Powered by Deep Web Technologies
Note: This page contains sample records for the topic "oxygen ions miec" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

AP-XPS Measures MIEC Oxides in Action  

NLE Websites -- All DOE Office Websites (Extended Search)

and oxygen ions. MIEC oxides have broad applications, including use in solid-oxide fuel cells, high-temperature electrolysis for synthetic fuel production, and...

2

AP-XPS Measures MIEC Oxides in Action  

NLE Websites -- All DOE Office Websites (Extended Search)

AP-XPS Measures MIEC Oxides in AP-XPS Measures MIEC Oxides in Action AP-XPS Measures MIEC Oxides in Action Print Wednesday, 25 May 2011 00:00 Oxide materials with mixed ionic-electronic conductivity (MIEC) can conduct both electrons and oxygen ions. MIEC oxides have broad applications, including use in solid-oxide fuel cells, high-temperature electrolysis for synthetic fuel production, and oxygen-separating membranes for chemical processes or NOx-free combustion; however, their surface activity under reaction conditions has been difficult, if not impossible, to ascertain, until recently. A team from the University of Maryland and Sandia National Laboratories joined ALS scientists on Beamlines 9.3.2 and 11.0.2 to overcome the vacuum limitations of conventional XPS instruments using ambient-pressure x-ray photoelectron spectroscopy (AP-XPS), providing the first in situ measurements of local surface oxidation states and electric potential in active MIEC electrodes.

3

AP-XPS Measures MIEC Oxides in Action  

NLE Websites -- All DOE Office Websites (Extended Search)

AP-XPS Measures MIEC Oxides in Action Print AP-XPS Measures MIEC Oxides in Action Print Oxide materials with mixed ionic-electronic conductivity (MIEC) can conduct both electrons and oxygen ions. MIEC oxides have broad applications, including use in solid-oxide fuel cells, high-temperature electrolysis for synthetic fuel production, and oxygen-separating membranes for chemical processes or NOx-free combustion; however, their surface activity under reaction conditions has been difficult, if not impossible, to ascertain, until recently. A team from the University of Maryland and Sandia National Laboratories joined ALS scientists on Beamlines 9.3.2 and 11.0.2 to overcome the vacuum limitations of conventional XPS instruments using ambient-pressure x-ray photoelectron spectroscopy (AP-XPS), providing the first in situ measurements of local surface oxidation states and electric potential in active MIEC electrodes.

4

AP-XPS Measures MIEC Oxides in Action  

NLE Websites -- All DOE Office Websites (Extended Search)

AP-XPS Measures MIEC Oxides in Action Print AP-XPS Measures MIEC Oxides in Action Print Oxide materials with mixed ionic-electronic conductivity (MIEC) can conduct both electrons and oxygen ions. MIEC oxides have broad applications, including use in solid-oxide fuel cells, high-temperature electrolysis for synthetic fuel production, and oxygen-separating membranes for chemical processes or NOx-free combustion; however, their surface activity under reaction conditions has been difficult, if not impossible, to ascertain, until recently. A team from the University of Maryland and Sandia National Laboratories joined ALS scientists on Beamlines 9.3.2 and 11.0.2 to overcome the vacuum limitations of conventional XPS instruments using ambient-pressure x-ray photoelectron spectroscopy (AP-XPS), providing the first in situ measurements of local surface oxidation states and electric potential in active MIEC electrodes.

5

AP-XPS Measures MIEC Oxides in Action  

NLE Websites -- All DOE Office Websites (Extended Search)

AP-XPS Measures MIEC Oxides in Action Print AP-XPS Measures MIEC Oxides in Action Print Oxide materials with mixed ionic-electronic conductivity (MIEC) can conduct both electrons and oxygen ions. MIEC oxides have broad applications, including use in solid-oxide fuel cells, high-temperature electrolysis for synthetic fuel production, and oxygen-separating membranes for chemical processes or NOx-free combustion; however, their surface activity under reaction conditions has been difficult, if not impossible, to ascertain, until recently. A team from the University of Maryland and Sandia National Laboratories joined ALS scientists on Beamlines 9.3.2 and 11.0.2 to overcome the vacuum limitations of conventional XPS instruments using ambient-pressure x-ray photoelectron spectroscopy (AP-XPS), providing the first in situ measurements of local surface oxidation states and electric potential in active MIEC electrodes.

6

Oxygen ion conducting materials  

DOE Patents (OSTI)

An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

Vaughey, John (Elmhurst, IL); Krumpelt, Michael (Naperville, IL); Wang, Xiaoping (Downers Grove, IL); Carter, J. David (Bolingbrook, IL)

2003-01-01T23:59:59.000Z

7

AP-XPS Measures MIEC Oxides in Action  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel production, and oxygen-separating membranes for chemical processes or NOx-free combustion; however, their surface activity under reaction conditions has been difficult,...

8

Development of Ion Transport Membrane (ITM) Oxygen Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

Ion Transport Membrane (ITM) Oxygen Technology for Integration in IGCC and Other Advanced Power Generation Systems Background The Gasification Technologies Program at the National...

9

Oxygen ion-conducting dense ceramic  

DOE Patents (OSTI)

Preparation, structure, and properties of mixed metal oxide compositions containing at least strontium, cobalt, iron and oxygen are described. The crystalline mixed metal oxide compositions of this invention have, for example, structure represented by Sr.sub..alpha. (Fe.sub.1-x Co.sub.x).sub..alpha.+.beta. O.sub..delta. where x is a number in a range from 0.01 to about 1, .alpha. is a number in a range from about 1 to about 4, .beta. is a number in a range upward from 0 to about 20, and .delta. is a number which renders the compound charge neutral, and wherein the composition has a non-perovskite structure. Use of the mixed metal oxides in dense ceramic membranes which exhibit oxygen ionic conductivity and selective oxygen separation, are described as well as their use in separation of oxygen from an oxygen-containing gaseous mixture.

Balachandran, Uthamalingam (Hinsdale, IL); Kleefisch, Mark S. (Naperville, IL); Kobylinski, Thaddeus P. (Lisle, IL); Morissette, Sherry L. (Las Cruces, NM); Pei, Shiyou (Naperville, IL)

1997-01-01T23:59:59.000Z

10

Oxygen ion-conducting dense ceramic  

DOE Patents (OSTI)

Preparation, structure, and properties of mixed metal oxide compositions containing at least strontium, cobalt, iron and oxygen are described. The crystalline mixed metal oxide compositions of this invention have, for example, structure represented by Sr.sub..alpha. (Fe.sub.1-x Co.sub.x).sub..alpha.+.beta. O.sub..delta. where x is a number in a range from 0.01 to about 1, .alpha. is a number in a range from about 1 to about 4, .beta. is a number in a range upward from 0 to about 20, and .delta. is a number which renders the compound charge neutral, and wherein the composition has a non-perovskite structure. Use of the mixed metal oxides in dense ceramic membranes which exhibit oxygen ionic conductivity and selective oxygen separation, are described as well as their use in separation of oxygen from an oxygen-containing gaseous mixture.

Balachandran, Uthamalingam (Hinsdale, IL); Kleefisch, Mark S. (Naperville, IL); Kobylinski, Thaddeus P. (Lisle, IL); Morissette, Sherry L. (Las Cruces, NM); Pei, Shiyou (Naperville, IL)

1996-01-01T23:59:59.000Z

11

Oxygen ion-conducting dense ceramic  

DOE Patents (OSTI)

Preparation, structure, and properties of mixed metal oxide compositions and their uses are described. Mixed metal oxide compositions of the invention have stratified crystalline structure identifiable by means of powder X-ray diffraction patterns. In the form of dense ceramic membranes, the present compositions demonstrate an ability to separate oxygen selectively from a gaseous mixture containing oxygen and one or more other volatile components by means of ionic conductivities.

Balachandran, Uthamalingam (Hinsdale, IL); Kleefisch, Mark S. (Plainfield, IL); Kobylinski, Thaddeus P. (Prospect, PA); Morissette, Sherry L. (Las Cruces, NM); Pei, Shiyou (Naperville, IL)

1998-01-01T23:59:59.000Z

12

NETL: Gasification - Development of Ion-Transport Membrane Oxygen  

NLE Websites -- All DOE Office Websites (Extended Search)

Feed Systems Feed Systems Recovery Act: Development of Ion-Transport Membrane Oxygen Technology for Integration in IGCC and Other Advanced Power Generation Systems Air Products and Chemicals, Inc. Project Number: FC26-98FT40343 Project Description Air Products and Chemicals, Inc. is developing, scaling-up, and demonstrating a novel air separation technology for large-scale production of oxygen (O2) at costs that are approximately one-third lower than conventional cryogenic plants. An Ion Transport Membrane (ITM) Oxygen plant co-produces power and oxygen. A phased technology RD&D effort is underway to demonstrate all necessary technical and economic requirements for scale-up and industrial commercialization. The ITM Oxygen production technology is a radically different approach to producing high-quality tonnage oxygen and to enhance the performance of integrated gasification combined cycle and other advanced power generation systems. Instead of cooling air to cryogenic temperatures, oxygen is extracted from air at temperatures synergistic with power production operations. Process engineering and economic evaluations of integrated gasification combined cycle (IGCC) power plants comparing ITM Oxygen with a state-of-the-art cryogenic air separation unit are aimed to show that the installed capital cost of the air separation unit and the installed capital of IGCC facility are significantly lower compared to conventional technologies, while improving power plant output and efficiency. The use of low-cost oxygen in combustion processes would provide cost-effective emission reduction and carbon management opportunities. ITM Oxygen is an enabling module for future plants for producing coal derived shifted synthesis gas (a mixture of hydrogen [H2] and carbon dioxide [CO2]) ultimately for producing clean energy and fuels. Oxygen-intensive industries such as steel, glass, non-ferrous metallurgy, refineries, and pulp and paper may also realize cost and productivity benefits as a result of employing ITM Oxygen.

13

Method for providing oxygen ion vacancies in lanthanide oxides  

DOE Patents (OSTI)

A method for desulfurization of fuel gases resulting from the incomplete combustion of sulfur containing hydrocarbons whereby the gases are treated with lanthanide oxides containing large numbers of oxygen-ion vacancies providing ionic porosity which enhances the ability of the lanthanide oxides to react more rapidly and completely with the sulfur in the fuel gases whereby the sulfur in such gases is reduced to low levels suitable for fuels for firing into boilers of power plants generating electricity with steam turbine driven generators, gas turbines, fuel cells and precursors for liquid fuels such as methanol and the like.

Kay, D. Alan R. (4305 Lakeshore Rd., Burlington, CA); Wilson, William G. (820 Harden Dr., Pittsburgh, PA 15229)

1989-12-05T23:59:59.000Z

14

Task Technical Plan for Studies of Oxygen Consumption in the Catalyzed Hydrolysis of Tetraphenylborate Ion  

Science Conference Proceedings (OSTI)

This document presents the plan for studies of how dissolved oxygen affects the catalytic decomposition of the tetraphenylborate ion in alkaline aqueous solution.

Fink, S.D. [Westinghouse Savannah River Company, AIKEN, SC (United States)

1996-12-20T23:59:59.000Z

15

NETL: Gasification - Development of Ion-Transport Membrane Oxygen  

NLE Websites -- All DOE Office Websites (Extended Search)

Presentations, Papers, and Publications Presentations, Papers, and Publications ITM Oxygen Development for Advanced Oxygen Supply (Oct 2011) Ted Foster, Air Products & Chemicals, Inc. presented at the Gasification Technologies Conference, San Francisco, CA Oct 9-12, 2011. ASU/IGCC Integration Strategies (Oct 2009), David McCarthy, Air Products & Chemicals, Inc., 2009 Gasification Technologies Conference, Colorado Springs, CO. ITM Oxygen: Taking the Next Step (Oct 2009), VanEric Stein, Air Products & Chemicals, Inc., 2009 Gasification Technologies Conference, Colorado Springs, CO. ITM Oxygen: Scaling Up a Low-Cost Oxygen Supply Technology (Oct 2006) Philip Armstrong, Air Products & Chemicals, Inc., 2006 Gasification Technologies Conference, Washington, D.C. ITM Oxygen: The New Oxygen Supply for the New IGCC Market (Oct 2005)

16

Ion implantation method for preparing polymers having oxygen erosion resistant surfaces  

DOE Patents (OSTI)

Hard surfaced polymers and the method for making them are generally described. Polymers are subjected to simultaneous multiple ion beam bombardment, that results in a hardening of the surface, improved wear resistance, and improved oxygen erosion resistance.

Lee, Eal H. (Oak Ridge, TN); Mansur, Louis K. (Clinton, TN); Heatherly, Jr., Lee (Jacksboro, TN)

1995-01-01T23:59:59.000Z

17

Program on Technology Innovation: Ion Transport Membrane Oxygen Technology for Advanced Power Generation Systems  

Science Conference Proceedings (OSTI)

This report documents an Electric Power Research Institute (EPRI) Technology Innovation (TI) project that provides background information and increased understanding to EPRI members of the potential benefits of integrating ion transport membrane (ITM) technology for oxygen production with integrated gasification combined cycle (IGCC) and oxyfuel combustion pulverized coal power plants. This TI project also generated new learning by conducting literature reviews of existing and new air separation technolo...

2009-12-21T23:59:59.000Z

18

An Auger Sputter Profiling Study of Nitrogen and Oxygen Ion Implantations in Two Titiaium Alloys  

SciTech Connect

Samples of two titanium alloys, Ti-6A1-4V and Ti-15V-3Cr-3Sn-3A1, were ion implanted with a combination of nitrogen (N+) and oxygen (O+). For each alloy, implantation parameters were chosen to give implanted nitrogen concentrations of approximately 10 or 50 atomic percent, from a depth of 100 nanometers to a depth of 400 nanometers. In all but one case, dual energy (200 keV and 90 keV) implantations of nitrogen were used to give a relatively uniform nitrogen concentration to a depth of 300 nanometers. In each case, oxygen was implanted at 35 keV, following the nitrogen implantation, to give an oxygen-enriched region near the surface. The implanted samples were then examined by Auger electron spectroscopy (AES) combined with argon ion sputtering. In order to determine the stoichiometry of the nitrogen implanted regions, it was necessary to determine the N (KVV) contribution to the overlapping N (KVV) and Ti (LMM) Auger transitions. It was also necessary to correct for the ion-bombardment-induced compositional changes which have been described in an earlier study of titanium nitride thin films. The corrected AES depth profiles were in good agreement with theoretical predictions.

Barton, B. D., Pope, L. E., Wittberg, T. N.

1989-07-31T23:59:59.000Z

19

Velocity map imaging of ions and electrons using electrostatic lenses: Application in photoelectron and photofragment ion imaging of molecular oxygen  

Science Conference Proceedings (OSTI)

The application of electrostatic lenses is demonstrated to give a substantial improvement of the two-dimensional (2D) ion/electron imaging technique. This combination of ion lens optics and 2D detection makes “velocity map imaging” possible

André T. J. B. Eppink; David H. Parker

1997-01-01T23:59:59.000Z

20

Collisions of carbon and oxygen ions with electrons, H, H/sub 2/ and He: Volume 5  

DOE Green Energy (OSTI)

This report provides a handbook for fusion research of recommended cross-section and rate-coefficient data for collisions of carbon and oxygen ions with electrons, hydrogen atoms and molecules, and helium atoms. Published experimental and theoretical data have been collected and evaluated, and recommended data are presented in tabular, graphical, and parametrized form. Processes considered include exciation, ionization, and charge exchange at collision energies appropriate to applications in fusion-energy research.

Phaneuf, R.A.; Janev, R.K.; Pindzola, M.S.

1987-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxygen ions miec" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Observations of Oxygen Ion Behavior in the Lithium-Based Electrolytic Reduction of Uranium Oxide  

Science Conference Proceedings (OSTI)

Parametric studies were performed on a lithium-based electrolytic reduction process at bench-scale to investigate the behavior of oxygen ions in the reduction of uranium oxide for various electrochemical cell configurations. Specifically, a series of eight electrolytic reduction runs was performed in a common salt bath of LiCl – 1 wt% Li2O. The variable parameters included fuel basket containment material (i.e., stainless steel wire mesh and sintered stainless steel) and applied electrical charge (i.e., 75 – 150% of the theoretical charge for complete reduction of uranium oxide in a basket to uranium metal). Samples of the molten salt electrolyte were taken at regular intervals throughout each run and analyzed to produce a time plot of Li2O concentrations in the bulk salt over the course of the runs. Following each run, the fuel basket was sectioned and the fuel was removed. Samples of the fuel were analyzed for the extent of uranium oxide reduction to metal and for the concentration of salt constituents, i.e., LiCl and Li2O. Extents of uranium oxide reduction ranged from 43 – 70% in stainless steel wire mesh baskets and 8 – 33 % in sintered stainless steel baskets. The concentrations of Li2O in the salt phase of the fuel product from the stainless steel wire mesh baskets ranged from 6.2 – 9.2 wt%, while those for the sintered stainless steel baskets ranged from 26 – 46 wt%. Another series of tests was performed to investigate the dissolution of Li2O in LiCl at 650 °C across various cathode containment materials (i.e., stainless steel wire mesh, sintered stainless steel and porous magnesia) and configurations (i.e., stationary and rotating cylindrical baskets). Dissolution of identical loadings of Li2O particulate reached equilibrium within one hour for stationary stainless steel wire mesh baskets, while the same took several hours for sintered stainless steel and porous magnesia baskets. Rotation of an annular cylindrical basket of stainless steel wire mesh accelerated the Li2O dissolution rate by more than a factor of six.

Steven D. Herrmann; Shelly X. Li; Brenda E. Serrano-Rodriguez

2009-09-01T23:59:59.000Z

22

Negative oxygen ion formation in reactive magnetron sputtering processes for transparent conductive oxides  

Science Conference Proceedings (OSTI)

Reactive d.c. magnetron sputtering in Ar/O{sub 2} gas mixtures has been investigated with energy-resolved mass spectrometry. Different metal targets (Mg, Ti, Zn, In, InSn, and Sn), which are of importance for transparent conductive oxide thin film deposition, have been used to study the formation of negative ions, mainly high-energetic O{sup -}, which are supposed to induce radiation damage in thin films. Besides their energy distribution, the ions have been particularly investigated with respect to their intensity in comparison of the different target materials. To realize the comparability, various calibration factors had to be introduced. After their application, major differences in the negative ion production have been observed for the target materials. The intensity, especially of O{sup -}, differs by about two orders of magnitude. It is shown that this difference results almost exclusively from ions that gain their energy in the target sheath. Those may gain additional energy from the sputtering process or reflection at the target. Low-energetic negative ions are, however, less affected by changes of the target material. The results concerning O{sup -} formation are discussed in term of the sputtering rate from the target and are compared to models for negative ion formation.

Welzel, Thomas; Ellmer, Klaus [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Institut Solare Brennstoffe, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany)

2012-11-15T23:59:59.000Z

23

Produção e caracterização de membranas tubulares finas de Ba0.5Sr0.5Co0.8Fe0.2O3-¿ (BSCF) em função do tipo de ligante polimérico empregado.  

E-Print Network (OSTI)

??Ceramic membranes made from mixed ionic-electronic conductor (MIEC) perovskite oxides can selectively separate oxygen from air or other gas mixtures containing oxygen. These membranes are… (more)

Ricardo Thomé da Cruz

2010-01-01T23:59:59.000Z

24

The Effect of Constituent, Interfacial Properties and Morphology on ...  

Science Conference Proceedings (OSTI)

... electronic conducting (MIEC) ceramic membranes are HeteroFoaM's which ... the solid oxide fuel cell (SOFC), oxygen separation and permeation membranes,

25

Oxygen analyzer  

DOE Patents (OSTI)

An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N.sub.2), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable oxygen obtained by decomposing the sample at 1135.degree. C., or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135.degree. C. as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N.sub.2, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

Benner, William H. (Danville, CA)

1986-01-01T23:59:59.000Z

26

Oxygen analyzer  

DOE Patents (OSTI)

An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N/sub 2/), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable obtained by decomposing the sample at 1135/sup 0/C, or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135/sup 0/C as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N/sub 2/, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

Benner, W.H.

1984-05-08T23:59:59.000Z

27

Using in situ X-ray absorption spectroscopy to study the local structure and oxygen ion conduction mechanism in (La{sub 0.6}Sr{sub 0.4})(Co{sub 0.2}Fe{sub 0.8})O{sub 3-{delta}}  

SciTech Connect

To study the local structure and oxygen ion conduction mechanism in (La{sub 0.6}Sr{sub 0.4})(Co{sub 0.2}Fe{sub 0.8})O{sub 3-{delta}} (LSCF) as a function of the oxygen partial pressure (P(O{sub 2})), in situ the Co and Fe K-edge X-ray absorption spectroscopy (XAS) was measured at elevated temperatures of 900 and 1000 K. The reduction of the Co and Fe valence, i.e., the oxygen content (3-{delta}) in LSCF, followed the change of P(O{sub 2}) from 1 to 10{sup -4} atm during{approx}4000 s. The quantitative analysis of the X-ray absorption near edge structure (XANES) and the extended X-ray absorption fine structure (EXAFS) indicated that the Fe valence was higher than the Co valence at oxidative condition ({delta} Almost-Equal-To 0) in LSCF. Whereas the Co valence decreased more than the Fe valence after reduction of P(O{sub 2}) at both 900 and 1000 K. From the relaxation plots of the valence and the oxygen content (3-{delta}) for Co and Fe after changing P(O{sub 2}), we successfully determined D{sub chem} and E{sub a} of an oxygen ion migration around Co and Fe in LSCF. A structural model with and without oxygen vacancies and an oxygen ion conduction mechanism for LSCF are proposed based on these results. - Graphical abstract: A structural model with and without oxygen vacancies, and the oxygen ion conduction mechanism of LSCF were speculated. In other words, oxygen vacancies would form more preferentially around Co than Fe from the results of in situ XAS analysis during reduction, and oxygen ions needs to pass through at the vicinity of Fe from the results of D{sub chem} and E{sub a}. Highlights: Black-Right-Pointing-Pointer Study of the oxygen ion conduction mechanism in (La{sub 0.6}Sr{sub 0.4})(Co{sub 0.2}Fe{sub 0.8})O{sub 3-{delta}} (LSCF). Black-Right-Pointing-Pointer Using in situ X-ray absorption for study of valence and oxygen diffusion coefficient. Black-Right-Pointing-Pointer The oxygen vacancies should be preferentially localized around Co in LSCF. Black-Right-Pointing-Pointer The values of the dynamics parameters for Co and Fe are close to each other.

Itoh, Takanori, E-mail: tknitoh@seimichemical.co.jp [AGC SeimiChemical Co., Ltd., 3-2-10 Chigasaki, Chigasaki City, Kanagawa 253-8585 (Japan); Nakayama, Masanobu [Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya-city, Aichi 466-8555 (Japan)

2012-08-15T23:59:59.000Z

28

Oxygen Isotopes  

NLE Websites -- All DOE Office Websites (Extended Search)

Pages to Isotopes Data Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and Carbon-13 in Methane 800,000 Deuterium Record and Shorter Records of...

29

Calorimetric Investigation of the Lithium–Manganese–Oxygen ...  

Science Conference Proceedings (OSTI)

Presentation Title, Calorimetric Investigation of the Lithium–Manganese–Oxygen Cathode Material System for Lithium Ion Batteries. Author(s), Damian M. Cupid, ...

30

Innovative oxygen separation membrane prototype  

SciTech Connect

Improvements are still needed to gas separation processes to gain industry acceptance of coal gasification systems. The Ion Transport Membrane (ITM) technology, being developed by the US Department of Energy and its partners, offers an opportunity to lower overall plant cost and improve efficiency compared to cryogenic distillation and pressure swing adsorption methods. The technology is based on a novel class of perovskite ceramic oxides which can selectively separate oxygen ions from a stream of air at high temperature and pressure. Those ions are transported across the ITM leaving non-permeate air which can be integrated with a fuel-fired gas system, enabling co-production of power and steam along with the concentrated, high-purity oxygen. The project is at the second phase, to scale up the ITM Oxygen ceramic devices to demonstrate the technology at the 1-5 tpd capability in the Subscale Engineering Prototype. A third phase to demonstrate commercial viability extends to the end of the decade. 2 figs.

NONE

2006-08-15T23:59:59.000Z

31

Mechanical, Electrical, and Optical Properties of (Pr,Ce)O[subscript 2] Solid Solutions: Kinetic Studies  

E-Print Network (OSTI)

Praseodymium doped cerium oxide (PCO) shows mixed ionic and electronic conducting (MIEC) characteristics at relatively high pO2 (e.g. air) and enhanced oxygen storage capacity (OSC), of interest for solid oxide fuel cell ...

Chen, Di

32

Experimental characterization of an Ion Transport Membrane (ITM) reactor for methane oxyfuel combustion  

E-Print Network (OSTI)

Ion Transport Membranes (ITM) which conduct both electrons and oxygen ions have been investigated experimentally for oxygen separation and fuel (mostly methane) conversion purposes over the last three decades. The fuel ...

Apo, Daniel Jolomi

2012-01-01T23:59:59.000Z

33

Catalyst containing oxygen transport membrane  

Science Conference Proceedings (OSTI)

A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a high average pore diameter and the intermediate porous layer has a lower permeability and lower pore diameter than the porous support layer. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.

Christie, Gervase Maxwell; Wilson, Jamie Robyn; van Hassel, Bart Antonie

2012-12-04T23:59:59.000Z

34

Oxygen transport by oxygen potential gradient in dense ceramic oxide membranes  

DOE Green Energy (OSTI)

Numerous studies have been conducted in recent years on the partial oxidation of methane to synthesis gas (syngas: CO + H{sub 2}) with air as the oxidant. In partial oxidation, a mixed-oxide ceramic membrane selectively transports oxygen from the air; this transport is driven by the oxygen potential gradient. Of the several ceramic materials the authors have tested, a mixed oxide based on the Sr-Fe-Co-O system has been found to be very attractive. Extensive oxygen permeability data have been obtained for this material in methane conversion experiments carried out in a reactor. The data have been analyzed by a transport equation based on the phenomenological theory of diffusion under oxygen potential gradients. Thermodynamic calculations were used to estimate the driving force for the transport of oxygen ions. The results show that the transport equation deduced from the literature describes the permeability data reasonably well and can be used to determine the diffusion coefficients and the associated activation energy of oxygen ions in the ceramic membrane material.

Maiya, P.S.; Balachandran, U.; Dusek, J.T.; Mieville, R.L. [Argonne National Lab., IL (United States). Energy Technology Div.; Kleefisch, M.S.; Udovich, C.A. [Amoco Exploration/Production, Naperville, IL (United States)

1996-05-01T23:59:59.000Z

35

Magnetism in Lithium–Oxygen Discharge Product  

SciTech Connect

Nonaqueous lithium–oxygen batteries have a much superior theoretical gravimetric energy density compared to conventional lithium-ion batteries, and thus could render long-range electric vehicles a reality. A molecular-level understanding of the reversible formation of lithium peroxide in these batteries, the properties of major/minor discharge products, and the stability of the nonaqueous electrolytes is required to achieve successful lithium–oxygen batteries. We demonstrate that the major discharge product formed in the lithium–oxygen cell, lithium peroxide, exhibits a magnetic moment. These results are based on dc-magnetization measurements and a lithium– oxygen cell containing an ether-based electrolyte. The results are unexpected because bulk lithium peroxide has a significant band gap. Density functional calculations predict that superoxide- type surface oxygen groups with unpaired electrons exist on stoichiometric lithium peroxide crystalline surfaces and on nanoparticle surfaces; these computational results are consistent with the magnetic measurement of the discharged lithium peroxide product as well as EPR measurements on commercial lithium peroxide. The presence of superoxide-type surface oxygen groups with spin can play a role in the reversible formation and decomposition of lithium peroxide as well as the reversible formation and decomposition of electrolyte molecules.

Lu, Jun; Jung, Hun-Ji; Lau, Kah Chun; Zhang, Zhengcheng; Schlueter, John A.; Du, Peng; Assary, Rajeev S.; Greeley, Jeffrey P.; Ferguson, Glen A.; Wang, Hsien-Hau; Hassoun, Jusef; Iddir, Hakim; Zhou, Jigang; Zuin, Lucia; Hu, Yongfeng; Sun, Yang-Kook; Scrosati, Bruno; Curtiss, Larry A.; Amine, Khalil

2013-05-13T23:59:59.000Z

36

New Oxygen-Production Technology Proving Successful | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oxygen-Production Technology Proving Successful Oxygen-Production Technology Proving Successful New Oxygen-Production Technology Proving Successful April 22, 2009 - 1:00pm Addthis Washington, DC -- The Office of Fossil Energy's National Energy Technology Laboratory (NETL) has partnered with Air Products and Chemicals Inc. of Allentown, Penn. to develop the Ion Transport Membrane (ITM) Oxygen, a revolutionary new oxygen-production technology that requires less energy and offers lower capital costs than conventional technologies. ITM Oxygen will enhance the performance of integrated gasification combined cycle (IGCC) power plants, as well as other gasification-based processes. The technology will also enhance the economics of oxy-fired combustion technologies, making it an attractive option for the capture of carbon

37

Ion source  

DOE Patents (OSTI)

A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species.

Leung, Ka-Ngo (Hercules, CA); Ehlers, Kenneth W. (Alamo, CA)

1984-01-01T23:59:59.000Z

38

Dense ceramic membranes for partial oxygenation of methane  

DOE Green Energy (OSTI)

The most significant cost associated with partial oxidation of methane to syngas is that of the oxygen plant. In this paper, the authors offer a technology that is based on dense ceramic membranes and that uses air as the oxidant for methane-conversion reactions, thus eliminating the need for the oxygen plant. Certain ceramic materials exhibit both electronic and ionic conductivities (of particular interest is oxygen-ion conductivity). These materials transport not only oxygen ions (functioning as selective oxygen separators) but also electrons back from the reactor side to the oxygen/reduction interface. No external electrodes are required and if the driving potential of transport is sufficient, the partial oxidation reactions should be spontaneous. Such a system will operate without an externally applied potential. Oxygen is transported across the ceramic material in the form of oxygen anions, not oxygen molecules. In principle, the dense ceramic materials can be shaped into a hollow-tube reactor, with air passed over the outside of the membrane and methane through the inside. The membrane is permeable to oxygen at high temperatures, but not to nitrogen or any other gas. Long tubes of La-Sr-Fe-Co-O (SFC) membrane were fabricated by plastic extrusion, and thermal stability of the tubes was studied as a function of oxygen partial pressure by high-temperature XRD. Mechanical properties were measured and found to be acceptable for a reactor material. Fracture of certain SFC tubes was the consequence of an oxygen gradient that introduced a volumetric lattice difference between the inner and outer walls. However, tubes made with a particular stoichiometry (SFC-2) provided methane conversion efficiencies of >99% in a reactor. Some of the reactor tubes have operated for up to {approx} 1,000 h.

Balachandran, U.; Dusek, J.T.; Sweeney, S.M.; Mieville, R.L.; Maiya, P.S. [Argonne National Lab., IL (United States). Energy Technology Div.; Kleefisch, M.S.; Pei, S.; Kobylinski, T.P. [Amoco Research Center, Naperville, IL (United States); Bose, A.C. [USDOE Pittsburgh Energy Technology Center, PA (United States)

1994-05-01T23:59:59.000Z

39

Algae for Oxygen  

NLE Websites -- All DOE Office Websites (Extended Search)

Algae for Oxygen Algae for Oxygen Name: Pam Burkardt Status: N/A Age: N/A Location: N/A Country: N/A Date: N/A Question: Hi, I am Pam Burkardt, a seventh grader at Fox Chapel School. I have a question on algae. I read somewhere that someday people might take bath tubs full of algae onto spaceships to provide oxygen for the crew. How much oxygen does algae give off, is this really possible? Replies: I think that most of the oxygen in the atmosphere comes in fact from one-celled plants in the oceans, like algae. They are likely to produce a lot of oxygen per unit weight because they don't have non-photosynthesizing bark, roots, branches, etc., nor (I think) a major dormant period like temperate-zone plants. The cost of space travel at present is dominated by the expense of heaving weight up into Earth orbit (it costs very little extra to send it to the Moon, for example, or Mars). For missions of short duration the weight of the compressed oxygen you need to carry is less than the weight of algae, water and extra plumbing you'd need to carry if you relied on algae to produce your oxygen. The important use of green plants would be in very long duration space flight (years) or permanent inhabitation of worlds like the Moon, where you need an unlimited supply of oxygen. Now if you want to fantasize, Venus' atmosphere is almost all carbon dioxide. Suppose you dropped a whole lot of specially gene-tailored one-celled plants into the atmosphere (not the surface, it's too hot). Why then they might eat up all the carbon dioxide and produce a breathable atmosphere. The "greenhouse effect" would go away, and Venus would become a nice habitable if tropical world only 50 million miles away.

40

Plants making oxygen  

NLE Websites -- All DOE Office Websites (Extended Search)

Plants making oxygen Plants making oxygen Name: Doug Status: N/A Age: N/A Location: N/A Country: N/A Date: Around 1993 Question: How many plants are needed to make enough oxygen for one person for one hour? We are experimenting with Anacharis plants. Replies: The problem can be solved when broken down into smaller questions: 1. How much oxygen does a person need in an hour? 2. How much oxygen does a plant produce in an hour? 3. Based on the above, how many plants will provide the oxygen needs of the person for the hour? Here is the solution to the first question: A resting, healthy adult on an average, cool day breathes in about 53 liters of oxygen per hour. An average, resting, health adult breathes in about 500 mL of air per breath. This is called the normal tidal volume. Now, 150 mL of this air will go to non- functioning areas of the lung, called the "dead space." The average breath rate for this average person is 12 breaths per minute. So, the amount of air breathed in by the person which is available for use is 12 x (500 mL -150 mL) = 4,200 mL/minute. Multiply by 60 to get 252,000 mL/hour. That is, every hour, the person will breathe in 252 L of air. Now, on an average, cool, clear day, only 21% of that air is oxygen. So, 21% of 252 L is 53 L. So, in an hour, the person breathes in about 53 L of oxygen.

Note: This page contains sample records for the topic "oxygen ions miec" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

High Selectivity Oxygen Delignification  

DOE Green Energy (OSTI)

Project Objective: The objectives of this project are as follows: (1) Examine the physical and chemical characteristics of a partner mill pre- and post-oxygen delignified pulp and compare them to lab generated oxygen delignified pulps; (2) Apply the chemical selectivity enhancement system to the partner pre-oxygen delignified pulps under mill conditions (with and without any predetermined amounts of carryover) to determine how efficiently viscosity is preserved, how well selectivity is enhanced, if strength is improved, measure any yield differences and/or bleachability differences; and (3) Initiate a mill scale oxygen delignification run using the selectivity enhancement agent, collect the mill data, analyze it, and propose any future plans for implementation.

Lucian A. Lucia

2005-11-15T23:59:59.000Z

42

Oxygen detection in biological systems  

Science Conference Proceedings (OSTI)

kinetics of flash induced oxygen evolution of algae through measuring ...... (1999) Fast response oxygen micro-optodes based on novel soluble ormosil glasses.

43

Heating of heavy ions on auroral field lines  

DOE Green Energy (OSTI)

Heating of heavy ions is studied in the presence of large amplitude hydrogen cyclotron waves. A three wave decay process, in which a large amplitude pump hydrogen cyclotron wave decays into a daughter hydrogen cyclotron wave and a low frequency oxygen cyclotron wave, is studied theoretically and by numerical simulations. The numerical simulations show a decay instability resulting in strong heating of both the oxygen ions and the hydrogen ions. In particular, the high energy tail of the oxygen ions is observed in the perpendicular distribution.

Nishikawa, K.I.; Okuda, H., Hasegawa, A.

1983-01-01T23:59:59.000Z

44

Ion Removal  

INL’s ion removal technology leverages the ability of phosphazene polymers discriminate between water and metal ions, which allows water to pass ...

45

NETL: News Release - New Oxygen-Production Technology Proving Successful  

NLE Websites -- All DOE Office Websites (Extended Search)

22, 2009 22, 2009 New Oxygen-Production Technology Proving Successful Ceramic Membrane Enables Efficient, Cost-Effective Co-Production of Power and Oxygen Washington, D.C. -The Office of Fossil Energy's National Energy Technology Laboratory (NETL) has partnered with Air Products and Chemicals Inc. of Allentown, Penn. to develop the Ion Transport Membrane (ITM) Oxygen, a revolutionary new oxygen-production technology that requires less energy and offers lower capital costs than conventional technologies. ITM Oxygen will enhance the performance of integrated gasification combined cycle (IGCC) power plants, as well as other gasification-based processes. The technology will also enhance the economics of oxy-fired combustion technologies, making it an attractive option for the capture of carbon dioxide from existing coal-fired power plants.

46

Optical oxygen concentration monitor  

DOE Patents (OSTI)

A system for measuring and monitoring the concentration of oxygen uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to one of oxygen`s A-band absorption lines. In a preferred embodiment, the argon line is split into sets of components of shorter and longer wavelengths by a magnetic field of approximately 2,000 Gauss that is parallel to the light propagation from the lamp. The longer wavelength components are centered on an absorption line of oxygen and thus readily absorbed, and the shorter wavelength components are moved away from that line and minimally absorbed. A polarization modulator alternately selects the set of the longer wavelength, or upshifted, components or the set of the shorter wavelength, or downshifted, components and passes the selected set to an environment of interest. After transmission over a path through that environment, the transmitted optical flux of the argon line varies as a result of the differential absorption. The system then determines the concentration of oxygen in the environment based on the changes in the transmitted optical flux between the two sets of components. In alternative embodiments modulation is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to either the emitting plasma of the lamp or the environment of interest. 4 figs.

Kebabian, P.

1997-07-22T23:59:59.000Z

47

Simulation of the dissolved oxygen concentration and the pH value at the O2-FET  

Science Conference Proceedings (OSTI)

The O2-FET is a pH ion sensitive field effect transistor (ISFET) modified to measure dissolved oxygen via the acidification from an amperometric dissolved oxygen microsensor. A diffusion based finite elements model which describes the transactions at ... Keywords: ISFET, diffusion, dissolved oxygen, finite elements simulation

J. Wiest; S. Blank; M. Brischwein; H. Grothe; B. Wolf

2008-02-01T23:59:59.000Z

48

Oxygen in Underwater Cave  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxygen in Underwater Cave Oxygen in Underwater Cave Name: Natalie Status: student Grade: 9-12 Location: HI Country: USA Date: Spring 2011 Question: Is it possible for there to be free oxygen in an underwater cave? If it is, then how does it work? Replies: Yes it is possible as I have personally experienced. If the cave roof rises to a level above the water, air dissolved in the water will slowly out gas until the water is at the same level at all places. A pocket of breathable air will form. In many caves the roof dips below water level in one place but it above it on both sides. Think of a U shaped tube where the bottom of the U is blocked by water. This is called a siphon and I have passed through many of these to find breathable air on the other side. R. W. "Bob" Avakian Oklahoma State Univ. Inst. of Technology

49

Feed gas contaminant removal in ion transport membrane systems  

DOE Patents (OSTI)

An oxygen ion transport membrane process wherein a heated oxygen-containing gas having one or more contaminants is contacted with a reactive solid material to remove the one or more contaminants. The reactive solid material is provided as a deposit on a support. The one or more contaminant compounds in the heated oxygen-containing gas react with the reactive solid material. The contaminant-depleted oxygen-containing gas is contacted with a membrane, and oxygen is transported through the membrane to provide transported oxygen.

Underwood, Richard Paul (Allentown, PA); Makitka, III, Alexander (Hatfield, PA); Carolan, Michael Francis (Allentown, PA)

2012-04-03T23:59:59.000Z

50

Oxygen Transport Membranes  

Science Conference Proceedings (OSTI)

The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the small polaron conduction mechanism. Scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) were used to develop strategies to detect and characterize vacancy creation, dopant segregations and defect association in the oxygen conducting membrane material. The pO{sub 2} and temperature dependence of the conductivity, non-stoichiometry and thermal-expansion behavior of compositions with increasing complexity of substitution on the perovskite A and B sites were studied. Studies with the perovskite structure show anomalous behavior at low oxygen partial pressures (oxygen equilibration kinetics arises from two different mechanisms. In the first, a two phase region occurs between an oxygen vacancy ordered phase such as brownmillerite SrFeO{sub 2.5} and perovskite SrFeO{sub 3-x}. The slow kinetics is associated with crossing the two phase region. The width of the miscibility gap decreases with increasing temperature and consequently the effect is less pronounced at higher temperature. The preferred kinetic pathway to reduction of perovskite ferrites when the vacancy concentration corresponds to the formation of significant concentrations of Fe{sup 2+} is via the formation of a Ruddlesden-Popper (RP) phases as clearly observed in the case of La{sub 0.5}Sr{sub 0.5}FeO{sub 3-x} where LaSrFeO{sub 4} is found together with Fe. In more complex compositions, such as LSFTO, iron or iron rich phases are observed locally with no evidence for the presence of discrete RP phase. Fracture strength of tubular perovskite membranes was determined in air and in reducing atmospheric conditions. The strength of the membrane decreased with temperature and severity of reducing conditions although the strength distribution (Weibull parameter, m) was relatively unaltered. Surface and volume dominated the fracture origins and the overall fracture was purely transgranular. The dual phas

S. Bandopadhyay

2008-08-30T23:59:59.000Z

51

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect

In the present quarter, the possibility of using a more complex interfacial engineering approach to the development of reliable and stable oxygen transport perovskite ceramic membranes/metal seals is discussed. Experiments are presented and ceramic/metal interactions are characterized. Crack growth and fracture toughness of the membrane in the reducing conditions are also discussed. Future work regarding this approach is proposed are evaluated for strength and fracture in oxygen gradient conditions. Oxygen gradients are created in tubular membranes by insulating the inner surface from the reducing environment by platinum foils. Fracture in these test conditions is observed to have a gradient in trans and inter-granular fracture as opposed to pure trans-granular fracture observed in homogeneous conditions. Fracture gradients are reasoned to be due to oxygen gradient set up in the membrane, variation in stoichiometry across the thickness and due to varying decomposition of the parent perovskite. The studies are useful in predicting fracture criterion in actual reactor conditions and in understanding the initial evolution of fracture processes.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2003-01-01T23:59:59.000Z

52

Optical oxygen concentration monitor  

DOE Patents (OSTI)

A system for measuring and monitoring the concentration of oxygen uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to one of oxygen's A-band absorption lines. In a preferred embodiment, the argon line is split into sets of components of shorter and longer wavelengths by a magnetic field of approximately 2000 Gauss that is parallel to the light propagation from the lamp. The longer wavelength components are centered on an absorption line of oxygen and thus readily absorbed, and the shorter wavelength components are moved away from that line and minimally absorbed. A polarization modulator alternately selects the set of the longer wavelength, or upshifted, components or the set of the shorter wavelength, or downshifted, components and passes the selected set to an environment of interest. After transmission over a path through that environment, the transmitted optical flux of the argon line varies as a result of the differential absorption. The system then determines the concentration of oxygen in the environment based on the changes in the transmitted optical flux between the two sets of components. In alternative embodiments modulation is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to either the emitting plasma of the lamp or the environment of interest.

Kebabian, Paul (Acton, MA)

1997-01-01T23:59:59.000Z

53

Enhanced life ion source for germanium and carbon ion implantation  

SciTech Connect

Germanium and carbon ions represent a significant portion of total ion implantation steps in the process flow. Very often ion source materials that used to produce ions are chemically aggressive, especially at higher temperatures, and result in fast ion source performance degradation and a very limited lifetime [B.S. Freer, et. al., 2002 14th Intl. Conf. on Ion Implantation Technology Proc, IEEE Conf. Proc., p. 420 (2003)]. GeF{sub 4} and CO{sub 2} are commonly used to generate germanium and carbon beams. In the case of GeF{sub 4} controlling the tungsten deposition due to the de-composition of WF{sub 6} (halogen cycle) is critical to ion source life. With CO{sub 2}, the materials oxidation and carbon deposition must be controlled as both will affect cathode thermionic emission and anti-cathode (repeller) efficiencies due to the formation of volatile metal oxides. The improved ion source design Extended Life Source 3 (Eterna ELS3) together with its proprietary co-gas material implementation has demonstrated >300 hours of stable continuous operation when using carbon and germanium ion beams. Optimizing cogas chemistries retard the cathode erosion rate for germanium and carbon minimizes the adverse effects of oxygen when reducing gas is introduced for carbon. The proprietary combination of hardware and co-gas has improved source stability and the results of the hardware and co-gas development are discussed.

Hsieh, Tseh-Jen; Colvin, Neil; Kondratenko, Serguei [Axcelis Technologies, Inc. 108 Cherry Hill Drive, Beverly, MA 01915 (United States)

2012-11-06T23:59:59.000Z

54

High pressure oxygen furnace  

DOE Patents (OSTI)

A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized, the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 5 figs.

Morris, D.E.

1992-07-14T23:59:59.000Z

55

High pressure oxygen furnace  

DOE Patents (OSTI)

A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

Morris, Donald E. (Kensington, CA)

1992-01-01T23:59:59.000Z

56

Oxygen Transport Ceramic Membranes  

Science Conference Proceedings (OSTI)

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. The in situ electrical conductivity and Seebeck coefficient measurements were made on LSFT at 1000 and 1200 C over the oxygen activity range from air to 10{sup -15} atm. The electrical conductivity measurements exhibited a p to n type transition at an oxygen activity of 1 x 10{sup -10} at 1000 C and 1 x 10{sup -6} at 1200 C. Thermogravimetric studies were also carried out over the same oxygen activities and temperatures. Based on the results of these measurements, the chemical and mechanical stability range of LSFT were determined and defect structure was established. The studies on the fracture toughness of the LSFT and dual phase membranes exposed to air and N{sub 2} at 1000 C was done and the XRD and SEM analysis of the specimens were carried out to understand the structural and microstructural changes. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affect the mechanical properties. A complete transformation of fracture behavior was observed in the N{sub 2} treated LSFT samples. Further results to investigate the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Recent results on transient kinetic data are presented. The 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model is used to study ''frozen'' profiles in patterned or composite membranes.

S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

2005-02-01T23:59:59.000Z

57

Oxygen Transport Ceramic Membranes  

Science Conference Proceedings (OSTI)

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the previous research, the reference point of oxygen occupancy was determined and verified. In the current research, the oxygen occupancy was investigated at 1200 C as a function of oxygen activity and compared with that at 1000 C. The cause of bumps at about 200 C was also investigated by using different heating and cooling rates during TGA. The fracture toughness of LSFT and dual phase membranes at room temperature is an important mechanical property. Vicker's indentation method was used to evaluate this toughness. Through this technique, a K{sub Ic} (Mode-I Fracture Toughness) value is attained by means of semi-empirical correlations between the indentation load and the length of the cracks emanating from the corresponding Vickers indentation impression. In the present investigation, crack propagation behavior was extensively analyzed in order to understand the strengthening mechanisms involved in the non-transforming La based ceramic composites. Cracks were generated using Vicker's indenter and used to identify and evaluate the toughening mechanisms involved. Preliminary results of an electron microscopy study of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Modeling of the isotopic transients on operating membranes (LSCrF-2828 at 900 C) and a ''frozen'' isotope profile have been analyzed in conjunction with a 1-D model to reveal the gradient in oxygen diffusivity through the membrane under conditions of high chemical gradients.

