and experiments are underway. Coal combustion lab-scale testing was completed at the University of Arizona. Modest oxygen enhancement resulted in NOx emissions reduction. Combustion modeling activities continued with pilot-scale combustion test furnace simulations. 75% of target oxygen flux was demonstrated with small PSO1 tube in Praxair's single tube high-pressure test facility. The production of oxygen with a purity of better than 99.999% was demonstrated. Economic evaluation has confirmed the advantage of oxygen-enhanced combustion. Two potential host sites have been identified.

  2. Strain Control of Oxygen Vacancies in Epitaxial Strontium Cobaltite...

    Office of Scientific and Technical Information (OSTI)

    Strain Control of Oxygen Vacancies in Epitaxial Strontium Cobaltite Films Citation Details In-Document Search Title: Strain Control of Oxygen Vacancies in Epitaxial Strontium ...

  3. Oxygen And Carbon Isotope Ratios Of Hydrothermal Minerals From...

    Open Energy Info (EERE)

    Oxygen And Carbon Isotope Ratios Of Hydrothermal Minerals From Yellowstone Drill Cores Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Oxygen...

  4. Virtual Oxygen Sensor for Innovative NOx and PM Emission Control...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virtual Oxygen Sensor for Innovative NOx and PM Emission Control Technologies Virtual Oxygen Sensor for Innovative NOx and PM Emission Control Technologies A virtual O2 sensor for ...

  5. Oxygen Diffusion (OD) Dramatically Improves Wear-Resistance of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oxygen Diffusion (OD) Dramatically Improves Wear-Resistance of Titanium Oxygen Diffusion (OD) Dramatically Improves Wear-Resistance of Titanium 2007 Diesel Engine-Efficiency & ...

  6. Artificial oxygen transport protein (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Patent: Artificial oxygen transport protein Citation Details In-Document Search Title: Artificial oxygen transport protein This invention provides heme-containing peptides capable...

  7. Pt3Re alloy nanoparticles as electrocatalysts for the oxygen...

    Office of Scientific and Technical Information (OSTI)

    Pt3Re alloy nanoparticles as electrocatalysts for the oxygen reduction reaction Citation ... on March 24, 2018 Title: Pt3Re alloy nanoparticles as electrocatalysts for the oxygen ...

  8. Webinar: Testing Oxygen Reduction Reaction Activity with the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar: Testing Oxygen Reduction Reaction Activity with the Rotating Disc Electrode Technique Above is the video recording for the webinar, "Testing Oxygen Reduction Reaction ...

  9. Facile oxygen intercalation between full layer graphene and Ru...

    Office of Scientific and Technical Information (OSTI)

    Facile oxygen intercalation between full layer graphene and Ru(0001) under ambient ... Title: Facile oxygen intercalation between full layer graphene and Ru(0001) under ambient ...

  10. Low-cost, low-weight CNG cylinder development. Final report

    SciTech Connect (OSTI)

    Richards, Mark E.; Melford, K.; Wong, J.; Gambone, L.

    1999-09-01

    This program was established to develop and commercialize new high-strength steel-lined, composite hoop-wrapped compressed natural gas (CNG) cylinders for vehicular applications. As much as 70% of the cost of natural gas vehicles can be related to on-board natural gas storage costs. The cost and weight targets for this program represent significant savings in each characteristic when compared to comparable containers available at the initiation of the program. The program objectives were to optimize specific weight and cost goals, yielding CNG cylinders with dimensions that should, allowing for minor modifications, satisfy several vehicle market segments. The optimization process encompassed material, design, and process improvement. In optimizing the CNG cylinder design, due consideration was given to safety aspects relative to national, international, and vehicle manufacturer cylinder standards and requirements. The report details the design and development effort, encompassing plant modifications, material selection, design issues, tooling development, prototype development, and prototype testing. Extenuating circumstances prevented the immediate commercialization of the cylinder designs, though significant progress was made towards improving the cost and performance of CNG cylinders. A new low-cost fiber was successfully employed while the weight target was met and the cost target was missed by less than seven percent.

