Sample records for oxides particulate matter

  1. SURFACE OXIDATION OF DIESEL PARTICULATE MATTER IN PRESENCE OF O3 +NOX: NEW TD/GC/MS ANALYSIS METHOD

    E-Print Network [OSTI]

    Holmén, Britt A.

    SURFACE OXIDATION OF DIESEL PARTICULATE MATTER IN PRESENCE OF O3 +NOX: NEW TD/GC/MS ANALYSIS METHOD+08 2.6e+08 2.8e+08 3e+08 Time--> Abundance TIC: 0914S4.D INTRODUCTION Diesel exhaust is one into the atmosphere diesel particles can be transformed through physical and chemical processes resulting

  2. Particulate matter dynamics

    E-Print Network [OSTI]

    Cionco, Rodolfo G; Caligaris, Marta G

    2012-01-01T23:59:59.000Z

    A substantial fraction of the particulate matter released into the atmosphere by industrial or natural processes corresponds to particles whose aerodynamic diameters are greater than 50 mm. It has been shown that, for these particles, the classical description of Gaussian plume diffusion processes, is inadequate to describe the transport and deposition. In this paper we present new results concerning the dispersion of coarse particulate matter. The simulations are done with our own code that uses the Bulirsch Stoer numerical integrator to calculate threedimensional trajectories of particles released into the environment under very general conditions. Turbulent processes are simulated by the Langevin equation and weather conditions are modeled after stable (Monin-Obukhov length L> 0) and unstable conditions (L <0). We present several case studies based on Monte Carlo simulations and discusses the effect of weather on the final deposition of these particles.

  3. Particulate Matter Aerosols

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Astrophysics OneOutreach EffortsSearchParticulate Matter

  4. Apparatus for particulate matter analysis

    DOE Patents [OSTI]

    Gundel, Lara A.; Apte, Michael G.; Hansen, Anthony D.; Black, Douglas R.

    2007-01-30T23:59:59.000Z

    The apparatus described herein is a miniaturized system for particle exposure assessment (MSPEA) for the quantitative measurement and qualitative identification of particulate content in gases. The present invention utilizes a quartz crystal microbalance (QCM) or other mass-sensitive temperature compensated acoustic wave resonator for mass measurement. Detectors and probes and light sources are used in combination for the qualitative determination of particulate matter.

  5. Particulate Matter Standards (Ohio)

    Broader source: Energy.gov [DOE]

    This chapter of the law establishes that the Ohio Environmental Protection Agency sets the standards for particulate emissions from a variety of sources, including facilities that generate power. ...

  6. Alpha B-crystallin prevents the arrhythmogenic effects of particulate matter isolated from ambient air by attenuating oxidative stress

    SciTech Connect (OSTI)

    Park, Hyelim [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of) [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University, Seoul (Korea, Republic of); Park, Sanghoon; Jeon, Hyunju [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of)] [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Song, Byeong-Wook [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of) [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University, Seoul (Korea, Republic of); Kim, Jin-Bae [Division of Cardiology, Kyung Hee University College of Medicine, Seoul (Korea, Republic of)] [Division of Cardiology, Kyung Hee University College of Medicine, Seoul (Korea, Republic of); Kim, Chang-Soo [The Department of Preventive Medicine, Yonsei University College of Medicine, Seoul (Korea, Republic of)] [The Department of Preventive Medicine, Yonsei University College of Medicine, Seoul (Korea, Republic of); Pak, Hui-Nam [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of)] [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Hwang, Ki-Chul [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of) [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University, Seoul (Korea, Republic of); Lee, Moon-Hyoung [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of)] [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Chung, Ji Hyung, E-mail: jhchung@yuhs.ac [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Joung, Boyoung, E-mail: cby6908@yuhs.ac [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of) [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University, Seoul (Korea, Republic of)

    2013-01-15T23:59:59.000Z

    Ca{sup 2+}/calmodulin-dependent protein kinase II (CaMKII) is activated by particulate matter (PM) isolated from ambient air and linked to prolonged repolarization and cardiac arrhythmia. We evaluated whether alpha B-crystallin (CryAB), a heat shock protein, could prevent the arrhythmogenic effects of PM by preventing CaMKII activation. CryAB was delivered into cardiac cells using a TAT-protein transduction domain (TAT-CryAB). ECGs were measured before and after tracheal exposure of diesel exhaust particles (DEP) and each intervention in adult Sprague–Dawley rats. After endotracheal exposure of DEP (200 ?g/mL for 30 minutes, n = 11), QT intervals were prolonged from 115 ± 14 ms to 144 ± 20 ms (p = 0.03), and premature ventricular contractions were observed more frequently (0% vs. 44%) than control (n = 5) and TAT-Cry (n = 5). However, DEP-induced arrhythmia was not observed in TAT-CryAB (1 mg/kg) pretreated rats (n = 5). In optical mapping of Langendorff-perfused rat heats, compared with baseline, DEP infusion of 12.5 ?g/mL (n = 12) increased apicobasal action potential duration (APD) differences from 2 ± 6 ms to 36 ± 15 ms (p < 0.001), APD restitution slope from 0.26 ± 0.07 to 1.19 ± 0.11 (p < 0.001) and ventricular tachycardia (VT) from 0% to 75% (p < 0.001). DEP infusion easily induced spatially discordant alternans. However, the effects of DEP were prevented by TAT-CryAB (1 mg/kg, n = 9). In rat myocytes, while DEP increased reactive oxygen species (ROS) generation and phosphated CaMKII, TAT-CryAB prevented these effects. In conclusion, CryAB, a small heat shock protein, might prevent the arrhythmogenic effects of PM by attenuating ROS generation and CaMKII activation. -- Highlights: ? Particulate matter (PM) increases arrhythmia. ? PM induced arrhythmias are related with oxidative stress and CaMKII activation. ? Alpha B-crystallin (CryAB) could attenuate the arrhythmogenic effect of PM. ? CryAB decreases oxidative stress and CaMKII activation induced by ambient PM.

  7. Effects of Advanced Combustion Technologies on Particulate Matter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Technologies on Particulate Matter Emissions Characteristics Effects of Advanced Combustion Technologies on Particulate Matter Emissions Characteristics...

  8. Advanced particulate matter control apparatus and methods

    DOE Patents [OSTI]

    Miller, Stanley J. (Grand Forks, ND); Zhuang, Ye (Grand Forks, ND); Almlie, Jay C. (East Grand Forks, MN)

    2012-01-10T23:59:59.000Z

    Apparatus and methods for collection and removal of particulate matter, including fine particulate matter, from a gas stream, comprising a unique combination of high collection efficiency and ultralow pressure drop across the filter. The apparatus and method utilize simultaneous electrostatic precipitation and membrane filtration of a particular pore size, wherein electrostatic collection and filtration occur on the same surface.

  9. Desorption of hexachlorobiphenyl from selected particulate matter

    E-Print Network [OSTI]

    Rorschach, Reagan Cartwright

    1989-01-01T23:59:59.000Z

    DESORPTION OF HEXACHLOROBIPHENYL FROM SELECTED PARTICULATE MATTER A Thesis by REAGAN CARTWRIGHT RORS CHACH Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 1989 Major Subject: Civil Engineering DESORPTION OF HEXACHLOROBIPHENYL FROM SELECTED PARTICULATE MATTER A Thesis by REAGAN C. RORSCHACH Approved as to style and content by: Robin L. Autenrieth (Chair of Committee...

  10. Ash reduction system using electrically heated particulate matter filter

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI; Paratore, Jr., Michael J; He, Yongsheng [Sterling Heights, MI

    2011-08-16T23:59:59.000Z

    A control system for reducing ash comprises a temperature estimator module that estimates a temperature of an electrically heated particulate matter (PM) filter. A temperature and position estimator module estimates a position and temperature of an oxidation wave within the electrically heated PM filter. An ash reduction control module adjusts at least one of exhaust flow, fuel and oxygen levels in the electrically heated PM filter to adjust a position of the oxidation wave within the electrically heated PM filter based on the oxidation wave temperature and position.

  11. Biodiesel Fuel Property Effects on Particulate Matter Reactivity

    SciTech Connect (OSTI)

    Williams, A.; Black, S.; McCormick, R. L.

    2010-06-01T23:59:59.000Z

    Controlling diesel particulate emissions to meet the 2007 U.S. standard requires the use of a diesel particulate filter (DPF). The reactivity of soot, or the carbon fraction of particulate matter, in the DPF and the kinetics of soot oxidation are important in achieving better control of aftertreatment devices. Studies showed that biodiesel in the fuel can increase soot reactivity. This study therefore investigated which biodiesel fuel properties impact reactivity. Three fuel properties of interest included fuel oxygen content and functionality, fuel aromatic content, and the presence of alkali metals. To determine fuel effects on soot reactivity, the performance of a catalyzed DPF was measured with different test fuels through engine testing and thermo-gravimetric analysis. Results showed no dependence on the aromatic content or the presence of alkali metals in the fuel. The presence and form of fuel oxygen was the dominant contributor to faster DPF regeneration times and soot reactivity.

  12. Diesel Particulate Oxidation Model: Combined Effects of Fixed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oxidation Model: Combined Effects of Fixed & Volatile Carbon Diesel Particulate Oxidation Model: Combined Effects of Fixed & Volatile Carbon Poster presented at the 16th Directions...

  13. Fuel-Neutral Studies of Particulate Matter Transport Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Program Annual Merit Review and Peer Evaluation ace056stewart2011o.pdf More Documents & Publications Fuel-Neutral Studies of Particulate Matter Transport Emissions...

  14. air particulate matter: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WetLabs, personal communication. There is variability in composition of particulate matter through the water column, so different correlations of PMbb or POCbb may exist in...

  15. airborne particulate matter: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WetLabs, personal communication. There is variability in composition of particulate matter through the water column, so different correlations of PMbb or POCbb may exist in...

  16. ambient particulate matter: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WetLabs, personal communication. There is variability in composition of particulate matter through the water column, so different correlations of PMbb or POCbb may exist in...

  17. Elevated exhaust temperature, zoned, electrically-heated particulate matter filter

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI; Bhatia, Garima [Bangalore, IN

    2012-04-17T23:59:59.000Z

    A system includes an electrical heater and a particulate matter (PM) filter that is arranged one of adjacent to and in contact with the electrical heater. A control module selectively increases an exhaust gas temperature of an engine to a first temperature and that initiates regeneration of the PM filter using the electrical heater while the exhaust gas temperature is above the first temperature. The first temperature is greater than a maximum exhaust gas temperature at the PM filter during non-regeneration operation and is less than an oxidation temperature of the PM.

  18. Concentrations and Size Distributions of Particulate Matter Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Matter Emissions from Catalyzed Trap-Equipped Heavy-duty Diesel Vehicles Operating on Ultra-low Sulfur EC-D Fuel Concentrations and Size Distributions of Particulate Matter...

  19. On-Board Engine Exhaust Particulate Matter Sensor for HCCI and...

    Energy Savers [EERE]

    On-Board Engine Exhaust Particulate Matter Sensor for HCCI and Conventional Diesel Engines On-Board Engine Exhaust Particulate Matter Sensor for HCCI and Conventional Diesel...

  20. Microscopy investigations of ash and particulate matter accumulation in diesel particulate filter surface pores

    E-Print Network [OSTI]

    Beauboeuf, Daniel P

    2010-01-01T23:59:59.000Z

    There has been increased focus on the environmental impact of automobile emissions in recent years. These environmental concerns have resulted in the creation of more stringent particulate matter emissions regulations in ...

  1. REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS Supplemental Report # 1

    E-Print Network [OSTI]

    Minnesota, University of

    REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS Supplemental Report # 1 DIESEL EXHAUST.D. and Megan Arnold University of Minnesota Department of Mechanical Engineering Center for Diesel Research....................................................................................... 3 Diesel aerosol size instrumentation............................................................ 4

  2. REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS Supplemental Report # 2

    E-Print Network [OSTI]

    Minnesota, University of

    REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS Supplemental Report # 2 AEROSOL DYMAMICS Arnold University of Minnesota Department of Mechanical Engineering Center for Diesel Research................................................................................................. 3 Diesel aerosol composition and structure................................................... 3

  3. Modeling of Particulate Matter Emissions from Agricultural Operations

    E-Print Network [OSTI]

    Bairy, Jnana 1988-

    2013-01-02T23:59:59.000Z

    State Air Pollution Regulation Agencies (SAPRAs) issue and enforce permits that limit particulate matter emissions from all sources including layer and broiler facilities, cattle feedyards, dairies, cotton gins, and grain elevators...

  4. Development of a size-fractionating stack sampler for collection of particulate matter

    E-Print Network [OSTI]

    1983-01-01T23:59:59.000Z

    information for the design of a cleaning system. The six major pollutants established by the U. S. Environmental Protection Agency (EPA) are carbon monoxide, nitrogen dioxide, sulfur oxides, hydrocarbons, photochemical oxidants, and particulate matter... descr1bed. In 1971 Monsanto Enviro-Chem Systems, Inc. ( 18) developed a novel cyclone preseparator with an inverted discharge tube for use w1th in- ertial impactors. In 1973, Ancel (19) developed a cyclone preseparator for inert1al impactors...

  5. ORIGINAL ARTICLE Fine Particulate Matter and Mortality

    E-Print Network [OSTI]

    Dominici, Francesca

    landmark cohort studies for estimating the chronic effects of fine particulate air pollution (PM2 that the Medicare files can be used to construct on-going cohorts for tracking the risk of air pollution over time- tory diseases, and also with increased mortality.1­6 Chronic effects of air pollution potentially

  6. An Overview of Particulate Matter and its Cost-efficient Evaluation

    E-Print Network [OSTI]

    Zhang, F.; Zhang, G.; Zhang, Q.

    2006-01-01T23:59:59.000Z

    Ambient particulate matter (PM) is a complex mixture of sizes and types of particles. Exposure to airborne particulate matter adversely affects human health. In this paper, sources of particles are summarized, and epidemiological and toxicological...

  7. Inductively heated particulate matter filter regeneration control system

    DOE Patents [OSTI]

    Gonze, Eugene V; Paratore Jr., Michael J; Kirby, Kevin W; Phelps, Amanda; Gregoire, Daniel J

    2012-10-23T23:59:59.000Z

    A system includes a particulate matter (PM) filter with an upstream end for receiving exhaust gas, a downstream end and zones. The system also includes a heating element. A control module selectively activates the heating element to inductively heat one of the zones.

  8. REVIEW OF DIESEL PARTICULATE MATTER SAMPLING FINAL REPORT

    E-Print Network [OSTI]

    Minnesota, University of

    REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS FINAL REPORT Prepared by David B. Kittelson of Mechanical Engineering Center for Diesel Research Minneapolis, MN January 14, 1999 #12;01/14/99 Page 2 TABLE ................................................................................................................5 DIESEL ENGINE TECHNOLOGY AND EMISSION REGULATIONS .............................7 PHYSICAL

  9. Speciation of Sb in airborne particulate matter, vehicle brake linings, and brake pad wear residues

    E-Print Network [OSTI]

    Short, Daniel

    Speciation of Sb in airborne particulate matter, vehicle brake linings, and brake pad wear residues: XAS XANES EXAFS Antimony Particulate matter Brake linings a b s t r a c t Insights into the speciation of Sb in samples of brake linings, brake pad wear residues, road dust, and atmospheric particulate

  10. The Relationships of Particulate Matter and Particulate Organic Carbon with Hypoxic Conditions Along the Texas-Louisiana Shelf

    E-Print Network [OSTI]

    Zuck, Nicole A

    2014-08-06T23:59:59.000Z

    an onboard surface-water flow-through system, CTD casts, and by an undulating towed vehicle. Total particulate matter and particulate organic carbon samples were obtained from Niskin bottles on CTD casts. Samples were also taken to measure dissolved oxygen...

  11. Wireless zoned particulate matter filter regeneration control system

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI; Kirby, Kevin W [Calabasas Hills, CA; Phelps, Amanda [Malibu, CA

    2011-10-04T23:59:59.000Z

    An assembly includes a particulate matter (PM) filter that comprises an upstream end for receiving exhaust gas, a downstream end and multiple zones. An absorbing layer absorbs microwave energy in one of N frequency ranges and is arranged with the upstream end. N is an integer. A frequency selective filter has M frequency selective segments and receives microwave energy in the N frequency ranges. M is an integer. One of the M frequency selective segments permits passage of the microwave energy in one of the N frequency ranges and does not permit passage of microwave energy in the other of the N frequency ranges.

  12. Low exhaust temperature electrically heated particulate matter filter system

    DOE Patents [OSTI]

    Gonze, Eugene V. (Pinckney, MI); Paratore, Jr., Michael J. (Howell, MI); Bhatia, Garima (Bangalore, IN)

    2012-02-14T23:59:59.000Z

    A system includes a particulate matter (PM) filter, a sensor, a heating element, and a control module. The PM filter includes with an upstream end that receives exhaust gas, a downstream end and multiple zones. The sensor detects a temperature of the exhaust gas. The control module controls current to the heating element to convection heat one of the zones and initiate a regeneration process. The control module selectively increases current to the heating element relative to a reference regeneration current level when the temperature is less than a predetermined temperature.

  13. Apparatus for removal of particulate matter from gas streams

    DOE Patents [OSTI]

    Smith, Peyton L. (Baton Rouge, LA); Morse, John C. (Baton Rouge, LA)

    2000-01-01T23:59:59.000Z

    An apparatus for the removal of particulate matter from the gaseous product stream of an entrained flow coal gasifier which apparatus includes an initial screen, an intermediate screen which is aligned with the direction of flow of the gaseous product stream and a final screen transversely disposed to the flow of gaseous product and which apparatus is capable of withstanding at least a pressure differential of about 10 psi (68.95 kPa) or greater at the temperatures of the gaseous product stream.

  14. An evaluation of European air pollution regulations for particulate matter monitored from a

    E-Print Network [OSTI]

    Sahu, Sujit K

    An evaluation of European air pollution regulations for particulate matter monitored from, stationarity. Abstract Statistical methods are needed for evaluating many aspects of air pollution regu particulate matter (PM) is an important air pollutant for which regu- lations have been issued recently

  15. An Optical Backscatter Sensor for Particulate Matter Measurement

    SciTech Connect (OSTI)

    Parks, II, James E [ORNL; Prikhodko, Vitaly Y [ORNL; Partridge Jr, William P [ORNL

    2009-01-01T23:59:59.000Z

    Diesel engines are prone to emit particulate matter (PM) emissions under certain operation conditions. In-cylinder production of PM from diesel combustion control can occur under a wide variety of operating conditions, and in some cases, operation of a multi-cylinder engine can further complicate PM emissions due to variations in air or fuel charge due to manifold mixing effects. In this study, a probe for detecting PM in diesel exhaust was evaluated on a light-duty diesel engine. The probe is based on an optical backscattering effect. Due to the optical nature of the probe, PM sensing can occur at high rates. The feasibility of the probe for examining PM emissions in the exhaust manifold will be discussed.

  16. Regenerative process and system for the simultaneous removal of particulates and the oxides of sulfur and nitrogen from a gas stream

    DOE Patents [OSTI]

    Cohen, M.R.; Gal, E.

    1993-04-13T23:59:59.000Z

    A process and system are described for simultaneously removing from a gaseous mixture, sulfur oxides by means of a solid sulfur oxide acceptor on a porous carrier, nitrogen oxides by means of ammonia gas and particulate matter by means of filtration and for the regeneration of loaded solid sulfur oxide acceptor. Finely-divided solid sulfur oxide acceptor is entrained in a gaseous mixture to deplete sulfur oxides from the gaseous mixture, the finely-divided solid sulfur oxide acceptor being dispersed on a porous carrier material having a particle size up to about 200 microns. In the process, the gaseous mixture is optionally pre-filtered to remove particulate matter and thereafter finely-divided solid sulfur oxide acceptor is injected into the gaseous mixture.

  17. Characterization of particulate matter deposited in diesel particulate filters: Visual and analytical approach in macro-, micro- and nano-scales

    SciTech Connect (OSTI)

    Liati, Anthi; Dimopoulos Eggenschwiler, Panayotis [EMPA, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for I.C. Engines, Duebendorf (Switzerland)

    2010-09-15T23:59:59.000Z

    Multi-scale analytical investigations of particulate matter (soot and ash) of two loaded diesel particulate filters (DPF) from (a) a truck (DPF1) and (b) a passenger car (DPF2) reveal the following: in DPF1 (without fuel-borne additives), soot aggregates form an approximately 130-270 {mu}m thick, homogeneous porous cake with pronounced orientation. Soot aggregates consist of 15-30 nm large individual particles exhibiting relatively mature internal nanostructures, however, far from being graphite. Ash aggregates largely accumulate at the outlet part of DPF1, while minor amounts are deposited directly on the channel walls all along the filter length. They consist of crystalline phases with individual particles of sizes down to the nanoscale range. Chemically, the ash consists mainly of Mg, S, Ca, Zn and P, elements encountered in lubricating oil additives. In the passenger car DPF2 (with fuel-borne additives), soot aggregates form an approximately 200-500 {mu}m thick, inhomogeneous porous cake consisting of several superposed layers corresponding to different soot generations. The largest part of the soot cake is composed of unburned, oriented soot aggregates left behind despite repeated regenerations, while a small part constitutes a loose layer with randomly oriented aggregates, which was deposited last and has not seen any regeneration. Fe-oxide particles of micro- to nano-scale sizes, originating from the fuel-borne additive, are often dispersed within the part of the soot cake composed of the unburned soot leftovers. The individual soot nanoparticles in DPF2 are approximately 15-40 nm large and generally less mature than in the truck DPF1. The presence of soot leftovers in DPF2 indicates that the addition of fuel-borne material does not fully compensate for the temperatures needed for complete soot removal. Ash in DPF2 is filling up more than half of the filter volume (at the downstream part) and is dominated by Fe-oxide aggregates, due to the Fe-based fuel-borne additive, but otherwise its chemical composition reflects compounds of lubricating oil additives. (author)

  18. Interactions between diatom aggregates, minerals, particulate organic carbon, and dissolved organic matter: Further

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Interactions between diatom aggregates, minerals, particulate organic carbon, and dissolved organic October 2008. [1] Correlations of particulate organic carbon (POC) and mineral fluxes into sediment traps in the deep sea have previously suggested that interactions between organic matter and minerals play a key

  19. The Role of Particulate Matter in the Development of Hypoxia on the Texas-Louisiana Shelf

    E-Print Network [OSTI]

    Cochran, Emma Mary

    2013-07-31T23:59:59.000Z

    particle composition and processes that dominate those areas – river-dominated water, highly productive surface waters, and clear, nutrient-poor low-productivity surface waters. The distribution and bulk composition of particulate matter in the northern...

  20. Air dispersion modeling of particulate matter from ground-level area sources 

    E-Print Network [OSTI]

    Meister, Michael Todd

    2000-01-01T23:59:59.000Z

    State Air Pollution Regulatory Agencies (SAPRAs) often use dispersion modeling to predict downwind concentrations of particulate matter (PM) from a facility. As such, a facility may be granted or denied an operating permit ...

  1. On-Board Engine Exhaust Particulate Matter Sensor for HCCI and Conventional Diesel Engines

    SciTech Connect (OSTI)

    Hall, Matt; Matthews, Ron

    2011-09-30T23:59:59.000Z

    The goal of the research was to refine and complete development of an on-board particulate matter (PM) sensor for diesel, DISI, and HCCI engines, bringing it to a point where it could be commercialized and marketed.

  2. New Chemical Aerosol Characterization Methods- Examples Using Agricultural and Urban Airborne Particulate Matter

    E-Print Network [OSTI]

    Zhou, Lijun

    2010-10-12T23:59:59.000Z

    This study explored different chemical characterization methods of agricultural and urban airborne particulate matter. Three different field campaigns are discussed. For the agricultural aerosols, measurement of the chemical composition of size...

  3. Development and Demonstration of an Electronic Particulate Matter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aftertreatment and Low Pressure Loop EGR Applied to an Off-Highway Engine Advanced Radio Frequency-Based Sensors for Monitoring Diesel Particulate Filter Loading and...

  4. Implications of Low Particulate Matter Emissions on System Fuel Efficiency for High Efficiency Clean Combustion

    SciTech Connect (OSTI)

    Parks, II, James E [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL

    2009-01-01T23:59:59.000Z

    Advanced diesel combustion regimes such as High Efficiency Clean Combustion (HECC) offer the benefits of reduced engine out NOX and particulate matter (PM) emissions. Lower PM emissions during advanced combustion reduce the demand on diesel particulate filters (DPFs) and can, thereby, reduce the fuel penalty associated with DPF regeneration. In this study, a SiC DPF was loaded and regenerated on a 1.7-liter 4-cylinder diesel engine operated in conventional and advanced combustion modes at different speed and load conditions. A diesel oxidation catalyst (DOC) and a lean NOX trap (LNT) were also installed in the exhaust stream. Five steady-state speed and load conditions were weighted to estimate Federal Test Procedure (FTP) fuel efficiency. The DPF was loaded using lean-rich cycling with frequencies that resulted in similar levels of NOX emissions downstream of the LNT. The pressure drop across the DPF was measured at a standard point (1500 rpm, 5.0 bar) before and after loading, and a P rise rate was determined for comparison between conventional and advanced combustion modes. Higher PM emissions in conventional combustion resulted in a higher rate of backpressure rise across the DPF at all of the load points leading to more frequent DPF regenerations and higher fuel penalty. The fuel penalty during conventional combustion was 4.2% compared with 3.1% for a mixture of conventional and advanced modes.

  5. Kinetic Model Development for the Combustion of Particulate Matter from Conventional and Soy Methyl Ester Diesel Fuels

    SciTech Connect (OSTI)

    Strzelec, Andrea [ORNL

    2009-12-01T23:59:59.000Z

    The primary objective of this research has been to investigate how the oxidation characteristics of diesel particulate matter (PM) are affected by blending soy-based biodiesel fuel with conventional ultra low sulfur diesel (ULSD) fuel. PM produced in a light duty engine from different biodiesel-conventional fuel blends was subjected to a range of physical and chemical measurements in order to better understand the mechanisms by which fuel-related changes to oxidation reactivity are brought about. These observations were then incorporated into a kinetic model to predict PM oxidation. Nanostructure of the fixed carbon was investigated by HR-TEM and showed that particulates from biodiesel had a more open structure than particulates generated from conventional diesel fuel, which was confirmed by BET surface area measurements. Surface area evolution with extent of oxidation reaction was measured for PM from ULSD and biodiesel. Biodiesel particulate has a significantly larger surface area for the first 40% of conversion, at which point the samples become quite similar. Oxidation characteristics of nascent PM and the fixed carbon portion were measured by temperature programmed oxidation (TPO) and it was noted that increased biodiesel blending lowered the light-off temperature as well as the temperature where the peak rate of oxidation occurred. A shift in the oxidation profiles of all fuels was seen when the mobile carbon fraction was removed, leaving only the fixed carbon, however the trend in temperature advantage of the biofuel blending remained. The mobile carbon fraction was measured by temperature programmed desorption found to generally increase with increasing biodiesel blend level. The relative change in the light-off temperatures for the nascent and fixed carbon samples was found to be related to the fraction of mobile carbon. Effective Arrhenius parameters for fixed carbon oxidation were directly measured with isothermal, differential oxidation experiments. Normalizing the reaction rate to the total carbon surface area available for reaction allowed for the definition of a single reaction rate with constant activation energy (112.5 {+-} 5.8 kJ/mol) for the oxidation of PM, independent of its fuel source. A kinetic model incorporating the surface area dependence of fixed carbon oxidation rate and the impact of the mobile carbon fraction was constructed and validated against experimental data.

  6. Emission factors for ammonia and particulate matter from broiler Houses

    E-Print Network [OSTI]

    Redwine, Jarah Suzanne

    2001-01-01T23:59:59.000Z

    Total suspended particulate (TSP) concentrations, ammonia (NH?) concentrations, and ventilation rates were measured in four commercial, tunnel ventilated broiler houses in June through December of 2000 in Brazos County, Texas. Particle size...

  7. Removal of residual particulate matter from filter media

    DOE Patents [OSTI]

    Almlie, Jay C; Miller, Stanley J

    2014-11-11T23:59:59.000Z

    A method for removing residual filter cakes that remain adhered to a filter after typical particulate removal methodologies have been employed, such as pulse-jet filter element cleaning, for all cleanable filters used for air pollution control, dust control, or powder control.

  8. Impact of Biodiesel on the Oxidation Kinetics and Morphology of Diesel Particulate

    SciTech Connect (OSTI)

    Strzelec, Andrea [ORNL] [ORNL; Toops, Todd J [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    We compare the oxidation characteristics of four different diesel particulates generated with a modern light-duty engine. The four particulates represent engine fueling with conventional ultra-low sulfur diesel (ULSD), biodiesel, and two intermediate blends of these fuels. The comparisons discussed here are based on complementary measurements implemented in a laboratory micro-reactor, including temperature programmed desorption and oxidation, pulsed isothermal oxidation, and BET surface area. From these measurements we have derived models that are consistent with the observed oxidation reactivity differences. When accessible surface area effects are properly accounted for, the oxidation kinetics of the fixed carbon components were found to consistently exhibit an Arrhenius activation energy of 113 6 kJ/mol. Release of volatile carbon from the as-collected particulate appears to follow a temperaturedependent rate law.

  9. Evaluation of the TEOM method for the measurement of particulate matter for Texas cattle feedlots

    E-Print Network [OSTI]

    Skloss, Stewart James

    2009-05-15T23:59:59.000Z

    and Patashnick (R&P) Series1400a monitors. The R&P Series 1400a monitor uses the TEOM method to measure particulate matter (PM) concentrations and was approved by EPA in 1990 as an automated equivalent method PM10 sampler. Since its approval, many state air...

  10. FTIR Analysis of Particulate Matter Collected on Teflon Filters in Columbus, OH A Senior Honors Thesis

    E-Print Network [OSTI]

    in the undergraduate colleges of The Ohio State University by Patrick Veres The Ohio State University June 2005 Project of particulate matter (PM) to which humans are exposed to provides information important to the understanding of our chemical environment and associated health risks. In this research, experimental methods have been

  11. Estimating particulate matter health impact related to the combustion of different fossil fuels

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Estimating particulate matter health impact related to the combustion of different fossil fuels generated a web map service that allows to access information on fuel dependent health effects due a simulation. Combined with a dedicated emission inventory PM2.5 maps specified by fuel type were generated

  12. DDT RESIDUES IN SEAWATER AND PARTICULATE MATTER IN THE CALIFORNIA CURRENT SYSTEM

    E-Print Network [OSTI]

    DDT RESIDUES IN SEAWATER AND PARTICULATE MATTER IN THE CALIFORNIA CURRENT SYSTEM JAMES L. COX in the California current system were analyzed for DDT residues. DDT residue concentrations in whole seawater are discussed in relation to mechanisms of land-sea DDT residue transfer. DDT residue concentrations

  13. Modeling water column structure and suspended particulate matter on the Middle Atlantic continental shelf

    E-Print Network [OSTI]

    Chang, Grace C.

    that contributed to the evolution of observed thermal structure and resuspension of particulate matter during resuspension processes. It is concluded that wave-current bottom shear stress was clearly the most important process for sediment resuspension during and following both hurricanes. Discrepancies between modeled

  14. Statistical Issues in the Study of Air Pollution Involving Airborne Particulate Matter

    E-Print Network [OSTI]

    Washington at Seattle, University of

    of the Workshop was to initiate a statistical research program relevant to setting air quality standardsStatistical Issues in the Study of Air Pollution Involving Airborne Particulate Matter Lawrence H. Cox NRCSET e c h n i c a l R e p o r t S e r i e s NRCSE-TRS No. 041 January 10, 2000 The NRCSEwas

  15. Contrasting Surface Ozone and Particulate Matter measurements with meteorological conditions in South Florida and its possible impacts on the number of Asthma cases: Five years of correlations.

    E-Print Network [OSTI]

    Miami, University of

    Contrasting Surface Ozone and Particulate Matter measurements with meteorological conditions, wind speed and direction), and air quality indicators (ozone O3 and particulate matter PM2.5) are presented in this study. Surface Ozone and Particulate Matter have been both important triggers of asthma

  16. SOURCE SIGNATURES OF FINE PARTICULATE MATTER FROM PETROLEUM REFINING AND FUEL USE

    SciTech Connect (OSTI)

    Gerald P. Huffman; Frank E. Huggins; Naresh Shah; Artur Braun; Yuanzhi Chen; J. David Robertson; Joseph Kyger; Adel F. Sarofim; Ronald J. Pugmire; Henk L.C. Meuzelaar; JoAnn Lighty

    2003-07-31T23:59:59.000Z

    The molecular structure and microstructure of a suite of fine particulate matter (PM) samples produced by the combustion of residual fuel oil and diesel fuel were investigated by an array of analytical techniques. Some of the more important results are summarized below. Diesel PM (DPM): A small diesel engine test facility was used to generate a suite of diesel PM samples from different fuels under engine load and idle conditions. C XANES, {sup 13}C NMR, XRD, and TGA were in accord that the samples produced under engine load conditions contained more graphitic material than those produced under idle conditions, which contained a larger amount of unburned diesel fuel and lubricating oil. The difference was enhanced by the addition of 5% of oxygenated compounds to the reference fuel. Scanning transmission x-ray micro-spectroscopy (STXM) was able to distinguish particulate regions rich in C=C bonds from regions rich in C-H bonds with a resolution of {approx}50 nm. The former are representative of more graphitic regions and the latter of regions rich in unburned fuel and oil. The dominant microstructure observed by SEM and TEM consisted of complex chain-like structures of PM globules {approx}20-100 nm in mean diameter, with a high fractal dimension. High resolution TEM revealed that the graphitic part of the diesel soot consisted of onion-like structures made up of graphene layers. Typically 3-10 graphene layers make up the ''onion rings'', with the layer spacing decreasing as the number of layers increases. ROFA PM: Residual oil fly ash (ROFA) PM has been analyzed by a new approach that combines XAFS spectroscopy with selective leaching procedures. ROFA PM{sub 2.5} and PM{sub 2.5+} produced in combustion facilities at the U.S. EPA National Risk Management Research Laboratory (NRML) were analyzed by XAFS before and after leaching with water, acid (1N HCl), and pentane. Both water and acid leaching removed most of the metal sulfates, which were the dominant phase present for most metals (V, Ni, Zn, etc.). This allowed conclusive identification in the leaching residue of important secondary sulfide and oxide phases, including Ni sulfide, a toxic and carcinogenic phase observed in the leached PM{sub 2.5+} samples. Other significant secondary phases identified included V{sub 2}O{sub 4}, V sulfide, and NiFe{sub 2}O{sub 4}.

  17. Diesel Emission Control -- Sulfur Effects (DECSE) Program; Phase I Interim Date Report No. 3: Diesel Fuel Sulfur Effects on Particulate Matter Emissions

    SciTech Connect (OSTI)

    DOE; ORNL; NREL; EMA; MECA

    1999-11-15T23:59:59.000Z

    The Diesel Emission Control-Sulfur Effects (DECSE) is a joint government/industry program to determine the impact of diesel fuel sulfur levels on emission control systems whose use could lower emissions of nitrogen oxides (NO{sub x}) and particulate matter (PM) from on-highway trucks in the 2002--2004 model years. Phase 1 of the program was developed with the following objectives in mind: (1) evaluate the effects of varying the level of sulfur content in the fuel on the emission reduction performance of four emission control technologies; and (2) measure and compare the effects of up to 250 hours of aging on selected devices for multiple levels of fuel sulfur content. This interim report covers the effects of diesel fuel sulfur level on particulate matter emissions for four technologies.

  18. Study of particulate matter formation and evolution in near-field aircraft plumes using a one-dimensional microphysical model

    E-Print Network [OSTI]

    Zhang, Jianye, S.M. Massachusetts Institute of Technology

    2007-01-01T23:59:59.000Z

    Environmental concerns have led to a growing effort to investigate and characterize the particulate matter (PM) emissions from aircraft engines. This thesis presents a one-dimensional microphysics and chemical kinetics ...

  19. Development of a Low-Cost Particulate Matter Monitor

    SciTech Connect (OSTI)

    White, Richard M.; Apte, Michael G.; Gundel, Lara A.; Black, Justin

    2008-08-01T23:59:59.000Z

    We describe a small, inexpensive portable monitor for airborne particulates, composed of the following elements: a. A simple size-selective inlet (vertical elutriator) that permits only particles below a pre-set diameter to pass and enter the measurement section; b. A measurement section in which passing particles are deposited thermophoretically on a micro-fabricated resonant piezoelectric mass sensor; c. An optical characterization module co-located with the mass sensor module that directs infrared and ultraviolet beams through the deposit. The emergent optical beams are detected by a photodiode. The optical absorption of the deposit can be measured in order to characterize the deposit, and determine how much is due to diesel exhaust and/or environmental tobacco smoke; and d. A small pump that moves air through the device, which may also be operated in a passive mode. The component modules were designed by the project team, and fabricated at UCB andLBNL. Testing and validation were performed in a room-sized environmental chamber at LBNL in to which was added either environmental tobacco smoke (ETS, produced by a cigarette smoking machine) or diesel exhaust (from a conventional diesel engine). Two pilot field tests in a dwelling compared the monitor with existing aerosol instruments during exposure to infiltrated ambient air to which cigarette smoke, diesel exhaust, wood smoke and cooking fumes were added. The limit of detection (LOD) derived from statistical analysis of field data is 18 mu g m-3, at the 99percent confidence level. The monitor weighs less than 120 g and has a volume of roughly 250 cm3. Power consumption is approximately 100 milliwatts. During this study, the optical component of the device was not fully implemented and has been left for future efforts. Suggested improvements in the current prototype include use of integrated thermal correction, reconfiguration of the resonator for increased particle collection area, increased thermophoretic collection efficiency using an increased temperature gradient, and shielding the resonator electronics from deposition of ultrafine particles.

  20. Measurements of particulate matter concentrations at a landfill site (Crete, Greece)

    SciTech Connect (OSTI)

    Chalvatzaki, E.; Kopanakis, I. [Department of Environmental Engineering, Technical University of Crete, Chania 73100, Crete (Greece); Kontaksakis, M. [Municipal Company of Solid Waste Management, Chania 73100, Crete (Greece); Glytsos, T.; Kalogerakis, N. [Department of Environmental Engineering, Technical University of Crete, Chania 73100, Crete (Greece); Lazaridis, M., E-mail: lazaridi@mred.tuc.g [Department of Environmental Engineering, Technical University of Crete, Chania 73100, Crete (Greece)

    2010-11-15T23:59:59.000Z

    Large amounts of solid waste are disposed in landfills and the potential of particulate matter (PM) emissions into the atmosphere is significant. Particulate matter emissions in landfills are the result of resuspension from the disposed waste and other activities such as mechanical recycling and composting, waste unloading and sorting, the process of coating residues and waste transport by trucks. Measurements of ambient levels of inhalable particulate matter (PM{sub 10}) were performed in a landfill site located at Chania (Crete, Greece). Elevated PM{sub 10} concentrations were measured in the landfill site during several landfill operations. It was observed that the meteorological conditions (mainly wind velocity and temperature) influence considerably the PM{sub 10} concentrations. Comparison between the PM{sub 10} concentrations at the landfill and at a PM{sub 10} background site indicates the influence of the landfill activities on local concentrations at the landfill. No correlation was observed between the measurements at the landfill and the background sites. Finally, specific preventing measures are proposed to control the PM concentrations in landfills.