S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

2005-08-01T23:59:59.000Z

58

Fuel cell oxygen electrode  

DOE Patents (OSTI)

An oxygen electrode for a fuel cell utilizing an acid electrolyte has a substrate of an alkali metal tungsten bronze of the formula: A.sub.x WO.sub.3 where A is an alkali metal and x is at least 0.2, which is covered with a thin layer of platinum tungsten bronze of the formula: Pt.sub.y WO.sub.3 where y is at least 0.8.

Shanks, Howard R. (Ames, IA); Bevolo, Albert J. (Ames, IA); Danielson, Gordon C. (Ames, IA); Weber, Michael F. (Wichita, KS)

1980-11-04T23:59:59.000Z

59

Oxygen detected in atmosphere of Saturn's moon Dione  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxygen detected in atmosphere of Saturn's moon Dione Oxygen detected in atmosphere of Saturn's moon Dione Oxygen detected in atmosphere of Saturn's moon Dione Scientists and an international research team have announced discovery of molecular oxygen ions in the upper-most atmosphere of Dione. March 3, 2012 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

60

Oxygen Transport Membranes  

SciTech Connect

The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the small polaron conduction mechanism. Scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) were used to develop strategies to detect and characterize vacancy creation, dopant segregations and defect association in the oxygen conducting membrane material. The pO{sub 2} and temperature dependence of the conductivity, non-stoichiometry and thermal-expansion behavior of compositions with increasing complexity of substitution on the perovskite A and B sites were studied. Studies with the perovskite structure show anomalous behavior at low oxygen partial pressures (<10{sup -5} atm). The anomalies are due to non-equilibrium effects and can be avoided by using very strict criteria for the attainment of equilibrium. The slowness of the oxygen equilibration kinetics arises from two different mechanisms. In the first, a two phase region occurs between an oxygen vacancy ordered phase such as brownmillerite SrFeO{sub 2.5} and perovskite SrFeO{sub 3-x}. The slow kinetics is associated with crossing the two phase region. The width of the miscibility gap decreases with increasing temperature and consequently the effect is less pronounced at higher temperature. The preferred kinetic pathway to reduction of perovskite ferrites when the vacancy concentration corresponds to the formation of significant concentrations of Fe{sup 2+} is via the formation of a Ruddlesden-Popper (RP) phases as clearly observed in the case of La{sub 0.5}Sr{sub 0.5}FeO{sub 3-x} where LaSrFeO{sub 4} is found together with Fe. In more complex compositions, such as LSFTO, iron or iron rich phases are observed locally with no evidence for the presence of discrete RP phase. Fracture strength of tubular perovskite membranes was determined in air and in reducing atmospheric conditions. The strength of the membrane decreased with temperature and severity of reducing conditions although the strength distribution (Weibull parameter, m) was relatively unaltered. Surface and volume dominated the fracture origins and the overall fracture was purely transgranular. The dual phas

S. Bandopadhyay

2008-08-30T23:59:59.000Z

Note: This page contains sample records for the topic "oxygen ions miec" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Self?aligned high electron mobility transistor gate fabrication using focused ion beams  

Science Conference Proceedings (OSTI)

A new gate fabrication technique has been developed based on focused ion beam exposure and reactive ion etching of a polymethylmethacrylate (PMMA)/Ge/PMMA multilevel resist structure. The focused ion beam exposes the thin PMMA imaging layer that is transferred directly to the germanium layer using reactive ion etching (RIE). The underlying resist is etched first in oxygen at high pressure

G. M. Atkinson; R. L. Kubena; L. E. Larson; L. D. Nguyen; F. P. Stratton; L. M. Jelloian; M. V. Le; H. McNulty

1991-01-01T23:59:59.000Z

62

Oxygen-Consuming Chlor-Alkali Cell Configured To Minimize Peroxide  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxygen-Consuming Chlor-Alkali Cell Oxygen-Consuming Chlor-Alkali Cell Oxygen-Consuming Chlor-Alkali Cell Configured To Minimize Peroxide Formation Oxygen-consuming zero gap chlor-alkali cell was configured to minimize peroxide formation. Available for thumbnail of Feynman Center (505) 665-9090 Email Oxygen-Consuming Chlor-Alkali Cell Configured To Minimize Peroxide Formation Oxygen-consuming zero gap chlor-alkali cell was configured to minimize peroxide formation. The cell included an ion-exchange membrane that divided the cell into an anode chamber including an anode and a cathode chamber including an oxygen gas diffusion cathode. The cathode included a single-piece of electrically conducting graphitized carbon cloth. Catalyst and polytetrafluoroethylene were attached to only one side of the cloth.

63

Oxygen Transport Ceramic Membranes  

Science Conference Proceedings (OSTI)

Ti doping on La{sub 1-x}Sr{sub x}FeO{sub 3-{delta}} (LSF) tends to increase the oxygen equilibration kinetics of LSF in lower oxygen activity environment because of the high valence state of Ti. However, the addition of Ti decreases the total conductivity because the acceptor ([Sr{prime}{sub La}]) is compensated by the donor ([Ti{sub Fe}{sup {sm_bullet}}]) which decreases the carrier concentration. The properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 1-x}Ti{sub x}O{sub 3-{delta}} (LSFT, x = 0.45) have been experimentally and theoretically investigated to elucidate (1) the dependence of oxygen occupancy and electrochemical properties on temperature and oxygen activity by thermogravimetric analysis (TGA) and (2) the electrical conductivity and carrier concentration by Seebeck coefficient and electrical measurements. In the present study, dual phase (La{sub 0.2}Sr{sub 0.8}Fe{sub 0.6}Ti{sub 0.4}O{sub 3-{delta}}/Ce{sub 0.9}Gd{sub 0.1}O{sub 2-{delta}}) membranes have been evaluated for structural properties such as hardness, fracture toughness and flexural strength. The effect of high temperature and slightly reducing atmosphere on the structural properties of the membranes was studied. The flexural strength of the membrane decreases upon exposure to slightly reducing conditions at 1000 C. The as-received and post-fractured membranes were characterized using XRD, SEM and TG-DTA to understand the fracture mechanisms. Changes in structural properties of the composite were sought to be correlated with the physiochemical features of the two-phases. We have reviewed the electrical conductivity data and stoichiometry data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} some of which was reported previously. Electrical conductivity data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCrF) were obtained in the temperature range, 752 {approx} 1055 C and in the pO{sub 2} range, 10{sup -18} {approx} 0.5 atm. The slope of the plot of log {sigma} vs. log pO{sub 2} is {approx} 1/5 in the p-type region, pO{sub 2} = 10{sup -5} {approx} 10{sup -1} atm. The pO{sub 2} at which the p-n transition is observed increases with increasing temperature. The activation energy for ionic conduction was estimated to be 0.86 eV from an Arrhenius plot of the minimum conductivity vs. reciprocal temperature. At temperatures below 940 C, a plateau in the conductivity isotherm suggests the presence of a two-phase region. Most likely, phase separation occurs to form a mixture of a perovskite phase and an oxygen vacancy ordered phase related to brownmillerite. Additional data for the oxygen non stoichiometry are presented.

S. Bandopadhyay; T. Nithyanantham

2006-12-31T23:59:59.000Z

64

Ion transport membrane module and vessel system  

DOE Patents (OSTI)

An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

Stein, VanEric Edward (Allentown, PA); Carolan, Michael Francis (Allentown, PA); Chen, Christopher M. (Allentown, PA); Armstrong, Phillip Andrew (Orefield, PA); Wahle, Harold W. (North Canton, OH); Ohrn, Theodore R. (Alliance, OH); Kneidel, Kurt E. (Alliance, OH); Rackers, Keith Gerard (Louisville, OH); Blake, James Erik (Uniontown, OH); Nataraj, Shankar (Allentown, PA); Van Doorn, Rene Hendrik Elias (Obersulm-Willsbach, DE); Wilson, Merrill Anderson (West Jordan, UT)

2012-02-14T23:59:59.000Z

65

Ion transport membrane module and vessel system  

DOE Patents (OSTI)

An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel.The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

Stein, VanEric Edward (Allentown, PA); Carolan, Michael Francis (Allentown, PA); Chen, Christopher M. (Allentown, PA); Armstrong, Phillip Andrew (Orefield, PA); Wahle, Harold W. (North Canton, OH); Ohrn, Theodore R. (Alliance, OH); Kneidel, Kurt E. (Alliance, OH); Rackers, Keith Gerard (Louisville, OH); Blake, James Erik (Uniontown, OH); Nataraj, Shankar (Allentown, PA); van Doorn, Rene Hendrik Elias (Obersulm-Willsbach, DE); Wilson, Merrill Anderson (West Jordan, UT)

2008-02-26T23:59:59.000Z

66

Use of ion conductors in the pyrochemical reduction of oxides  

DOE Patents (OSTI)

An electrochemical process and electrochemical cell for reducing a metal oxide are provided. First the oxide is separated as oxygen gas using, for example, a ZrO[sub 2] oxygen ion conductor anode and the metal ions from the reduction salt are reduced and deposited on an ion conductor cathode, for example, sodium ion reduced on a [beta]-alumina sodium ion conductor cathode. The generation of and separation of oxygen gas avoids the problem with chemical back reaction of oxygen with active metals in the cell. The method also is characterized by a sequence of two steps where an inert cathode electrode is inserted into the electrochemical cell in the second step and the metallic component in the ion conductor is then used as the anode to cause electrochemical reduction of the metal ions formed in the first step from the metal oxide where oxygen gas formed at the anode. The use of ion conductors serves to isolate the active components from chemically reacting with certain chemicals in the cell. While applicable to a variety of metal oxides, the invention has special importance for reducing CaO to Ca[sup o] used for reducing UO[sub 2] and PuO[sub 2] to U and Pu. 2 figures.

Miller, W.E.; Tomczuk, Z.

1994-02-01T23:59:59.000Z

67

Use of ion conductors in the pyrochemical reduction of oxides  

DOE Patents (OSTI)

An electrochemical process and electrochemical cell for reducing a metal oxide are provided. First the oxide is separated as oxygen gas using, for example, a ZrO.sub.2 oxygen ion conductor anode and the metal ions from the reduction salt are reduced and deposited on an ion conductor cathode, for example, sodium ion reduced on a .beta.-alumina sodium ion conductor cathode. The generation of and separation of oxygen gas avoids the problem with chemical back reaction of oxygen with active metals in the cell. The method also is characterized by a sequence of two steps where an inert cathode electrode is inserted into the electrochemical cell in the second step and the metallic component in the ion conductor is then used as the anode to cause electrochemical reduction of the metal ions formed in the first step from the metal oxide where oxygen gas formed at the anode. The use of ion conductors serves to isolate the active components from chemically reacting with certain chemicals in the cell. While applicable to a variety of metal oxides, the invention has special importance for reducing CaO to Ca.degree. used for reducing UO.sub.2 and PuO.sub.2 to U and Pu.

Miller, William E. (Naperville, IL); Tomczuk, Zygmunt (Lockport, IL)

1994-01-01T23:59:59.000Z

68

High Selectivity Oxygen Delignification  

DOE Green Energy (OSTI)

The overall objective of this program was to develop improved extended oxygen delignification (EOD) technologies for current U.S. pulp mill operations. This was accomplished by: (1) Identifying pulping conditions that optimize O and OO performance; (2) Identifying structural features of lignin that enhance reactivity towards EOD of high kappa pulps; (3) Identifying factors minimizing carbohydrate degradation and improve pulp strength of EOD high kappa pulps; (4) Developing a simple, reproducible method of quantifying yield gains from EOD; and (5) Developing process conditions that significantly reduce the capital requirements of EOD while optimizing the yield benefits. Key research outcomes included, demonstrating the use of a mini-O sequence such as (E+O)Dkf:0.05(E+O) or Dkf:0.05(E+O)(E+O) without interstage washing could capture approximately 60% of the delignification efficiency of a conventional O-stage without the major capital requirements associated with an O-stage for conventional SW kraft pulps. The rate of formation and loss of fiber charge during an O-stage stage can be employed to maximize net fiber charge. Optimal fiber charge development and delignification are two independent parameters and do not parallel each other. It is possible to utilize an O-stage to enhance overall cellulosic fiber charge of low and high kappa SW kraft pulps which is beneficial for physical strength properties. The application of NIR and multi-variant analysis was developed into a rapid and simple method of determining the yield of pulp from an oxygen delignification stage that has real-world mill applications. A focus point of this program was the demonstration that Kraft pulping conditions and oxygen delignification of high and low-kappa SW and HW pulps are intimately related. Improved physical pulp properties and yield can be delivered by controlling the H-factor and active alkali charge. Low AA softwood kraft pulp with a kappa number 30 has an average improvement of 2% in yield and 4 cP in viscosity in comparison to high AA pulp for the oxygen delignification. This difference is also seen for high-kappa SW kraft pulps with an average improvement of {approx}3% in yield and 3 cP in viscosity for low AA high kappa number 50 pulp. Low AA hardwood kappa number 20 pulp had an average improvement of {approx}4% in yield and 6-12 cP in viscosity as compared to high AA pulp. Lower kraft cooking temperature (160 vs. 170 C) in combination with the medium AA provides a practical approach for integrating high kappa pulping of hardwoods (i.e., low rejects) with an advanced extended oxygen delignification stage. ECF pulp bleaching of low and high kappa kraft SW and HW pulps exhibit comparable optical and physical strength properties when bleached D(EPO)D.

Arthur J. Ragauskas

2005-09-30T23:59:59.000Z

69

Prolonged cold storage of red blood cells by oxygen removal and additive usage  

DOE Patents (OSTI)

Prolonged cold storage of red blood cells by oxygen removal and additive usage. A cost-effective, 4.degree. C. storage procedure that preserves red cell quality and prolongs post-transfusion in vivo survival is described. The improved in vivo survival and the preservation of adenosine triphosphate levels, along with reduction in hemolysis and membrane vesicle production of red blood cells stored at 4.degree. C. for prolonged periods of time, is achieved by reducing the oxygen level therein at the time of storage; in particular, by flushing the cells with an inert gas, and storing them in an aqueous solution which includes adenine, dextrose, mannitol, citrate ion, and dihydrogen phosphate ion, but no sodium chloride, in an oxygen-permeable container which is located in an oxygen-free environment containing oxygen-scavenging materials.

Bitensky, Mark W. (Boston, MA); Yoshida, Tatsuro (Newton, MA)

1998-01-01T23:59:59.000Z

70

Prolonged cold storage of red blood cells by oxygen removal and additive usage  

DOE Patents (OSTI)

Prolonged cold storage of red blood cells by oxygen removal and additive usage. A cost-effective, 4 C storage procedure that preserves red cell quality and prolongs post-transfusion in vivo survival is described. The improved in vivo survival and the preservation of adenosine triphosphate levels, along with reduction in hemolysis and membrane vesicle production of red blood cells stored at 4 C for prolonged periods of time, is achieved by reducing the oxygen level therein at the time of storage; in particular, by flushing the cells with an inert gas, and storing them in an aqueous solution which includes adenine, dextrose, mannitol, citrate ion, and dihydrogen phosphate ion, but no sodium chloride, in an oxygen-permeable container which is located in an oxygen-free environment containing oxygen-scavenging materials. 8 figs.

Bitensky, M.W.; Yoshida, Tatsuro

1998-08-04T23:59:59.000Z

71

Oxygen to the core  

NLE Websites -- All DOE Office Websites (Extended Search)

1-01 1-01 For immediate release: 01/10/2013 | NR-13-01-01 Oxygen to the core Anne M Stark, LLNL, (925) 422-9799, stark8@llnl.gov Printer-friendly An artist's conception of Earth's inner and outer core. LIVERMORE, Calif. -- An international collaboration including researchers from Lawrence Livermore National Laboratory has discovered that the Earth's core formed under more oxidizing conditions than previously proposed. Through a series of laser-heated diamond anvil cell experiments at high pressure (350,000 to 700,000 atmospheres of pressure) and temperatures (5,120 to 7,460 degrees Fahrenheit), the team demonstrated that the depletion of siderophile (also known as "iron loving") elements can be produced by core formation under more oxidizing conditions than earlier

72

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect

This report covers the following tasks: Task 1--Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints; Task 2--Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability; Task 3--Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres; Task 4--Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures; Task 5--Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability; and Task 6--Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2002-04-01T23:59:59.000Z

73

Oxygen-reducing catalyst layer  

DOE Patents (OSTI)

An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

O' Brien, Dennis P. (Maplewood, MN); Schmoeckel, Alison K. (Stillwater, MN); Vernstrom, George D. (Cottage Grove, MN); Atanasoski, Radoslav (Edina, MN); Wood, Thomas E. (Stillwater, MN); Yang, Ruizhi (Halifax, CA); Easton, E. Bradley (Halifax, CA); Dahn, Jeffrey R. (Hubley, CA); O' Neill, David G. (Lake Elmo, MN)

2011-03-22T23:59:59.000Z

74

NETL: Gasification - Development of Ion-Transport Membrane Oxygen  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Background and Project Benefits Program Background and Project Benefits Gasification is used to convert a solid feedstock, such as coal, petcoke, or biomass, into a gaseous form, referred to as synthesis gas or syngas, which is primarily hydrogen and carbon monoxide. With gasification-based technologies, pollutants can be captured and disposed of or converted to useful products. Gasification can generate clean power by adding steam to the syngas in a water-gas-shift reactor to convert the carbon monoxide to carbon dioxide (CO2) and to produce additional hydrogen. The hydrogen and CO2 are separated-the hydrogen is used to make power and the CO2 is sent to storage, converted to useful products or used for EOR. In addition to efficiently producing electric power, a wide range of transportation fuels and chemicals can be produced from the cleaned syngas, thereby providing the flexibility needed to capitalize on the changing economic market. As a result, gasification provides a flexible technology option for using domestically available resources while meeting future environmental emission standards. Polygeneration plants that produce multiple products are uniquely possible with gasification technologies. The Gasification Systems program is developing technologies in three key areas to reduce the cost and increase the efficiency of producing syngas: (1) Feed Systems, (2) Gasifier Optimization and Plant Supporting Systems, and (3) Syngas Processing Systems.

75

ION SWITCH  

DOE Patents (OSTI)

An ion switch capable of transferring large magnitudes of power is described. An ion switch constructed in accordance with the invention includes a pair of spaced control electrodes disposed in a highly evacuated region for connection in a conventional circuit to control the passing of power therethrough. A controllable ionic conduction path is provided directiy between the control electrodes by a source unit to close the ion switch. Conventional power supply means are provided to trigger the source unit and control the magnitude, durations and pulse repetition rate of the aforementioned ionic conduction path.

Cook, B.

1959-02-10T23:59:59.000Z

76

Plants and Night Oxygen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Plants and Night Oxygen Production Plants and Night Oxygen Production Name: Ashar Status: other Grade: other Location: Outside U.S. Country: India Date: Winter 2011-2012 Question: I would like to know if there are any plants which produces oxygen at night (without photosynthesis). I was told by a friend that Holy Basil (Ocimum tenuiflorum) produces oxygen even at night and I'm not convinced. I would like to get confirmation from experts. Replies: Some plants (particularly those of dry regions, e.g., deserts) only open their stomates at night to avoid drying out to intake CO2 (and output O2) (CAM photosynthesis) http://en.wikipedia.org/wiki/Crassulacean_acid_metabolism Sincerely, Anthony R. Brach, PhD Missouri Botanical Garden Bringing oxygen producing plants into your home is a way to mimic the healthy lifestyle factors of longevity in humans from the longest lived cultures.

77

MTBE, Oxygenates, and Motor Gasoline  

Gasoline and Diesel Fuel Update (EIA)

MTBE, Oxygenates, and MTBE, Oxygenates, and Motor Gasoline Contents * Introduction * Federal gasoline product quality regulations * What are oxygenates? * Who gets gasoline with oxygenates? * Which areas get MTBE? * How much has been invested in MTBE production capacity? * What does new Ethanol capacity cost? * What would an MTBE ban cost? * On-line information resources * Endnotes * Summary of revisions to this analysis Introduction The blending of methyl tertiary butyl ether (MTBE) into motor gasoline has increased dramatically since it was first produced 20 years ago. MTBE usage grew in the early 1980's in response to octane demand resulting initially from the phaseout of lead from gasoline and later from rising demand for premium gasoline. The oxygenated gasoline program stimulated an

78

OXYGEN TRANSPORT CERAMIC MEMBRANES  

DOE Green Energy (OSTI)

Conversion of natural gas to liquid fuels and chemicals is a major goal for the Nation as it enters the 21st Century. Technically robust and economically viable processes are needed to capture the value of the vast reserves of natural gas on Alaska's North Slope, and wean the Nation from dependence on foreign petroleum sources. Technologies that are emerging to fulfill this need are all based syngas as an intermediate. Syngas (a mixture of hydrogen and carbon monoxide) is a fundamental building block from which chemicals and fuels can be derived. Lower cost syngas translates directly into more cost-competitive fuels and chemicals. The currently practiced commercial technology for making syngas is either steam methane reforming (SMR) or a two-step process involving cryogenic oxygen separation followed by natural gas partial oxidation (POX). These high-energy, capital-intensive processes do not always produce syngas at a cost that makes its derivatives competitive with current petroleum-based fuels and chemicals.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2002-01-01T23:59:59.000Z

79

Mixed Ionic and Electonic Conductors for Hydrogen Generation and Separation: A New Approach  

DOE Green Energy (OSTI)

Composite mixed conductors comprising one electronic conducting phase, and one ionic conducting phase (MIECs) have been developed in this work. Such MIECs have applications in generating and separating hydrogen from hydrocarbon fuels at high process rates and high purities. The ionic conducting phase comprises of rare-earth doped ceria and the electronic conducting phase of rare-earth doped strontium titanate. These compositions are ideally suited for the hydrogen separation application. In the process studied in this project, steam at high temperatures is fed to one side of the MIEC membrane and hydrocarbon fuel or reformed hydrocarbon fuel to the other side of the membrane. Oxygen is transported from the steam side to the fuel side down the electrochemical potential gradient thereby enriching the steam side flow in hydrogen. The remnant water vapor can then be condensed to obtain high purity hydrogen. In this work we have shown that two-phase MIECs comprising rare-earth ceria as the ionic conductor and doped-strontium titanate as the electronic conductor are stable in the operating environment of the MIEC. Further, no adverse reaction products are formed when these phases are in contact at elevated temperatures. The composite MIECs have been characterized using a transient electrical conductivity relaxation technique to measure the oxygen chemical diffusivity and the surface exchange coefficient. Oxygen permeation and hydrogen generation rates have been measured under a range of process conditions and the results have been fit to a model which incorporates the oxygen chemical diffusivity and the surface exchange coefficient from the transient measurements.

Srikanth Gopalan

2006-12-31T23:59:59.000Z

80

ION SOURCE  

DOE Patents (OSTI)

An ion source is described and comprises an arc discharge parallel to the direction of and inside of a magnetic field. an accelerating electrode surrounding substantially all of the discharge except for ion exit apertures, and means for establishing an electric field between that electrode and the arc discharge. the electric field being oriented at an acute angle to the magnetic field. Ions are drawn through the exit apertures in the accelrating electrcde in a direction substantially divergent to the direction of the magnetic field and so will travel in a spiral orbit along the magnetic field such that the ions will not strike the source at any point in their orbit within the magnetic field.

Blue, C.W.; Luce, J.S.

1960-07-19T23:59:59.000Z

Note: This page contains sample records for the topic "oxygen ions miec" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

ION SOURCE  

DOE Patents (OSTI)

The ion source described essentially eliminater the problem of deposits of nonconducting materials forming on parts of the ion source by certain corrosive gases. This problem is met by removing both filament and trap from the ion chamber, spacing them apart and outside the chamber end walls, placing a focusing cylinder about the filament tip to form a thin collimated electron stream, aligning the cylinder, slits in the walls, and trap so that the electron stream does not bombard any part in the source, and heating the trap, which is bombarded by electrons, to a temperature hotter than that in the ion chamber, so that the tendency to build up a deposit caused by electron bombardment is offset by the extra heating supplied only to the trap.

Leland, W.T.

1960-01-01T23:59:59.000Z

82

Oxygenates vs. synthesis gas  

DOE Green Energy (OSTI)

Methanol synthesis from H{sub 2}/CO has been carried out at 7.6 MPa over zirconia-supported copper catalysts. Catalysts with nominal compositions of 10/90 mol% and 30/70 mol% Cu/ZrO{sub 2} were used in this study. Additionally, a 3 mol% cesium-doped 10/90 catalyst was prepared to study the effect of doping with heavy alkali, and this promoter greatly increased the methanol productivity. The effects of CO{sub 2} addition, water injection, reaction temperature, and H{sub 2}/C0 ratio have been investigated. Both CO{sub 2} addition to the synthesis gas and cesium doping of the catalyst promoted methanol synthesis, while inhibiting the synthesis of dimethyl ether. Injection of water, however, was found to slightly suppress methanol and dimethyl ether formation while being converted to CO{sub 2} via the water gas shift reaction over these catalysts. There was no clear correlation between copper surface area and catalyst activity. Surface analysis of the tested samples revealed that copper tended to migrate and enrich the catalyst surface. The concept of employing a double-bed reactor with a pronounced temperature gradient to enhance higher alcohol synthesis was explored, and it was found that utilization of a Cs-promoted Cu/ZnO/Cr{sub 2}O{sub 3} catalyst as a first lower temperature bed and a Cs-promoted ZnO/Cr{sub 2}O{sub 3} catalyst as a second high-temperature bed significantly promoted the productivity of 2-methyl-1-propanol (isobutanol) from H{sub 2}/CO synthesis gas mixtures. While the conversion of CO to C{sub 2+} oxygenates over the double-bed configuration was comparable to that observed over the single Cu-based catalyst, major changes in the product distribution occurred by the coupling to the zinc chromite catalyst; that is, the productivity of the C{sub 1}-C{sub 3} alcohols decreased dramatically, and 2-methyl branched alcohols were selectively formed. The desirable methanol/2-methyl oxygenate molar ratios close to 1 were obtained in the present double-bed system that provides the feedstock for the synthesis of high octane and high cetane ethers, where the isobutanol productivity was as high as 139 g/kg cat/hr. Higher alcohol synthesis has been investigated over a Cs/Cu/ZnO/Cr{sub 2}O{sub 3} catalyst at temperatures higher (up to 703K) than those previously utilized, and no sintering of the catalyst was observed during the short-term testing. However, the higher reaction temperatures led to lower CO conversion levels and lower yield of alcohols, especially of methanol, because of equilibrium limitations. With the double catalyst bed configuration, the effect of pressure in the range of 7.6--12.4 MPa on catalyst activity and selectivity was studied. The upper bed was composed of the copper-based catalyst at 598K, and the lower bed consisted of a copper-free Cs-ZnO/Cr{sub 2}O{sub 3} catalyst at a high temperature of 678K. High pressure was found to increase CO conversion to oxygenated products, although the increase in isobutanol productivity did not keep pace with that of methanol. It was also shown that the Cs/Cu/ZnO/Cr{sub 2}O{sub 3} catalyst could be utilized to advantage as the second-bed catalyst at 613--643K instead of the previously used copper-free Cs-ZnO/ Cr{sub 2}O{sub 3} catalyst at higher temperature, With double Cs/Cu/ZnO/Cr{sub 2}O{sub 3} catalysts, high space time yields of up to 202 g/kg cat/hr, with high selectivity to isobutanol, were achieved.

Kamil Klier; Richard G. Herman; Alessandra Beretta; Maria A. Burcham; Qun Sun; Yeping Cai; Biswanath Roy

1999-04-01T23:59:59.000Z

83

Frostbite Theater - Liquid Oxygen vs. Liquid Nitrogen - Liquid Oxygen and  

NLE Websites -- All DOE Office Websites (Extended Search)

Cells vs. Liquid Nitrogen! Cells vs. Liquid Nitrogen! Previous Video (Cells vs. Liquid Nitrogen!) Frostbite Theater Main Index Next Video (Paramagnetism) Paramagnetism Liquid Oxygen and Fire! What happens when nitrogen and oxygen are exposed to fire? [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: And this is a test tube of liquid nitrogen! Steve: And this is a test tube of liquid oxygen! Joanna: Let's see what happens when nitrogen and oxygen are exposed to fire. Steve: Fire?! Joanna: Yeah! Steve: Really?! Joanna: Why not! Steve: Okay! Joanna: As nitrogen boils, it changes into nitrogen gas. Because it's so cold, it's denser than the air in the room. The test tube fills up with

84

Oxygenate Supply/Demand Balances  

Gasoline and Diesel Fuel Update (EIA)

Oxygenate Supply/Demand Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model By Tancred C.M. Lidderdale This article first appeared in the Short-Term Energy Outlook Annual Supplement 1995, Energy Information Administration, DOE/EIA-0202(95) (Washington, DC, July 1995), pp. 33-42, 83-85. The regression results and historical data for production, inventories, and imports have been updated in this presentation. Contents * Introduction o Table 1. Oxygenate production capacity and demand * Oxygenate demand o Table 2. Estimated RFG demand share - mandated RFG areas, January 1998 * Fuel ethanol supply and demand balance o Table 3. Fuel ethanol annual statistics * MTBE supply and demand balance o Table 4. EIA MTBE annual statistics * Refinery balances

85

It's Elemental - The Element Oxygen  

NLE Websites -- All DOE Office Websites (Extended Search)

Nitrogen Nitrogen Previous Element (Nitrogen) The Periodic Table of Elements Next Element (Fluorine) Fluorine The Element Oxygen [Click for Isotope Data] 8 O Oxygen 15.9994 Atomic Number: 8 Atomic Weight: 15.9994 Melting Point: 54.36 K (-218.79°C or -361.82°F) Boiling Point: 90.20 K (-182.95°C or -297.31°F) Density: 0.001429 grams per cubic centimeter Phase at Room Temperature: Gas Element Classification: Non-metal Period Number: 2 Group Number: 16 Group Name: Chalcogen What's in a name? From the greek words oxys and genes, which together mean "acid forming." Say what? Oxygen is pronounced as OK-si-jen. History and Uses: Oxygen had been produced by several chemists prior to its discovery in 1774, but they failed to recognize it as a distinct element. Joseph

86

Oxygen sensitive, refractory oxide composition  

DOE Patents (OSTI)

Oxide compositions containing niobium pentoxide and an oxide selected from the group consisting of hafnia, titania, and zirconia have electrical conductivity characteristics which vary greatly depending on the oxygen content.

Holcombe, Jr., Cressie E. (Oak Ridge, TN); Smith, Douglas D. (Knoxville, TN)

1976-01-01T23:59:59.000Z

87

Regional imaging with oxygen-14  

SciTech Connect

The metabolic significance of the distribution of labeled oxygen was studied in the dog by inhalation of gas mixtures labeled with oxygen-14 (T/sub /sup 1///sub 2// = 71 seconds) maintained at a constant level of activity. Under steady-state conditions, whole-body images were developed by detection of the positron annihilation emissions with a dual head rectilinear scanner in the coincidence mode. (auth)

Russ, G.A.; Bigler, R.E.; Dahl, J.R.; Kostick, J.; McDonald, J.M.; Tilbury, R.S.; Laughlin, J.S.

1975-01-01T23:59:59.000Z

88

Researchers Directly Observe Oxygen Signature in the Oxygen-evolving  

NLE Websites -- All DOE Office Websites (Extended Search)

Researchers Directly Observe Oxygen Signature in the Researchers Directly Observe Oxygen Signature in the Oxygen-evolving Complex of Photosynthesis Arguably the most important chemical reaction on earth is the photosynthetic splitting of water to molecular oxygen by the Mn-containing oxygen-evolving complex (Mn-OEC) in the protein known as photosystem II (PSII). It is this reaction which has, over the course of some 3.8 billion years, gradually filled our atmosphere with O2 and consequently enabled and sustained the evolution of complex aerobic life. Coupled to the reduction of carbon dioxide, biological photosynthesis contributes foodstuffs for nutrition while recycling CO2 from the atmosphere and replacing it with O2. By utilizing sunlight to power these energy-requiring reactions, photosynthesis also serves as a model for addressing societal energy needs as we enter an era of diminishing fossil fuel resources and climate change. Understanding, at the molecular level, the dynamics and mechanisms behind photosynthesis is of fundamental importance and will prove critical to the future design of devices aimed at converting sunlight into electrochemical energy and transportable fuel.

89

EVALUATING AN INNOVATIVE OXYGEN SENSOR FOR REMOTE SUBSURFACE OXYGEN MEASUREMENTS  

Science Conference Proceedings (OSTI)

Oxygen is a primary indicator of whether anaerobic reductive dechlorination and similar redox based processes contribute to natural attenuation remedies at chlorinated solvent contaminated sites. Thus, oxygen is a viable indicator parameter for documenting that a system is being sustained in an anaerobic condition. A team of researchers investigated the adaptation of an optical sensor that was developed for oceanographic applications. The optical sensor, because of its design and operating principle, has potential for extended deployment and sensitivity at the low oxygen levels relevant to natural attenuation. The results of the research indicate this tool will be useful for in situ long-term monitoring applications, but that the traditional characterization tools continue to be appropriate for characterization activities.

Millings, M; Brian Riha, B; Warren Hyde, W; Karen Vangelas, K; Brian02 Looney, B

2006-10-12T23:59:59.000Z

90

Appendix B: CArBon dioxide CApture teChnology SheetS Oxygen PrOductiOn  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxygen PrOductiOn Oxygen PrOductiOn B-500 Oxygen PrOductiOn u.S. dePartment Of energy advanced carbOn diOxide caPture r&d PrOgram: technOlOgy uPdate, may 2013 itm Oxygen technOlOgy fOr integratiOn in igcc and Other advanced POwer generatiOn SyStemS primary project goals Air Products and Chemicals set out to design and develop an ion transport membrane (ITM) based on ceramics that selectively transport oxygen (O 2 ) ions when operated at high temperature. This high-temperature process may be integrated with advanced power genera- tion processes that require O 2 as a feedstock, such as integrated gasification combined cycle (IGCC) and other clean energy and industrial applications. technical goals * Design, construct, and operate a 0.1-ton/day (TPD) technology development unit

91

High-temperature potentiometric oxygen sensor with internal reference  

DOE Patents (OSTI)

A compact oxygen sensor is provided, comprising a mixture of metal and metal oxide an enclosure containing said mixture, said enclosure capable of isolating said mixture from an environment external of said enclosure, and a first wire having a first end residing within the enclosure and having a second end exposed to the environment. Also provided is a method for the fabrication of an oxygen sensor, the method comprising confining a metal-metal oxide solid mixture to a container which consists of a single material permeable to oxygen ions, supplying an electrical conductor having a first end and a second end, whereby the first end resides inside the container as a reference (PO.sub.2).sup.ref, and the second end resides outside the container in the atmosphere where oxygen partial pressure (PO.sub.2).sup.ext is to be measured, and sealing the container with additional single material such that grain boundary sliding occurs between grains of the single material and grains of the additional single material.

Routbort, Jules L. (Hinsdale, IL); Singh, Dileep (Naperville, IL); Dutta, Prabir K. (Worthington, OH); Ramasamy, Ramamoorthy (North Royalton, OH); Spirig, John V. (Columbus, OH); Akbar, Sheikh (Hilliard, OH)

2011-11-15T23:59:59.000Z

92

Electrochemical oxygen pumps. Final CRADA report.  

SciTech Connect

All tasks of the Work Plan of ISTC Project 2277p have been completed, thus: (1) techniques of chemical synthesis were developed for more than ten recipes of electrolyte based on cerium oxide doped with 20 mole% of gadolinium (CeGd)O{sub 2}, doped by more than 10 oxide systems including 6 recipes in addition to the Work Plan; (2) electric conductivity and mechanical strength of CeGd specimens with additions of oxide systems were performed, two candidate materials for the electrolyte of electrochemical oxygen pump (pure CeGd and CeGd doped by 0.2 wt% of a transition metal) were chosen; (3) extended studies of mechanical strength of candidate material specimens were performed at room temperature and at 400, 600, 800 C; (4) fixtures for determination of mechanical strength of tubes by external pressure above 40 atmospheres at temperature up to 700 C were developed and fabricated; and (5) technology of slip casting of tubes from pure (Ce,Gd)O{sub 2} and of (Ce,Gd)O{sub 2} doped by 0.2 wt% of a transition metal, withstanding external pressure of minimum 40 atmospheres at temperature up to 700 C was developed, a batch of tubes was sent for testing to Argonne National Laboratory; (6) technology of making nanopowder from pure (Ce,Gd)O{sub 2} was developed based on chemical synthesis and laser ablation techniques, a batch of nanopowder with the weight 1 kg was sent for testing to Argonne National Laboratory; (7) a business plan for establishing a company for making powders of materials for electrochemical oxygen pump was developed; and (8) major results obtained within the Project were reported at international conferences and published in the Russian journal Electrochemistry. In accordance with the Work Plan a business trip of the following project participants was scheduled for April 22-29, 2006, to Tonawanda, NY, USA: Manager Victor Borisov; Leader of technology development Gennady Studenikin; Leader of business planning Elena Zadorozhnaya; Leader of production Vasily Lepalovsky; and Translator Vladimir Litvinov. During this trip project participants were to discuss with the project Technical Monitor J.D. Carter and representative of Praxair Inc. J. Chen the results of project activities (prospects of transition metal-doped material application in oxygen pumps), as well as the prospects of cooperation with Praxair at the meeting with the company management in the following fields: (1) Deposition of thin films of oxide materials of complex composition on support by magnetron and ion sputtering, research of coatings properties; (2) Development of block-type structure technology (made of porous and dense ceramics) for oxygen pump. The block-type structure is promising because when the size of electrolyte block is 2 x 2 inches and assembly height is 10 inches (5 blocks connected together) the area of active surface is ca. 290 square inches (in case of 8 slots), that roughly corresponds to one tube with diameter 1 inch and height 100 inches. So performance of the system made of such blocks may be by a factor of two or three higher than that of tube-based system. However one month before the visit, J. Chen notified us of internal changes at Praxair and the cancellation of the visit to Tonawanda, NY. During consultations with the project Technical Monitor J.D. Carter and Senior Project Manager A. Taylor a decision was made to extend the project term by 2 quarters to prepare proposals for follow-on activities during this extension (development of block-type structures made of dense and porous oxide ceramics for electrochemical oxygen pumps) using the funds that were not used for the trip to the US.

Carter, J. D. Noble, J.

2009-10-01T23:59:59.000Z

93

Improved ion source  

DOE Patents (OSTI)

A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species,

Leung, K.N.; Ehlers, K.W.

1982-05-04T23:59:59.000Z

94

Hydrogen and oxygen concentrations in IXCs: A compilation  

DOE Green Energy (OSTI)

This paper contains four reports and two internal letters that address the estimation of hydrogen and oxygen concentrations in ion exchange columns that treat the water of the K-East and K-West Basins at Hanford. The concern is the flammability of this mixture of gases and planning for safe transport during decommissioning. A transient will occur when the hydrogen filter is temporarily blocked by a sandbag. Analyses are provided for steady-state, transients, and for both wet and dry resins.

Liljegren, L.M.; Terrones, G.T.; Melethil, P.K.

1996-06-01T23:59:59.000Z

95

Numerical simulations of ion transport membrane oxy-fuel reactors for CO? capture applications  

E-Print Network (OSTI)

Numerical simulations were performed to investigate the key features of oxygen permeation and hydrocarbon conversion in ion transport membrane (ITM) reactors. ITM reactors have been suggested as a novel technology to enable ...

Hong, Jongsup

2013-01-01T23:59:59.000Z

96

Systems-level design of ion transport membrane oxy-combustion power plants  

E-Print Network (OSTI)

Oxy-fuel combustion, particularly using an integrated oxygen ion transport membrane (ITM), is a thermodynamically attractive concept that seeks to mitigate the penalties associated with CO 2 capture from power plants. ...

Mancini, Nicholas D. (Nicholas David)

2011-01-01T23:59:59.000Z

97

Microbial oceanography of anoxic oxygen minimum zones  

E-Print Network (OSTI)

Vast expanses of oxygen-deficient and nitrite-rich water define the major oxygen minimum zones (OMZs) of the global ocean. They support diverse microbial communities that influence the nitrogen economy of the oceans, ...

Ulloa, Osvaldo

98

Microchemical systems for singlet oxygen generation  

E-Print Network (OSTI)

Chemical Oxygen-Iodine Lasers (COIL) are a technology of interest for industrial and military audiences. COILs are flowing gas lasers where the gain medium of iodine atoms is collisionally pumped by singlet delta oxygen ...

Hill, Tyrone F. (Tyrone Frank), 1980-

2008-01-01T23:59:59.000Z

99

Oxygen Sensitivity of Krypton and Lyman-? Hygrometers  

Science Conference Proceedings (OSTI)

The oxygen sensitivity of krypton and Lyman-? hygrometers is studied. Using a dewpoint generator and a controlled nitrogen/oxygen flow the extinction coefficients of five hygrometers associated with the third-order Taylor expansion of the Lambert–...

Arjan van Dijk; Wim Kohsiek; Henk A. R. de Bruin

2003-01-01T23:59:59.000Z

100

The Role of Oxygen in Coal Gasification  

E-Print Network (OSTI)

Air Products supplies oxygen to a number of coal gasification and partial oxidation facilities worldwide. At the high operating pressures of these processes, economics favor the use of 90% and higher oxygen purities. The effect of inerts in the oxidant on gasifier and downstream production units also favor the use of oxygen in place of air. Factors that must be considered in selecting the optimum oxygen purity include: end use of the gasifier products, oxygen delivery pressure and the cost of capital and energy. This paper examines the major factors in oxygen purity selection for typical coal gasifiers. Examples demonstrating the effect of oxygen purity on several processes are presented: production of synthetic natural gas (SNG), integrated gasification combined-cycle (IGCC) power generation and methanol synthesis. The potential impact of a non-cryogenic air separation process currently under development is examined based on integration with a high temperature processes.

Klosek, J.; Smith, A. R.; Solomon, J.

1986-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxygen ions miec" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Oxygen enriched combustion system performance study  

SciTech Connect

The current study was undertaken to evaluate the performance of a pressure swing adsorption (PSA) oxygen plant to provide oxygen for industrial combustion applications. PSA oxygen plants utilize a molecular sieve material to separate air into an oxygen rich product stream and a nitrogen rich exhaust stream. These plants typically produce 90-95% purity oxygen and are located in close proximity to the point of use. In contrast, high purity (99.999%) oxygen is produced by the distillation of liquid air at a remote plant and is usually transported to the point of use either as a cryogenic liquid in a tank trailer or as a high pressure gas via pipeline. In this study, experiments were performed to the test PSA system used in conjunction with an A'' burner and comparisons were made with the results of the previous study which utilized high purity liquid oxygen. 4 refs., 6 figs., 6 tabs.

Delano, M.A. (Union Carbide Industrial Gases, Inc., Tarrytown, NY (USA)); Kwan, Y. (Energy and Environmental Research Corp., Irvine, CA (USA))

1989-07-01T23:59:59.000Z

102

Plasma ion sources and ion beam technology in microfabrications  

E-Print Network (OSTI)

5 Ion source for metallic ion beam generation and thin filmnew plasma source for metallic ion beam generation and metal5: Ion source for metallic ion beam generation and thin film

Ji, Lili

2007-01-01T23:59:59.000Z

103

Plasma immersion ion implantation for reducing metal ion release  

Science Conference Proceedings (OSTI)

Plasma immersion ion implantation of Nitrogen and Oxygen on CoCrMo alloys was carried out to improve the tribological and corrosion behaviors of these biomedical alloys. In order to optimize the implantation results we were carried experiments at different temperatures. Tribocorrosion tests in bovine serum were used to measure Co, Cr and Mo releasing by using Inductively Coupled Plasma Mass Spectrometry analysis after tests. Also, X-ray Diffraction analysis were employed in order to explain any obtained difference in wear rate and corrosion tests. Wear tests reveals important decreases in rate of more than one order of magnitude for the best treatment. Moreover decreases in metal release were found for all the implanted samples, preserving the same corrosion resistance of the unimplanted samples. Finally this paper gathers an analysis, in terms of implantation parameters and achieved properties for industrial implementation of these treatments.

Diaz, C.; Garcia, J. A.; Maendl, S.; Pereiro, R.; Fernandez, B.; Rodriguez, R. J. [Centro de Ingenieria Avanzada de Superficies AIN, 31191, Cordovilla-Pamplona (Spain); Leibniz-Institut fuer Oberflaechenmodifizierung, 04318 Leipzig (Germany); Universidad de Oviedo, Departamento Quimica Fisica y Analitica (Spain); Centro de Ingenieria Avanzada de Superficies AIN, 31191, Cordovilla-Pamplona (Spain)

2012-11-06T23:59:59.000Z

104

In Situ CO, Oxygen, and Opacity Measurement for Optimizing Combustion Control System Performance  

E-Print Network (OSTI)

The performance of a combustion control system is limited by the accuracy and reliability of the feedback provided by the stack emission flue gas monitoring system which is utilized to analyze the composition of the products of combustion. A detailed review of the latest state-of-the-art In Situ measurement techniques is provided, including: gas filter correlation spectroscopy (CO), zirconium oxide fuel cell (oxygen), and glass fiber optics based transmissometers (opacity). Recent advancements in the design and application of microprocessor-based In Situ CO, oxygen, and opacity stack emission monitoring systems are outlined, including a review of the performance capability of the latest microprocessor-based combust ion control systems.

Molloy, R. C.

1982-01-01T23:59:59.000Z

105

Microfabricated ion frequency standard  

DOE Patents (OSTI)

A microfabricated ion frequency standard (i.e. an ion clock) is disclosed with a permanently-sealed vacuum package containing a source of ytterbium (Yb) ions and an octupole ion trap. The source of Yb ions is a micro-hotplate which generates Yb atoms which are then ionized by a ultraviolet light-emitting diode or a field-emission electron source. The octupole ion trap, which confines the Yb ions, is formed from suspended electrodes on a number of stacked-up substrates. A microwave source excites a ground-state transition frequency of the Yb ions, with a frequency-doubled vertical-external-cavity laser (VECSEL) then exciting the Yb ions up to an excited state to produce fluorescent light which is used to tune the microwave source to the ground-state transition frequency, with the microwave source providing a precise frequency output for the ion clock.