  11. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect (OSTI)

    Lawrence E. Bool; Jack C. Chen; David R. Thompson

    2000-07-01

    Increased environmental regulations will require utility boilers to reduce NO{sub x} emissions to less than 0.15lb/MMBtu in the near term. Conventional technologies such as Selective Catalytic Reduction (SCR) and Selective Non-Catalytic Reduction (SNCR) are unable to achieve these lowered emission levels without substantially higher costs and major operating problems. Oxygen enhanced combustion is a novel technology that allows utilities to meet the NO{sub x} emission requirements without the operational problems that occur with SCR and SNCR. Furthermore, oxygen enhanced combustion can achieve these NO{sub x} limits at costs lower than conventional technologies. The objective of this program is to demonstrate the use of oxygen enhanced combustion as a technical and economical method of meeting the EPA State Implementation Plan for NO{sub x} reduction to less than 0.15lb/MMBtu for a wide range of boilers and coal. The oxygen enhanced coal combustion program (Task 1) focused this quarter on the specific objective of exploration of the impact of oxygen enrichment on NO{sub x} formation utilizing small-scale combustors for parametric testing. Research efforts toward understanding any limitations to the applicability of the technology to different burners and fuels such as different types of coal are underway. The objective of the oxygen transport membrane (OTM) materials development program (Task 2.1) is to ascertain a suitable material composition that can be fabricated into dense tubes capable of producing the target oxygen flux under the operating conditions. This requires that the material have sufficient oxygen permeation resulting from high oxygen ion conductivity, high electronic conductivity and high oxygen surface exchange rate. The OTM element development program (Task 2.2) objective is to develop, fabricate and characterize OTM elements for laboratory and pilot reactors utilizing quality control parameters to ensure reproducibility and superior performance

  12. Direct Observation of the Oxygenated Species during Oxygen Reduction on a

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Platinum Fuel Cell Cathode | Stanford Synchrotron Radiation Lightsource Direct Observation of the Oxygenated Species during Oxygen Reduction on a Platinum Fuel Cell Cathode Friday, December 20, 2013 Fuel Cell Figure 1 Figure 1. In situ x-ray spectroscopy identification and DFT simulations of oxygenated intermediates on a platinum fuel-cell cathode. The study shows that two types of hydroxyl intermediates (non-hydrated OH and hydrated OH) with distinct activities coexist on a fuel-cell

  13. Oxygen generator for medical applications (USIC)

    SciTech Connect (OSTI)

    Staiger, C. L.

    2012-03-01

    The overall Project objective is to develop a portable, non-cryogenic oxygen generator capable of supplying medical grade oxygen at sufficient flow rates to allow the field application of the Topical Hyperbaric Oxygen Therapy (THOT{reg_sign}) developed by Numotech, Inc. This project was sponsored by the U.S. Department of Energy Global Initiatives for Proliferation Prevention (GIPP) and is managed by collaboration between Sandia National Laboratories (SNL), Numotech, Inc, and LLC SPE 'Spektr-Conversion.' The project had two phases, with the objective of Phase I being to develop, build and test a laboratory prototype of the membrane-pressure swing adsorber (PSA) system producing at 15 L/min of oxygen with a minimum of 98% oxygen purity. Phase II objectives were to further refine and identify the pre-requisites needed for a commercial product and to determine the feasibility of producing 15 L/min of oxygen with a minimum oxygen purity of 99%. In Phase I, Spektr built up the necessary infrastructure to perform experimental work and proceeded to build and demonstrate a membrane-PSA laboratory prototype capable of producing 98% purity oxygen at a flow rate of 5 L/min. Spektr offered a plausible path to scale up the process for 15 L/min. Based on the success and experimental results obtained in Phase I, Spektr performed work in three areas for Phase II: construction of a 15 L/min PSA; investigation of compressor requirements for the front end of the membrane/PSA system; and performing modeling and simulation of assess the feasibility of producing oxygen with a purity greater than 99%. Spektr successfully completed all of the tasks under Phase II. A prototype 15 L/min PSA was constructed and operated. Spektr determined that no 'off the shelf' air compressors met all of the specifications required for the membrane-PSA, so a custom compressor will likely need to be built. Modeling and simulation concluded that production of oxygen with purities greater than 99% was possible

  14. Process for selection of oxygen-tolerant algal mutants that produce H{sub 2}

    DOE Patents [OSTI]

    Ghirardi, M.L.; Seibert, M.