  1. Exposure to airborne metals and particulate matter and risk for youth adjudicated for criminal activity

    SciTech Connect (OSTI)

    Haynes, Erin N., E-mail: Erin.Haynes@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Chen, Aimin, E-mail: Aimin.Chen@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States)] [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Ryan, Patrick, E-mail: Patrick.Ryan@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States)] [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Succop, Paul, E-mail: Paul.Succop@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States)] [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Wright, John, E-mail: John.Wright@uc.edu [College of Education, Criminal Justice, and Human Services, University of Cincinnati, Cincinnati, OH 45221 (United States)] [College of Education, Criminal Justice, and Human Services, University of Cincinnati, Cincinnati, OH 45221 (United States); Dietrich, Kim N., E-mail: Kim.Dietrich@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States)

    2011-11-15T23:59:59.000Z

    Antisocial behavior is a product of multiple interacting sociohereditary variables, yet there is increasing evidence that metal exposure, particularly, manganese and lead, play a role in its epigenesis. Other metals, such as arsenic, cadmium, chromium, and mercury, and exposure to traffic-related air pollution, such as fine particulate matter ({<=}2.5 {mu}m) have been associated with neurological deficits, yet largely unexplored with respect to their relationship with delinquent behavior. The purpose of this study is to evaluate the ecological relationship between county-wide reported airborne emissions of air metals, particulate matter, and youth adjudicated for criminal activity. Metal exposure data were collected from the Environmental Protection Agency AirData. Population statistics were obtained from the United States Census 2000 and adjudication data was obtained from the Courts of Common Pleases from each Ohio County. Simple correlations were calculated with the percentage of adjudications, all covariates, and estimated metal air emissions. Separate negative binomial regression models for each pollutant were used to provide an estimated risk ratio of pollutant emissions on the risk of adjudication for all Ohio counties adjusting for urban-rural residence, percentage of African Americans, median family income, percentage of family below poverty, percentage of high school graduation in 25 years and older populations, and population density. Metal emissions and PM in 1999 were all correlated with adjudication rate (2003-2005 average). Metal emissions were associated with slightly higher risk of adjudication, with about 3-4% increased risk per natural log unit of metal emission except chromium. The associations achieved statistical significance for manganese and mercury. The particulate matter {<=}2.5 and {<=}10 {mu}m emissions had a higher risk estimate, with 12% and 19% increase per natural log unit emission, respectively, and also achieved statistical significance. In summary, airborne exposure to manganese, mercury, and particulate matter are associated with increased risk of adjudication. Causality cannot be proven in observational studies such as this one, but the association warrants further examination in other research studies. Comprehensive epidemiologic investigations of metal exposure in pediatric populations should include social health outcomes, including measures of delinquent or criminal activity. Furthermore, the influence of metals on the neurotoxic pathway leading to delinquent activity should be further explored. - Highlights: Black-Right-Pointing-Pointer We evaluate the relationship between air pollutants and adjudication. Black-Right-Pointing-Pointer Manganese, mercury, and particulate matter are associated with risk of adjudication. Black-Right-Pointing-Pointer Further research of metal exposure should include social health outcomes.

  2. Magnetic Properties of Mesoporous and Nano-particulate Metal Oxides 

    E-Print Network [OSTI]

    Hill, Adrian H

    2009-01-01T23:59:59.000Z

    The magnetic properties of the first row transition metal oxides are wide and varied and have been studied extensively since the 1930’s. Observations that the magnetic properties of these material types change with the ...

  3. Characterization of ambient particulate matter in the Paso del Norte region

    SciTech Connect (OSTI)

    Li, W.W.; Currey, R.M.; Valenzuela, V.H.; Meuzelaar, H.L.C.; Sheya, S.A.; Anderson, J.R.; Banerjee, S.; Griffin, J.B.

    1999-07-01T23:59:59.000Z

    Air pollution in the Paso del Norte region, where West Texas abuts the southern boundary of New Mexico and the northern boundary of Chihuahua, Mexico is a common concern to the residents on both sides of the border. Parts of the region fail to meet the US and Mexican Ambient Air Quality Standards for particulate matter, ozone, and carbon monoxide. The regional air pollution problem is complicated due to arid climate, complex terrain topography, frequently occurring temperature inversions, extensive unpaved urban areas, an aging and poorly maintained vehicle fleet, and a number of other uncontrolled anthropogenic emission sources. The issue is further complicated by concerns arising from recent scientific evidence of the health effects associated with exposures to fine particulate matter. A study designed to address particulate matter (PM) air pollution problems in the region is currently undertaken by researchers from member universities of the Southwest Center for Environmental Research and Policy and several governmental agencies. The study attempts to (1) characterize the fine fraction of PM; (2) identify and characterize the major regional emission sources; (3) apportion the fine fraction of PM to the source emissions; and (4) establish a regional technological information clearinghouse. The short-term goal of this research is to initiate a research program to characterize, identify, and quantify the sources and nature of the PM in the region. The long-term goal of this study is to establish regional research capabilities to continue air quality monitoring, evaluation, modeling, and control after the implementation of the study. A scoping study to collect regional PM was conducted in December 1998.

  4. Particulate air pollution induces arrhythmia via oxidative stress and calcium calmodulin kinase II activation

    SciTech Connect (OSTI)

    Kim, Jin-Bae [The Division of Cardiology, Kyung Hee University College of Medicine, 1 Hoegi-dong, Dongdaemun-Gu, Seoul (Korea, Republic of)] [The Division of Cardiology, Kyung Hee University College of Medicine, 1 Hoegi-dong, Dongdaemun-Gu, Seoul (Korea, Republic of); Kim, Changsoo [The Department of Preventive Medicine, Yonsei University College of Medicine, 250 Seungsanno, Seodaemun-gu, Seoul (Korea, Republic of)] [The Department of Preventive Medicine, Yonsei University College of Medicine, 250 Seungsanno, Seodaemun-gu, Seoul (Korea, Republic of); Choi, Eunmi [Cardiovascular Research Institute and Severance Biomedical Science Institute, Yonsei University College of Medicine, 250 Seungsanno, Seodaemun-gu, Seoul (Korea, Republic of)] [Cardiovascular Research Institute and Severance Biomedical Science Institute, Yonsei University College of Medicine, 250 Seungsanno, Seodaemun-gu, Seoul (Korea, Republic of); Park, Sanghoon; Park, Hyelim; Pak, Hui-Nam; Lee, Moon-Hyoung [The Division of Cardiology, Yonsei University College of Medicine, 250 Seungsanno, Seodaemun-gu, Seoul (Korea, Republic of)] [The Division of Cardiology, Yonsei University College of Medicine, 250 Seungsanno, Seodaemun-gu, Seoul (Korea, Republic of); Shin, Dong Chun [The Department of Preventive Medicine, Yonsei University College of Medicine, 250 Seungsanno, Seodaemun-gu, Seoul (Korea, Republic of)] [The Department of Preventive Medicine, Yonsei University College of Medicine, 250 Seungsanno, Seodaemun-gu, Seoul (Korea, Republic of); Hwang, Ki-Chul [Cardiovascular Research Institute and Severance Biomedical Science Institute, Yonsei University College of Medicine, 250 Seungsanno, Seodaemun-gu, Seoul (Korea, Republic of) [Cardiovascular Research Institute and Severance Biomedical Science Institute, Yonsei University College of Medicine, 250 Seungsanno, Seodaemun-gu, Seoul (Korea, Republic of); The Division of Cardiology, Yonsei University College of Medicine, 250 Seungsanno, Seodaemun-gu, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 250 Seungsanno, Seodaemun-gu, Seoul (Korea, Republic of); Joung, Boyoung, E-mail: cby6908@yuhs.ac [The Division of Cardiology, Yonsei University College of Medicine, 250 Seungsanno, Seodaemun-gu, Seoul (Korea, Republic of)] [The Division of Cardiology, Yonsei University College of Medicine, 250 Seungsanno, Seodaemun-gu, Seoul (Korea, Republic of)

    2012-02-15T23:59:59.000Z

    Ambient particulate matter (PM) can increase the incidence of arrhythmia. However, the arrhythmogenic mechanism of PM is poorly understood. This study investigated the arrhythmogenic mechanism of PM. In Sprague–Dawley rats, QT interval was increased from 115.0 ± 14.0 to 142.1 ± 18.4 ms (p = 0.02) after endotracheal exposure of DEP (200 ?g/ml for 30 min, n = 5). Ventricular premature contractions were more frequently observed after DEP exposure (100%) than baseline (20%, p = 0.04). These effects were prevented by pretreatment of N-acetylcysteine (NAC, 5 mmol/L, n = 3). In 12 Langendorff-perfused rat hearts, DEP infusion of 12.5 ?g/ml for 20 min prolonged action potential duration (APD) at only left ventricular base increasing apicobasal repolarization gradients. Spontaneous early afterdepolarization (EAD) and ventricular tachycardia (VT) were observed in 8 (67%) and 6 (50%) hearts, respectively, versus no spontaneous triggered activity or VT in any hearts before DEP infusion. DEP-induced APD prolongation, EAD and VT were successfully prevented with NAC (5 mmol/L, n = 5), nifedipine (10 ?mol/L, n = 5), and active Ca{sup 2+}/calmodulin-dependent protein kinase II (CaMKII) blockade, KN 93 (1 ?mol/L, n = 5), but not by thapsigargin (200 nmol/L) plus ryanodine (10 ?mol/L, n = 5) and inactive CaMKII blockade, KN 92 (1 ?mol/L, n = 5). In neonatal rat cardiomyocytes, DEP provoked ROS generation in dose dependant manner. DEP (12.5 ?g/ml) induced apoptosis, and this effect was prevented by NAC and KN 93. Thus, this study shows that in vivo and vitro exposure of PM induced APD prolongation, EAD and ventricular arrhythmia. These effects might be caused by oxidative stress and CaMKII activation. -- Highlights: ? The ambient PM consistently prolonged repolarization. ? The ambient PM induced triggered activity and ventricular arrhythmia. ? These effects were prevented by antioxidants, I{sub CaL} blockade and CaMKII blockade. ? The ambient PM can induce arrhythmia via oxidative stress and activation of CaMKII.

  5. Assessment of Contribution of Contemporary Carbon Sources to Size-Fractionated Particulate Matter and Time-Resolved Bulk Particulate Matter Using the Measurement of Radiocarbon

    SciTech Connect (OSTI)

    Hwang, H M; Young, T M; Buchholz, B A

    2009-04-16T23:59:59.000Z

    This study was motivated by a desire to improve understanding of the sources contributing to the carbon that is an important component of airborne particulate matter (PM). The ultimate goal of this project was to lay a ground work for future tools that might be easily implemented with archived or routinely collected samples. A key feature of this study was application of radiocarbon measurement that can be interpreted to indicate the relative contributions from fossil and non-fossil carbon sources of atmospheric PM. Size-resolved PM and time-resolved PM{sub 10} collected from a site in Sacramento, CA in November 2007 (Phase I) and March 2008 (Phase II) were analyzed for radiocarbon and source markers such as levoglucosan, cholesterol, and elemental carbon. Radiocarbon data indicates that the contributions of non-fossil carbon sources were much greater than that from fossil carbon sources in all samples. Radiocarbon and source marker measurements confirm that a greater contribution of non-fossil carbon sources in Phase I samples was highly likely due to residential wood combustion. The present study proves that measurement of radiocarbon and source markers can be readily applied to archived or routinely collected samples for better characterization of PM sources. More accurate source apportionment will support ARB in developing more efficient control strategies.

  6. Fluxes, dynamics and chemistry of suspended particulate matter in a southeast Alaskan fjord

    SciTech Connect (OSTI)

    Hong, G.H.

    1986-01-01T23:59:59.000Z

    The weighted mean fluxes over the June 1982-October 1983 were 290, 519, 812, 1124 g m/sup -2/ yr/sup -1/, respectively, determined using sediment traps deployed at 40, 120, 300 and 375 m depth in the 380 m water column. The long-term sedimentation rate was estimated at average 589 g m/sup -2/ yr/sup -1/ from sediment /sup 210/Pb profiles. Substantial SPM input to mid-depths (below 100 m) from the side arms was noted. Thus, the flux measured at 120 m depth was designated as the primary flux of the SPM to the basin. The sediment focusing resulting from the V shaped basin does not appear to be important. Using particulate Al as a tracer, resuspension rate was estimated at some 30-80% of the vertical flux below 280 m depth. Based on the SPM dynamics, the non-conservative behavior of particulate biogenic matter, Mn and Fe was investigated using a primary-resuspended-altered flux model.

  7. SIZE DISTRIBUTION AND RATE OF PRODUCTION OF AIRBORNE PARTICULATE MATTER GENERATED DURING METAL CUTTING

    SciTech Connect (OSTI)

    M.A. Ebadian, Ph.D.; S.K. Dua, Ph.D., C.H.P.; Hillol Guha, Ph.D.

    2001-01-01T23:59:59.000Z

    During deactivation and decommissioning activities, thermal cutting tools, such as plasma torch, laser, and gasoline torch, are used to cut metals. These activities generate fumes, smoke and particulates. These airborne species of matter, called aerosols, may be inhaled if suitable respiratory protection is not used. Inhalation of the airborne metallic aerosols has been reported to cause ill health effects, such as acute respiratory syndrome and chromosome damage in lymphocytes. In the nuclear industry, metals may be contaminated with radioactive materials. Cutting these metals, as in size reduction of gloveboxes and tanks, produces high concentrations of airborne transuranic particles. Particles of the respirable size range (size < 10 {micro}m) deposit in various compartments of the respiratory tract, the fraction and the site in the respiratory tract depending on the size of the particles. The dose delivered to the respiratory tract depends on the size distribution of the airborne particulates (aerosols) and their concentration and radioactivity/toxicity. The concentration of airborne particulate matter in an environment is dependent upon the rate of their production and the ventilation rate. Thus, measuring aerosol size distribution and generation rate is important for (1) the assessment of inhalation exposures of workers, (2) the selection of respiratory protection equipment, and (3) the design of appropriate filtration systems. Size distribution of the aerosols generated during cutting of different metals by plasma torch was measured. Cutting rates of different metals, rate of generation of respirable mass, as well as the fraction of the released kerf that become respirable were determined. This report presents results of these studies. Measurements of the particles generated during cutting of metal plates with a plasma arc torch revealed the presence of particles with mass median aerodynamic diameters of particles close to 0.2 {micro}m, arising from condensation of vaporized material and subsequent rapid formation of aggregates. Particles of larger size, resulting from ejection of melted material or fragments from the cutting zone, were also observed. This study presents data regarding the metal cutting rate, particle size distribution, and their generation rate, while using different cutting tools and metals. The study shows that respirable particles constitute only a small fraction of the released kerf.

  8. Shielded regeneration heating element for a particulate filter

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

    2011-01-04T23:59:59.000Z

    An exhaust system includes a particulate filter (PF) that is disposed downstream from an engine. The PF filters particulates within an exhaust from the engine. A heating element heats particulate matter in the PF. A catalyst substrate or a flow converter is disposed upstream from said heating element. The catalyst substrate oxidizes the exhaust prior to reception by the heating element. The flow converter converts turbulent exhaust flow to laminar exhaust flow prior to reception by the heating element.

  9. Hydrocarbon-enhanced particulate filter regeneration via microwave ignition

    DOE Patents [OSTI]

    Gonze, Eugene V. (Pinckney, MI); Brown, David B. (Brighton, MI)

    2010-02-02T23:59:59.000Z

    A regeneration method for a particulate filter includes estimating a quantity of particulate matter trapped within the particulate filter, comparing the quantity of particulate matter to a predetermined quantity, heating at least a portion of the particulate filter to a combustion temperature of the particulate matter, and introducing hydrocarbon fuel to the particulate filter. The hydrocarbon fuel facilitates combustion of the particulate matter to regenerate the particulate filter.

  10. Evaluating point and process fugitive emission sources of particulate matter from feed mills associated with cattle feed yards

    E-Print Network [OSTI]

    Demny, Michael Alan

    1997-01-01T23:59:59.000Z

    . Emission factors for feed mills (Shannon et al. , 1974) Table 2. 1988 AP-42 emission factors for feed mills Table 3. Intemn AP-42 emission actors for grain elevators 12 Table 4. Proposed emission factors for feed mills 14 Table 5. Source sampling... grain handling gtcilities. Prior to this legislation, the validity of the particulate matter emission gtctors for animal feed mills was not questioned. The emission factors for grain handling facilities in the 1988 AP-42 were established in order...

  11. Novel Collection and Toxicological Analysis Techniques for IC Engine Exhaust Particulate Matter

    SciTech Connect (OSTI)

    Michael Keane; Xiao-Chun Shi; Tong-man Ong

    2008-09-30T23:59:59.000Z

    The project staff partnered with Costas Sioutas from the University of Southern California to apply the VACES (Versatile Aerosol Concentration Enhancement System) to a diesel engine test facility at West Virginia University Department of Mechanical Engineering and later the NIOSH Lake Lynn Mine facility. The VACES system was able to allow diesel exhaust particulate matter (DPM) to grow to sufficient particle size to be efficiently collected with the SKC Biosampler impinger device, directly into a suspension of simulated pulmonary surfactant. At the WVU-MAE facility, the concentration of the aerosol was too high to allow efficient use of the VACES concentration enhancement, although aerosol collection was successful. Collection at the LLL was excellent with the diluted exhaust stream. In excess of 50 samples were collected at the LLL facility, along with matching filter samples, at multiple engine speed and load conditions. Replicate samples were combined and concentration increased using a centrifugal concentrator. Bioassays were negative for all tested samples, but this is believed to be due to insufficient concentration in the final assay suspensions.

  12. Exposure assessment of particulate matter air pollution before, during, and after the 2003 Southern California wildfires

    E-Print Network [OSTI]

    Wu, J; Winer, A M; Delfino, R J

    2006-01-01T23:59:59.000Z

    Ostra, B. , 1997. Air pollution and emergency room visitsJ. , 1994. Indoor air pollution and asthma: Results from aof unmeasured particulate air pollution data for an

  13. Cashew nut roasting: Chemical characterization of particulate matter and genotocixity analysis

    SciTech Connect (OSTI)

    Oliveira Galvão, Marcos Felipe de [Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, RN (Brazil); Melo Cabral, Thiago de; André, Paulo Afonso de [Departamento de Patologia, Universidade de São Paulo, São Paulo, SP (Brazil); Fátima Andrade, Maria de; Miranda, Regina Maura de [Departamento de Ciências Atmosféricas, Universidade de São Paulo, São Paulo, SP (Brazil); Saldiva, Paulo Hilário Nascimento [Departamento de Patologia, Universidade de São Paulo, São Paulo, SP (Brazil); Castro Vasconcellos, Pérola de [Instituto de Química, Universidade de São Paulo, São Paulo, SP (Brazil); Batistuzzo de Medeiros, Silvia Regina, E-mail: sbatistu@cb.ufrn.br [Departamento de Biologia Celular e Genética, CB – UFRN, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa Nova, 59072-970, Natal, RN (Brazil)

    2014-05-01T23:59:59.000Z

    Background: Particulate matter (PM) is potentially harmful to health and related to genotoxic events, an increase in the number of hospitalizations and mortality from respiratory and cardiovascular diseases. The present study conducted the first characterization of elemental composition and polycyclic aromatic hydrocarbon (PAH) analysis of PM, as well as the biomonitoring of genotoxic activity associated to artisanal cashew nut roasting, an important economic and social activity worldwide. Methods: The levels of PM{sub 2.5} and black carbon were also measured by gravimetric analysis and light reflectance. The elemental composition was determined using X-ray fluorescence spectrometry and PAH analysis was carried out by gas chromatography–mass spectrometry. Genotoxic activity was measured by the Tradescantia pallida micronucleus bioassay (Trad-MCN). Other biomarkers of DNA damage, such as nucleoplasmic bridges and nuclear fragments, were also quantified. Results: The mean amount of PM{sub 2.5} accumulated in the filters (January 2124.2 µg/m{sup 3}; May 1022.2 µg/m{sup 3}; September 1291.9 µg/m{sup 3}), black carbon (January 363.6 µg/m{sup 3}; May 70 µg/m{sup 3}; September 69.4 µg/m{sup 3}) and concentrations of Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Se, Br and Pb were significantly higher than the non-exposed area. Biomass burning tracers K, Cl, and S were the major inorganic compounds found. Benzo[k]fluoranthene, indene[1,2,3-c,d]pyrene, benzo[ghi]perylene, phenanthrene and benzo[b]fluoranthene were the most abundant PAHs. Mean benzo[a]pyrene-equivalent carcinogenic power values showed a significant cancer risk. The Trad-MCN bioassay revealed an increase in micronucleus frequency, 2–7 times higher than the negative control and significantly higher in all the months analyzed, possibly related to the mutagenic PAHs found. Conclusions: This study demonstrated that artisanal cashew nut roasting is a serious occupational problem, with harmful effects on workers' health. Those involved in this activity are exposed to higher PM{sub 2.5} concentrations and to 12 PAHs considered potentially mutagenic and/or carcinogenic. The Trad-MCN with T. pallida was sensitive and efficient in evaluating the genotoxicity of the components and other nuclear alterations may be used as effective biomarkers of DNA damage. - Highlights: • The cashew nut roasting generated high concentrations of particulate matter fine. • The biomass burning tracers K, Cl, S were the major inorganic compounds found. • It was identified 12 PAHs considered to be potentially mutagenic and/or carcinogenic. • The genotoxic potential of this activity was confirmed by the Trad MCN assay. • This activity is a serious occupational problem with harmful effects to health workers.

  14. Feasibility of high volume sampling for determination of total suspended particulate matter and trace metals

    SciTech Connect (OSTI)

    van der Meulen, A.; Hofschreuder, P.; van de Vate, J.F.; Oeseburg, F.

    1984-02-01T23:59:59.000Z

    The feasibility of the high volume sampling method (HVS) in extended control networks for the routine determination of total suspended particulate matter and trace metals, particularly traffic lead, has been explored. The HVS coarse particle sampling effectiveness obtained in wind tunnel studies is assumed to be indicative of the effectiveness under typical ambient meteorological conditions. For TSP, available data indicate the mass of the coarse fraction above 5 ..mu..m to range between about 10% and 90% of the total mass. Subsequently, when sampling TSP the total mass can be underestimated by up to appoximately 30%; the corresponding standard deviation is as high as approximately 15%. Differences in coarse particle sampling characteristics can result in systematic inter-HVS deviations up to 20% of the total mass. Traffic lead consists of a direct automotive tailpipe component (by and large below 30 ..mu..m) and a vehicular resuspended one (some 100-300 ..mu..m). Near the road the total (i.e., direct + resuspended) mass of traffic lead collected ranges from 70% to 120% of the direct automotive emissions; the corresponding TSP standard deviation can be as high as 15% owing to the contribution of resuspended lead. Away from the road (>50m) the resuspended component is depleted substantially due to deposition. Subsequently, the mass collected ranges between 70% and 110% of the direct lead; the standard deviation can be as high as 10%. The evaluation of the applicability of HVS under extreme wind speed situations is beyond the scope of this work. Under such conditions the coarse particle sampling effectiveness could be affected considerably. Hence under extreme situations the applicability of HVS should be left to the discretion of the user. 33 references.

  15. 2008-01-1748 An Analysis of Methods for Measuring Particulate Matter Mass

    E-Print Network [OSTI]

    Wu, Mingshen

    . The particulate organics are typically considered to be derived from diesel fuel and lubrication oil [1]. Typical PM mass speciation reveals a roughly even distribution between the organic and inorganic

  16. Exposure assessment of particulate matter air pollution before, during, and after the 2003 Southern California wildfires

    E-Print Network [OSTI]

    Wu, J; Winer, A M; Delfino, R J

    2006-01-01T23:59:59.000Z

    particulate air pollution data for an epidemiological studyOstra, B. , 1997. Air pollution and emergency room visitsJ. , 1994. Indoor air pollution and asthma: Results from a

  17. How does pulmonary exposure to particulate matter predispose the heart to increased injury after myocardial infarction? 

    E-Print Network [OSTI]

    Robertson, Sarah

    2013-07-06T23:59:59.000Z

    One of the most prevalent pollutants in urban cities is diesel exhaust particulate (DEP). Air pollution has been linked with increased risk of recurrent myocardial infarction (MI) and MI related death (Brook, 2008). This ...

  18. Source Signatures of Fine Particulate Matter from Petroleum Refining and Fuel Use

    SciTech Connect (OSTI)

    Gerald P. Huffman; Frank E. Huggins; Naresh Shah; Robert Huggins

    1999-12-31T23:59:59.000Z

    Combustion experiments were carried out on four different residual fuel oils in a 732 kW boiler. Particulate matter (PM) emission samples were separated aerodynamically by a cyclone into fractions that were nominally less than and greater than 2.5 microns in diameter. However, examination of several of the samples by computer-controlled scanning electron microscopy (CCSEM) revealed that part of the <2.5 micron fraction (PM{sub 2.5}) in fact consists of carbonaceous cenospheres and vesicular particles that range up to 10 microns in diameter. X-ray absorption fine structure (XAFS) spectroscopy data were obtained at the S, V, Ni, Fe, Cu, Zn, and As Kedges, and at the Pb L-edge. Deconvolution of the x-ray absorption near edge structure (XANES) region of the S spectra established that the dominant molecular forms of S present were sulfate (26-84% of total S) and thiophene (13-39% of total S). Sulfate was greater in the PM{sub 2.5} samples than in the >2.5 micron samples (PM{sub 2.5+}). Inorganic sulfides and elemental sulfur were present in lower percentages. The Ni XANES spectra from all of the samples agree fairly well with that of NiSO4, while most of the V spectra closely resemble that of vanadyl sulfate (VO{center_dot}SO{sub 4}{center_dot}xH{sub 2}O). The other metals investigated (Fe, Cu, Zn, and Pb) were also present predominantly as sulfates. Arsenic is present as an arsenate (As{sup +5}). X-ray diffraction patterns of the PM{sub 2.5} fraction exhibit sharp lines due to sulfate compounds (Zn, V, Ni, Ca, etc.) superimposed on broad peaks due to amorphous carbons. All of the samples contain a significant organic component, with the LOI ranging from 64 to 87 % for the PM{sub 2.5} fraction and from 88 to 97% for the PM{sub 2.5+} fraction. {sup 13}C nuclear magnetic resonance (NMR) analysis indicates that the carbon is predominantly condensed in graphitic structures. Aliphatic structure was detected in only one of seven samples examined.

  19. Method for contamination control and barrier apparatus with filter for containing waste materials that include dangerous particulate matter

    DOE Patents [OSTI]

    Pinson, P.A.

    1998-02-24T23:59:59.000Z

    A container for hazardous waste materials that includes air or other gas carrying dangerous particulate matter has incorporated barrier material, preferably in the form of a flexible sheet, and one or more filters for the dangerous particulate matter sealably attached to such barrier material. The filter is preferably a HEPA type filter and is preferably chemically bonded to the barrier materials. The filter or filters are preferably flexibly bonded to the barrier material marginally and peripherally of the filter or marginally and peripherally of air or other gas outlet openings in the barrier material, which may be a plastic bag. The filter may be provided with a backing panel of barrier material having an opening or openings for the passage of air or other gas into the filter or filters. Such backing panel is bonded marginally and peripherally thereof to the barrier material or to both it and the filter or filters. A coupling or couplings for deflating and inflating the container may be incorporated. Confining a hazardous waste material in such a container, rapidly deflating the container and disposing of the container, constitutes one aspect of the method of the invention. The chemical bonding procedure for producing the container constitutes another aspect of the method of the invention. 3 figs.

  20. Method for contamination control and barrier apparatus with filter for containing waste materials that include dangerous particulate matter

    DOE Patents [OSTI]

    Pinson, Paul A. (Idaho Falls, ID)

    1998-01-01T23:59:59.000Z

    A container for hazardous waste materials that includes air or other gas carrying dangerous particulate matter has incorporated in barrier material, preferably in the form of a flexible sheet, one or more filters for the dangerous particulate matter sealably attached to such barrier material. The filter is preferably a HEPA type filter and is preferably chemically bonded to the barrier materials. The filter or filters are preferably flexibly bonded to the barrier material marginally and peripherally of the filter or marginally and peripherally of air or other gas outlet openings in the barrier material, which may be a plastic bag. The filter may be provided with a backing panel of barrier material having an opening or openings for the passage of air or other gas into the filter or filters. Such backing panel is bonded marginally and peripherally thereof to the barrier material or to both it and the filter or filters. A coupling or couplings for deflating and inflating the container may be incorporated. Confining a hazardous waste material in such a container, rapidly deflating the container and disposing of the container, constitutes one aspect of the method of the invention. The chemical bonding procedure for producing the container constitutes another aspect of the method of the invention.

  1. Fine particulate matter source apportionment for the chemical speciation trends network site at Birmingham, Alabama, using positive matrix factorization

    SciTech Connect (OSTI)

    Baumann, K.; Jayanty, R.K.; Flanagan, J.B. [Research Triangle Institute International, NC (United States). Research Triangle Park

    2008-01-15T23:59:59.000Z

    The Positive Matrix Factorization (PMF) receptor model version 1.1 was used with data from the fine particulate matter (PM2.5) Chemical Speciation Trends Network (STN) to estimate source contributions to ambient PM2.5 in a highly industrialized urban setting in the southeastern United States. Model results consistently resolved 10 factors that are interpreted as two secondary, five industrial, one motor vehicle, one road dust, and one biomass burning sources. It was found that most PMF factors did not cleanly represent single source types and instead are 'contaminated' by other sources. Secondary particulate matter formed by atmospheric processes, such as sulfate and secondary OC, contribute the majority of ambient PM2.5 and exhibit strong seasonality 37 {+-} 10% winter vs. 55 {+-} 16% summer average. Motor vehicle emissions constitute the biggest primary PM2.5 mass contribution. In summary, this study demonstrates the utility of the EC tracer method to effectively blank-correct the OC concentrations in the STN dataset. In addition, examination of the effect of input uncertainty estimates on model results indicates that the estimated uncertainties currently being provided with the STN data may be somewhat lower than the levels needed for optimum modeling results. An appendix , available to members on the website www.awma lists stationary sources of PM2.5 within 10 km of the NHBM site and PM2.5 emissions greater than 1 ton per year. 71 refs., 7 figs., 9 tabs.

  2. Feasibility of the detection of trace elements in particulate...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of trace elements in particulate matter using online High-Resolution Aerosol Mass Spectrometry. Feasibility of the detection of trace elements in particulate matter using online...

  3. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in the Mexico City Metropolitan Area

    SciTech Connect (OSTI)

    Luisa T. Molina, Rainer Volkamer, Benjamin de Foy, Wenfang Lei, Miguel Zavala, Erik Velasco; Mario J. Molina

    2008-10-31T23:59:59.000Z

    This project was one of three collaborating grants funded by DOE/ASP to characterize the fine particulate matter (PM) and secondary PM precursors in the Mexico City Metropolitan Area (MCMA) during the MILAGRO Campaign. The overall effort of MCMA-2006, one of the four components, focused on i) examination of the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles; ii) measurement and analysis of secondary oxidants and secondary fine PM production, with particular emphasis on secondary organic aerosol (SOA), and iii) evaluation of the photochemical and meteorological processes characteristic of the Mexico City Basin. The collaborative teams pursued the goals through three main tasks: i) analyses of fine PM and secondary PM precursor gaseous species data taken during the MCMA-2002/2003 campaigns and preparation of publications; ii) planning of the MILAGRO Campaign and deployment of the instrument around the MCMA; and iii) analysis of MCMA-2006 data and publication preparation. The measurement phase of the MILAGRO Campaign was successfully completed in March 2006 with excellent participation from the international scientific community and outstanding cooperation from the Mexican government agencies and institutions. The project reported here was led by the Massachusetts Institute of Technology/Molina Center for Energy and the Environment (MIT/MCE2) team and coordinated with DOE/ASP-funded collaborators at Aerodyne Research Inc., University of Colorado at Boulder and Montana State University. Currently 24 papers documenting the findings from this project have been published. The results from the project have improved significantly our understanding of the meteorological and photochemical processes contributing to the formation of ozone, secondary aerosols and other pollutants. Key findings from the MCMA-2003 include a vastly improved speciated emissions inventory from on-road vehicles: the MCMA motor vehicles produce abundant amounts of primary PM, elemental carbon, particle-bound polycyclic aromatic hydrocarbons, carbon monoxide and a wide range of air toxics; the feasibility of using eddy covariance techniques to measure fluxes of volatile organic compounds in an urban core and a valuable tool for validating local emissions inventory; a much better understanding of the sources and atmospheric loadings of volatile organic compounds; the first spectroscopic detection of glyoxal in the atmosphere; a unique analysis of the high fraction of ambient formaldehyde from primary emission sources; characterization of ozone formation and its sensitivity to VOCs and NOx; a much more extensive knowledge of the composition, size distribution and atmospheric mass loadings of both primary and secondary fine PM, including the fact that the rate of MCMA SOA production greatly exceeded that predicted by current atmospheric models; evaluations of significant errors that can arise from standard air quality monitors for O3 and NO2; and the implementation of an innovative Markov Chain Monte Carlo method for inorganic aerosol modeling as a powerful tool to analyze aerosol data and predict gas phase concentrations where these are unavailable. During the MILAGRO Campaign the collaborative team utilized a combination of central fixed sites and a mobile laboratory deployed throughout the MCMA to representative urban and boundary sites to measure trace gases and fine particles. Analysis of the extensive 2006 data sets has confirmed the key findings from MCMA-2002/2003; additionally MCMA-2006 provided more detailed gas and aerosol chemistry and wider regional scale coverage. Key results include an updated 2006 emissions inventory; extension of the flux system to measure fluxes of fine particles; better understanding of the sources and apportionment of aerosols, including contribution from biomass burning and industrial sources; a comprehensive evaluation of metal containing particles in a complex urban environment; identification of a close correlation between

  4. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in Mexico City

    SciTech Connect (OSTI)

    Dr. Charles E. Kolb

    2008-03-31T23:59:59.000Z

    This project was one of three collaborating grants designed to understand the atmospheric chemistry and aerosol particle microphysics impacting air quality in the Mexico City Metropolitan Area (MCMA) and its urban plume. The overall effort, titled MCMA- 2006, focused on: 1) the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles and 2) the measurement and analysis of secondary oxidants and secondary fine particular matter (PM) production, with particular emphasis on secondary organic aerosol (SOA). MCAM-2006 pursued it goals through three main activities: 1) performance and publication of detailed analyses of extensive MCMA trace gas and fine PM measurements made by the collaborating groups and others during earlier MCMA field campaigns in 2002 and 2003; 2) deployment and utilization of extensive real-time trace gas and fine PM instrumentation at urban and downwind MCMA sites in support of the MAX-Mex/MILAGRO field measurements in March, 2006; and, 3) analyses of the 2006 MCMA data sets leading to further publications that are based on new data as well as insights from analysis and publication of the 2002/2003 field data. Thirteen archival publications were coauthored with other MCMA-2003 participants. Documented findings included a significantly improved speciated emissions inventory from on-road vehicles, a greatly enhanced understanding of the sources and atmospheric loadings of volatile organic compounds, a unique analysis of the high fraction of ambient formaldehyde from primary emission sources, a much more extensive knowledge of the composition, size distributions and atmospheric mass loadings of both primary and secondary fine PM, including the fact that the rate of MCMA SOA production greatly exceeded that predicted by current atmospheric models, and evaluations of significant errors that can arise from standard air quality monitors for ozone and nitrogen dioxide. Deployment of the Aerodyne mobile laboratory, equipped with instruments from five collaborating laboratories, at the T0 urban supersite, four downwind sites and the Tula industrial area yielded unique trace gas and fine PM data sets during the March 2006 MAXMex/MILAGRO campaign. In addition, on-road measurements as the mobile laboratory moved between sites provided extensive data on 2006 MCMA fleet averaged vehicle emissions. Analyses of 2006 data sets have yielded the identification of a close correlation between the rate of production of SOA and “Odd Oxygen” (O3 + NO2) and primary organic PM with CO in the MCMA urban plume, a more sophisticated understanding of the interplay between nitrogen oxide speciation and ozone production, the identification of significant vehicular emission sources of HCN and CH3CN (usually associated with biomass burning), characterization of the aging of primary carbonaceous PM, and updated 2006 MCMA fleet on-road trace gas and fine PM emissions. Results from analyses of 2002/2003 and 2006 emissions and ambient measurements have conveyed to Mexican air quality managers who are using these data to devise and assess air quality management strategies. All data sets and published analyses are available to DOE/ASP researchers evaluating the impact of urban emissions on regional climate.

  5. Apportionment of ambient primary and secondary fine particulate matter at the Pittsburgh National Energy Laboratory particulate matter characterization site using positive matrix factorization and a potential source contributions function analysis

    SciTech Connect (OSTI)

    Donald V. Martello; Natalie J. Pekney; Richard R. Anderson (and others) [U.S. Department of Energy, Pittsburgh, PA (United States). National Energy Technology Laboratory

    2008-03-15T23:59:59.000Z

    Fine particulate matter (PM2.5) concentrations associated with 202 24-hr samples collected at the National Energy Technology Laboratory particulate matter characterization site in south Pittsburgh from October 1999 through September 2001 were used to apportion PM2.5 into primary and secondary contributions using Positive Matrix Factorization (PMF2). Input included the concentrations of PM2.5 mass determined with a Federal Reference Method (FRM) sampler, semi-volatile PM2.5 organic material, elemental carbon (EC), and trace element components of PM2.5. A total of 11 factors were identified. The results of potential source contributions function analysis using PMF2 factors and HYSPLIT-calculated back-trajectories were used to identify those factors associated with specific meteorological transport conditions. The 11 factors were identified as being associated with emissions from various specific regions and facilities including crustal material, gasoline combustion, diesel combustion, and three nearby sources high in trace metals. Three sources associated with transport from coal-fired power plants to the southeast, a combination of point sources to the northwest, and a steel mill and associated sources to the west were identified. In addition, two secondary-material-dominated sources were identified, one was associated with secondary products of local emissions and one was dominated by secondary ammonium sulfate transported to the NETL site from the west and southwest. Of these 11 factors, the four largest contributors to PM2.5 were the secondary transported material, local secondary material, diesel combustion emissions, and gasoline combustion emissions. 26 refs., 10 figs., 1 tab.