Schwindt, Peter (Albuquerque, NM); Biedermann, Grant (Albuquerque, NM); Blain, Matthew G. (Albuquerque, NM); Stick, Daniel L. (Albuquerque, NM); Serkland, Darwin K. (Albuquerque, NM); Olsson, III, Roy H. (Albuquerque, NM)

2010-12-28T23:59:59.000Z

106

Jupiter Oxygen Corporation | Open Energy Information  

Open Energy Info (EERE)

Corporation Place Schiller Park, Illinois Zip 60176 Product Illinois-based oxy-fuel combustion company involved in the capture of CO2. References Jupiter Oxygen Corporation1...

107

Insitu Oxygen Conduction Into Internal Combustion Chamber  

Insitu Oxygen Conduction Into Internal Combustion Chamber Note: The technology described above is an early stage opportunity. Licensing rights to this ...

108

Areas Participating in the Oxygenated Gasoline Program  

U.S. Energy Information Administration (EIA)

Demand and Price Outlook ... is a colorless, odorless, and poisonous gas ... oxygen by weight is to be used in the wintertime in those areas of the county that ...

109

Electrocatalyst for Oxygen Reduction with Reduced Platinum ...  

Platinum is the most efficient electrocatalyst for accelerating the oxygen reduction reaction in fuel cells. Under operating conditions, though, platinum catalysts ...

110

Direct Observation of the Oxygenated Species during Oxygen Reduction on a  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Observation of the Oxygenated Species during Oxygen Reduction on a Direct Observation of the Oxygenated Species during Oxygen Reduction on a Platinum Fuel Cell Cathode Friday, December 20, 2013 Fuel Cell Figure 1 Figure 1. In situ x-ray spectroscopy identification and DFT simulations of oxygenated intermediates on a platinum fuel-cell cathode. The study shows that two types of hydroxyl intermediates (non-hydrated OH and hydrated OH) with distinct activities coexist on a fuel-cell cathode. The performance of polymer-electrolyte-membrane (PEM) fuel cells is limited by the reduction at the cathode of various oxygenated intermediates in the four-electron pathway of the oxygen reduction reaction. A research team led by SLAC scientists performed x-ray spectroscopy identification and DFT simulations of oxygenated intermediates on a platinum fuel-cell cathode

111

Microfabricated Ion Traps  

E-Print Network (OSTI)

Ion traps offer the opportunity to study fundamental quantum systems with high level of accuracy highly decoupled from the environment. Individual atomic ions can be controlled and manipulated with electric fields, cooled to the ground state of motion with laser cooling and coherently manipulated using optical and microwave radiation. Microfabricated ion traps hold the advantage of allowing for smaller trap dimensions and better scalability towards large ion trap arrays also making them a vital ingredient for next generation quantum technologies. Here we provide an introduction into the principles and operation of microfabricated ion traps. We show an overview of material and electrical considerations which are vital for the design of such trap structures. We provide guidance in how to choose the appropriate fabrication design, consider different methods for the fabrication of microfabricated ion traps and discuss previously realized structures. We also discuss the phenomenon of anomalous heating of ions within ion traps, which becomes an important factor in the miniaturization of ion traps.

Marcus D. Hughes; Bjoern Lekitsch; Jiddu A. Broersma; Winfried K. Hensinger

2011-01-17T23:59:59.000Z

112

Broad beam ion implanter  

DOE Patents (OSTI)

An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes.

Leung, Ka-Ngo (Hercules, CA)

1996-01-01T23:59:59.000Z

113

Effects of Pressure on Oxygen Sensors  

Science Conference Proceedings (OSTI)

To measure the effects of pressure on the output of a membrane oxygen sensor and a nonmembrane oxygen sensor, the authors pressure cycled a CTD sensor package in a laboratory pressure facility. The CTD sensor package was cycled from 30 to 6800 db ...

M. J. Atkinson; F. I. M. Thomas; N. Larson

1996-12-01T23:59:59.000Z

114

Oxygen Control in PWR Makeup Water  

Science Conference Proceedings (OSTI)

Three fixed-bed processes can accelerate hydrazine-oxygen reactions in PWR makeup water and reduce oxygen levels to below 5 ppb. In this comparative-test project, activated carbon based systems offered the best combination of low cost, effectiveness, and commercial availability. A second process, employing palladium-coated anion resin, is also commercially available.

1988-02-03T23:59:59.000Z

115

Modelling Hydrogen Reduction and Hydrodeoxygenation of Oxygenates  

Science Conference Proceedings (OSTI)

Based on Density Functional Theory (DFT) simulations, we have studied the reduction of nickel oxide and biomass derived oxygenates (catechol, guaiacol, etc.) in hydrogen. Both the kinetic barrier and thermodynamic favorability are calculated with respect to the modeled reaction pathways. In early-stage reduction of the NiO(100) surface by hydrogen, the pull-off of the surface oxygen atom and simultaneous activation of the nearby Ni atoms coordinately dissociate the hydrogen molecules so that a water molecule can be formed, leaving an oxygen vacancy on the surface. In hydrogen reaction with oxygenates catalyzed by transition metals, hydrogenation of the aromatic carbon ring normally dominates. However, selective deoxygenation is of particular interest for practical application such as biofuel conversion. Our modeling shows that doping of the transition metal catalysts can change the orientation of oxygenates adsorbed on metal surfaces. The correlation between the selectivity of reaction and the orientation of adsorption are discussed.

Zhao, Y.; Xu, Q.; Cheah, S.

2013-01-01T23:59:59.000Z

116

Oxygen Absorption in Cooling Flows  

E-Print Network (OSTI)

The inhomogeneous cooling flow scenario predicts the existence of large quantities of gas in massive elliptical galaxies, groups, and clusters that have cooled and dropped out of the flow. Using spatially resolved, deprojected X-ray spectra from the ROSAT PSPC we have detected strong absorption over energies ~0.4-0.8 keV intrinsic to the central ~1 arcmin of the galaxy, NGC 1399, the group, NGC 5044, and the cluster, A1795. These systems have amongst the largest nearby cooling flows in their respective classes and low Galactic columns. Since no excess absorption is indicated for energies below ~0.4 keV the most reasonable model for the absorber is warm, collisionally ionized gas with T=10^{5-6} K where ionized states of oxygen provide most of the absorption. Attributing the absorption only to ionized gas reconciles the large columns of cold H and He inferred from Einstein and ASCA with the lack of such columns inferred from ROSAT, and also is consistent with the negligible atomic and molecular H inferred from HI, and CO observations of cooling flows. The prediction of warm ionized gas as the product of mass drop-out in these and other cooling flows can be verified by Chandra, XMM, and ASTRO-E.

David A. Buote

2000-01-19T23:59:59.000Z

117

OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL  

SciTech Connect

Conventional wisdom says adding oxygen to a combustion system enhances product throughput, system efficiency, and, unless special care is taken, increases NOx emissions. This increase in NOx emissions is typically due to elevated flame temperatures associated with oxygen use leading to added thermal NOx formation. Innovative low flame temperature oxy-fuel burner designs have been developed and commercialized to minimize both thermal and fuel NOx formation for gas and oil fired industrial furnaces. To be effective these systems require close to 100% oxy-fuel combustion and the cost of oxygen is paid for by fuel savings and other benefits. For applications to coal-fired utility boilers at the current cost of oxygen, however, it is not economically feasible to use 100% oxygen for NOx control. In spite of this conventional wisdom, Praxair and its team members, in partnership with the US Department of Energy National Energy Technology Laboratory, have developed a novel way to use oxygen to reduce NOx emissions without resorting to complete oxy-fuel conversion. In this concept oxygen is added to the combustion process to enhance operation of a low NOx combustion system. Only a small fraction of combustion air is replaced with oxygen in the process. By selectively adding oxygen to a low NOx combustion system it is possible to reduce NOx emissions from nitrogen-containing fuels, including pulverized coal, while improving combustion characteristics such as unburned carbon. A combination of experimental work and modeling was used to define how well oxygen enhanced combustion could reduce NOx emissions. The results of this work suggest that small amounts of oxygen replacement can reduce the NOx emissions as compared to the air-alone system. NOx emissions significantly below 0.15 lbs/MMBtu were measured. Oxygen addition was also shown to reduce carbon in ash. Comparison of the costs of using oxygen for NOx control against competing technologies, such as SCR, show that this concept offers substantial savings over SCR and is an economically attractive alternative to purchasing NOx credits or installing other conventional technologies. In conjunction with the development of oxygen based low NOx technology, Praxair also worked on developing the economically enhancing oxygen transport membrane (OTM) technology which is ideally suited for integration with combustion systems to achieve further significant cost reductions and efficiency improvements. This OTM oxygen production technology is based on ceramic mixed conductor membranes that operate at high temperatures and can be operated in a pressure driven mode to separate oxygen with infinite selectivity and high flux. An OTM material was selected and characterized. OTM elements were successfully fabricated. A single tube OTM reactor was designed and assembled. Testing of dense OTM elements was conducted with promising oxygen flux results of 100% of target flux. However, based on current natural gas prices and stand-alone air separation processes, ceramic membranes do not offer an economic advantage for this application. Under a different DOE-NETL Cooperative Agreement, Praxair is continuing to develop oxygen transport membranes for the Advanced Boiler where the economics appear more attractive.

David R. Thompson; Lawrence E. Bool; Jack C. Chen

2004-04-01T23:59:59.000Z

118

Superconducting microfabricated ion traps  

E-Print Network (OSTI)

We fabricate superconducting ion traps with niobium and niobium nitride and trap single [superscript 88]Sr ions at cryogenic temperatures. The superconducting transition is verified and characterized by measuring the ...

Wang, Shannon Xuanyue

119

Aluminum ION Battery  

•Lower cost because of abundant aluminum resources ... Li-ion battery (LiC 6 - Mn 2 O 4) 106 4.0 424 Al-ion battery (Al - Mn 2 O 4) 400 2.65 1,060

120

Relativistic Heavy Ion Collider  

NLE Websites -- All DOE Office Websites (Extended Search)

at the same time. Capable of accelerating 70 trillion protons with every pulse, and heavy ions such as gold and iron, the AGS receives protons and other ions from the AGS...

Note: This page contains sample records for the topic "oxygen ions miec" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Method of detecting oxygen partial pressure and oxygen partial pressure sensor  

DOE Patents (OSTI)

This invention is comprised of a method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured.

Dees, D.W.

1991-12-31T23:59:59.000Z

122

Negative ion generator  

DOE Patents (OSTI)

A negative ion generator is formed from a magnetically insulated transmission line having a coating of graphite on the cathode for producing negative ions and a plurality of apertures on the opposed anode for the release of negative ions. Magnetic insulation keeps electrons from flowing from the cathode to the anode. A transverse magnetic field removes electrons which do escape through the apertures from the trajectory of the negative ions. 8 figs.

Stinnett, R.W.

1984-05-08T23:59:59.000Z

123

Intense ion beam generator  

DOE Patents (OSTI)

Methods and apparatus for producing intense megavolt ion beams are disclosed. In one embodiment, a reflex triode-type pulsed ion accelerator is described which produces ion pulses of more than 5 kiloamperes current with a peak energy of 3 MeV. In other embodiments, the device is constructed so as to focus the beam of ions for high concentration and ease of extraction, and magnetic insulation is provided to increase the efficiency of operation.

Humphries, Jr., Stanley (Ithaca, NY); Sudan, Ravindra N. (Ithaca, NY)

1977-08-30T23:59:59.000Z

124

Negative ion generator  

DOE Patents (OSTI)

A negative ion generator is formed from a magnetically insulated transmission line having a coating of graphite on the cathode for producing negative ions and a plurality of apertures on the opposed anode for the release of negative ions. Magnetic insulation keeps electrons from flowing from the cathode to the anode. A transverse magnetic field removes electrons which do escape through the apertures from the trajectory of the negative ions.

Stinnett, Regan W. (Albuquerque, NM)

1984-01-01T23:59:59.000Z

125

Selective photooxidation of hydrocarbons in zeolites by oxygen  

DOE Patents (OSTI)

A selective photooxidation process for the conversion of hydrocarbon molecules to partially oxygenated derivatives, which comprises the steps of adsorbing a hydrocarbon and oxygen onto a dehydrated zeolite support matrix to form a hydrocarbon-oxygen contact pair, and subsequently exposing the hydrocarbon-oxygen contact pair to visible light, thereby forming a partially oxygenated derivative.

Frei, Heinz (Berkeley, CA); Blatter, Fritz (Berkeley, CA); Sun, Hai (Berkeley, CA)

1998-01-01T23:59:59.000Z

126

Instrumentation development for coupling ion/ion reactions and ion mobility in biological mass spectrometry.  

E-Print Network (OSTI)

??The development of mass spectrometry (MS) instrumentation for novel biological applications, specifically, the development of instrumentation that integrates ion/ion reaction capabilities in an ion trap… (more)

Soyk, Matthew William

2008-01-01T23:59:59.000Z

127

Ion trap simulation tools.  

Science Conference Proceedings (OSTI)

Ion traps present a potential architecture for future quantum computers. These computers are of interest due to their increased power over classical computers stemming from the superposition of states and the resulting capability to simultaneously perform many computations. This paper describes a software application used to prepare and visualize simulations of trapping and maneuvering ions in ion traps.

Hamlet, Benjamin Roger

2009-02-01T23:59:59.000Z

128

Defect processes involving oxygen-compensated sites in CaF/sub 2/ precipitates doped with lanthanides and actinides  

Science Conference Proceedings (OSTI)

Oxygen incorporation into calcium fluoride precipitates doped with lanthanides and actinides is investigated by use of the technique of site-selective spectroscopy. Fluorescence from erbium in specific fluoride- and oxygen-compensated sites is monitored as a function of the ignition temperature of the precipitate to study the conversion from fluoride to oxygen compensation. Another process, thermal annealing of a disordered precipitate to give a well-defined lattice, is also followed. Changes in both oxygen compensation formation and lattice annealing are found to occur upon the addition of other trivalent and monovalent ions. The results provide a better understanding of the solid-state chemistry involved in new methods of chemical analysis using rare-earth doped CaF/sub 2/ precipitates, and how certain interference effects can arise. Also included is a study of the temperature dependence of fluorescent sites in CaF/sub 2/:U/sup 6 +/.

Johnston, M.V.; Wright, J.C.

1981-10-15T23:59:59.000Z

129

Superconducting microfabricated ion traps  

E-Print Network (OSTI)

We fabricate superconducting ion traps with niobium and niobium nitride and trap single 88Sr ions at cryogenic temperatures. The superconducting transition is verified and characterized by measuring the resistance and critical current using a 4-wire measurement on the trap structure, and observing change in the rf reflection. The lowest observed heating rate is 2.1(3) quanta/sec at 800 kHz at 6 K and shows no significant change across the superconducting transition, suggesting that anomalous heating is primarily caused by noise sources on the surface. This demonstration of superconducting ion traps opens up possibilities for integrating trapped ions and molecular ions with superconducting devices.

Shannon X. Wang; Yufei Ge; Jaroslaw Labaziewicz; Eric Dauler; Karl Berggren; Isaac L. Chuang

2010-10-28T23:59:59.000Z

130

Oxygen Carriers for Solid Fuel Chemical Looping Combustion Process  

This patent-pending technology, “Regenerable Mixed Copper-Iron-Inert Support Oxygen Carriers for Solid Fuel Chemical Looping Combustion Process,” provides a metal-oxide oxygen carrier for application in fuel combustion processes that use oxygen.

131

Ion cyclotron resonance cell  

DOE Patents (OSTI)

An ion cyclotron resonance cell is disclosed having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions. 5 figs.

Weller, R.R.

1995-02-14T23:59:59.000Z

132

Ion Sources - Cyclotron  

NLE Websites -- All DOE Office Websites (Extended Search)

Sources Sources The 88-Inch Cyclotron is fed by three Electron Cyclotron Resonance (ECR) high-charge-state ion sources, the ECR, the AECR, and VENUS, currently the most powerful ECR ion source in the world. Built to answer the demand for intense heavy ion beams, these high performance ion sources enable the 88-Inch Cyclotron to accelerate beams of ions from hydrogen to uranium. The ECR ion sources allow the efficient use of rare isotopes of stable elements, either from natural or enriched sources. A variety of metallic ion beams are routinely produced in our low temperature oven (up to 600°C) and our high temperature oven (up to 2100°C). Furthermore, the ability to produce "cocktails" (mixtures of beams) for the Berkeley Accelerator Space Effects (BASE) Facility adds tremendously to the flexibility of the 88-Inch Cyclotron.

133

Microfabricated Ion Traps  

E-Print Network (OSTI)

Ion traps offer the opportunity to study fundamental quantum systems with high level of accuracy highly decoupled from the environment. Individual atomic ions can be controlled and manipulated with electric fields, cooled to the ground state of motion with laser cooling and coherently manipulated using optical and microwave radiation. Microfabricated ion traps hold the advantage of allowing for smaller trap dimensions and better scalability towards large ion trap arrays also making them a vital ingredient for next generation quantum technologies. Here we provide an introduction into the principles and operation of microfabricated ion traps. We show an overview of material and electrical considerations which are vital for the design of such trap structures. We provide guidance in how to choose the appropriate fabrication design, consider different methods for the fabrication of microfabricated ion traps and discuss previously realized structures. We also discuss the phenomenon of anomalous heating of ions with...

Hughes, Marcus D; Broersma, Jiddu A; Hensinger, Winfried K

2011-01-01T23:59:59.000Z

134

ION-BY-ION COOLING EFFICIENCIES  

SciTech Connect

We present ion-by-ion cooling efficiencies for low-density gas. We use Cloudy (version 10.00) to estimate the cooling efficiencies for each ion of the first 30 elements (H-Zn) individually. We present results for gas temperatures between 10{sup 4} and 10{sup 8} K, assuming low densities and optically thin conditions. When nonequilibrium ionization plays a significant role the ionization states deviate from those that obtain in collisional ionization equilibrium (CIE), and the local cooling efficiency at any given temperature depends on specific nonequilibrium ion fractions. The results presented here allow for an efficient estimate of the total cooling efficiency for any ionic composition. We also list the elemental cooling efficiencies assuming CIE conditions. These can be used to construct CIE cooling efficiencies for non-solar abundance ratios or to estimate the cooling due to elements not included in any nonequilibrium computation. All the computational results are listed in convenient online tables.

Gnat, Orly [Theoretical Astrophysics, California Institute of Technology, MC 350-17, Pasadena, CA 91125 (United States) and Racah Institute of Physics, Hebrew University, 91904 Jerusalem (Israel); Ferland, Gary J., E-mail: orlyg@tapir.caltech.edu [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States)

2012-03-01T23:59:59.000Z

135

Design optimization of oxygenated fluid pump  

E-Print Network (OSTI)

In medical emergencies, an oxygen-starved brain quickly suffers irreparable damage. In many cases, patients who stop breathing can be resuscitated but suffer from brain damage. Dr. John Kheir from Boston Children's Hospital ...

Piazzarolo, Bruno Aiala

2012-01-01T23:59:59.000Z

136

Permanent magnet hydrogen oxygen generating cells  

SciTech Connect

A generating cell for hydrogen and oxygen utilizes permanent magnets and electromagnets. Means are provided for removing gases from the electrodes. Mixing chambers are provided for water and the electrolyte used in the cell.

Harris, M.

1976-07-13T23:59:59.000Z

137

OXYGEN DIFFUSION IN HYPOSTOICHIOMETRIC URANIUM DIOXIDE  

E-Print Network (OSTI)

IN HYPOSTOICHIOMETRIC URANIUM DIOXIDE Kee Chul Kim Ph.D.727-366; Figure 1. Oxygen-uranium phase-equilibrium _ystem [18]. uranium dioxide powders and 18 0 enriched carbon

Kim, Kee Chul

2010-01-01T23:59:59.000Z

138

THE PATH OF OXYGEN IN PHOTOSYNTHESIS  

DOE Green Energy (OSTI)

An experiment is described in which an attempt is made to follow the path of oxygen in photosynthesis by the use of O{sup 18} as a tracer.

Dorough, G.D.; Calvin, M.

1950-03-31T23:59:59.000Z

139

Oxy-combustion: Oxygen Transport Membrane Development  

NLE Websites -- All DOE Office Websites (Extended Search)

combustion: Oxygen Transport combustion: Oxygen Transport Membrane Development Background The mission of the U.S. Department of Energy's (DOE) Existing Plants, Emissions & Capture (EPEC) Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. The EPEC R&D

140

Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon...  

NLE Websites -- All DOE Office Websites (Extended Search)

Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and Carbon-13 in Methane Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and...

Note: This page contains sample records for the topic "oxygen ions miec" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Oxygen Nonstoichiometry, Thermo-chemical Stability and Crystal ...  

Science Conference Proceedings (OSTI)

... gas separation membranes and oxygen sensors, oxygen nonstoichiometry and crystal ... New Electric Current Effects on 8-Y Zirconia Ceramics: Pore/Bubble ...

142

Underground coal gasification using oxygen and steam  

Science Conference Proceedings (OSTI)

In this paper, through model experiment of the underground coal gasification, the effects of pure oxygen gasification, oxygen-steam gasification, and moving-point gasification methods on the underground gasification process and gas quality were studied. Experiments showed that H{sub 2} and CO volume fraction in product gas during the pure oxygen gasification was 23.63-30.24% and 35.22-46.32%, respectively, with the gas heating value exceeding 11.00 MJ/m{sup 3}; under the oxygen-steam gasification, when the steam/oxygen ratio stood at 2: 1, gas compositions remained virtually stable and CO + H{sub 2} was basically between 61.66 and 71.29%. Moving-point gasification could effectively improve the changes in the cavity in the coal seams or the effects of roof inbreak on gas quality; the ratio of gas flowing quantity to oxygen supplying quantity was between 3.1:1 and 3.5:1 and took on the linear changes; on the basis of the test data, the reasons for gas quality changes under different gasification conditions were analyzed.

Yang, L.H.; Zhang, X.; Liu, S. [China University of Mining & Technology, Xuzhou (China)

2009-07-01T23:59:59.000Z

143

Oxygen generator for medical applications (USIC)  

Science Conference Proceedings (OSTI)

The overall Project objective is to develop a portable, non-cryogenic oxygen generator capable of supplying medical grade oxygen at sufficient flow rates to allow the field application of the Topical Hyperbaric Oxygen Therapy (THOT{reg_sign}) developed by Numotech, Inc. This project was sponsored by the U.S. Department of Energy Global Initiatives for Proliferation Prevention (GIPP) and is managed by collaboration between Sandia National Laboratories (SNL), Numotech, Inc, and LLC SPE 'Spektr-Conversion.' The project had two phases, with the objective of Phase I being to develop, build and test a laboratory prototype of the membrane-pressure swing adsorber (PSA) system producing at 15 L/min of oxygen with a minimum of 98% oxygen purity. Phase II objectives were to further refine and identify the pre-requisites needed for a commercial product and to determine the feasibility of producing 15 L/min of oxygen with a minimum oxygen purity of 99%. In Phase I, Spektr built up the necessary infrastructure to perform experimental work and proceeded to build and demonstrate a membrane-PSA laboratory prototype capable of producing 98% purity oxygen at a flow rate of 5 L/min. Spektr offered a plausible path to scale up the process for 15 L/min. Based on the success and experimental results obtained in Phase I, Spektr performed work in three areas for Phase II: construction of a 15 L/min PSA; investigation of compressor requirements for the front end of the membrane/PSA system; and performing modeling and simulation of assess the feasibility of producing oxygen with a purity greater than 99%. Spektr successfully completed all of the tasks under Phase II. A prototype 15 L/min PSA was constructed and operated. Spektr determined that no 'off the shelf' air compressors met all of the specifications required for the membrane-PSA, so a custom compressor will likely need to be built. Modeling and simulation concluded that production of oxygen with purities greater than 99% was possible using a Membrane-PSA system.

Staiger, C. L.

2012-03-01T23:59:59.000Z

144

Ion photon emission microscope  

DOE Patents (OSTI)

An ion beam analysis system that creates microscopic multidimensional image maps of the effects of high energy ions from an unfocussed source upon a sample by correlating the exact entry point of an ion into a sample by projection imaging of the ion-induced photons emitted at that point with a signal from a detector that measures the interaction of that ion within the sample. The emitted photons are collected in the lens system of a conventional optical microscope, and projected on the image plane of a high resolution single photon position sensitive detector. Position signals from this photon detector are then correlated in time with electrical effects, including the malfunction of digital circuits, detected within the sample that were caused by the individual ion that created these photons initially.

Doyle, Barney L. (Albuquerque, NM)

2003-04-22T23:59:59.000Z

145

HEAVY ION LINEAR ACCELERATOR  

DOE Patents (OSTI)

A linear accelerator of heavy ions is described. The basic contributions of the invention consist of a method and apparatus for obtaining high energy particles of an element with an increased charge-to-mass ratio. The method comprises the steps of ionizing the atoms of an element, accelerating the resultant ions to an energy substantially equal to one Mev per nucleon, stripping orbital electrons from the accelerated ions by passing the ions through a curtain of elemental vapor disposed transversely of the path of the ions to provide a second charge-to-mass ratio, and finally accelerating the resultant stripped ions to a final energy of at least ten Mev per nucleon.

Van Atta, C.M.; Beringer, R.; Smith, L.

1959-01-01T23:59:59.000Z

146

Ion Beam Materials Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities » Facilities » Ion Beam Materials Lab Ion Beam Materials Lab A new research frontier awaits! Our door is open and we thrive on mutually beneficial partnerships, collaborations that drive innovations and new technologies. April 12, 2012 Ion Beam Danfysik Implanter High Voltage Terminal. Contact Yongqiang Wang (505) 665-1596 Email Devoted to the characterization and modification of surfaces through the use of ion beams The Ion Beam Materials Laboratory (IBML) is a Los Alamos National Laboratory resource devoted to the characterization and modification of surfaces through the use of ion beams. The IBML provides and operates the core facilities, while supporting the design and implementation of specific apparati needed for experiments requested by users of the facility. The result is a facility with

147

Ion beam generating apparatus  

DOE Patents (OSTI)

An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam.

Brown, Ian G. (1088 Woodside Rd., Berkeley, CA 94708); Galvin, James (2 Commodore #276, Emeryville, CA 94608)

1987-01-01T23:59:59.000Z

148

Ion beam generating apparatus  

DOE Patents (OSTI)

An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam. 10 figs.

Brown, I.G.; Galvin, J.

1987-12-22T23:59:59.000Z

149

ION ACCELERATION SYSTEM  

DOE Patents (OSTI)

Well focused, intense ion beams are obtained by providing a multi- apertured source grid in front of an ion source chamber and an accelerating multi- apertured grid closely spaced from and in alignment with the source grid. The longest dimensions of the elongated apertures in the grids are normal to the direction of the magnetic field used with the device. Large ion currents may be withdrawn from the source, since they do not pass through any small focal region between the grids.

Luce, J.S.; Martin, J.A.

1960-02-23T23:59:59.000Z

150

Ion Irradiation Effects  

Science Conference Proceedings (OSTI)

Oct 17, 2011 ... Materials Science Challenges for Nuclear Applications: Ion Irradiation Effects Sponsored by: MS&T Organization Program Organizers: Ram ...

151

Electron-Ion Collisions  

Science Conference Proceedings (OSTI)

... Since the ions are created and excited with the same beam of electrons, by changing the electron beam energy one can selectively exclude certain ...

2010-12-07T23:59:59.000Z

152

Absorption process for producing oxygen and nitrogen and solution therefor  

DOE Patents (OSTI)

Process for the separation and purification of oxygen and nitrogen is disclosed which utilizes solutions of oxygen carriers to selectively absorb oxygen from a gaseous stream, leaving nitrogen as a byproduct. In the process, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a solvent solution, which absorbs oxygen from an oxygen-containing gaseous feed stream such as atmospheric air and desorbs oxygen to a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form during desorption. In an alternate mode of operation, the carrier solution is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, and at a sufficiently high temperature to keep the carrier in its deoxygenated form during desorption. Under such conditions, exceptionally high oxygen concentrations on the order of 95% to 99% are obtained, as well as a long carrier lifetime in excess of 3 months, making the process commercially feasible. 1 figure

Roman, I.C.; Baker, R.W.

1990-09-25T23:59:59.000Z

153

Oxygen scavengers - The chemistry of sulfite under hydrothermal conditions  

Science Conference Proceedings (OSTI)

Control of oxygen corrosion is critical to the reliability of steam generator systems. Mechanical deaeration and chemical oxygen scavenging effectively reduce oxygen levels in boiler feedwater systems. This paper reviews the use of sulfites to reduce oxygen and provide corrosion control throughout the boiler feedwater circuit as well as mechanical and operational oxygen reduction methods. The mechanism of oxygen pitting, electrochemical reactions, and the basis of operation of mechanical deaeration are discussed. Estimating techniques for the amount of steam required and a deaerator troubleshooting guide are included. The chemistry of sulfites is covered in detail. Also included are a functional definition of chemical oxygen scavengers and a general discussion of their various types.

Cotton, I.J.

1987-03-01T23:59:59.000Z

154

Direct Observation of Oxygen Superstructures in Manganites  

Science Conference Proceedings (OSTI)

We report the observation of superstructures associated with the oxygen 2p states in two prototypical manganites using x-ray diffraction at the oxygen K edge. In the stripe order system Bi{sub 0.31}Ca{sub 0.69}MnO{sub 3}, hole-doped O states are orbitally ordered, at the same propagation vector as the Mn orbital ordering, but no oxygen charge stripes are found at this periodicity. In La{sub 7/8}Sr{sub 1/8}MnO{sub 3}, we observe a 2p charge ordering described by alternating hole-poor and hole-rich MnO planes that is consistent with some of the recent predictions.

Grenier, S.; Tonnerre, J. M. [Institut Neel, CNRS and Universite Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9 (France); Thomas, K. J.; Hill, J. P. [Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Staub, U.; Bodenthin, Y.; Garcia-Fernandez, M. [Swiss Light Source, Paul Sherrer Institut, 5232 Villigen (Switzerland); Scagnoli, V. [European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex 9 (France); Kiryukhin, V.; Cheong, S-W.; Kim, B. G. [Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854 (United States)

2007-11-16T23:59:59.000Z

155

Negative ion detachment processes  

DOE Green Energy (OSTI)

This paper discusses the following topics: H{sup {minus}} and D{sup {minus}} collisions with atomic hydrogen; collisional decomposition of SF{sub 6}{sup {minus}}; two-electron loss processes in negative ion collisions; associative electron detachment; and negative ion desorption from surfaces.

Champion, R.L.; Doverspike, L.D.

1990-10-01T23:59:59.000Z

156

Selective ion source  

DOE Patents (OSTI)

A ion source is described wherein selected ions maybe extracted to the exclusion of unwanted ion species of higher ionization potential. Also described is a method of producing selected ions from a compound, such as P.sup.+ from PH.sub.3. The invention comprises a plasma chamber, an electron source, a means for introducing a gas to be ionized by electrons from the electron source, means for limiting electron energy from the electron source to a value between the ionization energy of the selected ion species and the greater ionization energy of an unwanted ion specie, and means for extracting the target ion specie from the plasma chamber. In one embodiment, the electrons are generated in a plasma cathode chamber immediately adjacent to the plasma chamber. A small extractor draws the electrons from the plasma cathode chamber into the relatively positive plasma chamber. The energy of the electrons extracted in this manner is easily controlled. The invention is particularly useful for doping silicon with P.sup.+, AS.sup.+, and B.sup.+ without the problematic presence of hydrogen, helium, water, or carbon oxide ions. Doped silicon is important for manufacture of semiconductors and semiconductor devices.

Leung, Ka-Ngo (Hercules, CA)

1996-01-01T23:59:59.000Z

157

Lithium Ion Accomplishments  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium ion Battery Commercialization Lithium ion Battery Commercialization Johnson Controls-Saft Advanced Power Solutions, of Milwaukee, Wisconsin: Johnson Controls-Saft (JCS) will supply lithium-ion batteries to Mercedes for their S Class Hybrid to be introduced in October 2009. Technology developed with DOE support (the VL6P cell) will be used in the S Class battery. In May 2006, the Johnson Controls-Saft Joint Venture was awarded a 24 month $14.4 million contract by the DOE/USABC to develop a 40kW Li ion HEV battery system offering improved safety, low temperature performance, and cost. JCS has reported a 40% cost reduction of the 40kW system being developed in their DOE/USABC contract while maintaining performance. Lithium Ion Battery Material Commercialization Argonne National Laboratory has licensed cathode materials and associated processing

158

ION PULSE GENERATION  

DOE Patents (OSTI)

A device for generating ions in an ion source, forming the ions into a stream, deflecting the stream rapidly away from and back to its normal path along the axis of a cylindrical housing, and continually focusing the stream by suitable means into a sharp, intermittent beam along the axis is described. The beam exists through an axial aperture into a lens which focuses it into an accelerator tube. The ions in each burst are there accelerated to very high energies and are directed against a target placed in the high-energy end of the tube. Radiations from the target can then be analyzed in the interval between incidence of the bursts of ions on the target.

King, R.F.; Moak, C.D.; Parker, V.E.

1960-10-11T23:59:59.000Z

159

Secondary ion coincidence in highly charged ion based secondary ion mass spectroscopy for process characterization  

SciTech Connect

Coincidence counting in highly charged ion based secondary ion mass spectroscopy has been applied to the characterization of selective tungsten deposition via disilane reduction of tungsten hexafluoride on a patterned SiO{sub 2}/Si wafer. The high secondary ion yield and the secondary ion emission from a small area produced by highly charged ions make the coincidence technique very powerful.

Hamza, A.V.; Schenkel, T.; Barnes, A.V.; Schneider, D.H. [Lawrence Livermore National Laboratory, University of California, Livermore, California, 94551 (United States)] [Lawrence Livermore National Laboratory, University of California, Livermore, California, 94551 (United States)

1999-01-01T23:59:59.000Z

160

Test bench to commission a third ion source beam line and a newly designed extraction system  

Science Conference Proceedings (OSTI)

The HIT (Heidelberg Ion Beam Therapy Center) is the first hospital-based treatment facility in Europe where patients can be irradiated with protons and carbon ions. Since the commissioning starting in 2006 two 14.5 GHz electron cyclotron resonance ion sources are routinely used to produce a variety of ion beams from protons up to oxygen. In the future a helium beam for regular patient treatment is requested, therefore a third ion source (Supernanogan source from PANTECHNIK S.A.) will be integrated. This third ECR source with a newly designed extraction system and a spectrometer line is installed at a test bench at HIT to commission and validate this section. Measurements with different extraction system setups will be presented to show the improvement of beam quality for helium, proton, and carbon beams. An outlook to the possible integration scheme of the new ion source into the production facility will be discussed.

Winkelmann, T.; Cee, R.; Haberer, T.; Naas, B.; Peters, A. [Heidelberger Ionenstrahl-Therapie Centrum (HIT), D-69120 Heidelberg (Germany)

2012-02-15T23:59:59.000Z

Note: This page contains sample records for the topic "oxygen ions miec" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Carbon dioxide remediation via oxygen-enriched combustion using dense ceramic membranes  

SciTech Connect

A method of combusting pulverized coal by mixing the pulverized coal and an oxidant gas to provide a pulverized coal-oxidant gas mixture and contacting the pulverized coal-oxidant gas mixture with a flame sufficiently hot to combust the mixture. An oxygen-containing gas is passed in contact with a dense ceramic membrane of metal oxide material having electron conductivity and oxygen ion conductivity that is gas-impervious until the oxygen concentration on one side of the membrane is not less than about 30% by volume. An oxidant gas with an oxygen concentration of not less than about 30% by volume and a CO.sub.2 concentration of not less than about 30% by volume and pulverized coal is contacted with a flame sufficiently hot to combust the mixture to produce heat and a flue gas. One dense ceramic membrane disclosed is selected from the group consisting of materials having formulae SrCo.sub.0.8 Fe.sub.0.2 O.sub.x, SrCo.sub.0.5 FeO.sub.x and La.sub.0.2 Sr.sub.0.8 Co.sub.0.4 Fe.sub.0.6 O.sub.x.

Balachandran, Uthamalingam (Hinsdale, IL); Bose, Arun C. (Pittsburgh, PA); McIlvried, Howard G. (Pittsburgh, PA)

2001-01-01T23:59:59.000Z

162

Electrolysis method for producing hydrogen and oxygen  

SciTech Connect

A novel electrolytic cell produces a mixture of highly ionized hydrogen and oxygen gases by a method combining electrolysis and radiolysis of an aqueous electrolyte. The electrolyte, which may be 25 percent of potassium hydroxide, is introduced into the cell and is simultaneously subjected to an electrolyting current and intense irradiation by electromagnetic radiation of frequency less than 10/sup -10/ meters.

Horvath, S.

1978-08-15T23:59:59.000Z

163

Novel Membranes and Processes for Oxygen Enrichment  

SciTech Connect

The overall goal of this project is to develop a membrane process that produces air containing 25-35% oxygen, at a cost of $25-40/ton of equivalent pure oxygen (EPO2). Oxygen-enriched air at such a low cost will allow existing air-fueled furnaces to be converted economically to oxygen-enriched furnaces, which in turn will improve the economic and energy efficiency of combustion processes significantly, and reduce the cost of CO{sub 2} capture and sequestration from flue gases throughout the U.S. manufacturing industries. During the 12-month Concept Definition project: We identified a series of perfluoropolymers (PFPs) with promising oxygen/nitrogen separation properties, which were successfully made into thin film composite membranes. The membranes showed oxygen permeance as high as 1,200 gpu and oxygen/nitrogen selectivity of 3.0, and the permeance and selectivity were stable over the time period tested (60 days). We successfully scaled up the production of high-flux PFP-based membranes, using MTR's commercial coaters. Two bench-scale spiral-wound modules with countercurrent designs were made and parametric tests were performed to understand the effect of feed flow rate and pressure, permeate pressure and sweep flow rate on the membrane module separation properties. At various operating conditions that modeled potential industrial operating conditions, the module separation properties were similar to the pure-gas separation properties in the membrane stamps. We also identified and synthesized new polymers [including polymers of intrinsic microporosity (PIMs) and polyimides] with higher oxygen/nitrogen selectivity (3.5-5.0) than the PFPs, and made these polymers into thin film composite membranes. However, these membranes were susceptible to severe aging; pure-gas permeance decreased nearly six-fold within two weeks, making them impractical for industrial applications of oxygen enrichment. We tested the effect of oxygen-enriched air on NO{sub x} emissions using a Bloom baffle burner at GTI. The results are positive and confirm that oxygen-enriched combustion can be carried out without producing higher levels of NOx than normal air firing, if lancing of combustion air is used and the excess air levels are controlled. A simple economic study shows that the membrane processes can produce O{sub 2} at less than $40/ton EPO{sub 2} and an energy cost of 1.1-1.5 MMBtu/ton EPO{sub 2}, which are very favorable compared with conventional technologies such as cryogenics and vacuum pressure swing adsorption processes. The benefits of integrated membrane processes/combustion process trains have been evaluated, and show good savings in process costs and energy consumption, as well as reduced CO{sub 2} emissions. For example, if air containing 30% oxygen is used in natural gas furnaces, the net natural gas savings are an estimated 18% at a burner temperature of 2,500 F, and 32% at a burner temperature of 3,000 F. With a 20% market penetration of membrane-based oxygen-enriched combustion in all combustion processes by 2020, the energy savings would be 414-736 TBtu/y in the U.S. The comparable net cost savings are estimated at $1.2-2.1 billion per year by 2020, calculated as the value of fuel savings subtracted from the cost of oxygen production. The fuel savings of 18%-32% by the membrane/oxygen-enriched combustion corresponds to an 18%-32% reduction in CO{sub 2} emissions, or 23-40 MM ton/y less CO{sub 2} from natural gas-fired furnaces by 2020. In summary, results from this project (Concept Definition phase) are highly promising and clearly demonstrate that membrane processes can produce oxygen-enriched air in a low cost manner that will lower operating costs and energy consumption in industrial combustion processes. Future work will focus on proof-of-concept bench-scale demonstration in the laboratory.

Lin, Haiqing

2011-11-15T23:59:59.000Z

164

Polarized negative ions  

SciTech Connect

This paper presents a survey of methods, commonly in use or under development, to produce beams of polarized negative ions for injection into accelerators. A short summary recalls how the hyperfine interaction is used to obtain nuclear polarization in beams of atoms. Atomic-beam sources for light ions are discussed. If the best presently known techniques are incorporated in all stages of the source, polarized H/sup -/ and D/sup -/ beams in excess of 10 ..mu..A can probably be achieved. Production of polarized ions from fast (keV) beams of polarized atoms is treated separately for atoms in the H(25) excited state (Lamb-Shift source) and atoms in the H(1S) ground state. The negative ion beam from Lamb-Shift sources has reached a plateau just above 1 ..mu..A, but this beam current is adequate for many applications and the somewhat lower beam current is compensated by other desirable characteristics. Sources using fast polarized ground state atoms are in a stage of intense development. The next sections summarize production of polarized heavy ions by the atomic beam method, which is well established, and by optical pumping, which has recently been demonstrated to yield very large nuclear polarization. A short discussion of proposed ion sources for polarized /sup 3/He/sup -/ ions is followed by some concluding remarks.

Haeberli, W.

1981-04-01T23:59:59.000Z

165

TVDG Ion Species  

NLE Websites -- All DOE Office Websites (Extended Search)

Most Commonly Used Ions Most Commonly Used Ions Many other ions can be produced if required. Due to the number of available ions we have to know, in advance, what ions and LETs you plan to use. Please use the Time Request fill-in form to let us know which ions you will be using. In addition to the maximum energies, ranges and corresponding LETs listed below, lower energies are available for each ion. Charts for range and LET values as a function of energy can be seen by clicking on the links in the LET columns. Flux can be in the range of 1 particle/cm2/sec to greater than 1 · 106 particles/cm2/sec. In Silicon High LET Summary Low LET Summary In GaAs High LET Summary Low LET Summary How To Use The Charts Below Mass Max Energy Surface LET Range Surface LET Range Z Symbol AMU MeV MeV

166

Workshop on Ion Trap Technology  

Science Conference Proceedings (OSTI)

... optical components, conventional and microfabricated ion traps, and classical control ... will bring together experts on trapped-ion physics, laser optics ...

2011-03-01T23:59:59.000Z

167

ION ROCKET ENGINE  

DOE Patents (OSTI)

A thrust generating engine utilizing cesium vapor as the propellant fuel is designed. The cesium is vaporized by heat and is passed through a heated porous tungsten electrode whereby each cesium atom is fonized. Upon emergfng from the tungsten electrode, the ions are accelerated rearwardly from the rocket through an electric field between the tungsten electrode and an adjacent accelerating electrode grid structure. To avoid creating a large negative charge on the space craft as a result of the expulsion of the positive ions, a source of electrons is disposed adjacent the ion stream to neutralize the cesium atoms following acceleration thereof. (AEC)

Ehlers, K.W.; Voelker, F. III

1961-12-19T23:59:59.000Z

168

Method of fabricating optical waveguides by ion implantation doping  

DOE Patents (OSTI)

A method for fabricating high-quality optical waveguides in optical quality oxide crystals by ion implantation doping and controlled epitaxial recrystallization is provided. Masked LiNbO/sub 3/ crystals are implanted with high concentrations of Ti dopant at ion energies of about 360 keV while maintaining the crystal near liquid nitrogen temperature. Ion implantation doping produces an amorphous, Ti-rich nonequilibrium phase in the implanted region. Subsequent thermal annealing in a water-saturated oxygen atmosphere at up to 1000/degree/C produces solid-phase epitaxial regrowth onto the crystalline substrate. A high-quality crystalline layer results which incorporates the Ti into the crystal structure at much higher concentrations than is possible by standard diffusion techniques, and this implanted region has excellent optical waveguiding properties.

Appleton, B.R.; Ashley, P.R.; Buchal, C.J.

1987-03-24T23:59:59.000Z

169

Ion Beam Preparation of Li-Ion Battery Electrodes Li-Ion  

Science Conference Proceedings (OSTI)

One key factor to producing such batteries is the electrode architecture. In order to tune the morphologies of Li-ion battery electrodes, a dual beam Focused Ion ...

170

HEAVY ION INERTIAL FUSION  

E-Print Network (OSTI)

Accelerators as Drivers for Inertially Confined Fusion, W.B.LBL-9332/SLAC-22l (1979) Fusion Driven by Heavy Ion Beams,OF CALIFORNIA f Accelerator & Fusion Research Division

Keefe, D.

2008-01-01T23:59:59.000Z

171

Ion exchange phenomena  

Science Conference Proceedings (OSTI)

Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).

Bourg, I.C.; Sposito, G.

2011-05-01T23:59:59.000Z

172

Probing Oxygen Activation Sites in Two Flavoprotein Oxidases Using Chloride as an Oxygen Surrogate  

SciTech Connect

A single basic residue above the si-face of the flavin ring is the site of oxygen activation in glucose oxidase (GOX) (His516) and monomeric sarcosine oxidase (MSOX) (Lys265). Crystal structures of both flavoenzymes exhibit a small pocket at the oxygen activation site that might provide a preorganized binding site for superoxide anion, an obligatory intermediate in the two-electron reduction of oxygen. Chloride binds at these polar oxygen activation sites, as judged by solution and structural studies. First, chloride forms spectrally detectable complexes with GOX and MSOX. The protonated form of His516 is required for tight binding of chloride to oxidized GOX and for rapid reaction of reduced GOX with oxygen. Formation of a binary MSOX-chloride complex requires Lys265 and is not observed with Lys265Met. Binding of chloride to MSOX does not affect the binding of a sarcosine analogue (MTA, methylthioactetate) above the re-face of the flavin ring. Definitive evidence is provided by crystal structures determined for a binary MSOX-chloride complex and a ternary MSOX-chloride-MTA complex. Chloride binds in the small pocket at a position otherwise occupied by a water molecule and forms hydrogen bonds to four ligands that are arranged in approximate tetrahedral geometry: Lys265:NZ, Arg49:NH1, and two water molecules, one of which is hydrogen bonded to FAD:N5. The results show that chloride (i) acts as an oxygen surrogate, (ii) is an effective probe of polar oxygen activation sites, and (iii) provides a valuable complementary tool to the xenon gas method that is used to map nonpolar oxygen-binding cavities.

Kommoju, Phaneeswara-Rao; Chen, Zhi-wei; Bruckner, Robert C.; Mathews, F. Scott; Jorns, Marilyn Schuman (Drexel-MED); (St. Louis-MED); (WU-MED)

2011-08-16T23:59:59.000Z

173

High current ion source  

DOE Patents (OSTI)

An ion source utilizing a cathode and anode for producing an electric arc therebetween. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma leaves the generation region and expands through another regon. The density profile of the plasma may be flattened using a magnetic field formed within a vacuum chamber. Ions are extracted from the plasma to produce a high current broad on beam.