    1999-02-16

    A process for selection of oxygen-tolerant, H{sub 2}-producing algal mutant cells comprises: (a) growing algal cells photoautotrophically under fluorescent light to mid log phase; (b) inducing algal cells grown photoautotrophically under fluorescent light to mid log phase in step (a) anaerobically by (1) resuspending the cells in a buffer solution and making said suspension anaerobic with an inert gas and (2) incubating the suspension in the absence of light at ambient temperature; (c) treating the cells from step (b) with metronidazole, sodium azide, and added oxygen to controlled concentrations in the presence of white light; (d) washing off metronidazole and sodium azide to obtain final cell suspension; (e) plating said final cell suspension on a minimal medium and incubating in light at a temperature sufficient to enable colonies to appear; (f) counting the number of colonies to determine the percent of mutant survivors; and (g) testing survivors to identify oxygen-tolerant H{sub 2}-producing mutants. 5 figs.

  15. Method for fabricating light weight carbon-bonded carbon fiber composites

    DOE Patents [OSTI]

    Wrenn, Jr., George E.; Abbatiello, Leonard A.; Lewis, Jr., John

    1989-01-01

    Ultralight carbon-bonded carbon fiber composites of densities in the range of about 0.04 to 0.10 grams per cubic centimeter are fabricated by forming an aqueous slurry of carbonaceous fibers which include carbonized fibers and 0-50 weight percent fugitive fibers and a particulate thermosetting resin precursor. The slurry is brought into contact with a perforated mandrel and the water is drained from the slurry through the perforations at a controlled flow rate of about 0.03 to 0.30 liters per minutes per square inch of mandrel surface. The deposited billet of fibers and resin precursor is heated to cure the resin precursor to bind the fibers together, removed from the mandrel, and then the resin and fugitive fibers, if any, are carbonized.

  16. Method for fabricating light weight carbon-bonded carbon fiber composites

    DOE Patents [OSTI]

    Wrenn, G.E. Jr.; Abbatiello, L.A.; Lewis, J. Jr.

    1987-06-17

    The invention is directed to the fabrication of ultralight carbon- bonded carbon fiber composites of densities in the range of about 0. 04 to 0.10 grams per cubic centimeter. The composites are fabricated by forming an aqueous slurry of carbonaceous fibers which include carbonized fibers and 0-50 weight percent fugitive fibers and a particulate thermosetting resin precursor. The slurry is brought into contact with a perforated mandrel and the water is drained from the slurry through the perforations at a controlled flow rate of about 0. 03 to 0.30 liters per minutes per square inch of a mandrel surface. The deposited billet of fibers and resin precursor is heated to cure the resin precursor to bind the fibers together, removed from the mandrel, and then the resin and fugitive fibers, if any, are carbonized.

  17. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect (OSTI)

    David R. Thompson; Lawrence E. Bool; Jack C. Chen

    2003-02-01

    This quarterly technical progress report will summarize work accomplished for the Program through the eleventh quarter, October-December 2002, in the following task areas: Task 1 - Oxygen Enhanced Combustion, Task 2 - Oxygen Transport Membranes, Task 3 - Economic Evaluation and Task 4 - Program Management. The program is proceeding in accordance with the objectives for the third year. Pilot scale experiments conducted at the University of Utah were aimed at confirming the importance of oxygen injection strategy for different types of burners. CFD modeling at REI was used to better understand the potential for increased corrosion under oxygen enhanced combustion conditions. Data from a full-scale demonstration test in Springfield, MO were analyzed. OTM element development continued with preliminary investigation of an alternative method of fabrication of PSO1d elements. OTM process development continued with long-term testing of a PSO1d element. Economic evaluation has confirmed the advantage of oxygen-enhanced combustion. Proposals have been submitted for two additional beta test sites. A first commercial proposal has been submitted. Economic analysis of a beta site test performance was conducted.