  6. Exposure to Particulate Matter and Ozone of Outdoor Origin in Singapore

    E-Print Network [OSTI]

    Gall, Elliott T; Chen, Ailu; Chang, Victor; Nazaroff, William W

    2015-01-01T23:59:59.000Z

    ulate matter (PM) or ozone, at concentration increments of ~SL, Samet JM, Dominici F. Ozone and short-term mortality inthe penetration of ambient ozone into residential buildings.

  7. Technical comments on EPA`s proposed revisions to the National Ambient Air Quality Standard for particulate matter

    SciTech Connect (OSTI)

    Lipfert, F.W.

    1997-03-01T23:59:59.000Z

    The US Environmental Protection Agency (EPA) has proposed new ambient air quality standards specifically for fine particulate matter, regulating concentrations of particles with median aerodynamic diameters less than 2.5 {mu}m (PM{sub 2.5}). Two new standards have been proposed: a maximum 24-hr concentration that is intended to protect against acute health effects, and an annual concentration limit that is intended to protect against longer-term health effects. EPA has also proposed a slight relaxation of the 24-hr standard for inhalable particles (PM{sub 10}), by allowing additional exceedances each year. Fine particles are currently being indirectly controlled by means of regulations for PM{sub 10} and TSP, under the Clean Air Act of 1970 and subsequent amendments. Although routine monitoring of PM{sub 2.5} is rare and data are sparse, the available data indicate that ambient concentrations have been declining at about 6% per year under existing regulations.

  8. Cardiopulmonary Toxicity Induced by Ambient Particulate Matter (BI City Concentrated Ambient Particle Study)

    SciTech Connect (OSTI)

    Annette Rohr; James Wagner Masako Morishita; Gerald Keeler; Jack Harkema

    2010-06-30T23:59:59.000Z

    Alterations in heart rate variability (HRV) have been reported in rodents exposed to concentrated ambient particles (CAPs) from different regions of the United States. The goal of this study was to compare alterations in cardiac function induced by CAPs in two distinct regional atmospheres. AirCARE 1, a mobile laboratory with an EPA/Harvard fine particle (particulate matter <2.5 {micro}m; PM{sub 2.5}) concentrator was located in urban Detroit, MI, where the PM mixture is heavily influenced by motor vehicles, and in Steubenville, OH, where PM is derived primarily from long-range transport and transformation of power plant emissions, as well as from local industrial operations. Each city was studied during both winter and summer months, for a total of four sampling periods. Spontaneously hypertensive rats instrumented for electrocardiogram (ECG) telemetry were exposed to CAPs 8 h/day for 13 consecutive days during each sampling period. Heart rate (HR), and indices of HRV (standard deviation of the average normal-to-normal intervals [SDNN]; square root of the mean squared difference of successive normal-to-normal intervals [rMSSD]), were calculated for 30-minute intervals during exposures. A large suite of PM components, including nitrate, sulfate, elemental and organic carbon, and trace elements, were monitored in CAPs and ambient air. In addition, a unique sampler, the Semi-Continuous Elements in Air Sampler (SEAS) was employed to obtain every-30-minute measurements of trace elements. Positive matrix factorization (PMF) methods were applied to estimate source contributions to PM{sub 2.5}. Mixed modeling techniques were employed to determine associations between pollutants/CAPs components and HR and HRV metrics. Mean CAPs concentrations in Detroit were 518 and 357 {micro}g/m{sup 3} (summer and winter, respectively) and 487 and 252 {micro}g/m{sup 3} in Steubenville. In Detroit, significant reductions in SDNN were observed in the summer in association with cement/lime, iron/steel, and gasoline/diesel factors, while associations with the sludge incineration factor and components were less consistent. In winter, increases in HR were associated with a refinery factor and its components. CAPs-associated HR decreases in winter were linked to sludge incineration, cement/lime, and coal/secondary factors and the majority of their associated components. Specific relationships for increased rMSSD in winter were difficult to determine due to lack of consistency between factors and associated constituents. In Steubenville, we observed significant changes in HR (both increases and decreases), SDNN, and rMSSD in the summer, but not in the winter. We examined associations between individual source factors/PM components and HRV metrics segregated by predominant wind direction (NE or SW). Changes in HR (both increases and decreases) were linked with metal processing, waste incineration, and iron/steel factors along with most of their associated elemental constituents. Reductions in SDNN were associated with metal processing, waste incineration, and mobile source factors and the majority of elements loading onto these factors. There were no consistent associations between changes in rMSSD and source factors/components. Despite the large number of coal-fired power plants in the region, and therefore the large contribution of secondary sulfate to overall PM mass, we did not observe any associations with the coal/secondary factor or with the majority of its associated components. There were several inconsistencies in our results which make definitive conclusions difficult. For example, we observed opposing signs of effect estimates with some components depending on season, and with others depending on wind direction. In addition, our extensive dataset clearly would be subject to issues of multiple comparisons, and the 'true' significant results are unknown. Overall, however, our results suggest that acute changes in cardiac function were most strongly associated with local industrial sources. Results for coal-fired power plant-derived PM were

  9. Total Particulate Matter Air Sampling Data (TEOM) from Los Alamos National Laboratory

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    LANL measures the total particulate mass concentration in the air on a routine basis as well as during incidents that may affect ambient air. The collected data is added to the Air Quality Index (AQI). AQI is an index for reporting daily air quality. It tells you how clean or polluted your air is, and what associated health effects might be a concern for you. The AQI focuses on health effects you may experience within a few hours or days after breathing polluted air. EPA calculates the AQI for five major air pollutants regulated by the Clean Air Act.

  10. Active DPF for Off-Road Particulate Matter (PM) Control | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated aging of1.1Energy DPF for Off-Road Particulate

  11. Contribution of vehicle emissions to ambient carbonaceous particulate matter: A review and synthesis of the available data in the South Coast Air Basin. Final report

    SciTech Connect (OSTI)

    Cass, G.R.

    1997-02-01T23:59:59.000Z

    Table of Contents: Executive Summary; Introduction; Ambient Carbonaceous Particulate Matter in the South Coast Air Basin; Measurements of Emissions from In-Use Motor Vehicles in the South Coast Air Basin; Integration of Emissions Measurements into Comprehensive Emissions Inventories; Relating Emissions fom Motor Vehicles to Particulate Air Quality; Synthesis: The Combined Effect of All Vehicle-Related Source Contributions Acting Together; Trends in More Recent Years; Opportunities for Further Research; References; Appendix A: Detailed Mass Emissions Rates for Organic Compounds from Motor Vehicle Exhaust; and Appendix B: Organic Compounds Emitted from Tire Dust, Paved Road Dust, and Brake Lining Wear Dust.

  12. Apportionment of ambient primary and secondary fine particulate matter at the Pittsburgh National Energy Laboratory particulate matter characterization site using positive matrix factorization and a potential source contributions function analysis

    SciTech Connect (OSTI)

    Martello, D.V.; Pekney, N.J.; Anderson, R.R.; Davidson, C.I. (Carnegie Mellon U., Pittsburgh, PA); Hopke, P.K. (Clarkson University, Potsdam, NY); Kim, E. (Clarkson University, Potsdam, NY); Christensen, W.F. (Brigham Young Univ., Provo, UT); Mangelson, N.F. (Brigham Young Univ., Provo, UT); Eatough, D.J. (Brigham Young Univ., Provo, UT)

    2008-03-01T23:59:59.000Z

    Fine particulate matter (PM2.5) concentrations associated with 202 24-hr samples collected at the National Energy Technology Laboratory (NETL) particulate matter (PM) characterization site in south Pittsburgh from October 1999 through September 2001 were used to apportion PM2.5 into primary and secondary contributions using Positive Matrix Factorization (PMF2). Input included the concentrations of PM2.5 mass determined with a Federal Reference Method (FRM) sampler, semi-volatile PM2.5 organic material, elemental carbon (EC), and trace element components of PM2.5. A total of 11 factors were identified. The results of potential source contributions function (PSCF) analysis using PMF2 factors and HYSPLIT-calculated back-trajectories were used to identify those factors associated with specific meteorological transport conditions. The 11 factors were identified as being associated with emissions from various specific regions and facilities including crustal material, gasoline combustion, diesel combustion, and three nearby sources high in trace metals. Three sources associated with transport from coal-fired power plants to the southeast, a combination of point sources to the northwest, and a steel mill and associated sources to the west were identified. In addition, two secondary-material-dominated sources were identified, one was associated with secondary products of local emissions and one was dominated by secondary ammonium sulfate transported to the NETL site from the west and southwest. Of these 11 factors, the four largest contributors to PM2.5 were the secondary transported material (dominated by ammonium sulfate) (47%), local secondary material (19%), diesel combustion emissions (10%), and gasoline combustion emissions (8%). The other seven factors accounted for the remaining 16% of the PM2.5 mass. The findings are consistent with the major source of PM2.5 in the Pittsburgh area being dominated by ammonium sulfate from distant transport and so decoupled from local activity emitting organic pollutants in the metropolitan area. In contrast, the major local secondary sources are dominated by organic material.

  13. Apportionment of ambient primary and secondary fine particulate matter at the Pittsburgh National Energy Laboratory particulate matter characterization site using positive matrix factorization and a potential source contributions function analysis

    SciTech Connect (OSTI)

    Martello, DV [Martello, Donald V.; Pekney, NJ [Pekney, Natalie J.; Anderson, RR [Anderson, Richard; R,; Davidson, CI [Davidson, Cliff I.; Hopke, PK [Hopke, Philip K.; Kim, E [Kim, Eugene; Christensen, WF; (Christensen, William F.); Mangelson, NF [Mangelson, Nolan F.; Eatough, DJ [Eatough, Delbert J.

    2008-03-01T23:59:59.000Z

    Fine particulate matter (PM2.5) concentrations associated with 202 24-hr amples collected at the National Energy Technology Laboratory (NETL) particulate matter (PM) characterization site in south Pittsburgh from October 1999 through September 2001 were used to apportion PM2.5 into primary and secondary contributions using Positive Matrix Factorization (PMF2). Input included the concentrations of PM2.5 mass determined with a Federal Reference Method (FRM) sampler, semi-volatile PM2.5, organic material, elemental carbon (EC), and trace element components of PM2.5. A total of 11 factors were identified. The results of potential source contributions function (PSCF) analysis using PMF2 factors and HYSPLIT-calculated back-trajectories were used to identify those factors associated with specific meteorological transport conditions. The 11 factors were identified as being associated with emissions from various specific regions and facilities including crustal material, gasoline combustion, diesel combustion, and three nearby sources high in trace metals. Three sources associated with transport from coal-fired power plants to the southeast, a combination of point sources to the northwest, and a steel mill and associated sources to the west were identified. In addition, two secondary-material-dominated sources were identified, one was associated with secondary products of local emissions and one was dominated by secondary ammonium sulfate transported to the NETL site from the west and southwest. Of these 11 factors, the four largest contributors to PM2.5, were the secondary transported material (dominated by ammonium sulfate) (47%), local secondary material (19%), diesel combustion emissions (10%), and gasoline combustion emissions (8%). The other seven factors accounted for the remaining 16% of the PM2.5 mass. The findings are consistent with the major source of PM2.5 in the Pittsburgh area being dominated by ammonium sulfate from distant transport and so decoupled from local activity emitting organic pollutants in the metropolitan area. In contrast, the major local secondary sources are dominated by organic material.

  14. Apportionment of Ambient Primary and Secondary Fine Particulate Matter at the Pittsburgh National Energy Laboratory Particulate Matter Characterization Site Using Positive Matrix Factorization and a Potential Source Contributions Function Analysis

    SciTech Connect (OSTI)

    Martello, Donald [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Pekney, Natalie [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Anderson, Richard [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Davidson, Cliff [Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA; Hopke, Philip [Clarkson Univ., Potsdam, NY (United States). Center for Air Resources Engineering and Science, and Dept. of Chemical Engineering; Kim, Eugene [Clarkson Univ., Potsdam, NY (United States). Center for Air Resources Engineering and Science, and Dept. of Chemical Engineering; Christensen, William [Brigham Young Univ., Provo, UT (United States). Dept. of Statistics; Mangelson, Nolan [Brigham Young Univ., Provo, UT (United States). Dept. of Chemistry and Biochemistry; Eatough, Delbert [Brigham Young Univ., Provo, UT (United States). Dept. of Chemistry and Biochemistry

    2008-03-01T23:59:59.000Z

    Fine particulate matter (PM2.5) concentrations associated with 202 24-hr samples collected at the National Energy Technology Laboratory (NETL) particulate matter (PM) characterization site in south Pittsburgh from October 1999 through September 2001 were used to apportion PM2.5 into primary and secondary contributions using Positive Matrix Factorization (PMF2). Input included the concentrations of PM2.5 mass determined with a Federal Reference Method (FRM) sampler, semi-volatile PM2.5, organic material, elemental carbon (EC), and trace element components of PM2.5. A total of 11 factors were identified. The results of potential source contributions function (PSCF) analysis using PMF2 factors and HYSPLIT-calculated back-trajectories were used to identify those factors associated with specific meteorological transport conditions. The 11 factors were identified as being associated with emissions from various specific regions and facilities including crustal material, gasoline combustion, diesel combustion, and three nearby sources high in trace metals. Three sources associated with transport from coal-fired power plants to the southeast, a combination of point sources to the northwest, and a steel mill and associated sources to the west were identified. In addition, two secondary-material-dominated sources were identified, one was associated with secondary products of local emissions and one was dominated by secondary ammonium sulfate transported to the NETL site from the west and southwest. Of these 11 factors, the four largest contributors to PM2.5, were the secondary transported material (dominated by ammonium sulfate) (47%), local secondary material (19%), diesel combustion emissions (10%), and gasoline combustion emissions (8%). The other seven factors accounted for the remaining 16% of the PM2.5 mass. The findings are consistent with the major source of PM2.5 in the Pittsburgh area being dominated by ammonium sulfate from distant transport and so decoupled from local activity emitting organic pollutants in the metropolitan area. In contrast, the major local secondary sources are dominated by organic material.

  15. Evaluation of the modified Anderson sampler for determining particle size distributions and respirable concentrations of particulate matter present in the working environment of cottonseed oil mills

    E-Print Network [OSTI]

    Matlock, Stanley Wayne

    1976-01-01T23:59:59.000Z

    EVALUATION OF THE MODIFIED ANDERSON SAMPLER FOR DETERMINING PARTICLE SIZE DISTRIBUTIONS AND RESPIRABLE CONCENTRATIONS OF PARTICULATE MATTER PRESENT IN THE WORKING ENVIRONMENT OF COTTONSEED OIL MILLS A Thesis by STANLEY WAYNE MATLOCK Submitted... to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE August 1976 Major Subject: Agricultural Engineering FVALUATION OF THE MODIFIED ANDERSON SAMPLER FOR DETERMINING PARTICLE SIZE...

  16. Electrically heated particulate filter restart strategy

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

    2011-07-12T23:59:59.000Z

    A control system that controls regeneration of a particulate filter is provided. The system generally includes a propagation module that estimates a propagation status of combustion of particulate matter in the particulate filter. A regeneration module controls current to the particulate filter to re-initiate regeneration based on the propagation status.

  17. Impacts of Mid-level Biofuel Content in Gasoline on SIDI Engine-Out and Tailpipe Particulate Matter Emissions: Preprint

    SciTech Connect (OSTI)

    He, X.; Ireland, J. C.; Zigler, B. T.; Ratcliff, M. A.; Knoll, K. E.; Alleman, T. L.; Tester, J. T.

    2011-02-01T23:59:59.000Z

    The influences of ethanol and iso-butanol blended with gasoline on engine-out and post Three-Way Catalyst (TWC) particle size distribution and number concentration were studied using a GM 2.0L turbocharged Spark Ignition Direct Injection (SIDI) engine. The engine was operated using the production ECU with a dynamometer controlling the engine speed and the accelerator pedal position controlling the engine load. A TSI Fast Mobility Particle Sizer (FMPS) spectrometer was used to measure the particle size distribution in the range from 5.6 to 560 nm with a sampling rate of 1 Hz. US federal certification gasoline (E0), two ethanol-blended fuels (E10 and E20), and 11.7% iso-butanol blended fuel (BU12) were tested. Measurements were conducted at ten selected steady-state engine operation conditions. Bi-modal particle size distributions were observed for all operating conditions with peak values at particle sizes of 10 nm and 70 nm. Idle and low speed / low load conditions emitted higher total particle numbers than other operating conditions. At idle, the engine-out Particulate Matter (PM) emissions were dominated by nucleation mode particles, and the production TWC reduced these nucleation mode particles by more than 50%, while leaving the accumulation mode particle distribution unchanged. At engine load higher than 6 bar NMEP, accumulation mode particles dominated the engine-out particle emissions and the TWC had little effect. Compared to the baseline gasoline (E0), E10 does not significantly change PM emissions, while E20 and BU12 both reduce PM emissions under the conditions studied. Iso-butanol was observed to impact PM emissions more than ethanol, with up to 50% reductions at some conditions. In this paper, the issues related to PM measurement using FMPS are also discussed. While some uncertainties are due to engine variation, the FMPS must be operated under careful maintenance procedures in order to achieve repeatable measurement results.

  18. Electrically heated particulate filter propagation support methods and systems

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

    2011-06-07T23:59:59.000Z

    A control system that controls regeneration of a particulate filter is provided. The system generally includes a regeneration module that controls current to the particulate filter to initiate combustion of particulate matter in the particulate filter. A propagation module estimates a propagation status of the combustion of the particulate matter based on a combustion temperature. A temperature adjustment module controls the combustion temperature by selectively increasing a temperature of exhaust that passes through the particulate filter.

  19. EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION

    SciTech Connect (OSTI)

    Kevin Crist

    2005-04-02T23:59:59.000Z

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NO{sub x}, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

  20. EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION

    SciTech Connect (OSTI)

    Kevin Crist

    2004-10-02T23:59:59.000Z

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

  1. EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION

    SciTech Connect (OSTI)

    Kevin Crist

    2004-04-02T23:59:59.000Z

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc. (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal-fired power plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley Region, operated independently of this project. These sites may include (1) the DOE National Energy Technology Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

  2. EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION

    SciTech Connect (OSTI)

    Kevin Crist

    2003-10-02T23:59:59.000Z

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NO{sub x}, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley Region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley Region.

  3. Evaluation of the Emission, Transport, and Deposition of Mercury, Fine Particulate Matter, and Arsenic from Coal-Based Power Plants in the Ohio River Valley Region

    SciTech Connect (OSTI)

    Kevin Crist

    2006-04-02T23:59:59.000Z

    As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NO{sub x}, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by the USEPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

  4. Evaluation of the Emission, Transport, and Deposition of Mercury, Fine Particulate Matter, and Arsenic from Coal-Based Power Plants in the Ohio River Valley Region

    SciTech Connect (OSTI)

    Kevin Crist

    2005-10-02T23:59:59.000Z

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

  5. Evaluation of the Emission, Transport, and Deposition of Mercury and Fine Particulate Matter from Coal-Based Power Plants in the Ohio River Valley Region

    SciTech Connect (OSTI)

    Kevin Crist

    2008-12-31T23:59:59.000Z

    As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, evaluated the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury and associated fine particulate matter. This evaluation involved two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring included the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station contains sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO2, O3, etc.). Laboratory analyses of time-integrated samples were used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Nearreal- time measurements were used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 30 months of field data were collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data provides mercury, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis includes (1) development of updated inventories of mercury emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This is accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results were compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory’s monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by the USEPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions provides critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

  6. Method of forming particulate materials for thin-film solar cells

    DOE Patents [OSTI]

    Eberspacher, Chris; Pauls, Karen Lea

    2004-11-23T23:59:59.000Z

    A method for preparing particulate materials useful in fabricating thin-film solar cells is disclosed. Particulate materials is prepared by the method include for example materials comprising copper and indium and/or gallium in the form of single-phase, mixed-metal oxide particulates; multi-phase, mixed-metal particulates comprising a metal oxide; and multinary metal particulates.

  7. Trace metal composition of particulate matter of the Danube River and Turkish rivers draining into the Black Sea

    E-Print Network [OSTI]

    Murray, James W.

    into the Black Sea Ouz Yiiterhan a,, James W. Murray b,1 a Institute of Marine Sciences, Middle East Technical several rivers entering the Black Sea as part of a broader study of the composition of suspended matter and sediments in the Black Sea. Suspended matter and surface sediment samples were collected from the Danube

  8. Development of Advanced Diesel Particulate Filtration (DPF) Systems

    Broader source: Energy.gov (indexed) [DOE]

    heat release in DPF regeneration. - Derive equations for the oxidation rate of diesel particulates - Measure the amount of heat release from the oxidation Characterize...

  9. Microwave regenerated particulate trap

    SciTech Connect (OSTI)

    McDonald, A.C. Jr.; Yonushonis, T.M. [Cummins Engine Co., Inc., Columbus, IN (United States); Haberkamp, W.C.; Mako, F.; Len, L.K,; Silberglitt, R.; Ahmed, I. [FM Technologies, Inc., Fairfax, VA (United States)

    1997-12-31T23:59:59.000Z

    It has been demonstrated that a fibrous particulate filter can extract particulate matter from the diesel exhaust. However, additional engineering efforts remains to achieve the design target of 90%. It has also be shown that with minor modifications magnetrons produced for home ovens can endure a simulated diesel operating environment. Much work remains to develop a robust product ready to complete extensive engine testing and evaluation. These efforts include: (1) additional environmental testing of magnetrons; (2) vibration testing of the filter in the housing; (3) evaluating alternative methods/designs to seal the center bore; and (4) determining the optimum coating thickness that provides sufficient structural integrity while maintaining rapid heating rates.

  10. Particulate Matter Emissions from a Direct Injection Spark Ignition Engine under Cold Fast Idle Conditions for Ethanol-Gasoline Blends

    E-Print Network [OSTI]

    Dimou, Iason

    The engine out particular matter number (PN) distributions at engine coolant temperature (ECT) of 0° C to 40° C for ethanol/ gasoline blends (E0 to E85) have been measured for a direct-injection spark ignition engine under ...

  11. Apportionment of ambient primary and secondary fine particulate matter during a 2001 summer intensive study at the CMU Supersite and NETL Pittsburgh Site

    SciTech Connect (OSTI)

    Delbert J. Eatough; Nolan F. Mangelson; Richard R. Anderson (and others) [Brigham Young University, Provo, UT (United States). Department of Chemistry and Biochemistry

    2007-10-15T23:59:59.000Z

    Gaseous and particulate pollutant concentrations associated with five samples per day collected during a July 2001 summer intensive study at the Pittsburgh Carnegie Mellon University (CMU) Supersite were used to apportion fine particulate matter (PM2.5) into primary and secondary contributions using PMF2. Input to the PMF2 analysis included the concentrations of PM2.5 nonvolatile and semivolatile organic material, elemental carbon (EC), ammonium sulfate, trace element components, gas-phase organic material, and NOx, NO{sub 2}, and O{sub 3} concentrations. A total of 10 factors were identified. These factors are associated with emissions from various sources and facilities including crustal material, gasoline combustion, diesel combustion, and three nearby sources high in trace metals. In addition, four secondary sources were identified, three of which were associated with secondary products of local emissions and were dominated by organic material and one of which was dominated by secondary ammonium sulfate transported to the CMU site from the west and southwest. The three largest contributors to PM2.5 were secondary transported material (dominated by ammonium sulfate) from the west and southwest from sources including coal-fired power plants, coke processing plants and steel mills, (49%), secondary material formed during midday photochemical processes (24%), and gasoline combustion emissions (11%). The other seven sources accounted for the remaining 16% of the PM2.5. Results obtained at the CMU site were comparable to results previously reported at the National Energy Technology Laboratory (NETL), located approximately 18 km south of downtown Pittsburgh. The major contributor at both sites was material transported from the west and southwest. Some difference in nearby sources could be attributed to meteorology as evaluated by HYSPLIT model back-trajectory calculations. 27 refs., 16 figs., 1 tab.

  12. ambient particulate matterpm10: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    , E 12;ACPD 7, 15693-15721, 2007 Particulate PAH spatial variability and aging in Mexico City D. A Boyer, Edmond 7 Different Genes Interact with Particulate Matter and...

  13. A model cerium oxide matrix composite reinforced with a homogeneous dispersion of silver particulate - prepared using the glycine-nitrate process

    SciTech Connect (OSTI)

    Weil, K. Scott; Hardy, John S.

    2005-01-31T23:59:59.000Z

    Recently a new method of ceramic brazing has been developed. Based on a two-phase liquid composed of silver and copper oxide, brazing is conducted directly in air without the need of an inert cover gas or the use of surface reactive fluxes. Because the braze displays excellent wetting characteristics on a number ceramic surfaces, including alumina, various perovskites, zirconia, and ceria, we were interested in investigating whether a metal-reinforced ceramic matrix composite (CMC) could be developed with this material. In the present study, two sets of homogeneously mixed silver/copper oxide/ceria powders were synthesized using a combustion synthesis technique. The powders were compacted and heat treated in air above the liquidus temperature for the chosen Ag-CuO composition. Metallographic analysis indicates that the resulting composite microstructures are extremely uniform with respect to both the size of the metallic reinforcement as well as its spatial distribution within the ceramic matrix. The size, morphology, and spacing of the metal particulate in the densified composite appears to be dependent on the original size and the structure of the starting combustion synthesized powders.

  14. Air Pollution Control Regulations: No. 13 - Particulate Emissions...

    Broader source: Energy.gov (indexed) [DOE]

    Environmental Regulations Provider Department of Environmental Management The purpose of this regulation is to limit emissions of particulate matter from fossil fuel fired and...

  15. active fine particulates: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences and Ecology Websites Summary: Effects of Sampling Conditions on the Size Distribution of Fine Particulate Matter Emitted from complex because the dilution...

  16. airborne fine particulate: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences and Ecology Websites Summary: Effects of Sampling Conditions on the Size Distribution of Fine Particulate Matter Emitted from complex because the dilution...

  17. ambient fine particulate: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences and Ecology Websites Summary: Effects of Sampling Conditions on the Size Distribution of Fine Particulate Matter Emitted from complex because the dilution...

  18. 7, 1569315721, 2007 Particulate PAH

    E-Print Network [OSTI]

    Boyer, Edmond

    dioxide, particulate PAHs are most strongly correlated with NOx. Mexico City's PAH-to-black carbon mass and particu- late properties at six locations throughout the city. The measurements were intended to5 support of sources and15 ages of particles are present. Among carbon monoxide, nitrogen oxides (NOx), and carbon

  19. Airborne Particulate Threat Assessment

    SciTech Connect (OSTI)

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    2008-12-31T23:59:59.000Z

    Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. government agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our findings and APICD Gen II subsystems for automated collection, deposition and detection of ambient particulate matter. Key findings from the APTA Program include: Ambient biological PM taxonomy; Demonstration of key subsystems needed for autonomous bioaerosol detection; System design; Efficient electrostatic collection; Automated bioagent recognition; Raman analysis performance validating Td<9 sec; Efficient collection surface regeneration; and Development of a quantitative bioaerosol defection model. The objective of the APTA program was to advance the state of our knowledge of ambient background PM composition. Operation of an automated aerosol detection system was enhanced by a more accurate assessment of background variability, especially for sensitive and specific sensing strategies like Raman detection that are background-limited in performance. Based on this improved knowledge of background, the overall threat detection performance of Raman sensors was improved.

  20. The effect of lubricant derived ash on the catalytic activity of diesel particulate filters

    E-Print Network [OSTI]

    Murray, Timothy Quinn

    2014-01-01T23:59:59.000Z

    A diesel particulate filter (DPF) is an aftertreatment device used to remove hazardous particulate matter (PM) from diesel engine exhaust. Modem emission restrictions have limited the acceptable amount of PM output by ...

  1. Diesel Emission Control -- Sulfur Effects (DECSE) Program; Phase I Interim Data Report No. 4: Diesel Particulate Filters -- Final Report

    SciTech Connect (OSTI)

    DOE; ORNL; NREL; EMA; MECA

    2000-01-15T23:59:59.000Z

    The Diesel Emission Control-Sulfur Effects (DECSE) is a joint government/industry program to determine the impact of diesel fuel sulfur levels on emission control systems whose use could lower emissions of nitrogen oxides (NOx) and particulate matter (PM) from on-highway trucks in the 2002--2004 model years. Phase 1 of the program was developed with the following objectives in mind: (1) evaluate the effects of varying the level of sulfur content in the fuel on the emission reduction performance of four emission control technologies; and (2) measure and compare the effects of up to 250 hours of aging on selected devices for multiple levels of fuel sulfur content. This is the fourth and final report for the DPF test program and covers the effect of diesel sulfur level on: a catalyzed diesel particulate filter (CDPF), and a continuously regenerating diesel particulate filter (CR-DPF).

  2. A new aerosol collector for quasi on-line analysis of particulate organic matter: the Aerosol Collection Module (ACM) and first applications with a GC/MS-FID

    E-Print Network [OSTI]

    Hohaus, T.

    In many environments organic matter significantly contributes to the composition of atmospheric aerosol particles influencing its properties. Detailed chemical characterization of ambient aerosols is critical in order to ...

  3. CEC-500-2010-FS-017 Volatility of Ultrafine Particulate

    E-Print Network [OSTI]

    Gas Vehicles TRANSPORTATION ENERGY RESEARCH PIER Transportation Research www. Limited research has been done to characterize compressed natural gas mass emissions and practically-volatile and semi-volatile fractions of ultrafine particulate matter emissions from compressed natural gas vehicles

  4. air particulate exposure: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    25 Next Page Last Page Topic Index 1 Research Commuters Exposure to Particulate Matter Air Pollution Is Affected by Mode of Transport, Fuel Type, and Route CiteSeer Summary: Ba...

  5. 2008-01-0333 Detailed Effects of a Diesel Particulate Filter on the Reduction

    E-Print Network [OSTI]

    Wu, Mingshen

    2008-01-0333 Detailed Effects of a Diesel Particulate Filter on the Reduction of Chemical Species of Wisconsin-Madison Copyright © 2008 SAE International ABSTRACT Diesel particulate filters are designed to reduce the mass emissions of diesel particulate matter and have been proven to be effective

  6. COMPARATIVE EVALUATION OF AMBIENT FINE PARTICULATE MATTER (PM2.5) DATA OBTAINED FROM URBAN AND RURAL MONITORING SITES ALONG THE UPPER OHIO RIVER VALLEY

    SciTech Connect (OSTI)

    Robinson P. Khosah; John P. Shimshock

    2004-03-02T23:59:59.000Z

    Advanced Technology Systems, Inc. (ATS), with Desert Research Institute (DRI) and Ohio University as subcontractors, was contracted by the NETL in September 1998 to manage the Upper Ohio River Valley Project (UORVP), with a goal of characterizing the ambient fine particulate in this region, including examination of urban/rural variations, correlations between PM{sub 2.5} and gaseous pollutants, and influences of artifacts on PM{sub 2.5} measurements in this region. Two urban and two rural monitoring sites were included in the UORVP. The four sites selected were all part of existing local and/or state air quality programs. One urban site was located in the Lawrenceville section of Pittsburgh, Pennsylvania at an air quality monitoring station operated by the Allegheny County Health Department. A second urban site was collocated at a West Virginia Division of Environmental Protection (WVDEP) monitoring station at the airport in Morgantown, West Virginia. One rural site was collocated with the Pennsylvania Department of Environmental Protection (PADEP) at a former NARSTO-Northeast site near Holbrook, Greene County, Pennsylvania. The other rural site was collocated at a site operated by the Ohio Environmental Protection Agency (OHEPA) and managed by the Ohio State Forestry Division in Gifford State Forest near Athens, Ohio. Previous Semi-Annual Technical Progress Reports presented the following: (1) the median mass and composition of PM{sub 2.5} are similar for both Lawrenceville and Holbrook, suggesting that the sites are impacted more by the regional than by local effects; (2) there was no significant differences in the particulate trending and levels observed at both sites within seasons; (3) sulfate levels predominate at both sites and (4) PM{sub 2.5} and PM{sub 10} mass concentration levels are consistently higher in summer than in winter, with intermediate levels being observed in the fall and spring. Analyses of data conducted during the period from April 1, 2003 through September 30, 2003 are presented in this Semi-Annual Technical Progress Report. Report Revision No. 1 includes the additions or removals of text presented in the previous version of this report.

  7. COMPARATIVE EVALUATION OF AMBIENT FINE PARTICULATE MATTER (PM2.5)DATA OBTAINED FROM URBAN AND RURAL MONITORING SITES ALONG THE UPPER OHIO RIVER VALLEY

    SciTech Connect (OSTI)

    Robinson P. Khosah; John P. Shimshock

    2003-04-30T23:59:59.000Z

    Advanced Technology Systems, Inc. (ATS), with Desert Research Institute (DRI) and Ohio University as subcontractors, was contracted by the NETL in September 1998 to manage the Upper Ohio River Valley Project (UORVP), with a goal of characterizing the ambient fine particulate in this region, including examination of urban/rural variations, correlations between PM{sub 2.5} and gaseous pollutants, and influences of artifacts on PM{sub 2.5} measurements in this region. Two urban and two rural monitoring sites were included in the UORVP. The four sites selected were all part of existing local and/or state air quality programs. One urban site was located in the Lawrenceville section of Pittsburgh, Pennsylvania at an air quality monitoring station operated by the Allegheny County Health Department. A second urban site was collocated at a West Virginia Division of Environmental Protection (WVDEP) monitoring station at the airport in Morgantown, West Virginia. One rural site was collocated with the Pennsylvania Department of Environmental Protection (PADEP) at a former NARSTO-Northeast site near Holbrook, Greene County, Pennsylvania. The other rural site was collocated at a site operated by the Ohio Environmental Protection Agency (OHEPA) and managed by the Ohio State Forestry Division in Gifford State Forest near Athens, Ohio. Analysis of data collected to date show that: (1) the median mass and composition of PM{sub 2.5} are similar for both Lawrenceville and Holbrook, suggesting that the sites are impacted more by the regional than by local effects; (2) there was no significant differences in the particulate trending and levels observed at both sites within seasons; (3) sulfate levels predominate at both sites, and (4) PM{sub 2.5} and PM{sub 10} mass concentration levels are consistently higher in summer than in winter, with intermediate levels being observed in the fall and spring. Data analysis focusing on relating the aerometric measurements to local and regional scale emissions of sources of primary and secondary fine particles using receptor-based air quality models will follow.

  8. Developing an accelerated aging system for gasoline particulate filters and an evaluation test for effects on engine performance

    E-Print Network [OSTI]

    Jorgensen, James E. (James Eastman)

    2014-01-01T23:59:59.000Z

    Stringent regulations worldwide will limit the level of particulate matter (PM) emitted from gasoline engines equipped with direct fuel injection. Gasoline particulate filters (GPFs) present one strategy for meeting PM ...

  9. The distribution of particulate matter in the Equatorial and Subtropical South Atlantic Ocean: evidence for sources, transport and sinks of particles

    E-Print Network [OSTI]

    Berglund, Bret Lawrence

    1989-01-01T23:59:59.000Z

    matter in the oceans (including Feely, 1975; Bishop et al. , 1977, 1978, 1980; Bishop and Biscaye, 1982; Gardner et al. , 1985a; Richardson, 1987). Generally, the component particles can be divided into three groupings based on their origin (adapted... from Tchernia (1980). nitrate and phosphate are published in the cruise reports [Oceanographic Data Facility (ODF), 1988a; b and c]. In the western basin of the study area, the water column can be divided into the following vertical sequences (from...

  10. Chemopreventive activity of compounds extracted from Casearia sylvestris (Salicaceae) Sw against DNA damage induced by particulate matter emitted by sugarcane burning near Araraquara, Brazil

    SciTech Connect (OSTI)

    Prieto, A.M. [UNESP — Univ. Estadual Paulista, College of Pharmaceutical Sciences, Department of Clinical Analysis, Rua Expedicionários do Brasil, 1621, Araraquara (Brazil)] [UNESP — Univ. Estadual Paulista, College of Pharmaceutical Sciences, Department of Clinical Analysis, Rua Expedicionários do Brasil, 1621, Araraquara (Brazil); Santos, A.G. [UNESP — Univ. Estadual Paulista, College of Pharmaceutical Sciences, Department of Natural Principles and Toxicology, Rodovia Araraquara-Jau, km 01, Araraquara (Brazil)] [UNESP — Univ. Estadual Paulista, College of Pharmaceutical Sciences, Department of Natural Principles and Toxicology, Rodovia Araraquara-Jau, km 01, Araraquara (Brazil); Csipak, A.R.; Caliri, C.M.; Silva, I.C. [UNESP — Univ. Estadual Paulista, College of Pharmaceutical Sciences, Department of Clinical Analysis, Rua Expedicionários do Brasil, 1621, Araraquara (Brazil)] [UNESP — Univ. Estadual Paulista, College of Pharmaceutical Sciences, Department of Clinical Analysis, Rua Expedicionários do Brasil, 1621, Araraquara (Brazil); Arbex, M.A. [UNIFESP — Federal University of São Paulo, Paulista College of Medicine, Department of Internal Medicine, Rua Pedro de Toledo, 720, São Paulo (Brazil)] [UNIFESP — Federal University of São Paulo, Paulista College of Medicine, Department of Internal Medicine, Rua Pedro de Toledo, 720, São Paulo (Brazil); Silva, F.S.; Marchi, M.R.R. [UNESP — Univ. Estadual Paulista, Chemistry Institute, Department of Analytical Chemistry, Rua Francisco Degni, S/N, Araraquara (Brazil)] [UNESP — Univ. Estadual Paulista, Chemistry Institute, Department of Analytical Chemistry, Rua Francisco Degni, S/N, Araraquara (Brazil); Cavalheiro, A.J.; Silva, D.H.S.; Bolzani, V.S. [UNESP — Univ. Estadual Paulista, Chemistry Institute, Department of Organic Chemistry, Rua Francisco Degni, S/N, Araraquara (Brazil)] [UNESP — Univ. Estadual Paulista, Chemistry Institute, Department of Organic Chemistry, Rua Francisco Degni, S/N, Araraquara (Brazil); Soares, C.P., E-mail: soarescp@hotmail.com [UNESP — Univ. Estadual Paulista, College of Pharmaceutical Sciences, Department of Clinical Analysis, Rua Expedicionários do Brasil, 1621, Araraquara (Brazil)

    2012-12-15T23:59:59.000Z

    Ethanolic extract of Casearia sylvestris is thought to be antimutagenic. In this study, we attempted to determine whether this extract and casearin X (a clerodane diterpene from C. sylvestris) are protective against the harmful effects of airborne pollutants from sugarcane burning. To that end, we used the Tradescantia micronucleus test in meiotic pollen cells of Tradescantia pallida, the micronucleus test in mouse bone marrow cells, and the comet assay in mouse blood cells. The mutagenic compound was total suspended particulate (TSP) from air. For the Tradescantia micronucleus test, T. pallida cuttings were treated with the extract at 0.13, 0.25, or 0.50 mg/ml. Subsequently, TSP was added at 0.3 mg/ml, and tetrads from the inflorescences were examined for micronuclei. For the micronucleus test in mouse bone marrow cells and the comet assay in mouse blood cells, Balb/c mice were treated for 15 days with the extract—3.9, 7.5, or 15.0 mg/kg body weight (BW)—or with casearin X—0.3, 0.25, or 1.2 mg/kg BW—after which they received TSP (3.75 mg/kg BW). In T. pallida and mouse bone marrow cells, the extract was antimutagenic at all concentrations tested. In mouse blood cells, the extract was antigenotoxic at all concentrations, whereas casearin X was not antimutagenic but was antigenotoxic at all concentrations. We conclude that C. sylvestris ethanolic extract and casearin X protect DNA from damage induced by airborne pollutants from sugarcane burning. -- Highlights: ? We assessed DNA protection of C. sylvestris ethanolic extract. ? We assessed DNA protection of casearin X. ? We used Tradescantia pallida micronucleus test as screening. ? We used comet assay and micronucleus test in mice. ? The compounds protected DNA against sugar cane burning pollutants.