Brown, Ian G. (1088 Woodside Rd., Berkeley, CA 94708); MacGill, Robert A. (645 Kern St., Richmond, CA 94805); Galvin, James E. (2 Commodore Dr. #276, Emeryville, CA 94608)

1990-01-01T23:59:59.000Z

174

Numerical Simulation of Multicomponent Ion Beam from Ion Sources  

E-Print Network (OSTI)

A program library for numerical simulation of a multicomponent charged particle beam from ion sources is presented. The library is aimed for simulation of high current, low energy multicomponent ion beam from ion source through beamline and realized under the Windows user interface for the IBM PC. It is used for simulation and optimization of beam dynamics and based on successive and consistent application of two methods: the momentum method of distribution function (RMS technique) and particle in cell method. The library has been used to simulate and optimize the transportation of tantalum ion beam from the laser ion source (CERN) and calcium ion beam from the ECR ion source (JINR, Dubna).

Alexandrov, V S; Kazarinov, Yu M; Shevtsov, V P; Shirkov, G D

1999-01-01T23:59:59.000Z

175

Secondary ion collection and transport system for ion microprobe  

DOE Patents (OSTI)

A secondary ion collection and transport system, for use with an ion microprobe, which is very compact and occupies only a small working distance, thereby enabling the primary ion beam to have a short focal length and high resolution. Ions sputtered from the target surface by the primary beam's impact are collected between two arcuate members having radii of curvature and applied voltages that cause only ions within a specified energy band to be collected. The collected ions are accelerated and focused in a transport section consisting of a plurality of spaced conductive members which are coaxial with and distributed along the desired ion path. Relatively high voltages are applied to alternate transport sections to produce accelerating electric fields sufficient to transport the ions through the section to an ion mass analyzer, while lower voltages are applied to the other transport sections to focus the ions and bring their velocity to a level compatible with the analyzing apparatus.

Ward, James W. (Canoga Park, CA); Schlanger, Herbert (Simi Valley, CA); McNulty, Jr., Hugh (Santa Monica, CA); Parker, Norman W. (Camarillo, CA)

1985-01-01T23:59:59.000Z

176

HIGH VOLTAGE ION SOURCE  

DOE Patents (OSTI)

A device is described for providing a source of molecular ions having a large output current and with an accelerated energy of the order of 600 kv. Ions are produced in an ion source which is provided with a water-cooled source grid of metal to effect maximum recombination of atomic ions to molecular ions. A very high accelerating voltage is applied to withdraw and accelerate the molecular ions from the source, and means are provided for dumping the excess electrons at the lowest possible potentials. An accelerating grid is placed adjacent to the source grid and a slotted, grounded accelerating electrode is placed adjacent to the accelerating grid. A potential of about 35 kv is maintained between the source grid and accelerating grid, and a potential of about 600 kv is maintained between the accelerating grid and accelerating electrode. In order to keep at a minimum the large number of oscillating electrons which are created when such high voltages are employed in the vicinity of a strong magnetic field, a plurality of high voltage cascaded shields are employed with a conventional electron dumping system being employed between each shield so as to dump the electrons at the lowest possible potential rather than at 600 kv.

Luce, J.S.

1960-04-19T23:59:59.000Z

177

Field reversed ion rings  

DOE Green Energy (OSTI)

In typical field-reversed ion ring experiments, an intense annular ion beam is injected across a plasma-filled magnetic cusp region into a neutral gas immersed in a ramped solenoidal magnetic field. Assuming the characteristic ionization time is much shorter than the long ({ital t}{approx_gt}2{pi}/{Omega}{sub {ital i}}) beam evolution time scale, we investigate the formation of an ion ring in the background plasma followed by field reversal, using a 21/2-D hybrid, PIC code FIRE, in which the beam and background ions are treated as particles and the electrons as a massless fluid. We show that beam bunching and trapping occurs downstream in a ramped magnetic field for an appropriate set of experimental parameters. We find that a compact ion ring is formed and a large field reversal {zeta}={delta}{ital B}/{ital B}{approx_gt}1 on axis develops. We also observe significant deceleration of the ring on reflection due to the transfer of its axial momentum to the background ions, which creates favorable trapping conditions. {copyright} {ital 1995 American Institute of Physics.}

Sudan, R.N.; Omelchenko, Y.A. [Laboratory of Plasma Studies, Cornell University, Ithaca, New York 14853 (United States)

1995-09-01T23:59:59.000Z

178

Ion-Selective Membrane Electrodes  

Science Conference Proceedings (OSTI)

...R.A. Durst, Ion-Selective Electrodes, Special Publication 314, National Bureau of Standards, 1969...

179

Oxygen diffusion in UO2+x and (U,Pu)O2+-x  

SciTech Connect

In the first part of this report we revisit an earlier study of oxygen diffusion in UO{sub 2+x}, in which we used density functional theory (DFT) calculations to parameterize a kinetic Monte Carlo (kMC) model. The results from these earlier kMC simulations are reproduced in Fig. 1 and they indicate fairly good agreement with available experiments. This work was later expanded to include a larger temperature range. However, since the publication of this study there have been a number of advancements in DFT methodology for UO{sub 2} and UO{sub 2+x} providing increased accuracy. We have also gained better understanding of the oxygen clustering phenomena occurring in UO{sub 2+x}. For these two reasons, the DFT calculations of the migration barriers of single oxygen interstitials and di-interstitial clusters have been repeated using the LDA+U and GGA+U methodologies. The earlier study used regular GGA and, even though this method captures similar trends as the more advanced LDA+U and GGA+U techniques, it does not fulfill the quantitative requirements set by some applications. Additionally, we have identified a mechanism for the most stable quad-interstitial clusters to migrate and here we calculate the corresponding barriers within both the LDA+U and GGA+U methodologies. The new LDA+U and GGA+U data sets are analyzed in terms of available experiments. In the second part of this report we present initial results for the impact of Pu on oxygen diffusion in UO{sub 2}. The first step in understanding this process is to calculate the binding energies of oxygen vacancies and interstitials to a Pu ion in the UO{sub 2} matrix. Possible diffusion mechanisms are discussed for (U,Pu)O{sub 2-x}, (U,Pu)O{sub 2} and (U,Pu)O{sub 2+x}.

Andersson, Anders D. [Los Alamos National Laboratory; Liu, Xiang-Yang [Los Alamos National Laboratory

2012-05-03T23:59:59.000Z

180

Oxygen electrode in molten carbonate fuel cells  

DOE Green Energy (OSTI)

The oxygen reduction reaction on a gold electrode in lithium carbonate melt was investigated to determine the influence of partial pressure of carbon dioxide and temperature on electrode kinetics and oxygen solubility by using cyclic Voltammetry and impedance analysis techniques. During this quarter, the impedance data were analyzed by a Complex Nonlinear Least Square (CNLS) Parameter estimation program to determine the kinetic and the mass transfer related parameters such as charge transfer resistance, double layer capacitance, solution resistance, and Warburg coefficient. The estimated parameters were used to obtain the C0{sub 2} reaction orders and apparent activation energies for the exchange current density and the mass transfer parameter (D{sub o}{sup {1/2}}C{sub o}*).

Dave, B.B.; Srinivasan, S.; White, R.E.; Appleby, A.J.

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxygen ions miec" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Electrical insulator assembly with oxygen permeation barrier  

DOE Patents (OSTI)

A high-voltage electrical insulator for electrically insulating a thermoelectric module in a spacecraft from a niobium-1% zirconium alloy wall of a heat exchanger filled with liquid lithium while providing good thermal conductivity between the heat exchanger and the thermoelectric module. The insulator has a single crystal alumina layer (SxAl[sub 2]O[sub 3], sapphire) with a niobium foil layer bonded thereto on the surface of the alumina crystal facing the heat exchanger wall, and a molybdenum layer bonded to the niobium layer to act as an oxygen permeation barrier to preclude the oxygen depleting effects of the lithium from causing undesirable niobium-aluminum intermetallic layers near the alumina-niobium interface. 3 figures.

Van Der Beck, R.R.; Bond, J.A.

1994-03-29T23:59:59.000Z

182

Electrical insulator assembly with oxygen permeation barrier  

DOE Patents (OSTI)

A high-voltage electrical insulator (21) for electrically insulating a thermoelectric module (17) in a spacecraft from a niobium-1% zirconium alloy wall (11) of a heat exchanger (13) filled with liquid lithium (16) while providing good thermal conductivity between the heat exchanger and the thermoelectric module. The insulator (21) has a single crystal alumina layer (SxAl.sub.2 O.sub.3, sapphire) with a niobium foil layer (32) bonded thereto on the surface of the alumina crystal (26) facing the heat exchanger wall (11), and a molybdenum layer (31) bonded to the niobium layer (32) to act as an oxygen permeation barrier to preclude the oxygen depleting effects of the lithium from causing undesirable niobium-aluminum intermetallic layers near the alumina-niobium interface.

Van Der Beck, Roland R. (Lansdale, PA); Bond, James A. (Exton, PA)

1994-01-01T23:59:59.000Z

183

On the reduction of oxygen from dispersed media  

E-Print Network (OSTI)

The reduction of oxygen from an organic phase dispersed in a concentrated electrolyte is investigated. Dispersed organic phases are used to enhance oxygen transport in fermenters and artificial blood substitutes. This work ...

Roushdy, Omar H., 1977-

2007-01-01T23:59:59.000Z

184

Application of Oxygen Eddy Correlation in Aquatic Systems  

Science Conference Proceedings (OSTI)

The eddy correlation technique is rapidly becoming an established method for resolving dissolved oxygen fluxes in natural aquatic systems. This direct and noninvasive determination of oxygen fluxes close to the sediment by simultaneously ...

Claudia Lorrai; Daniel F. McGinnis; Peter Berg; Andreas Brand; Alfred Wüest

2010-09-01T23:59:59.000Z

185

Molecular oxygen in the rho Ophiuchi cloud  

E-Print Network (OSTI)

Molecular oxygen, O2 has been expected historically to be an abundant component of the chemical species in molecular clouds and, as such, an important coolant of the dense interstellar medium. However, a number of attempts from both ground and from space have failed to detect O2 emission. The work described here uses heterodyne spectroscopy from space to search for molecular oxygen in the interstellar medium. The Odin satellite carries a 1.1 m sub-millimeter dish and a dedicated 119 GHz receiver for the ground state line of O2. Starting in 2002, the star forming molecular cloud core rho Oph A was observed with Odin for 34 days during several observing runs. We detect a spectral line at v(LSR) = 3.5 km/s with dv(FWHM) = 1.5 km/s, parameters which are also common to other species associated with rho Ohp A. This feature is identified as the O2 (N_J = 1_1 - 1_0) transition at 118 750.343 MHz. The abundance of molecular oxygen, relative to H2,, is 5E-8 averaged over the Odin beam. This abundance is consistently lower than previously reported upper limits.

B. Larsson; R. Liseau; L. Pagani; P. Bergman; P. Bernath; N. Biver; J. H. Black; R. S. Booth; V. Buat; J. Crovisier; C. L. Curry; M. Dahlgren; P. J. Encrenaz; E. Falgarone; P. A. Feldman; M. Fich; H. G. Flore'n; M. Fredrixon; U. Frisk; G. F. Gahm; M. Gerin; M. Hagstroem; J. Harju; T. Hasegawa; Aa. Hjalmarson; C. Horellou; L. E. B. Johansson; K. Justtanont; A. Klotz; E. Kyroelae; S. Kwok; A. Lecacheux; T. Liljestroem; E. J. Llewellyn; S. Lundin; G. Me'gie; G. F. Mitchell; D. Murtagh; L. H. Nordh; L. -Aa. Nyman; M. Olberg; A. O. H. Olofsson; G. Olofsson; H. Olofsson; G. Persson; R. Plume; H. Rickman; I. Ristorcelli; G. Rydbeck; Aa. Sandqvist; F. v. Sche'ele; G. Serra; S. Torchinsky; N. F. Tothill; K. Volk; T. Wiklind; C. D. Wilson; A. Winnberg; G. Witt

2007-02-19T23:59:59.000Z

186

Probing brain oxygenation with near infrared spectroscopy  

E-Print Network (OSTI)

The fundamentals of near infrared spectroscopy (NIRS) are reviewed. This technique allows to measure the oxygenation of the brain tissue. The particular problems involved in detecting regional brain oxygenation (rSO2) are discussed. The dominant chromophore (light absorber) in tissue is water. Only in the NIR light region of 650-1000 nm, the overall absorption is sufficiently low, and the NIR light can be detected across a thick layer of tissues, among them the skin, the scull and the brain. In this region, there are many absorbing light chromophores, but only three are important as far as the oxygenation is concerned. They are the hemoglobin (HbO2), the deoxy-hemoglobin (Hb) and cytochrome oxidase (CtOx). In the last 20 years there was an enormous growth in the instrumentation and applications of NIRS. . The devices that were used in our experiments were : Somanetics's INVOS Brain Oximeter (IBO) and Toomim's HEG spectrophotometer. The performances of both devices were compared including their merits and draw...

Gersten, Alexander; Raz, Amir; Fried, Robert

2011-01-01T23:59:59.000Z

187

Heavy Ions - Cyclotron  

NLE Websites -- All DOE Office Websites (Extended Search)

Heavy Ions Heavy Ions Heavy ions used at the BASE Facility are accelerated in the form of "cocktails," named because of the fact that several heavy ions with the same mass-to-charge ratio are sent into the Cyclotron, which accelerates the ions while acting as a precision mass separator. The Control Room Operator then uses Cyclotron frequency to select only the desired ion, a process that takes about 2 minutes. We provide four standard cocktails: 4.5, 10, 16, and 30 MeV/nucleon. Depending on the cocktail, LETs from 1 to 100 MeV/(mg/cm^2) and flux levels of up to 1E7 ions/cm2-sec are available. Parts are tested in our vacuum chamber, and can be remotely positioned horizontally, vertically, or rotationally (y and z axes) with the motion table. An alignment laser is available to ensure the part is in the center of the beam. Mounting hardware is readily available. 12xBNC (F-F), 2x25-pin D (F-M or M-F), 4x40-pin flat ribbon (M-M), 4x50-pin flat ribbon (M-M), 12xSMA (F-F), and 2xEthernet vacuum feedthroughs are mounted upon request. (The 4x40-pin and 4x50-pin flat ribbon connectors are wired straight across, so you will need a F-F adapter to correct the pin numbers to normal.) Holes are provided through the cave shielding blocks for connecting additional test equipment, with a distance of approximately 10 feet from vacuum feedthrough to the top of the shielding block.

188

Silane discharge ion chemistry  

SciTech Connect

Silane dc, rf, and dc proximity discharges have been studied using mass spectroscopic measurements of the positive ions as a detailed diagnostic for the type of discharge used to produce hydrogenated amorphous silicon solar photovoltaic cells. The properties and quality of these films depends in a very complex way upon the interactions of the many reactive neutral and ion species in the discharge. Qualitative models of the ion chemical processes in these discharges have been developed from experimental measurements. Knowledge of the ion-molecule and electron-molecule collision cross sections is important to any attempt at understanding silane discharge chemistry. Consequently, the electron impact ionization cross sections for silane and disilane have been measured and for comparison purposes also for methane and ethane. In addition, the rate coefficients for charge exchange reactions of He , Ne , and Ar with silane, disilane, methane, and ethane have been measured as these are important to understanding discharges in inert gas-silane mixtures. A detailed quantitative model of the cathode sheath region of a silane dc discharge has been developed by extending the best recent calculation of the electron motion in the sheath to a self-consistent form which includes the ion motion. This model is used with comparison of silane dc discharge data to diagnose the ion chemistry occurring in the sheath region of silane dc discharge. The understanding of the discharge ion chemical processes that have been gained in this study represent an important step toward understanding the chemical and physical processes leading to film growth.

Chatham, R.H. III

1984-01-01T23:59:59.000Z

189

DD4, Oxygen Plasma Exposure Effects on Indium Oxide Nanowire ...  

Science Conference Proceedings (OSTI)

Presentation Title, DD4, Oxygen Plasma Exposure Effects on Indium Oxide Nanowire ... Electronic Materials Science Challenges in Renewable Energy.

190

Oxygen Ion Conductivity in A-site Doped Pyrochlore Type Gd2Zr2O7  

Science Conference Proceedings (OSTI)

Author(s), Jose Alonso Diaz-Guillen, Mario Roman Diaz-Guillen, Karinjilottu Padmadas Padmasree, Jacobo Santamaria, Carlos Leon, Antonio F. Fuentes.

191

Oxygen Ions for Fuel Cells Get Loose at Low(er) ...  

Science Conference Proceedings (OSTI)

... enough electricity—up to 100 megawatts—to power small cities, hospitals, military installations or airports without relying on the electric power grid. ...

2011-05-03T23:59:59.000Z

192

E.L. Grossman Chapter 10 Oxygen Isotope Stratigraphy  

E-Print Network (OSTI)

are the mineral and water respectively. Oxygen isotopic ratios are The Geologic Time Scale 2012. DOI: 10.1016/B978E.L. Grossman Chapter 10 Oxygen Isotope Stratigraphy Abstract:Variations in the 18 O/16 O ratios for global correlation. Relying on previous compilations and new data, this chapter presents oxygen isotope

Grossman, Ethan L.

193

Dilute Oxygen Combustion Phase IV Final Report  

Science Conference Proceedings (OSTI)

Novel furnace designs based on Dilute Oxygen Combustion (DOC) technology were developed under subcontract by Techint Technologies, Coraopolis, PA, to fully exploit the energy and environmental capabilities of DOC technology and to provide a competitive offering for new furnace construction opportunities. Capital cost, fuel, oxygen and utility costs, NOx emissions, oxide scaling performance, and maintenance requirements were compared for five DOC-based designs and three conventional air5-fired designs using a 10-year net present value calculation. A furnace direct completely with DOC burners offers low capital cost, low fuel rate, and minimal NOx emissions. However, these benefits do not offset the cost of oxygen and a full DOC-fired furnace is projected to cost $1.30 per ton more to operate than a conventional air-fired furnace. The incremental cost of the improved NOx performance is roughly $6/lb NOx, compared with an estimated $3/lb. NOx for equ8pping a conventional furnace with selective catalytic reduction (SCCR) technology. A furnace fired with DOC burners in the heating zone and ambient temperature (cold) air-fired burners in the soak zone offers low capital cost with less oxygen consumption. However, the improvement in fuel rate is not as great as the full DOC-fired design, and the DOC-cold soak design is also projected to cost $1.30 per ton more to operate than a conventional air-fired furnace. The NOx improvement with the DOC-cold soak design is also not as great as the full DOC fired design, and the incremental cost of the improved NOx performance is nearly $9/lb NOx. These results indicate that a DOC-based furnace design will not be generally competitive with conventional technology for new furnace construction under current market conditions. Fuel prices of $7/MMBtu or oxygen prices of $23/ton are needed to make the DOC furnace economics favorable. Niche applications may exist, particularly where access to capital is limited or floor space limitations are critical. DOC technology will continue to have a highly competitive role in retrofit applications requiring increases in furnace productivity.

Riley, M.F.

2003-04-30T23:59:59.000Z

194

Electronuclear ion fusion in an ion cyclotron resonance reactor  

DOE Patents (OSTI)

A method and apparatus for generating nuclear fusion by ion cyclotron resonance in an ion trap reactor. The reactor includes a cylindrical housing having an axial axis, an internal surface, and first and second ends. First and second end plates that are charged are respectively located at the first and second ends of the cylindrical housing. A gas layer is adsorbed on the internal surface of the cylindrical housing. Ions are desorbed from the gas layer, forming a plasma layer adjacent to the cylindrical housing that includes first ions that have a same charge sign as the first and second end plates. A uniform magnetic field is oriented along the axial axis of the cylindrical housing. Second ions, that are unlike the first ions, but have the same charge sign, are injected into the cylindrical housing along the axial axis of the cylindrical housing. A radio frequency field resonantly accelerates the injected second ions at the cyclotron resonance frequency of the second ions. The second ions circulate in increasing helical orbits and react with the first ions, at the optimum energy for nuclear fusion. The amplitude of the radio frequency field is adjusted to accelerate the second ions at a rate equal to the rate of tangential energy loss of the second ions by nuclear scattering in the first ions, causing the ions to continually interact until fusion occurs.

Cowgill, Donald F.

1996-12-01T23:59:59.000Z

195

Modulational instability of ion acoustic wave with warm ions in electron-positron-ion plasmas  

SciTech Connect

The nonlinear amplitude modulation of ion acoustic wave is studied in the presence of warm ions in unmagnetized electron-positron-ion plasmas. The Krylov-Bogoliubov-Mitropolsky (KBM) method is used to derive the nonlinear Schroedinger equation. The dispersive and nonlinear coefficients are obtained which depends on the ion temperature and positron density in electron-positron-ion plasmas. The modulationally stable and unstable regions are studied numerically for a wide range of wave number. It is found that both ion temperature and positron density play a significant role in the formation of bright and dark envelope solitons in electron-positron-ion plasmas.

Mahmood, S. [Theoretical Plasma Physics Division, PINSTECH, P.O. Nilore, Islamabad 44000 (Pakistan); Department of Physics and Applied Mathematics, PIEAS, P.O. Nilore, Islamabad 44000 (Pakistan); Siddiqui, Sadiya [Department of Physics and Applied Mathematics, PIEAS, P.O. Nilore, Islamabad 44000 (Pakistan); Jehan, Nusrat [Pakistan Atomic Energy Commission, P.O. Box 1114, Islamabad 44000 (Pakistan)

2011-05-15T23:59:59.000Z

196

Dynamics of the ion-ion acoustic instability in the thermalization of ion beams  

SciTech Connect

Particle simulation using a nonlinear adiabatic electron response with two streaming ion species and nonlinear theory are used to study the collisionless thermalization of ion beams in a hot electron plasma. The slow beam or subsonic regime is investigated and the criterion for the transition from predominantly light ion to predominantly heavy ion heating is developed. Long-lived ion hole structures a-re observed in the final state.

Han, J.H.; Horton, W. (Texas Univ., Austin, TX (United States). Inst. for Fusion Studies); Leboeuf, J.N. (Oak Ridge National Lab., TN (United States))

1992-07-01T23:59:59.000Z

197

Photodetachment of relativistic ions  

Science Conference Proceedings (OSTI)

A series of fundamental laser ion beam experiments has been made feasible by the high-quality, relativistic (..beta.. = 0.842) H/sup -/ ion beam available at the Clinton P. Anderson Meson Physics Facility (LAMPF). The relatavistic Doppler shift of the light from an ordinary ultraviolet laser provides what is, in effect, a continuously tunable vacuum-ultraviolet laser in the rest frame of the moving ions. The Lorentz transformation of a modest laboratory magnetic field provides an electric field of several megavolts/centimeter. The latest results of photo-detachment work with H/sup -/ beams and our spectroscopic work with H/sup 0/ beams are presented. Plans for future work are discussed.

Donahue, J.B.; Gram, P.A.M.; Hamm, M.E.; Hamm, R.W.; Bryant, H.C.; Butterfield, K.B.; Clark, D.A.; Frost, C.A.; Smith, W.W.

1980-01-01T23:59:59.000Z

198

Negative ion source  

DOE Patents (OSTI)

An ionization vessel is divided into an ionizing zone and an extraction zone by a magnetic filter. The magnetic filter prevents high-energy electrons from crossing from the ionizing zone to the extraction zone. A small positive voltage impressed on a plasma grid, located adjacent an extraction grid, positively biases the plasma in the extraction zone to thereby prevent positive ions from migrating from the ionizing zone to the extraction zone. Low-energy electrons, which would ordinarily be dragged by the positive ions into the extraction zone, are thereby prevented from being present in the extraction zone and being extracted along with negative ions by the extraction grid. Additional electrons are suppressed from the output flux using ExB drift provided by permanent magnets and the extractor grid electrical field. 14 figs.

Leung, K.N.; Ehlers, K.W.

1984-12-04T23:59:59.000Z

199

Negative ion source  

DOE Patents (OSTI)

An ionization vessel is divided into an ionizing zone and an extraction zone by a magnetic filter. The magnetic filter prevents high-energy electrons from crossing from the ionizing zone to the extraction zone. A small positive voltage impressed on a plasma grid, located adjacent an extraction grid, positively biases the plasma in the extraction zone to thereby prevent positive ions from migrating from the ionizing zone to the extraction zone. Low-energy electrons, which would ordinarily be dragged by the positive ions into the extraction zone, are thereby prevented from being present in the extraction zone and being extracted along with negative ions by the extraction grid. Additional electrons are suppressed from the output flux using ExB drift provided by permanent magnets and the extractor grid electrical field.

Leung, Ka-Ngo (Hercules, CA); Ehlers, Kenneth W. (Alamo, CA)

1984-01-01T23:59:59.000Z

200

Negative ion source  

DOE Patents (OSTI)

An ionization vessel is divided into an ionizing zone and an extraction zone by a magnetic filter. The magnetic filter prevents high-energy electrons from crossing from the ionizing zone to the extraction zone. A small positive voltage impressed on a plasma grid, located adjacent an extraction grid, positively biases the plasma in the extraction zone to thereby prevent positive ions from migrating from the ionizing zone to the extraction zone. Low-energy electrons, which would ordinarily be dragged by the positive ions into the extraction zone, are thereby prevented from being present in the extraction zone and being extracted along with negative ions by the extraction grid. Additional electrons are suppressed from the output flux using ExB drift provided by permanent magnets and the extractor grid electrical field.

Leung, K.N.; Ehlers, K.W.

1982-08-06T23:59:59.000Z

Note: This page contains sample records for the topic "oxygen ions miec" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Asymmetric ion trap  

DOE Patents (OSTI)

An ion trap having two end cap electrodes disposed asymmetrically about a center of a ring electrode. The inner surface of the end cap electrodes are conformed to an asymmetric pair of equipotential lines of the harmonic formed by the application of voltages to the electrodes. The asymmetry of the end cap electrodes allows ejection of charged species through the closer of the two electrodes which in turn allows for simultaneously detecting anions and cations expelled from the ion trap through the use of two detectors charged with opposite polarity.

Barlow, Stephan E. (Richland, WA); Alexander, Michael L. (Richland, WA); Follansbee, James C. (Pasco, WA)

1997-01-01T23:59:59.000Z

202

(Selective carbon oxygen bond scission during reactions of oxygenates on single crystal catalysts)  

SciTech Connect

We have discovered that the carbon-oxygen bond in methanol can be selectively broken if the surface structure of the platinum catalyst is appropriately tailored. The objective of this project is to determine if variations in surface structure allow one to selectively break C-O and C-H bonds. The decomposition of a wide range of oxygenates on several carefully chosen faces of group VIII metals will be examined to see when C-O bond scission occurs and what new chemistry we can find on stepped surfaces.

1992-01-01T23:59:59.000Z

203

[Selective carbon oxygen bond scission during reactions of oxygenates on single crystal catalysts]. Progress report  

SciTech Connect

We have discovered that the carbon-oxygen bond in methanol can be selectively broken if the surface structure of the platinum catalyst is appropriately tailored. The objective of this project is to determine if variations in surface structure allow one to selectively break C-O and C-H bonds. The decomposition of a wide range of oxygenates on several carefully chosen faces of group VIII metals will be examined to see when C-O bond scission occurs and what new chemistry we can find on stepped surfaces.

1992-08-01T23:59:59.000Z

204

Heavy ion fusion--Using heavy ions to make electricity  

E-Print Network (OSTI)

in Proc. of the Inertial Fusion Science and ApplicationsP. Abbott, P. F. Peterson, Fusion Science and Technology 44March 15–20, 2004 Heavy Ion Fusion– Using Heavy Ions to Make

Celata, C.M.

2004-01-01T23:59:59.000Z

205

Oxygen stabilized zirconium-vanadium-iron alloy  

SciTech Connect

An oxygen stabilized intermetallic compound having the formula (Zr.sub.1-x Ti.sub.x).sub.2-u (V.sub.1-y Fe.sub.y)O.sub.z where x=0.0 to 0.9, y=0.01 to 0.9, z=0.25 to 0.5 and u=0 to 1. The compound is capable of reversibly sorbing hydrogen at temperatures from -196.degree. C. to 200.degree. C. at pressures down to 10.sup.-6 torr. The compound is suitable for use as a hydrogen getter in low pressure, high temperature applications such as magnetic confinement fusion devices.

Mendelsohn, Marshall H. (Woodridge, IL); Gruen, Dieter M. (Downers Grove, IL)

1982-01-01T23:59:59.000Z

206

Ion polarization in the MEIC figure-8 ion collider ring  

SciTech Connect

The nuclear physics program envisaged at the Medium-energy Electron-Ion Collider (MEIC) currently being developed at the Jefferson Lab calls for collisions of 3-11 GeV/c longitudinally polarized electrons and 20-100 GeV/c, in equivalent proton momentum, longitudinally/ transversely polarized protons/ deuterons/ light ions. We present a scheme that provides the required ion polarization arrangement in the MEIC's ion collider ring.

V.S. Morozov, Ya.S. Derbenev, Y. Zhang, P. Chevtsov, A.M. Kondratenko, M.A. Kondratenko, Yu.N. Filatov

2012-07-01T23:59:59.000Z

207

Lithium ion conducting electrolytes  

DOE Patents (OSTI)

The present invention relates generally to highly conductive alkali-metal ion non-crystalline electrolyte systems, and more particularly to novel and unique molten (liquid), rubbery, and solid electrolyte systems which are especially well suited for use with high current density electrolytic cells such as primary and secondary batteries.

Angell, Charles Austen (Mesa, AZ); Liu, Changle (Midland, MI); Xu, Kang (Montgomery Village, MD); Skotheim, Terje A. (Tucson, AZ)

1999-01-01T23:59:59.000Z

208

ION PRODUCING MECHANISM  

DOE Patents (OSTI)

A calutron ion source is described which masks the ends of the arc to provide a more stable beam from the middle portion. The masking is effected by milling the arc slit in a single sheet of material which is secured to the open face of the arc block. (T.R.H.)

Oppenheimer, F.F.

1959-06-01T23:59:59.000Z

209

Solenoid transport for heavy ion fusion  

E-Print Network (OSTI)

Transport for Heavy Ion Fusion* Edward Lee** LawrenceHm Heavy Ion Inertial Fusion Abstract Solenoid transport ofseveral stages of a heavy ion fusion driver. In general this

Lee, Edward

2004-01-01T23:59:59.000Z

210

Ion-beam-driven resonant ion cyclotron instability  

SciTech Connect

The resonant ion-beam-driven electrostatic ion cyclotron instability is identified. Measured dispersion relation and onset vs. beam energy and density agree with numerical calculations based on a theory which includes beam acoustic terms. After amplitude saturation, velocity space diffusion of the beam ions is observed. (auth)

Hendel, H.W.; Yamada, M.; Seiler, S.W.; Ikezi, H.

1975-11-01T23:59:59.000Z

211

Ion Runaway in Lightning Discharges  

E-Print Network (OSTI)

Runaway ions can be produced in plasmas with large electric fields, where the accelerating electric force is augmented by the low mean ionic charge due to the imbalance between the number of electrons and ions. Here we ...

Landreman, Matt

212

RHIC | Electron-Ion Collider  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron-Ion Collider A breakthrough particle accelerator could collide electrons with heavy ions or protons at nearly the speed of light to create rapid-fire, high-resolution...

213

Oxygen Handling and Cooling Options in High Temperature Electrolysis Plants  

DOE Green Energy (OSTI)

Idaho National Laboratory is working on a project to generate hydrogen by high temperature electrolysis (HTE). In such an HTE system, safety precautions need to be taken to handle high temperature oxygen at ~830°C. This report is aimed at addressing oxygen handling in a HTE plant.. Though oxygen itself is not flammable, most engineering material, including many gases and liquids, will burn in the presence of oxygen under some favorable physicochemical conditions. At present, an absolute set of rules does not exist that can cover all aspects of oxygen system design, material selection, and operating practices to avoid subtle hazards related to oxygen. Because most materials, including metals, will burn in an oxygen-enriched environment, hazards are always present when using oxygen. Most materials will ignite in an oxygen-enriched environment at a temperature lower than that in air, and once ignited, combustion rates are greater in the oxygen-enriched environment. Even many metals, if ignited, burn violently in an oxygen-enriched environment. However, these hazards do not preclude the operations and systems involving oxygen. Oxygen can be safely handled and used if all the materials in a system are not flammable in the end-use environment or if ignition sources are identified and controlled. In fact, the incidence of oxygen system fires is reported to be low with a probability of about one in a million. This report is a practical guideline and tutorial for the safe operation and handling of gaseous oxygen in high temperature electrolysis system. The intent is to provide safe, practical guidance that permits the accomplishment of experimental operations at INL, while being restrictive enough to prevent personnel endangerment and to provide reasonable facility protection. Adequate guidelines are provided to govern various aspects of oxygen handling associated with high temperature electrolysis system to generate hydrogen. The intent here is to present acceptable oxygen standards and practices for minimum safety requirements. A summary of operational hazards, along with oxygen safety and emergency procedures, are provided.

Manohar S. Sohal; J. Stephen Herring

2008-07-01T23:59:59.000Z

214

Dilute Oxygen Combustion Phase I Final Report  

Science Conference Proceedings (OSTI)

A novel burner, in which fuel (natural gas) and oxidant (oxygen or air) are separately injected into a furnace, shows promise for achieving very low nitrogen oxide(s) (NOx) emissions for commercial furnace applications. The dilute oxygen combustion (DOC) burner achieves very low NOx through in-furnace dilution of the oxidant stream prior to combustion, resulting in low flame temperatures, thus inhibiting thermal NOx production. The results of a fundamental and applied research effort on the development of the DOC burner are presented. In addition, the results of a market survey detailing the potential commercial impact of the DOC system are disclosed. The fundamental aspects of the burner development project involved examining the flame characteristics of a natural gas turbulent jet in a high-temperature (~1366 K) oxidant (7-27% O2 vol. wet). Specifically, the mass entrainment rate, the flame lift-off height, the velocity field and major species field of the jet were evaluated as a function of surrounding-gas temperature and composition. The measured entrainment rate of the fuel jet decreased with increasing oxygen content in the surrounding high-temperature oxidant, and was well represented by the d+ scaling correlation found in the literature. The measured flame lift-off height decreased with increasing oxygen content and increasing temperature of the surrounding gas. An increase in surrounding-gas oxygen content and/or temperature inhibited the velocity decay within the jet periphery as a function of axial distance as compared to isothermal turbulent jets. However, the velocity measurements were only broadly represented by the d+ scaling correlation. Several DOC burner configurations were tested in a laboratory-scale furnace at a nominal firing rate of 185 kW (~0.63 MMBtu/h). The flue gas composition was recorded as a function of furnace nitrogen content, furnace temperature, burner geometric arrangement, firing rate, and fuel injection velocity. NOx emissions increased with increasing furnace nitrogen content and furnace temperature, but remained relatively insensitive to variations in fuel injection velocity and firing rate. NOx emissions below 5-10-3 g/MJ (10 ppm-air equivalent at 3% O2 dry) were obtained for furnace temperatures below 1533 K (2300°F) and furnace nitrogen levels between 1 and 40%. CO emissions were typically low (DOC burner arrangements were ascertained through furnace pressure measurements, wit6h increased stability occurring as furnace temperature increased and as the separation distance between fuel and oxidant inputs decreased. Based on current market conditions, oxy-fuel conversion of batch steel reheat furnaces with a DOC burner is justified on the basis of lower utility costs alone. However, conversion of continuous steel reheat furnaces, which are responsible for most steel production, required additional economic incentives, such as further fuel savings, increased furnace productivity, or emission credits.

Ryan, H.M.; Riley, M.F.; Kobayashi, H.

1997-10-31T23:59:59.000Z

215

Dilute Oxygen Combustion Phase I Final Report  

SciTech Connect

A novel burner, in which fuel (natural gas) and oxidant (oxygen or air) are separately injected into a furnace, shows promise for achieving very low nitrogen oxide(s) (NOx) emissions for commercial furnace applications. The dilute oxygen combustion (DOC) burner achieves very low NOx through in-furnace dilution of the oxidant stream prior to combustion, resulting in low flame temperatures, thus inhibiting thermal NOx production. The results of a fundamental and applied research effort on the development of the DOC burner are presented. In addition, the results of a market survey detailing the potential commercial impact of the DOC system are disclosed. The fundamental aspects of the burner development project involved examining the flame characteristics of a natural gas turbulent jet in a high-temperature (~1366 K) oxidant (7-27% O2 vol. wet). Specifically, the mass entrainment rate, the flame lift-off height, the velocity field and major species field of the jet were evaluated as a function of surrounding-gas temperature and composition. The measured entrainment rate of the fuel jet decreased with increasing oxygen content in the surrounding high-temperature oxidant, and was well represented by the d+ scaling correlation found in the literature. The measured flame lift-off height decreased with increasing oxygen content and increasing temperature of the surrounding gas. An increase in surrounding-gas oxygen content and/or temperature inhibited the velocity decay within the jet periphery as a function of axial distance as compared to isothermal turbulent jets. However, the velocity measurements were only broadly represented by the d+ scaling correlation. Several DOC burner configurations were tested in a laboratory-scale furnace at a nominal firing rate of 185 kW (~0.63 MMBtu/h). The flue gas composition was recorded as a function of furnace nitrogen content, furnace temperature, burner geometric arrangement, firing rate, and fuel injection velocity. NOx emissions increased with increasing furnace nitrogen content and furnace temperature, but remained relatively insensitive to variations in fuel injection velocity and firing rate. NOx emissions below 5-10-3 g/MJ (10 ppm-air equivalent at 3% O2 dry) were obtained for furnace temperatures below 1533 K (2300°F) and furnace nitrogen levels between 1 and 40%. CO emissions were typically low (<35 ppm). Detailed in-furnace species measurements revealed the importance of the interior furnace circulation patterns, as influenced by fuel and oxidant injection schemes, on pollutant emissions. The combustion stability traits of several DOC burner arrangements were ascertained through furnace pressure measurements, wit6h increased stability occurring as furnace temperature increased and as the separation distance between fuel and oxidant inputs decreased. Based on current market conditions, oxy-fuel conversion of batch steel reheat furnaces with a DOC burner is justified on the basis of lower utility costs alone. However, conversion of continuous steel reheat furnaces, which are responsible for most steel production, required additional economic incentives, such as further fuel savings, increased furnace productivity, or emission credits.

Ryan, H.M.; Riley, M.F.; Kobayashi, H.

1997-10-31T23:59:59.000Z

216

Dilute Oxygen Combustion Phase 2 Final Report  

SciTech Connect

A novel burner, in which fuel (natural gas) and oxidant (oxygen or air) are separately injected into a furnace, shows promise for achieving very low nitrogen oxide(s) (NOx) emissions for commercial furnace applications. The dilute oxygen combustion (DOC) burner achieves very low NOx through in-furnace dilution of the oxidant stream prior to combustion, resulting in low flame temperatures, thus inhibiting thermal NOx production. The results of a fundamental and applied research effort on the development of the DOC burner are presented. In addition, the results of a market survey detailing the potential commercial impact of the DOC system are disclosed. The fundamental aspects of the burner development project involved examining the flame characteristics of a natural gas turbulent jet in a high-temperature (~1366 K) oxidant (7-27% O2 vol. wet). Specifically, the mass entrainment rate, the flame lift-off height, the velocity field and major species field of the jet were evaluated as a function of surrounding-gas temperature and composition. The measured entrainment rate of the fuel jet decreased with increasing oxygen content in the surrounding high-temperature oxidant, and was well represented by the d+ scaling correlation found in the literature. The measured flame lift-off height decreased with increasing oxygen content and increasing temperature of the surrounding gas. An increase in surrounding-gas oxygen content and/or temperature inhibited the velocity decay within the jet periphery as a function of axial distance as compared to isothermal turbulent jets. However, the velocity measurements were only broadly represented by the d+ scaling correlation. Several DOC burner configurations were tested in a laboratory-scale furnace at a nominal firing rate of 185 kW (~0.63 MMBtu/h). The flue gas composition was recorded as a function of furnace nitrogen content, furnace temperature, burner geometric arrangement, firing rate, and fuel injection velocity. NOx emissions increased with increasing furnace nitrogen content and furnace temperature, but remained relatively insensitive to variations in fuel injection velocity and firing rate. NOx emissions below 5-10-3 g/MJ (10 ppm-air equivalent at 3% O2 dry) were obtained for furnace temperatures below 1533 K (2300?F) and furnace nitrogen levels between 1 and 40%. CO emissions were typically low (<35 ppm). Detailed in-furnace species measurements revealed the importance of the interior furnace circulation patterns, as influenced by fuel and oxidant injection schemes, on pollutant emissions. The combustion stability traits of several DOC burner arrangements were ascertained through furnace pressure measurements, wit6h increased stability occurring as furnace temperature increased and as the separation distance between fuel and oxidant inputs decreased. Based on current market conditions, oxy-fuel conversion of batch steel reheat furnaces with a DOC burner is justified on the basis of lower utility costs alone. However, conversion of continuous steel reheat furnaces, which are responsible for most steel production, required additional economic incentives, such as further fuel savings, increased furnace productivity, or emission credits.

Ryan, H.M.; Riley, M.F.; Kobayashi, H.

2005-09-30T23:59:59.000Z

217

Dilute Oxygen Combustion Phase 2 Final Report  

Science Conference Proceedings (OSTI)

A novel burner, in which fuel (natural gas) and oxidant (oxygen or air) are separately injected into a furnace, shows promise for achieving very low nitrogen oxide(s) (NOx) emissions for commercial furnace applications. The dilute oxygen combustion (DOC) burner achieves very low NOx through in-furnace dilution of the oxidant stream prior to combustion, resulting in low flame temperatures, thus inhibiting thermal NOx production. The results of a fundamental and applied research effort on the development of the DOC burner are presented. In addition, the results of a market survey detailing the potential commercial impact of the DOC system are disclosed. The fundamental aspects of the burner development project involved examining the flame characteristics of a natural gas turbulent jet in a high-temperature (~1366 K) oxidant (7-27% O2 vol. wet). Specifically, the mass entrainment rate, the flame lift-off height, the velocity field and major species field of the jet were evaluated as a function of surrounding-gas temperature and composition. The measured entrainment rate of the fuel jet decreased with increasing oxygen content in the surrounding high-temperature oxidant, and was well represented by the d+ scaling correlation found in the literature. The measured flame lift-off height decreased with increasing oxygen content and increasing temperature of the surrounding gas. An increase in surrounding-gas oxygen content and/or temperature inhibited the velocity decay within the jet periphery as a function of axial distance as compared to isothermal turbulent jets. However, the velocity measurements were only broadly represented by the d+ scaling correlation. Several DOC burner configurations were tested in a laboratory-scale furnace at a nominal firing rate of 185 kW (~0.63 MMBtu/h). The flue gas composition was recorded as a function of furnace nitrogen content, furnace temperature, burner geometric arrangement, firing rate, and fuel injection velocity. NOx emissions increased with increasing furnace nitrogen content and furnace temperature, but remained relatively insensitive to variations in fuel injection velocity and firing rate. NOx emissions below 5-10-3 g/MJ (10 ppm-air equivalent at 3% O2 dry) were obtained for furnace temperatures below 1533 K (2300?F) and furnace nitrogen levels between 1 and 40%. CO emissions were typically low (DOC burner arrangements were ascertained through furnace pressure measurements, wit6h increased stability occurring as furnace temperature increased and as the separation distance between fuel and oxidant inputs decreased. Based on current market conditions, oxy-fuel conversion of batch steel reheat furnaces with a DOC burner is justified on the basis of lower utility costs alone. However, conversion of continuous steel reheat furnaces, which are responsible for most steel production, required additional economic incentives, such as further fuel savings, increased furnace productivity, or emission credits.

Ryan, H.M.; Riley, M.F.; Kobayashi, H.

2005-09-30T23:59:59.000Z

218

Efficiency evaluation of oxygen enrichment in energy conversion processes  

SciTech Connect

The extent to which energy conversion efficiencies can be increased by using oxygen or oxygen-enriched air for combustion was studied. Combustion of most fuels with oxygen instead of air was found to have five advantages: increases combustion temperature and efficiency, improves heat transfer at high temperatures, reduces nitrous oxide emissions, permits a high ration of exhaust gas recirculation and allows combustion of certain materials not combustible in air. The same advantages, although to a lesser degree, are apparent with oxygen-enriched air. The cost-effectiveness of the process must necessarily be improved by about 10% when using oxygen instead of air before such use could become justifiable on purely economic terms. Although such a modest increase appears to be attainable in real situations, this study ascertained that it is not possible to generally assess the economic gains. Rather, each case requires its own evaluation. For certain processes industry has already proven that the use of oxygen leads to more efficient plant operation. Several ideas for essentially new applications are described. Specifically, when oxygen is used with exhaust gas recirculation in external or internal combustion engines. It appears also that the advantages of pulse combustion can be amplified further if oxygen is used. When burning wet fuels with oxygen, direct steam generation becomes possible. Oxygen combustion could also improve processes for in situ gasification of coals, oil shales, peats, and other wet fuels. Enhanced oil recovery by fire flooding methods might also become more effective if oxygen is used. The cold energy contained in liquid oxygen can be substantially recovered in the low end of certain thermodynamic cycles. Further efforts to develop certain schemes for using oxygen for combustion appear to be justified from both the technical and economic viewpoints.

Bomelburg, H.J.

1983-12-01T23:59:59.000Z

219

Status of Trapped-Ion Physics in Europe  

Science Conference Proceedings (OSTI)

... Innsbruck molecular ions spectroscopy K. Wendt Mainz heavy ions laser ion sources ... K. Wendt Mainz heavy ions laser ion sources W. Quint ...

2011-03-01T23:59:59.000Z

220

Ion temperature via laser scattering on ion Bernstein waves  

DOE Green Energy (OSTI)

Hydrogen ion temperature has been measured in a warm toroidal plasma with externally launched ion Bernstein waves detected by heterodyne CO/sub 2/ laser scattering. Radial scanning of the laser beam allows precise determination of k/sub perpendicular to/ for the finite ion Larmor radius wave (..omega.. approx. less than or equal to 2..cap omega../sub i/). Knowledge of the magnetic field strength and ion concentration then give a radially resolved ion temperature from the dispersion relation. Probe measurements and Doppler broadening of ArII 4806A give excellent agreement.

Wurden, G.A.; Ono, M.; Wong, K.L.

1981-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxygen ions miec" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Calibrating the DARHT Electron Spectrometer with Negative Ions  

DOE Green Energy (OSTI)

Negative ions of hydrogen and oxygen have been used to calibrate the DARHT electron spectrometer over the momentum range of 2 to 20 MeV/c. The calibration was performed on September 1, 3, and 8, 2004, and it is good to 0.5% absolute, provided that instrument alignment is carefully controlled. The momentum in MeV/c as a function of magnetic field (B in Gauss) and position in the detector plane (X in mm) is: P = (B-6.28)/(108.404-0.1935*X)

R. Trainham (STL), A. P. Tipton (LAO), and R. R. Bartech (LANL)

2005-11-01T23:59:59.000Z

222

Negative Decaborane Ion Beam from ITEP Bernas Ion Source  

SciTech Connect

A joint research and development effort focusing on the design of steady state, intense ion sources has been in progress for the past two and a half years with a couple of Russian institutions. The ultimate goal of the effort is to meet the two, energy extreme range needs of mega-electron-volt and 100's of electron-volt ion implanters. This endeavor has already resulted in record steady state output currents of higher charge state antimony and phosphorous ions to meet high-energy implantation requirements. For low energy ion implantation, R and D efforts have involved molecular ions and a novel plasmaless/gasless deceleration method. To date, 1 emA of positive decaborane ions were extracted at 10 keV and a smaller current of negative decaborane ions were also extracted. Though of scientific interest, negative decaborane ions did not attract interest from industry, since the semiconductor ion implant industry seems to have solved the wafer-charging problem. This paper describes conditions under which negative decaborane ions are formed and extracted from a Bernas ion source.