  18. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect (OSTI)

    David R. Thompson; Lawrence E. Bool; Jack C. Chen

    2003-04-01

    This quarterly technical progress report will summarize work accomplished for the Program through the twelfth quarter, January-March 2003, in the following task areas: Task 1--Oxygen Enhanced Combustion, Task 2--Oxygen Transport Membranes, Task 3--Economic Evaluation and Task 4--Program Management. The program is proceeding in accordance with the objectives for the third year. Pilot scale experiments conducted at the University of Utah explored both the effectiveness of oxygen addition and the best way to add oxygen with a scaled version of Riley Power's newest low NOx burner design. CFD modeling was done to compare the REI's modeling results for James River Unit 3 with the NOx and LOI results obtained during the demonstration program at that facility. Investigation of an alternative method of fabrication of PSO1d elements was conducted. OTM process development work has concluded with the completion of a long-term test of a PSO1d element Economic evaluation has confirmed the advantage of oxygen-enhanced combustion. Proposals have been submitted for two additional beta test sites. Commercial proposals have been submitted. Economic analysis of a beta site test performance was conducted.

  19. Oxygenates du`jour...MTBE? Ethanol? ETBE?

    SciTech Connect (OSTI)

    Wolfe, R.

    1995-12-31

    There are many different liquids that contain oxygen which could be blended into gasoline. The ones that have been tried and make the most sense are in the alcohol (R-OH) and ether (R-O-R) chemical family. The alcohols considered are: methanol (MeOH), ethanol (EtOH), tertiary butyl alcohol (TBA). The ethers are: methyl tertiary butyl ether (MTBE), ethyl tertiary butyl ether (ETBE), tertiary amyl methyl ether (TAME), tertiary amyl ethyl ether (TAEE), di-isopropyl ether (DIPE). Of the eight oxygenates listed above, the author describes the five that are still waiting for widespread marketing acceptance (methanol, TBA, TAME, TAEE, and DIPE). He then discusses the two most widely used oxygenates in the US, MTBE and ethanol, along with the up-and-coming ethanol ether, ETBE. Selected physical properties for all of these oxygenates can be found in Table 2 at the end of this paper. A figure shows a simplified alcohol/ether production flow chart for the oxygenates listed above and how they are interrelated.

  20. Absorption process for producing oxygen and nitrogen and solution therefor

    DOE Patents [OSTI]

    Roman, I.C.; Baker, R.W.

    1990-09-25

    Process for the separation and purification of oxygen and nitrogen is disclosed which utilizes solutions of oxygen carriers to selectively absorb oxygen from a gaseous stream, leaving nitrogen as a byproduct. In the process, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a solvent solution, which absorbs oxygen from an oxygen-containing gaseous feed stream such as atmospheric air and desorbs oxygen to a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form during desorption. In an alternate mode of operation, the carrier solution is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, and at a sufficiently high temperature to keep the carrier in its deoxygenated form during desorption. Under such conditions, exceptionally high oxygen concentrations on the order of 95% to 99% are obtained, as well as a long carrier lifetime in excess of 3 months, making the process commercially feasible. 1 figure

  1. Absorption process for producing oxygen and nitrogen and solution therefor

    DOE Patents [OSTI]

    Roman, Ian C. [Wilmington, DE; Baker, Richard W. [Palo Alto, CA

    1990-09-25

    Process for the separation and purification of oxygen and nitrogen is disclosed which utilizes solutions of oxygen carriers to selectively absorb oxygen from a gaseous stream, leaving nitrogen as a byproduct. In the process, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a solvent solution, which absorbs oxygen from an oxygen-containing gaseous feed stream such as atmospheric air and desorbs oxygen to a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form during desorption. In an alternate mode of operation, the carrier solution is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, and at a sufficiently high temperature to keep the carrier in its deoxygenated form during desorption. Under such conditions, exceptionally high oxygen concentrations on the order of 95% to 99% are obtained, as well as a long carrier lifetime in excess of 3 months, making the process commercially feasible.

  2. Absorption process for producing oxygen and nitrogen and solution therefor

    DOE Patents [OSTI]

    Roman, Ian C.