  11. Combustor for fine particulate coal

    DOE Patents [OSTI]

    Carlson, L.W.

    1988-11-08T23:59:59.000Z

    A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover. 4 figs.

  12. Combustor for fine particulate coal

    DOE Patents [OSTI]

    Carlson, L.W.

    1988-01-26T23:59:59.000Z

    A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover. 4 figs.

  13. Particulate hot gas stream cleanup technical issues

    SciTech Connect (OSTI)

    Pontius, D.H.; Snyder, T.R.

    1999-09-30T23:59:59.000Z

    The analyses of hot gas stream cleanup particulate samples and descriptions of filter performance studied under this contract were designed to address problems with filter operation that have been linked to characteristics of the collected particulate matter. One objective of this work was to generate an interactive, computerized data bank of the key physical and chemical characteristics of ash and char collected from operating advanced particle filters and to relate these characteristics to the operation and performance of these filters. The interactive data bank summarizes analyses of over 160 ash and char samples from fifteen pressurized fluidized-bed combustion and gasification facilities utilizing high-temperature, high pressure barrier filters.

  14. Gaseous and particulate emissions from a DC arc melter

    SciTech Connect (OSTI)

    Overcamp, T.J.; Speer, M.P.; Griner, S.J.; Cash, D.M. [Clemson Univ., Anderson, SC (United States)

    1997-12-31T23:59:59.000Z

    This paper presents the results of the gaseous and particulate emissions from eight experimental tests of a DC arc melter to treat simulated Savannah River soils contaminated with metals, surrogates for radionuclides, and organic debris. The gaseous analyses reported on the concentrations of oxygen, hydrogen, carbon monoxide, carbon dioxide, hydrogen, methane, nitric oxide, and nitrogen dioxide. The carbon dioxide concentration was high for all runs. For the runs with an air purge, the carbon monoxide concentration ranged up to 10% in the runs with the debris and 2% in the runs without debris. Hydrogen ranged up to 5% by with debris and up to 1% without debris. The methane concentration ranged up to 7,000 ppm{sub v} for the runs with debris and 2,000 ppm for the runs without debris. With a nitrogen purge, oxygen concentrations were less than 1%. The carbon dioxide concentrations ranged from 3 to 15%. Much of this carbon dioxide was probably due the carbonates added to the feed material. The carbon monoxide concentration ranged up to 20% with the debris and 7% without debris. Hydrogen was above 6% in with debris and up to 6% without debris. The methane concentration ranged up to 10,000 ppm{sub v} with debris and 4,000 ppm{sub v} without debris. The particulate concentrations exiting ranged from 32 to 145 g/m{sup 3}. From the chemical analyses, the primary elements were silicon and calcium. The CHN analyses indicated that carbon, probably as carbonates, are an additional component in the particulate matter. The estimated emissions were at a level of 3% or less for cerium, up to 7% for nickel, and 11 to 30% for cesium.

  15. Method for immobilizing particulate materials in a packed bed

    DOE Patents [OSTI]

    Even, Jr., William R. (Livermore, CA); Guthrie, Stephen E. (Livermore, CA); Raber, Thomas N. (Livermore, CA); Wally, Karl (Lafayette, CA); Whinnery, LeRoy L. (Livermore, CA); Zifer, Thomas (Manteca, CA)

    1999-01-01T23:59:59.000Z

    The present invention pertains generally to immobilizing particulate matter contained in a "packed" bed reactor so as to prevent powder migration, compaction, coalescence, or the like. More specifically, this invention relates to a technique for immobilizing particulate materials using a microporous foam-like polymer such that a) the particulate retains its essential chemical nature, b) the local movement of the particulate particles is not unduly restricted, c) bulk powder migration and is prevented, d) physical and chemical access to the particulate is unchanged over time, and e) very high particulate densities are achieved. The immobilized bed of the present invention comprises a vessel for holding particulate matter, inlet and an outlet ports or fittings, a loosely packed bed of particulate material contained within the vessel, and a three dimensional porous matrix for surrounding and confining the particles thereby fixing the movement of individual particle to a limited local position. The established matrix is composed of a series of cells or chambers comprising walls surrounding void space, each wall forming the wall of an adjacent cell; each wall containing many holes penetrating through the wall yielding an overall porous structure and allowing useful levels of gas transport.

  16. Airborne particulate discriminator

    DOE Patents [OSTI]

    Creek, Kathryn Louise (San Diego, CA); Castro, Alonso (Santa Fe, NM); Gray, Perry Clayton (Los Alamos, NM)

    2009-08-11T23:59:59.000Z

    A method and apparatus for rapid and accurate detection and discrimination of biological, radiological, and chemical particles in air. A suspect aerosol of the target particulates is treated with a taggant aerosol of ultrafine particulates. Coagulation of the taggant and target particles causes a change in fluorescent properties of the cloud, providing an indication of the presence of the target.

  17. Particulate Air Pollution, Ambulatory Heart Rate Variability, and Cardiac Arrhythmia in Retirement Community Residents with Coronary Artery Disease

    E-Print Network [OSTI]

    Bartell, Scott M.; Longhurst, John; Tjoa, Thomas; Sioutas, Constantinos; Delfino, Ralph J.

    2013-01-01T23:59:59.000Z

    in association with air pollution and air temperature amongvariability with traffic and air pollution in patients withParticulate matter air pollution and cardiovascular disease:

  18. Particulate air pollution, ambulatory heart rate variability, and cardiac arrhythmia in retirement community residents with coronary artery disease.

    E-Print Network [OSTI]

    Bartell, Scott M; Longhurst, John; Tjoa, Thomas; Sioutas, Constantinos; Delfino, Ralph J

    2013-01-01T23:59:59.000Z

    in association with air pollution and air temperature amongvariability with traffic and air pollution in patients withParticulate matter air pollution and cardiovascular disease:

  19. Air Pollution Control Regulations: No. 13- Particulate Emissions from Fossil Fuel Fired Steam or Hot Water Generating Units (Rhode Island)

    Broader source: Energy.gov [DOE]

    The purpose of this regulation is to limit emissions of particulate matter from fossil fuel fired and wood-fired steam or hot water generating units.

  20. Method for dispersing catalyst onto particulate material

    DOE Patents [OSTI]

    Utz, Bruce R. (Pittsburgh, PA); Cugini, Anthony V. (Pittsburgh, PA)

    1992-01-01T23:59:59.000Z

    A method for dispersing finely divided catalyst precursors onto the surface of coal or other particulate material includes the steps of forming a wet paste mixture of the particulate material and a liquid solution containing a dissolved transition metal salt, for instance a solution of ferric nitrate. The wet paste mixture is in a state of incipient wetness with all of this solution adsorbed onto the surfaces of the particulate material without the presence of free moisture. On adding a precipitating agent such as ammonia, a catalyst precursor such as hydrated iron oxide is deposited on the surfaces of the coal. The catalyst is activated by converting it to the sulfide form for the hydrogenation or direct liquefaction of the coal.

  1. Advanced Hybrid Particulate Collector Project Management Plan

    SciTech Connect (OSTI)

    Miller, S.J.

    1995-11-01T23:59:59.000Z

    As the consumption of energy increases, its impact on ambient air quality has become a significant concern. Recent studies indicate that fine particles from coal combustion cause health problems as well as atmospheric visibility impairment. These problems are further compounded by the concentration of hazardous trace elements such as mercury, cadmium, selenium, and arsenic in fine particles. Therefore, a current need exists to develop superior, but economical, methods to control emissions of fine particles. Since most of the toxic metals present in coal will be in particulate form, a high level of fine- particle collection appears to be the best method of overall air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and cannot be collected in particulate control devices. Therefore, this project will focus on developing technology not only to provide ultrahigh collection efficiency of particulate air toxic emissions, but also to capture vapor- phase trace metals such as mercury and selenium. Currently, the primary state-of-the-art technologies for particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). However, they both have limitations that prevent them from achieving ultrahigh collection of fine particulate matter and vapor-phase trace metals. The objective of this project is to develop a highly reliable advanced hybrid particulate collector (AHPC) that can provide > 99.99 % particulate collection efficiency for all particle sizes between 0.01 and 50 14m, is applicable for use with all U.S. coals, and is cost-0443competitive with existing technologies. Phase I of the project is organized into three tasks: Task I - Project Management, Reporting, and Subcontract Consulting Task 2 - Modeling, Design, and Construction of 200-acfm AHPC Model Task 3 - Experimental Testing and Subcontract Consulting

  2. Biodiesel versus diesel exposure: Enhanced pulmonary inflammation, oxidative stress, and differential morphological changes in the mouse lung

    SciTech Connect (OSTI)

    Yanamala, Naveena, E-mail: wqu1@cdc.gov [Pathology and Physiology Research Branch/NIOSH/CDC, Morgantown, WV 26505 (United States); Hatfield, Meghan K., E-mail: wla4@cdc.gov [Pathology and Physiology Research Branch/NIOSH/CDC, Morgantown, WV 26505 (United States); Farcas, Mariana T., E-mail: woe7@cdc.gov [Pathology and Physiology Research Branch/NIOSH/CDC, Morgantown, WV 26505 (United States); Schwegler-Berry, Diane [Pathology and Physiology Research Branch/NIOSH/CDC, Morgantown, WV 26505 (United States); Hummer, Jon A., E-mail: qzh3@cdc.gov [Office of Mine Safety and Health Research/NIOSH/CDC, Pittsburgh, PA 15236 (United States); Shurin, Michael R., E-mail: shurinmr@upmc.edu [Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Birch, M. Eileen, E-mail: mib2@cdc.gov [NIOSH/CDC, 4676 Columbia Parkway, Cincinnati, OH 45226 (United States); Gutkin, Dmitriy W., E-mail: dwgutkin@hotmail.com [Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Kisin, Elena, E-mail: edk8@cdc.gov [Pathology and Physiology Research Branch/NIOSH/CDC, Morgantown, WV 26505 (United States); Kagan, Valerian E., E-mail: kagan@pitt.edu [Department of Environmental and Occupational Health, University of Pittsburgh, PA (United States); Bugarski, Aleksandar D., E-mail: zjl1@cdc.gov [Office of Mine Safety and Health Research/NIOSH/CDC, Pittsburgh, PA 15236 (United States); Shvedova, Anna A., E-mail: ats1@cdc.gov [Pathology and Physiology Research Branch/NIOSH/CDC, Morgantown, WV 26505 (United States); Department Physiology and Pharmacology, WVU, Morgantown, WV 26505 (United States)

    2013-10-15T23:59:59.000Z

    The use of biodiesel (BD) or its blends with petroleum diesel (D) is considered to be a viable approach to reduce occupational and environmental exposures to particulate matter (PM). Due to its lower particulate mass emissions compared to D, use of BD is thought to alleviate adverse health effects. Considering BD fuel is mainly composed of unsaturated fatty acids, we hypothesize that BD exhaust particles could induce pronounced adverse outcomes, due to their ability to readily oxidize. The main objective of this study was to compare the effects of particles generated by engine fueled with neat BD and neat petroleum-based D. Biomarkers of tissue damage and inflammation were significantly elevated in lungs of mice exposed to BD particulates. Additionally, BD particulates caused a significant accumulation of oxidatively modified proteins and an increase in 4-hydroxynonenal. The up-regulation of inflammatory cytokines/chemokines/growth factors was higher in lungs upon BD particulate exposure. Histological evaluation of lung sections indicated presence of lymphocytic infiltrate and impaired clearance with prolonged retention of BD particulate in pigment laden macrophages. Taken together, these results clearly indicate that BD exhaust particles could exert more toxic effects compared to D. - Highlights: • Exposure of mice to BDPM caused higher pulmonary toxicity compared to DPM. • Oxidative stress and inflammation were higher in BD vs to D exposed mice. • Inflammatory lymphocyte infiltrates were seen only in lungs of mice exposed to BD. • Ineffective clearance, prolonged PM retention was present only after BD exposure.

  3. Face crack reduction strategy for particulate filters

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI

    2012-01-31T23:59:59.000Z

    A system comprises a particulate matter (PM) filter that comprises an upstream end for receiving exhaust gas, a downstream end and at least one portion. A control module initiates combustion of PM in the PM filter using a heater and selectively adjusts oxygen levels of the exhaust gas to adjust a temperature of combustion adjacent to the at least one portion of the PM filter. A method comprises providing a particulate matter (PM) filter that comprises an upstream end for receiving exhaust gas, a downstream end and at least one portion; initiating combustion of PM in the PM filter using a heater; selectively adjusting oxygen levels of the exhaust gas to adjust a temperature of combustion adjacent to the at least one portion of the PM filter.

  4. Method of feeding particulate material to a fluidized bed

    DOE Patents [OSTI]

    Borio, Richard W. (Somers, CT); Goodstine, Stephen L. (Windsor, CT)

    1984-01-01T23:59:59.000Z

    A centrifugal spreader type feeder that supplies a mixture of particulate limestone and coal to the top of a fluidized bed reactor having a flow of air upward therethrough. Large particles of particulate matter are distributed over the upper surface of the bed to utilize the natural mixing within the bed, while fine particles are adapted to utilize an independent feeder that separates them from the large particles and injects them into the bed.

  5. Particulate contamination removal from wafers using plasmas and mechanical agitation

    DOE Patents [OSTI]

    Selwyn, Gary S. (Los Alamos, NM)

    1998-01-01T23:59:59.000Z

    Particulate contamination removal from wafers using plasmas and mechanical agitation. The present invention includes the use of plasmas with mechanical agitation for removing particulate matter from the surface of a wafer. The apparatus hereof comprises a mechanical activator, at least one conducting contact pin for transferring the vibration from the activator to the wafer, clamp fingers that maintain the wafer's position, and means for generating a plasma in the vicinity of the surface of the wafer, all parts of the cleaning apparatus except the mechanical activator and part of the contact pin being contained inside the processing chamber. By exposing a wafer to a plasma and providing motion thereto in a direction perpendicular to its surface, the bonding between the particulate matter and the surface may be overcome. Once free of the wafer surface, the particulates become charged by electrons from the plasma and are drawn into the plasma by attractive forces which keep them from redepositing. The introduction of a flowing gas through the plasma sweeps the particulates away from the wafer and out of the plasma. The entire surface is cleaned during one cleaning step. The use of an rf plasma to accomplish the particulate removal was found to remove more than 90% of the particulates.

  6. Particulate contamination removal from wafers using plasmas and mechanical agitation

    DOE Patents [OSTI]

    Selwyn, G.S.

    1998-12-15T23:59:59.000Z

    Particulate contamination removal from wafers is disclosed using plasmas and mechanical agitation. The present invention includes the use of plasmas with mechanical agitation for removing particulate matter from the surface of a wafer. The apparatus hereof comprises a mechanical activator, at least one conducting contact pin for transferring the vibration from the activator to the wafer, clamp fingers that maintain the wafer`s position, and means for generating a plasma in the vicinity of the surface of the wafer, all parts of the cleaning apparatus except the mechanical activator and part of the contact pin being contained inside the processing chamber. By exposing a wafer to a plasma and providing motion thereto in a direction perpendicular to its surface, the bonding between the particulate matter and the surface may be overcome. Once free of the wafer surface, the particulates become charged by electrons from the plasma and are drawn into the plasma by attractive forces which keep them from redepositing. The introduction of a flowing gas through the plasma sweeps the particulates away from the wafer and out of the plasma. The entire surface is cleaned during one cleaning step. The use of an rf plasma to accomplish the particulate removal was found to remove more than 90% of the particulates. 4 figs.

  7. Radiant zone heated particulate filter

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI

    2011-12-27T23:59:59.000Z

    A system includes a particulate matter (PM) filter including an upstream end for receiving exhaust gas and a downstream end. A radiant zoned heater includes N zones, where N is an integer greater than one, wherein each of the N zones includes M sub-zones, where M is an integer greater than or equal to one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones, restricts exhaust gas flow in a portion of the PM filter that corresponds to the selected one of the N zones, and deactivates non-selected ones of the N zones.

  8. Advanced Fine Particulate Characterization Methods

    SciTech Connect (OSTI)

    Steven Benson; Lingbu Kong; Alexander Azenkeng; Jason Laumb; Robert Jensen; Edwin Olson; Jill MacKenzie; A.M. Rokanuzzaman

    2007-01-31T23:59:59.000Z

    The characterization and control of emissions from combustion sources are of significant importance in improving local and regional air quality. Such emissions include fine particulate matter, organic carbon compounds, and NO{sub x} and SO{sub 2} gases, along with mercury and other toxic metals. This project involved four activities including Further Development of Analytical Techniques for PM{sub 10} and PM{sub 2.5} Characterization and Source Apportionment and Management, Organic Carbonaceous Particulate and Metal Speciation for Source Apportionment Studies, Quantum Modeling, and High-Potassium Carbon Production with Biomass-Coal Blending. The key accomplishments included the development of improved automated methods to characterize the inorganic and organic components particulate matter. The methods involved the use of scanning electron microscopy and x-ray microanalysis for the inorganic fraction and a combination of extractive methods combined with near-edge x-ray absorption fine structure to characterize the organic fraction. These methods have direction application for source apportionment studies of PM because they provide detailed inorganic analysis along with total organic and elemental carbon (OC/EC) quantification. Quantum modeling using density functional theory (DFT) calculations was used to further elucidate a recently developed mechanistic model for mercury speciation in coal combustion systems and interactions on activated carbon. Reaction energies, enthalpies, free energies and binding energies of Hg species to the prototype molecules were derived from the data obtained in these calculations. Bimolecular rate constants for the various elementary steps in the mechanism have been estimated using the hard-sphere collision theory approximation, and the results seem to indicate that extremely fast kinetics could be involved in these surface reactions. Activated carbon was produced from a blend of lignite coal from the Center Mine in North Dakota and sunflower hulls for the biomass material to be carbonized. The ability to remove mercury from a bituminous coal's derived flue gas was low. Removals of only 15% were attained while injecting 6 lb/Macf of activated carbon upstream of an electrostatic precipitator. Poisoning of sites on the activated carbon by SO{sub 2} and SO{sub 3} contributed to the poor mercury capture performance.

  9. Methods for making lithium vanadium oxide electrode materials

    DOE Patents [OSTI]

    Schutts, Scott M. (Menomonie, WI); Kinney, Robert J. (Woodbury, MN)

    2000-01-01T23:59:59.000Z

    A method of making vanadium oxide formulations is presented. In one method of preparing lithium vanadium oxide for use as an electrode material, the method involves: admixing a particulate form of a lithium compound and a particulate form of a vanadium compound; jet milling the particulate admixture of the lithium and vanadium compounds; and heating the jet milled particulate admixture at a temperature below the melting temperature of the admixture to form lithium vanadium oxide.

  10. Particulate matter in the south Atlantic Ocean 

    E-Print Network [OSTI]

    Wood, Megan Maria

    1993-01-01T23:59:59.000Z

    -6 of the South Atlantic Venti- lation Experiment (SAVE) from December 1988 to April 1989, during the austral summer and autumn. Beam attenuation due to particles (c ) was determined P and found to be maximal at or near the surface, decreas- ing rapidly... and gravitational settling. During their transit, they are acted upon by chemical and biological processes such as dissolution, scaveng- ing, remineralization, aggregation, and disaggregation. PM is important because it is a carrier of chemical and biological...

  11. Particulate matter in the central subtropical Pacific

    E-Print Network [OSTI]

    Colgan, Annette Renee

    1995-01-01T23:59:59.000Z

    temperature and salinity data. Since WMs tend to flow along isopycnal lines, the depth of an individual WM varies with changes in longitude and latitude. These depth changes were noted in this data set and portions of WM were distinguished at different...

  12. Electrically-Assisted Diesel Particulate Filter Regeneration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Substrate Studies of an Electrically-Assisted Diesel Particulate Filter Electrically-Assisted Diesel Particulate Filter Regeneration...

  13. Regenerable particulate filter

    DOE Patents [OSTI]

    Stuecker, John N. (Albuquerque, NM); Cesarano, III, Joseph (Albuquerque, NM); Miller, James E. (Albuquerque, NM)

    2009-05-05T23:59:59.000Z

    A method of making a three-dimensional lattice structure, such as a filter used to remove particulates from a gas stream, where the physical lattice structure is designed utilizing software simulation from pre-defined mass transfer and flow characteristics and the designed lattice structure is fabricated using a free-form fabrication manufacturing technique, where the periodic lattice structure is comprised of individual geometric elements.

  14. ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect (OSTI)

    Stanley J. Miller; Grant L. Schelkoph; Grant E. Dunham

    2000-12-01T23:59:59.000Z

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the US Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and recollection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m{sup 3}/min (200-acfm) working AHPC model. Results from both 8-hour parametric tests and 100-hour proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency.

  15. Growth of Nanoscale Nickel Ferrite on Carbonaceous Matrix- A Novel Method of Turning Harmful Particulates into a Functional Nanocomposite: An XAFS Study

    SciTech Connect (OSTI)

    Pattanaik, S.; Huggins, F; Huffman, G

    2010-01-01T23:59:59.000Z

    Particulate matter (PM) emission from residual oil combustion typically consists of carbonaceous material accompanied by inorganic matter notably transition metal sulfates. Often a minor sulfide form is found in the coarse fraction while an oxide form is more common in the fine and ultrafine fractions. A composite comprising of nanoscale nickel ferrite dispersed on carbonaceous matrix has been obtained following liberation of metal sulfates from the fine PM - a novel method of turning harmful particulates into a functional nanocomposite without the need for elaborate preparation using expensive precursors. The nickel ferrite content in the composite varies with the Fe/Ni ratio in particulate, fuel type, and combustion condition. Such variation may lead to the composite exhibiting diverse physical behaviors. Detailed structure and cation distribution in dispersed ferrite have been studied using Fe and Ni K-edges XAFS spectroscopy. Peaks are identified in the radial structure function with specific atom pair correlations within the spinel ferrite from which the relative occupancy of the cations in the octahedral and tetrahedral sites can be discerned. The results show that Ni(II) has strong preference for the octahedral site, while Fe(III) prefers both sites which is consistent with that of an inverted spinel ferrite.

  16. Electrically heated particulate filter with reduced stress

    DOE Patents [OSTI]

    Gonze, Eugene V.

    2013-03-05T23:59:59.000Z

    A system comprises a particulate matter (PM) filter comprising an inlet for receiving exhaust gas. A zoned heater is arranged in the inlet and comprises a resistive heater comprising N zones, where N is an integer greater than one. Each of the N zones comprises M sub-zones, where M is an integer greater than one. A control module selectively activates one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones and deactivates others of the N zones.

  17. Fine particulate chemical composition and light extinction at Meadview, AZ

    SciTech Connect (OSTI)

    Delbert J. Eatough; Wenxuan Cui; Jeffery Hull; Robert J. Farber [Brigham Young University, Provo, UT (United States). Department of Chemistry and Biochemistry

    2006-12-15T23:59:59.000Z

    The concentration of fine particulate nitrate, sulfate, and carbonaceous material was measured for 12-hr daynight samples using diffusion denuder samplers during the Project Measurement of Haze and Visibility Effects (MOHAVE) July to August 1992 Summer Intensive study at Meadview, AZ, just west of Grand Canyon National Park. Organic material was measured by several techniques. Only the diffusion denuder method measured the semivolatile organic material. Fine particulate sulfate and nitrate (using denuder technology) determined by various groups agreed. Based on the various collocated measurements obtained during the Project MOHAVE study, the precision of the major fine particulate species was {+-} 0.6 {mu}g/m{sup 3} organic material, {+-} 0.3 {mu}g/m{sup 3} ammonium sulfate, and {+-} 0.07 {mu}g/m{sup 3} ammonium nitrate. Fine particulate organic material was the principal particulate contributor to light extinction during the study period, with fine particulate sulfate as the second most important contributor. Particle light extinction was dominated by sulfate and organic material during periods of lowest light extinction. Combination of the extinction data and chemical mass balance analysis of sulfur oxides sources in the region indicate that the major anthropogenic contributors to light extinction were from the Los Angeles, CA, and Las Vegas, NV, urban areas. Mohave Power Project associated secondary sulfate was a negligible contributor to light extinction. 49 refs., 12 figs., 7 tabs.

  18. MERCURY CONTROL WITH ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect (OSTI)

    Ye Zhuang; Stanley J. Miller

    2005-05-01T23:59:59.000Z

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addressed Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team included the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Power Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and has been marketed as the Advanced Hybrid{trademark} filter by Gore. The Advanced Hybrid{trademark} filter combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The Advanced Hybrid{trademark} filter provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The Advanced Hybrid{trademark} filter also appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas--solid contactor. The objective of the project was to demonstrate 90% total mercury control in the Advanced Hybrid{trademark} filter at a lower cost than current mercury control estimates. The approach included bench-scale batch tests, larger-scale pilot testing with real flue gas on a coal-fired combustion system, and field demonstration at the 2.5-MW (9000-acfm) scale at a utility power plant to prove scale-up and demonstrate longer-term mercury control. An additional task was included in this project to evaluate mercury oxidation upstream of a dry scrubber by using mercury oxidants. This project demonstrated at the pilot-scale level a technology that provides a cost-effective technique to control mercury and, at the same time, greatly enhances fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution for improved fine particulate control combined with effective mercury control for a large segment of the U.S. utility industry as well as other industries.

  19. Particle Number & Particulate Mass Emissions Measurements on...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Number & Particulate Mass Emissions Measurements on a 'Euro VI' Heavy-duty Engine using the PMP Methodologies Particle Number & Particulate Mass Emissions Measurements on a 'Euro...

  20. Fuel Efficient Diesel Particulate Filter (DPF) Modeling and Development

    SciTech Connect (OSTI)

    Stewart, Mark L.; Gallant, Thomas R.; Kim, Do Heui; Maupin, Gary D.; Zelenyuk, Alla

    2010-08-01T23:59:59.000Z

    The project described in this report seeks to promote effective diesel particulate filter technology with minimum fuel penalty by enhancing fundamental understanding of filtration mechanisms through targeted experiments and computer simulations. The overall backpressure of a filtration system depends upon complex interactions of particulate matter and ash with the microscopic pores in filter media. Better characterization of these phenomena is essential for exhaust system optimization. The acicular mullite (ACM) diesel particulate filter substrate is under continuing development by Dow Automotive. ACM is made up of long mullite crystals which intersect to form filter wall framework and protrude from the wall surface into the DPF channels. ACM filters have been demonstrated to effectively remove diesel exhaust particles while maintaining relatively low backpressure. Modeling approaches developed for more conventional ceramic filter materials, such as silicon carbide and cordierite, have been difficult to apply to ACM because of properties arising from its unique microstructure. Penetration of soot into the high-porosity region of projecting crystal structures leads to a somewhat extended depth filtration mode, but with less dramatic increases in pressure drop than are normally observed during depth filtration in cordierite or silicon carbide filters. Another consequence is greater contact between the soot and solid surfaces, which may enhance the action of some catalyst coatings in filter regeneration. The projecting crystals appear to provide a two-fold benefit for maintaining low backpressures during filter loading: they help prevent soot from being forced into the throats of pores in the lower porosity region of the filter wall, and they also tend to support the forming filter cake, resulting in lower average cake density and higher permeability. Other simulations suggest that soot deposits may also tend to form at the tips of projecting crystals due to the axial velocity component of exhaust moving down the filter inlet channel. Soot mass collected in this way would have a smaller impact on backpressure than soot forced into the flow restrictions deeper in the porous wall structure. This project has focused on the development of computational, analytical, and experimental techniques that are generally applicable to a wide variety of exhaust aftertreatment technologies. By helping to develop improved fundamental understanding pore-scale phenomena affecting filtration, soot oxidation, and NOX abatement, this cooperative research and development agreement (CRADA) has also assisted Dow Automotive in continuing development and commercialization of the ACM filter substrate. Over the course of this research project, ACM filters were successfully deployed on the Audi R10 TDI racecar which won the 24 Hours of LeMans endurance race in 2006, 2007, and 2008; and the 12 Hours of Sebring endurance race in 2006 and 2007. It would not have been possible for the R10 to compete in these traditionally gasoline-dominated events without reliable and effective exhaust particulate filtration. These successes demonstrated not only the performance of automotive diesel engines, but the efficacy of DPF technology as it was being deployed around the world to meet new emissions standards on consumer vehicles. During the course of this CRADA project, Dow Automotive commercialized their ACM DPF technology under the AERIFYTM DPF brand.

  1. Method for dispersing catalyst onto particulate material and product thereof

    DOE Patents [OSTI]

    Utz, Bruce R. (Pittsburgh, PA); Cugini, Anthony V. (Pittsburgh, PA)

    1992-01-01T23:59:59.000Z

    A method for dispersing finely divided catalyst precursors onto the surface of coal or other particulate material includes the steps of forming a wet paste mixture of the particulate material and a liquid solution containing a dissolved transition metal salt, for instance a solution of ferric nitrate. The wet paste mixture is in a state of incipient wetness with all of this solution adsorbed onto the surfaces of the particulate material without the presence of free moisture. On adding a precipitating agent such as ammonia, a catalyst precursor such as hydrated iron oxide is deposited on the surfaces of the coal. The catalyst is activated by converting it to the sulfide form for the hydrogenation or direct liquefaction of the coal.

  2. Towards Fuel-Efficient DPF Systems: Understanding the Soot Oxidation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2005deeryezerets.pdf More Documents & Publications Burning Modes and Oxidation Rates of Soot: Relevance to Diesel Particulate Traps Soot Nanostructure: Definition,...

  3. Electrical diesel particulate filter (DPF) regeneration

    DOE Patents [OSTI]

    Gonze, Eugene V; Ament, Frank

    2013-12-31T23:59:59.000Z

    An exhaust system that processes exhaust generated by an engine includes a diesel particulate filter (DPF) that is disposed downstream of the engine and that filters particulates from the exhaust. An electrical heater is disposed upstream of the DPF and selectively heats the exhaust to initiate combustion of the particulates within the exhaust as it passes therethrough. Heat generated by combustion of the particulates induces combustion of particulates within the DPF.

  4. Microwave mode shifting antenna system for regenerating particulate filters

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI; Kirby, Kevin W [Calabasas Hills, CA; Phelps, Amanda [Malibu, CA; Gregoire, Daniel J [Thousand Oaks, CA

    2011-04-26T23:59:59.000Z

    A regeneration system comprises a particulate matter (PM) filter including a microwave energy absorbing surface, and an antenna system comprising N antennas and an antenna driver module that sequentially drives the antenna system in a plurality of transverse modes of the antenna system to heat selected portions of the microwave absorbing surface to regenerate the PM filter, where N is an integer greater than one. The transverse modes may include transverse electric (TE) and/or transverse magnetic (TM) modes.

  5. Overlap zoned electrically heated particulate filter

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI; Chapman, Mark R [Brighton, MI

    2011-07-19T23:59:59.000Z

    A system includes a particulate matter (PM) filter that includes an upstream end for receiving exhaust gas and a downstream end. A zoned heater is arranged spaced from the upstream end and comprises N zones, where N is an integer greater than one, wherein each of the N zones comprises M sub-zones, where M is an integer greater than or equal to one, and wherein the N zones and the M sub-zones are arranged in P layers, where P is an integer greater than one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones and deactivates non-selected ones of the N zones.

  6. Development of Advanced Diesel Particulate Filtration (DPF) Systems...

    Broader source: Energy.gov (indexed) [DOE]

    Particulate Filtration (DPF) Systems Development of Advanced Diesel Particulate Filtration (DPF) Systems (ANLCorningCaterpillar CRADA) Development of Advanced Particulate Filters...

  7. Electro Catalytic Oxidation (ECO) Operation

    SciTech Connect (OSTI)

    Morgan Jones

    2011-03-31T23:59:59.000Z

    The power industry in the United States is faced with meeting many new regulations to reduce a number of air pollutants including sulfur dioxide, nitrogen oxides, fine particulate matter, and mercury. With over 1,000 power plants in the US, this is a daunting task. In some cases, traditional pollution control technologies such as wet scrubbers and SCRs are not feasible. Powerspan's Electro-Catalytic Oxidation, or ECO{reg_sign} process combines four pollution control devices into a single integrated system that can be installed after a power plant's particulate control device. Besides achieving major reductions in emissions of sulfur dioxide (SO{sub 2}), nitrogen oxides (NOx), fine particulate matter (PM2.5) and mercury (Hg), ECO produces a highly marketable fertilizer, which can help offset the operating costs of the process system. Powerspan has been operating a 50-MW ECO commercial demonstration unit (CDU) at FirstEnergy Corp.'s R.E. Burger Plant near Shadyside, Ohio, since February 2004. In addition to the CDU, a test loop has been constructed beside the CDU to demonstrate higher NOx removal rates and test various scrubber packing types and wet ESP configurations. Furthermore, Powerspan has developed the ECO{reg_sign}{sub 2} technology, a regenerative process that uses a proprietary solvent to capture CO{sub 2} from flue gas. The CO{sub 2} capture takes place after the capture of NOx, SO{sub 2}, mercury, and fine particulate matter. Once the CO{sub 2} is captured, the proprietary solution is regenerated to release CO{sub 2} in a form that is ready for geological storage or beneficial use. Pilot scale testing of ECO{sub 2} began in early 2009 at FirstEnergy's Burger Plant. The ECO{sub 2} pilot unit is designed to process a 1-MW flue gas stream and produce 20 tons of CO{sub 2} per day, achieving a 90% CO{sub 2} capture rate. The ECO{sub 2} pilot program provided the opportunity to confirm process design and cost estimates, and prepare for large scale capture and sequestration projects. The objectives of this project were to prove at a commercial scale that ECO is capable of extended operations over a range of conditions, that it meets the reliability requirements of a typical utility, and that the fertilizer co-product can be consistently generated, providing ECO with an economic advantage over conventional technologies currently available. Further objectives of the project were to show that the ECO system provides flue gas that meets the inlet standards necessary for ECO{sub 2} to operate, and that the outlet CO{sub 2} and other constituents produced by the ECO{sub 2} pilot can meet Kinder-Morgan pipeline standards for purposes of sequestration. All project objectives are consistent with DOE's Pollution Control Innovations for Power Plants program goals.

  8. High strength particulate ceramics

    DOE Patents [OSTI]

    Liles, Kenneth J. (Tuscaloosa, AL); Hoyer, Jesse L. (Tuscaloosa, AL); Mlynarski, Kenneth W. (Gambrills, MD)

    1991-01-01T23:59:59.000Z

    This invention relates to new and useful hard, dense, composite materials made from metallic nitrides such as titanium nitride when combined with aluminum oxide and aluminum nitride and a process comprising the steps of: (1) mixing constituent materials using kerosene as a mixing medium; (2) screening, settling, filtering, and washing the mixture in acetone; (3) filling and sealing said materials in a latex mold; (4) isostatically pressing the material into a compacted powder; and (5) sintering the compacted powder in a gas atmosphere at 1,850.degree. C. for two hours.

  9. Partial oxidation process for producing a stream of hot purified gas

    DOE Patents [OSTI]

    Leininger, T.F.; Robin, A.M.; Wolfenbarger, J.K.; Suggitt, R.M.

    1995-03-28T23:59:59.000Z

    A partial oxidation process is described for the production of a stream of hot clean gas substantially free from particulate matter, ammonia, alkali metal compounds, halides and sulfur-containing gas for use as synthesis gas, reducing gas, or fuel gas. A hydrocarbonaceous fuel comprising a solid carbonaceous fuel with or without liquid hydrocarbonaceous fuel or gaseous hydrocarbon fuel, wherein said hydrocarbonaceous fuel contains halides, alkali metal compounds, sulfur, nitrogen and inorganic ash containing components, is reacted in a gasifier by partial oxidation to produce a hot raw gas stream comprising H{sub 2}, CO, CO{sub 2}, H{sub 2}O, CH{sub 4}, NH{sub 3}, HCl, HF, H{sub 2}S, COS, N{sub 2}, Ar, particulate matter, vapor phase alkali metal compounds, and molten slag. The hot raw gas stream from the gasifier is split into two streams which are separately deslagged, cleaned and recombined. Ammonia in the gas mixture is catalytically disproportionated into N{sub 2} and H{sub 2}. The ammonia-free gas stream is then cooled and halides in the gas stream are reacted with a supplementary alkali metal compound to remove HCl and HF. Alkali metal halides, vaporized alkali metal compounds and residual fine particulate matter are removed from the gas stream by further cooling and filtering. The sulfur-containing gases in the process gas stream are then reacted at high temperature with a regenerable sulfur-reactive mixed metal oxide sulfur sorbent material to produce a sulfided sorbent material which is then separated from the hot clean purified gas stream having a temperature of at least 1000 F. 1 figure.

  10. Preserving Diesel Exhaust Ultrafine (Nano-) Particulate Structure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Preserving Diesel Exhaust Ultrafine (Nano-) Particulate Structure in Genotoxicity Studies to Support Engineering Development of Emission Controls Preserving Diesel Exhaust...

  11. Catalytic fabric filtration for simultaneous NO{sub x} and particulate control. Final report

    SciTech Connect (OSTI)

    Weber, G.F.; Dunham, G.E.; Laudal, D.L.; Ness, S.R.; Schelkoph, G.L.

    1994-08-01T23:59:59.000Z

    The overall objective of the project proposed was to evaluate the catalyst-coated fabric filter concept for effective control of NO{sub 2} and particulate emissions simultaneously. General goals included demonstrating high removal efficiency of NO{sub x} and particulate matter, acceptable bag and catalyst life, and that process economics show a significant cost savings in comparison to a commercial SCR process and conventional particulate control. Specific goals included the following: reduce NO{sub x} emissions to 60 ppM or less; demonstrate particulate removal efficiency of >99.5%; demonstrate a bag/catalyst life of >1 year; Control ammonia slip to <25 ppM; show that catalytic fabric filtration can achieve a 50% cost savings over conventional fabric filtration and SCR control technology; determine compatibility with S0{sub 2} removal systems; and show that the concept results in a nonhazardous waste product.