Petrenko, S. V.; Kuibeda, R. P.; Kulevoy, T. V.; Batalin, V. A.; Pershin, V. I.; Koslov, A. V.; Stasevich, Yu. B.; Koshelev, V. A. [Institute for Theoretical and Experimental Physics, Moscow, (Russian Federation); Hershcovitch, A.; Johnson, B. M. [Brookhaven National Laboratory, Upton, New York 11973 (United States); Oks, E. M.; Gushenets, V. I. [High Current Electronics Institute Russian Academy of Sciences, Tomsk, 634055 (Russian Federation); Poole, H. J. [PVI, Oxnard, California 93031-5023 (United States)

2007-08-10T23:59:59.000Z

223

Experimental Evaluation of a Negative Ion Source for a Heavy Ion Fusion Negative Ion Driver  

DOE Green Energy (OSTI)

Negative halogen ions have recently been proposed as a possible alternative to positive ions for heavy ion fusion drivers because electron accumulation would not be a problem in the accelerator, and if desired, the beams could be photo-detached to neutrals. To test the ability to make suitable quality beams, an experiment was conducted at Lawrence Berkeley National Laboratory using chlorine in an RF-driven ion source. Without introducing any cesium (which is required to enhance negative ion production in hydrogen ion sources) a negative chlorine current density of 45 mA/cm{sup 2} was obtained under the same conditions that gave 57 45 mA/cm{sup 2} of positive chlorine, suggesting the presence of nearly as many negative ions as positive ions in the plasma near the extraction plane. The negative ion spectrum was 99.5% atomic chlorine ions, with only 0.5% molecular chlorine, and essentially no impurities. Although this experiment did not incorporate the type of electron suppression technology that i s used in negative hydrogen beam extraction, the ratio of co-extracted electrons to Cl{sup -} was as low as 7 to 1, many times lower than the ratio of their mobilities, suggesting that few electrons are present in the near-extractor plasma. This, along with the near-equivalence of the positive and negative ion currents, suggests that the plasma in this region was mostly an ion-ion plasma. The negative chlorine current density was relatively insensitive to pressure, and scaled linearly with RF power. If this linear scaling continues to hold at higher RF powers, it should permit current densities of 100 45 mA/cm{sup 2}, sufficient for present heavy ion fusion injector concepts. The effective ion temperatures of the positive and negative ions appeared to be similar and relatively low for a plasma source.

L.R. Grisham, S.K. Hahto, S.T. Hahto, J.W. Kwan, and K.N. Leung

2004-06-16T23:59:59.000Z

224

Oxygen Atoms Display Novel Behavior on Common Catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

11, 2008 11, 2008 Oxygen Atoms Display Novel Behavior on Common Catalyst Like waltzing dancers, the two atoms of an oxygen molecule usually behave identically when they separate on the surface of a catalyst. However, new research from the Environmental Molecular Sciences Laboratory reveals that on a particular catalyst, the oxygen atoms act like a couple dancing the tango: one oxygen atom plants itself while the other shimmies away, probably with energy partially stolen from the stationary one. Scientists from EMSL and Pacific Northwest National Laboratory discovered this unanticipated behavior while studying how oxygen interacts with reduced titanium oxide, a popular catalyst and a model oxide. Their research began with a slice of titanium oxide crystal, oriented so that titanium and oxygen

225

Regenerable Mixed Copper-Iron-Inert Support Oxygen Carriers  

NLE Websites -- All DOE Office Websites (Extended Search)

Mixed Copper-Iron-Inert Support Oxygen Carriers Mixed Copper-Iron-Inert Support Oxygen Carriers for Solid Fuel Chemical Looping Combustion Process Contact NETL Technology Transfer Group techtransfer@netl.doe.gov December 2012 This patent-pending technology, "Regenerable Mixed Copper-Iron-Inert Support Oxygen Carriers for Solid Fuel Chemical Looping Combustion Process," provides a metal-oxide oxygen carrier for application in fuel combustion processes that use oxygen. This technology is available for licensing and/or further collaborative research with the U.S. Department of Energy's National Energy Technology Laboratory. Overview Patent Details U.S. Non-Provisional Patent Application No. 13/159,553; titled "Regenerable Mixed Copper-Iron-Inert Support Oxygen Carriers for Solid

226

InstructIons  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

InstructIons InstructIons for AccessIng fedconnect PostIngs The registration process requires multiple steps prior to submission, so please plan in advance as late applications will not be accepted. Note that for some applications, a Letter of Intent must be filed prior to the final deadline. To access the complete postings, follow the below steps: 1. Go to https://www.FedConnect.net/ 2. Click on "Search Public Opportunities" 3. Select "Reference Number" in the Search Criteria drop down box and then enter the Reference Number of the funding opportunity you are interested in (DE-FOA-XXXXXXX), followed by clicking the "Search" button 4. Click on the appropriate link after search results are displayed

227

Relativistic Heavy Ion Collider  

NLE Websites -- All DOE Office Websites (Extended Search)

Relativistic Heavy Ion Collider Relativistic Heavy Ion Collider managed for the U.S. Department of Energy by Brookhaven Science Associates, founded by Stony Brook University and Battelle. managed for the U.S. Department of Energy by Brookhaven Science Associates, a company founded by Stony Brook University and Battelle 07/07 Brookhaven National Laboratory Funded by the U.S. Department of Energy, Brookhaven National Laboratory is a multipurpose research institution located on a 5,300-acre site on Long Island, New York. Six Nobel Prize-winning discoveries have been made at Brookhaven Lab. The Laboratory operates large-scale scientific facilities and performs research in physics, chemistry, biology, medicine, applied science, and

228

Characterizing Heavy Ion  

NLE Websites -- All DOE Office Websites (Extended Search)

Heavy Ion Heavy Ion Reactions in the 1980's Is there Treasure at the end of the Rainbow? & What happens and how do different modes compete? John Schiffer One of the three research areas for ATLAS, as stated in a 1984 document to Congress: Are there some new marvelous symmetries, hidden in resonances in heavier nuclei, beyond 12 C+ 12 C and its immediate vicinity? (s.c. linac work, pre-ATLAS) Other attempts to chase the rainbow 180 o elastic scattering of 12 C on 40 Ca shows structure Fusion of 16 O on 40 Ca does not. In the end, it seemed that these structures were sometimes present in alpha-particle nuclei, but almost never in others. Some optimists, continued the pursuit. We also looked at the total fusion cross section in systems that showed resonances in scattering.

229

Lithium ion batteries with titania/graphene anodes  

DOE Patents (OSTI)

Lithium ion batteries having an anode comprising at least one graphene layer in electrical communication with titania to form a nanocomposite material, a cathode comprising a lithium olivine structure, and an electrolyte. The graphene layer has a carbon to oxygen ratio of between 15 to 1 and 500 to 1 and a surface area of between 400 and 2630 m.sup.2/g. The nanocomposite material has a specific capacity at least twice that of a titania material without graphene material at a charge/discharge rate greater than about 10 C. The olivine structure of the cathode of the lithium ion battery of the present invention is LiMPO.sub.4 where M is selected from the group consisting of Fe, Mn, Co, Ni and combinations thereof.

Liu, Jun; Choi, Daiwon; Yang, Zhenguo; Wang, Donghai; Graff, Gordon L; Nie, Zimin; Viswanathan, Vilayanur V; Zhang, Jason; Xu, Wu; Kim, Jin Yong

2013-05-28T23:59:59.000Z

230

Hydrogen (H2) Production by Oxygenic Phototrophs  

NLE Websites -- All DOE Office Websites (Extended Search)

Production by Oxygenic Phototrophs Eric L. Hegg Michigan State University Great Lakes Bioenergy Research Center Bioresour. Technol. 2011, 102, 8589-8604 Major Challenges to H 2 Photoproduction Biological Challenges * Poor efficiency of H 2 production * Poor heterologous expression of H 2 -forming enzymes * Low quantum yields * Competition for reducing equivalents; poor electron coupling * Sensitivity of H 2 -forming enzymes to O 2 M. Ghirardi, Abstract #1751, Honolulu PRiME 2012 Technical Challenges * Mixture of H 2 and O 2 ; H 2 separation and storage * CO 2 addition and overall reactor design Overcoming Low Efficiency: Improving ET * Eliminate or down-regulate pathways competing for ele * Production of organic acids * Formation of NADPH/carbon fixation

231

It's Elemental - Isotopes of the Element Oxygen  

NLE Websites -- All DOE Office Websites (Extended Search)

Nitrogen Nitrogen Previous Element (Nitrogen) The Periodic Table of Elements Next Element (Fluorine) Fluorine Isotopes of the Element Oxygen [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 16 99.757% STABLE 17 0.038% STABLE 18 0.205% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 12 1.139×10-21 seconds Proton Emission No Data Available 13 8.58 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 100.00% 14 70.620 seconds Electron Capture 100.00% 15 122.24 seconds Electron Capture 100.00% 16 STABLE - - 17 STABLE - - 18 STABLE - - 19 26.88 seconds Beta-minus Decay 100.00%

232

METHOD OF COMBINING HYDROGEN AND OXYGEN  

DOE Patents (OSTI)

A method is given for the catalytic recombination of radiolytic hydrogen and/or deulerium and oxygen resulting from the subjection or an aqueous thorium oxide or thorium oxide-uranium oxide slurry to ionizing radiation. An improved catalyst is prepared by providing paliadium nitrate in an aqueous thorium oxide sol at a concentration of at least 0.05 grams per gram of thorium oxide and contacting the sol with gaseous hydrogen to form flocculated solids. The solids are then recovered and added to the slurry to provide a palladium concentration of 100 to 1000 parts per million. Recombination is effected by the calalyst at a rate sufficient to support high nuclear reactor power densities. (AEC)

McBride, J.P.

1962-02-27T23:59:59.000Z

233

Modeling the Oxygen - Hydrazine Reaction in PWR Secondary Feedwater  

Science Conference Proceedings (OSTI)

The proper control of oxygen in primary water reactor (PWR) secondary feedwater, using hydrazine, has been an enduring issue. The requirements on the oxygen concentration are partly opposing. Fully deoxygenated conditions in the steam generators are essential to minimize corrosion. On the other hand, some oxygen in the feedwater counteracts corrosion of carbon steel surfaces and the transport of corrosion products to the steam generators. Optimization is, therefore, essential. This work applies the frame...

2008-06-26T23:59:59.000Z

234

Enhanced Ion Utilization Efficiency Using an ...  

(IMS), such as field asymmetric ion mobility spectrometry1 and ... storage of ions in a significantly larger volume at operating

235

Negative ion source  

DOE Patents (OSTI)

A method and apparatus for providing a negative ion source accelerates electrons away from a hot filament electron emitter into a region of crossed electric and magnetic fields arranged in a magnetron configuration. During a portion of the resulting cycloidal path, the electron velocity is reduced below its initial value. The electron accelerates as it leaves the surface at a rate of only slightly less than if there were no magnetic field, thereby preventing a charge buildup at the surface of the emitter. As the electron traverses the cycloid, it is decelerated during the second, third, and fourth quadrants, then reeccelerated as it approaches the end of the fourth quadrant to regain its original velocity. The minimum velocity occurs during the fourth quadrant, and corresponds to an electron temperature of 200.degree. to 500.degree. for the electric and magnetic fields commonly encountered in the ion sources of magnetic sector mass spectrometers. An ion source using the above-described thermalized electrons is also disclosed.

Delmore, James E. (Idaho Falls, ID)

1987-01-01T23:59:59.000Z

236

Improved negative ion source  

DOE Patents (OSTI)

A method and apparatus for providing a negative ion source accelerates electrons away from a hot filament electron emitter into a region of crossed electric and magnetic fields arranged in a magnetron configuration. During a portion of the resulting cycloidal path, the electron velocity is reduced below its initial value. The electron accelerates as it leaves the surface at a rate of only slightly less than if there were no magnetic field, thereby preventing a charge buildup at the surface of the emitter. As the electron traverses the cycloid, it is decelerated during the second, third, and fourth quadrants, then reaccelerated as it approaches the end of the fourth quadrant to regain its original velocity. The minimum velocity occurs during the fourth quadrant, and corresponds to an electron temperature of 200 to 500/sup 0/C for the electric and magnetic fields commonly encountered in the ion sources of magnetic sector mass spectrometers. An ion source using the above-described thermalized electrons is also disclosed.

Delmore, J.E.

1984-05-01T23:59:59.000Z

237

Functionally Graded Cathodes for Solid Oxide Fuel Cells  

DOE Green Energy (OSTI)

This DOE SECA project focused on both experimental and theoretical understanding of oxygen reduction processes in a porous mixed-conducting cathode in a solid oxide fuel cell (SOFC). Elucidation of the detailed oxygen reduction mechanism, especially the rate-limiting step(s), is critical to the development of low-temperature SOFCs (400 C to 700 C) and to cost reduction since much less expensive materials may be used for cell components. However, cell performance at low temperatures is limited primarily by the interfacial polarization resistances, specifically by those associated with oxygen reduction at the cathode, including transport of oxygen gas through the porous cathode, the adsorption of oxygen onto the cathode surface, the reduction and dissociation of the oxygen molecule (O{sub 2}) into the oxygen ion (O{sup 2-}), and the incorporation of the oxygen ion into the electrolyte. In order to most effectively enhance the performance of the cathode at low temperatures, we must understand the mechanism and kinetics of the elementary processes at the interfaces. Under the support of this DOE SECA project, our accomplishments included: (1) Experimental determination of the rate-limiting step in the oxygen reduction mechanism at the cathode using in situ FTIR and Raman spectroscopy, including surface- and tip-enhanced Raman spectroscopy (SERS and TERS). (2) Fabrication and testing of micro-patterned cathodes to compare the relative activity of the TPB to the rest of the cathode surface. (3) Construction of a mathematical model to predict cathode performance based on different geometries and microstructures and analyze the kinetics of oxygen-reduction reactions occurring at charged mixed ionic-electronic conductors (MIECs) using two-dimensional finite volume models with ab initio calculations. (4) Fabrication of cathodes that are graded in composition and microstructure to generate large amounts of active surface area near the cathode/electrolyte interface using a novel combustion chemical vapor deposition (CCVD) technique. (5) Application of advanced quantum chemical calculations to interpret measured spectroscopic information, as well as to guide design of high efficient cathode materials.

YongMan Choi; Meilin Liu

2006-09-30T23:59:59.000Z

238

Dilute Oxygen Combustion - Phase 3 Report  

Science Conference Proceedings (OSTI)

Dilute Oxygen Combustion (DOC) burners have been successfully installed and operated in the reheat furnace at Auburn Steel Co., Inc., Auburn, NY, under Phase 3 of the Dilute Oxygen Combustion project. Two new preheat zones were created employing a total of eight 6.5 MMBtu/hr capacity burners. The preheat zones provide a 30 percent increase in maximum furnace production rate, from 75 tph to 100 tph. The fuel rate is essentially unchanged, with the fuel savings expected from oxy-fuel combustion being offset by higher flue gas temperatures. When allowance is made for the high nitrogen level and high gas phase temperature in the furnace, measured NOx emissions are in line with laboratory data on DOC burners developed in Phase 1 of the project. Burner performance has been good, and there have been no operating or maintenance problems. The DOC system continues to be used as part of Auburn Steel's standard reheat furnace practice. High gas phase temperature is a result of the high firing density needed to achieve high production rates, and little opportunity exists for improvement in that area. However, fuel and NOx performance can be improved by further conversion on furnace zones to DOC burners, which will lower furnace nitrogen levels. Major obstacles are cost and concern about increased formation of oxide scale on the steel. Oxide scale formation may be enhanced by exposure of the steel to higher concentrations of oxidizing gas components (primarily products of combustion) in the higher temperature zones of the furnace. Phase 4 of the DOC project will examine the rate of oxide scale formation in these higher temperature zones and develop countermeasures that will allow DOC burners to be used successfully in these furnace zones.

Riley, Michael F.

2000-05-31T23:59:59.000Z

239

Dilute Oxygen Combustion Phase 3 Final Report  

SciTech Connect

Dilute Oxygen Combustion (DOC) burners have been successfully installed and operated in the reheat furnace at Auburn Steel Co., Inc., Auburn, NY, under Phase 3 of the Dilute Oxygen Combustion project. Two new preheat zones were created employing a total of eight 6.5 MMBtu/hr capacity burners. The preheat zones provide a 30 percent increase in maximum furnace production rate, from 75 tph to 100 tph. The fuel rate is essentially unchanged, with the fuel savings expected from oxy-fuel combustion being offset by higher flue gas temperatures. When allowance is made for the high nitrogen level and high gas phase temperature in the furnace, measured NOx emissions are in line with laboratory data on DOC burners developed in Phase 1 of the project. Burner performance has been good and there have been no operating or maintenance problems. The DOC system continues to be used as part of Auburn Steel?s standard reheat furnace practice. High gas phase temperature is a result of the high firing density needed to achieve high production rates, and little opportunity exists for improvement in that area. However, fuel and NOx performance can be improved by further conversion of furnace zones to DOC burners, which will lower furnace nitrogen levels. Major obstacles are cost and concern about increased formation of oxide scale on the steel. Oxide scale formation may be enhanced by exposure of the steel to higher concentrations of oxidizing gas components (primarily products of combustion) in the higher temperature zones of the furnace. Phase 4 of the DOC project will examine the rate of oxide scale formation in these higher temperature zones and develop countermeasures that will allow DOC burners to be used successfully in these furnace zones.

Riley, M.F.; Ryan, H.M.

2000-05-31T23:59:59.000Z

240

LANL: Ion Beam Materials Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Ion Beam Materials Laboratory (IBML) is a Los Ion Beam Materials Laboratory (IBML) is a Los Alamos National Laboratory resource devoted to materi- als research through the use of ion beams. Current major research areas include surface characterization through ion beam analysis techniques, surface modification and materials synthesis through ion implantation technology, and radiation damage stud- ies in gases, liquids, and solids. The laboratory's core is a 3.2 MV tandem ion accelerator and a 200 kV ion implanter together with several beam lines. Attached to each beam line is a series of experimental stations that support various research programs. The operation of IBML and its interactions with users are organized around core facilities and experimental stations. The IBML provides and operates the core facilities as well as supports

Note: This page contains sample records for the topic "oxygen ions miec" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Oxygen Isotope Evidence For Past And Present Hydrothermal Regimes...  

Open Energy Info (EERE)

oxygen isotope compositions of cores and cuttings from Long Valley exploration wells show that the Bishop Tuff has been an important reservoir for both fossil and active...

242

Causes for the Ferromagnetism in Oxygen-Deficient Perovskite ...  

Science Conference Proceedings (OSTI)

Symposium, Multifunctional Oxides. Presentation Title, Causes for the Ferromagnetism in Oxygen-Deficient Perovskite Sr3YCo4O10+d and the Ultrafast Redox ...

243

Molecular oxygen sensors based on photoluminescent silica aerogels  

NLE Websites -- All DOE Office Websites (Extended Search)

Molecular oxygen sensors based on photoluminescent silica aerogels Molecular oxygen sensors based on photoluminescent silica aerogels Title Molecular oxygen sensors based on photoluminescent silica aerogels Publication Type Journal Article Year of Publication 1998 Authors Ayers, Michael R., and Arlon J. Hunt Journal Journal of Non-Crystalline Solids Volume 225 Pagination 343-347 Keywords aerogel, air pressure, oxygen concentration, oxygen molecules, photoluminescence Abstract Photoluminescent silica aerogel acts as the active element of an optical sensor for molecular oxygen. The luminescent aerogel is prepared by the action of energized reducing gases on a standard silica aerogel. Intensity of aerogel photoluminescence decreases as the collision frequency between oxygen molecules and the luminescent carriers in the aerogel matrix increases. This behavior is a characteristic of many photoluminescent materials and arises from a transfer of energy from the aerogel to surrounding oxygen molecules. A sensor for oxygen concentration or air pressure can therefore be simply constructed utilizing an ultraviolet source for excitation and a suitable detector for the emitted visible signal. Stern-Volmer quenching constants for the aerogel sensing element are 1.55×10-2 Torr-1 for hydrophilic aerogel and 2.4×10-3 Torr-1 for hydrophobic aerogel.

244

Optimization of Oxygen Purity for Coal Conversion Energy Reduction  

E-Print Network (OSTI)

The conversion of coal into gaseous and liquid fuels and chemical feedstock will require large quantities of oxygen. This oxygen will be produced in large multi-train air separation plants which will consume about 350 kilowatt hours of energy for each ton of coal processed. Thus, the oxygen plants in a commercial coal conversion facility may require 150 megawatts. Design of the oxygen plants will require close attention to energy consumption. Many coal conversion processes can accept oxygen at less than the historical 99.5% purity with significant savings in energy and cost. The air separation process is reviewed with emphasis on optimum oxygen purity. An energy reduction of 8.4% can be achieved when oxygen purity is reduced from 99.5% to 95%. Oxygen is a major tonnage chemical which is also highly energy intensive. The current United States capacity of about 80 thousand tons per day places it in the top five of basic chemicals, and its energy requirement of 350 to 450 kilowatt hours per ton makes it a major energy consumer. The growing synfuels industry -- conversion of coal into hydrocarbon fuels and chemical feed-stocks -- will greatly increase the production of oxygen and presents major opportunities for energy conservation.

Baker, C. R.; Pike, R. A.

1982-01-01T23:59:59.000Z

245

Regenerable Mixed Copper-Iron-Inert Support Oxygen ...  

Regenerable Mixed Copper-Iron-Inert Support Oxygen Carriers for Solid Fuel Chemical Looping Combustion Process Contact NETL Technology Transfer Group

246

Microbial metatranscriptomics in a permanent marine oxygen minimum zone  

E-Print Network (OSTI)

Simultaneous characterization of taxonomic composition, metabolic gene content and gene expression in marine oxygen minimum zones (OMZs) has potential to broaden perspectives on the microbial and biogeochemical dynamics ...

Stewart, Frank J.

247

Effect of Dopants on Interdiffusion of Aluminum and Oxygen through ...  

Science Conference Proceedings (OSTI)

In this study, the mutual GB transport of aluminum and oxygen in RE-doped polycrystalline ... Secondary Transport Phenomena in Ceramic Membranes under ...

248

First-Principles Study of the Oxygen Evolution Reaction and ...  

Science Conference Proceedings (OSTI)

In this talk, we present our study of the mechanisms of the oxygen evolution reaction (OER) ... Secondary Transport Phenomena in Ceramic Membranes under ...

249

Oxygen Consumption Analysis for Life Prediction of Elastomers  

Science Conference Proceedings (OSTI)

Presentation Title, Oxygen Consumption Analysis for Life Prediction of Elastomers. Author(s), Elizabeth Hoffman, T. Eric Skidmore, Donald L Fisher, William L ...

250

Detailed chemical kinetic modeling of diesel combustion with oxygenated fuels  

DOE Green Energy (OSTI)

The influence of oxygenated hydrocarbons as additives to diesel fuels on ignition, NOx emissions and soot production has been examined using a detailed chemical kinetic reaction mechanism. N-heptane was used as a representative diesel fuel, and methanol, ethanol, dimethyl ether and dimethoxymethane were used as oxygenated fuel additives. It was found that addition of oxygenated hydrocarbons reduced NOx levels and reduced the production of soot precursors. When the overall oxygen content in the fuel reached approximately 25% by mass, production of soot precursors fell effectively to zero, in agreement with experimental studies. The kinetic factors responsible for these observations are discussed.

Pitz, W J; Curran, H J; Fisher, E; Glaude, P A; Marinov, N M; Westbrook, C K

1999-10-28T23:59:59.000Z

251

ORNL-grown oxygen 'sponge' presents path to better catalysts...  

NLE Websites -- All DOE Office Websites (Extended Search)

presents path to better catalysts, energy materials This schematic depicts a new ORNL-developed material that can easily absorb or shed oxygen atoms. This schematic depicts...

252

Oxygen Exchange Kinetics on SOFC Cathode Materials: Importance ...  

Science Conference Proceedings (OSTI)

Presentation Title, Oxygen Exchange Kinetics on SOFC Cathode Materials: Importance of Ionic and Electronic Carriers. Author(s), Rotraut Merkle, Lei Wang,

253

NETL: Novel Oxygen Carriers for Coal-Fueled Chemical Looping...  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Looping Combustion Project No.: DE-FE0001808 NETL has partnered with Western Kentucky University to develop a series of advanced oxygen carriers for coal-fueled...

254

Ion sources for the varying needs of ion implantation  

SciTech Connect

A joint research and development effort whose ultimate goal is to develop steady-state intense ion sources to meet the needs of the two energy extremes of ion implanters (mega-electron-volt and of hundreds of electron-volt) has been in progress for the past two years. Present day high-energy ion implanters utilize low charge state (usually single charge) ion sources in combination with rf accelerators. Usually, a MeV linear accelerator is used for acceleration of a few milliamperes. It is desirable to have instead an intense, high charge state ion source on a relatively low-energy platform (dc acceleration) to generate high-energy ion beams for implantation. This endeavor has already resulted in very high steady-state output currents of higher charge states antimony and phosphorous ions. Low-energy ion implantation is performed presently by decelerating high-energy extracted ions. Consequently, output currents are low due to space charge problems. Contamination is also a problem due to gases and plasmas employed to mitigate the space charge issues. Our efforts involve molecular ions and a plasmaless/gasless deceleration method. A program overview is presented in this article. Although source specifics are described in accompanying papers, only this article contains our most recent results.

Hershcovitch, A.; Batalin, V.A.; Bugaev, A.S. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation)] (and others)

2006-03-15T23:59:59.000Z

255

ION SOURCES FOR ENERGY EXTREMES OF ION IMPLANTATION.  

SciTech Connect

For the past four years a joint research and development effort designed to develop steady state, intense ion sources has been in progress with the ultimate goal to develop ion sources and techniques, which meet the two energy extreme range needs of mega-electron-volt and 100's of electron-volt ion implanters. This endeavor has already resulted in record steady state output currents of high charge state of Antimony and Phosphorous ions: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+} Sb{sup 4+}, Sb{sup 5+}, and Sb{sup 6+} respectively. For low energy ion implantation our efforts involve molecular ions and a novel plasmaless/gasless deceleration method. To date, 1 emA of positive Decaborane ions were extracted at 10 keV and smaller currents of negative Decaborane ions were also extracted. Additionally, Boron current fraction of over 70% was extracted from a Bemas-Calutron ion source, which represents a factor of 3.5 improvement over currently employed ion sources.

HERSCHCOVITCH,A.; JOHNSON, B.M.; BATALIN, V.A.; KROPACHEV, G.N.; KUIBEDA, R.P.; KULEVOY, T.V.; KOLOMIETS, A.A.; PERSHIN, V.I.; PETRENKO, S.V.; RUDSKOY, I.; SELEZNEV, D.N.; BUGAEV, A.S.; GUSHENETS, V.I.; LITOVKO, I.V.; OKS, E.M.; YUSHKOV, G. YU.; MASEUNOV, E.S.; POLOZOV, S.M.; POOLE, H.J.; STOROZHENKO, P.A.; SVAROVSKI, YA.

2007-08-26T23:59:59.000Z

256

O and Pb isotopic analyses of uranium minerals by ion microprobe and UPb ages from the Cigar Lake deposit  

E-Print Network (OSTI)

O and Pb isotopic analyses of uranium minerals by ion microprobe and U­Pb ages from the Cigar Lake intergrown uranium minerals and oxygen isotopic analyes of uraninite from the unconformity-type Cigar Lake uranium deposit. Secondary uranium minerals intergrown with uraninite, such as coffinite, USiO4ÁnH2O

Fayek, Mostafa

257

Photoluminescence in silicon implanted with erbium ions at an elevated temperature  

Science Conference Proceedings (OSTI)

Photoluminescence spectra of n-type silicon upon implantation with erbium ions at 600 Degree-Sign C and oxygen ions at room temperature and subsequent annealings at 1100 Degree-Sign C in a chlorine-containing atmosphere have been studied. Depending on the annealing duration, photoluminescence spectra at 80 K are dominated by lines of the Er{sup 3+} ion or dislocation-related luminescence. The short-wavelength shift of the dislocation-related luminescence line observed at this temperature is due to implantation of erbium ions at an elevated temperature. At room temperature, lines of erbium and dislocation-related luminescence are observed in the spectra, but lines of near-band-edge luminescence predominate.

Sobolev, N. A., E-mail: nick@sobolev.ioffe.rssi.ru; Kalyadin, A. E.; Shek, E. I.; Sakharov, V. I.; Serenkov, I. T. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Vdovin, V. I. [St. Petersburg University, Fock Research Institute of Physics (Russian Federation); Parshin, E. O.; Makoviichuk, M. I. [Russian Academy of Sciences, Yaroslavl Branch, Institute of Physics and Technology (Russian Federation)

2011-08-15T23:59:59.000Z

258

Substrate heating measurements in pulsed ion beam film deposition  

Science Conference Proceedings (OSTI)

Diamond-like Carbon (DLC) films have been deposited at Los Alamos National Laboratory by pulsed ion beam ablation of graphite targets. The targets were illuminated by an intense beam of hydrogen, carbon, and oxygen ions at a fluence of 15-45 J/cm{sup 2}. Ion energies were on the order of 350 keV, with beam current rising to 35 kA over a 400 ns ion current pulse. Raman spectra of the deposited films indicate an increasing ratio of sp{sup 3} to sp{sup 2} bonding as the substrate is moved further away from the target and further off the target normal. Using a thin film platinum resistor at varying positions, we have measured the heating of the substrate surface due to the kinetic energy and heat of condensation of the ablated material. This information is used to determine if substrate heating is responsible for the lack of DLC in positions close to the target and near the target normal. Latest data and analysis will be presented.

Olson, J.C.; Davis, H.A.; Rej, D.J.; Waganaar, W.J. [Los Alamos National Lab., NM (United States); Tallant, D.R. [Cornell Univ., Ithaca, NY (United States). Materials Science and Engineering Dept.; Thompson, M.O. [Sandia National Labs., Albuquerque, NM (United States)

1995-05-01T23:59:59.000Z

259

Dissolution of oxygen reduction electrocatalysts in acidic environment  

E-Print Network (OSTI)

Platinum (Pt) alloy nanoparticles are used as catalysts in electrochemical cells to reduce oxygen to water and to oxidize hydrogen; the overall reaction converts chemical energy into electrical energy. These nanocatalysts are deposited on a carbon substrate and their catalytic function takes place in acid medium. This harsh environment causes an undesired reaction, which is the dissolution of the metal atoms into the acid medium; thus affecting the catalyst life. This dissertation aims to investigate the dissolution mechanism of fuel cell cathode catalysts at the atomic level starting from the oxygen reaction intermediates on the cathode catalyst surface and propose guidelines to improve cathode catalysts durability based on our proposed mechanism. Density functional theory is employed to study various possible scenarios with the goals of understanding the mechanism of the metal atom dissolution process and establishing some guidelines that permit a rational design of catalysts with better stability against dissolution. A thermodynamic analysis of potential metal dissolution reactions in acid medium is presented first, using density functional theory calculations to explore the relative stabilities of transition metals in relation to that of Pt. The study is performed by comparing the change in reaction Gibbs free energies for different metals in a given dissolution reaction. Then, a series of density functional theory studies, tending to investigate the adsorbed atomic oxygen absorption process from cathode catalyst surface into its subsurface, includes: 1) the oxygen adsorption on various catalyst surfaces and oxygen absorption in subsurface sites to figure out the minimum energy pathway and energy barrier of on-surface oxygen migration and absorption into subsurface; 2) the oxygen coverage, the other oxygen reduction reaction intermediates, and water effects on the oxygen absorption process according to reaction pathways, energy barriers, and thermodynamic analysis; 3) the oxygen absorption process on several Pt-based alloys with various compositions and components to find out the best alloy to inhibit atomic oxygen absorption including both kinetic and thermodynamic analyses, and the effects of such alloyed species on the inhibition process.

Gu, Zhihui

2007-12-01T23:59:59.000Z

260

Molecular Ion Beam Transportation for Low Energy Ion Implantation  

SciTech Connect

A joint research and development of steady state intense boron ion sources for 100's of electron-volt ion implanters has been in progress for the past five years. Current density limitation associated with extracting and transporting low energy ion beams result in lower beam currents that in turn adversely affects the process throughput. The transport channel with electrostatic lenses for decaborane (B{sub 10}H{sub 14}) and carborane (C{sub 2}B{sub 10}H{sub 12}) ion beams transportation was developed and investigated. The significant increase of ion beam intensity at the beam transport channel output is demonstrated. The transport channel simulation, construction and experimental results of ion beam transportation are presented.

Kulevoy, T. V.; Kropachev, G. N.; Seleznev, D. N.; Yakushin, P. E.; Kuibeda, R. P.; Kozlov, A. V.; Koshelev, V. A. [Institute for Theoretical and Experimental Physics, Moscow, 117218 (Russian Federation); Hershcovitch, A.; Johnson, B. M. [Brookhaven National Laboratory, Upton, New York 11973 (United States); Gushenets, V. I.; Oks, E. M. [High Current Electronics Institute Russian Academy of Sciences, Tomsk, 634055 (Russian Federation); Polozov, S. M. [Moscow Engineering Physics Institute, Kashirskoe sh. 31, Moscow, 115409 (Russian Federation); Poole, H. J. [PVI, Oxnard, California 93031-5023 (United States)

2011-01-07T23:59:59.000Z

Note: This page contains sample records for the topic "oxygen ions miec" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Ion Concentration and Stress Profile Modifications of Ion Exchanged ...  

Science Conference Proceedings (OSTI)

Ion Exchanged Mixed Glass Cullet Proppants for Stimulation of Oil and Natural Gas Bearing Shales · Modeling the Electrical Conductivity in Glass Melts.

262

H- ION FORMATION FROM A SURFACE CONVERSION TYPE ION SOURCE  

E-Print Network (OSTI)

Hydrogen tons and Beams (Brookhaven Nat. Lab. , Sept. 1977).Hydrogen Ions and Beams (Brookhaven Nat. Lab. , Sept. 1977).fi Presented at the Brookhaven National Laboratory Second

Leung, K.N.

2010-01-01T23:59:59.000Z

263

Controlled Kinetic Energy Ion Source for Miniature Ion Trap ...  

with electronic signal sources coupled to the electrodes. The ion trap can be machined with conventional materials and methods and has demonstrated

264

Plasma ion sources and ion beam technology in microfabrications  

E-Print Network (OSTI)

and focused ion beam milling cathodic Nanotechnology” 16 (of FIB imaging, milling and deposition………………….45 1.2.3.2. Milling………………………………………………………………..5 1.2.3.3.

Ji, Lili

2007-01-01T23:59:59.000Z

265

HERSCHEL MEASUREMENTS OF MOLECULAR OXYGEN IN ORION  

Science Conference Proceedings (OSTI)

We report observations of three rotational transitions of molecular oxygen (O{sub 2}) in emission from the H{sub 2} Peak 1 position of vibrationally excited molecular hydrogen in Orion. We observed the 487 GHz, 774 GHz, and 1121 GHz lines using the Heterodyne Instrument for the Far Infrared on the Herschel Space Observatory, having velocities of 11 km s{sup -1} to 12 km s{sup -1} and widths of 3 km s{sup -1}. The beam-averaged column density is N(O{sub 2}) = 6.5 x 10{sup 16} cm{sup -2}, and assuming that the source has an equal beam-filling factor for all transitions (beam widths 44, 28, and 19''), the relative line intensities imply a kinetic temperature between 65 K and 120 K. The fractional abundance of O{sub 2} relative to H{sub 2} is (0.3-7.3) x 10{sup -6}. The unusual velocity suggests an association with a {approx}5'' diameter source, denoted Peak A, the Western Clump, or MF4. The mass of this source is {approx}10 M{sub sun} and the dust temperature is {>=}150 K. Our preferred explanation of the enhanced O{sub 2} abundance is that dust grains in this region are sufficiently warm (T {>=} 100 K) to desorb water ice and thus keep a significant fraction of elemental oxygen in the gas phase, with a significant fraction as O{sub 2}. For this small source, the line ratios require a temperature {>=}180 K. The inferred O{sub 2} column density {approx_equal}5 x 10{sup 18} cm{sup -2} can be produced in Peak A, having N(H{sub 2}) {approx_equal} 4 x 10{sup 24} cm{sup -2}. An alternative mechanism is a low-velocity (10-15 km s{sup -1}) C-shock, which can produce N(O{sub 2}) up to 10{sup 17} cm{sup -2}.

Goldsmith, Paul F.; Chen, Jo-Hsin; Li Di [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Liseau, Rene; Black, John H. [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-439 92 Onsala (Sweden); Bell, Tom A. [Centro de Astrobiologia, CSIC-INTA, 28850 Madrid (Spain); Hollenbach, David [SETI Institute, Mountain View, CA 94043 (United States); Kaufman, Michael J. [Department of Physics and Astronomy, San Jose State University, San Jose, CA 95192 (United States); Lis, Dariusz C. [California Institute of Technology, Cahill Center for Astronomy and Astrophysics 301-17, Pasadena, CA 91125 (United States); Melnick, Gary [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 66, Cambridge, MA 02138 (United States); Neufeld, David [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Pagani, Laurent; Encrenaz, Pierre [LERMA and UMR8112 du CNRS, Observatoire de Paris, 61 Av. de l'Observatoire, 75014 Paris (France); Snell, Ronald [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Benz, Arnold O.; Bruderer, Simon [Institute of Astronomy, ETH Zurich, Zurich (Switzerland); Bergin, Edwin [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Caselli, Paola [School of Physics and Astronomy, University of Leeds, Leeds (United Kingdom); Caux, Emmanuel [Universite de Toulouse, UPS-OMP, IRAP, Toulouse (France); Falgarone, Edith, E-mail: Paul.F.Goldsmith@jpl.nasa.gov [LRA/LERMA, CNRS, UMR8112, Observatoire de Paris and Ecole Normale Superieure, 24 rue Lhomond, 75231 Paris Cedex 05 (France)

2011-08-20T23:59:59.000Z

266

Improved ion detector  

DOE Patents (OSTI)

An improved ion detector device of the ionization detection device chamber type comprises an ionization chamber having a central electrode therein surrounded by a cylindrical electrode member within the chamber with a collar frictionally fitted around at least one of the electrodes. The collar has electrical contact means carried in an annular groove in an inner bore of the collar to contact the outer surface of the electrode to provide electrical contact between an external terminal and the electrode without the need to solder leads to the electrode.

Tullis, A.M.

1986-01-30T23:59:59.000Z

267

Palladium-cobalt particles as oxygen-reduction electrocatalysts  

DOE Patents (OSTI)

The present invention relates to palladium-cobalt particles useful as oxygen-reducing electrocatalysts. The invention also relates to oxygen-reducing cathodes and fuel cells containing these palladium-cobalt particles. The invention additionally relates to methods for the production of electrical energy by using the palladium-cobalt particles of the invention.

Adzic, Radoslav (East Setauket, NY); Huang, Tao (Manorville, NY)

2009-12-15T23:59:59.000Z

268

Device for measuring the total concentration of oxygen in gases  

DOE Patents (OSTI)

This invention provides a CO equilibrium in a device for measuring the total concentration of oxygen impurities in a fluid stream. To this end, the CO equilibrium is produced in an electrochemical measuring cell by the interaction of a carbon element in the cell with the chemically combined and uncombined oxygen in the fluid stream at an elevated temperature.

Isaacs, Hugh S. (Shoreham, NY); Romano, Anthony J. (Kings Park, NY)

1977-01-01T23:59:59.000Z

269

Effect of Feedwater Oxygen Control at the Vermont Yankee BWR  

Science Conference Proceedings (OSTI)

Tests in an operating BWR show that routine injection of oxygen into the feedwater to control radiation buildup is not warranted under normal operating conditions. However, since oxygen injection reduces the nickel release rate, it might be considered on a plant-by-plant basis for BWRs experiencing high nickel corrosion levels.

1985-08-02T23:59:59.000Z

270

Maintaining and Monitoring Dissolved Oxygen at Hydroelectric Projects: Status Report  

Science Conference Proceedings (OSTI)

This report is an update of EPRI's 1990 report, "Assessment and Guide for Meeting Dissolved Oxygen Water Quality Standards for Hydroelectric Plant Discharges" (GS-7001). The report provides an updated review of technologies and techniques for enhancing dissolved oxygen (DO) levels in reservoirs and releases from hydroelectric projects and state-of-the-art methods, equipment, and techniques for monitoring DO.

2002-05-28T23:59:59.000Z

271

Photolithographic patterning of polymer-encapsulated optical oxygen sensors  

Science Conference Proceedings (OSTI)

In this paper we show a novel fabrication process capable of yielding arbitrarily-shaped optical oxygen sensor patterns at micron resolution. The wafer-level process uses a thin-film sacrificial metal layer as intermediate mask, protecting the sensor ... Keywords: Optical oxygen sensor, Photolithography, PtOEPK/PS, Sensor patterning

Volker Nock; Maan Alkaisi; Richard J. Blaikie

2010-05-01T23:59:59.000Z

272

Role of lattice strain and defect chemistry on the oxygen vacancy migration at the (8.3%Y2O3-ZRO2)/SrTiO3 hetero-interface: A first principles study  

E-Print Network (OSTI)

We report on the mechanism and the upper limits in the increase of oxygen ion conductivity at oxide hetero-interfaces, particularly the 8.3%Y2O3-ZrO2/SrTiO3 (YSZ/STO) as a model interface. We consider two factors contributing ...

Yildiz, Bilge

273

IonBeamMicroFab  

NLE Websites -- All DOE Office Websites (Extended Search)

Ion Beam Manufacture of Microscale Ion Beam Manufacture of Microscale Tools and Components Manufacturing Technologies Sandia Manufacturing Science &Technology's Focused Ion Beam (FIB) laboratory provides an opportunity for research, development and prototyping. Currently, our scientists are devel- oping methods for ion beam sculpting microscale tools, components and devices. This includes shaping of specialty tools such as end-mills, turning tools and indenters. Many of these have been used in ultra-precision machining DOE applications. Additionally, staff are developing the capability to ion mill geo- metrically-complex features and substrates. This includes the ability to sputter predeter- mined curved shapes of various symmetries and periodicities. Capabilities and Expertise * Two custom-built focused ion beam sys-

274

Ion exchange technology assessment report  

SciTech Connect

In the execution of its charter, the SRS Ion Exchange Technology Assessment Team has determined that ion exchange (IX) technology has evolved to the point where it should now be considered as a viable alternative to the SRS reference ITP/LW/PH process. The ion exchange media available today offer the ability to design ion exchange processing systems tailored to the unique physical and chemical properties of SRS soluble HLW`s. The technical assessment of IX technology and its applicability to the processing of SRS soluble HLW has demonstrated that IX is unquestionably a viable technology. A task team was chartered to evaluate the technology of ion exchange and its potential for replacing the present In-Tank Precipitation and proposed Late Wash processes to remove Cs, Sr, and Pu from soluble salt solutions at the Savannah River Site. This report documents the ion exchange technology assessment and conclusions of the task team.

Duhn, E.F.

1992-12-31T23:59:59.000Z

275

Variability of the Minor Ions  

Science Conference Proceedings (OSTI)

Table 4   Constants for use with Eq 3...Table 4 Constants for use with Eq 3 These values can be used with Eq 3 to calculate oxygen concentration relative to air at 1 atm total

276

Rational Design of Metal Ion Sequestering Agents  

DOE Green Energy (OSTI)

The discriminate bonding of metal ions is a challenge to the synthetic chemist and a phenomenon of considerable practical importance.1 An important feature of many technical applications is the specific or preferential binding of a single metal ion in the presence of many metals. Examples range from large-volume uses (e.g. ferric EDTA as a plant food, calcium complexing agents as water softeners or anticaking formulations) to very high technology applications (technetium complexation in radiopharmaceuticals, synthetic metalloenzymes). We are interested in efficient and discriminate binding of actinides for waste stream remediation. Actinides represent a major and long-lived contaminant in nuclear waste. While the separation of actinides from other radioactive components of waste, such as Sr and Cs, is relatively well established, the separation of actinides from each other and in complex solutions (e.g. those found in tank wastes) is not as well resolved. The challenge of designing metal-specific (actinide) ligands is facilitated by examples from nature. Bacteria synthesize Fe(III)-specific ligands, called siderophores, to sequester Fe(III) from the environment and return it to the cell. The similarities between Fe(III) and Pu(IV) (their charge-to-size ratios and acidity), make the siderophores prototypical for designing actinide-specific ligands. The chelating groups present in siderophores are usually hydroxamic acids and catecholamides. We have developed derivatives of these natural products which have improved properties. The catechol derivatives are the 2,3-dihydroxyterephthalamides (TAMs), and 3,4-dihydroxysulfonamides (SFAMs), and the hydroxamic acid derivatives are three isomers of hydroxypyridinones, 1,2- HOPO, 3,2-HOPO, and 3,4-HOPO. All of these ligands are attached to molecular backbones by amides and a very important feature of HOPO and CAM ligands is a strong hydrogen bonds formed between the amide proton and the adjacent phenolic oxygen in the metal complex, thereby enhancing the stability (Figure 1).

Raymond, Kenneth N.

2000-09-30T23:59:59.000Z

277

Ion Beam Modification of Materials  

SciTech Connect

This volume contains the proceedings of the 14th International Conference on Ion Beam Modification of Materials, IBMM 2004, and is published by Elsevier-Science Publishers as a special issue of Nuclear Instruments and Methods B. The conference series is the major international forum to present and discuss recent research results and future directions in the field of ion beam modification, synthesis and characterization of materials. The first conference in the series was held in Budapest, Hungary, 1978, and subsequent conferences were held every two years at locations around the Globe, most recently in Japan, Brazil, and the Netherlands. The series brings together physicists, materials scientists, and ion beam specialists from all over the world. The official conference language is English. IBMM 2004 was held on September 5-10, 2004. The focus was on materials science involving both basic ion-solid interaction processes and property changes occurring either during or subsequent to ion bombardment and ion beam processing in relation to materials and device applications. Areas of research included Nanostructures, Multiscale Modeling, Patterning of Surfaces, Focused Ion Beams, Defects in Semiconductors, Insulators and Metals, Cluster Beams, Radiation Effects in Materials, Photonic Devices, Ion Implantation, Ion Beams in Biology and Medicine including New Materials, Imaging, and Treatment.