    1984-01-01

    Process for the separation and purification of oxygen and nitrogen is disclosed which utilizes solutions of oxygen carriers to selectively absorb oxygen from a gaseous stream, leaving nitrogen as a byproduct. In the process, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a solvent solution, which absorbs oxygen from an oxygen-containing gaseous feed stream such as atmospheric air and desorbs oxygen to a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form during desorption. In an alternate mode of operation, the carrier solution is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, and at a sufficiently high temperature to keep the carrier in its deoxygenated form during desorption. Under such conditions, exceptionally high oxygen concentrations on the order of 95% to 99% are obtained, as well as a long carrier lifetime in excess of 3 months, making the process commercially feasible.

  3. Light-weight analyzer for odor recognition

    DOE Patents [OSTI]

    Vass, Arpad A; Wise, Marcus B

    2014-05-20

    The invention provides a light weight analyzer, e.g., detector, capable of locating clandestine graves. The detector utilizes the very specific and unique chemicals identified in the database of human decompositional odor. This detector, based on specific chemical compounds found relevant to human decomposition, is the next step forward in clandestine grave detection and will take the guess-work out of current methods using canines and ground-penetrating radar, which have historically been unreliable. The detector is self contained, portable and built for field use. Both visual and auditory cues are provided to the operator.

  4. WEIGHTED GUIDELINES PROFIT/FEE OBJECTIVE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WEIGHTED GUIDELINES PROFIT/FEE OBJECTIVE DOE F 4220.23 (06-95) U.S. DEPARTMENT OF ENERGY 1. CONTRACTOR IDENTIFICATION 2. TYPE OF ACQUISTION ACTION (REFER TO OFPP MANUAL, FEDERAL PROCUREMENT DATA SYSTEMS - PRODUCT AND SERVICE CODES. APRIL 1980) a. Name c. Street address b. Division (If any) d. City e. State f. Zip code a. SUPPLIES & EQUIPMENT b. RESEARCH & DEVELOPMENT c. SERVICES: (1) ARCHITECT-ENGINEER: (2) MANAGEMENT SERVICES: (3) MEDICAL: (4) OTHER (e.g., SUPPORT SERVICES) 3.

  5. CONTINUOUS PROCESS FOR PREPARING URANIUM HEXAFLUORIDE FROM URANIUM TETRAFLUORIDE AND OXYGEN

    DOE Patents [OSTI]

    Adams, J.B.; Bresee, J.C.; Ferris, L.M.

    1961-11-21

    A process for preparing UF/sub 6/ by reacting UF/sub 4/ and oxygen is described. The UF/sub 4/ and oxygen are continuously introduced into a fluidized bed of UO/sub 2/F/sub 2/ at a temperature of 600 to 900 deg C. The concentration of UF/sub 4/ in the bed is maintained below 25 weight per cent in order to avoid sintering and intermediate compound formation. By-product U0/sub 2/F/sub 2/ is continuously removed from the top of the bed recycled. In an alternative embodiment heat is supplied to the reaction bed by burning carbon monoxide in the bed. The product UF/sub 6/ is filtered to remove entrained particles and is recovered in cold traps and chemical traps. (AEC)

  6. Oxygen reduction reaction: A framework for success

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Allendorf, Mark D.

    2016-05-06

    Oxygen reduction at the cathode of fuel cells typically requires a platinum-based material to catalyse the reaction, but lower-cost, more stable catalysts are sought. Here, an intrinsically conductive metal–organic framework based on cheaper elements is shown to be a durable, structurally well-defined catalyst for this reaction.

  7. Ammonia producing engine utilizing oxygen separation

    DOE Patents [OSTI]

    Easley, Jr., William Lanier; Coleman, Gerald Nelson; Robel, Wade James

    2008-12-16

    A power system is provided having a power source, a first power source section with a first intake passage and a first exhaust passage, a second power source section with a second intake passage and a second exhaust passage, and an oxygen separator. The second intake passage may be fluidly isolated from the first intake passage.