  12. Personal and Ambient Air Pollution is Associated with Increased Exhaled Nitric Oxide in Children with Asthma

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    in pediatric asthmatics and air pollution: differences inwith peak particulate air pollution and effect modificationnitric oxide, ambient air pollution and respiratory health

  13. Electrically heated particulate filter with zoned exhaust flow control

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI

    2012-06-26T23:59:59.000Z

    A system includes a particulate matter (PM) filter that includes X zones. An electrical heater includes Y heater segments that are associated with respective ones of the X zones. The electrical heater is arranged upstream from and proximate with the PM filter. A valve assembly includes Z sections that are associated with respective ones of the X zones. A control module adjusts flow through each of the Z sections during regeneration of the PM filter via control of the valve assembly. X, Y and Z are integers.

  14. Zoned electrical heater arranged in spaced relationship from particulate filter

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI

    2011-11-15T23:59:59.000Z

    A system comprises a particulate matter (PM) filter that comprises an upstream end for receiving exhaust gas and a downstream end. A zoned heater is arranged spaced from the upstream end and comprises N zones, where N is an integer greater than one, wherein each of the N zones comprises M sub-zones, where M is an integer greater than one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones and deactivates non-selected ones of the N zones.

  15. Non-thermal Aftertreatment of Particulates

    SciTech Connect (OSTI)

    Thomas, S.E.

    2000-08-20T23:59:59.000Z

    Modern diesel passenger vehicles employing common rail, high speed direct injection engines are capable of matching the drivability of gasoline powered vehicles with the additional benefit of providing high torque at low engine speed [1]. The diesel engine also offers considerable fuel economy and CO2 emissions advantages. However, future emissions standards [2,3] present a significant challenge for the diesel engine, as its lean exhaust precludes the use of aftertreatment strategies employing 3- way catalytic converters, which operate under stoichiometric conditions. In recent years significant developments by diesel engine manufacturers have greatly reduced emissions of both particulates (PM) and oxides of nitrogen (NOx) [4,5]. However to achieve compliance with future legislative limits it has been suggested that an integrated approach involving a combination of engine modifications and aftertreatment technology [1] will be required. A relatively new approach to exhaust aftertreatment is the application of non-thermal plasma (NTP) or plasma catalyst hybrid systems. These have the potential for treatment of both NOx and PM emissions [6- 8]. The primary focus of recent plasma aftertreatment studies [9-12] has concentrated on the removal of NOx. It has been shown that by combining plasmas with catalysts it is possible to chemically reduce NOx. The most common approach is to use a 2- stage system relying upon the plasma oxidation of hydrocarbons to promote NO to NO2 conversion as a precursor to NO2 reduction over a catalyst. However, relatively little work has yet been published on the oxidation of PM by plasma [ 8,13]. Previous investigations [8] have reported that a suitably designed NTP reactor containing a packing material designed to filter and retain PM can effect the oxidation of PM in diesel exhausts at low temperatures. It has been suggested that the retained PM competes with hydrocarbons for O, and possibly OH, radicals. This is an important consideration in plasma - catalyst hybrid schemes for the removal of NOx employing an NO2 selective catalyst, as the oxidation of PM may deplete the key radicals necessary for NO to NO2 conversion. It was also suggested that where simultaneous NOx and PM removal are required, alternative catalyst formulations may be needed which may be selective to NO rather than NO2.

  16. Fluid&ParticulateSystems 424514/2010

    E-Print Network [OSTI]

    Zevenhoven, Ron

    ... 3000 kg/m³ gas = 1.2 kg/m³ at 20°C, 1 bar (air) N L L H b c 2 Eff d d d p p ( ) 1 1 50 2 d W&ParticulateSystems 424514/2010 Fluid&ParticulateSystems ÅA424514/2014 Separation efficiency )( 27.0 gaspin cgas 50pc w&ParticulateSystems ÅA424514/2014 A "standard" cyclone (Lapple) Lb Lc De Dd W H D S High Conventional High efficiency

  17. Fluid&ParticulateSystems 424514/2010

    E-Print Network [OSTI]

    Zevenhoven, Ron

    fluidr L wDdrag v½bL Lv dxbFF 331 0 . Picture: BMH99 PTG #12;Fluid&ParticulateSystems 424514/2010 Fluid/2010 Fluid&ParticulateSystems ÅA424514/2014 Basic concept wFAw A F VpVpP losscs cs loss losspumppump carlosscar wFP 212121 ,0, ppwwzz F w wFP #12;Fluid&ParticulateSystems 424514/2010 Fluid

  18. Diesel particulate filter with zoned resistive heater

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI

    2011-03-08T23:59:59.000Z

    A diesel particulate filter assembly comprises a diesel particulate filter (DPF) and a heater assembly. The DPF filters a particulate from exhaust produced by an engine. The heater assembly has a first metallic layer that is applied to the DPF, a resistive layer that is applied to the first metallic layer, and a second metallic layer that is applied to the resistive layer. The second metallic layer is etched to form a plurality of zones.

  19. Zone heated diesel particulate filter electrical connection

    DOE Patents [OSTI]

    Gonze, Eugene V. (Pinckney, MI); Paratore, Jr., Michael J. (Howell, MI)

    2010-03-30T23:59:59.000Z

    An electrical connection system for a particulate filter is provided. The system includes: a particulate filter (PF) disposed within an outer shell wherein the PF is segmented into a plurality of heating zones; an outer mat disposed between the particulate filter and the outer shell; an electrical connector coupled to the outer shell of the PF; and a plurality of printed circuit connections that extend along the outer surface of the PF from the electrical connector to the plurality of heating zones.

  20. Electrically heated particulate filter using catalyst striping

    DOE Patents [OSTI]

    Gonze, Eugene V; Paratore, Jr., Michael J; Ament, Frank

    2013-07-16T23:59:59.000Z

    An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine. A grid of electrically resistive material is applied to an exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF. A catalyst coating is applied to the PF that increases a temperature of the combustion of the particulates within the PF.

  1. Electrically heated particulate filter embedded heater design

    DOE Patents [OSTI]

    Gonze, Eugene V.; Chapman, Mark R.

    2014-07-01T23:59:59.000Z

    An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine and wherein an upstream surface of the particulate filter includes machined grooves. A grid of electrically resistive material is inserted into the machined grooves of the exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF.

  2. Diesel Particulate Filtration (DPF) Technology: Success stories...

    Broader source: Energy.gov (indexed) [DOE]

    Diesel Particulate Filtration (DPF) Technology: Success stories at the High Temperature Materials Laboratory (HTML) User Program Dr. Amit Shyam, ORNL Sponsored by U.S. Department...

  3. Particulate residue separators for harvesting devices

    SciTech Connect (OSTI)

    Hoskinson, Reed L.; Kenney, Kevin L.; Wright, Christopher T.; Hess, John R.

    2010-06-29T23:59:59.000Z

    A particulate residue separator and a method for separating a particulate residue stream may include a plenum borne by a harvesting device, and have a first, intake end and a second, exhaust end; first and second particulate residue air streams which are formed by the harvesting device and which travel, at least in part, along the plenum and in a direction of the second, exhaust end; and a baffle assembly which is located in partially occluding relation relative to the plenum, and which substantially separates the first and second particulate residue air streams.

  4. Electrically-Assisted Diesel Particulate Filter Regeneration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation pm041lance2011p.pdf More Documents & Publications Electrically-Assisted Diesel Particulate Filter Regeneration Substrate Studies of an Electrically-Assisted Diesel...

  5. Diesel Particulate Filtration (DPF) Technology: Success stories...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Success stories at the High Temperature Materials Laboratory (HTML) User Program Diesel Particulate Filtration (DPF) Technology: Success stories at the High Temperature...

  6. Trapping efficiency depending on particulate size

    SciTech Connect (OSTI)

    Mayer, A.; Czerwinski, J.; Scheidegger, P.

    1996-09-01T23:59:59.000Z

    There is growing concern about the risk potential of Diesel particulates. This prompted two Swiss R and D projects focused on the capabilities of different soot trap concepts for filtering finest particulates. Eight different filter media, some in numerous variants, were tested on four different Diesel engines. All traps attained their gravimetric target. However, there are noticeable performance differences for finest particulates at or smaller than 50 nm. Fiber deep filters seem to be noticeably better than other filter types. If the carcinogens are mainly the finest particulates, then this criterion may become important in future trap evaluation.

  7. Methods of separating particulate residue streams

    DOE Patents [OSTI]

    Hoskinson, Reed L. (Rigby, ID); Kenney, Kevin L. (Idaho Falls, ID); Wright, Christopher T. (Idaho Falls, ID); Hess, J. Richard (Idaho Falls, ID)

    2011-04-05T23:59:59.000Z

    A particulate residue separator and a method for separating a particulate residue stream may include an air plenum borne by a harvesting device, and have a first, intake end and a second, exhaust end; first and second particulate residue air streams that are formed by the harvesting device and that travel, at least in part, along the air plenum and in a direction of the second, exhaust end; and a baffle assembly that is located in partially occluding relation relative to the air plenum and that substantially separates the first and second particulate residue air streams.

  8. Advanced Particulate Filter Technologies for Direct Injection...

    Broader source: Energy.gov (indexed) [DOE]

    Public * Continuing efforts for further CO 2 and PN reduction create a challenging environment for vehicles equipped with DI gasoline engines * Gasoline particulate filters...

  9. Edinburgh Research Explorer Pulmonary diesel particulate increases susceptibility to

    E-Print Network [OSTI]

    Millar, Andrew J.

    Edinburgh Research Explorer Pulmonary diesel particulate increases susceptibility to myocardial, MR & Gray, GA 2014, 'Pulmonary diesel particulate increases susceptibility to myocardial ischemia. Pulmonary diesel particulate increases susceptibility to myocardial ischemia/reperfusion injury via

  10. Spatial and temporal distributions of particulate matter and particulate organic carbon, Northeast Gulf of Mexico

    E-Print Network [OSTI]

    Bernal, Christina Estefana

    2001-01-01T23:59:59.000Z

    ) that becomes trapped in the rings upon separation, and they are an important part of the heat and salt budget of the Gulf basin. Most anticyclones tend to move westward and eventually dissipate along the Gulf* s western boundary, Convective mixing transforms... as well as a significant portion of the Canadian interior. The Mississippi River plume's input of new nutrients has been identified as a potentially important factor in the high level of primary production found in the northern Gulf of Mexico (Lohrenz...

  11. Fluid&ParticulateSystems 424514/2010

    E-Print Network [OSTI]

    Zevenhoven, Ron

    .zevenhoven@abo.fi 2Fluid&ParticulateSystems 424514/2010 Fluid&ParticulateSystems ÅA424514/2014 2.1 Flow tube sections / Turku Finland RoNz 3 Fluid Flow in Tube Systems loss 2 2 1 pump 2 2 1 ppwzgppwzg outoutoutoutininininloss,311 ' 3 ppzgp 2loss,322 ' 3 ppzgp 210 VVV For a fully developed turbulent flow (horizontal

  12. Fluid&ParticulateSystems 424514/2010

    E-Print Network [OSTI]

    Zevenhoven, Ron

    cake solids mass/m2, w 3. Ruth equation using dw = (1-)solid dx fluidL p Ku solidK )1( 1 resistance, , with cake porosity : velocity, u layer thickness, L pressure drop, p dynamic viscosity, fluid Finland februari 2014 Unit w: kg/m2 Fluid&ParticulateSystems 424514/2010 Fluid&ParticulateSystems ÅA424514

  13. Non-Destructive Neutron Imaging to Analyze Particulate Filters...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Neutron Imaging to Analyze Particulate Filters Non-Destructive Neutron Imaging to Analyze Particulate Filters Non-destructive, non-invasive imaging is being employed in the...

  14. Local Soot Loading Distribution in Cordierite Diesel Particulate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Local Soot Loading Distribution in Cordierite Diesel Particulate Filters by Dynamic Neutron Radiography Local Soot Loading Distribution in Cordierite Diesel Particulate Filters by...

  15. Emissions and Durability of Underground Mining Diesel Particulate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Durability of Underground Mining Diesel Particulate Filter Applications Emissions and Durability of Underground Mining Diesel Particulate Filter Applications Presentation given at...

  16. Detailed Assessment of Particulate Characteristics from Low-Temperatur...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment of Particulate Characteristics from Low-Temperature Combustion Engines Detailed Assessment of Particulate Characteristics from Low-Temperature Combustion Engines 2012...

  17. Durability of Diesel Engine Particulate Filters (Agreement ID...

    Broader source: Energy.gov (indexed) [DOE]

    Durability of Diesel Engine Particulate Filters (Agreement ID:10461) Durability of Diesel Engine Particulate Filters (Agreement ID:10461) 2013 DOE Hydrogen and Fuel Cells Program...

  18. Measuring PM Distribution in a Catalyzed Particulate Filter using...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in a Catalyzed Particulate Filter using a Terahertz Wave Scanner Terahertz scanning system produced 3-dimensional image of local PM density in catatalyzed particulate...

  19. Value Analysis of Alternative Diesel Particulate Filter (DPF...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Value Analysis of Alternative Diesel Particulate Filter (DPF) Substrates for Future Diesel Aftertreatment Systems Value Analysis of Alternative Diesel Particulate Filter (DPF)...

  20. Durability of Diesel Particulate Filters - Bench Studies on Cordierite...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Particulate Filters - Bench Studies on Cordierite Filters Durability of Diesel Particulate Filters - Bench Studies on Cordierite Filters Presentation given at DEER 2006, August...

  1. Radio Frequency Diesel Particulate Filter Sensor Reduces Fuel...

    Office of Environmental Management (EM)

    Radio Frequency Diesel Particulate Filter Sensor Reduces Fuel Consumption, Wins R&D 100 Award Radio Frequency Diesel Particulate Filter Sensor Reduces Fuel Consumption, Wins R&D...

  2. New Cordierite Diesel Particulate Filters for Catalyzed and Non...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cordierite Diesel Particulate Filters for Catalyzed and Non-Catalyzed Applications New Cordierite Diesel Particulate Filters for Catalyzed and Non-Catalyzed Applications 2003 DEER...

  3. CARB Verification of Catalyzed Diesel Particulate Filters for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CARB Verification of Catalyzed Diesel Particulate Filters for Emergency Generator Sets CARB Verification of Catalyzed Diesel Particulate Filters for Emergency Generator Sets 2005...

  4. Ultra-Lite Diesel Particulate Filter Cartridge for Reduced Regeneratio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lite Diesel Particulate Filter Cartridge for Reduced Regeneration Time and Fuel Consumption Ultra-Lite Diesel Particulate Filter Cartridge for Reduced Regeneration Time and Fuel...

  5. Versatile Diesel Particulate Filter Cartridge Any Size, Any Shape...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Versatile Diesel Particulate Filter Cartridge Any Size, Any Shape Versatile Diesel Particulate Filter Cartridge Any Size, Any Shape Presentation given at DEER 2006, August 20-24,...

  6. Development of Acicular Mullite Materials for Diesel Particulate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Multifunctional Diesel Particulate Filters Future Trends for DPFSCR On-Filter (SCRF) fundamental Modeling and Experimental Studies of Acicular Mullite Diesel Particulate...

  7. Development of Advanced Diesel Particulate Filtration (DPF) Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Filters Development of Advanced Diesel Particulate Filtration (DPF) Systems Development of Advanced Diesel Particulate Filtration (DPF) Systems (ANLCorningCaterpillar CRADA)...

  8. Development of Advanced Diesel Particulate Filtration (DPF) Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Advanced Diesel Particulate Filtration (DPF) Systems (ANLCorningCaterpillar CRADA) Development of Advanced Diesel Particulate Filtration (DPF) Systems Development of...

  9. Characterization of Particulate Emissions from GDI Engine Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Particulate Emissions from GDI Engine Combustion with Alcohol-blended Fuels Characterization of Particulate Emissions from GDI Engine Combustion with Alcohol-blended Fuels Analysis...

  10. Requirements-Driven Diesel Catalyzed Particulate Trap Design...

    Broader source: Energy.gov (indexed) [DOE]

    Requirements-Driven Diesel Catalyzed Particulate Trap Design and Optimization Requirements-Driven Diesel Catalyzed Particulate Trap Design and Optimization 2005 Diesel Engine...

  11. Single Wall Diesel Particulate Filter (DPF) Filtration Efficiency...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Single Wall Diesel Particulate Filter (DPF) Filtration Efficiency Studies Using Laboratory Generated Particles. Single Wall Diesel Particulate Filter (DPF) Filtration Efficiency...

  12. Assessing Exposures to Particulate Matter and Manganese in Welding Fumes

    E-Print Network [OSTI]

    LIU, SA

    2010-01-01T23:59:59.000Z

    Ventilation                 Natural                 Mechanical                 Local on Cancer LEV: local-exhaust ventilation LOD: limit of42% lower with local exhaust ventilation, was higher among

  13. Fuel-Neutral Studies of Particulate Matter Transport Emissions

    Broader source: Energy.gov (indexed) [DOE]

    varied with operating conditions 10 SIDI ULSD Root Form factor Type Root Form factor Fractal Dimension ULSD 0.62 2.39 SIDI 0.29 1.86 Technical Accomplishments Engine Parameter...

  14. Fuel-Neutral Studies of Particulate Matter Transport Emissions

    Broader source: Energy.gov (indexed) [DOE]

    II 7 Shape (dynamic shape factor, asphericity, asymmetry) Hygroscopicity Fractal dimension High detection efficiency - 50% @ d85nm, 100% @ d125 nm High...

  15. Fuel-Neutral Studies of Particulate Matter Transport Emissions

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  16. Fuel-Neutral Studies of Particulate Matter Transport Emissions

    Broader source: Energy.gov (indexed) [DOE]

    Narrow size distribution for HL runs along with large mobility sizes suggests fractal shape Broader distribution for LL runs along with smaller mobility sizes suggests...

  17. Abatement of Air Pollution: Control of Particulate Matter and...

    Broader source: Energy.gov (indexed) [DOE]

    Savings Category Fuel Cells Photovoltaics Program Info State Connecticut Program Type Environmental Regulations Provider Department of Energy and Environmental Protection These...

  18. Development of a Low-Cost Particulate Matter Monitor

    E-Print Network [OSTI]

    White, Richard M.

    2010-01-01T23:59:59.000Z

    and air mover ii. Thermophoretic deposition module iii.Figure 6. Microfabricated thermophoretic heaters and theirand characteristics of thermophoretic deposition Figure 6.

  19. Fuel-Neutral Studies of Particulate Matter Transport Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace056stewart2012o.pdf More Documents & Publications...

  20. Assessing Exposures to Particulate Matter and Manganese in Welding Fumes

    E-Print Network [OSTI]

    LIU, SA

    2010-01-01T23:59:59.000Z

    465.   Sapp ME.  A History of Welding: from Hepheastus to whistoryfolder/welding/index.html.   Saric M, Markicevic, be retrieved from American Welding Society publications. The

  1. Assessing Exposures to Particulate Matter and Manganese in Welding Fumes

    E-Print Network [OSTI]

    LIU, SA

    2010-01-01T23:59:59.000Z

    less hazardous compared to MIG welding, these areas as wellareas where high concentrations occurred; 3) although resistance welding is considered less hazardoushazardous welding operations such as resistance welding should also be effectively controlled. Those who work in areas

  2. Concentrations and Size Distributions of Particulate Matter Emissions...

    Broader source: Energy.gov (indexed) [DOE]

    ECD-1 CRT CNG1 CNG2 Carbonyl Compounds (Air Toxics) Formaldehyde Acetaldehyde Acetone Acrolein Propionaldehyde Croton Methyl ethyl Ketone (MEK) Methylacrolein Butanal Benzaldehyde...

  3. Assessing Exposures to Particulate Matter and Manganese in Welding Fumes

    E-Print Network [OSTI]

    LIU, SA

    2010-01-01T23:59:59.000Z

    titanium and zinc; non-metal constituents such as fluorides and silica; and gases such as carbon monoxide and carbon dioxide, nitrogen

  4. Occupational Medicine Implications of Engineered Nanoscale Particulate Matter

    E-Print Network [OSTI]

    Kelly, Richard J.

    2008-01-01T23:59:59.000Z

    Titanium Ytterbium Zirconium Animony Boron Carbon Cobalt Erbium Gallium Hafnium Iridium Lead Magnesium Neodymium Nitrogen

  5. acidic particulate matter: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methods. The observed secondary OM in urban plumes may account and absorption of solar radiation, and indirectly by providing the condensation nuclei for cloud droplets 167...

  6. Occupational Medicine Implications of Engineered Nanoscale Particulate Matter

    E-Print Network [OSTI]

    Kelly, Richard J.

    2008-01-01T23:59:59.000Z

    Ed. ) American Industrial Hygiene Association: 2008.occupational medicine and industrial hygiene is hampered byThe vast majority of industrial hygiene exposure limits for

  7. Development of a Low-Cost Particulate Matter Monitor

    E-Print Network [OSTI]

    White, Richard M.

    2010-01-01T23:59:59.000Z

    air quality and improving industrial hygiene. The PM monitorquality and improving industrial hygiene. Compact particleinstruments for industrial hygiene applications. References

  8. Assessing Exposures to Particulate Matter and Manganese in Welding Fumes

    E-Print Network [OSTI]

    LIU, SA

    2010-01-01T23:59:59.000Z

    helmets.   American Industrial Hygiene Association Journal welding.   American Industrial Hygiene Association Journal electrodes.  American  Industrial Hygiene Association 

  9. Particulate Matter Sampling and Volatile Organic Compound Removal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    being proposed to mitigate adverse human health and environmental impacts of internal combustion engines. With that in mind, it has been proposed that vehicular...

  10. Comments on the Criteria Document for Particulate Matter Air Pollution

    E-Print Network [OSTI]

    Washington at Seattle, University of

    and the American Statistical Association Section on Statistics and the Environment, written by Richard Smith individuals. The document, however, fails to take into account much of the recent statistical literature. For example, a special issue of Environmetrics (vol. 11, issue 6, 2000) on statistical analysis of PM data

  11. Analysis and Prediction of Particulate Matter in Graz

    E-Print Network [OSTI]

    Stadlober, Ernst

    15 · bronchitis · chronic cough 1.3 EU Directive The threshold value for the daily average in the EU

  12. Effects of Advanced Combustion Technologies on Particulate Matter...

    Broader source: Energy.gov (indexed) [DOE]

    Selective capture of semi-volatiles (C10-C18) GCMS speciation Engine: 4 cylinder 1.7L turbo DI Exhaust 6 Managed by UT-Battelle for the Department of Energy Pre-mixed Charge...

  13. atmospheric particulate matters: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 28, 1980. The purposes of this meeting were: to synthesize our knowledge of the Norton Sound Lease Area (Sale No. 57) in order to facilitate the preparation of BLM's...

  14. atmospheric particulate matter: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 28, 1980. The purposes of this meeting were: to synthesize our knowledge of the Norton Sound Lease Area (Sale No. 57) in order to facilitate the preparation of BLM's...

  15. Development of a Low-Cost Particulate Matter Monitor

    E-Print Network [OSTI]

    White, Richard M.

    2010-01-01T23:59:59.000Z

    response to fresh diesel exhaust Generation of dieselduring and after generation of ETS and diesel exhaust inof PM generation of cigarette smoke and diesel exhaust

  16. Occupational Medicine Implications of Engineered Nanoscale Particulate Matter

    E-Print Network [OSTI]

    Kelly, Richard J.

    2008-01-01T23:59:59.000Z

    New England Journal of Medicine 1993, 329, 7. S. v. Klot; A.34 of 42 Occupational Medicine Implications of Engineered35 of 42 Occupational Medicine Implications of Engineered

  17. Fuel-Neutral Studies of Particulate Matter Transport Emissions | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies ProgramOutfitted with SCR |Altering Exhaustof

  18. Fuel-Neutral Studies of Particulate Matter Transport Emissions | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies ProgramOutfitted with SCR |Altering Exhaustofof

  19. Investigation of Direct Injection Vehicle Particulate Matter Emissions |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report: I11IG002 Investigation Letter2009Department of

  20. Particulate Matter Characteristics for Highly Dilute Stoichiometric GDI

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1 Termoelectrica U.SPRESSHeavy-duty Engine using theEngine

  1. Concentrations and Size Distributions of Particulate Matter Emissions from

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the WhiteNational|ofSeptember 3,Bringing youProgram AreasCatalyzed

  2. Development and Demonstration of an Electronic Particulate Matter Sensor

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I E LGeothermalEnergyProgram)for Both

  3. Effects of Advanced Combustion Technologies on Particulate Matter Emissions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board ContributionsreductionRefineries | DepartmentStates:

  4. Accelerated Extraction of Diesel Particulate Matter SOF | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated aging of roofing surfaces Hugo Destaillats,

  5. Optical Backscatter Probe for Sensing Particulate Matter - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctoberResearchOpen→and Technology,Optical

  6. Reduction of Transient Particulate Matter Spikes with Decision Tree Based

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012Energy ReliabilityNewsEnergy VehicleofIndustry Does

  7. Sizes, graphitic structures and fractal geometry of light-duty diesel engine particulates.

    SciTech Connect (OSTI)

    Lee, K. O.; Zhu, J.; Ciatti, S.; Choi, M. Y.; Energy Systems; Drexel Univ.

    2003-01-01T23:59:59.000Z

    The particulate matter of a light-duty diesel engine was characterized in its morphology, sizes, internal microstructures, and fractal geometry. A thermophoretic sampling system was employed to collect particulates directly from the exhaust manifold of a 1.7-liter turbocharged common-rail direct-injection diesel engine. The particulate samples collected at various engine-operating conditions were then analyzed by using a high-resolution transmission electron microscope (TEM) and an image processing/data acquisition system. Results showed that mean primary particle diameters (dp), and radii of gyration (Rg), ranged from 19.4 nm to 32.5 nm and 77.4 nm to 134.1 nm, respectively, through the entire engine-operating conditions of 675 rpm (idling) to 4000 rpm and 0% to 100% loads. It was also revealed that the other important parameters sensitive to the particulate formation, such as exhaust-gas recirculation (EGR) rate, equivalence ratio, and temperature, affected particle sizes significantly. Bigger primary particles were measured at higher EGR rates, higher equivalence ratios (fuel-rich), and lower exhaust temperatures. Fractal dimensions (D{sup f}) were measured at a range of 1.5 - 1.7, which are smaller than those measured for heavy-duty direct-injection diesel engine particulates in our previous study. This finding implies that the light-duty diesel engine used in this study produces more stretched chain-like shape particles, while the heavy-duty diesel engine emits more spherical particles. The microstructures of diesel particulates were observed at high TEM magnifications and further analyzed by a Raman spectroscope. Raman spectra revealed an atomic structure of the particulates produced at high engine loads, which is similar to that of typical graphite.

  8. Sulfur oxide adsorbents and emissions control

    DOE Patents [OSTI]

    Li, Liyu (Richland, WA); King, David L. (Richland, WA)

    2006-12-26T23:59:59.000Z

    High capacity sulfur oxide absorbents utilizing manganese-based octahedral molecular sieve (Mn--OMS) materials are disclosed. An emissions reduction system for a combustion exhaust includes a scrubber 24 containing these high capacity sulfur oxide absorbents located upstream from a NOX filter 26 or particulate trap.

  9. Development of diesel particulate filter made of porous metal

    SciTech Connect (OSTI)

    Matsunuma, Kenji; Ihara, Tomohiko; Hanamoto, Yuichi; Nakajima, Shiro; Okamoto, Satoru

    1996-09-01T23:59:59.000Z

    Pollution is worsening in cities. The exhaust gas from vehicles is the main cause of air pollution in cities. The major drawback of the diesel engine is the Particulate Matter (PM) contained in the exhaust fumes which is also said to lead to cancer. For about 20 years many tests have been conducted in order to reduce PM in diesel exhaust gas. However the exhaust gas in present diesel engines contains a significant amount of PM. This is because there is no practical material for the Diesel Particulate Filter (DPF). Conventional ceramic materials have problems such as cracking and melting during regeneration and conventional metal materials lack adequate corrosion resistance for practical use. The authors present a new type of DPF made of metal porous matter (Celmet) which is designed with a thermal construction and simple control system in order to solve the problem of diesel exhaust gas. As metal porous matter has low pressure loss per unit filter area during filtering, two-cylinder filters have similar trapping performance to the honeycomb type filter such as pressure loss and trapping efficiency, In this paper, 2,800--3,400cc diesel engines were used. Then a cycle of collection and regeneration with an electric heater and 12V battery was performed under several conditions on the engine bench and trapping efficiency and pressure loss were measured. It was confirmed that this new type DPF has good practical use in automobiles. Tests on forklifts were also performed. In a simple control system, this DPF can be applied to practical use. It is trouble-free for 6 months. The total performance of DPF for vehicles such as forklifts and heavy duty vehicles and the possibilities for other practical uses was mainly discussed.

  10. Microwave-Regenerated Diesel Exhaust Particulate Filter

    SciTech Connect (OSTI)

    Nixdorf, Richard D. (Industrial Ceramic Solution, LLC); Green, Johney Boyd; Story, John M.; Wagner, Robert M. (Oak Ridge National Laboratory)

    2001-03-05T23:59:59.000Z

    Development of a microwave-regenerated particulate filter system has evolved from bench scale work to actual diesel engine experimentation. The filter system was initially evaluated on a stationary mounted 1.2-L diesel engine and was able to remove a significant amount of carbon particles from the exhaust. The ability of the microwave energy to regenerate or clean the filter was also demonstrated on this engine under idle conditions. Based on the 1.2-L experiments, improvements to the filter design and materials were implemented and the system was re-evaluated on a vehicle equipped with a 7.3-L diesel engine. The 7.3-L engine was selected to achieve heavy filter loading in a relatively short period of time. The purpose of these experiments was to evaluate filter-loading capacity, power requirements for regeneration, and filter regeneration efficiency. A more detailed evaluation of the filter was performed on a stationary mounted 1.9-L diesel engine. The effect of exhaust flow rate, loading, transients, and regeneration on filter efficiency was evaluated with this setup. In addition, gaseous exhaust emissions were investigated with and without an oxidation catalyst on the filter cartridge during loading and regeneration. (SAE Paper SAE-2001-01-0903 © 2001 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)

  11. Electrically heated particulate filter enhanced ignition strategy

    SciTech Connect (OSTI)

    Gonze, Eugene V; Paratore, Jr., Michael J

    2012-10-23T23:59:59.000Z

    An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine. A grid of electrically resistive material is applied to an exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF. A catalyst coating applied to at least one of the PF and the grid. A control module estimates a temperature of the grid and controls the engine to produce a desired exhaust product to increase the temperature of the grid.

  12. Plasma regenerated particulate trap and NO.sub.x reduction system

    DOE Patents [OSTI]

    Penetrante, Bernardino M. (San Ramon, CA); Vogtlin, George E. (Fremont, CA); Merritt, Bernard T. (Livermore, CA); Brusasco, Raymond M. (Livermore, CA)

    2000-01-01T23:59:59.000Z

    A non-catalytic two-stage process for removal of NO.sub.x and particulates from engine exhaust comprises a first stage that plasma converts NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons, and a second stage, which preferably occurs simultaneously with the first stage, that converts NO.sub.2 and carbon soot particles to respective environmentally benign gases that include N.sub.2 and CO.sub.2. By preconverting NO to NO.sub.2 in the first stage, the efficiency of the second stage for NO.sub.x reduction is enhanced while carbon soot from trapped particulates is simultaneously converted to CO.sub.2 when reacting with the NO.sub.2 (that converts to N.sub.2). For example, an internal combustion engine exhaust is connected by a pipe to a chamber where carbon-containing particulates are electrostatically trapped or filtered and a non-thermal plasma converts NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons. Volatile hydrocarbons (C.sub.x H.sub.y) from the trapped particulates are oxidized in the plasma and the remaining soot from the particulates reacts with the NO.sub.2 to convert NO.sub.2 to N.sub.2, and the soot to CO.sub.2. The nitrogen exhaust components remain in the gas phase throughout the process, with no accompanying adsorption.

  13. An improved visualization of diesel particulate filter/

    E-Print Network [OSTI]

    Boehm, Kevin (Kevin W.)

    2011-01-01T23:59:59.000Z

    The prevalence of diesel particulate filters (DPF) is increasing as emissions standards worldwide evolve to match current technologies. Since the first application of DPFs in the 1980's, PM trapping effectiveness has ...

  14. Durability of Diesel Engine Particulate Filters

    Broader source: Energy.gov (indexed) [DOE]

    Durability of Diesel Engine Particulate Filters Thomas Watkins, Amit Shyam, H.T. Lin, Edgar Lara-Curzio and Amit Pandey; ORNL Randall Stafford; Cummins Inc. Sponsored by U.S....

  15. Fluid&ParticulateSystems 424514/2010

    E-Print Network [OSTI]

    Zevenhoven, Ron

    size distribution (CSD) and quality #12;Fluid&ParticulateSystems 424514/2010 Fluid solution ­ Selective distribution of impurities between a liquid phase and a solid phase uniformity, purity

  16. Lanthanides as particulate flow markers in ruminants

    E-Print Network [OSTI]

    Conner, Michael Cronan

    1977-01-01T23:59:59.000Z

    Suhj ect: Anindl I'lutri tion LANTHANIDES AS PARTICULATE FLOW NARVERS IN RUNINANTS A Thesis by MICUAEL CRONAN CONNER Approved as to style and content by: Yie, aber+ (Yieniber) August l977 ABSTPACT Lanthanides as Particulate Flow Markers... in Ruminants (Auoust 1977) Michael Cronan Conner, B. S. , California Polytechnic State University at San Luis Gbispo Chairman of Advisory Committee: Gr. Ii. C, Ellis The validity of lanthanides as par+iculate flow markers was evaluated by comparing...

  17. Oxidation resistant carbon-carbon composites: the effect of temperature dependent matrix material properties on laminate response 

    E-Print Network [OSTI]

    Romine, Paul Richard

    1994-01-01T23:59:59.000Z

    of the structure in oxygen rich environments in excess of 450 OC. A common protection scheme includes the use of external oxidation barrier coatings in conjunction with internal particulate oxidation inhibitors. The goal of this research is to gain...

  18. SOUTHERN FINE PARTICULATE MONITORING PROJECT

    SciTech Connect (OSTI)

    Unknown

    2002-04-01T23:59:59.000Z

    This quarterly report presents results and analysis of continuous onsite ambient fine particulate data at the North Birmingham sampling site during the January-March, 2002 study period. The continuous data include PM{sub 2.5} mass concentrations measured by TEOM, particle sulfate using the R&P 8400S monitor, particle size distributions measured by SMPS and APS monitors, and PM{sub 2.5} light scattering extinction coefficient as measured by nephelometer. Some instrumental issues were noted with the upgrade of the APS model 3320 are described in the report, as well as preliminary performance indications for the upgraded instrument. During the quarter preliminary data analysis and modeling studies were conducted to test the potential of the North Birmingham site data for source attribution analyses. Our initial assessment has continued to be optimistic in this regard due to the location of the site relative to several important classes of local and midrange emission sources. We anticipate that these analyses will provide good separations of the effects of major source classes and spatial source clusters, and will provide useful information relevant to PM{sub 2.5} implementation strategies.

  19. Integrated exhaust and electrically heated particulate filter regeneration systems

    DOE Patents [OSTI]

    Gonze, Eugene V.; Paratore, Jr., Michael J.

    2013-01-08T23:59:59.000Z

    A system includes a particulate matter (PM) filter that includes multiple zones. An electrical heater includes heater segments that are associated with respective ones of the zones. The electrical heater is arranged upstream from and proximate with the PM filter. A post-fuel injection system injects fuel into at least one of a cylinder of an engine and an exhaust system. A control module is configured to operate in a first mode that includes activating the electrical heater to heat exhaust of the engine. The control module is also configured to operate in a second mode that includes activating the post-injection system to heat the exhaust. The control module selectively operates in at least one of the first mode and the second mode.

  20. A new closing method for wall flow diesel particulate filters

    SciTech Connect (OSTI)

    Stobbe, P.; Petersen, H.G.; Sorenson, S.C.; Hoej, J.W.

    1996-09-01T23:59:59.000Z

    A new method has been developed to close the ends of a wall flow filter used for removing particulate matter from diesel engine exhaust. In this method, the ends of the honeycomb structure are capped by deforming and closing the ends of the channel walls between the extrusion and firing stages of production. The method increases the amount of filtration area per filter volume for a given cell geometry compared to the traditional plugging method, since the entire length of the honeycomb channels is used for filtration purposes. In addition, use of the capping method has a beneficial effect on the pressure loss characteristics of a filter with a given filtration area. These benefits are illustrated through experimental results.

  1. Diesel Particulate Oxidation Model: Combined Effects of Fixed & Volatile

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * SEnergyTemperature Materials LaboratoryCarbon

  2. Wiremesh Substrates for Enhanced Particulate Oxidation and Efficient Urea

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric VehicleCenters | Department ofoftoMay 8,EnergyWinning2SCR NOx

  3. Towards the EDGE: Early diagenetic global explanation. A model depicting the early diagenesis of organic matter, O sub 2 , NO sub 3 , Mn, and PO sub 4

    SciTech Connect (OSTI)

    Rabouille, C.; Gaillard, J.F. (Univ. Paris 7 (France) Inst. de Physique du Globe de Paris (France))

    1991-09-01T23:59:59.000Z

    The ultimate fate of particles in aquatic environments is their burial and transformation in surficial sediments. There is an increasing need to relate quantitatively particle fluxes in the water column to the material recycled or preserved in the sediment. For this purpose, a transport-reaction model (EDGE) that represents the early diagenetic processes occurring in surficial sediments has been designed. This model uses the incoming flux of particulate matter and the overlying water composition in order to obtain simulated concentration profiles of chemical species in the bulk sediment and interstitial waters. It consists of a set of coupled nonlinear differential equations representing the oxidation of Particulate Organic Matter (POM) by a continuous sequence of electron acceptors (i.e., O{sub 2}, NO{sub 3}{sup {minus}}, MnO{sub 2}; in its preset state). The distribution of the concentrations of six components: POM, O{sub 2}, NO{sub 3}{sup {minus}}, MnO{sub 2}, Mn{sup 2+}, and {Sigma}PO{sub 4} are currently calculated. The Monod rate law has been used for representing the mineralization of POM coupled with the consumption of oxidants, and the sequence of oxidation of organic matter is represented using an inhibition function. The distributions with depth of the concentrations of the six chemical compounds are presented for different fluxes of POM at steady-state. These calculations show that the preservation of organic carbon and the extent of the mineralization processes are very sensitive to the organic carbon rain rate. For constant fluxes of POM and MnO{sub 2} arriving at the sediment water interface, the effect of an increasing sedimentation rate, as it might be produced by an augmentation of the detrital flux, is assessed on carbon preservation.