Averback, B; de la Rubia, T D; Felter, T E; Hamza, A V; Rehn, L E

2005-10-10T23:59:59.000Z

278

Laser Cooling of Trapped Ions.  

Science Conference Proceedings (OSTI)

... period, so it can be assumed to give an in- stantaneous impulse to the ... In sympathetic laser cooling, two different ion species are loaded into a trap. ...

2002-11-15T23:59:59.000Z

279

Nanowire Lithium-Ion Battery  

Science Conference Proceedings (OSTI)

... workings of Li-ion batteries, they either lack the nanoscale spatial resolution commensurate with the morphology of the active battery materials and ...

2012-10-02T23:59:59.000Z

280

Lithium-Ion Battery Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium-Ion Battery Issues IEA Workshop on Battery Recycling Hoboken, Belgium September 26-27, 2011 Linda Gaines Center for Transportation Research Argonne National Laboratory...

Note: This page contains sample records for the topic "oxygen ions miec" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

DEDICATED HEAVY ION MEDICAL ACCELERATORS  

E-Print Network (OSTI)

et al. , ,8iolog·ical and Medical Research with Acceleratedet al. , "Biological and Medical Research with J\\cceleratedic Heavy Ions in Medical and Scientific Research, Edmonton,

Gough, R.A.

2013-01-01T23:59:59.000Z

282

Gas-Phase Ion Thermochemistry  

Science Conference Proceedings (OSTI)

... If the mobility of an ion in a gas ... ionization onset determination made with an electron beam where the energy spread of the electrons is broad ...

2013-07-15T23:59:59.000Z

283

Heavy Ion Fusion development plan  

SciTech Connect

Some general cnsiderations in the fusion development program are given. The various factors are considered that must be determined before heavy ion fusion can be assessed. (MOW)

Maschke, A.W.

1978-01-01T23:59:59.000Z

284

Oxygen and organic matter thresholds for benthic faunal activity on the Pakistan margin oxygen minimum zone (7001100 m)  

E-Print Network (OSTI)

Oxygen and organic matter thresholds for benthic faunal activity on the Pakistan margin oxygen) on the bathyal Pakistan margin, where sediments grade from fully laminated sediment at 700 m (0.12 mL LÃ?1 O2 [5 m matter to generate abrupt faunal transitions on the Pakistan margin. & 2008 Elsevier Ltd. All rights

Levin, Lisa

285

Integration of Ion Transport Membrane Technology with Oxy-Combustion Power Generation Systems  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) in conjunction with Air Products and Chemicals, Inc., (AP) has reviewed oxy-combustion, a methodology to burn coal using oxygen rather than air to aid in removing carbon by producing a more concentrated stream of carbon dioxide (CO2) for remediation, which reduces the cost and energy required to do so. This report discusses the ion transport membrane (ITM), a technology developed by AP under a Cooperative Agreement with the United States ...

2013-09-17T23:59:59.000Z

286

Reaction of hydrogen sulfide with oxygen in the presence of sulfite  

DOE Green Energy (OSTI)

Commonly, abatement of hydrogen sulfide emission from a geothermal powerplant requires that hydrogen sulfide dissolved in the cooling water be eliminated by chemical reaction. Oxidation by atmospheric oxygen is the preferred reaction, but requires a suitable catalyst. Nickel is the most potent and thereby cheapest catalyst for this purpose. One mg/L nickel in the cooling water would allow 99% removal of hydrogen sulfide to be attained. A major drawback of catalytic air oxidation is that colloidal sulfur is a major reaction product; this causes rapid sludge accumulation and deposition of sulfur scale. We studied the kinetics and product distribution of the reaction of hydrogen sulfide with oxygen, catalyzed by nickel. Adding sodium sulfite to the solution completely suppresses formation of colloidal sulfur by converting it to thiosulfate. The oxidation reaction is an autocatalytic, free radical chain reaction. A rate expression for this reaction and a detailed reaction mechanism were developed. Nickel catalyzes the chain initiation step, and polysulfidoradical ions propagate the chains. Several complexes of iron and cobalt were also studied. Iron citrate and iron N-hydroxyEDTA are the most effective iron based catalysts. Uncomplexed cobalt is as effective as nickel, but forms a precipitate of cobalt oxysulfide and is too expensive for practical use. 33 figures, 9 tables.

Weres, O.; Tsao, L.

1983-01-14T23:59:59.000Z

287

Reaction of Hydrogen Sulfide with Oxygen in the Presence ofSulfite  

DOE Green Energy (OSTI)

Commonly, abatement of hydrogen sulfide emissions from a geothermal powerplant requires that hydrogen sulfide dissolved in the cooling water be eliminated by chemical reaction. Oxidation by atmospheric oxygen is the preferred reaction, but requires a suitable catalyst. Nickel is the most potent and thereby cheapest catalyst for this purpose. One Mg/L nickel in the cooling water would allow 99% removal of hydrogen sulfide to be attained. A major drawback of catalytic air oxidation is that colloidal sulfur is a major reaction product; this causes rapid sludge accumulation and deposition of sulfur scale. The authors studied the kinetics and product distribution of the reaction of hydrogen sulfide with oxygen, catalyzed by nickel. Adding sodium sulfite to the solution completely suppresses formation of colloidal sulfur by converting it to thiosulfate. The oxidation reaction is an autocatalytic, free radical chain reaction. A rate expression for this reaction and a detailed reaction mechanism were developed. Nickel catalyzes the chain initiation step, and polysulfidoradical ions propagate the chains. Several complexes of iron and cobalt were also studied. Iron citrate and iron N-hydroxyEDT are the most effective iron based catalysts. Uncomplexed cobalt is as effective as nickel, but forms a precipitate of cobalt oxysulfide and is too expensive for practical use.

Weres, Oleh; Tsao, Leon

1983-01-01T23:59:59.000Z

288

{ital K}-shell vacancies carried by swift O and Si ions inside ferromagnetic hosts  

Science Conference Proceedings (OSTI)

The single and double {ital K}-shell vacancy fractions for swift O and Si ions inside Fe and Gd foils have been measured using the probe layer technique. The measurements are carried out at velocities varying from 7.5 to 13.5{ital v}{sub 0} for Si ions and at a velocity of 7.8{ital v}{sub 0} for oxygen ions ({ital v}{sub 0}={alpha}{ital c} where {alpha} is the fine-structure constant and {ital c} is the speed of light). It is shown that all such available data for light ions fall on a smooth curve when plotted against the reduced velocity of the ion. These values are used along with the existing transient magnetic field data to derive the electron spin polarization acquired by the ions traveling inside ferromagnetic hosts. The degree of polarization is shown to decrease with the atomic number of the ions. This observation is, however, in disagreement with recent theoretical calculations.

Tribedi, L.C.; Prasad, K.G.; Tandon, P.N. [Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400 005 (India)

1995-05-01T23:59:59.000Z

289

Ion mobility spectrometers and methods for ion mobility spectrometry  

SciTech Connect

An ion mobility spectrometer may include an inner electrode and an outer electrode arranged so that at least a portion of the outer electrode surrounds at least a portion of the inner electrode and defines a drift space therebetween. The inner and outer electrodes are electrically insulated from one another so that a non-linear electric field is created in the drift space when an electric potential is placed on the inner and outer electrodes. An ion source operatively associated with the ion mobility spectrometer releases ions to the drift space defined between the inner and outer electrodes. A detector operatively associated with at least a portion of the outer electrode detects ions from the drift space.

Dahl, David A. (Idaho Falls, ID); Scott, Jill R. (Idaho Falls, ID); Appelhans, Anthony D. (Idaho Falls, ID); McJunkin, Timothy R. (Idaho Falls, ID); Olson, John E. (Rigby, ID)

2009-04-14T23:59:59.000Z

290

Interactions of Oxygen and Hydrogen on Pd(111) surface  

DOE Green Energy (OSTI)

The coadsorption and interactions of oxygen and hydrogen on Pd(1 1 1) was studied by scanning tunneling microscopy and density functional theory calculations. In the absence of hydrogen oxygen forms a (2 x 2) ordered structure. Coadsorption of hydrogen leads to a structural transformation from (2 x 2) to a ({radical}3 x {radical}3)R30 degree structure. In addition to this transformation, hydrogen enhances the mobility of oxygen. To explain these observations, the interaction of oxygen and hydrogen on Pd(1 1 1) was studied within the density functional theory. In agreement with the experiment the calculations find a total energy minimum for the oxygen (2 x 2) structure. The interaction between H and O atoms was found to be repulsive and short ranged, leading to a compression of the O islands from (2 x 2) to ({radical}3 x {radical}3)R30 degree ordered structure at high H coverage. The computed energy barriers for the oxygen diffusion were found to be reduced due to the coadsorption of hydrogen, in agreement with the experimentally observed enhancement of oxygen mobility. The calculations also support the finding that at low temperatures the water formation reaction does not occur on Pd(1 1 1).

Demchenko, D.O.; Sacha, G.M.; Salmeron, M.; Wang, L.-W.

2008-06-25T23:59:59.000Z

291

Very high energy heavy-ion accelerators  

SciTech Connect

A review is given of various programs for building heavy ion accelerators. Topics discussed are (1) options of reaching very high energies with heavy ions; (2) present performance of the superHILAC and the Bevalac; (3) heavy ion sources; (4) applications of heavy ion accelerators outside of basic research; and (5) reliability and operating costs of heavy ion sources. (PMA)

Grunder, H.A.

1975-10-01T23:59:59.000Z

292

Review of ion accelerators  

Science Conference Proceedings (OSTI)

The field of ion acceleration to higher energies has grown rapidly in the last years. Many new facilities as well as substantial upgrades of existing facilities have extended the mass and energy range of available beams. Perhaps more significant for the long-term development of the field has been the expansion in the applications of these beams, and the building of facilities dedicated to areas outside of nuclear physics. This review will cover many of these new developments. Emphasis will be placed on accelerators with final energies above 50 MeV/amu. Facilities such as superconducting cyclotrons and storage rings are adequately covered in other review papers, and so will not be covered here.

Alonso, J.

1990-06-01T23:59:59.000Z

293

Nonlinear integrable ion traps  

Science Conference Proceedings (OSTI)

Quadrupole ion traps can be transformed into nonlinear traps with integrable motion by adding special electrostatic potentials. This can be done with both stationary potentials (electrostatic plus a uniform magnetic field) and with time-dependent electric potentials. These potentials are chosen such that the single particle Hamilton-Jacobi equations of motion are separable in some coordinate systems. The electrostatic potentials have several free adjustable parameters allowing for a quadrupole trap to be transformed into, for example, a double-well or a toroidal-well system. The particle motion remains regular, non-chaotic, integrable in quadratures, and stable for a wide range of parameters. We present two examples of how to realize such a system in case of a time-independent (the Penning trap) as well as a time-dependent (the Paul trap) configuration.

Nagaitsev, S.; /Fermilab; Danilov, V.; /SNS Project, Oak Ridge

2011-10-01T23:59:59.000Z

294

Studies in ion source development for application in heavy ion fusion  

E-Print Network (OSTI)

Ion Sources for Heavy Ion Fusion Applications . Ph.D.Sources for Heavy Ion Fusion . Proceedings of the ParticleDevelopment for Heavy Ion Fusion. Wollnik, H. , Optics of

Kapica, Jonathan G.

2004-01-01T23:59:59.000Z

295

Ion Exclusion by Sub 2-nm Carbon Nanotube Pores  

Science Conference Proceedings (OSTI)

Carbon nanotubes offer an outstanding platform for studying molecular transport at nanoscale, and have become promising materials for nanofluidics and membrane technology due to their unique combination of physical, chemical, mechanical, and electronic properties. In particular, both simulations and experiments have proved that fluid flow through carbon nanotubes of nanometer size diameter is exceptionally fast compared to what continuum hydrodynamic theories would predict when applied on this length scale, and also, compared to conventional membranes with pores of similar size, such as zeolites. For a variety of applications such as separation technology, molecular sensing, drug delivery, and biomimetics, selectivity is required together with fast flow. In particular, for water desalination, coupling the enhancement of the water flux with selective ion transport could drastically reduce the cost of brackish and seawater desalting. In this work, we study the ion selectivity of membranes made of aligned double-walled carbon nanotubes with sub-2 nm diameter. Negatively charged groups are introduced at the opening of the carbon nanotubes by oxygen plasma treatment. Reverse osmosis experiments coupled with capillary electrophoresis analysis of permeate and feed show significant anion and cation rejection. Ion exclusion declines by increasing ionic strength (concentration) of the feed and by lowering solution pH; also, the highest rejection is observed for the A{sub m}{sup Z{sub A}} C{sub n}{sup Z{sub C}} salts (A=anion, C=cation, z= valence) with the greatest Z{sub A}/Z{sub C} ratio. Our results strongly support a Donnan-type rejection mechanism, dominated by electrostatic interactions between fixed membrane charges and mobile ions, while steric and hydrodynamic effects appear to be less important. Comparison with commercial nanofiltration membranes for water softening reveals that our carbon nanotube membranes provides far superior water fluxes for similar ion rejection capabilities.

Fornasiero, F; Park, H G; Holt, J K; Stadermann, M; Grigoropoulos, C P; Noy, A; Bakajin, O

2008-04-09T23:59:59.000Z

296

Solid lithium-ion electrolyte  

DOE Patents (OSTI)

The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li.sub.2 O--CeO.sub.2 --SiO.sub.2 system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications.

Zhang, Ji-Guang (Golden, CO); Benson, David K. (Golden, CO); Tracy, C. Edwin (Golden, CO)

1998-01-01T23:59:59.000Z

297

Solid lithium-ion electrolyte  

DOE Patents (OSTI)

The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li{sub 2}O--CeO{sub 2}--SiO{sub 2} system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications. 12 figs.

Zhang, J.G.; Benson, D.K.; Tracy, C.E.

1998-02-10T23:59:59.000Z

298

Thin film ion conducting coating  

DOE Patents (OSTI)

Durable thin film ion conducting coatings are formed on a transparent glass substrate by the controlled deposition of the mixed oxides of lithium:tantalum or lithium:niobium. The coatings provide durable ion transport sources for thin film solid state storage batteries and electrochromic energy conservation devices.

Goldner, Ronald B. (Lexington, MA); Haas, Terry (Sudbury, MA); Wong, Kwok-Keung (Watertown, MA); Seward, George (Arlington, MA)

1989-01-01T23:59:59.000Z

299

On The Importance of Organic Oxygen for Understanding Organic Aerosol  

NLE Websites -- All DOE Office Websites (Extended Search)

On The Importance of Organic Oxygen for Understanding Organic Aerosol On The Importance of Organic Oxygen for Understanding Organic Aerosol Particles Title On The Importance of Organic Oxygen for Understanding Organic Aerosol Particles Publication Type Journal Article Year of Publication 2006 Authors Pang, Yanbo, B. J. Turpin, and Lara A. Gundel Journal Journal of Aerosol Science and Technology Volume 40 Start Page Chapter Pagination 128-133 Abstract This study shows how aerosol organic oxygen data could provide new and independent information about organic aerosol mass, aqueous solubility of organic aerosols, formation of secondary organic aerosol (SOA) and the relative contributions of anthropogenic and biogenic sources. For more than two decades atmospheric aerosol organic mass concentration has usually been estimated by multiplying the measured carbon content by an assumed organic mass (OM)-to-organic carbon (OC ) factor of 1.4. However, this factor can vary from 1.0 to 2.5 depending on location. This great uncertainty about aerosol organic mass limits our understanding of the influence of organic aerosol on climate, visibility and health.New examination of organic aerosol speciation data shows that the oxygen content is the key factor responsible for the observed range in the OM-to-OC factor. When organic oxygen content is excluded, the ratio of non-oxygen organic mass to carbon mass varies very little across different environments (1.12 to 1.14). The non-oxygen-OM-to-non-oxygen OC factor for all studied sites (urban and non-urban) is 1.13± 0.02. The uncertainty becomes an order of magnitude smaller than the uncertainty in the best current estimates of organic mass to organic carbon ratios (1.6± 0.2 for urban and 2.1± 0.2 for non-urban areas). When aerosol organic oxygen data become available, organic aerosol mass can be quite accurately estimated using just OC and organic oxygen (OO) without the need to know whether the aerosol is fresh or aged. In addition, aerosol organic oxygen data will aid prediction of water solubility since compounds with OO-to-OC higher than 0.4 have water solubilities higher than 1g per 100 g water

300

Hydrogen Production Using Hydrogenase-Containing Oxygenic Photosynthetic Organisms  

DOE Patents (OSTI)

A reversible physiological process provides for the temporal separation of oxygen evolution and hydrogen production in a microorganism, which includes the steps of growing a culture of the microorganism in medium under illuminated conditions to accumulate an endogenous substrate, depleting from the medium a nutrient selected from the group consisting of sulfur, iron, and/or manganese, sealing the culture from atmospheric oxygen, incubating the culture in light whereby a rate of light-induced oxygen production is equal to or less than a rate of respiration, and collecting an evolved gas. The process is particularly useful to accomplish a sustained photobiological hydrogen gas production in cultures of microorganisms, such as Chlamydomonas reinhardtii.

Melis, A.; Zhang, L.; Benemann, J. R.; Forestier, M.; Ghirardi, M.; Seibert, M.

2006-01-24T23:59:59.000Z

Note: This page contains sample records for the topic "oxygen ions miec" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Solenoid and monocusp ion source  

DOE Patents (OSTI)

An ion source which generates ions having high atomic purity incorporates a solenoidal magnetic field to increase the electron path length. In a sealed envelope, electrons emitted from a cathode traverse the magnetic field lines of a solenoid and a monocusp magnet between the cathode and a reflector at the monocusp. As electrons collide with gas, the molecular gas forms a plasma. An anode grazes the outer boundary of the plasma. Molecular ions and high energy electrons remain substantially on the cathode side of the cusp, but as the ions and electrons are scattered to the aperture side of the cusp, additional collisions create atomic ions. The increased electron path length allows for smaller diameters and lower operating pressures.

Brainard, J.P.; Burns, E.J.T.; Draper, C.H.

1995-12-31T23:59:59.000Z

302

Magnetic resonance imaging of the cerebral metabolic rate of oxygen (CMRO?)  

E-Print Network (OSTI)

Oxygen consumption is an essential process of the functioning brain. The rate at which the brain consumes oxygen is known as the cerebral metabolic rate of oxygen (CMRO?). CMRO? is intimately related to brain health and ...

Bolar, Divya Sanam

2010-01-01T23:59:59.000Z

303

Oxygen enriched combustion system performance study. Phase 2: 100 percent oxygen enriched combustion in regenerative glass melters, Final report  

Science Conference Proceedings (OSTI)

The field test project described in this report was conducted to evaluate the energy and environmental performance of 100% oxygen enriched combustion (100% OEC) in regenerative glass melters. Additional objectives were to determine other impacts of 100% OEC on melter operation and glass quality, and to verify on a commercial scale that an on-site Pressure Swing Adsorption oxygen plant can reliably supply oxygen for glass melting with low electrical power consumption. The tests constituted Phase 2 of a cooperative project between the United States Department of Energy, and Praxair, Inc. Phase 1 of the project involved market and technical feasibility assessments of oxygen enriched combustion for a range of high temperature industrial heating applications. An assessment of oxygen supply options for these applications was also performed during Phase 1, which included performance evaluation of a pilot scale 1 ton per day PSA oxygen plant. Two regenerative container glass melters were converted to 100% OEC operation and served as host sites for Phase 2. A 75 ton per day end-fired melter at Carr-Lowrey Glass Company in Baltimore, Maryland, was temporarily converted to 100% OEC in mid- 1990. A 350 tpd cross-fired melter at Gallo Glass Company in Modesto, California was rebuilt for permanent commercial operation with 100% OEC in mid-1991. Initially, both of these melters were supplied with oxygen from liquid storage. Subsequently, in late 1992, a Pressure Swing Adsorption oxygen plant was installed at Gallo to supply oxygen for 100% OEC glass melting. The particular PSA plant design used at Gallo achieves maximum efficiency by cycling the adsorbent beds between pressurized and evacuated states, and is therefore referred to as a Vacuum/Pressure Swing Adsorption (VPSA) plant.

Tuson, G.B.; Kobayashi, H.; Campbell, M.J.

1994-08-01T23:59:59.000Z

304

Ion Rings for Magnetic Fusion  

Science Conference Proceedings (OSTI)

This Final Technical Report presents the results of the program, Ion Rings for Magnetic Fusion, which was carried out under Department of Energy funding during the period August, 1993 to January, 2005. The central objective of the program was to study the properties of field-reversed configurations formed by ion rings. In order to reach this objective, our experimental program, called the Field-reversed Ion Ring Experiment, FIREX, undertook to develop an efficient, economical technology for the production of field-reversed ion rings. A field-reversed configuration (FRC) in which the azimuthal (field-reversing) current is carried by ions with gyro-radius comparable to the magnetic separatrix radius is called a field-reversed ion ring. A background plasma is required for charge neutralization of the ring, and this plasma will be confined within the ring's closed magnetic flux. Ion rings have long been of interest as the basis of compact magnetic fusion reactors, as the basis for a high-power accelerator for an inertial fusion driver, and for other applications of high power ion beams or plasmas of high energy density. Specifically, the FIREX program was intended to address the longstanding question of the contribution of large-orbit ions to the observed stability of experimental FRCs to the MHD tilt mode. Typical experimental FRCs with s {approx} 2-4, where s is the ratio of separatrix radius to ion gyro-radius, have been stable to tilting, but desired values for a fusion reactor, s > 20, should be unstable. The FIREX ring would consist of a plasma with large s for the background ions, but with s {approx} 1 for the ring ions. By varying the proportions of these two populations, the minimum proportion of large-orbit ions necessary for stability could be determined. The incorporation of large-orbit ions, perhaps by neutral-beam injection, into an FRC has been advanced for the purpose of stabilizing, heating, controlling angular momentum, and aiding the formation of a reactor-scale FRC, and the FIREX program was intended to test the ideas behind this approach. We will describe in this report the technological development path and advances in physics understanding that allowed FIREX to reach a regime in which ion rings were reproducibly created with up to about half the current necessary to produce field reversal. Unfortunately, the experiments were limited to this level by a fundamental, unanticipated aspect of the physics of strong ion rings in plasma. The FIREX ring is a strongly anisotropic, current-carrying population of ions moving faster than the Alfven speed in the background plasma. The rapidly changing ring current excites very large-amplitude Alfven waves in the plasma, and these waves strongly affect the ring, causing rapid energy loss in a way that is not compatible with the success of the ring trapping scenario around which FIREX was designed. The result was that FIREX rings were always very short-lived. We will discuss the implication of these results for possible future use of large-orbit ions in FRCs. In short, it appears that a certain range of the parameters characterizing the ring Alfven mach number and distribution function must be avoided to allow the existence of a long-lived energetic ion component in an FRC. This report will explain why FIREX experimental results cannot be directly scaled to quantitatively predict this range for a particular FRC configuration. This will require accurate, three-dimensional simulations. FIREX results do constitute a very good dataset for validating such a code, and simulations already carried out during this program provide a guide to the important physics involved.

Greenly, John, B.

2005-07-31T23:59:59.000Z

305

Side Reactions in Lithium-Ion Batteries  

E-Print Network (OSTI)

Model for Aging of Lithium-Ion Battery Cells. Journal of TheSalts Formed on the Lithium-Ion Battery Negative Electrodeion batteries In a lithium ion battery, positively charged

Tang, Maureen Han-Mei

2012-01-01T23:59:59.000Z

306

Advances in lithium-ion batteries  

E-Print Network (OSTI)

current reviews of the lithium ion battery literature byof view of the lithium ion battery scientist and engineer,lithium ion batteries. The chapter on aging summarizes the effects of the chemistry on the battery

Kerr, John B.

2003-01-01T23:59:59.000Z

307

Challenges for Na-ion Negative Electrodes  

E-Print Network (OSTI)

Na-ion batteries have been proposed as candidates for replacing Li-ion batteries. In this paper we examine the viability of Na-ion negative electrode materials based on Na alloys or hard carbons in terms of volumetric ...

Chevrier, V. L.

308

Phosphonic acid based ion exchange resins  

DOE Patents (OSTI)

An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 9 figures.

Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

1994-01-25T23:59:59.000Z

309

Laser ion source development at Holifield Radioactive Ion Beam Facility  

Science Conference Proceedings (OSTI)

This report describes the efforts made to develop a resonant-ionization laser ion source based on tunable Ti:sapphire lasers for nuclear physics and astrophysics research at Holifield Radioactive Ion Beam Facility. Three Ti:sapphire lasers have been upgraded with individual pump lasers to eliminate laser power losses due to synchronization delays. Ionization schemes for 14 elements have been obtained. Off-line studies show that the overall efficiency of the laser ion source can be as high as 40%. TaC surface coatings have been investigated for minimizing surface and bulk trapping of the atoms of interest.

Liu, Y.; Havener, C. C.; Beene, J. R. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Gottwald, T.; Mattolat, C.; Vane, C. R.; Wendt, K. [Institute of Physics, University of Mainz, D-55099 Mainz (Germany); Howe, J. Y.; Kiggans, J. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

2012-02-15T23:59:59.000Z

310

Ion production from solid state laser ion sources  

Science Conference Proceedings (OSTI)

Laser ion sources based on resonant excitation and ionization of atoms are well-established tools for selective and efficient production of radioactive ion beams. Recent developments are focused on the use of the state-of-the-art all solid-state laser systems. To date, 35 elements of the periodic table are available from laser ion sources based on tunable Ti:sapphire lasers. Recent progress in this field regarding the establishment of suitable optical excitation schemes for Ti:sapphire lasers are reported.

Gottwald, T.; Mattolat, C.; Raeder, S.; Wendt, K. [Institute for Physics, University of Mainz, Staudinger Weg 7, 55128 Mainz (Germany); Havener, C.; Liu, Y. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Lassen, J. [TRIUMF-ISAC Division, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3 (Canada); Rothe, S. [CERN, CH-1211 Geneve 23 (Switzerland)

2010-02-15T23:59:59.000Z

311

Calibration and Stability of Oxygen Sensors on Autonomous Floats  

Science Conference Proceedings (OSTI)

The calibration accuracy and stability of three Aanderaa 3835 optodes and three Seabird SBE-43 oxygen sensors were evaluated over four years using in situ and laboratory calibrations. The sensors were mostly in storage, being in the ocean for ...

Eric A. D’Asaro; Craig McNeil

312

Geothermal reservoir temperatures estimated from the oxygen isotope  

Open Energy Info (EERE)

reservoir temperatures estimated from the oxygen isotope reservoir temperatures estimated from the oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Geothermal reservoir temperatures estimated from the oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes Details Activities (3) Areas (3) Regions (0) Abstract: The oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes have been tested as a geothermometer in three areas of the western United States. Limited analyses of spring and borehole fluids and existing experimental rate studies suggest that dissolved sulfate and water are probably in isotopic equilibrium in all reservoirs of significant size with temperatures above

313

Oxygen And Carbon Isotope Ratios Of Hydrothermal Minerals From Yellowstone  

Open Energy Info (EERE)

Oxygen And Carbon Isotope Ratios Of Hydrothermal Minerals From Yellowstone Oxygen And Carbon Isotope Ratios Of Hydrothermal Minerals From Yellowstone Drill Cores Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Oxygen And Carbon Isotope Ratios Of Hydrothermal Minerals From Yellowstone Drill Cores Details Activities (3) Areas (1) Regions (0) Abstract: Oxygen and carbon isotope ratios were measured for hydrothermal minerals (silica, clay and calcite) from fractures and vugs in altered rhyolite, located between 28 and 129 m below surface (in situ temperatures ranging from 81 to 199°C) in Yellowstone drill holes. The purpose of this study was to investigate the mechanism of formation of these minerals. The Δ18O values of the thirty-two analyzed silica samples (quartz, chalcedony, α-cristobalite, and β-cristobalite) range from -7.5 to +2.8‰. About one

314

Modeling Terrestrial Biogenic Sources of Oxygenated Organic Emissions  

Science Conference Proceedings (OSTI)

In recent years, oxygenated volatile organic chemicals (OVOCs) likeacetone have been recognized as important atmospheric constituents due to their ability to sequester reactive nitrogen in the form peroxyacetyl nitrate (PAN) and to be a source ...

Christopher Potter; Steven Klooster; David Bubenheim; Hanwant B. Singh; Ranga Myneni

2003-07-01T23:59:59.000Z

315

Phosphorescent semiconductor nanocrystals and proteins for biological oxygen sensing  

E-Print Network (OSTI)

Oxygen is required for cellular respiration by all complex life making it a key metabolic profiling factor in biological systems. Tumors are defined by hypoxia (low pO2), which has been shown to influence response to ...

McLaurin, Emily J. (Emily Jane)

2011-01-01T23:59:59.000Z

316

Nano- sized strontium titanate metal oxide semiconductor oxygen gas sensors.  

E-Print Network (OSTI)

??The project focuses on strontium titanate (SrTiO3> material, a very important material for oxygen sensors. The advantages of the material are low cost and stability… (more)

Hu, Ying.

2008-01-01T23:59:59.000Z

317

IMPACT OF OXYGEN CONCENTRATION ON ZEBRA MUSSEL MORTALITY  

SciTech Connect

These tests have indicated that the bacterium Pseudomonas fluorescens strain CL0145A is effective at killing zebra mussels in environments having dissolved oxygen (DO) concentrations ranging from very low to very high. The results suggest that the highest mussel kill can be achieved in moderately to highly aerated environments, while kill may be 0-20% lower under conditions of very low oxygen. For example, under highly oxygenated conditions 97% kill was achieved while conditions having low DO produced 79% mussel kill. Service water measured in a local power plant indicated that DO concentrations were in the range of 8-9 ppm (e.g., highly aerated) within their pipes. Therefore, we will not expect to see decreases in the efficacy of CL0145A treatments due to oxygen levels within such power plant pipes.

Daniel P. Molloy

2003-01-27T23:59:59.000Z

318

CO/sub 2/ recovery from oxygen firefloods  

SciTech Connect

An additional benefit from the oxygen in-situ combustion process or fireflooding is the generation of produced gases containing a high concentration of CO/sub 2/ (>90 mole %). This CO/sub 2/ could be recovered and utilized for miscible and immiscible CO/sub 2/ flooding for EOR. This paper investigates the feasibility of recovering and marketing CO/sub 2/ from oxygen firefloods for this purpose. The expected compositions and volumes of associated gas produced from commercial oxygen in-situ combustion projects based on literature data and actual field tests are presented. In addition, the market prospects based on the transportation requirements and the costs associated with the recovery of CO/sub 2/ from an oxygen in-situ combustion project are discussed. 12 references, 2 figures, 4 tables. (JMT)

Persico, P.J.; Wetherington, J.B.; Hvizdos, L.J.

1983-06-01T23:59:59.000Z

319

Calibration and Stability of Oxygen Sensors on Autonomous Floats  

Science Conference Proceedings (OSTI)

The calibration accuracy and stability of three Aanderaa 3835 optodes and three Sea-Bird Electronics SBE-43 oxygen sensors were evaluated over four years using in situ and laboratory calibrations. The sensors were mostly in storage, being in the ...

Eric A. D'Asaro; Craig McNeil

2013-08-01T23:59:59.000Z

320

Hybrid membrane--PSA system for separating oxygen from air  

Science Conference Proceedings (OSTI)

A portable, non-cryogenic, oxygen generation system capable of delivering oxygen gas at purities greater than 98% and flow rates of 15 L/min or more is described. The system consists of two major components. The first component is a high efficiency membrane capable of separating argon and a portion of the nitrogen content from air, yielding an oxygen-enriched permeate flow. This is then fed to the second component, a pressure swing adsorption (PSA) unit utilizing a commercially available, but specifically formulated zeolite compound to remove the remainder of the nitrogen from the flow. The system is a unique gas separation system that can operate at ambient temperatures, for producing high purity oxygen for various applications (medical, refining, chemical production, enhanced combustion, fuel cells, etc . . . ) and represents a significant advance compared to current technologies.

Staiger, Chad L. (Albuquerque, NM); Vaughn, Mark R. (Albuquerque, NM); Miller, A. Keith (Albuquerque, NM); Cornelius, Christopher J. (Blackburg, VA)

2011-01-25T23:59:59.000Z

Note: This page contains sample records for the topic "oxygen ions miec" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Effect of Oxygen Potential on Crack Growth in Alloy 617  

Science Conference Proceedings (OSTI)

Static crack growth rate increases from 4 x 10-9 m/sec to 4 x 10-8 m/sec when the oxygen concentration decreases from .001 to .0000001 atm. Proceedings ...

322

CO/sub 2/ recovery from oxygen firefloods  

SciTech Connect

The use of high purity oxygen in a fireflood project prevents the introduction of nonreactive nitrogen into the oil reservoir, and thus will significantly increase the CO/sub 2/ concentration in the produced gas. The increased CO/sub 2/ concentration would greatly simplify the recovery and processing required to utilize this CO/sub 2/ in a CO/sub 2/ flooding EOR project. The basic products produced by the reaction of oxygen with hydrocarbon fuel in the in situ combustion process are CO/sub 2/, carbon monoxide, and water. Oxygen fireflooding has technical and economic advantages over conventional fireflooding for EOR. Gas produced in an oxygen fireflood represents a major new source of high concentration CO/sub 2/ for EOR. 12 references.

Persico, P.J.; Wetherington, J.B.; Hvizdos, L.J.

1983-06-01T23:59:59.000Z

323

Oxygen-permeable ceramic membranes for gas separation  

DOE Green Energy (OSTI)

Mixed-conducting oxides have a wide range of applications, including fuel cells, gas separation systems, sensors, and electrocatalytic equipment. Dense ceramic membranes made of mixed-conducting oxides are particularly attractive for gas separation and methane conversion processes. Membranes made of Sr-Fe-Co oxide, which exhibits high combined electronic and oxygen ionic conductivities, can be used to selectively transport oxygen during the partial oxidation of methane to synthesis gas (syngas, i.e., CO + H{sub 2}). The authors have fabricated tubular Sr{sub 2}Fe{sub 2}CoO{sub 6+{delta}} membranes and tested them (some for more than 1,000 h) in a methane conversion reactor that was operating at 850--950 C. An oxygen permeation flux of {approx} 10 scc/cm{sup 2} {center_dot} min was obtained at 900 C in a tubular membrane with a wall thickness of 0.75 mm. Using a gas-tight electrochemical cell, the authors have also measured the steady-state oxygen permeability of flat Sr{sub 2}Fe{sub 2}CoO{sub 6+{delta}} membranes as a function of temperature and oxygen partial pressure(pO{sub 2}). Steady-state oxygen permeability increases with increasing temperature and with the difference in pO{sub 2} on the two sides of the membrane. At 900 C, an oxygen permeability of {approx} 2.5 scc/cm{sup 2} {center_dot} min was obtained in a 2.9-mm-thick membrane. This value agrees with that obtained in methane conversion reactor experiments. Current-voltage (I-V) characteristics determined in the gas-tight cell indicate that bulk effect, rather than surface exchange effect, is the main limiting factor for oxygen permeation of {approx} 1-mm-thick Sr{sub 2}Fe{sub 2}CoO{sub 6+{delta}} membranes at elevated temperatures (> 650 C).

Balachandran, U.; Ma, B.; Maiya, P.S.; Dusek, J.T.; Mieville, R.L.; Picciolo, J.J.

1998-02-01T23:59:59.000Z

324

Radio frequency sustained ion energy  

SciTech Connect

Electromagnetic (E.M.) energy injection method and apparatus for producing and sustaining suprathermal ordered ions in a neutral, two-ion-species, toroidal, bulk equilibrium plasma. More particularly, the ions are produced and sustained in an ordered suprathermal state of existence above the average energy and velocity of the bulk equilibrium plasma by resonant rf energy injection in resonance with the natural frequency of one of the ion species. In one embodiment, the electromagnetic energy is injected to clamp the energy and velocity of one of the ion species so that the ion energy is increased, sustained, prolonged and continued in a suprathermal ordered state of existence containing appreciable stored energy that counteracts the slowing down effects of the bulk equilibrium plasma drag. Thus, selective deuteron absorption may be used for ion-tail creation by radio-frequency excitation alone. Also, the rf can be used to increase the fusion output of a two-component neutral injected plasma by selective heating of the injected deuterons.

Jassby, Daniel L. (Princeton, NJ); Hooke, William M. (Princeton, NJ)

1977-01-01T23:59:59.000Z

325

Reactive Air Brazing of Nicrofer-6025HT to BSCF for Oxygen ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Oxygen separation membranes can be used to provide oxygen for ... with an oxide component that promotes wetting of ceramic materials.

326

Study of Ion Cooling and Ejection from Two Stage Linear Quadrupole Ion Trap consisted of RFQ ion guides  

NLE Websites -- All DOE Office Websites (Extended Search)

Ion Cooling and Ejection from Two Stage Linear Quadrupole Ion Trap consisted of RFQ ion guides Ion Cooling and Ejection from Two Stage Linear Quadrupole Ion Trap consisted of RFQ ion guides Kozlovskiy V.I., Filatov V. V., Shchepunov (UNIRIB, O.R.A.U. Oak Ridge, TN, USA) V. A., Brusov V. S., Pikhtelev A. R., Zelenov V. V. Introduction The primary objective of this work concerns linear quadrupole ion traps, which are commonly used to interface a continuous ion beam from an external source with a mass analyzer, requiring bunched or pulsed beams. We assume that the ions prepared for mass analysis, are well spatially shaped, and normalized by ion kinetic energy. (Slava, I don't understand the meaning of the previous sentence - I wrote it as I interpreted what you are saying - I may be all wrong) In our work, such a device was developed and built to interface a source of continuous ion beams and a

327

Field Asymmetric Ion Mobility Spectrometry (FAIMS ...  

Summary. Field asymmetric Ion mobility spectrometry (FAIMS), wherein ions are separated and/or characterized by differences in their mobility in high ...

328

Construction of an Ion Imaging Apparatus.  

E-Print Network (OSTI)

??Conventional ion imaging techniques utilized grid electrodes to extract and to accelerate ions toward the detector. The disadvantages of grid electrodes caused transmission reduction, severe… (more)

Yu, Chih-Shian

2002-01-01T23:59:59.000Z

329

Ion transport through cell membrane channels  

E-Print Network (OSTI)

We discuss various models of ion transport through cell membrane channels. Recent experimental data shows that sizes of ion channels are compared to those of ions and that only few ions may be simultaneously in any single channel. Theoretical description of ion transport in such channels should therefore take into account interactions between ions and between ions and channel proteins. This is not satisfied by macroscopic continuum models based on Poisson-Nernst-Planck equations. More realistic descriptions of ion transport are offered by microscopic Brownian and molecular dynamics. One should also take into account a dynamical character of the channel structure. This is not yet addressed in the literature

Jan Gomulkiewicz; Jacek Miekisz; Stanislaw Miekisz

2007-06-05T23:59:59.000Z

330

Selective Ion Source for Semiconductor Devices  

Berkeley National Laboratory's new selective ion source produces a beam of boron, arsenic or phosphorus ions from plasma that is essentially free of ...

331

SYNCHROTRONS FOR HEAVY IONS - BEVALAC EXPERIENCE  

E-Print Network (OSTI)

Heavy Ions ir. Medical and Scientific Research", Edmonton,Heavy Ions in Medical and Scientific Research" Edmonton,vigorous medical and nuclear science research groups. The

Grunder, H.A.

2010-01-01T23:59:59.000Z

332

High Current Ion Sources and Injectors for Heavy Ion Fusion  

E-Print Network (OSTI)

2001). [40] L.R. Grisham, Fusion Sci. & Tech. 43, 191, (Symp. on Heavy Ion Inertial Fusion, Princeton, New Jersey,Sept. 6-9, 1995; in Fusion Engineering and Design, 32-33,

Kwan, Joe W.

2005-01-01T23:59:59.000Z

333

Heavy ion fusion--Using heavy ions to make electricity  

E-Print Network (OSTI)

for a practical fusion power reactor. HIF is the only fusionenter the reactor chamber, and focus Heavy Ion Fusion ontoengineering test reactor. The promise of fusion as a power

Celata, C.M.

2004-01-01T23:59:59.000Z

334

Design Principles for Oxygen-Reduction Activity on Perovskite Oxide Catalysts for Fuel Cells and Metal-air Batteries  

DOE Green Energy (OSTI)

The prohibitive cost and scarcity of the noble-metal catalysts needed for catalysing the oxygen reduction reaction (ORR) in fuel cells and metal-air batteries limit the commercialization of these clean-energy technologies. Identifying a catalyst design principle that links material properties to the catalytic activity can accelerate the search for highly active and abundant transition-metal-oxide catalysts to replace platinum. Here, we demonstrate that the ORR activity for oxide catalysts primarily correlates to {sigma}*-orbital (e{sub g}) occupation and the extent of B-site transition-metal-oxygen covalency, which serves as a secondary activity descriptor. Our findings reflect the critical influences of the {sigma}* orbital and metal-oxygen covalency on the competition between O{sub 2}{sup 2-}/OH{sup -} displacement and OH{sup -} regeneration on surface transition-metal ions as the rate-limiting steps of the ORR, and thus highlight the importance of electronic structure in controlling oxide catalytic activity.

J Suntivich; H Gasteiger; N Yabuuchi; H Nakanishi; J Goodenough; Y Shao-Horn

2011-12-31T23:59:59.000Z

335

Heavy Ion Collisions at RHIC  

NLE Websites -- All DOE Office Websites (Extended Search)

at Heavy Ion Colliders at Heavy Ion Colliders Theory Drivers & View from LHC Urs Achim Wiedemann CERN PH-TH NSAC Implementation Subcommittee Hearings 7 September 2012 Heavy Ion Physics - Main Tools of Theorists Understanding properties of hot and dense matter from the elementary interactions in QCD High Energy Physics String Theory Computational Physics Fluid Dynamics Dissipative fluid dynamic description * Based on: E-p conservation: 2 nd law of thermodynamics: * Sensitive to properties of matter that are calculated from first principles in quantum field theory - EOS: and sound velocity - transport coefficients: shear , bulk viscosity, conductivities ...

336

Extraction and Acceleration of Ions from an Ion-Ion Plasma  

Science Conference Proceedings (OSTI)

Extraction and acceleration of positive and negative ions from a strong electronegative plasma and from an ion-ion plasma is investigated in the PEGASES thruster, working with SF{sub 6}. The plasma is generated in a cylindrical quartz tube terminated by metallic endplates. The electrons are confined by a static magnetic field along the axis of the cylinder. The electron mobility along the field is high and the electrons are determining the sheaths in front of the endplates. The core plasma potential can therefore be controlled by the bias applied to the endplates. An ion-ion plasma forms at the periphery as a result of electron confinement and ions can freely diffuse along the perpendicular direction or extraction axis. Langmuir probe and RFEA measurements are carried out along this axis. The measured ion energy distributions shows a single peak centered around a potential consistent with the plasma potential and the peak position could be controlled with a positive voltage applied to the endplates. When the endplates are biased negatively, the plasma potential saturates and remained close to 15 V. A beam of negatively charged particles can be observed under certain conditions when the endplates were biased negatively.

Popelier, Lara; Aanesland, Ane; Chabert, Pascal [Laboratoire de Physique des Plasmas - Ecole Polytechnique, Route de Saclay, 91128 Palaiseau (France)

2011-09-26T23:59:59.000Z

337

ION Engineering | Open Energy Information  

Open Energy Info (EERE)

ION Engineering ION Engineering Jump to: navigation, search Name ION Engineering Place Boulder, Colorado Zip 80301 Sector Carbon Product ION is the first clean-tech company to successfully integrate ionic liquids in solutions to capture carbon and other contaminants from gases Coordinates 42.74962°, -109.714163° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.74962,"lon":-109.714163,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

338

Low-pressure ion source  

DOE Patents (OSTI)

A low pressure ion source for a neutron source comprises a filament cathode and an anode ring. Approximately 150V is applied between the cathode and the anode. Other electrodes, including a heat shield, a reflector and an aperture plate with a focus electrode, are placed at intermediate potentials. Electrons from the filament drawn out by the plasma and eventually removed by the anode are contained in a magnetic field created by a magnet ring. Ions are formed by electron impact with deuterium or tritium and are extracted at the aperture in the focus electrode. The ion source will typically generate a 200 mA beam through a 1.25 cm/sup 2/ aperture for an arc current of 10A. For deuterium gas, the ion beam is over 50 percent D/sup +/ with less than 1% impurity. The current density profile across the aperture will typically be uniform to within 20%.

Bacon, F.M.; Brainard, J.P.; O' Hagan, J.B.; Walko, R.J.

1982-10-27T23:59:59.000Z

339

RHIC | Relativistic Heavy Ion Collider  

NLE Websites -- All DOE Office Websites (Extended Search)

indicate that collisions of small particles with large gold nuclei at the Relativistic Heavy Ion Collider may be serving up miniscule servings of hot quark-gluon plasma. RHIC...

340

Relativistic Heavy Ion Collider, RHIC  

NLE Websites -- All DOE Office Websites (Extended Search)

The Relativistic Heavy Ion Collider website has moved to www.bnl.govrhicdefault.asp Sponsored by the U.S. Department of Energy Office of Science, Office of Nuclear Physics. Last...

Note: This page contains sample records for the topic "oxygen ions miec" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Metal-Ion-Mediated Reactions  

NLE Websites -- All DOE Office Websites (Extended Search)

Metal-Ion-Mediated Reactions Metal-Ion-Mediated Reactions Metal-Ion-Mediated Reactions Print Monday, 19 December 2011 18:29 While mononuclear, polynuclear, and polymeric metal complexes are most often synthesized by the reaction of a metal precursor and a presynthesized organic ligand, it is also possible to generate the ligand in situ from an easily available organic compound. This approach allows the reactivity of the metal ion to activate a proligand, transforming it through an in situ reaction, sometimes providing coordination compounds with ligands not accessible by conventional organic synthesis. The intense interest in the reactivity of coordinated ligands is mainly due to the necessity of interpreting the mechanisms of homogeneous metal-catalyzed processes, in which a substrate is activated upon its coordination to one or more metal sites. A coordinated oxime group contains three active sites (C, N, O) for reactivity.

342

METHOD OF REMOVING STRONTIUM IONS  

DOE Patents (OSTI)

A method is given for removing trace amounts of Sr/sup 90/ from solutions. Phosphate ion is added to the solution and it is then brought into contact with a solid salt such as calcium carbonate which will react methathetically with the phosphate ion to form a salt such as calcium phosphate. During this reaction, strontium will be absorbed to a high degree within the newly formed lattice. (AEC)

Rhodes, D.W.; McHenry, J.R.; Ames, L.L. Jr.