  8. Novel Membranes and Processes for Oxygen Enrichment

    SciTech Connect (OSTI)

    Lin, Haiqing

    2011-11-15

    The overall goal of this project is to develop a membrane process that produces air containing 25-35% oxygen, at a cost of $25-40/ton of equivalent pure oxygen (EPO2). Oxygen-enriched air at such a low cost will allow existing air-fueled furnaces to be converted economically to oxygen-enriched furnaces, which in turn will improve the economic and energy efficiency of combustion processes significantly, and reduce the cost of CO{sub 2} capture and sequestration from flue gases throughout the U.S. manufacturing industries. During the 12-month Concept Definition project: We identified a series of perfluoropolymers (PFPs) with promising oxygen/nitrogen separation properties, which were successfully made into thin film composite membranes. The membranes showed oxygen permeance as high as 1,200 gpu and oxygen/nitrogen selectivity of 3.0, and the permeance and selectivity were stable over the time period tested (60 days). We successfully scaled up the production of high-flux PFP-based membranes, using MTR's commercial coaters. Two bench-scale spiral-wound modules with countercurrent designs were made and parametric tests were performed to understand the effect of feed flow rate and pressure, permeate pressure and sweep flow rate on the membrane module separation properties. At various operating conditions that modeled potential industrial operating conditions, the module separation properties were similar to the pure-gas separation properties in the membrane stamps. We also identified and synthesized new polymers [including polymers of intrinsic microporosity (PIMs) and polyimides] with higher oxygen/nitrogen selectivity (3.5-5.0) than the PFPs, and made these polymers into thin film composite membranes. However, these membranes were susceptible to severe aging; pure-gas permeance decreased nearly six-fold within two weeks, making them impractical for industrial applications of oxygen enrichment. We tested the effect of oxygen-enriched air on NO{sub x} emissions using a

  9. Table 26. Natural gas home customer-weighted heating degree...

    U.S. Energy Information Administration (EIA) Indexed Site

    6:14:01 PM Table 26. Natural gas home customer-weighted heating degree days MonthYear... Table 26 Created on: 4262016 6:14:07 PM Table 26. Natural gas home customer-weighted ...

  10. Light weight high-stiffness stage platen

    DOE Patents [OSTI]

    Spence, Paul A. (Pleasanton, CA)

    2001-01-01

    An improved light weight, stiff stage platen for photolithography is provided. The high stiffness of the stage platen is exemplified by a relatively high first resonant vibrational mode as determined, for instance, by finite element modal analysis. The stage platen can be employed to support a chuck that is designed to secure a mask or wafer. The stage platen includes a frame that has interior walls that define an interior region and that has exterior walls wherein the outer surfaces of at least two adjacent walls are reflective mirror surfaces; and a matrix of ribs within the interior region that is connected to the interior walls wherein the stage platen exhibits a first vibrational mode at a frequency of greater than about 1000 Hz.

  11. Effects of ionomer morphology on oxygen reduction on Pt

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chlistunoff, Jerzy; Pivovar, Bryan

    2015-05-21

    In this paper, the oxygen reduction reaction (ORR) at the interface between platinum and Nafion 1100 equivalent weight was studied as a function of temperature (20–80 °C), humidity (10–100%), scan rate, the manner in which Nafion film was deposited, and the state of the Pt surface using ultramicroelectrodes employing cyclic voltammetry and chronoamperometry. ORR on smooth electrodes was strongly inhibited under specific conditions dependent on temperature, humidity, and scan rate. From the data presented, we postulate that dynamic changes in the molecular structure of the ionomer at the platinum interface result in differences in ORR voltammetry for films prepared andmore » equilibrated under different conditions. The lack of similar changes for rough, platinized electrodes has been attributed to differences in initial ionomer structure and a higher energy barrier for ionomer restructuring. Finally, these model system studies yield insight into the ionomer-catalyst interface of particular interest for polymer electrolyte fuel cells.« less

  12. Significance-weighted feature extraction from hyper-dimensional data and its applications

    SciTech Connect (OSTI)

    Fujimura, S.; Kiyasu, S.

    1996-11-01

    Extracting significant features is essential for processing and transmission of vast volume of hyper-dimensional data. Conventional ways of extracting features are not always satisfactory for this kind of data in terms of optimality and computation time. Here we present a successive feature extraction method designed for significance-weighted supervised classification. After all the data are orthogonalized and reduced by principal component analysis, a set of appropriate features for prescribed purpose is extracted as linear combinations of the reduced components. We applied this method to 411 dimensional hyperspectral data obtained by a ground-based imaging spectrometer. The data were obtained from tree leaves of five categories, soil, stone and concrete. Features were successively extracted, and they were found to yield more than several percents higher accuracy for the classification of prescribed classes than a conventional method. We applied the results of feature extraction for evaluating the performance of current sensors and for designing the spectral bands of new sensors. Bands of new sensors were designed by allocating them to the highly weighted wavelength in extracted features. The designed bands were revealed to be more appropriate for the specific purpose than the current sensors. 8 refs., 11 figs., 3 tabs.