  4. Method of dispersing particulate aerosol tracer

    DOE Patents [OSTI]

    O'Holleran, Thomas P. (Belleville, MI)

    1988-01-01T23:59:59.000Z

    A particulate aerosol tracer which comprises a particulate carrier of sheet silicate composition having a particle size up to one micron, and a cationic dopant chemically absorbed in solid solution in the carrier. The carrier is preferably selected from the group consisting of natural mineral clays such as bentonite, and the dopant is selected from the group consisting of rare earth elements and transition elements. The tracers are dispersed by forming an aqueous salt solution with the dopant present as cations, dispersing the carriers in the solution, and then atomizing the solution under heat sufficient to superheat the solution droplets at a level sufficient to prevent reagglomeration of the carrier particles.

  5. Modeling of Particulate Behavior in Pinhole Breaches

    SciTech Connect (OSTI)

    Casella, Andrew M.; Loyalka, Sudarshan K.; Hanson, Brady D.

    2014-04-01T23:59:59.000Z

    A model is presented for calculating depressurization time for and particulate release from used nuclear fuel dry storage containers that have developed a pinhole breach. Particular attention is given to particulate deposition and transmission within the breach pathway. The model is modular in nature and is developed in a way that allows for more advanced treatments of internal temperature, internal component geometry, or aerosol flow to be readily incorporated. The model can be treated as a basis for addressing concerns associated with monitoring and verification efforts during long-term dry cask storage

  6. Partial-Flow Diesel Particulate Filter of Sintered Metal Fiber...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partial-Flow Diesel Particulate Filter of Sintered Metal Fiber Fleece Partial-Flow Diesel Particulate Filter of Sintered Metal Fiber Fleece Poster presented at the 16th Directions...

  7. Size-Dependent Filtration of Non-Loaded Particulate Traps

    E-Print Network [OSTI]

    White, Jessica

    2014-12-12T23:59:59.000Z

    This work investigates the filtration efficiency of uncoated, commercial Diesel Particulate Filter (DPF) substrates of three porosities (55.8%, 61.1%, 65.0%) for particulate sizes representative of Gasoline Direct Injection (GDI) exhaust, and also...

  8. Electrically heated particulate filter preparation methods and systems

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI

    2012-01-31T23:59:59.000Z

    A control system that controls regeneration of a particulate filter is provided. The system generally includes a fuel control module that controls injection of fuel into exhaust that passes through the particulate filter. A regeneration module controls current to the particulate filter to initiate regeneration after the fuel has been injected into the exhaust.

  9. The aging of organic aerosol in the atmosphere : chemical transformations by heterogeneous oxidation

    E-Print Network [OSTI]

    Kessler, Sean Herbert

    2013-01-01T23:59:59.000Z

    The immense chemical complexity of atmospheric organic particulate matter ("aerosol") has left the general field of condensed-phase atmospheric organic chemistry relatively under-developed when compared with either gas-phase ...

  10. Evaluating the origins and transformations of organic matter and dissolved inorganic nitrogen in two contrasting North Sea estuaries 

    E-Print Network [OSTI]

    Ahad, Jason Michael Elias

    In order to delineate the potential sources and to understand the main controls on the biogeochemical cycling of dissolved and particulate organic matter (DOM, POM) and dissolved inorganic nitrogen (DIN) during estuarine ...

  11. Rare earth element components in atmospheric particulates in the Bayan Obo mine region

    SciTech Connect (OSTI)

    Wang, Lingqing, E-mail: wanglq@igsnrr.ac.cn; Liang, Tao, E-mail: liangt@igsnrr.ac.cn; Zhang, Qian; Li, Kexin

    2014-05-01T23:59:59.000Z

    The Bayan Obo mine, located in Inner Mongolia, China, is the largest light rare earth body ever found in the world. The research for rare earth elements (REEs) enrichment in atmospheric particulates caused by mining and ore processing is fairly limited so far. In this paper, atmospheric particulates including total suspended particulate (TSP) matter and particles with an equivalent aerodynamic diameter less than 10 ?m (PM{sub 10}) were collected around the Bayan Obo mine region, in August 2012 and March 2013, to analyze the levels and distributions of REEs in particles. The total concentrations of REEs for TSP were 149.8 and 239.6 ng/m{sup 3}, and those for PM{sub 10} were 42.8 and 68.9 ng/m{sup 3}, in August 2012 and March 2013, respectively. Enrichment factor was calculated for all 14 REEs in the TSP and PM{sub 10} and the results indicated that REEs enrichment in atmosphere particulates was caused by anthropogenic sources and influenced by the strong wind in springtime. The spatial distribution of REEs in TSP showed a strong gradient concentration in the prevailing wind direction. REE chondrite normalized patterns of TSP and PM{sub 10} were similar and the normalized curves inclined to the right side, showing the conspicuous fractionation between the light REEs and heavy REE, which supported by the chondrite normalized concentration ratios calculated for selected elements (La{sub N}/Yb{sub N}, La{sub N}/Sm{sub N}, Gd{sub N}/Yb{sub N}). - Highlights: • TSP and PM{sub 10} samples were collected to analyze the levels and distributions of REE. • Enrichment factors indicated that REE enrichment was caused by anthropogenic sources. • The distribution of REEs showed a strong gradient in the prevailing wind direction. • Obvious fractionation between LREEs and HREEs is observed in atmospheric particulates.

  12. Evaluation Framework and Tools for Distributed Energy Resources

    E-Print Network [OSTI]

    Gumerman, Etan Z.; Bharvirkar, Ranjit R.; LaCommare, Kristina Hamachi; Marnay, Chris

    2003-01-01T23:59:59.000Z

    prices megawatt (10 watts) natural gas combined cycle not in my backyard nitrogen oxides particulate matter photovoltaic

  13. A study of the regeneration process in diesel particulate traps using a copper fuel additive

    SciTech Connect (OSTI)

    Tan, J.C.; Opris, C.N.; Baumgard, K.J.; Johnson, J.H. [Michigan Technological Univ., Houghton, MI (United States)

    1996-09-01T23:59:59.000Z

    The goals of this research are to understand the regeneration process in ceramic (Cordierite) monolith traps using a copper fuel additive and to investigate the various conditions that lead to trap regeneration failure. The copper additive lowers the trap regeneration temperature from approximately 500 C to 375 C and decreases the time necessary for regeneration. Because of these characteristics, it is important to understand the effect of the additive on regeneration when excessive particulate matter accumulation occurs in the trap. The effects of particulate mass loading on regeneration temperatures and regeneration time were studied for both the controlled (engine operated at full load rated speed) and uncontrolled conditions. The trap peak temperatures were higher for the uncontrolled than the controlled regeneration. The higher peak trap temperatures were predominantly controlled by the effect of the exhaust flow rates on the energy transfer processes. The total regeneration time was faster for the controlled regeneration compared to the uncontrolled regeneration. All traps passed the controlled regeneration tests having maximum temperatures less than 900 C. During the uncontrolled regeneration tests, trap failure occurred at 135 and 139 g particulate matter loadings. The maximum temperatures were in excess of 1,150 C. The pressure drop across the trap was modeled using the one dimensional Darcy`s law which accounted for the pressure drop due to the ceramic wall and the particulate layer. The experimental results for the substrate correlate well with the empirical substrate pressure drop models available in the literature. The models also enable an estimate to be made regarding trap mass loading. These data along with the laboratory data have indicated that mass loadings greater than 110 g followed by high temperature operation and subsequent engine idling can result in trap failures during regeneration.

  14. Particulate Matter: What is it and Why does it Matter to Agriculture? 

    E-Print Network [OSTI]

    Mukhtar, Saqib; McGee, Russell

    2009-04-16T23:59:59.000Z

    for PM and other pollutants. As the EPA and state regulatory agencies refine their regulations, it is important to recognize that not all PM is the same. Most of the PM in urban environments is fine, while most agricultural PM is larger than...

  15. Particulate Matter: What is it and Why does it Matter to Agriculture?

    E-Print Network [OSTI]

    Mukhtar, Saqib; McGee, Russell

    2009-04-16T23:59:59.000Z

    for PM and other pollutants. As the EPA and state regulatory agencies refine their regulations, it is important to recognize that not all PM is the same. Most of the PM in urban environments is fine, while most agricultural PM is larger than...

  16. Apparatus for measuring surface particulate contamination

    DOE Patents [OSTI]

    Woodmansee, Donald E. (Simpsonville, SC)

    2002-01-01T23:59:59.000Z

    An apparatus for measuring surface particulate contamination includes a tool for collecting a contamination sample from a target surface, a mask having an opening of known area formed therein for defining the target surface, and a flexible connector connecting the tool to the mask. The tool includes a body portion having a large diameter section defining a surface and a small diameter section extending from the large diameter section. A particulate collector is removably mounted on the surface of the large diameter section for collecting the contaminants. The tool further includes a spindle extending from the small diameter section and a spool slidingly mounted on the spindle. A spring is disposed between the small diameter section and the spool for biasing the spool away from the small diameter section. An indicator is provided on the spindle so as to be revealed when the spool is pressed downward to compress the spring.

  17. MERCURY OXIDIZATION IN NON-THERMAL PLASMA BARRIER DISCHARGE SYSTEM

    SciTech Connect (OSTI)

    V.K. Mathur

    2003-02-01T23:59:59.000Z

    In the past decade, the emission of toxic elements from human activities has become a matter of great public concern. Hg, As, Se and Cd typically volatilize during a combustion process and are not easily caught with conventional air pollution control techniques. In addition, there is no pollution prevention technique available now or likely be available in the foreseeable future that can prevent the emission of these trace elements. These trace elements pose additional scientific challenge as they are present at only ppb levels in large gas streams. Mercury, in particular, has attracted significant attention due to its high volatility, toxicity and potential threat to human health. In the present research work, a non-thermal plasma dielectric barrier discharge technique has been used to oxidize Hg{sup 0}(g) to HgO. The basic premise of this approach is that Hg{sup 0} in vapor form cannot be easily removed in an absorption tower whereas HgO as a particulate is amiable to water scrubbing. The work presented in this report consists of three steps: (1) setting-up of an experimental apparatus to generate mercury vapors at a constant rate and modifying the existing non-thermal plasma reactor system, (2) solving the analytical challenge for measuring mercury vapor concentration at ppb level, and (3) conducting experiments on mercury oxidation under plasma conditions to establish proof of concept.

  18. Acute changes in pulse pressure in relation to constituents of particulate air pollution in elderly persons

    SciTech Connect (OSTI)

    Jacobs, Lotte [Occupational and Environmental Medicine, Unit of Lung Toxicology, K.U.Leuven, Leuven (Belgium)] [Occupational and Environmental Medicine, Unit of Lung Toxicology, K.U.Leuven, Leuven (Belgium); Buczynska, Anna [Departement of Chemistry, UA, Wilrijk (Belgium)] [Departement of Chemistry, UA, Wilrijk (Belgium); Walgraeve, Christophe [Research group EnVOC, Department of Sustainable Organic Chemistry and Technology, UGent, Gent (Belgium)] [Research group EnVOC, Department of Sustainable Organic Chemistry and Technology, UGent, Gent (Belgium); Delcloo, Andy [Royal Meteorological Institute, Brussels (Belgium)] [Royal Meteorological Institute, Brussels (Belgium); Potgieter-Vermaak, Sanja [Departement of Chemistry, UA, Wilrijk (Belgium) [Departement of Chemistry, UA, Wilrijk (Belgium); Molecular Science Institute, School of Chemistry, University of Witwatersrand, Johannesburg (South Africa); Division of Chemistry and Environmental Science, Manchester Metropolitan University, Manchester (United Kingdom); Van Grieken, Rene [Departement of Chemistry, UA, Wilrijk (Belgium)] [Departement of Chemistry, UA, Wilrijk (Belgium); Demeestere, Kristof; Dewulf, Jo; Van Langenhove, Herman [Research group EnVOC, Department of Sustainable Organic Chemistry and Technology, UGent, Gent (Belgium)] [Research group EnVOC, Department of Sustainable Organic Chemistry and Technology, UGent, Gent (Belgium); De Backer, Hugo [Royal Meteorological Institute, Brussels (Belgium)] [Royal Meteorological Institute, Brussels (Belgium); Nemery, Benoit, E-mail: ben.nemery@med.kuleuven.be [Occupational and Environmental Medicine, Unit of Lung Toxicology, K.U.Leuven, Leuven (Belgium)] [Occupational and Environmental Medicine, Unit of Lung Toxicology, K.U.Leuven, Leuven (Belgium); Nawrot, Tim S. [Occupational and Environmental Medicine, Unit of Lung Toxicology, K.U.Leuven, Leuven (Belgium) [Occupational and Environmental Medicine, Unit of Lung Toxicology, K.U.Leuven, Leuven (Belgium); Centre for Environmental Sciences, Hasselt University, Diepenbeek (Belgium)

    2012-08-15T23:59:59.000Z

    An increased pulse pressure (difference between systolic and diastolic blood pressure) suggests aortic stiffening. The objective of this study was to examine the acute effects of both particulate matter (PM) mass and composition on blood pressure, among elderly persons. We carried out a panel study in persons living in elderly homes in Antwerp, Belgium. We recruited 88 non-smoking persons, 70% women with a mean age of 83 years (standard deviation: 5.2). Blood pressure was measured and a blood sample was collected on two time points, which were chosen so that there was an exposure contrast in ambient PM exposure. The elemental content of the collected indoor and outdoor PM{sub 2.5} (particulate matter with an aerodynamic diameter <2.5 {mu}m) mass concentration was measured. Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) on outdoor PM{sub 10} (particulate matter with an aerodynamic diameter <10 {mu}m) were measured. Each interquartile range increase of 20.8 {mu}g/m Superscript-Three in 24-h mean outdoor PM{sub 2.5} was associated with an increase in pulse pressure of 4.0 mmHg (95% confidence interval: 1.8-6.2), in persons taking antihypertensive medication (n=57), but not in persons not using antihypertensive medication (n=31) (p for interaction: 0.02). Vanadium, iron and nickel contents of PM{sub 2.5} were significantly associated with systolic blood pressure and pulse pressure, among persons on antihypertensive medication. Similar results were found for indoor concentrations. Of the oxy-PAHs, chrysene-5,6-dione and benzo[a]pyrene-3,6-dione were significantly associated with increases in systolic blood pressure and pulse pressure. In elderly, pulse pressure was positively associated with acute increases in outdoor and indoor air pollution, among persons taking antihypertensive medication. These results might form a mechanistic pathway linking air pollution as a trigger of cardiovascular events.

  19. Generator powered electrically heated diesel particulate filter

    DOE Patents [OSTI]

    Gonze, Eugene V; Paratore, Jr., Michael J

    2014-03-18T23:59:59.000Z

    A control circuit for a vehicle powertrain includes a switch that selectivity interrupts current flow between a first terminal and a second terminal. A first power source provides power to the first terminal and a second power source provides power to the second terminal and to a heater of a heated diesel particulate filter (DPF). The switch is opened during a DPF regeneration cycle to prevent the first power source from being loaded by the heater while the heater is energized.

  20. Simultaneous Removal of Particulates and NOx Using Catalyst Impregnated Fibrous Ceramic Filters

    SciTech Connect (OSTI)

    Choi, J.I.; Mun, S.H.; Kim, S.T.; Hong, M.S.; Lee, J.C.

    2002-09-19T23:59:59.000Z

    The research is focused on the development and commercialization of high efficiency, cost effective air pollution control system, which can replace in part air pollution control devices currently in use. In many industrial processes, hot exhaust gases are cooled down to recover heat and to remove air pollutants in exhaust gases. Conventional air pollution control devices such as bag filters, E.P. and adsorption towers withstand operating temperatures up to 300 C. Also, reheating is sometimes necessary to meet temperature windows for S.C.R. Since Oxidation reactions of acid gases such as SO{sub 2}, and HCl with lime are enhanced at high temperatures, catalyst impregnated ceramic filters can be candidate for efficient and cost effective air pollution control devices. As shown on Fig. 1., catalytic ceramic filters remove particulates on exterior surface of filters and acid gases are oxidized to salts reacting with limes injected in upstream ducts. Oxidation reactions are enhanced in the cake formed on exterior of filters. Finally, injected reducing gas such as NH{sub 3} react with NOx to form N{sub 2} and H{sub 2}O interior of filters in particulate-free environment. Operation and maintenance technology is similar to conventional bag filters except that systems are exposed to relatively high temperatures ranging 300-500 C.

  1. Atmospheric particulate emissions from dry abrasive blasting using coal slag

    SciTech Connect (OSTI)

    Bhaskar Kura; Kalpalatha Kambham; Sivaramakrishnan Sangameswaran; Sandhya Potana [University of New Orleans, New Orleans, LA (United States). Department of Civil and Environmental Engineering

    2006-08-15T23:59:59.000Z

    Coal slag is one of the widely used abrasives in dry abrasive blasting. Atmospheric emissions from this process include particulate matter (PM) and heavy metals, such as chromium, lead, manganese, nickel. Quantities and characteristics of PM emissions depend on abrasive characteristics and process parameters. Emission factors are key inputs to estimate emissions. Experiments were conducted to study the effect of blast pressure, abrasive feed rate, and initial surface contamination on total PM (TPM) emission factors for coal slag. Rusted and painted mild steel surfaces were used as base plates. Blasting was carried out in an enclosed chamber, and PM was collected from an exhaust duct using U.S. Environment Protection Agency source sampling methods for stationary sources. Results showed that there is significant effect of blast pressure, feed rate, and surface contamination on TPM emissions. Mathematical equations were developed to estimate emission factors in terms of mass of emissions per unit mass of abrasive used, as well as mass of emissions per unit of surface area cleaned. These equations will help industries in estimating PM emissions based on blast pressure and abrasive feed rate. In addition, emissions can be reduced by choosing optimum operating conditions. 40 refs., 5 figs., 2 tabs.

  2. Diesel particulate filter regeneration via resistive surface heating

    DOE Patents [OSTI]

    Gonze, Eugene V; Ament, Frank

    2013-10-08T23:59:59.000Z

    An exhaust system that processes exhaust generated by an engine is provided. The system includes: a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine; and a grid of electrically resistive material that is applied to an exterior upstream surface of the PF and that selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF.

  3. PARAMETRIC STUDY OF SUBMICRON PARTICULATES FROM PULVERIZED COAL COMBUSTION

    E-Print Network [OSTI]

    Pennucci, J.

    2014-01-01T23:59:59.000Z

    Chemistry of Coal during Combustion and the Emissions fromParticulates Generated by Combustion of Pulverized Coal,Particles from Coal Combustion, presented at the Eighteenth

  4. air particulate samples: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2. Measurements of fine quantitative information on fine airborne particulate-size and chemically resolved mass concentration from composition, urban, organic, mass...

  5. Electrically heated particulate filter regeneration using hydrocarbon adsorbents

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI

    2011-02-01T23:59:59.000Z

    An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine. A grid of electrically resistive material selectively heats exhaust passing through the upstream end to initiate combustion of particulates within the PF. A hydrocarbon adsorbent coating applied to the PF releases hydrocarbons into the exhaust to increase a temperature of the combustion of the particulates within the PF.

  6. Particulate Produced from Advanced Combustion Operation in a...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Produced from Advanced Combustion Operation in a Compression Ignition Engine Particulate Produced from Advanced Combustion Operation in a Compression Ignition Engine Determine...

  7. Development of Advanced Diesel Particulate Filtration (DPF) Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (ANLCorningCaterpillar CRADA) Development of Advanced Diesel Particulate Filtration (DPF) Systems (ANLCorningCaterpillar CRADA) ace22lee.pdf More Documents & Publications...

  8. Improvement and Simplification of Diesel Particulate Filter System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improvement and Simplification of Diesel Particulate Filter System using a Ceria-Based Fuel-Borne Catalyst in Serial Applications Improvement and Simplification of Diesel...

  9. Diesel Particulate Filter: A Success for Faurecia Exhaust Systems

    Broader source: Energy.gov (indexed) [DOE]

    DIESEL PARTICULATE FILTER: A SUCCESS FOR FAURECIA EXHAUST SYSTEMS Robert Parmann, Emmanuel Jean, Eric Quemere Faurecia Exhaust Systems DPF with Fuel Borne Catalyst DPF Experience...

  10. airborne particulate threat: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    particulate pollution in Beijing. Overall, coal burning and the traffic exhausts, plus mineral aerosol and it could provide the basic information in controlling the air-borne...

  11. airborne fungi particulate: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    particulate pollution in Beijing. Overall, coal burning and the traffic exhausts, plus mineral aerosol and it could provide the basic information in controlling the air-borne...

  12. airborne particulates european: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    particulate pollution in Beijing. Overall, coal burning and the traffic exhausts, plus mineral aerosol and it could provide the basic information in controlling the air-borne...

  13. Characterization of Pre-Commercial Gasoline Engine Particulates...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    analysis methods were used to examine particulates from single cylinder test engines running on gasoline and ethanol blends. deer12zelenyuk.pdf More Documents & Publications...

  14. Development of Advanced Diesel Particulate Filtration (DPF) Systems

    Broader source: Energy.gov (indexed) [DOE]

    Filtration (DPF) Systems Particulate Filtration (DPF) Systems (ANLCorningCaterpillar CRADA) February 26, 2008 DOE Merit Review PI: Kyeong Lee (Postdoc: Joe Song) Transportation...

  15. Requirements-Driven Diesel Catalyzed Particulate Trap Design...

    Broader source: Energy.gov (indexed) [DOE]

    Requirements Driven Diesel Catalyzed Particulate Trap (DCPT) Design and Optimization Tom Harris, Donna McConnell and Danan Dou Delphi Catalyst Tulsa, Oklahoma 2 Euro 45 Light Duty...

  16. Effect of Biodiesel Blends on Diesel Particulate Filter Performance

    SciTech Connect (OSTI)

    Williams, A.; McCormick, R. L.; Hayes, R. R.; Ireland, J.; Fang, H. L.

    2006-11-01T23:59:59.000Z

    Presents results of tests of ultra-low sulfur diesel blended with soy-biodiesel at 5 percent using a Cummins ISB engine with a diesel particulate filter.

  17. Partitioning of Volatile Organics in Diesel Particulate and Exhaust...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Diesel Particulate and Exhaust Evaluation of how sampling details affect the measurement of volatile organic compounds in diesel exhaust deer08strzelec.pdf More Documents...

  18. Final Report: Particulate Emissions Testing, Unit 1, Potomac...

    Broader source: Energy.gov (indexed) [DOE]

    were completed while Unit 1 was operating at 90% of full load (84MW) or greater. Final Report: Particulate Emissions Testing, Unit 1, Potomac River Generating Station, Alexandria,...

  19. Particulate Produced from Advanced Combustion Operation in a...

    Broader source: Energy.gov (indexed) [DOE]

    Produced From Advanced Combustion Operation in a Compression Ignition Engine P-1 Particulate Produced From Advanced Combustion Operation in a Compression Ignition Engine P-1...

  20. Neutron Imaging of Diesel Particulate Filters

    SciTech Connect (OSTI)

    Strzelec, Andrea [ORNL; Bilheux, Hassina Z [ORNL; FINNEY, Charles E A [ORNL; Daw, C Stuart [ORNL; Foster, Prof. Dave [University of Wisconsin; Rutland, Prof. Christopher J. [University of Wisconsin; Schillinger, Burkhard [FRM-II, Technische Universitaet Munchen; Schulz, Michael [FRM-II, Technische Universitaet Munchen

    2009-01-01T23:59:59.000Z

    This article presents nondestructive neutron computed tomography (nCT) measurements of Diesel Particulate Filters (DPFs) as a method to measure ash and soot loading in the filters. Uncatalyzed and unwashcoated 200cpsi cordierite DPFs exposed to 100% biodiesel (B100) exhaust and conventional ultra low sulfur 2007 certification diesel (ULSD) exhaust at one speed-load point (1500rpm, 2.6bar BMEP) are compared to a brand new (never exposed) filter. Precise structural information about the substrate as well as an attempt to quantify soot and ash loading in the channel of the DPF illustrates the potential strength of the neutron imaging technique.

  1. Ceramic Particulate Filters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof EnergyAdministration-Desertof Energy PresentationCeramic Particulate

  2. Trends in Particulate Nanostructure | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|IndustrialCenter GetsEnergySpecification: RevisionParticulate

  3. Effectiveness of Diesel Oxidation Catalyst in Reducing HC and CO Emissions from Reactivity Controlled Compression Ignition

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y [ORNL; Curran, Scott [ORNL; Parks, II, James E [ORNL; Wagner, Robert M [ORNL

    2013-01-01T23:59:59.000Z

    Reactivity Controlled Compression Ignition (RCCI) has been shown to allow for diesel-like or better brake thermal efficiency with significant reductions in nitrogen oxide (NOX) particulate matter (PM) emissions. Hydrocarbon (HC) and carbon monoxide (CO) emission levels, on the other hand, are similar to those of port fuel injected gasoline engines. The higher HC and CO emissions combined with the lower exhaust temperatures with RCCI operation present a challenge for current exhaust aftertreatments. The reduction of HC and CO emissions in a lean environment is typically achieved with an oxidation catalyst. In this work, several diesel oxidation catalysts (DOC) with different precious metal loadings were evaluated for effectiveness to control HC and CO emissions from RCCI combustion in a light-duty multi-cylinder engine operating on gasoline and diesel fuels. Each catalyst was evaluated in a steady-state engine operation with temperatures ranging from 160 to 260 C. A shift to a higher light-off temperature was observed during the RCCI operation. In addition to the steady-state experiments, the performances of the DOCs were evaluated during multi-mode engine operation by switching from diesel-like combustion at higher exhaust temperature and low HC/CO emissions to RCCI combustion at lower temperature and higher HC/CO emissions. High CO and HC emissions from RCCI generated an exotherm keeping the catalyst above the light-off temperature.

  4. Modeling and interpreting the observed effects of ash on diesel particulate filter performance and regeneration

    E-Print Network [OSTI]

    Wang, Yujun, Ph. D. Massachusetts Institute of Technology

    2014-01-01T23:59:59.000Z

    Diesel particulate filters (DPF) are devices that physically capture diesel particulates to prevent their release to the atmosphere. Diesel particulate filters have seen widespread use in on- and off-road applications as ...

  5. Systemic inflammatory changes and increased oxidative stress in rural Indian women cooking with biomass fuels

    SciTech Connect (OSTI)

    Dutta, Anindita, E-mail: anidu14@gmail.com [College of Environmental Sciences and Engineering, Peking University, Beijing (China) [College of Environmental Sciences and Engineering, Peking University, Beijing (China); Department of Experimental Hematology, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata-700 026 (India); Ray, Manas Ranjan; Banerjee, Anirban [Department of Experimental Hematology, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata-700 026 (India)] [Department of Experimental Hematology, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata-700 026 (India)

    2012-06-15T23:59:59.000Z

    The study was undertaken to investigate whether regular cooking with biomass aggravates systemic inflammation and oxidative stress that might result in increase in the risk of developing cardiovascular disease (CVD) in rural Indian women compared to cooking with a cleaner fuel like liquefied petroleum gas (LPG). A total of 635 women (median age 36 years) who cooked with biomass and 452 age-matched control women who cooked with LPG were enrolled. Serum interleukin-6 (IL-6), C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-?) and interleukin-8 (IL-8) were measured by ELISA. Generation of reactive oxygen species (ROS) by leukocytes was measured by flow cytometry, and erythrocytic superoxide dismutase (SOD) was measured by spectrophotometry. Hypertension was diagnosed following the Seventh Report of the Joint Committee. Tachycardia was determined as pulse rate > 100 beats per minute. Particulate matter of diameter less than 10 and 2.5 ?m (PM{sub 10} and PM{sub 2.5}, respectively) in cooking areas was measured using real-time aerosol monitor. Compared with control, biomass users had more particulate pollution in indoor air, their serum contained significantly elevated levels of IL-6, IL-8, TNF-? and CRP, and ROS generation was increased by 37% while SOD was depleted by 41.5%, greater prevalence of hypertension and tachycardia compared to their LPG-using neighbors. PM{sub 10} and PM{sub 2.5} levels were positively associated with markers of inflammation, oxidative stress and hypertension. Inflammatory markers correlated with raised blood pressure. Cooking with biomass exacerbates systemic inflammation, oxidative stress, hypertension and tachycardia in poor women cooking with biomass fuel and hence, predisposes them to increased risk of CVD development compared to the controls. Systemic inflammation and oxidative stress may be the mechanistic factors involved in the development of CVD. -- Highlights: ? Effect of chronic biomass smoke exposure on cardiovascular health was investigated. ? Serum markers of systemic inflammation and oxidative stress were studied. ? Biomass using women had increased systemic inflammation and oxidative stress. ? Indoor air pollution and observed changes were positively associated.

  6. Dark Matters

    ScienceCinema (OSTI)

    Joseph Silk

    2010-01-08T23:59:59.000Z

    One of the greatest mysteries in the cosmos is that it is mostly dark.  Astronomers and particle physicists today are seeking to unravel the nature of this mysterious, but pervasive dark matter which has profoundly influenced the formation of structure in the universe.  I will describe the complex interplay between galaxy formation and dark matter detectability and review recent attempts to measure particle dark matter by direct and indirect means.

  7. Catalytic iron oxide for lime regeneration in carbonaceous fuel combustion

    SciTech Connect (OSTI)

    Shen, M.; Yang, R.T.

    1980-09-30T23:59:59.000Z

    Lime utilization for sulfurous oxides absorption in fluidized combustion of carbonaceous fuels is improved by impregnation of porous lime particulates with iron oxide. The impregnation is achieved by spraying an aqueous solution of mixed iron sulfate and sulfite on the limestone before transfer to the fluidized bed combustor, whereby the iron compounds react with the limestone substrate to form iron oxide at the limestone surface. It is found that iron oxide present in the spent limestone acts as a catalyst to regenerate the spent limestone in a reducing environment. With only small quantities of iron oxide the calcium can be recycled at a significantly increased rate.

  8. Particulate optical scattering coefficients along an Atlantic Meridional Transect

    E-Print Network [OSTI]

    Boss, Emmanuel S.

    Particulate optical scattering coefficients along an Atlantic Meridional Transect G. Dall'Olmo,1, E, USA gdal@pml.ac.uk Abstract: The particulate optical backscattering coefficient (bbp) is a fundamental optical property that allows monitoring of marine suspended particles both in situ and from space

  9. Process for off-gas particulate removal and apparatus therefor

    DOE Patents [OSTI]

    Carl, D.E.

    1997-10-21T23:59:59.000Z

    In the event of a breach in the off-gas line of a melter operation requiring closure of the line, a secondary vessel vent line is provided with a particulate collector utilizing atomization for removal of large particulates from the off-gas. The collector receives the gas containing particulates and directs a portion of the gas through outer and inner annular channels. The collector further receives a fluid, such as water, which is directed through the outer channel together with a second portion of the particulate-laden gas. The outer and inner channels have respective ring-like termination apertures concentrically disposed adjacent one another on the outer edge of the downstream side of the particulate collector. Each of the outer and inner channels curves outwardly away from the collector`s centerline in proceeding toward the downstream side of the collector. Gas flow in the outer channel maintains the fluid on the channel`s wall in the form of a ``wavy film,`` while the gas stream from the inner channel shears the fluid film as it exits the outer channel in reducing the fluid to small droplets. Droplets formed by the collector capture particulates in the gas stream by one of three mechanisms: impaction, interception or Brownian diffusion in removing the particulates. The particulate-laden droplets are removed from the fluid stream by a vessel vent condenser or mist eliminator. 4 figs.

  10. Process for off-gas particulate removal and apparatus therefor

    DOE Patents [OSTI]

    Carl, Daniel E. (Orchard Park, NY)

    1997-01-01T23:59:59.000Z

    In the event of a breach in the off-gas line of a melter operation requiring closure of the line, a secondary vessel vent line is provided with a particulate collector utilizing atomization for removal of large particulates from the off-gas. The collector receives the gas containing particulates and directs a portion of the gas through outer and inner annular channels. The collector further receives a fluid, such as water, which is directed through the outer channel together with a second portion of the particulate-laden gas. The outer and inner channels have respective ring-like termination apertures concentrically disposed adjacent one another on the outer edge of the downstream side of the particulate collector. Each of the outer and inner channels curves outwardly away from the collector's centerline in proceeding toward the downstream side of the collector. Gasflow in the outer channel maintains the fluid on the channel's wall in the form of a "wavy film," while the gas stream from the inner channel shears the fluid film as it exits the outer channel in reducing the fluid to small droplets. Droplets formed by the collector capture particulates in the gas stream by one of three mechanisms: impaction, interception or Brownian diffusion in removing the particulates. The particulate-laden droplets are removed from the fluid stream by a vessel vent condenser or mist eliminator.

  11. Diesel lube oils; Fourth dimension of diesel particulate control

    SciTech Connect (OSTI)

    Springer, K.J. (Southwest Research Institute, San Antonio, TX (US))

    1989-07-01T23:59:59.000Z

    Particulate emission control, for the HD diesel engine, has previously been considered a three-dimensional problem involving: combustion of the fuel by the engine, fuel modification, and exhaust aftertreatment. The lube oil contribution may be considered a fourth dimension of the problem. Historically, the heavy-duty engine manufacturer has met emission standards for smoke (1968 to present), CO, HC, and NOx (1974 to present) and particulates (1988 to present) through changes in engine design. This paper used the allocation method to estimate the reduction in lube oil consumption needed to meet 1991 and 1994 U.S. particulate emission standards. This analysis places the contribution of lube oil as a source of exhaust particulates into prospective with the contributions from fuel sulfur and fuel combustion. An emissions control strategy to meet future regulations is offered in which reductions from fuel modification, combustion improvement, reduced lube oil consumption, and exhaust particulate trap-catalysts are all involved.

  12. Analysis of characteristic of microwave regeneration for diesel particulate filter

    SciTech Connect (OSTI)

    Ning Zhi; Zhang Guanglong; Lu Yong; Liu Junmin; Gao Xiyan; Liang Iunhui; Chen Jiahua [Dalian Univ. of Technology (China)

    1995-12-31T23:59:59.000Z

    The mathematical model for the microwave regeneration of diesel particulate filter is proposed according to the characteristic of microwave regeneration process. The model is used to calculate the temperature field, distribution of particulate and density field of oxygen in the filter during the process of regeneration with typical ceramic foam particulate filter data. The parametric study demonstrates how some of the main parameters, such as microwave attenuation constant of the filter, filter particulate loading, the power and distribution of microwave energy and so on, affect the efficiency of regeneration, the maximum filter temperature and regeneration duration. The results show that it is possible to regenerate the diesel particulate filters in certain conditions by using microwave energy. This paper can give one a whole understanding to several main factors that have effects on the process of microwave regeneration and provide a theoretical basis for the optimal design of the microwave regeneration system.

  13. Metal sulfide initiators for metal oxide sorbent regeneration

    DOE Patents [OSTI]

    Turk, B.S.; Gupta, R.P.

    1999-06-22T23:59:59.000Z

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream. 1 fig.

  14. Lecture 3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    oxidation of NO. 3.3.1.3 Particulate Matters Combustion generated particulate matters (PM) are usually fine particles with sizes < 1 m. Soot or smoke represents a significant...

  15. Source Contribution Analysis of Surface Particulate Polycyclic Aromatic Hydrocarbon Concentrations in Northeastern Asia by Source-receptor Relationships

    SciTech Connect (OSTI)

    Inomata, Yayoi; Kajino, Mizuo; Sato, Keiichi; Ohara, Toshimasa; Kurokawa, Jun-Ichi; Ueda, Hiromasa; Tang, Ning; Hayakawa, Kazuichi; Ohizumi, Tsuyoshi; Akimoto, Hajime

    2013-11-01T23:59:59.000Z

    We analyzed the sourceereceptor relationships for particulate polycyclic aromatic hydrocarbon (PAH) concentrations in northeastern Asia using an aerosol chemical transport model. The model successfully simulated the observed concentrations. In Beijing (China) benzo[a]pyren (BaP) concentrations are due to emissions from its own domain. In Noto, Oki and Tsushima (Japan), transboundary transport from northern China (>40°N, 40-60%) and central China (30-40°N, 10-40%) largely influences BaP concentrations from winter to spring, whereas the relative contribution from central China is dominant (90%) in Hedo. In the summer, the contribution from Japanese domestic sources increases (40-80%) at the 4 sites. Contributions from Japan and Russia are additional source of BaP over the northwestern Pacific Ocean in summer. The contribution rates for the concentrations from each domain are different among PAH species depending on their particulate phase oxidation rates. Reaction with O3 on particulate surfaces may be an important component of the PAH oxidation processes.

  16. Laser induced thermophoresis and particulate deposition efficiency

    SciTech Connect (OSTI)

    Cipolla, J.; Morse, T.F.; Wang, C.Y.

    1983-07-01T23:59:59.000Z

    The interaction of laser radiation and an absorbing aerosol in a tube flow has been considered. The aerosol is produced by external heating of reactants as in the MCVD (Modified Chemical Vapor Deposition) process to produce submicron size particles in the manufacture of optical fiber preforms. These are subsequently deposited by thermophoretic forces on the inner wall of the tube as they are convected by a Poiseuille velocity profile. Axial laser radiation in the tube interacts with the absorbing particles, and the laser heating of the gas induces additional thermophoretic forces that markedly increase the efficiency of particulate deposition. A particle concentration dependent absorption coefficient that appears in the energy equation couples the energy equation to the equation of particle conservation, so that a non-linear set of coupled partial integrodifferential equations must be solved. Numerical solutions for aerosol particle trajectories, and thus deposition efficiencies, have been obtained. It is shown that laser enhanced thermophoresis markedly improves the deposition efficiency.

  17. aerosol bound particulates: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data) cloud drop size distributions and (iv) TWP-ICE (Darwin, Australia) rain drop size distributions. A. M. Selvam 2010-05-08 26 7, 1569315721, 2007 Particulate PAH Computer...

  18. Ultrasonic wave propagation in random and periodic particulate composites 

    E-Print Network [OSTI]

    Henderson, Benjamin Kyle

    1996-01-01T23:59:59.000Z

    Current theoretical models are insufficient to predict the dynamic behavior of particulate composites under ultrasonic loading. To facilitate the creation of more accurate models, ultrasonic tests have been performed to expand the database...

  19. Diesel Particulate Filter Technology for Low-Temperature and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Filter Technology for Low-Temperature and Low-NOxPM Applications Diesel Particulate Filter Technology for Low-Temperature and Low-NOxPM Applications 2004 DEER Conference...

  20. Durability of Diesel Engine Particulate Filters CRADA No. ORNL...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Filters CRADA No. ORNL-04-0692 with Cummins Inc. Durability of Diesel Engine Particulate Filters CRADA No. ORNL-04-0692 with Cummins Inc. Presentation from the U.S. DOE Office of...

  1. Mechanical Properties of Particulate Reinforced Aluminium Alloy Matrix Composite

    SciTech Connect (OSTI)

    Sayuti, M. [Faculty of Engineering, Malikussaleh University of Lhokseumawe, 24300 Aceh (Indonesia); Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Sulaiman, S.; Baharudin, B. T. H. T.; Arifin, M. K. A. [Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Suraya, S.; Vijayaram, T. R.