1962-05-01T23:59:59.000Z

343

Structure and energetics of solvated ferrous and ferric ions: Car-Parrinello molecular dynamics in the DFT+U formalism  

E-Print Network (OSTI)

We implemented a rotationally-invariant Hubbard U extension to density-functional theory in the Car-Parrinello molecular dynamics framework, with the goal of bringing the accuracy of the DFT+U approach to finite-temperature simulations, especially for liquids or solids containing transition-metal ions. First, we studied the effects on the Hubbard U on the static equilibrium structure of the hexa-aqua ferrous and ferric ions, and the inner-sphere reorganization energy for the electron-transfer reaction between aqueous ferrous and ferric ions. It is found that the reorganization energy is increased, mostly as a result of the Fe-O distance elongation in the hexa-aqua ferrous ion. Second, we performed a first-principles molecular dynamics study of the solvation structure of the two aqueous ferrous and ferric ions. The Hubbard term is found to change the Fe-O radial distribution function for the ferrous ion, while having a negligible effect on the aqueous ferric ion. Moreover, the frequencies of vibrations between Fe and oxygen atoms in the first-solvation shell are shown to be unaffected by the Hubbard corrections for both ferrous and ferric ions.

P. H. -L. Sit; Matteo Cococcioni; Nicola Marzari

2007-01-12T23:59:59.000Z

344

Ion Bernstein wave heating research  

SciTech Connect

Ion Bernstein wave heating (IBWH) utilizes the ion Bernstein wave (IBW), a hot plasma wave, to carry the radio frequency (rf) power to heat tokamak reactor core. Earlier wave accessibility studies have shown that this finite-Larmor-radius (FLR) mode should penetrate into a hot dense reactor plasma core without significant attenuation. Moreover, the IBW`s low phase velocity ({omega}/k{sub {perpendicular}} {approx} V{sub Ti} {much_lt} V{sub {alpha}}) greatly reduces the otherwise serious wave absorption by the 3.5 MeV fusion {alpha}-particles. In addition, the property of IBW`s that k{sub {perpendicular}} {rho}{sub i} {approx} 1 makes localized bulk ion heating possible at the ion cyclotron harmonic layers. Such bulk ion heating can prove useful in optimizing fusion reactivity. In another vein, with proper selection of parameters, IBW`s can be made subject to strong localized electron Landau damping near the major ion cyclotron harmonic resonance layers. This property can be useful, for example, for rf current drive in the reactor plasma core. This paper discusses this research.

Ono, Masayuki

1992-03-01T23:59:59.000Z

345

Ion Bernstein wave heating research  

Science Conference Proceedings (OSTI)

Ion Bernstein wave heating (IBWH) utilizes the ion Bernstein wave (IBW), a hot plasma wave, to carry the radio frequency (rf) power to heat tokamak reactor core. Earlier wave accessibility studies have shown that this finite-Larmor-radius (FLR) mode should penetrate into a hot dense reactor plasma core without significant attenuation. Moreover, the IBW's low phase velocity ({omega}/k{sub {perpendicular}} {approx} V{sub Ti} {much lt} V{sub {alpha}}) greatly reduces the otherwise serious wave absorption by the 3.5 MeV fusion {alpha}-particles. In addition, the property of IBW's that k{sub {perpendicular}} {rho}{sub i} {approx} 1 makes localized bulk ion heating possible at the ion cyclotron harmonic layers. Such bulk ion heating can prove useful in optimizing fusion reactivity. In another vein, with proper selection of parameters, IBW's can be made subject to strong localized electron Landau damping near the major ion cyclotron harmonic resonance layers. This property can be useful, for example, for rf current drive in the reactor plasma core. This paper discusses this research.

Ono, Masayuki.

1992-03-01T23:59:59.000Z

346

Electron multiplier-ion detector system  

DOE Patents (OSTI)

This patent relates to an improved ion detector for use in mass spectrometers for pulse counting signal ions which may have a positive or a negative charge. The invention combines a novel electron multiplier with a scintillator type of ion detector. It is a high vacuum, high voltage device intended for use in ion microprobe mass spectrometers. (auth)

Dietz, L.A.

1975-08-01T23:59:59.000Z

347

Oxygen electrode reaction in molten carbonate fuel cells  

DOE Green Energy (OSTI)

Molten carbonate fuel cell system is a leading candidate for the utility power generation because of its high efficiency for fuel to AC power conversion, capability for an internal reforming, and a very low environmental impact. However, the performance of the molten carbonate fuel cell is limited by the oxygen reduction reaction and the cell life time is limited by the stability of the cathode material. An elucidation of oxygen reduction reaction in molten alkali carbonate is essential because overpotential losses in the molten carbonate fuel cell are considerably greater at the oxygen cathode than at the fuel anode. Oxygen reduction on a fully-immersed gold electrode in a lithium carbonate melt was investigated by electrochemical impedance spectroscopy and cyclic voltammetry to determine electrode kinetic and mass transfer parameters. The dependences of electrode kinetic and mass transfer parameters on gas composition and temperature were examined to determine the reaction orders and the activation energies. The results showed that oxygen reduction in a pure lithium carbonate melt occurs via the peroxide mechanism. A mass transfer parameter, D{sub O}{sup 1/2}C{sub O}, estimated by the cyclic voltammetry concurred with that calculated by the EIS technique. The temperature dependence of the exchange current density and the product D{sub O}{sup 1/2}C{sub O} were examined and the apparent activation energies were determined to be about 122 and 175 kJ/ mol, respectively.

Appleby, A.J.; White, R.E.

1992-07-07T23:59:59.000Z

348

Dual mode ion mobility spectrometer and method for ion mobility spectrometry  

DOE Patents (OSTI)

Ion mobility spectrometer apparatus may include an ion interface that is operable to hold positive and negative ions and to simultaneously release positive and negative ions through respective positive and negative ion ports. A first drift chamber is operatively associated with the positive ion port of the ion interface and encloses an electric field therein. A first ion detector operatively associated with the first drift chamber detects positive ions from the first drift chamber. A second drift chamber is operatively associated with the negative ion port of the ion interface and encloses an electric field therein. A second ion detector operatively associated with the second drift chamber detects negative ions from said second drift chamber.

Scott, Jill R [Idaho Falls, ID; Dahl, David A [Idaho Falls, ID; Miller, Carla J [Idaho Falls, ID; Tremblay, Paul L [Idaho Falls, ID; McJunkin, Timothy R [Idaho Falls, ID

2007-08-21T23:59:59.000Z

349

Electrostatic ion waves in non-Maxwellian pair-ion plasmas  

SciTech Connect

The electrostatic ion waves are studied for non-Maxwellian or Lorentzian distributed unmagnetized pair-ion plasmas. The Vlasov equation is solved and damping rates are calculated for electrostatic waves in Lorentzian pair-ion plasmas. The damping rates of the electrostatic ion waves are studied for the equal and different ion temperatures of pair-ion species. It is found that the Landau damping rate of the ion plasma wave is increased in Lorentzian plasmas in comparison with Maxwellian pair-ion plasmas. The numerical results are also presented for illustration by taking into account the parameters reported in fullerene pair-ion plasma experiments.

Arshad, Kashif [Department of Physics, Quaid-i-Azam University, Islamabad 44000 (Pakistan); National Centre for Physics, Quaid-i-Azam University Campus, Shadhra Valley Road, Islamabad 44000 (Pakistan); Mahmood, S. [Theoretical Plasma Physics Division, PINSTECH, P.O. Nilore, Islamabad 44000 (Pakistan); National Centre for Physics, Quaid-i-Azam University Campus, Shadhra Valley Road, Islamabad 44000 (Pakistan)

2010-12-15T23:59:59.000Z

350

Isotopic Effect on Ion Mobility and Separation of Isotopomers by High-Field Ion Mobility  

E-Print Network (OSTI)

Isotopic Effect on Ion Mobility and Separation of Isotopomers by High-Field Ion Mobility ions, including isotopomers and isobars, using ion mobility spectrometry (IMS), specifically, the field about the ion geometry, potentially enabling a new approach to molecular structure characterization

Clemmer, David E.

351

Cyclotron axial ion-beam-buncher system  

DOE Patents (OSTI)

Adiabatic ion bunching is achieved in a cyclotron axial ion injection system through the incorporation of a radio frequency quadrupole system, which receives ions from an external ion source via an accelerate-decelerate system and a focusing einzel lens system, and which adiabatically bunches and then injects the ions into the median plane of a cyclotron via an electrostatic quadrupole system and an inflection mirror.

Hamm, R.W.; Swenson, D.A.; Wangler, T.P.

1982-02-11T23:59:59.000Z

352

Method and apparatus for producing oxygenates from hydrocarbons  

DOE Patents (OSTI)

A chemical reactor for oxygenating hydrocarbons includes: a) a dielectric barrier discharge plasma cell, the plasma cell comprising a pair of electrodes having a dielectric material and void therebetween, the plasma cell comprising a hydrocarbon gas inlet feeding to the void; b) a solid oxide electrochemical cell, the electrochemical cell comprising a solid oxide electrolyte positioned between a porous cathode and a porous anode, an oxygen containing gas inlet stream feeding to the porous cathode side of the electrochemical cell; c) a first gas passageway feeding from the void to the anode side of the electrochemical cell; and d) a gas outlet feeding from the anode side of the electrochemical cell to expel reaction products from the chemical reactor. A method of oxygenating hydrocarbons is also disclosed.

Kong, Peter C. (Idaho Falls, ID); Lessing, Paul A. (Idaho Falls, ID)

1995-01-01T23:59:59.000Z

353

Fuel and oxygen addition for metal smelting or refining process  

DOE Patents (OSTI)

A furnace for smelting iron ore and/or refining molten iron is equipped with an overhead pneumatic lance, through which a center stream of particulate coal is ejected at high velocity into a slag layer. An annular stream of nitrogen or argon enshrouds the coal stream. Oxygen is simultaneously ejected in an annular stream encircling the inert gas stream. The interposition of the inert gas stream between the coal and oxygen streams prevents the volatile matter in the coal from combusting before it reaches the slag layer. Heat of combustion is thus more efficiently delivered to the slag, where it is needed to sustain the desired reactions occurring there. A second stream of lower velocity oxygen can be delivered through an outermost annulus to react with carbon monoxide gas rising from slag layer, thereby adding still more heat to the furnace. 7 figs.

Schlichting, M.R.

1994-11-22T23:59:59.000Z

354

Evolution of Photosynthesis and Biospheric Oxygenation Contingent Upon Nitrogen Fixation?  

E-Print Network (OSTI)

How photosynthesis by Precambrian cyanobacteria oxygenated Earth's biosphere remains incompletely understood. Here it is argued that the oxic transition, which took place between approximately 2.3 and 0.5 Gyr ago, required a great proliferation of cyanobacteria, and this in turn depended on their ability to fix nitrogen via the nitrogenase enzyme system. However, the ability to fix nitrogen was not a panacea, and the rate of biospheric oxygenation may still have been affected by nitrogen constraints on cyanobacterial expansion. Evidence is presented for why cyanobacteria probably have a great need for fixed nitrogen than other prokaryotes, underscoring the importance of their ability to fix nitrogen. The connection between nitrogen fixation and the evolution of photosynthesis is demonstrated by the similarities between nitrogenase and enzymes critical for the biosynthesis of (bacterio)chlorophyll. It is hypothesized that biospheric oxygenation would not have occurred if the emergence of cyanobacteria had not ...

Grula, J W

2006-01-01T23:59:59.000Z

355

Evaluation of oxygen-enrichment system for alternative fuel vehicles  

DOE Green Energy (OSTI)

This report presents results on the reduction in exhaust emissions achieved by using oxygen-enriched intake air on a flexible fuel vehicle (FFV) that used Indolene and M85 as test fuels. The standard federal test procedure (FTP) and the US Environmental Protection Agency`s (EPA`s) off-cycle (REP05) test were followed. The report also provides a review of literature on the oxygen membrane device and design considerations. It presents information on the sources and contributions of cold-phase emissions to the overall exhaust emissions from light-duty vehicles (LDVs) and on the various emission standards and present-day control technologies under consideration. The effects of oxygen-enriched intake air on FTP and off-cycle emissions are discussed on the basis of test results. Conclusions are drawn from the results and discussion, and different approaches for the practical application of this technology in LDVs are recommended.

Poola, R.B.; Sekar, R.R.; Ng, H.K.

1995-12-01T23:59:59.000Z

356

Transition metal ion-assisted photochemical generation of alkyl halides and hydrocarbons from carboxylic acids  

Science Conference Proceedings (OSTI)

Near-UV photolysis of aqueous solutions of propionic acid and aqueous Fe3+ in the absence of oxygen generates a mixture of hydrocarbons (ethane, ethylene and butane), carbon dioxide, and Fe2+. The reaction becomes mildly catalytic (about five turnovers) in the presence of oxygen which converts a portion of alkyl radicals to oxidizing intermediates that reoxidize Fe2+. The photochemistry in the presence of halide ions (X? = Cl?, Br?) generates ethyl halides via halogen atom abstraction from FeXn3?n by ethyl radicals. Near-quantitative yields of C2H5X are obtained at ?0.05 M X?. Competition experiments with Co(NH3)5Br2+ provided kinetic data for the reaction of ethyl radicals with FeCl2+ (k = (4.0 ± 0.5) × 106 M?1 s?1) and with FeBr2+ (k = (3.0 ± 0.5) × 107 M?1 s?1). Photochemical decarboxylation of propionic acid in the presence of Cu2+ generates ethylene and Cu+. Longer-chain acids also yield alpha olefins as exclusive products. These reactions become catalytic under constant purge with oxygen which plays a dual role. It reoxidizes Cu+ to Cu2+, and removes gaseous olefins to prevent accumulation of Cu+(olefin) complexes and depletion of Cu2+. The results underscore the profound effect that the choice of metal ions, the medium, and reaction conditions exert on the photochemistry of carboxylic acids.

Carraher, Jack; Pestovsky, Oleg; Bakac, Andreja

2012-03-14T23:59:59.000Z

357

Three chamber negative ion source  

DOE Patents (OSTI)

A negative ion vessel is divided into an excitation chamber, a negative ionization chamber and an extraction chamber by two magnetic filters. Input means introduces neutral molecules into a first chamber where a first electron discharge means vibrationally excites the molecules which migrate to a second chamber. In the second chamber a second electron discharge means ionizes the molecules, producing negative ions which are extracted into or by a third chamber. A first magnetic filter prevents high energy electrons from entering the negative ionization chamber from the excitation chamber. A second magnetic filter prevents high energy electrons from entering the extraction chamber from the negative ionizing chamber. An extraction grid at the end of the negative ion vessel attracts negative ions into the third chamber and accelerates them. Another grid, located adjacent to the extraction grid, carries a small positive voltage in order to inhibit positive ions from migrating into the extraction chamber and contour the plasma potential. Additional electrons can be suppressed from the output flux using ExB forces provided by magnetic field means and the extractor grid electric potential.

Leung, Ka-Ngo (Hercules, CA); Ehlers, Kenneth W. (Alamo, CA); Hiskes, John R. (Livermore, CA)

1985-01-01T23:59:59.000Z

358

Epitaxial oxygen sponges as low temperature catalysts | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Functional Materials for Energy Functional Materials for Energy Epitaxial oxygen sponges as low temperature catalysts September 10, 2013 Crystal structure of SrCoO2.5 superimposed on a scanning transmission electron microscopy image of an epitaxially stabilized oxygen sponge. Fast and reversible redox reactions at considerably reduced temperatures are achieved by epitaxial stabilization of multivalent transition metal oxides. This illustrates the unprecedented potential of complex oxides for oxide-ionics, where oxidation state changes are used for energy generation, storage and electrochemical sensing. Thermomechanical degradation reduces the overall performance and lifetime of many perovskite oxides undergoing reversible redox reactions, such as those found in solid oxide fuel cells, rechargeable batteries,

359

Homogeneously catalyzed synthesis gas transformations to oxygenate fuels  

DOE Green Energy (OSTI)

At Brookhaven National Laboratory (BNL), the ongoing oxygenates synthesis program is addressing the catalytic synthesis gas conversion to liquid fuels and fuel additives. The major thrust of this effort is to enhance carbon conversion, reaction rates, product selectivity and overall process efficiency. To this effect, a series of liquid phase homogeneous catalysts have been developed and successfully utilized in the synthesis of methanol and other oxygenates. This paper identifies advantages and uncertainties associated with these newly developed catalysts. The effect of system parameters on the overall process scheme is discussed.

Mahajan, D.; Mattas, L.; Sanchez, J.

1992-01-01T23:59:59.000Z

360

Homogeneously catalyzed synthesis gas transformations to oxygenate fuels  

DOE Green Energy (OSTI)

At Brookhaven National Laboratory (BNL), the ongoing oxygenates synthesis program is addressing the catalytic synthesis gas conversion to liquid fuels and fuel additives. The major thrust of this effort is to enhance carbon conversion, reaction rates, product selectivity and overall process efficiency. To this effect, a series of liquid phase homogeneous catalysts have been developed and successfully utilized in the synthesis of methanol and other oxygenates. This paper identifies advantages and uncertainties associated with these newly developed catalysts. The effect of system parameters on the overall process scheme is discussed.

Mahajan, D.; Mattas, L.; Sanchez, J.

1992-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxygen ions miec" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Study of heavy ion induced fission fragment angular and mass distribution at near and sub-coulomb barrier energies  

E-Print Network (OSTI)

The thesis presents investigations on the angular and mass distribution of fission fragments on heavy ion induced fission reactions. The present investigations address current issues in heavy ion induced fission reactions like finding the optimum entrance channel for the synthesis of super heavy elements (SHE). A double arm time of flight spectrometer over long flight path was used to measure the precise masses of complementary fission fragments. Necessary large area position sensitive gas detectors, the method of experiments and data analysis were developed. The first string of measurements were for a spherical target (209^Bi) with oxygen and fluorine projectiles. The next series of experiments were done using a deformed target (232^Th) with fluorine, oxygen and carbon projectiles.

T. K. Ghosh

2005-08-10T23:59:59.000Z

362

Voltage, Stability and Diffusion Barrier Differences between Sodium-ion and Lithium-ion Intercalation Materials  

E-Print Network (OSTI)

To evaluate the potential of Na-ion batteries, we contrast in this work the difference between Na-ion and Li-ion based intercalation chemistries in terms of three key battery properties—voltage, phase stability and diffusion ...

Ong, Shyue Ping

363

RHIC | Relativistic Heavy Ion Collider  

NLE Websites -- All DOE Office Websites (Extended Search)

Relativistic Heavy Ion Collider Relativistic Heavy Ion Collider Photo of LINAC The Relativistic Heavy Ion Collider (RHIC) is a world-class particle accelerator at Brookhaven National Laboratory where physicists are exploring the most fundamental forces and properties of matter and the early universe. RHIC accelerates beams of particles (e.g., the nuclei of heavy atoms such as gold) to nearly the speed of light, and smashes them together to recreate a state of matter thought to have existed immediately after the Big Bang some 13.8 billion years ago. STAR and PHENIX, two large detectors located around the 2.4-mile-circumference accelerator, take "snapshots" of these collisions to reveal a glimpse of the basic constituents of visible matter, quarks and gluons. Understanding matter at

364

RHIC | Relativistic Heavy Ion Collider  

NLE Websites -- All DOE Office Websites

Brookhaven National Laboratory Brookhaven National Laboratory search U.S. Department of Energy logo Home RHIC Science News Images Videos For Scientists Björn Schenke 490th Brookhaven Lecture, 12/18 Join Björn Schenke of Brookhaven Lab's Physics Department for the 490th Brookhaven Lecture, titled 'The Shape and Flow of Heavy Ion Collisions,' on Wednesday, Dec. 18, at 4 p.m. in Berkner Hall. droplets Tiny Drops of Hot Quark Soup-How Small Can They Be? New analyses indicate that collisions of small particles with large gold nuclei at the Relativistic Heavy Ion Collider may be serving up miniscule servings of hot quark-gluon plasma. RHIC Physics RHIC is the first machine in the world capable of colliding ions as heavy as gold. The Spin Puzzle RHIC is the world's only machine capable of colliding beams of polarized

365

Apparatus And Method For Hydrogen And Oxygen Mass Spectrometry...  

NLE Websites -- All DOE Office Websites (Extended Search)

Of The Terrestrial Magnetosphere A detector element for mass spectrometry of a flux of heavy and light ions. Available for thumbnail of Feynman Center (505) 665-9090 Email...

366

Effect of fast positive ions incident on caesiated plasma grid of negative ion source  

SciTech Connect

This paper describes the effect on negative ion formation on a caesiated surface of the backscattering of positive ions approaching it with energy of a few tens of eV. For a positive ion energy of 45 eV, the surface produced negative ion current density due to these fast positive ions is 12 times larger than that due to thermal atoms, thus dominating the negative ion surface production instead of the thermal atoms, as considered until now.

Bacal, M. [LPP, Ecole Polytechnique, Palaiseau, UPMC, Universite PARIS-SUD 11, UMR CNRS 7648 (France)

2012-02-15T23:59:59.000Z

367

Accelerators for heavy ion fusion  

SciTech Connect

Large fusion devices will almost certainly produce net energy. However, a successful commercial fusion energy system must also satisfy important engineering and economic constraints. Inertial confinement fusion power plants driven by multi-stage, heavy-ion accelerators appear capable of meeting these constraints. The reasons behind this promising outlook for heavy-ion fusion are given in this report. This report is based on the transcript of a talk presented at the Symposium on Lasers and Particle Beams for Fusion and Strategic Defense at the University of Rochester on April 17-19, 1985.

Bangerter, R.O.

1985-10-01T23:59:59.000Z

368

Classical confinement and outward convection of impurity ions in the MST RFP  

Science Conference Proceedings (OSTI)

Impurity ion dynamics measured with simultaneously high spatial and temporal resolution reveal classical ion transport in the reversed-field pinch. The boron, carbon, oxygen, and aluminum impurity ion density profiles are obtained in the Madison Symmetric Torus [R. N. Dexter et al., Fusion Technol. 19, 131 (1991)] using a fast, active charge-exchange-recombination-spectroscopy diagnostic. Measurements are made during improved-confinement plasmas obtained using inductive control of tearing instability to mitigate stochastic transport. At the onset of the transition to improved confinement, the impurity ion density profile becomes hollow, with a slow decay in the core region concurrent with an increase in the outer region, implying an outward convection of impurities. Impurity transport from Coulomb collisions in the reversed-field pinch is classical for all collisionality regimes, and analysis shows that the observed hollow profile and outward convection can be explained by the classical temperature screening mechanism. The profile agrees well with classical expectations. Experiments performed with impurity pellet injection provide further evidence for classical impurity ion confinement.

Kumar, S. T. A.; Den Hartog, D. J.; Mirnov, V. V.; Eilerman, S.; Nornberg, M.; Reusch, J. A.; Sarff, J. S. [Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Caspary, K. J.; Chapman, B. E.; Parke, E. [Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Magee, R. M. [Department of Physics, West Virginia University, Morgantown, WV 26506 (United States); Brower, D. L.; Ding, W. X.; Lin, L. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095 (United States); Craig, D. [Physics Department, Wheaton College, Wheaton, Illinois 60187 (United States); Fiksel, G. [Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Laboratory for Laser Energetics, University of Rochester, Rochester, New York (United States)

2012-05-15T23:59:59.000Z

369

Time profile of ion pulses produced in a hot-cavity laser ion source  

Science Conference Proceedings (OSTI)

The time spreads of Mn ions produced by three-photon resonant ionization in a hot-cavity laser ion source are measured. A one-dimensional ion-transport model is developed to simulate the observed ion time structures. Assuming ions are generated with a Maxwellian velocity distribution and are guided by an axial electric field, the predictions of the model agree reasonably well with the experimental data and suggest that the ions are radially confined in the ion source and a substantial fraction of the ions in the transport tube are extracted.

Liu, Y.; Beene, J. R.; Havener, C. C.; Vane, C. R. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Geppert, Ch.; Gottwald, T.; Kessler, T.; Wies, K.; Wendt, K. [Institut fuer Physik, Johannes Gutenberg-Universitaet Mainz, D-55099 Mainz (Germany)

2010-02-15T23:59:59.000Z

370

Ion-exchanged MnO2 nanoparticles as cathodes of lithium ion ...  

Science Conference Proceedings (OSTI)

Presentation Title, Ion-exchanged MnO2 nanoparticles as cathodes of lithium ion batteries at elevated temperatures. Author(s), Dawei Liu, Jasper Wright, Wei ...

371

Ion Sources for High Energy Ion Implantation at BNL | U.S. DOE...  

Office of Science (SC) Website

Ion Sources for High Energy Ion Implantation at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications SBIRSTTR...

372

Ion Sources for High Energy Ion Implantation at BNL | U.S. DOE...  

Office of Science (SC) Website

Ion Sources for High Energy Ion Implantation at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives...

373

Process for conversion of lignin to reformulated, partially oxygenated gasoline  

DOE Patents (OSTI)

A high-yield process for converting lignin into reformulated, partially oxygenated gasoline compositions of high quality is provided. The process is a two-stage catalytic reaction process that produces a reformulated, partially oxygenated gasoline product with a controlled amount of aromatics. In the first stage of the process, a lignin feed material is subjected to a base-catalyzed depolymerization reaction, followed by a selective hydrocracking reaction which utilizes a superacid catalyst to produce a high oxygen-content depolymerized lignin product mainly composed of alkylated phenols, alkylated alkoxyphenols, and alkylbenzenes. In the second stage of the process, the depolymerized lignin product is subjected to an exhaustive etherification reaction, optionally followed by a partial ring hydrogenation reaction, to produce a reformulated, partially oxygenated/etherified gasoline product, which includes a mixture of substituted phenyl/methyl ethers, cycloalkyl methyl ethers, C.sub.7 -C.sub.10 alkylbenzenes, C.sub.6 -C.sub.10 branched and multibranched paraffins, and alkylated and polyalkylated cycloalkanes.

Shabtai, Joseph S. (Salt Lake City, UT); Zmierczak, Wlodzimierz W. (Salt Lake City, UT); Chornet, Esteban (Golden, CO)

2001-01-09T23:59:59.000Z

374

Photosynthetic hydrogen and oxygen production by green algae  

SciTech Connect

An overview of photosynthetic hydrogen and oxygen production by green algae in the context of its potential as a renewable chemical feed stock and energy carrier is presented. Beginning with its discovery by Gaffron and Rubin in 1942, motivated by curiosity-driven laboratory research, studies were initiated in the early 1970s that focused on photosynthetic hydrogen production from an applied perspective. From a scientific and technical point of view, current research is focused on optimizing net thermodynamic conversion efficiencies represented by the Gibbs Free Energy of molecular hydrogen. The key research questions of maximizing hydrogen and oxygen production by light-activated water splitting in green algae are (1) removing the oxygen sensitivity of algal hydrogenases; (2) linearizing the light saturation curves of photosynthesis throughout the entire range of terrestrial solar irradiance--including the role of bicarbonate and carbon dioxide in optimization of photosynthetic electron transport and (3) the minimum number of light reactions that are required to split water to elemental hydrogen and oxygen. Each of these research topics is being actively addressed by the photobiological hydrogen research community.

Greenbaum, E.; Lee, J.W.

1997-12-31T23:59:59.000Z

375

Photosynthetic Hydrogen and Oxygen Production by Green Algae  

SciTech Connect

Photosynthesis research at Oak Ridge National Laboratory is focused on hydrogen and oxygen production by green algae in the context of its potential as a renewable fuel and chemical feed stock. Beginning with its discovery by Gaffron and Rubin in 1942, motivated by curiosity-driven laboratory research, studies were initiated in the early 1970s that focused on photosynthetic hydrogen production from an applied perspective. From a scientific and technical point of view, current research is focused on optimizing net thermodynamic conversion efficiencies represented by the Gibbs Free Energy of molecular hydrogen. The key research questions of maximizing hydrogen and oxygen production by light-activated water splitting in green algae are: (1) removing the oxygen sensitivity of algal hydrogenases; (2) linearizing the light saturation curves of hotosynthesis throughout the entire range of terrestrial solar irradiance-including the role of bicarbonate and carbon dioxide in optimization of photosynthetic electron transpor;t and (3) constructing real-world bioreactors, including the generation of hydrogen and oxygen against workable back pressures of the photoproduced gases.

Greenbaum, E.; Lee, J.W.

1999-08-22T23:59:59.000Z

376

Direct observation of oxygen superstructures in manganites S. Grenier,1  

E-Print Network (OSTI)

Direct observation of oxygen superstructures in manganites S. Grenier,1 K. J. Thomas,2 J. P. Hill,2). [9] D. Volja, et al., cond-mat:0704.1834v1 (2007). [10] S. Grenier, et al., Phys. Rev. B 75, 085101 (Materlik, Sparks and Fisher, 1994). [14] H. L. Ju, et al., Phys. Rev. Lett. 79, 3230 (1997). [15] J. Garc

Paris-Sud XI, Université de

377

Utilization of Renewable Oxygenates as Gasoline Blending Components  

SciTech Connect

This report reviews the use of higher alcohols and several cellulose-derived oxygenates as blend components in gasoline. Material compatibility issues are expected to be less severe for neat higher alcohols than for fuel-grade ethanol. Very little data exist on how blending higher alcohols or other oxygenates with gasoline affects ASTM Standard D4814 properties. Under the Clean Air Act, fuels used in the United States must be 'substantially similar' to fuels used in certification of cars for emission compliance. Waivers for the addition of higher alcohols at concentrations up to 3.7 wt% oxygen have been granted. Limited emission testing on pre-Tier 1 vehicles and research engines suggests that higher alcohols will reduce emissions of CO and organics, while NOx emissions will stay the same or increase. Most oxygenates can be used as octane improvers for standard gasoline stocks. The properties of 2-methyltetrahydrofuran, dimethylfuran, 2-methylfuran, methyl pentanoate and ethyl pentanoate suggest that they may function well as low-concentration blends with gasoline in standard vehicles and in higher concentrations in flex fuel vehicles.

Yanowitz, J.; Christensen, E.; McCormick, R. L.

2011-08-01T23:59:59.000Z

378

Blood storage device and method for oxygen removal  

DOE Patents (OSTI)

The present invention relates to a storage device and method for the long-term storage of blood and, more particularly, to a blood storage device and method capable of removing oxygen from the stored blood and thereby prolonging the storage life of the deoxygenated blood.

Bitensky, Mark W. (Waban, MA); Yoshida, Tatsuro (Newton, MA)

2000-01-01T23:59:59.000Z

379

Characteristics of Knock in Hydrogen-Oxygen-Argon SI Engine  

DOE Green Energy (OSTI)

A promising approach for improving the efficiency of internal combustion engines is to employ a working fluid with a high specific heat ratio such as the noble gas argon. Moreover, all harmful emissions are eliminated when the intake charge is composed of oxygen, nonreactive argon, and hydrogen fuel. Previous research demonstrated indicated thermal efficiencies greater than 45% at 5.5 compression ratio in engines operating with hydrogen, oxygen, and argon. However, knock limits spark advance and increasing the efficiency further. Conditions under which knock occurs in such engines differs from typical gasoline fueled engines. In-cylinder temperatures using hydrogen-oxygen-argon are higher due to the high specific heat ratio and pressures are lower because of the low compression ratio. Better understanding of knock under these conditions can lead to operating strategies that inhibit knock and allow operation closer to the knock limit. In this work we compare knock with a hydrogen, oxygen, and argon mixture to that of air-gasoline mixtures in a variable compression ratio cooperative fuels research (CFR) engine. The focus is on stability of knocking phenomena, as well as, amplitude and frequency of the resulting pressure waves.

Killingsworth, N; Rapp, V; Flowers, D; Aceves, S; Chen, J; Dibble, R

2010-02-23T23:59:59.000Z

380

Migration Mechanisms of Oxygen Interstitial Clusters in UO2  

Science Conference Proceedings (OSTI)

Understanding the migration kinetics of radiation-induced point defects and defect clusters is a key to predicting the microstructural evolution and mass transport in nuclear fuels. Although the diffusion kinetics of point defects in UO2 is well explored both experimentally and theoretically, the kinetics of defect clusters is not well understood. In this work the migration mechanisms of oxygen interstitial clusters of size one to five atoms (1Oi – 5Oi) in UO2 are investigated by temperature-accelerated dynamics simulations without any a priori assumptions of migration mechanisms. It is found that the migration paths of oxygen interstitial clusters are complex and non-intuitive and that multiple migration paths and barriers exist for some clusters. It is also found that the cluster migration barrier does not increase with increasing cluster size and its magnitude has the following order: 2Oi < 3Oi < 1Oi < 5Oi < 4Oi. Possible finite-size effects are checked with three different sized systems. The results show good agreement with other available experimental and theoretical data. In particular, the relatively large migration barriers of cuboctahedral clusters (4Oi and 5Oi) are in good agreement with the experimentally measured oxygen diffusion activation energy in U4O9, which is thought to contain many such clusters. The cluster migration sequence may explain the interesting relationship between the oxygen diffusivity and stoichiometry in UO2+x.

Xian-Ming Bai; Anter El-Azab; Jianguo Yu; Todd R. Allen

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxygen ions miec" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Supercritical Burning of Liquid Oxygen (LOX) Droplet with Detailed Chemistry  

E-Print Network (OSTI)

Supercritical Burning of Liquid Oxygen (LOX) Droplet with Detailed Chemistry J. DAOU,* P with diameter less than I pm vaporize before burning. A quasi-steady-like diffusion flame is then established is considered; temperature and pressure in the combustion chamber have a weak influence on the burning time

Heil, Matthias

382

Ion acoustic shock waves in degenerate plasmas  

SciTech Connect

Korteweg de Vries Burgers equation for negative ion degenerate dissipative plasma has been derived using reductive perturbation technique. The quantum hydrodynamic model is used to study the quantum ion acoustic shock waves. The effects of different parameters on quantum ion acoustic shock waves are studied. It is found that quantum parameter, electrons Fermi temperature, temperature of positive and negative ions, mass ratio of positive to negative ions, viscosity, and density ratio have significant impact on the shock wave structure in negative ion degenerate plasma.

Akhtar, N. [Theoretical Plasma Physics Division, PINSTECH, Nilore, Islamabad 44000 Pakistan (Pakistan); Hussain, S. [Theoretical Plasma Physics Division, PINSTECH, Nilore, Islamabad 44000 Pakistan (Pakistan); Department of Physics and Applied Mathematics, PIEAS, Nilore, Islamabad 44000 Pakistan (Pakistan)

2011-07-15T23:59:59.000Z

383

Ion mobility spectrometer with virtual aperture grid  

DOE Patents (OSTI)

An ion mobility spectrometer does not require a physical aperture grid to prevent premature ion detector response. The last electrodes adjacent to the ion collector (typically the last four or five) have an electrode pitch that is less than the width of the ion swarm and each of the adjacent electrodes is connected to a source of free charge, thereby providing a virtual aperture grid at the end of the drift region that shields the ion collector from the mirror current of the approaching ion swarm. The virtual aperture grid is less complex in assembly and function and is less sensitive to vibrations than the physical aperture grid.

Pfeifer, Kent B. (Los Lunas, NM); Rumpf, Arthur N. (Albuquerque, NM)

2010-11-23T23:59:59.000Z

384

Electrocatalysis of anodic and cathodic oxygen-transfer reactions  

SciTech Connect

The electrocatalysis of oxygen-transfer reactions is discussed in two parts. In Part I, the reduction of iodate (IO{sub 3}{sup {minus}}) is examined as an example of cathodic oxygen transfer. On oxide-covered Pt electrodes (PtO), a large cathodic current is observed in the presence of IO{sub 3}{sup {minus}} to coincide with the reduction of PtO. The total cathodic charge exceeds the amount required for reduction of PtO and IO{sub 3}{sup {minus}} to produce an adsorbed product. An electrocatalytic link between reduction of IO{sub 3}{sup {minus}} and reduction of PtO is indicated. In addition, on oxide-free Pt electrodes, the reduction of IO{sub 3}{sup {minus}} is determined to be sensitive to surface treatment. The electrocatalytic oxidation of CN{sup {minus}} is presented as an example of anodic oxygen transfer in Part II. The voltametric response of CN{sup {minus}} is virtually nonexistent at PbO{sub 2} electrodes. The response is significantly improved by doping PbO{sub 2} with Cu. Cyanide is also oxidized effectively at CuO-film electrodes. Copper is concluded to serve as an adsorption site for CN{sup {minus}}. It is proposed that an oxygen tunneling mechanism comparable to electron tunneling does not occur at the electrode-solution interface. The adsorption of CN{sup {minus}} is therefore considered to be a necessary prerequisite for oxygen transfer. 201 refs., 23 figs., 2 tabs.

Wels, B.R.

1990-09-21T23:59:59.000Z

385

Relative basicities of the oxygen sites in [V{sub 10}O{sub 28}]{sup 6-}. An analysis of the ab initio determined distributions of the electrostatic potential and of the Laplacian of charge density  

SciTech Connect

An ab initio SCF wave function has been generated for the ground state of the [V{sub 10}V{sub 28}]{sup 6-} ion, with a basis set of triple-zeta quality for the valence shell of oxygen. This wave function has been the starting point for theoretical studies on the relative basicities of the six external oxygen sites of the title ion in order to interpret the experimental findings concerning the preferred sites of proton fixation. The topology of the distribution of the electrostatic potentials (ESP) around the ion is deduced from the determination of V(r) in some specific planes and on spherical surfaces centered on each of the six oxygen sites. Several ESP minima not equivalent by symmetry have been characterized, most of them, but not all, lying in the vicinity of a specific oxygen atom. The two deepest nonequivalent ESP minima are associated with the two distinct sites, referred to as O{sub B} and O{sub C} undergoing protonation in [H{sub 3}V{sub 10}{sub 28}]{sup 3-}. An analysis of the Laplacian of the charge of density shows that the direction of the maxima in -{triangledown}{sup 2}p which characterize the local charge concentrations around the oxygen atoms, coincides within a few degrees with the direction of the ESP minima when existing, and with that of the protons in [H{sub 3}V{sub 10}O{sub 28}]{sup 3-} in the vicinity of sites O{sub B} and O{sub C}. 32 refs., 16 fig., 5 tab.

Kempf, J.Y.; Rohmer, M.M.; Poblet, J.M.; Bo, C.; Benard, M., [Universite Louis Pasteur, Strasbourg (France)

1992-02-12T23:59:59.000Z

386

ION SOURCE FOR A CALUTRON  

DOE Patents (OSTI)

This patent relates to ion sources and more particularly describes an ion source for a calutron which has the advantage of efficient production of an ion beam and long operation time without recharging. The source comprises an arc block provided with an arc chamber connected to a plurality of series-connected charge chambers and means for heating the charge within the chambers. A cathode is disposed at one end of the arc chamber and enclosed hy a vapor tight housing to protect the cathode. The arc discharge is set up between the cathode and the block due to a difference in potentials placed on these parts, and a magnetic field is aligned with the arc discharge. Cooling of the arc block is accomplished by passing coolant through a hollow stem secured at one end to the block and rotatably mounted at the other end through the wall of the calutron. The ions are removed through a slit in the arc chamber by accelerating electrodes.

Backus, J.G.

1957-12-24T23:59:59.000Z

387

Ion-induced nuclear radiotherapy  

DOE Patents (OSTI)

Ion-induced Nuclear Radiotherapy (INRT) is a technique for conducting radiosurgery and radiotherapy with a very high degree of control over the spatial extent of the irradiated volume and the delivered dose. Based upon the concept that low energy, ion induced atomic and nuclear reactions can be used to produce highly energetic reaction products at the site of a tumor, the INRT technique is implemented through the use of a conduit-needle or tube which conducts a low energy ion beam to a position above or within the intended treatment area. At the end of the conduit-needle or tube is a specially fabricated target which, only when struck by the ion beam, acts as a source of energetic radiation products. The inherent limitations in the energy, and therefore range, of the resulting reaction products limits the spatial extent of irradiation to a pre-defined volume about the point of reaction. Furthermore, since no damage is done to tissue outside this irradiated volume, the delivered dose may be made arbitrarily large. INRT may be used both as a point-source of radiation at the site of a small tumor, or as a topical bath of radiation to broad areas of diseased tissue.

Horn, Kevin M. (Albuquerque, NM); Doyle, Barney L. (Albuquerque, NM)

1996-01-01T23:59:59.000Z

388

Ion-induced nuclear radiotherapy  

DOE Patents (OSTI)

Ion-induced Nuclear Radiotherapy (INRT) is a technique for conducting radiosurgery and radiotherapy with a very high degree of control over the spatial extent of the irradiated volume and the delivered dose. Based upon the concept that low energy, ion induced atomic and nuclear reactions can be used to produce highly energetic reaction products at the site of a tumor, the INRT technique is implemented through the use of a conduit-needle or tube which conducts a low energy ion beam to a position above or within the intended treatment area. At the end of the conduit-needle or tube is a specially fabricated target which, only when struck by the ion beam, acts as a source of energetic radiation products. The inherent limitations in the energy, and therefore range, of the resulting reaction products limits the spatial extent of irradiation to a pre-defined volume about the point of reaction. Furthermore, since no damage is done to tissue outside this irradiated volume, the delivered dose may be made arbitrarily large. INRT may be used both as a point-source of radiation at the site of a small tumor, or as a topical bath of radiation to broad areas of diseased tissue. 25 figs.

Horn, K.M.; Doyle, B.L.

1996-08-20T23:59:59.000Z

389

Enhanced Lithium-Ion Intercalation Properties of V[subscript 2]O[subscript 5] Xerogel Electrodes with Surface Defects  

SciTech Connect

V{sub 2}O{sub 5} xerogel films were fabricated by casting V{sub 2}O{sub 5} sols onto fluorine-doped tin oxide (FTO) glass substrates and annealing at 300 C for 3 h in different annealing atmospheres of air and nitrogen. Films prepared in different annealing conditions possess different grain sizes and crystallinity, while the vanadium ion oxidation state also varies, as identified by X-ray absorption spectroscopy. A nitrogen annealing atmosphere induces the presence of defects, such as V{sup 4+} ions, and associated oxygen vacancies. Thus, the presence of defects, whether on the film surface or in the bulk, can be controlled by using air and nitrogen annealing atmospheres in the proper order. Electrochemical impedance analyses reveal enhanced charge-transfer conductivity in films with more V{sup 4+} and oxygen vacancies on the film surface, that is, a film annealed, first, for 0.5 h in air and then for 2.5 h in nitrogen. Lithium-ion intercalation measurements show that, at a charge/discharge current density of 600 mA g{sup -1}, this film possesses a noticeably better lithium-ion storage capability than films without surface defects. This sample starts with an initial discharge capacity of 139 mA h g{sup -1}, and the capacity increases slowly to a maximum value of 156 mA h g{sup -1} in the 15th cycle, followed by a mild capacity degradation in later cycles. After 50 cycles, the discharge capacity is still as high as 136 mA h g{sup -1}. A much improved lithium-ion intercalation capacity and cyclic stability are attributed to V{sup 4+} surface defects and associated oxygen vacancies introduced by N{sub 2} annealing.

Liu, Dawei; Liu, Yanyi; Pan, Anquiang; Nagle, Kenneth P.; Seidler, Gerald T.; Jeong, Yoon-Ha; Cao, Guozhong (UWASH); (POSTECH)

2011-09-15T23:59:59.000Z

390

The positive ion temperature effect in magnetized electronegative plasma sheath with two species of positive ions  

Science Conference Proceedings (OSTI)

The properties of a magnetized multi-component (two species of positive ions, negative ions and electrons) plasma sheath with finite positive ion temperature are studied. By using three fluid hydrodynamic model and some dimensionless variables, the ion (both lighter and heavier positive ions, and negative ions) densities, the ion (only for positive ions) velocities, and electric potential inside the sheath are investigated. In addition, the absence and presence of magnetic field and the orientation of magnetic field are considered. It is noticed that, with increase of positive ion temperature, the lighter positive ion density peaks increase only at the sheath edge and shift towards the sheath edge for both absence and presence of magnetic field. For heavier positive ions, in the absence of magnetic field, the density peaks increase at the sheath edge. But in the presence of magnetic field, the density fluctuations increase at the sheath edge. For both the cases, the density peaks shift towards the sheath edge.

Shaw, A. K. [Centre of Plasma Physics, Institute for Plasma Research, Sonapur-782 402, Guwahati, Assam (India); Institute for Plasma Research, Bhat, Gandhinagar-382 428, Gujarat (India); Kar, S. [Institute for Plasma Research, Bhat, Gandhinagar-382 428, Gujarat (India); Goswami, K. S. [Centre of Plasma Physics, Institute for Plasma Research, Sonapur-782 402, Guwahati, Assam (India)

2012-10-15T23:59:59.000Z

391

NIST Racetrack Ion Trap is a Contender in Quantum ...  

Science Conference Proceedings (OSTI)

... ion trap under development as possible hardware for a future quantum computer. ... loading of 10 magnesium ions at once and transport of an ion ...

2011-10-26T23:59:59.000Z

392

Controlled temperature expansion in oxygen production by molten alkali metal salts  

SciTech Connect

A continuous process is set forth for the production of oxygen from an oxygen containing gas stream, such as air, by contacting a feed gas stream with a molten solution of an oxygen acceptor to oxidize the acceptor and cyclically regenerating the oxidized acceptor by releasing oxygen from the acceptor wherein the oxygen-depleted gas stream from the contact zone is treated sequentially to temperature reduction by heat exchange against the feed stream so as to condense out entrained oxygen acceptor for recycle to the process, combustion of the gas stream with fuel to elevate its temperature and expansion of the combusted high temperature gas stream in a turbine to recover power.