  13. Oxygen-producing inert anodes for SOM process

    DOE Patents [OSTI]

    Pal, Uday B

    2014-02-25

    An electrolysis system for generating a metal and molecular oxygen includes a container for receiving a metal oxide containing a metallic species to be extracted, a cathode positioned to contact a metal oxide housed within the container; an oxygen-ion-conducting membrane positioned to contact a metal oxide housed within the container; an anode in contact with the oxygen-ion-conducting membrane and spaced apart from a metal oxide housed within the container, said anode selected from the group consisting of liquid metal silver, oxygen stable electronic oxides, oxygen stable crucible cermets, and stabilized zirconia composites with oxygen stable electronic oxides.

  14. Excess Oxygen Defects in Layered Cuprates

    DOE R&D Accomplishments [OSTI]

    Lightfoot, P.; Pei, S. Y.; Jorgensen, J. D.; Manthiram, A.; Tang, X. X.; Goodenough, J. B.

    1990-09-01

    Neutron powder diffraction has been used to study the oxygen defect chemistry of two non-superconducting layered cuprates, La{sub 1. 25}Dy{sub 0.75}Cu{sub 3.75}F{sub 0.5}, having a T{sup {asterisk}}- related structure, and La{sub 1.85}Sr{sub 1.15}Cu{sub 2}O{sub 6.25}, having a structure related to that of the newly discovered double-layer superconductor La{sub 2-x}Sr{sub x}CaCu{sub 2}O{sub 6}. The role played by oxygen defects in determining the superconducting properties of layered cuprates is discussed.

  15. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect (OSTI)

    Lawrence E. Bool; Jack C. Chen; David R. Thompson

    2000-10-01

    This quarterly technical progress report will summarize work accomplished for the Program through the second quarter July--September 2000 in the following task areas: Task 1-Oxygen Enhanced Combustion, Task 2-Oxygen Transport Membranes and Task 4-Program Management. The program is proceeding in accordance with the objectives for the first year. OTM tube characterization is well underway, the design and assembly of the high pressure permeation test facility is complete and the facility will be in full operation during the next quarter. Combustion testing has been initiated at both the University of Arizona and Praxair. Testing at the University of Arizona has experienced some delays; steps have been take to get the test work back on schedule. Completion of the first phase of the testing is expected in next quarter. Combustion modeling has been started at both REI and Praxair, preliminary results are expected in the next quarter.

  16. Electrical insulator assembly with oxygen permeation barrier

    DOE Patents [OSTI]

    Van Der Beck, R.R.; Bond, J.A.

    1994-03-29

    A high-voltage electrical insulator for electrically insulating a thermoelectric module in a spacecraft from a niobium-1% zirconium alloy wall of a heat exchanger filled with liquid lithium while providing good thermal conductivity between the heat exchanger and the thermoelectric module. The insulator has a single crystal alumina layer (SxAl[sub 2]O[sub 3], sapphire) with a niobium foil layer bonded thereto on the surface of the alumina crystal facing the heat exchanger wall, and a molybdenum layer bonded to the niobium layer to act as an oxygen permeation barrier to preclude the oxygen depleting effects of the lithium from causing undesirable niobium-aluminum intermetallic layers near the alumina-niobium interface. 3 figures.

  17. Electrical insulator assembly with oxygen permeation barrier

    DOE Patents [OSTI]

    Van Der Beck, Roland R.; Bond, James A.