    2011-01-17T23:59:59.000Z

    This paper discusses the mechanical properties of Titanium Carbide (TiC) particulate reinforced aluminium-silicon alloy matrix composite. TiC particulate reinforced LM6 alloy matrix composites were fabricated by carbon dioxide sand molding process with different particulate weight fraction. Tensile strength, hardness and microstructure studies were conducted to determine the maximum load, tensile strength, modulus of elasticity and fracture surface analysis have been performed to characterize the morphological aspects of the test samples after tensile testing. Hardness values are measured for the TiC reinforced LM6 alloy composites and it has been found that it gradually increases with increased addition of the reinforcement phase. The tensile strength of the composites increased with the increase percentage of TiC particulate.

  2. Automated particulate sampler field test model operations guide

    SciTech Connect (OSTI)

    Bowyer, S.M.; Miley, H.S.

    1996-10-01T23:59:59.000Z

    The Automated Particulate Sampler Field Test Model Operations Guide is a collection of documents which provides a complete picture of the Automated Particulate Sampler (APS) and the Field Test in which it was evaluated. The Pacific Northwest National Laboratory (PNNL) Automated Particulate Sampler was developed for the purpose of radionuclide particulate monitoring for use under the Comprehensive Test Ban Treaty (CTBT). Its design was directed by anticipated requirements of small size, low power consumption, low noise level, fully automatic operation, and most predominantly the sensitivity requirements of the Conference on Disarmament Working Paper 224 (CDWP224). This guide is intended to serve as both a reference document for the APS and to provide detailed instructions on how to operate the sampler. This document provides a complete description of the APS Field Test Model and all the activity related to its evaluation and progression.

  3. air particulate analysis: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meta-analysis for Assessment of Relationships between Asthma Rates and Particulate Air Pollution Math Preprints (arXiv) Summary: Multi-dimensional meta-analysis (MDMA) is an...

  4. Diesel particulate filter (DPF) regeneration by electrical heating of resistive coatings

    DOE Patents [OSTI]

    Williamson, Weldon S. (Malibu, CA); Gonze, Eugene V. (Pinckney, MI)

    2008-12-30T23:59:59.000Z

    An exhaust system that processes exhaust generated by an engine includes a diesel particulate filter (DPF) that is disposed downstream of the engine and that filters particulates from the exhaust. An electrical heater is integrally formed in an upstream end of the DPF and selectively heats the exhaust to initiate combustion of the particulates within the exhaust as it passes therethrough. Heat generated by combustion of the particulates induces combustion of particulates within the DPF.

  5. Ultrasonic wave propagation in random and periodic particulate composites

    E-Print Network [OSTI]

    Henderson, Benjamin Kyle

    1996-01-01T23:59:59.000Z

    ULTRASONIC WAVE PROPAGATION IN RANDOM AND PERIODIC PARTICULATE COMPOSITES A Thesis by BENJAMIN KYLE HENDERSON Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfilltnent of the requirements for the degree... of MASTER OF SCIENCE May 1996 Major Subject: Aerospace Engineering ULTRASONIC WAVE PROPAGATION IN RANDOM AND PERIODIC PARTICULATE COMPOSITES A Thesis by BENJAMIN KYLE HENDERSON Submitted to Texas ASM University in partial fulfillment...

  6. Zone heated inlet ignited diesel particulate filter regeneration

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

    2012-06-26T23:59:59.000Z

    An exhaust system that processes exhaust generated by an engine is provided. The system includes: a particulate filter (PF) that is disposed downstream of the engine and that filters particulates from the exhaust; and a grid that includes electrically resistive material that is segmented by non-conductive material into a plurality of zones and wherein the grid is applied to an exterior upstream surface of the PF.

  7. Atmospheric particulates in a semi-rural environment

    E-Print Network [OSTI]

    Klein, Thomas Kelly

    1974-01-01T23:59:59.000Z

    and sampling results used in Figures 11 through 17 Comparison of the resultant monthly mean concentrations of airborne particulates over College Station with the mean concentrations detected by non-urban stations of the National Air Sampling Network 64... of variance table for the dependent variable C4 100 LIST OF FIGURES Figure Title Page Size distributions of airborne particulates over continents (After Junge, 1963) Nomenclature and importance of natural aerosols (After Junge, 1963) 10 The location...

  8. A particulate non-specific alkaline phosphatase in Saccharomyces cerevisiae

    E-Print Network [OSTI]

    Mitchell, James Kent

    1980-01-01T23:59:59.000Z

    utant Strain DO4-AP2 24 24 24 30 31 36 39 41 43 43 43 46 46 51 51 TABLE OF CONTENTS (Continued) Isoelectric Focussing Page 53 IV. Discussion and Conclusions 56 V. References 65 VI, Vita 68 LIST OF TABLES Tables Page 1.... Fluorescent Readings of 4-methylumbelliferone 25 2. Fluorescent Readings of a-naphthol 25 3. Substrate Specificity of Particulate Alkaline Phosohatase 40 Intracellular Localization of Particulate Alkaline Phos- phatase 45 5. Specific Activity of a...

  9. The distribution of particulate aluminum in the Gulf of Mexico

    E-Print Network [OSTI]

    Feely, Richard Alan

    1971-01-01T23:59:59.000Z

    THE DISTRIBUTION OF PARTICULATE ALUMINUM IN THE GULF OF MEXICO A Thesis RICHARD ALAN FEELY Submitted to the Graduate College of Texas A&M University in partial fulfillment of the reguirement for the degree of MASTER OF SCIENCE May, 1971... Major Subject: Oceanography THE DISTRIBUTION OF PARTICULATE ALUMINUM IN THE GULF OF MEXICO A Thesis by RICHARD ALAN FEELY Approved as to style a d content by: hairma of Committee Head Department (Member) Member) May, 1971 ABSTRACT...

  10. Catalyzed Diesel Particulate Filter Performance in a Light-Duty Vehicle

    SciTech Connect (OSTI)

    Sluder, C.S.

    2001-04-23T23:59:59.000Z

    Light-duty chassis dynamometer driving cycle tests were conducted on a Mercedes A170 diesel vehicle with various sulfur-level fuels and exhaust emission control systems. Triplicate runs of a modified light-duty federal test procedure (FTP), US06 cycle, and SCO3 cycle were conducted with each exhaust configuration and fuel. Ultra-low sulfur (3-ppm) diesel fuel was doped to 30- and 150-ppm sulfur so that all other fuel properties remained the same. The fuels used in these experiments met the specifications of the fuels from the DECSE (Diesel Emission Control Sulfur Effects) program. Although the Mercedes A170 vehicle is not available in the US, its emissions in the as tested condition fell within the U.S. Tier 1 full useful life standards with the OEM catalysts installed. Tests with the OEM catalysts removed showed that the OEM catalysts reduced PM emissions from the engine-out condition by 30-40% but had negligible effects on NOx emissions. Fuel sulfur level had very little effect on th e OEM catalyst performance. A prototype catalyzed diesel particulate filter (CDPF) mounted in an underfloor configuration reduced particulate matter emissions by more than 90% compared to the factory emissions control system. The results show that the CDPF did not promote any significant amounts of SO{sub 2}-to-sulfate conversion during these light-duty drive cycles.

  11. Loading and Regeneration Analysis of a Diesel Particulate Filter with a Radio Frequency-Based Sensor

    SciTech Connect (OSTI)

    Sappok, Alex [Filter Sensing Technologies] [Filter Sensing Technologies; Prikhodko, Vitaly Y [ORNL] [ORNL; Parks, II, James E [ORNL

    2010-01-01T23:59:59.000Z

    Accurate knowledge of diesel particulate filter (DPF) loading is critical for robust and efficient operation of the combined engine-exhaust aftertreatment system. Furthermore, upcoming on-board diagnostics regulations require on-board technologies to evaluate the status of the DPF. This work describes the application of radio frequency (RF) based sensing techniques to accurately measure DPF soot levels and the spatial distribution of the accumulated material. A 1.9L GM turbo diesel engine and a DPF with an RF-sensor were studied. Direct comparisons between the RF measurement and conventional pressure-based methods were made. Further analysis of the particulate matter loading rates was obtained with a mass-based soot emission measurement instrument (TEOM). Comparison with pressure drop measurements show the RF technique is unaffected by exhaust flow variations and exhibits a high degree of sensitivity to DPF soot loading and good dynamic response. Additional computational and experimental work further illustrates the spatial resolution of the RF measurements. Based on the experimental results, the RF technique shows significant promise for improving DPF control enabling optimization of the combined engine-aftertreatment system for improved fuel economy and extended DPF service life.

  12. Variable power distribution for zoned regeneration of an electrically heated particulate filter

    DOE Patents [OSTI]

    Bhatia, Garima [Bangalore, IN; Gonze, Eugene V [Pinckney, MI

    2012-04-03T23:59:59.000Z

    A system includes a particulate matter (PM) filter with multiple zones, an electric heater and a control module. The electrical heater includes heater segments, which each correspond with a respective one of the zones. The electrical heater is arranged upstream from and is proximate with the PM filter. The control module selectively applies a first energy level to a first one of the zones via a first one of the heater segments to initiate regeneration in the first zone. The control module also selectively applies a second energy level that is less than the first energy level to a second one of the zones via a second one of the heater segments to initiate regeneration in the second zone.

  13. Chemical compositions responsible for inflammation and tissue damage in the mouse lung by coarse and fine particulate samples from contrasting air pollution in Europe

    SciTech Connect (OSTI)

    Happo, M.S.; Hirvonen, M.R.; Halinen, A.I.; Jalava, P.I.; Pennanen, A.S.; Sillanpaa, M.; Hillamo, R.; Salonen, R.O. [National Public Health Institute, Kuopio (Finland). Dept. of Environmental Health

    2008-07-01T23:59:59.000Z

    Inflammation is regarded as an important mechanism in mortality and morbidity associated with exposures of cardiorespiratory patients to urban air particulate matter. We investigated the association of the chemical composition and sources of urban air fine (PM2.5-0.2) and coarse (PM10-2.5) particulate samples with the inflammatory activity in the mouse lung. The particulate samples were collected during selected seasons in six European cities using a high-volume cascade impactor. Healthy C57BL/6J mice were intratracheally instilled with a single dose (10 mg/kg) of the particulate samples. At 4, 12, and 24 h after the exposure, the lungs were lavaged and the bronchoalveolar lavage fluid (BALF) was assayed for indicators of inflammation and tissue damage: cell number, total protein, and cytokines (tumor necrosis factor (TNF)-alpha, interleukin (IL)-6, and KC). Dicarboxylic acids and transition metals, especially Ni and V, in PM2.5-0.2 correlated positively and some secondary inorganic ions (NO{sub 3}{sup -}, NH{sub 4}{sup +}) negatively with the inflammatory activity. Total organic matter and SO{sub 4}{sup 2-} had no consistent correlations. In addition, the soil-derived constituents (Ca{sup 2+}, Al, Fe, Si) showed positive correlations with the PM2.5-0.2-induced inflammatory activity, but their role in PM10 (2.5) remained obscure, possibly due to largely undefined biogenic material. Markers of poor biomass and coal combustion, i.e., monosaccharide anhydrides and As, were associated with elevated PAH contents in PM2.5 (0.2) and a consistent immunosuppressive effect. Overall, our results support epidemiological findings that the local sources of incomplete combustion and resuspended road dust are important in urban air particulate pollution-related health effects.

  14. Where do particulate toxins reside? An improved paradigm for the structure and dynamics of the urban mid-Atlantic aerosol

    SciTech Connect (OSTI)

    Ondov, J.M. [Univ. of Maryland, College Park, MD (United States). Dept. of Chemistry and Biochemistry] [Univ. of Maryland, College Park, MD (United States). Dept. of Chemistry and Biochemistry; Wexler, A.S. [Univ. of Delaware, Newark, DE (United States). Dept. of Mechanical Engineering] [Univ. of Delaware, Newark, DE (United States). Dept. of Mechanical Engineering

    1998-09-01T23:59:59.000Z

    Discussions of excess mortality and morbidity from exposure to urban aerosol particles typically invoke the now 20-year-old trimodal aerosol paradigm proposed by Whitby to explain the structure and behavior of ambient aerosol volume and its major constituent, sulfate. However, this paradigm largely ignores the primary high-temperature combustion (HTC) components of the urban aerosol, which contribute minor amounts of the aerosol mass, but carry the bulk of the particulate toxins and numbers of aerosol particles. Studies encompassing the analyses of >100 size distributions of important intrinsic tracers of primary particles from HTC sources collected over the past decade in various environments show that urban aerosol contains a complex mixture of physically-discrete fresh and aged, primary particle populations from a variety of sources. Furthermore, whereas the behavior of fine-particulate aerosol mass and sulfate was described in terms of coagulation and accumulation aerosol scavenging of new secondary sulfate nuclei, studies reviewed herein suggest that the behavior of primary aerosol is mediated more by hygroscopic growth and cloud processing, accompanied by oxidation of SO{sub 2} on wet particles and droplets. The authors conclude that the distribution of airborne particulate toxins and their atmospheric behavior is far more complex than commonly conceptualized on the basis of the classical trimodal model, and they develop an extended paradigm in which the focus is on the primary accumulation aerosol.

  15. Matter Field, Dark Matter and Dark Energy

    E-Print Network [OSTI]

    Masayasu Tsuge

    2009-03-24T23:59:59.000Z

    A model concerning particle theory and cosmology is proposed. Matter field, dark matter and dark energy are created by an energy flow from space to primordial matter fields at the phase transition in the early universe.

  16. Method and apparatus for injecting particulate media into the ground

    DOE Patents [OSTI]

    Dwyer, Brian P.; Dwyer, Stephen F.; Vigil, Francine S.; Stewart, Willis E.

    2004-12-28T23:59:59.000Z

    An improved method and apparatus for injecting particulate media into the ground for constructing underground permeable reactive barriers, which are used for environmental remediation of subsurface contaminated soil and water. A media injector sub-assembly attached to a triple wall drill string pipe sprays a mixture of active particulate media suspended in a carrier fluid radially outwards from the sub-assembly, at the same time that a mixing fluid is sprayed radially outwards. The media spray intersects the mixing spray at a relatively close distance from the point of injection, which entrains the particulate media into the mixing spray and ensures a uniform and deep dispersion of the active media in the surrounding soil. The media injector sub-assembly can optionally include channels for supplying compressed air to an attached down-the-hole hammer drive assembly for use during drilling.

  17. Testing an Active Diesel Particulate Filter on a 2-Cycle Marine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an Active Diesel Particulate Filter on a 2-Cycle Marine Engine Testing an Active Diesel Particulate Filter on a 2-Cycle Marine Engine Presentation given at DEER 2006, August 20-24,...

  18. Imaging of Diesel Particulate Filters using a High-Flux Neutron...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Imaging of Diesel Particulate Filters using a High-Flux Neutron Source Imaging of Diesel Particulate Filters using a High-Flux Neutron Source Detailed images of deposits identified...

  19. al-sic particulate composites: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (more) Li, Wei 2008-01-01 2 Damping and Stiffness of Particulate SiCInSn Composite Materials Science Websites Summary: Damping and Stiffness of Particulate SiC-InSn Composite...

  20. Incorporation of particulates into accreted ice above subglacial Vostok lake, Antarctica 

    E-Print Network [OSTI]

    Siegert, M. J.; Royston-Bishop, G.; Priscu, J. C.; Tranter, M.; Christner, B.; Lee, V.

    2005-01-01T23:59:59.000Z

    The nature of microscopic particulates in meteoric and accreted ice from the Vostok (Antarctica) ice core is assessed in conjunction with existing ice-core data to investigate the mechanism by which particulates are ...

  1. Oxidation of Organic Compounds in the Soil.

    E-Print Network [OSTI]

    Fraps, G. S. (George Stronach)

    1915-01-01T23:59:59.000Z

    oxidized to nitrates. The direct study of the changes in organic matter or carbon in the soil is more satisfactory than any assumption. A considerable amount of work upon the oxidation of organic matter in the soil has been clone hy Wollny... cflpo8city, so the re1ati~-e power of the soil to support oxidizing organisms ma!r he termed its oxidafion cnpaciiy. The nitrif-ing capac- it" the oxidatioa capacity 'and the capacit~ of the soil to convert am- monia into nitrates and ammonia are to a...

  2. Higher modulus compositions incorporating particulate rubber

    DOE Patents [OSTI]

    Bauman, Bernard D. (Emmaus, PA); Williams, Mark A. (Souderton, PA)

    1999-01-01T23:59:59.000Z

    A plastic article having a number of surfaces with at least one surface being modified by contacting that surface with a reactive gas atmosphere containing F.sub.2, Cl.sub.2, O.sub.2, Ozone, SO.sub.3, oxidative acids, or mixtures thereof, at a temperature and gas partial pressure sufficient to increase the surface energy of the at least one surface being modified to at least 40 dynes/cm at a temperature of 20.degree. C., to enhance bonding of non-slip polymer coatings to the modified surface, to which coatings elastomeric or rigid particles may be admixed for imparting a surface profile and increasing the coefficient of friction between the coated surface and the counter-surface.

  3. Electrically heated particulate filter regeneration methods and systems for hybrid vehicles

    DOE Patents [OSTI]

    Gonze, Eugene V. (Pinckney, MI); Paratore, Jr., Michael J. (Howell, MI)

    2010-10-12T23:59:59.000Z

    A control system for controlling regeneration of a particulate filter for a hybrid vehicle is provided. The system generally includes a regeneration module that controls current to the particulate filter to initiate regeneration. An engine control module controls operation of an engine of the hybrid vehicle based on the control of the current to the particulate filter.

  4. Comparative Analysis on the Effects of Diesel Particulate Filter and

    E-Print Network [OSTI]

    Wu, Mingshen

    Comparative Analysis on the Effects of Diesel Particulate Filter and Selective Catalytic Reduction February 15, 2008. Revised manuscript received May 2, 2008. Accepted May 27, 2008. Two methods, diesel that these aftertreatment systems may have on the emission levels of a wide spectrum of chemical species found in diesel

  5. The Morgantown Energy Technology Center`s particulate cleanup program

    SciTech Connect (OSTI)

    Dennis, R.A.

    1995-12-01T23:59:59.000Z

    The development of integrated gasification combined cycle (IGCC) and pressurized fluidized-bed combustion (PFBC) power systems has made it possible to use coal while still protecting the environment. Such power systems significantly reduce the pollutants associated with coal-fired plants built before the 1970s. This superior environmental performance and related high system efficiency is possible, in part, because particulate gas-stream cleanup is conducted at high-temperature and high-pressure process conditions. A main objective of the Particulate Cleanup Program at the Morgantown Energy Technology Center (METC) is to ensure the success of the CCT demonstration projects. METC`s Particulate Cleanup Program supports research, development, and demonstration in three areas: (1) filter-system development, (2) barrier-filter component development, and (3) ash and char characterization. The support is through contracted research, cooperative agreements, Cooperative Research And Development Agreements (CRADAs), and METC`s own in-house research. This paper describes METC`s Particulate Cleanup Program.

  6. DIII-D Dust Particulate Characterization (June 1998 Vent)

    SciTech Connect (OSTI)

    Carmack, William Jonathan

    1999-01-01T23:59:59.000Z

    Dust is a key component of fusion power device accident source term. Understanding the amount of dust expected in fusion power devices and its physical and chemical characteristics is needed to verify assumptions currently used in safety analyses. An important part of this safety research and development work is to characterize dust from existing experimental tokamaks. In this report, we present the collection, data analysis methods used, and the characterization of dust particulate collected from various locations inside the General Atomics DIII-D vacuum vessel following the June 1998 vent. The collected particulate was analyzed at the Idaho National Engineering and Environmental Laboratory (INEEL). Two methods were used to collect particulate with the goal of preserving the particle size distribution and physical characteristics of the particulate. Choice of collection technique is important because the sampling method used can bias the particle size distribution collected. Vacuum collection on substrates and adhesion removal with metallurgical replicating tape were chosen as non-intrusive sampling methods. Seventeen samples were collected including plasma facing surfaces in lower, upper, and horizontal locations, surfaces behind floor tiles, surfaces behind divertor tiles, and surfaces behind ceiling tiles. The results of the analysis are presented.

  7. DIII-D dust particulate characterization (June 1998 Vent)

    SciTech Connect (OSTI)

    Carmack, W.J.

    1999-01-01T23:59:59.000Z

    Dust is a key component of fusion power device accident source term. Understanding the amount of dust expected in fusion power devices and its physical and chemical characteristics is needed to verify assumptions currently used in safety analyses. An important part of this safety research and development work is to characterize dust from existing experimental tokamaks. In this report, the authors present the collection, data analysis methods used, and the characterization of dust particulate collected from various locations inside the General Atomics DIII-D vacuum vessel following the June 1998 vent. The collected particulate was analyzed at the Idaho National Engineering and Environmental Laboratory (INEEL). Two methods were used to collect particulate with the goal of preserving the particle size distribution and physical characteristics of the particulate. Choice of collection technique is important because the sampling method used can bias the particle size distribution collected. Vacuum collection on substrates and adhesion removal with metallurgical replicating tape were chosen as non-intrusive sampling methods. Seventeen samples were collected including plasma facing surfaces in lower, upper, and horizontal locations, surfaces behind floor tiles, surfaces behind divert or tiles, and surfaces behind ceiling tiles. The results of the analysis are presented.

  8. Characterization of particulate emissions from non-ferrous smelters

    SciTech Connect (OSTI)

    Bennett, R.L.; Knapp, K.T.

    1989-01-01T23:59:59.000Z

    Chemical-composition and particle-size data for particulate emissions from stationary sources are required for environmental health-effect assessments, air chemistry studies, and air-quality-modelling investigations such as source apportionment. In this study, particulate emissions from a group of non-ferrous smelters were physically and chemically characterized. Emission samples were collected at the baghouse outlets from smelter furnaces and at smelter acid plant stacks at three locations: a zinc, a lead, and a copper smelter. Mass emission rate determinations were made by EPA reference methods. Cascade impactors were used to collect in-stack samples for particle-size distribution measurements. Particulate samples for chemical characterization were collected on membrane filters for analysis by X-ray fluorescence spectroscopy. Development measurement techniques required to determine the elemental composition of the total mass and sized fractions of the emission are discussed. Results of the tests at the three smelters include total mass and elemental emission rates, particle-size distribution, and the elemental composition of the total particulate mass and of sized fractions from both the smelter furnaces and acid plants.

  9. Electrically heated particulate filter diagnostic systems and methods

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI

    2009-09-29T23:59:59.000Z

    A system that diagnoses regeneration of an electrically heated particulate filter is provided. The system generally includes a grid module that diagnoses a fault of the grid based on at least one of a current signal and a voltage signal. A diagnostic module at least one of sets a fault status and generates a warning signal based on the fault of the grid.

  10. Parallel High-Resolution Finite Volume Simulation of Particulate Processes

    E-Print Network [OSTI]

    Braatz, Richard D.

    these methods is verified by application to PBMs for (1) aerosol coagulation and condensation, (2) the formation, coagulation, crystallization, distributed parameter systems, numerical analysis Introduction Particulate, in crystallization, x is the size of crystals measured by length or volume, f(x,t) is the crystal size distribution

  11. air pollution particulate: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    air pollution particulate First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Statistical Issues in the...

  12. UTILIZING WATER EMULSIFICATION TO REDUCE NOX AND PARTICULATE EMISSIONS ASSOCIATED WITH BIODIESEL

    SciTech Connect (OSTI)

    Kass, Michael D [ORNL; Lewis Sr, Samuel Arthur [ORNL; Lee, Doh-Won [ORNL; Huff, Shean P [ORNL; Storey, John Morse [ORNL; Swartz, Matthew M [ORNL; Wagner, Robert M [ORNL

    2009-01-01T23:59:59.000Z

    A key barrier limiting extended utilization of biodiesel is higher NOx emissions compared to petrodiesel fuels. The reason for this effect is unclear, but various researchers have attributed this phenomena to the higher liquid bulk modulus associated with biodiesel and the additional heat released during the breaking of C-C double bonds in the methyl ester groups. In this study water was incorporated into neat biodiesel (B100) as an emulsion in an attempt to lower NOx and particulate matter (PM) emissions. A biodiesel emulsion containing 10wt% water was formulated and evaluated against an ultra-low sulfur petroleum diesel (ULSD) and neat biodiesel (B100) in a light-duty diesel engine operated at 1500RPM and at loads of 68Nm (50ft-lbs) and 102Nm (75ft-lbs). The influence of exhaust gas recirculation (EGR) was also examined. The incorporation of water was found to significantly lower the NOx emissions of B100, while maintaining fuel efficiency when operating at 0 and 27% EGR. The soot fraction of the particulates (as determined using an opacity meter) was much lower for the B100 and B100-water emulsion compared ULSD. In contrast, total PM mass (for the three fuel types) was unchanged for the 0% EGR condition but was significantly lower for the B100 and B100-emulsion during the 27% EGR condition compared to the ULSD fuel. Analysis of the emissions and heat release data indicate that water enhances air-fuel premixing to maintain fuel economy and lower soot formation. The exhaust chemistry of the biodiesel base fuels (B100 and water-emulsified B100) was found to be unique in that they contained measurable levels of methyl alkenoates, which were not found for the ULSD. These compounds were formed by the partial cracking of the methyl ester groups during combustion.

  13. Role of Acidity in Mobilizing Colloidal Particulate Matter From Natural Sand Grain Surface

    E-Print Network [OSTI]

    Hammons, Jessica Lynn

    2012-02-14T23:59:59.000Z

    of your support, guidance, and love. You made all of this possible for me. vii NOMENCLATURE A absorbance C Coulombs cm3 cubic centimeters DI distilled pv pore volume mL milliliter, 10-3 Ca2+ Calcium ion g grams HCl... ...................................................................... 36 3.2.3 Cation Release ................................................................................. 38 3.3 Hypothesis Results and Models ..................................................................... 41 4. CONCLUSION...

  14. Evaluation of Ambient Particulate Matter (PM) Sampler Performance Through Wind Tunnel Testing

    E-Print Network [OSTI]

    Guha, Abhinav

    2010-07-14T23:59:59.000Z

    FOR THE VOLUMETRIC RATE OF A LOW-VOLUME SAMPLER .................................... 107 APPENDIX G MALVERN MASTERSIZER ANALYSIS PROCEDURE FOR DETERMINATION OF PARTICLE SIZE...

  15. Low-cost coarse airborne particulate matter sensing for indoor occupancy detection

    E-Print Network [OSTI]

    Weekly, Kevin

    2013-01-01T23:59:59.000Z

    the energy-efficient smart building, occupancy detection andare being added to smart buildings to ensure the quality ofvaluable information for smart buildings. An important next

  16. Modeling of particulate matter creation and evolution in aircraft engines, plumes and particle sampling systems

    E-Print Network [OSTI]

    Dakhel, Pierre Max

    2005-01-01T23:59:59.000Z

    Environmental and health concerns have recently led to growing efforts to characterize the exhaust gas composition of aircraft engines. Besides major chemical species (N?, 0?, C0? and H?0), aircraft engines also emit other ...

  17. A SECOND GENERATION DICHOTOMOUS SAMPLER FOR LARGE-SCALE MONITORING OF AIRBORNE PARTICULATE MATTER

    E-Print Network [OSTI]

    Loo, B.W.

    2011-01-01T23:59:59.000Z

    S. Department of Energy under Contract W-7405-ENG-48 LEGALEnergy under Contract W-7405-ENG-48, applications,l LBL-8725Energy under Contract W-7405-ENG-48. LBL-8725 REFERENCES L

  18. Abatement of Air Pollution: Control of Particulate Matter and Visible Emissions (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations set emissions opacity standards for stationary sources with opacity continuous emissions monitoring equipment, stationary sources without such equipment, and mobile sources. The...

  19. Correlation of meteorological variables with total suspended particulate matter in Harris County, Texas

    E-Print Network [OSTI]

    White, G. Anderson

    1983-01-01T23:59:59.000Z

    conducive to pollutant transport into their respective regions. Thurston and Spengler did not attempt to relate a single event, such as pollution level, to meteorological conditions. Allender and Dejardin (1981) used a statistical method to predict air.... Meteorological variables used were maximum temperature, 1800 LST wind speed, and cosine of the wind direction at 0000 LST for the day previous to the forecast period. Selection of these parameters came from previous work. Allender and Dejardin claimed 85...

  20. The flow of particulate matter through the digestive tract of sheep

    E-Print Network [OSTI]

    Goodell, Robert George

    1971-01-01T23:59:59.000Z

    of the reticulo-rumen. The compazt- ment associated with the time dependent turnover rate, bi, was consistently smaller than would be expected for the reticulo-rumen. The results of these experiments suggest, that the faster turnover rate reflects a time... dependent process(es) and that this turnover rate is associated with a physiological compartment within the reticulo- rumen anatomical compartment. ACKNOWLEDGMENTS The author is deeply grateful to Dr. W. C. Ellis for his guidance and support during...

  1. Numerous studies have shown that airborne particulate matter (PM) is associated with

    E-Print Network [OSTI]

    Dominici, Francesca

    - pended particles (TSP), coefficient of haze (COH), black smoke, British smoke, KM (a measure such as ozone (O3) [Health Effects Institute 2002; National Research Council (NRC) 2004]. Studies have) (Burnett et al. 2000), ammonium nitrate (Fairley 1999), ele- mental carbon (EC), organic carbon (OC

  2. Airborne Particulate Matter in HVAC Systems and its Influence on Indoor Air Quality

    E-Print Network [OSTI]

    Fu, Z.; Li, N.; Wang, H.

    2006-01-01T23:59:59.000Z

    ], microorganisms [2], in the case of abnormal maintenance. Because there are all kinds of components in the duct systems, tapping the law of particle distribution in HVAC systems is not an easy work. Generally speaking, flow in the duct system... is turbulent except those in some kind of components like filters. Particle movement, especially particle deposition, is strongly related to organized structures in near-wall turbulence [3]. The mechanisms governing particle transport in HVAC systems...

  3. Source apportionment of time-and size-resolved ambient particulate matter , Philip K. Hopke b,

    E-Print Network [OSTI]

    Navasca, Carmeliza

    , analyses of particle size distribution data have also been performed to identify air pollution sources of Mathematics, Clarkson University, Box 5815, Potsdam, NY 13699, USA b Center for Air Resource Engineering and Science, Clarkson University, Box 5708, Potsdam, NY 13699, USA c Air Quality Research Center, University

  4. Heavy Duty Diesel Particulate Matter and Fuel Consumption Modeling for Transportation Analysis

    E-Print Network [OSTI]

    Scora, George Alexander

    2011-01-01T23:59:59.000Z

    Duty Vehicle and Truck Emissions. Transportation Researchin on-highway truck emission certification standards in theclass (e.g. , car, truck), emission technology (e.g. , no

  5. Vehicle Technologies Office Merit Review 2015: Fuel-Neutral Studies of Particulate Matter Transport Emissions

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about fuel...

  6. Vehicle Technologies Office Merit Review 2014: Fuel-Neutral Studies of Particulate Matter Transport Emissions

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about fuel...

  7. Particulate matter chemistry and dynamics in the Twilight Zone at VERTIGO ALOHA and K2 Sites

    E-Print Network [OSTI]

    Bishop, James K.B.

    2008-01-01T23:59:59.000Z

    percentage of shallow carbonate dissolution (D CaCO3 ) is:D CaCO3 = (1 – (E 500 /(P EZ - ?S)))•100 where, E 500 is therespectively at K2, yielding D CaCO3 = 92%, the percentage

  8. Method and apparatus for acoustically monitoring the flow of suspended solid particulate matter

    DOE Patents [OSTI]

    Roach, Paul D. (Darien, IL); Raptis, Apostolos C. (Downers Grove, IL)

    1982-01-01T23:59:59.000Z

    A method and apparatus for monitoring char flow in a coal gasifier system cludes flow monitor circuits which measure acoustic attenuation caused by the presence of char in a char line and provide a char flow/no flow indication and an indication of relative char density. The flow monitor circuits compute the ratio of signals in two frequency bands, a first frequency band representative of background noise, and a second higher frequency band in which background noise is attenuated by the presence of char. Since the second frequency band contains higher frequencies, the ratio can be used to provide a flow/no flow indication. The second band can also be selected so that attenuation is monotonically related to particle concentration, providing a quantitative measure of char concentration.

  9. A science based emission factor for particulate matter emitted from cotton harvesting

    E-Print Network [OSTI]

    Wanjura, John David

    2009-05-15T23:59:59.000Z

    Management Practice (CMP) plans detailing the actions to be taken by the producer to reduce fugitive PM emissions (SJVAPCD, 2004 a and b). Further, the reduction of the PM 2.5 NAAQS accomplished during the five year review of the NAAQS by EPA in 2006...

  10. Heavy Duty Diesel Particulate Matter and Fuel Consumption Modeling for Transportation Analysis

    E-Print Network [OSTI]

    Scora, George Alexander

    2011-01-01T23:59:59.000Z

    Model for Heavy Duty Diesel Vehicles. TransportationAir Contaminant Emissions from Diesel- fueled Engines. Factfor Measuring Emissions from Diesel Engines. 1. Regulated

  11. ambient particulate matter-induced: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    induced decay is the prediction of solar antineutrino flux with substantially degraded energy spectrum compared to solar neutrinos. This scenario can be unambiguously tested by...

  12. Comparison of inherent optical properties as a surrogate for particulate matter concentration in coastal waters

    E-Print Network [OSTI]

    Boss, Emmanuel S.

    - ated with each of the sensors participating in the ACT Tech- nology Evaluation. In Table A1, we provide is available and should not be applied to other turbidity sensors. For all sensors, the correlation coefficient. Output of type-II regressions between PM and the measurements of the different scattering sensors. Note

  13. Burial and decomposition of particulate organic matter in a temperate, siliciclastic, seasonal wetland

    E-Print Network [OSTI]

    Welsh, Lisa Williamson

    2009-05-15T23:59:59.000Z

    of the net primary productivity (NPP) of terrestrial ecosystems depends on nutrients recycled through the decomposition of plant detritus (Swift et al. 1979, Vargo et al. 1998). Thus, a better understanding of organic decomposition in wetland sediments... was then transported to the site in an anaerobic chamber constructed of PVC and maintained 12 under deoxygenated conditions until insertion into the slough sediments. The peeper was positioned in the slough for 2 weeks to allow equilibration and diffusion...

  14. Heavy Duty Diesel Particulate Matter and Fuel Consumption Modeling for Transportation Analysis

    E-Print Network [OSTI]

    Scora, George Alexander

    2011-01-01T23:59:59.000Z

    measured second-by-second fuel use. Mesoscale Modeling DataSet and Mesoscale ModelCalibration Mesoscale model calibration and validation

  15. Low-cost coarse airborne particulate matter sensing for indoor occupancy detection

    E-Print Network [OSTI]

    Weekly, Kevin

    2013-01-01T23:59:59.000Z

    measuring the potential resuspension of dust from carpets inD. W. Layton, “Deposition, resuspension, and penetration ofand W. Bahnfleth, “Resuspension of allergen- containing

  16. Source apportionment of airborne particulate matter for the speciation trends network site in Cleveland, OH

    SciTech Connect (OSTI)

    Liming Zhou; Philip K. Hopke; Weixiang Zhao [Clarkson University, Potsdam, NY (United States). Center for Air Resources Engineering and Science

    2009-03-15T23:59:59.000Z

    Aerosol composition data from the Speciation Trends Network (STN) site (East 14th Street) in Cleveland, OH, were analyzed by advanced receptor model methods for source apportionment as well as by the standard positive matrix factorization (PMF) using PMF2. These different models are used in combination to test model limitations. These data were 24-hr average mass concentrations and compositions obtained for samples taken every third day from 2001 to 2003. The Multilinear Engine (ME) was used to solve an expanded model to estimate the source profiles and source contributions and also to investigate the wind speed, wind direction, time-of-day, weekend/weekday, and seasonal effects. PMF2 was applied to the same dataset. Potential source contribution function (PSCF) and conditional probability function (CPF) analyses were used to locate the regional and local sources using the resolved source contributions and appropriate meteorological data. Very little difference was observed between the results of the expanded model and the PMF2 values for the profiles and source contribution time series. The identified sources were as ferrous smelter, secondary sulfate, secondary nitrate, soil/combustion mixture, steel mill, traffic, wood smoke, and coal burning. The CPF analysis was useful in helping to identify local sources, whereas the PSCF results were only useful for regional source areas. Both of these analyses were more useful than the wind directional factor derived from the expanded factor analysis. However, the expanded analysis provided direct information on seasonality and day-of-week behavior of the sources. 28 refs., 8 figs., 4 tabs.

  17. Back-calculating emission rates for ammonia and particulate matter from area sources using dispersion modeling

    E-Print Network [OSTI]

    Price, Jacqueline Elaine

    2004-11-15T23:59:59.000Z

    backward Lagrangian stochastic model and a Gaussian plume dispersion model. This analysis assessed the uncertainty surrounding each sampling procedure in order to gain a better understanding of the uncertainty in the final emission rate calculation (a basis...

  18. Author's personal copy Biogeochemistry of particulate organic matter from lakes of different trophic

    E-Print Network [OSTI]

    Wehrli, Bernhard

    profiles of total fatty acids (FAs) and total neutrals. In Lake Brienz, the results reflect the relative contributions of primary productivity and refractory, allochthonous OM to POM, gov- erned by particle load productivity, water column stratification and associated particle load in the upper layers, as well

  19. Evaluation of Ambient Particulate Matter (PM) Sampler Performance Through Wind Tunnel Testing 

    E-Print Network [OSTI]

    Guha, Abhinav

    2010-07-14T23:59:59.000Z

    ) and slope. The cut-point is the particle diameter corresponding to 50% collection efficiency of the pre-separator while the slope is the ratio of particle sizes corresponding to cumulative collection efficiencies of 84.1% and 50% (d_84.1/d_50) or 50% and 15...

  20. CEC-500-2011-FS-XXX Assessment of Particulate Matter

    E-Print Network [OSTI]

    , which will include a compressed natural gas car. The physical, chemical, and toxicological properties of emissions from the compressed natural gas car will be compared with emissions from other fuel types for Various Fuel Types PIER Transportation Research www.energy.ca.gov/research/transportation May 2011

  1. Back-calculating emission rates for ammonia and particulate matter from area sources using dispersion modeling 

    E-Print Network [OSTI]

    Price, Jacqueline Elaine

    2004-11-15T23:59:59.000Z

    Engineering directly impacts current and future regulatory policy decisions. The foundation of air pollution control and air pollution dispersion modeling lies in the math, chemistry, and physics of the environment. ...