Erickson, Donald C. (Annapolis)

1985-06-04T23:59:59.000Z

393

IMPACT OF OXYGENATED FUEL ON DIESEL ENGINE PERFORMANCE AND EMISSIONS  

DOE Green Energy (OSTI)

As evidenced by recent lawsuits brought against operators of large diesel truck fleets [1] and by the Consent Decree brought against the heavy-duty diesel manufacturers [2], the environmental and health effects of diesel engine emissions continue to be a significant concern. Reduction of diesel engine emissions has traditionally been achieved through a combination of fuel system, combustion chamber, and engine control modifications [3]. Catalytic aftertreatment has become common on modern diesel vehicles, with the predominant device being the diesel oxidation catalytic converter [3]. To enable advanced after-treatment devices and to directly reduce emissions, significant recent interest has focused on reformulation of diesel fuel, particularly the reduction of sulfur content. The EPA has man-dated that diesel fuel will have only 15 ppm sulfur content by 2007, with current diesel specifications requiring around 300 ppm [4]. Reduction of sulfur will permit sulfur-sensitive aftertreatment devices, continuously regenerating particulate traps, NOx control catalysts, and plasma assisted catalysts to be implemented on diesel vehicles [4]. Another method of reformulating diesel fuel to reduce emissions is to incorporate oxygen in the fuel, as was done in the reformulation of gasoline. The use of methyl tertiary butyl ether (MTBE) in reformulated gasoline has resulted in contamination of water resources across the country [5]. Nonetheless, by relying on the lessons learned from MTBE, oxygenation of diesel fuel may be accomplished without compromising water quality. Oxygenation of diesel fuel offers the possibility of reducing particulate matter emissions significantly, even for the current fleet of diesel vehicles. The mechanism by which oxygen content leads to particulate matter reductions is still under debate, but recent evidence shows clearly that ''smokeless'' engine operation is possible when the oxygen content of diesel fuel reaches roughly 38% by weight [6]. The potential improvements in energy efficiency within the transportation section, particularly in sport utility vehicles and light-duty trucks, that can be provided by deployment of diesel engines in passenger cars and trucks is a strong incentive to develop cleaner burning diesel engines and cleaner burning fuels for diesel engines. Thus, serious consideration of oxygenated diesel fuels is of significant practical interest and value to society. In the present work, a diesel fuel reformulating agent, CETANERTM, has been examined in a popular light-medium duty turbodiesel engine over a range of blending ratios. This additive is a mixture of glycol ethers and can be produced from dimethyl ether, which itself can be manufactured from synthesis gas using Air Products' Liquid Phase Dimethyl Ether (LPDME TM) technology. CETANERTM is a liquid, has an oxygen content of 36 wt.%, has a cetane number over 100 and is highly miscible in diesel fuel. This combination of physical and chemical properties makes CETANERTM an attractive agent for oxygenating diesel fuel. The present study considered CETANERTM ratios from 0 to 40 wt.% in a California Air Resources Board (CARB) specification diesel fuel. Particulate matter emissions, gaseous emissions and in-cylinder pressure traces were monitored over the AVL 8-Mode engine test protocol [7]. This paper presents the results from these measurements and discusses the implications of using high cetane number oxygenates in diesel fuel reformulation.

Boehman, Andre L.

2000-08-20T23:59:59.000Z

394

Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields  

E-Print Network (OSTI)

of positive and negative chlorine ions, with only a smalltest case. We chose chlorine because, unlike iodine orTwo sets of experiments with chlorine using different RF ion

Kwan, J.W.

2008-01-01T23:59:59.000Z

395

Hadron Production in Heavy Ion Collisions  

E-Print Network (OSTI)

2A GeV 3 Hadron Production from AGS to RHIC 3.1 SystematicsHadron Production in Heavy Ion Collisions Hans Georg RitterAC02- 05CH11231. Hadron Production in Heavy Ion Collisions

Ritter, Hans Georg

2009-01-01T23:59:59.000Z

396

Negative ion formation processes: A general review  

SciTech Connect

The principal negative ion formation processes will be briefly reviewed. Primary emphasis will be placed on the more efficient and universal processes of charge transfer and secondary ion formation through non-thermodynamic surface ionization. 86 refs., 20 figs.

Alton, G.D.

1990-01-01T23:59:59.000Z

397

Zero Emission Power Plants Using Solid Oxide Fuel Cells and Oxygen Transport Membranes  

DOE Green Energy (OSTI)

Siemens Westinghouse Power Corp. (SWPC) is engaged in the development of Solid Oxide Fuel Cell stationary power systems. SWPC has combined DOE Developmental funds with commercial customer funding to establish a record of successful SOFC field demonstration power systems of increasing size. SWPC will soon deploy the first unit of a newly developed 250 kWe Combined Heat Power System. It will generate electrical power at greater than 45% electrical efficiency. The SWPC SOFC power systems are equipped to operate on lower number hydrocarbon fuels such as pipeline natural gas, which is desulfurized within the SOFC power system. Because the system operates with a relatively high electrical efficiency, the CO2 emissions, {approx}1.0 lb CO2/ kW-hr, are low. Within the SOFC module the desulfurized fuel is utilized electrochemically and oxidized below the temperature for NOx generation. Therefore the NOx and SOx emissions for the SOFC power generation system are near negligible. The byproducts of the power generation from hydrocarbon fuels that are released into the environment are CO2 and water vapor. This forward looking DOE sponsored Vision 21 program is supporting the development of methods to capture and sequester the CO2, resulting in a Zero Emission power generation system. To accomplish this, SWPC is developing a SOFC module design, to be demonstrated in operating hardware, that will maintain separation of the fuel cell anode gas, consisting of H2, CO, H2O and CO2, from the vitiated air. That anode gas, the depleted fuel stream, containing less than 18% (H2 + CO), will be directed to an Oxygen Transport Membrane (OTM) Afterburner that is being developed by Praxair, Inc.. The OTM is supplied air and the depleted fuel. The OTM will selectively transport oxygen across the membrane to oxidize the remaining H2 and CO. The water vapor is then condensed from the totally 1.5.DOC oxidized fuel stream exiting the afterburner, leaving only the CO2 in gaseous form. That CO2 can then be compressed and sequestered, resulting in a Zero Emission power generation system operating on hydrocarbon fuel that adds only water vapor to the environment. Praxair has been developing oxygen separation systems based on dense walled, mixed electronic, oxygen ion conducting ceramics for a number of years. The oxygen separation membranes find applications in syngas production, high purity oxygen production and gas purification. In the SOFC afterburner application the chemical potential difference between the high temperature SOFC depleted fuel gas and the supplied air provides the driving force for oxygen transport. This permeated oxygen subsequently combusts the residual fuel in the SOFC exhaust. A number of experiments have been carried out in which simulated SOFC depleted fuel gas compositions and air have been supplied to either side of single OTM tubes in laboratory-scale reactors. The ceramic tubes are sealed into high temperature metallic housings which precludes mixing of the simulated SOFC depleted fuel and air streams. In early tests, although complete oxidation of the residual CO and H2 in the simulated SOFC depleted fuel was achieved, membrane performance degraded over time. The source of degradation was found to be contaminants in the simulated SOFC depleted fuel stream. Following removal of the contaminants, stable membrane performance has subsequently been demonstrated. In an ongoing test, the dried afterburner exhaust composition has been found to be stable at 99.2% CO2, 0.4% N2 and 0.6%O2 after 350 hours online. Discussion of these results is presented. A test of a longer, commercial demonstration size tube was performed in the SWPC test facility. A similar contamination of the simulated SOFC depleted fuel stream occurred and the performance degraded over time. A second test is being prepared. Siemens Westinghouse and Praxair are collaborating on the preliminary design of an OTM equipped Afterburner demonstration unit. The intent is to test the afterburner in conjunction with a reduced size SOFC test module that has the anode gas separati

Shockling, Larry A.; Huang, Keqin; Gilboy, Thomas E. (Siemens Westinghouse Power Corporation); Christie, G. Maxwell; Raybold, Troy M. (Praxair, Inc.)

2001-11-06T23:59:59.000Z

398

Toward a Na-Ion Battery  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2013 TMS Annual Meeting & Exhibition. Symposium , Nanostructured Materials for Lithium Ion Batteries and for Supercapacitors.

399

Graphene Fabrication and Lithium Ion Batteries Applications  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2013 TMS Annual Meeting & Exhibition. Symposium , Nanostructured Materials for Lithium Ion Batteries and for Supercapacitors.

400

Solid Lithium Ion Conducting Electrolytes Suitable for ...  

Batteries with solid lithium ion conducting electrolytes would ... The invention is cost-effective and suitable for manufacturing solid electrolyte ...

Note: This page contains sample records for the topic "oxygen ions miec" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Ion temperature gradient instability and anomalous transport  

SciTech Connect

This report discusses experiments in ion temperature gradient instability and anomalous transport in the CLM steady state device. (LSP).

Sen, A.K.

1991-08-01T23:59:59.000Z

402

RECENT PROGRESS IN HEAVY ION SOURCES  

E-Print Network (OSTI)

improved Bevalac Fusion reactors Vi Q) U .c. Laser, expl.into thermonuclear fusion reactors. A summary of ion sources

Clark, D.J.

2010-01-01T23:59:59.000Z

403

All-optical ion generation for ion trap loading  

E-Print Network (OSTI)

We have investigated the all-optical generation of ions by photo-ionisation of atoms generated by pulsed laser ablation. A direct comparison between a resistively heated oven source and pulsed laser ablation is reported. Pulsed laser ablation with 10 ns Nd:YAG laser pulses is shown to produce large calcium flux, corresponding to atomic beams produced with oven temperatures greater than 650 K. For an equivalent atomic flux, pulsed laser ablation is shown to produce a thermal load more than one order of magnitude smaller than the oven source. The atomic beam distributions obey Maxwell-Boltzmann statistics with most probable speeds corresponding to temperatures greater than 2200 K. Below a threshold pulse fluence between 280 mJ/cm^2 and 330 mJ/cm^2, the atomic beam is composed exclusively of ground state atoms. For higher fluences ions and excited atoms are generated.

Sheridan, Kevin; Keller, Matthias

2011-01-01T23:59:59.000Z

404

ION BEAM FOCUSING MEANS FOR CALUTRON  

DOE Patents (OSTI)

An ion beam focusing arrangement for calutrons is described. It provides a virtual focus of origin for the ion beam so that the ions may be withdrawn from an arc plasma of considerable width providing greater beam current and accuracy. (T.R.H.)

Backus, J.G.

1959-06-01T23:59:59.000Z

405

Ion-beam Plasma Neutralization Interaction Images  

SciTech Connect

Neutralization of the ion beam charge and current is an important scientific issue for many practical applications. The process of ion beam charge and current neutralization is complex because the excitation of nonlinear plasma waves may occur. Computer simulation images of plasma neutralization of the ion beam pulse are presented.

Igor D. Kaganovich; Edward Startsev; S. Klasky; Ronald C. Davidson

2002-04-09T23:59:59.000Z

406

Transparent lithium-ion batteries , Sangmoo Jeongb  

E-Print Network (OSTI)

Transparent lithium-ion batteries Yuan Yanga , Sangmoo Jeongb , Liangbing Hua , Hui Wua , Seok Woo in capillaries. Adv Mater 8:245­247. 24. Kim DK, et al. (2008) Spinel LiMn2O4 nanorods as lithium ion battery voltage window. For example, LiCoO2 and graphite, the most common cathode and anode in Li-ion batteries

Cui, Yi

407

Focused helium ion beam milling and deposition  

Science Conference Proceedings (OSTI)

The use of a helium ion microscope with an integrated gas injection system for nanofabrication is explored by demonstrating the milling of fine features into single layered graphene and the controlled deposition of tungsten and platinum wires from gaseous ... Keywords: Beam-induced deposition, Focused ion beam, Gas injection system, Graphene, Helium ion microscope

S. A. Boden; Z. Moktadir; D. M. Bagnall; H. Mizuta; H. N. Rutt

2011-08-01T23:59:59.000Z

408

Negative Halogen Ions for Fusion Applications  

DOE Green Energy (OSTI)

Over the past quarter century, advances in hydrogen negative ion sources have extended the usable range of hydrogen isotope neutral beams to energies suitable for large magnetically confined fusion devices. Recently, drawing upon this experience, negative halogen ions have been proposed as an alternative to positive ions for heavy ion fusion drivers in inertial confinement fusion, because electron accumulation would be prevented in negative ion beams, and if desired, the beams could be photo-detached to neutrals. This paper reports the results of an experiment comparing the current density and beam emittance of Cl+ and Cl- extracted from substantially ion-ion plasmas with that of Ar+ extracted from an ordinary electron-ion plasma, all using the same source, extractor, and emittance scanner. At similar discharge conditions, the Cl- current was typically 85 – 90% of the positive chlorine current, with an e-/ Cl- ratio as low as seven without grid magnets. The Cl- was as much as 76% of the Ar+ current from a discharge with the same RF drive. The minimum normalized beam emittance and inferred ion temperatures of Cl+, Cl-, and Ar+ were all similar, so the current density and optical quality of Cl- appear as suitable for heavy ion fusion driver applications as a positive noble gas ion of similar mass. Since F, I, and Br should all behave similarly in an ion source, they should also be suitable as driver beams.

Grisham, L.R.; Kwan, J.W.; Hahto, S.K.; Hahto, S.T.; Leung, K.N.; Westenskow, G.

2006-01-01T23:59:59.000Z

409

Interaction of trapped ions with trapped atoms  

E-Print Network (OSTI)

In this thesis, I present results from two Paul-trap based ion traps carried out in the Vuleti? laboratory: the Atom-Ion trap for collision studies between cold atoms and cold ions, and the Cavity-Array trap for studying ...

Grier, Andrew T. (Andrew Todd)

2011-01-01T23:59:59.000Z

410

Molecular dynamics simulations of ion range profiles for heavy ions in light targets  

SciTech Connect

The determination of stopping powers for slow heavy ions in targets containing light elements is important to accurately describe ion–solid interactions, evaluate ion irradiation effects and predict ion ranges for device fabrication and nuclear applications. Recently, discrepancies of up to 40% between the experimental results and SRIM (Stopping and Range of Ions in Matter) predictions of ion ranges for heavy ions with medium and low energies (ion ranges indicate that the stopping powers used in the SRIM code are overestimated. Here, a molecular dynamics simulation scheme is developed to calculate the ion ranges of heavy ions in light elemental targets. Electronic stopping powers generated from both a reciprocity approach and the SRIM code are used to investigate the influence of electronic stopping on ion range profiles. The ion range profiles for Au and Pb ions in SiC and Er ions in Si, with energies between 20 and 5250 keV, are simulated. The simulation results show that the depth profiles of implanted ions are deeper and in better agreement with the experiments when using the electronic stopping power values derived from the reciprocity approach. These results indicate that the origin of the discrepancy in ion ranges between experimental results and SRIM predictions in the low energy region may be an overestimation of the electronic stopping powers used in SRIM.

Lan, C.; Xue, J. M.; Zhang, Y.; Morris, J. R.; Zhu, Zh.; Gao, Yanfei; Wang, Y. G.; Yan, S.; Weber, William

2012-01-01T23:59:59.000Z

411

Molecular dynamics simulations of ion range profiles for heavy ions in light targets  

SciTech Connect

The determination of stopping powers for slow heavy ions in targets containing light elements is important to accurately describe ion-solid interactions, evaluate ion irradiation effects and predict ion ranges for device fabrication and nuclear applications. Recently, discrepancies of up to 40% between the experimental results and SRIM (Stopping and Range of Ions in Matter) predictions of ion ranges for heavy ions with medium and low energies (< {approx} 25 keV/nucleon) in light elemental targets have been reported. The longer experimental ion ranges indicate that the stopping powers used in the SRIM code are overestimated. Here, a molecular dynamics simulation scheme is developed to calculate the ion ranges of heavy ions in light elemental targets. Electronic stopping powers generated from both a reciprocity approach and the SRIM code are used to investigate the influence of electronic stopping on ion range profiles. The ion range profiles for Au and Pb ions in SiC and Er ions in Si, with energies between 20 and 5250 keV, are simulated. The simulation results show that the depth profiles of implanted ions are deeper and in better agreement with the experiments when using the electronic stopping power values derived from the reciprocity approach. These results indicate that the origin of the discrepancy in ion ranges between experimental results and SRIM predictions in the low energy region may be an overestimation of the electronic stopping powers used in SRIM.

Lan, Chune [Peking University; Xue, Jianming [Peking University; Zhang, Yanwen [ORNL; Morris, James R [ORNL; Zhu, Zihua [Pacific Northwest National Laboratory (PNNL); Gao, Yuan [Peking University; Wang, Yugang [Peking University; Yan, Sha [Peking University; Weber, William J [ORNL

2012-01-01T23:59:59.000Z

412

Molecular dynamics simulations of ion range profiles for heavy ions in light targets  

SciTech Connect

The determination of stopping powers for slow heavy ions in targets containing light elements is important to accurately describe ion-solid interactions, evaluate ion irradiation effects and predict ion ranges for device fabrication and nuclear applications. Recently, discrepancies of up to 40% between the experimental results and SRIM (Stopping and Range of Ions in Matter) predictions of ion ranges for heavy ions with medium and low energies (<25 keV/nucleon) in light elemental targets have been reported. The longer experimental ion ranges indicate that the stopping powers used in the SRIM code are overestimated. Here, a molecular dynamics simulation scheme is developed to calculate the ion ranges of heavy ions in light elemental targets. Electronic stopping powers generated from both a reciprocity approach and the SRIM code are used to investigate the influence of electronic stopping on ion range profiles. The ion range profiles for Au and Pb ions in SiC and Er ions in Si, with energies between 20 and 5250 keV, are simulated. The simulation results show that the depth profiles of implanted ions are deeper and in better agreement with the experiments when using the electronic stopping power values derived from the reciprocity approach. These results indicate that the origin of the discrepancy in ion ranges between experimental results and SRIM predictions in the low energy region may be an overestimation of the electronic stopping powers used in SRIM.

Lan, Chune; Xue, Jianming; Zhang, Yanwen; Morris, James R.; Zhu, Zihua; Gao, Yuan; Wang, Yugang; Yan, Sha; Weber, William J.

2012-09-01T23:59:59.000Z

413

Landau damping of ion acoustic wave in Lorentzian multi-ion plasmas  

SciTech Connect

The Landau damping rates of ion acoustic wave are studied by using Vlasov-Poisson model for unmagnetized Lorentzian or kappa distributed plasma containing electrons, positively and negatively charged ions. It is found that the damping rate of ion acoustic wave is increased with the decrease of kappa (i.e., the spectral index of Lorentzian distribution) value. The damping rates of the electrostatic wave in multi-ion component plasmas are discussed in detail which depends on electron to ion temperature ratio and ions masses and density ratios. The numerical results are also shown by choosing some typical experimental parameters of multi-ion plasmas.

Arshad, Kashif [National Center for Plasma Physics, Quaid-i-Azam University, Shadra Valley Road, Islamabad 44000 (Pakistan); Mahmood, S. [Theoretical Plasma Physics Division (TPPD), PINSTECH, P.O. Nilore, Islamabad 44000 (Pakistan); National Center for Plasma Physics, Quaid-i-Azam University, Shadra Valley Road, Islamabad 44000 (Pakistan); Mirza, Arshad M. [Department of Physics, Theoretical Plasma Physics Group, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

2011-09-15T23:59:59.000Z

414

Weird Oxygen Bonding under Pressure | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

A Breakthrough in Improving Osteoporosis Drug Design A Breakthrough in Improving Osteoporosis Drug Design Allaying Structural-Alloy Corrosion Putting the Pressure on MOFs Newly Described "Dragon" Protein Could Be Key to Bird Flu Cure Hearing the Highest Pitches Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Weird Oxygen Bonding under Pressure AUGUST 8, 2008 Bookmark and Share Schematic shows the topology of π* orbital interactions in the (O2)4 cluster. (Image copyright National Academy of Sciences, PNAS.) Oxygen, the third most abundant element in the cosmos and essential to life on Earth, changes its forms dramatically under pressure, transforming to a solid with spectacular colors. Eventually it becomes metallic and a

415

Selectivity of the reactions of oxygenates on transition metal surfaces  

Science Conference Proceedings (OSTI)

The goal of this research has been to understand, by means of surface science studies, the elementary processes involved in the synthesis of higher oxygenates on transition metals, and the dependence of these processes upon the nature of the surface. We have completed a considerable body of work (Ph.D. thesis of J. Lynn Davis, 1988) on the reactions of alcohols, aldehydes, and carboxylic acids on clean and oxygen-containing Pd(111) surfaces. Work during the past year has focused on the surface chemistry of rhodium. We find both interesting similarities and differences between rhodium and palladium. Comparison of the two sheds light on common reaction networks among the transition metals, and on the differences between them which permit control of selectivities in catalytic reactions.

Barteau, M.A.

1989-01-01T23:59:59.000Z

416

Production d'ions lourds multicharges par une source d'ions à laser $CO_{2}$. Utilisation de ces ions pour l'étude de l'interaction ion-surface métallique  

E-Print Network (OSTI)

Production d'ions lourds multicharges par une source d'ions à laser $CO_{2}$. Utilisation de ces ions pour l'étude de l'interaction ion-surface métallique

Amdidouche, Y

1995-01-01T23:59:59.000Z

417

U.S. Oxygenate Plant Production of Fuel Ethanol (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Oxygenate Plant Production of Fuel Ethanol (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ... Fuel Ethanol Oxygenate Production;

418

Calibration, Response, and Hysteresis in Deep-Sea Dissolved Oxygen Measurements  

Science Conference Proceedings (OSTI)

Accurately measuring the dissolved oxygen concentration in the ocean has been the subject of considerable research. Traditionally, the calibration and correction of profiling oxygen measurements has centered on static, steady-state errors, ...

Bradley Edwards; David Murphy; Carol Janzen; Nordeen Larson

2010-05-01T23:59:59.000Z

419

Fundamental studies of heterostructured oxide thin film electrocatalysts for oxygen reduction at high temperatures  

E-Print Network (OSTI)

Searching for active and cost-effective catalysts for oxygen electrocatalysis is essential for the development of efficient clean electrochemical energy technologies. Perovskite oxides are active for surface oxygen exchange ...

Crumlin, Ethan J

2012-01-01T23:59:59.000Z

420

In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Lithium-Oxygen Redox Reactions  

E-Print Network (OSTI)

The lack of fundamental understanding of the oxygen reduction and oxygen evolution in nonaqueous electrolytes significantly hinders the development of rechargeable lithium-air batteries. Here we employ a solid-state ...

Lu, Yi-chun

Note: This page contains sample records for the topic "oxygen ions miec" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Computational Studies on Oxygen-ionic Conduction in Rare-earth ...  

Science Conference Proceedings (OSTI)

Development of oxygen-ionic conductors which have low activation energies in ... for reducing the lower limit of operating temperatures of solid oxide fuel cells. ... electronic densities of states, oxygen migration paths and activation energies in ...

422

A Tracer Study with Oxygen-18 in Photosynthesis by Activation Analysis  

E-Print Network (OSTI)

r e e n algae. t e r m photosynthesis products containing 0WITH OXYGEN - I8 IN PHOTOSYNTHESIS BY ACTIVATION ANALYSISWITH OXYGEN-18 IN PHOTOSYNTHESIS BY ACTIVATION ANALYSIS I n

Fogelstrom-Fineman, Ingrid; Holm-Hansen, Osmund; Tolbert, Bert M.; Calvin, Melvin

1957-01-01T23:59:59.000Z

423

A DCS supervisory control of a centrifugal compessor for oxygen consumption optimization  

Science Conference Proceedings (OSTI)

In this paper, a supervisory control system for oxygen consumption optimization on a Syngas Manufacturing Process Plant is proposed. A grey-box multivariable parametric identification of the oxygen compressor system is first performed. Consequently, ...

Silvia Maria Zanoli; Luca Barboni

2009-06-01T23:59:59.000Z

424

Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields  

DOE Green Energy (OSTI)

Some years ago it was suggested that halogen negative ions [1]could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons -- can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion-ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

Grisham, L.R.; Kwan, J.W.

2008-08-01T23:59:59.000Z

425

Practical aspects of the oxygen reduction reaction (ORR)  

DOE Green Energy (OSTI)

The oxygen reduction reaction (ORR) is quite sensitive to the details of the three phase interface at which the reaction occurs. We describe here studies of the ORR at a well-defined recast Nafion/Pt microelectrode interface, emphasizing the effects of temperature and humidification on the reaction rate. We compare our results to those obtained in thin film composite electrodes used in polymer electrolyte fuel cells.

Uribe, F.A.; Springer, T.E.; Wilson, M.S.; Zawodzinski, T.A. Jr.; Gottesfeld, S.

1995-12-31T23:59:59.000Z

426

Lithium ion rechargeable systems studies  

Science Conference Proceedings (OSTI)

Lithium ion systems, although relatively new, have attracted much interest worldwide. Their high energy density, long cycle life and relative safety, compared with metallic lithium rechargeable systems, make them prime candidates for powering portable electronic equipment. Although lithium ion cells are presently used in a few consumer devices, e.g., portable phones, camcorders, and laptop computers, there is room for considerable improvement in their performance. Specific areas that need to be addressed include: (1) carbon anode--increase reversible capacity, and minimize passivation; (2) cathode--extend cycle life, improve rate capability, and increase capacity. There are several programs ongoing at Sandia National Laboratories which are investigating means of achieving the stated objectives in these specific areas. This paper will review these programs.

Levy, S.C.; Lasasse, R.R.; Cygan, R.T.; Voigt, J.A.

1995-02-01T23:59:59.000Z

427

Photoelectron spectroscopy of negative ions  

Science Conference Proceedings (OSTI)

Ultraviolet photoelectron spectroscopy of negative ions was used to probe the anionic and neutral states of the halogen monoxides, halogen dioxides, halocarbenes, and fluorovinylidene species. Ions, created in a flowing afterglow source, were mass selected and photodetached by continuous monochromatic laser radiation, and the kinetic energy of the photodetached electrons were determined. The photoelectron spectra provide electronic and vibrational structure. Photoelectron spectra of the halogen monoxides yielded adiabatic electron affinities, neutral and anion frequencies, and spin-orbit splittings. Franck-Condon analyses provided the change in bond length between the neutral and anion species. Neutral heats of formation and dissociation energies were combined with electron affinities to determine anion heats of formation and dissociation energies. Adiabatic electron affinities, neutral vibrational frequencies and anion vibrational frequencies were determined from photoelectron spectra of OClO[sup [minus

Gilles, M.K.

1993-01-01T23:59:59.000Z

428

Characteristics and potential applications of an ORNL microwave ECR multicusp plasma ion source  

SciTech Connect

A new microwave electron cyclotron resonance (ECR) multicusp plasma ion source that has two ECR plasma production regions and uses multicusp plasma confinement has been developed at Oak Ridge National Laboratory. This source has been operated to produce uniform and dense plasma over large areas of 300 to 400 cm{sup 2} and could be scaled up to produce uniform plasma over 700 cm{sup 2} or larger. The plasma source has been operated with continuous argon gas feed and pulsed microwave power. The working gases used were argon, helium, hydrogen, and oxygen. The discharge initiation phenomena and plasma properties have been investigated and studied as functions of the discharge parameters. The discharge characteristics and a hypothetical discharge mechanism for this plasma source are described and discussed. Potential applications, including plasma and ion-beam sources for manufacturing advanced microelectronics, for space electric propulsion, and for fusion research, are discussed. 10 refs., 10 figs.

Tsai, C.C.

1990-01-01T23:59:59.000Z

429

Mixed-conducting ceramic membranes for partial oxygenation of methane  

DOE Green Energy (OSTI)

The most significant cost associated with the conventional partial oxidation of methane is that of an oxygen plant. Our new technology offers a way to lower this cost, and in this paper we explore the technology that is based on dense ceramic membranes and that uses air as the oxidant for methane-conversion reactions. Mixed-conducting ceramic materials have been produced from mixed-oxide systems of the La-Sr-Fe-Co-O (SFC) type, in the form of tubes and bars. Thermodynamic stability of the tubes was studied as a function of oxygen partial pressure by high-temperature XRD. Mechanical properties were measured and found to be adequate for a reactor in the case of SFC-2: Electronic and ionic conductivities were measured; SFC-2 is unique in the sense that the ratio of ionic to electronic conductance is close to unity. Performance of the membrane tubes was good only with SFC-2. Fracture of other SFC tubes was the consequence of an oxygen gradient that introduced a volumetric lattice difference between the inner and outer walls. SFC-2 tubes provided methane conversion efficiencies of >99% in a reactor. These tubes have operated for >1000 h.

Balachandran, U.; Dusek, J.T.; Maiya, P.S.; Mieville, R.L. [Argonne National Lab., IL (United States); Kleefisch, M.S.; Udovich, C.A. [Amoco Corp., Naperville, IL (United States); Bose, A.C. [USDOE Pittsburgh Energy Technology Center, PA (United States)

1995-05-01T23:59:59.000Z

430

Formation of molecular oxygen in ultracold O + OH reaction  

SciTech Connect

We discuss the formation of molecular oxygen in ultracold collisions between hydroxyl radicals and atomic oxygen. A time-independent quantum formalism based on hyperspherical coordinates is employed for the calculations. Elastic, inelastic and reactive cross sections as well as the vibrational and rotational populations of the product O{sub 2} molecules are reported. A J-shifting approximation is used to compute the rate coefficients. At temperatures T = 10--100 mK for which the OH molecules have been cooled and trapped experimentally, the elastic and reactive rate coefficients are of comparable magnitude, while at colder temperatures, T < 1 mK, the formation of molecular oxygen becomes the dominant pathway. The validity of a classical capture model to describe cold collisions of OH and O is also discussed. While very good agreement is found between classical and quantum results at T = 0.3 K, at higher temperatures, the quantum calculations predict a higher rate coefficient than the classical model, in agreement with experimental data for the O + OH reaction. The zero-temperature limiting value of the rate coefficient is predicted to be about 6 x 10{sup -12} cm{sup 3} s{sup 01}, a value comparable to that of barrierless alkali metal atom-dimer systems and about a factor of five larger than that of the tunneling dominated F + H{sub 2} reaction.

Kendrick, Brian Kent [Los Alamos National Laboratory; Quemener, Goulven [UNLV; Balakrishman, Naduvalath [UNLV

2008-01-01T23:59:59.000Z

431

Oxygen scavenger/metal passivator reduces corrosion, toxicity  

Science Conference Proceedings (OSTI)

Haverhill Paper board, a Haverhill, MA manufacturer of recycled paperboard, generates about 120,000 lb/hr of 650 psi, 650/sup 0/F (superheated) steam. Boiler deposition and condensate return corrosion problems were always high on the list of things to avoid. A water treatment firm provided the solution with a recently developed oxygen scavenger. The new scavenger, a Chemical Processing Vaaler Award winner (Mid-November, 1986, p. 130), is a patented formulation containing methyl ethyl ketoxime (MEKO). The formulation is designed to provide protection comparable to hydrazine but without the toxicity concerns. Used in conjunction with the mechanical deaerator, MEKO scavenges the remaining 5-7 ppb of oxygen from the feed water, producing methyl ethyl ketone (MEK), N/sub 2/O, and water. High volatility gives it the ability to leave the boiler with the steam, protecting the entire generating system. MEKO also acts as a metal surface passivator, protecting iron surfaces from corrosion by forming passivated oxide films. In use since December, 1985, the MEKO-based oxygen scavenger has coupled with the other chemical and mechanical water treatment methods to maintain the boiler in operating condition. The MEKO is performing as well or better than the hydrazine at about the same cost - while avoiding the toxicity problem.

Barry, J.; Toy, D.A.

1987-07-01T23:59:59.000Z

432

Evolution of Photosynthesis and Biospheric Oxygenation Contingent Upon Nitrogen Fixation?  

E-Print Network (OSTI)

How photosynthesis by Precambrian cyanobacteria oxygenated Earth's biosphere remains incompletely understood. Here it is argued that the oxic transition, which took place between approximately 2.3 and 0.5 Gyr ago, required a great proliferation of cyanobacteria, and this in turn depended on their ability to fix nitrogen via the nitrogenase enzyme system. However, the ability to fix nitrogen was not a panacea, and the rate of biospheric oxygenation may still have been affected by nitrogen constraints on cyanobacterial expansion. Evidence is presented for why cyanobacteria probably have a great need for fixed nitrogen than other prokaryotes, underscoring the importance of their ability to fix nitrogen. The connection between nitrogen fixation and the evolution of photosynthesis is demonstrated by the similarities between nitrogenase and enzymes critical for the biosynthesis of (bacterio)chlorophyll. It is hypothesized that biospheric oxygenation would not have occurred if the emergence of cyanobacteria had not been preceded by the evolution of nitrogen fixation, and if these organisms had not also acquired the ability to fix nitrogen at the beginning of or very early in their history. The evolution of nitrogen fixation also appears to have been a precondition for the evolution of (bacterio)chlorophyll-based photosynthesis. Given that some form of chlorophyll is obligatory for true photosynthesis, and its light absorption and chemical properties make it a "universal pigment," it may be predicted that the evolution of nitrogen fixation and photosynthesis are also closely linked on other Earth- like planets.

John W. Grula

2006-05-12T23:59:59.000Z

433

Ion plated electronic tube device  

DOE Patents (OSTI)

An electronic tube and associated circuitry which is produced by ion plating techniques. The process is carried out in an automated process whereby both active and passive devices are produced at very low cost. The circuitry is extremely reliable and is capable of functioning in both high radiation and high temperature environments. The size of the electronic tubes produced are more than an order of magnitude smaller than conventional electronic tubes.

Meek, T.T.

1983-10-18T23:59:59.000Z

434

Nanofabrication using focused ion beam  

E-Print Network (OSTI)

Deposition 47 3.2.3 Photolithography 48 3.2.4 Al Dissolution, Advanced Scanning Electron Microscope Specimen Preparation and Other Methods 50 3.2.4.1 Al Dissolution 50 3.2.4.2 Advanced Scanning Electron Microscope Specimen Preparation 51 3... . Measurements performed included in-situ resistometric measurements, which provided milled depth information by monitoring the resistance change of a metal track while ion milling it. The reproducibly of this method was confirmed by repeating experiments...

Latif, Adnan

435

Optically pumped polarized ion sources  

SciTech Connect

Polarization transfer collisions between protons, atomic hydrogen, or deuterium and optically pumped alkali-metal vapour are implemented in the high current optically pumped polarized ion source (OPPIS) and the laser driven source (LDS) of nuclear polarized atoms for target applications. The OPPIS technique overcomes the limitations on intensity of the conventional atomic beam source technique and meets the requirements of the new generation of polarization experiments at multi-GeV accelerators and colliders. 17 refs., 3 figs.

Zelenski, A.N.

1995-12-31T23:59:59.000Z

436

Electrocatalyst for Oxygen Reduction with Reduced Platinum Oxidation and Dissolution Rates  

Platinum is the most efficient electrocatalyst for accelerating the oxygen reduction reaction in fuel cells. Under operating conditions, though, ...

437

U.S. Product Supplied of Other Hydrocarbons/Oxygenates (Thousand ...  

U.S. Energy Information Administration (EIA)

Product Supplied for Hydrogen/Oxygenates/Renewables/Other Hydrocarbons ; U.S. Product Supplied for Crude Oil and Petroleum Products ...

438

U.S. Exports of Other Hydrocarbons/Oxygenates (Thousand Barrels ...  

U.S. Energy Information Administration (EIA)

Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Supply and Disposition; U.S. Exports of Crude Oil and Petroleum Products ...

439

Time Profiles of Ions Produced in a Hot-Cavity Resonant Ionization Laser Ion Source  

Science Conference Proceedings (OSTI)

The time profiles of Cu, Sn and Ni ions extracted from a hot-cavity resonant ionization laser ion source are investigated. The ions are produced in the ion source by three-photon resonant ionization with pulsed Ti:Sapphire lasers. Measurements show that the time spread of these ions generated within laser pulses of about 30 ns could be larger than 100 s when the ions are extracted from the ion source. A one-dimensional ion-transport model using the Monte Carlo method is developed to simulate the time dependence of the ion pulses. The observed ion temporal profiles agree reasonably well with the predictions of the model, which indicates that a substantial fraction of the extracted ions are generated in the vapor-transfer tube rather than the hot cavity and that ion-wall collisions are suppressed inside the ion source by an undetermined ion confinement mechanism. Three-dimensional modeling will be necessary to understand the strong reduction in losses expected from ion-wall collisions which we interpret as evidence for confinement.

Liu, Yuan [ORNL; Baktash, Cyrus [ORNL; Beene, James R [ORNL; Havener, Charles C [ORNL; Krause, Herbert F [ORNL; Schultz, David Robert [ORNL; Stracener, Daniel W [ORNL; Vane, C Randy [ORNL; Geppert, C. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Kessler, T. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Wies, K. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Wendt, K. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany

2011-01-01T23:59:59.000Z

440

Laser Ion Acceleration Toward Future Ion Beam Cancer Therapy - Numerical Simulation Sudy-  

E-Print Network (OSTI)

Ion beam has been used in cancer treatment, and has a unique preferable feature to deposit its main energy inside a human body so that cancer cell could be killed by the ion beam. However, conventional ion accelerator tends to be huge in its size and its cost. In this paper a future intense-laser ion accelerator is proposed to make the ion accelerator compact. An intense femtosecond pulsed laser was employed to accelerate ions. The issues in the laser ion accelerator include the energy efficiency from the laser to the ions, the ion beam collimation, the ion energy spectrum control, the ion beam bunching and the ion particle energy control. In the study particle computer simulations were performed to solve the issues, and each component was designed to control the ion beam quality. When an intense laser illuminates a target, electrons in the target are accelerated and leave from the target; temporarily a strong electric field is formed between the high-energy electrons and the target ions, and the target ions ...

Kawata, Shigeo; Nagashima, Toshihiro; Takano, Masahiro; Barada, Daisuke; Kong, Qing; Gu, Yan Jun; Wang, Ping Xiao; Ma, Yan Yun; Wang, Wei Ming

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxygen ions miec" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles  

DOE Patents (OSTI)

A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs.

Cassano, Anthony A. (Allentown, PA)

1985-01-01T23:59:59.000Z

442

Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles  

DOE Patents (OSTI)

A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs. 3 figs.

Cassano, A.A.

1985-07-02T23:59:59.000Z

443

Faunal responses to oxygen gradients on the Pakistan margin: A comparison of foraminiferans, macrofauna and megafauna  

E-Print Network (OSTI)

Faunal responses to oxygen gradients on the Pakistan margin: A comparison of foraminiferans Oxygen minimum zone Benthos Arabian Sea Biodiversity Deep sea a b s t r a c t The Pakistan Margin where oxygen levels were lowest. The rarity of larger animals between 300 and 700 m on the Pakistan

Levin, Lisa

444

An efficient deconvolution algorithm for estimating oxygen consumption during muscle activities  

Science Conference Proceedings (OSTI)

The reconstruction of an unknown input function from noisy measurements in a biological system is an ill-posed inverse problem. Any computational algorithm for its solution must use some kind of regularization technique to neutralize the disastrous effects ... Keywords: Bayesian inversion, Deconvolution, Mitochondrial oxygen consumption, Monte Carlo simulation, Muscle oxygen uptake, Oxygen transport and metabolism

Ranjan K. Dash; Erkki Somersalo; Marco E. Cabrera; Daniela Calvetti

2007-03-01T23:59:59.000Z

445

Ion-Beam-Induced Chemical Mixing at a Nanocrystalline CeO2 Si Interface  

SciTech Connect

Thin films of nanocrystalline ceria deposited onto a silicon substrate have been irradiated with 3 MeV Au+ ions to a total dose of 34 displacements per atom to examine the film/substrate interfacial response upon displacement damage. Under irradiation, a band of contrast is observed to form that grows under further irradiation. Scanning and high-resolution transmission electron microscopy imaging and analysis suggest that this band of contrast is a cerium silicate phase with an approximate Ce:Si:O composition ratio of 1:1:3 in an amorphous nature. The slightly nonstoichiometric composition arises due to the loss of mobile oxygen within the cerium silicate phase under the current irradiation condition. This nonequilibrium phase is formed as a direct result of ion-beam-induced chemical mixing caused by ballistic collisions between the incoming ion and the lattice atoms. This may hold promise in ion beam engineering of cerium silicates for microelectronic applications e.g., the fabrication of blue LEDs.

Edmondson, Dr. Philip [University of Oxford; Young, Neil P. [Department of Materials, University of Oxford, Parks Rd, Oxford, OX1 3PH, UK; Parish, Chad M [ORNL; Moll, Sandra [CEA, Saclay, France; Namavar, Fereydoon [University of Nebraska Medical Center; Weber, William J [ORNL; Zhang, Yanwen [ORNL

2013-01-01T23:59:59.000Z

446

Zn-Doped RuO2 Electrocatalyts for Selective Oxygen Evolution: Relationship Between Local Structure and Electrocatalytic Behavior in Chloride Containing Media  

SciTech Connect

Nanocrystalline electrocatalytically active materials of chemical composition Ru{sub 1-x}Zn{sub x}O{sub 2} (0 < x < 0.3) were synthesized by freeze-drying technique. The diffraction patterns of the prepared samples corresponded to single-phase rutile type oxides.Local structure of the Ru{sub 1-x}Zn{sub x}O{sub 2} based on refinement of Ru K and Zn K edge EXAFS functions shows clustering of the Zn ions in the blocks with ilmenite structure intergrowing with Ru-rich rutile blocks. Ru{sub 1-x}Zn{sub x}O{sub 2} oxides are selective catalysts for anodic oxygen evolution. The selectivity toward oxygen evolution in the presence of chlorides is affected by the actual Zn content and can be ascribed to structural hindrance of the formation of the surface peroxo group based active sites for chlorine evolution. The selectivity toward oxygen evolution in presence of chlorides is accompanied by the drop of the total activity, which gets more pronounced with increasing Zn content.

V Petrykin; K Macounova; J Franc; O Shlyakhtin; M Klementova; S Mukerjee; p Krtil

2011-12-31T23:59:59.000Z

447

Mini RF-driven ion source for focused ion beam system  

DOE Green Energy (OSTI)

Mini RF-driven ion sources with 1.2 cm and 1.5 cm inner chamber diameter have been developed at Lawrence Berkeley National Laboratory. Several gas species have been tested including argon, krypton and hydrogen. These mini ion sources operate in inductively coupled mode and are capable of generating high current density ion beams at tens of watts. Since the plasma potential is relatively low in the plasma chamber, these mini ion sources can function reliably without any perceptible sputtering damage. The mini RF-driven ion sources will be combined with electrostatic focusing columns, and are capable of producing nano focused ion beams for micro machining and semiconductor fabrications.

Jiang, X.; Ji, Q.; Chang, A.; Leung, K.N.

2002-08-02T23:59:59.000Z

448

Heavy ions and string theory  

E-Print Network (OSTI)

We review a selection of recent developments in the application of ideas of string theory to heavy ion physics. Our topics divide naturally into equilibrium and non-equilibrium phenomena. On the non-equilibrium side, we discuss generalizations of Bjorken flow, numerical simulations of black hole formation in asymptotically anti-de Sitter geometries, equilibration in the dual field theory, and hard probes. On the equilibrium side, we summarize improved holographic QCD, extraction of transport coefficients, inclusion of chemical potentials, and approaches to the phase diagram. We close with some possible directions for future research.

Oliver DeWolfe; Steven S. Gubser; Christopher Rosen; Derek Teaney

2013-04-29T23:59:59.000Z

449

Excitation of electrostatic ion-cyclotron waves by an ion beam in a two-ion component plasma  

SciTech Connect

An ion beam propagating through a magnetized plasma cylinder containing electrons, light positive potassium ions (K{sup +}), and heavy positive cesium ions (Cs{sup +}) drives electrostatic ion cyclotron (EIC) waves to instability via Cerenkov interaction. Two EIC wave modes are present, the K{sup +} and Cs{sup +} modes. The unstable wave frequencies and the growth rate of both the light positive ion and heavy positive ion modes increase with an increase in their relative ion concentrations. The growth rate of both the unstable modes (K{sup +} and Cs{sup +}) scales one-third power of the beam density. The real part of the frequency of both the unstable modes (K{sup +} and Cs{sup +}) increases with the beam energy and scales as almost one-half power of the beam energy. Numerical calculations of the growth rate and mode frequencies have been carried out for the parameters of the experiment of Suszcynsky et al. [J. Geophys. Res. 94, 8966 (1989)]. It is found that the unstable wave frequencies of both the light positive ion and heavy positive ion modes increase with the magnetic fields in accordance with the experimental observations.

Sharma, Jyotsna [Department of Physics, KIIT College of Engineering, Bhondsi Gurgaon 122102 (India); Sharma, Suresh C. [Department of Physics, Maharaja Agrasen Institute of Technology, PSP Area Plot No.-1, Sector-22, Rohini, Delhi 110086 (India)

2010-12-15T23:59:59.000Z

450

Removal of arsenic and other contaminants from storm run-off water by flotation, filtration, adsorption and ion exchange. Technical report, September-November 1984  

Science Conference Proceedings (OSTI)

The feasibility of removing soluble arsenic (+5) from storm runoff water by dissolved air flotation (Supracell), dissolved air flotation and sand filtration combination (Sandfloat), granular carbon adsorption, and ion exchange processes was experimentally demonstrated. The best pretreatment unit was Sandfloat clarifier consisting of both flotation and filtration. Sandfloat clarifier consistently removed over 90% of arsenic, turbidity, and color, and over 50% of chemical oxygen demand and oil and grease. Using a Sandfloat or a Supracell for pretreatment, and then using either carbon adsorption or ion exchange for second-stage treatment, the soluble arsenic in the storm water can be totally removed.

Krofta, M.; Wang, L.K.

1984-11-01T23:59:59.000Z

451

Recent advances in the kinetics of oxygen reduction  

DOE Green Energy (OSTI)

Oxygen reduction is considered an important electrocatalytic reaction; the most notable need remains improvement of the catalytic activity of existing metal electrocatalysts and development of new ones. A review is given of new advances in the understanding of reaction kinetics and improvements of the electrocatalytic properties of some surfaces, with focus on recent studies of relationship of the surface properties to its activity and reaction kinetics. The urgent need is to improve catalytic activity of Pt and synthesize new, possibly non- noble metal catalysts. New experimental techniques for obtaining new level of information include various {ital in situ} spectroscopies and scanning probes, some involving synchrotron radiation. 138 refs, 18 figs, 2 tabs.

Adzic, R.

1996-07-01T23:59:59.000Z

452

Sample inlet tube for ion source  

DOE Patents (OSTI)

An improved inlet tube is positioned within an aperture through the device to allow the passage of ions from the ion source, through the improved inlet tube, and into the interior of the device. The inlet tube is designed with a larger end and a smaller end wherein the larger end has a larger interior diameter than the interior diameter of the smaller end. The inlet tube is positioned within the aperture such that the larger end is pointed towards the ion source, to receive ions therefrom, and the smaller end is directed towards the interior of the device, to deliver the ions thereto. Preferably, the ion source utilized in the operation of the present invention is a standard electrospray ionization source. Similarly, the present invention finds particular utility in conjunction with analytical devices such as mass spectrometers.

Prior, David [Hermiston, OR; Price, John [Richland, WA; Bruce, Jim [Oceanside, CA

2002-09-24T23:59:59.000Z

453

Controlled ion implant damage profile for etching  

DOE Patents (OSTI)

This invention pertains to a process for etching a material such as LiNbO{sub 3} by implanting ions having a plurality of different kinetic energies in an area to be etched, and then contacting the ion implanted area with an etchant. The various energies of the ions are selected to produce implant damage substantially uniformly throughout the entire depth of the zone to be etched, thus tailoring the vertical profile of the damaged zone.

Arnold, G.W. Jr.; Ashby, C.I.H.; Brannon, P.J.

1988-08-18T23:59:59.000Z

454

Heavy-Ion Physics with CMS  

E-Print Network (OSTI)

This article presents a brief overview of the CMS experiment capabilities to study the hot and dense matter created in relativistic heavy-ion collisions. The CERN Large Hadron Collider will provide collisions of Pb nuclei at 5.5 TeV per nucleon. The CMS heavy ion group has developed a plethora of physics analyses addressing many important aspects of heavy-ion physics in preparation for a competitive and successful program.