    1994-01-01

    A high-voltage electrical insulator (21) for electrically insulating a thermoelectric module (17) in a spacecraft from a niobium-1% zirconium alloy wall (11) of a heat exchanger (13) filled with liquid lithium (16) while providing good thermal conductivity between the heat exchanger and the thermoelectric module. The insulator (21) has a single crystal alumina layer (SxAl.sub.2 O.sub.3, sapphire) with a niobium foil layer (32) bonded thereto on the surface of the alumina crystal (26) facing the heat exchanger wall (11), and a molybdenum layer (31) bonded to the niobium layer (32) to act as an oxygen permeation barrier to preclude the oxygen depleting effects of the lithium from causing undesirable niobium-aluminum intermetallic layers near the alumina-niobium interface.

  18. 5000 groove/mm multilayer-coated blazed grating with 33percent efficiency in the 3rd order in the EUV wavelength range

    SciTech Connect (OSTI)

    Advanced Light Source; Voronov, Dmitriy L.; Anderson, Erik; Cambie, Rossana; Salmassi, Farhad; Gullikson, Eric; Yashchuk, Valeriy; Padmore, Howard; Ahn, Minseung; Chang, Chih-Hao; Heilmann, Ralf; Schattenburg, Mark

    2009-07-07

    We report on recent progress in developing diffraction gratings which can potentially provide extremely high spectral resolution of 105-106 in the EUV and soft x-ray photon energy ranges. Such a grating was fabricated by deposition of a multilayer on a substrate which consists ofa 6-degree blazed grating with a high groove density. The fabrication of the substrate gratings was based on scanning interference lithography and anisotropic wet etch of silicon single crystals. The optimized fabrication process provided precise control of the grating periodicity, and the grating groove profile, together with very short anti-blazed facets, and near atomically smooth surface blazed facets. The blazed grating coated with 20 Mo/Si bilayers demonstrated a diffraction efficiency in the third order as high as 33percent at an incidence angle of 11? and wavelength of 14.18 nm.

  19. A miniature inexpensive, oxygen sensing element

    SciTech Connect (OSTI)

    Arenz, R.W.

    1991-10-07

    An exhaustive study was conducted to determine the feasibility of Nernst-type oxygen sensors based on ceramics containing Bi{sub 2}O{sub 3}. The basic sensor design consisted of a ceramic sensing module sealed into a metal tube. The module accommodated an internal heater and thermocouple. Thermal-expansion-matched metals, adhesives, and seals were researched and developed, consistent with sequential firings during sensor assembly. Significant effort was devoted to heater design/testing and to materials' compatibility with Pt electrodes. A systematic approach was taken to develop all sensor components which led to several design modifications. Prototype sensors were constructed and exhaustively tested. It is concluded that development of Nerst-type oxygen sensors based on Bi{sub 2}O{sub 3} will require much further effort and application of specialized technologies. However, during the course of this 3-year program much progress was reported in the literature on amperometric-type oxygen sensors, and a minor effort was devoted here to this type of sensor based on Bi{sub 2}O{sub 3}. These studies were made on Bi{sub 2}O{sub 3}-based ceramic samples in a multilayer-capacitor-type geometry and amperometric-type oxygen sensing was demonstrated at very low temperatures ({approximately} 160{degree}C). A central advantage here is that these types of sensors can be mass-produced very inexpensively ({approximately} 20--50 cents per unit). Research is needed, however, to develop an optimum diffusion-limiting barrier coating. In summary, the original goals of this program were not achieved due to unforeseen problems with Bi{sub 2}O{sub 3}-based Nernst sensors. However, a miniature amperometric sensor base on Bi{sub 2}O{sub 3} was demonstrated in this program, and it is now seen that this latter sensor is far superior to the originally proposed Nernst sensor. 6 refs., 24 figs.

  20. Platinum Monolayer Electrocatalysts for Oxygen Reduction Reaction

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Platinum Monolayer Electrocatalysts for Oxygen Reduction Reaction Radoslav Adzic Co-workers: Jia Wang, Miomir Vukmirovic, Kotaro Sasaki, Stoyan Bliznakov, Yun Cai, Yu Zhang, Kurian Kuttiyiel, Kuanping Gong, YongMan Choi, Ping Liu, Hideo Naohara 1 Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973 1 Toyota Motor Corporation, Susono, Japan Webinar June 19, 2012 Outline - Introduction on fuel cells, electrocatalysis, existing developments and remaining obstacles to