  2. Errors associated with particulate matter measurements on rural sources: appropriate basis for regulating cotton gins

    E-Print Network [OSTI]

    Buser, Michael Dean

    2004-09-30T23:59:59.000Z

    .................................................................... 195 Estimating PSD Characteristics Based on EPA?s 1996 AP-42 List of Emission Factors.................................................................................199 SUMMARY AND CONCLUSIONS... electron microscope photograph of cotton gin exhaust particles. ..........................................................................................................94 Figure 16. The EPA ideal PM10 and PM2.5 sampler penetration curves overlaid...

  3. Air dispersion modeling of particulate matter from ground-level area sources

    E-Print Network [OSTI]

    Meister, Michael Todd

    2000-01-01T23:59:59.000Z

    obtained from a dispersion model. The model currently approved by EPA, the Industrial Source Complex, Version 3 - Short Term (ISC3-ST), over-predicts downwind concentrations of PM by as much two orders of magnitude. As a result, a facility may be denied a...

  4. On-Board Engine Exhaust Particulate Matter Sensor for HCCI and Conventional

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment ofOil's Impact on Our

  5. On-Board Engine Exhaust Particulate Matter Sensor for HCCI and Conventional

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment ofOil's Impact on OurDiesel Engines | Department of

  6. Matter Wave Radiation Leading to Matter Teleportation

    E-Print Network [OSTI]

    Yong-Yi Huang

    2015-02-12T23:59:59.000Z

    The concept of matter wave radiation is put forward, and its equation is established for the first time. The formalism solution shows that the probability density is a function of displacement and time. A free particle and a two-level system are reinvestigated considering the effect of matter wave radiation. Three feasible experimental designs, especially a modified Stern-Gerlach setup, are proposed to verify the existence of matter wave radiation. Matter wave radiation effect in relativity has been formulated in only a raw formulae, which offers another explanation of Lamb shift. A possible mechanics of matter teleportation is predicted due to the effect of matter wave radiation.

  7. Sandia National Laboratories: Carbon Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SO2), nitrous oxides (NOx), mercury, and fine particulate matter. Carbon dioxide (CO2) is always a byproduct of combustion. ... Geomechanics Laboratory On April 7, 2011,...

  8. Baryonic matter and beyond

    E-Print Network [OSTI]

    Kenji Fukushima

    2014-10-01T23:59:59.000Z

    We summarize recent developments in identifying the ground state of dense baryonic matter and beyond. The topics include deconfinement from baryonic matter to quark matter, a diquark mixture, topological effect coupled with chirality and density, and inhomogeneous chiral condensates.

  9. Dark Matter Theory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dark Matter Theory Dark Matter Theory Understanding discoveries at the Energy, Intensity, and Cosmic Frontiers Get Expertise Rajan Gupta (505) 667-7664 Email Bruce Carlsten (505)...

  10. Perspectives on Localized Corrosion in Thin Layers of Particulate

    SciTech Connect (OSTI)

    Payer, Joe H. [Materials Science and Engineering, Case Western Reserve University, 10900 Euclid Ave., 404 White Bldg., Cleveland, OH, 44106 (United States); Kelly, Robert G. [Materials Science and Engineering, University of Virginia, 116 Engineer's Way, Materials Science Building 323, PO Box 400745, Charlottesville, VA, 22904-4745 (United States)

    2007-07-01T23:59:59.000Z

    The requirements for the initiation and propagation of localized corrosion are reviewed, and the stability criteria for sustained localized corrosion are discussed. A conceptual framework is applied to a specific scenario of a hot metal surface covered by a thin layer of particulate containing dissolvable salts in the presence of air of limited humidity. A number of processes are demonstrated to affect the crevice corrosion propagation, stifling and arrest. Contributions of the particulate layer properties, the anode, cathode and coupled processes are identified, showing that any of these can control localized corrosion propagation. Whether stifling or arrest occur will depend upon the material and environmental conditions for a given case. The findings add to the technical basis for the analysis of localized corrosion by a decision tree methodology. (authors)

  11. Passive regeneration of catalyst coated knitted fiber diesel particulate traps

    SciTech Connect (OSTI)

    Mayer, A.; Emig, G.; Gmehling, B.; Popovska, N.; Hoelemann, K.; Buck, A.

    1996-09-01T23:59:59.000Z

    Knitted fiber particulate traps facilitate deep-bed structures. These have excellent filtration properties, particularly for ultra-fine particulates. They are also suitable as substrate for catalytic processes. The two characteristics are: high total surface area of the filaments, and good mass transfer. These are prerequisites for intense catalytic activity. The deposited soot is uniformly distributed. Therefore, temperature peaks are avoided during regeneration. The tested coatings lower the regeneration temperature by about 200 C to burn-off temperatures below 350 C. Further improvements seem attainable. Thus, a purely passive regeneration appears feasible for most applications. The system is autonomous and cost effective. However, in extreme low load situations, e.g. city bus services, the necessary exhaust temperatures are not attained. Hence, burners or electrical heating is necessary for trap regeneration. Nevertheless, catalytic coating is attractive for substantially reducing the regeneration energy requirements.

  12. Design characteristics for facilities which process hazardous particulate

    SciTech Connect (OSTI)

    Abeln, S.P.; Creek, K.; Salisbury, S.

    1998-12-01T23:59:59.000Z

    Los Alamos National Laboratory is establishing a research and processing capability for beryllium. The unique properties of beryllium, including light weight, rigidity, thermal conductivity, heat capacity, and nuclear properties make it critical to a number of US defense and aerospace programs. Concomitant with the unique engineering properties are the health hazards associated with processing beryllium in a particulate form and the potential for worker inhalation of aerosolized beryllium. Beryllium has the lowest airborne standard for worker protection compared to all other nonradioactive metals by more than an order of magnitude. This paper describes the design characteristics of the new beryllium facility at Los Alamos as they relate to protection of the workforce. Design characteristics to be reviewed include; facility layout, support systems to minimize aerosol exposure and spread, and detailed review of the ventilation system design for general room air cleanliness and extraction of particulate at the source.

  13. Advanced hybrid particulate collector and method of operation

    DOE Patents [OSTI]

    Miller, Stanley J. (Grand Forks, ND)

    2003-04-08T23:59:59.000Z

    A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between the rows of filter elements are rows of high voltage discharge electrodes. Between the rows of discharge electrodes and the rows of filter elements are grounded perforated plates for creating electrostatic precipitation zones.

  14. Device for measuring the flow of a gas containing particulates

    SciTech Connect (OSTI)

    Gordon, R.G.; Hofer, P.H.

    1991-01-08T23:59:59.000Z

    This patent describes an apparatus for continuously measuring the flow of a gas containing entrained particulates. It comprises: a flow channel, through which the gas flows; an orifice disposed within the flow channel, including at least a first surface and a second surface; means for causing the first surface and second surface independently to move in directions perpendicular to lines normal to the surfaces; scraping means, for intimately contacting at least a portion of the first surface and of the second surface, at all times while the surfaces are moving, whereby particulates which adhere to the first and second surfaces are removed by the movement of the surfaces past the scraping means; pressure taps, positioned so as to communicate with the flow channel upstream and downstream from the orifice, the pressure taps additionally in communication with pressure-measuring means, for measuring the pressure differential in the flow channel resulting from the passage of the gas through the orifice; and thermophoretic heaters, positioned so as to heat the gas within the pressure taps, and thereby excluding particulates therefrom.

  15. Removal of particulate solids from a hot hydrocarbon slurry oil

    SciTech Connect (OSTI)

    Rush, J.B.

    1991-12-31T23:59:59.000Z

    This patent describes a method of treating a hot, refractory hydrocarbon slurry oil having an initial boiling point at atmospheric pressure at least as high as 500{degrees} F and having a gravity of from about 5{degrees} API to about 15{degrees} API, to remove solid particulate material the slurry oil. It comprises mixing with the hot slurry oil, a hot vacuum reduced crude oil having an initial boiling point at atmospheric pressure which is higher than the initial boiling plant at atmospheric pressure of the slurry oil, and having an end point at atmospheric pressure which is higher than the end point at atmospheric pressure of the slurry oil; charging the mixture of hot vacuum reduced crude oil and hot slurry oil to a vacuum flash zone having a pressure of from 1.0 mm Hg to about 10.0 mm Hg and at the selected temperature of less than 700{degrees} F and more than 300{degrees} F to thereby vaporize a major portion of the slurry oil in the mixture, and to thereby transfer substantially all of the solid particulate material into the bottoms liquid remaining in the flash zone following the completion of the vaporization; recovering the overhead; and recovering the liquid bottoms containing the solid particulate material.

  16. Effect of Coal Contaminants on Solid Oxide Fuel System Performance and Service Life

    SciTech Connect (OSTI)

    Gopala Krishnan; P. Jayaweera; J. Bao; J. Perez; K. H. Lau; M. Hornbostel; A. Sanjurjo; J. R. Albritton; R. P. Gupta

    2008-09-30T23:59:59.000Z

    The U.S. Department of Energy's SECA program envisions the development of high-efficiency, low-emission, CO{sub 2} sequestration-ready, and fuel-flexible technology to produce electricity from fossil fuels. One such technology is the integrated gasification-solid oxide fuel cell (SOFC) that produces electricity from the gas stream of a coal gasifier. SOFCs have high fuel-to-electricity conversion efficiency, environmental compatibility (low NO{sub x} production), and modularity. Naturally occurring coal has many impurities and some of these impurities end in the fuel gas stream either as a vapor or in the form of fine particulate matter. Establishing the tolerance limits of SOFCs for contaminants in the coal-derived gas will allow proper design of the fuel feed system that will not catastrophically damage the SOFC or allow long-term cumulative degradation. The anodes of Ni-cermet-based SOFCs are vulnerable to degradation in the presence of contaminants that are expected to be present in a coal-derived fuel gas stream. Whereas the effects of some contaminants such as H{sub 2}S, NH{sub 3} and HCl have been studied, the effects of other contaminants such as As, P, and Hg have not been ascertained. The primary objective of this study was to determine the sensitivity of the performance of solid oxide fuel cells to trace level contaminants present in a coal-derived gas stream in the temperature range 700 to 900 C. The results were used to assess catastrophic damage risk and long-term cumulative effects of the trace contaminants on the lifetime expectancy of SOFC systems fed with coal-derived gas streams.

  17. Detailed Characterization of Particulates Emitted by Pre-Commercial Single-Cylinder Gasoline Compression Ignition Engine

    SciTech Connect (OSTI)

    Zelenyuk, Alla; Reitz, Paul; Stewart, Mark L.; Imre, D.; Loeper, Paul; Adams, Cory; Andrie, Michael; Rothamer, David; Foster, David E.; Narayanaswamy, Kushal; Najt, Paul M.; Solomon, Arun S.

    2014-08-01T23:59:59.000Z

    Gasoline Compression Ignition (GCI) engines have the potential to achieve high fuel efficiency and to significantly reduce both NOx and particulate matter (PM) emissions by operating under dilute partially-premixed conditions. This low temperature combustion strategy is dependent upon direct-injection of gasoline during the compression stroke and potentially near top dead center (TDC). The timing and duration of the in-cylinder injections can be tailored based on speed and load to create optimized conditions that result in a stable combustion. We present the results of advanced aerosol analysis methods that have been used for detailed real-time characterization of PM emitted from a single-cylinder GCI engine operated at different speed, load, timing, and number and duration of near-TDC fuel injections. PM characterization included 28 measurements of size and composition of individual particles sampled directly from the exhaust and after mass and/or mobility classification. We use these data to calculate particle effective density, fractal dimension, dynamic shape factors in free-molecular and transition flow regimes, average diameter of primary spherules, number of spherules, and void fraction of soot agglomerates.

  18. Vehicle Technologies Office Merit Review 2014: Particulate Emissions Control by Advanced Filtration Systems for GDI Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about particulate...

  19. Development of a Sub-Grid Model of a Diesel Particulate Filter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications The State of the Science in Diesel Particulate Control fundamental Modeling and Experimental Studies of Acicular Mullite Diesel...

  20. Vehicle Technologies Office Merit Review 2015: Particulate Emissions Control by Advanced Filtration Systems for GDI Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about particulate...

  1. Real-Time Particulate Mass Measurements Pre and Post Diesel Particulat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Vehicles 2005deeranderson.pdf More Documents & Publications Advanced Radio Frequency-Based Sensors for Monitoring Diesel Particulate Filter Loading and...

  2. E-Print Network 3.0 - ambient sulfate particulate Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MCMA. Whereas fresh particulate emissions from mixed-traffic are almost entirely... lubricating oil and water, ambient soot particles which have been processed for less than a few...

  3. Burning Modes and Oxidation Rates of Soot: Relevance to Diesel Particulate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy FutureDepartment ofBUILDING-TO-GRID

  4. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect (OSTI)

    Stanley J. Miller; Ye Zhuang; Michelle R. Olderbak

    2002-11-01T23:59:59.000Z

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Power Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and is now marketed as the ADVANCED HYBRID{trademark} Filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a utility power plant to prove scaleup and demonstrate longer-term mercury control. This project, if successful, will demonstrate at the pilot-scale level a technology that would provide a cost-effective technique to accomplish control of mercury emissions and, at the same time, greatly enhance fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution to a large segment of the U.S. utility industry as well as other industries requiring mercury control.

  5. Advanced hybrid particulate collector and method of operation

    DOE Patents [OSTI]

    Miller, S.J.

    1999-08-17T23:59:59.000Z

    A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between each row of filter elements is a grounded plate. Between the grounded plates and the filter elements are electrode grids for creating electrostatic precipitation zones between each row of filter elements. In this way, when the filter elements are cleaned by pulsing air in a reverse direction, the dust removed from the bags will collect in the electrostatic precipitation zones rather than on adjacent filter elements. 12 figs.

  6. Advanced hybrid particulate collector and method of operation

    DOE Patents [OSTI]

    Miller, Stanley J. (Grand Forks, ND)

    1999-01-01T23:59:59.000Z

    A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between each row of filter elements is a grounded plate. Between the grounded plates and the filter elements are electrode grids for creating electrostatic precipitation zones between each row of filter elements. In this way, when the filter elements are cleaned by pulsing air in a reverse direction, the dust removed from the bags will collect in the electrostatic precipitation zones rather than on adjacent filter elements.

  7. Prospecting by sampling and analysis of airborne particulates and gases

    DOE Patents [OSTI]

    Sehmel, G.A.

    1984-05-01T23:59:59.000Z

    A method is claimed for prospecting by sampling airborne particulates or gases at a ground position and recording wind direction values at the time of sampling. The samples are subsequently analyzed to determine the concentrations of a desired material or the ratios of the desired material to other identifiable materials in the collected samples. By comparing the measured concentrations or ratios to expected background data in the vicinity sampled, one can select recorded wind directions indicative of the upwind position of the land-based source of the desired material.

  8. Thermo-Oxidation of Tokamak Carbon Dust

    SciTech Connect (OSTI)

    J.W. Davis; B.W.N. Fitzpatrick; J.P. Sharpe; A.A. Haasz

    2008-04-01T23:59:59.000Z

    The oxidation of dust and flakes collected from the DIII-D tokamak, and various commercial dust specimens, has been measured at 350 ºC and 2.0 kPa O2 pressure. Following an initial small mass loss, most of the commercial dust specimens showed very little effect due to O2 exposure. Similarly, dust collected from underneath DIII-D tiles, which is thought to comprise largely Grafoil™ particulates, also showed little susceptibility to oxidation at this temperature. However, oxidation of the dust collected from tile surfaces has led to ~ 18% mass loss after 8 hours; thereafter, little change in mass was observed. This suggests that the surface dust includes some components of different composition and/or structure – possibly fragments of codeposited layers. The oxidation of codeposit flakes scraped form DIII-D upper divertor tiles showed an initial 25% loss in mass due to heating in vacuum, and the gradual loss of 30-38% mass during the subsequent 24 hours exposure to O2. This behavior is significantly different from that observed for the oxidation of thinner DIII-D codeposit specimens which were still adhered to tile surfaces, and this is thought to be related to the low deuterium content (D/C ~ 0.03 – 0.04) of the flakes.

  9. Barium Titanate and Bismuth Oxide Nanocomposites Barium titanate, BaTiO3, and bismuth oxide Bi2O3 are transparent materials with

    E-Print Network [OSTI]

    Harmon, Julie P.

    Barium Titanate and Bismuth Oxide Nanocomposites Barium titanate, BaTiO3, and bismuth oxide Bi2O3 that are lead-free. If we cannot shield effectively at nanofiller levels where transparency is maintained, we, Condensed Matter, Vol. 15, 8927 (2003). 21. "Highly Nonlinear Bismuth-Oxide Fiber for Smooth Supercontinuun

  10. Site Environmental Report for 2007 Volume I

    E-Print Network [OSTI]

    Lackner, Regina E.

    2008-01-01T23:59:59.000Z

    Sanitary (solid) waste generation Diesel particulate matterSolid) Waste Generation Diesel Particulate Matter (DPM)

  11. Design of programmable matter

    E-Print Network [OSTI]

    Knaian, Ara N. (Ara Nerses), 1977-

    2008-01-01T23:59:59.000Z

    Programmable matter is a proposed digital material having computation, sensing, actuation, and display as continuous properties active over its whole extent. Programmable matter would have many exciting applications, like ...

  12. Asymmetric dark matter

    SciTech Connect (OSTI)

    Kumar, Jason [Department of Physics and Astronomy, University of Hawaii, Honolulu, HI 96822 (United States)

    2014-06-24T23:59:59.000Z

    We review the theoretical framework underlying models of asymmetric dark matter, describe astrophysical constraints which arise from observations of neutron stars, and discuss the prospects for detecting asymmetric dark matter.

  13. Exothermic dark matter

    E-Print Network [OSTI]

    Graham, Peter W.

    We propose a novel mechanism for dark matter to explain the observed annual modulation signal at DAMA/LIBRA which avoids existing constraints from every other dark matter direct detection experiment including CRESST, CDMS, ...

  14. Hot-dark matter, cold dark matter and accelerating universe

    E-Print Network [OSTI]

    Abbas Farmany; Amin Farmany; Mohammad Mahmoodi

    2006-07-07T23:59:59.000Z

    The Friedman equation is solved for a universe contains hotdark matter and cold dark matter. In this scenario, hot-dark matter drives an accelerating universe no cold dark matter.

  15. Characterization and modification of particulate properties to enhance filtration performance

    SciTech Connect (OSTI)

    Snyder, T.R.; Vann Bush, P.; Robinson, M.S.

    1990-06-01T23:59:59.000Z

    The specific objectives of this project are to characterize the particulate properties that determine the filtration performance of fabric filters, and to investigate methods for modifying these particulate properties to enhance filtration performance. Inherent in these objectives is the development of an experimental approach that will lead to full-scale implementation of beneficial conditioning processes identified during the project. The general approach has included a large number of laboratory evaluations to be followed by optional field tests of a new successful conditioning processes performed on a sidestream device. This project was divided into five tasks. The schedule followed for these tasks is shown in Figure 4. Tasks 2 and 3 each focus on one of the two complementary parts of the project. Task 2 Parametric Tests of Ashes and Fabrics, evaluates the degree to which ash properties and fabric design determine filtration performance. Task 3 Survey of Methods to Modify the Particle Filtration Properties, provides a literature review and laboratory study of techniques to modify ash properties. The results of these two tasks were used in Task 4 Proof-of-Concept Tests of Methods to Modify Particle Filtration Properties to demonstrate the effects on filtration performance of modifying ash properties. The findings of all the tasks are summarized in this Final Report. 13 refs.

  16. Cooler and particulate separator for an off-gas stack

    DOE Patents [OSTI]

    Wright, G.T.

    1991-04-08T23:59:59.000Z

    This report describes an off-gas stack for a melter, furnace or reaction vessel comprising an air conduit leading to two sets of holes, one set injecting air into the off-gas stack near the melter plenum and the second set injecting air downstream of the first set. The first set injects air at a compound angle, having both downward and tangential components, to create a reverse vortex flow, counter to the direction of flow of gas through the stack and also along the periphery of the stack interior surface. Air from the first set of holes prevents recirculation zones from forming and the attendant accumulation of particulate deposits on the wall of the stack and will also return to the plenum any particulate swept up in the gas entering the stack. The second set of holes injects air in the same direction as the gas in the stack to compensate for the pressure drop and to prevent the concentration of condensate in the stack. A set of sprayers, receiving water from a second conduit, is located downstream of the second set of holes and sprays water into the gas to further cool it.

  17. in Condensed Matter Physics

    E-Print Network [OSTI]

    van der Torre, Leon

    Master in Condensed Matter Physics ­ Master académique #12;2 #12;3 Students at the University. Condensed matter physics is about explaining and predicting the relationship between the atomic, and broad education in the field of condensed matter physics · introduce you to current research topics

  18. Resistive heater geometry and regeneration method for a diesel particulate filter

    SciTech Connect (OSTI)

    Phelps, Amanda (Malibu, CA); Kirby, Kevin W. (Calabasas Hills, CA); Gregoir, Daniel J. (Thousand Oaks, CA)

    2011-10-25T23:59:59.000Z

    One embodiment of the invention includes a diesel particulate filter comprising a first face and a second face; a bottom electrode layer formed over the first face of the diesel particulate filter; a middle resistive layer formed over a portion of the bottom electrode layer; and a top electrode layer formed over a portion of the middle resistive layer.

  19. Synergistic effects of lubricant additive chemistry on ash properties impacting diesel particulate filter flow resistance and catalyst performance

    E-Print Network [OSTI]

    Munnis, Sean (Sean Andrew)

    2011-01-01T23:59:59.000Z

    Diesel particulate filters (DPF) have seen widespread use in recent years in both on- and offroad applications as an effective means for meeting the increasingly stringent particulate emission regulations. Overtime, ...

  20. Task 2.10 - Advanced Sampling and Analysis of Fine Particulates

    SciTech Connect (OSTI)

    Donald P. McCollor; Kurt E. Eyland

    1998-01-01T23:59:59.000Z

    The objectives of this study are to develop a sampling method to capture the fine particulate and classiyi the particulate according to their size and chemistry. When developing the sampling method, two criteria need to be met: 1) the particulate are randomly dispersed on the sampling media and 2) the sampling media can be put directly into a scanning electron microscope (SEM) for analysis to prevent any alteration of the particulate. Several methods for the sampling and analysis of fine particulate are to be tested. Each sampling test will be analyzed using the FPT technique for collecting the size, shape, and chemical composition of 1500 to 2000 individual fine particulate. The FPT data will be classified using cluster analysis and principal component analysis to provide a classification system for these particles. As reported previously, particulate samples were collected using the advanced hybrid particulate collector (AHPC) on the inlet port of the particulate test combustor (PTC) when the Absaloka coal was burned in early April. The samples were collected at the inlet rather than the outlet port because of the loading that was expected and the temperature at which the PTC was run. Samples at the inlet were expected to see a much greater particulate loading than at the outlet because of the efficiency of the particulate collection device on the PTC. Also, polycarbonate filters cannot withstand temperatures above 230oC for long periods of time; therefore, a quick loading time was required. The samples were briefly scanned and photographed using the SEM to determine the best particulate loading time. The particulate were too close together on the 20- and 30-second polycarbonate filters to be able to analyze individual particles. The particle dispersion on the vitreous carbon substrate appeared to be the best of the four samples. Aerosols were produced from pure 1.0 M aqueous solutions of NaCl, Na2S04, (NHq)2SOo, NHqNO~, and K20 (KOH) using a Tri-Jet Model 3460 aerosol generator and collected by direct impingement on a vitreous carbon substrate. Because NaCl is the normal aerosol produced with the generator, it was briefly examined using SEM to determine the degree of dispersion. Good dispersion with nearly all particulate size below 2 pm and the majority in the O.1-pm range was achieved with a substrate collection time of 2-3 minutes. The brief examination also demonstrated that the sample could be introduced directly into the SEM for analysis with no prior carbon coating or other preparation and that charging of the sample was minimal.

  1. Nitrated metalloporphyrins as catalysts for alkane oxidation

    DOE Patents [OSTI]

    Ellis, Jr., Paul E. (Downingtown, PA); Lyons, James E. (Wallingford, PA)

    1994-01-01T23:59:59.000Z

    Compositions of matter comprising nitro-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has nitro groups attached thereto in meso and/or .beta.-pyrrolic positions.

  2. Nitrated metalloporphyrins as catalysts for alkane oxidation

    DOE Patents [OSTI]

    Ellis, P.E. Jr.; Lyons, J.E.

    1994-01-18T23:59:59.000Z

    Compositions of matter comprising nitro-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has nitro groups attached thereto in meso and/or [beta]-pyrrolic positions.

  3. Of Matters Condensed

    E-Print Network [OSTI]

    Shulman, Michael

    2015-01-01T23:59:59.000Z

    The American Physical Society (APS) March Meeting of condensed matter physics has grown to nearly 10,000 participants, comprises 23 individual APS groups, and even warrants its own hashtag (#apsmarch). Here we analyze the text and data from March Meeting abstracts of the past nine years and discuss trends in condensed matter physics over this time period. We find that in comparison to atomic, molecular, and optical physics, condensed matter changes rapidly, and that condensed matter appears to be moving increasingly toward subject matter that is traditionally in materials science and engineering.

  4. Incompressibility of strange matter

    E-Print Network [OSTI]

    Monika Sinha; Manjari Bagchi; Jishnu Dey; Mira Dey; Subharthi Ray; Siddhartha Bhowmick

    2004-04-01T23:59:59.000Z

    Strange stars calculated from a realistic equation of state (EOS), that incorporate chiral symmetry restoration as well as deconfinement at high density show compact objects in the mass radius curve. We compare our calculations of incompressibility for this EOS with that of nuclear matter. One of the nuclear matter EOS has a continuous transition to ud-matter at about five times normal density. Another nuclear matter EOS incorporates density dependent coupling constants. From a look at the consequent velocity of sound, it is found that the transition to ud-matter seems necessary.

  5. Oxidation catalyst

    DOE Patents [OSTI]

    Ceyer, Sylvia T. (Cambridge, MA); Lahr, David L. (Cambridge, MA)

    2010-11-09T23:59:59.000Z

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  6. Big Questions: Dark Matter

    ScienceCinema (OSTI)

    Lincoln, Don

    2014-08-07T23:59:59.000Z

    Carl Sagan's oft-quoted statement that there are "billions and billions" of stars in the cosmos gives an idea of just how much "stuff" is in the universe. However scientists now think that in addition to the type of matter with which we are familiar, there is another kind of matter out there. This new kind of matter is called "dark matter" and there seems to be five times as much as ordinary matter. Dark matter interacts only with gravity, thus light simply zips right by it. Scientists are searching through their data, trying to prove that the dark matter idea is real. Fermilab's Dr. Don Lincoln tells us why we think this seemingly-crazy idea might not be so crazy after all.

  7. Surface Science Letters Synthesis of well-ordered ultra-thin titanium oxide films

    E-Print Network [OSTI]

    Goodman, Wayne

    Surface Science Letters Synthesis of well-ordered ultra-thin titanium oxide films on Mo(112) M microscopy (STM); X-ray photoelectron spectroscopy (XPS); Titanium oxide; Surface structure, morphology oxide systems, titanium dioxide has served as the prototypical reducible 0039-6028/$ - see front matter

  8. Dross : re-genesis of diverse matter : a design post-praxis

    E-Print Network [OSTI]

    Kallipoliti, Lydia, 1976-

    2004-01-01T23:59:59.000Z

    The word "dross" refers to matter that is foreign, worn out and impure, such as the scum formed by oxidation at the surface of molten metals. Based on a perception of material impurity, this thesis encompasses the generative ...

  9. The chemistry of particulate formation in fluorocarbon plasmas

    SciTech Connect (OSTI)

    Buss, R.J.; Hareland, W.A.

    1993-10-01T23:59:59.000Z

    The production, suspension and transport of fluorocarbon particulates in rf discharges have been studied using in situ laser light scattering and ex situ chemical analysis. The time evolution of the spatial distribution of suspended particles was obtained by 2-D imaging of the scattered light. The chemistry of the discharge was varied by the use of a range of pure fluorocarbon gases and mixtures with argon, oxygen and hydrogen-containing molecules. The addition of hydrogen to a fluorocarbon discharge increases the rate of formation of particles although these powders are found by FTIR to contain negligible hydrogen. Particle formation rates correlate with polymer deposition rates and are independent of apparatus history. It is proposed that this is a clear example of gas-phase rather than surface processes leading to particle nucleation and growth.

  10. Direct and quantitative photothermal absorption spectroscopy of individual particulates

    SciTech Connect (OSTI)

    Tong, Jonathan K.; Hsu, Wei-Chun; Eon Han, Sang; Burg, Brian R.; Chen, Gang, E-mail: gchen2@mit.edu [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)] [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Zheng, Ruiting [Key Laboratory of Radiation Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China)] [Key Laboratory of Radiation Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Shen, Sheng [Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States)] [Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States)

    2013-12-23T23:59:59.000Z

    Photonic structures can exhibit significant absorption enhancement when an object's length scale is comparable to or smaller than the wavelength of light. This property has enabled photonic structures to be an integral component in many applications such as solar cells, light emitting diodes, and photothermal therapy. To characterize this enhancement at the single particulate level, conventional methods have consisted of indirect or qualitative approaches which are often limited to certain sample types. To overcome these limitations, we used a bilayer cantilever to directly and quantitatively measure the spectral absorption efficiency of a single silicon microwire in the visible wavelength range. We demonstrate an absorption enhancement on a per unit volume basis compared to a thin film, which shows good agreement with Mie theory calculations. This approach offers a quantitative approach for broadband absorption measurements on a wide range of photonic structures of different geometric and material compositions.

  11. Composition and chemistry of particulates from the Tidd Clean Coal Demonstration Plant pressurized fluidized bed combustor, cyclone, and filter vessel

    SciTech Connect (OSTI)

    Smith, D.H.; Grimm, U.; Haddad, G.

    1995-12-31T23:59:59.000Z

    In a Pressurized Fluidized Bed Combustion (PFBC)/cyclone/filter system ground coal and sorbent are injected as pastes into the PFBC bed; the hot gases and entrained fine particles of ash and calcined or reacted sorbent are passed through a cyclone (which removes the larger entrained particles); and the very-fine particles that remain are then filtered out, so that the cleaned hot gas can be sent through a non-ruggedized hot-gas turbine. The 70 MWe Tidd PFBC Demonstration Plant in Brilliant, Ohio was completed in late 1990. The initial design utilized seven strings of primary and secondary cyclones to remove 98% of the particulate matter. However, the Plant also included a pressurized filter vessel, placed between the primary and secondary cyclones of one of the seven strings. Coal and dolomitic limestone (i.e, SO{sub 2} sorbent) of various nominal sizes ranging from 12 to 18 mesh were injected into the combustor operating at about 10 atm pressure and 925{degree}C. The cyclone removed elutriated particles larger than about 0.025 mm, and particles larger than ca. 0.0005 mm were filtered at about 750{degree}C by ceramic candle filters. Thus, the chemical reaction times and temperatures, masses of material, particle-size distributions, and chemical compositions were substantially different for particulates removed from the bed drain, the cyclone drain, and the filter unit. Accordingly, we have measured the particle-size distributions and concentrations of calcium, magnesium, sulfur, silicon, and aluminum for material taken from the three units, and also determined the chemical formulas and predominant crystalline forms of the calcium and magnesium sulfate compounds formed. The latter information is particularly novel for the filter-cake material, from which we isolated the ``new`` compound Mg{sub 2}Ca(SO{sub 4}){sub 3}.

  12. Alternatives to conventional diesel fuel-some potential implications of California's TAC decision on diesel particulate.

    SciTech Connect (OSTI)

    Eberhardt, J. J.; Rote, D. M.; Saricks, C. L.; Stodolsky, F.

    1999-08-10T23:59:59.000Z

    Limitations on the use of petroleum-based diesel fuel in California could occur pursuant to the 1998 declaration by California's Air Resources Board (CARB) that the particulate matter component of diesel exhaust is a carcinogen, therefore a toxic air contaminant (TAC) subject to provisions of the state's Proposition 65. It is the declared intention of CARB not to ban or restrict diesel fuel, per se, at this time. Assuming no total ban, Argonne National Laboratory (ANL) explored two feasible ''mid-course'' strategies. (1) Increased penetration of natural gas and greater gasoline use in the transportation fuels market, to the extent that some compression-ignition (CI) applications revert to spark-ignition (SI) engines. (2) New specifications requiring diesel fuel reformulation based on exhaust products of individual diesel fuel constituents. Each of these alternatives results in some degree of (conventional) diesel displacement. In the first case, diesel fuel is assumed admissible for ignition assistance as a pilot fuel in natural gas (NG)-powered heavy-duty vehicles, and gasoline demand in California increases by 32.2 million liters per day overall, about 21 percent above projected 2010 baseline demand. Natural gas demand increases by 13.6 million diesel liter equivalents per day, about 7 percent above projected (total) consumption level. In the second case, compression-ignition engines utilize substitutes for petroleum-based diesel having similar ignition and performance properties. For each case we estimated localized air emission plus generalized greenhouse gas and energy changes. Economic implications of vehicle and engine replacement were not evaluated.

  13. Catalysts for oxidation of mercury in flue gas

    DOE Patents [OSTI]

    Granite, Evan J. (Wexford, PA); Pennline, Henry W. (Bethel Park, PA)

    2010-08-17T23:59:59.000Z

    Two new classes of catalysts for the removal of heavy metal contaminants, especially mercury (Hg) from effluent gases. Both of these classes of catalysts are excellent absorbers of HCl and Cl.sub.2 present in effluent gases. This adsorption of oxidizing agents aids in the oxidation of heavy metal contaminants. The catalysts remove mercury by oxidizing the Hg into mercury (II) moieties. For one class of catalysts, the active component is selected from the group consisting of iridium (Ir) and iridum-platinum (Ir/Pt) alloys. The Ir and Ir/Pt alloy catalysts are especially corrosion resistant. For the other class of catalyst, the active component is partially combusted coal or "Thief" carbon impregnated with Cl.sub.2. Untreated Thief carbon catalyst can be self-activating in the presence of effluent gas streams. The Thief carbon catalyst is disposable by means of capture from the effluent gas stream in a particulate collection device (PCD).

  14. Matter: Space without Time

    E-Print Network [OSTI]

    Yousef Ghazi-Tabatabai

    2012-11-19T23:59:59.000Z

    While Quantum Gravity remains elusive and Quantum Field Theory retains the interpretational difficulties of Quantum Mechanics, we have introduced an alternate approach to the unification of particles, fields, space and time, suggesting that the concept of matter as space without time provides a framework which unifies matter with spacetime and in which we anticipate the development of complete theories (ideally a single unified theory) describing observed 'particles, charges, fields and forces' solely with the geometry of our matter-space-time universe.

  15. Energy Matters Mailbag

    Broader source: Energy.gov [DOE]

    This edition of the mailbag tackles follow-up questions from our Energy Matters discussion on breaking our reliance on foreign oil.

  16. DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS-FIRED COMBUSTION SYSTEMS

    SciTech Connect (OSTI)

    Glenn C. England

    2004-10-20T23:59:59.000Z

    In 1997, the United States Environmental Protection Agency (EPA) promulgated new National Ambient Air Quality Standards (NAAQS) for particulate matter, including for the first time particles with aerodynamic diameter smaller than 2.5 micrometers ({micro}m) referred to as PM2.5. PM2.5 in the atmosphere also contributes to reduced atmospheric visibility, which is the subject of existing rules for siting emission sources near Class 1 areas and new Regional Haze rules. There are few existing data regarding emissions and characteristics of fine aerosols from oil, gas and power generation industry combustion sources, and the information that is available is generally outdated and incomplete. Traditional stationary source air emission sampling methods tend to underestimate or overestimate the contribution of the source to ambient aerosols because they do not properly account for primary aerosol formation, which occurs after the gases leave the stack. Primary aerosol includes both filterable particles that are solid or liquid aerosols at stack temperature plus those that form as the stack gases cool through mixing and dilution processes in the plume downwind of the source. These deficiencies in the current methods can have significant impacts on regulatory decision-making. PM2.5 measurement issues were extensively reviewed by the American Petroleum Institute (API) (England et al., 1998), and it was concluded that dilution sampling techniques are more appropriate for obtaining a representative particulate matter sample from combustion systems for determining PM2.5 emission rate and chemical speciation. Dilution sampling is intended to collect aerosols including those that condense and/or react to form solid or liquid aerosols as the exhaust plume mixes and cools to near-ambient temperature immediately after the stack discharge. These techniques have been widely used in recent research studies. For example, Hildemann et al. (1994) and McDonald et al. (1998) used filtered ambient air to dilute the stack gas sample followed by 80-90 seconds residence time to allow aerosol formation and growth to stabilize prior to sample collection and analysis. More accurate and complete emissions data generated using the methods developed in this program will enable more accurate source-receptor and source apportionment analysis for PM2.5 National Ambient Air Quality Standards (NAAQS) implementation and streamline the environmental assessment of oil, gas and power production facilities. The overall goals of this program were to: (1) Develop improved dilution sampling technology and test methods for PM2.5 mass emissions and speciation measurements, and compare results obtained with dilution and traditional stationary source sampling methods. (2) Develop emission factors and speciation profiles for emissions of fine particulate matter, especially organic aerosols, for use in source-receptor and source apportionment analyses. (3) Identify and characterize PM2.5 precursor compound emissions that can be used in source-receptor and source apportionment analyses.

  17. Cold bond agglomeration of waste oxides for recycling

    SciTech Connect (OSTI)

    D`Alessio, G.; Lu, W.K. [McMaster Univ., Hamilton, Ontario (Canada). Dept. of Materials Science and Engineering

    1996-12-31T23:59:59.000Z

    Recycling of waste oxides has been an on-going challenge for integrated steel plants. The majority of these waste oxides are collected from the cleaning systems of ironmaking and steelmaking processes, and are usually in the form of fine particulates and slurries. In most cases, these waste materials are contaminated by oils and heavy metals and often require treatment at a considerable expense prior to landfill disposal. This contamination also limits the re-use or recycling potential of these oxides as secondary resources of reliable quality. However, recycling of some selected wastes in blast furnaces or steelmaking vessels is possible, but first requires agglomeration of the fine particulate by such methods as cold bond briquetting. Cold bond briquetting technology provides both mechanical compacting and bonding (with appropriate binders) of the particulates. This method of recycling has the potential to be economically viable and environmentally sustainable. The nature of the present study is cold bond briquetting of iron ore pellet fines with a molasses-cement-H{sub 2}O binder for recycling in a blast furnace. The inclusion of molasses is for its contribution to the green strength of briquettes. During the curing stage, significant gains in strength may be credited to molasses in the presence of cement. The interactions of cement (and its substitutes), water and molasses and their effects on the properties of the agglomerates during and after various curing conditions were investigated. Tensile strengths of briquettes made in the laboratory and subjected to experimental conditions which simulated the top part of a blast furnace shaft were also examined.

  18. Air Pollution Control Regulations: No. 3- Particulate Emissions from Industrial Processes (Rhode Island)

    Broader source: Energy.gov [DOE]

    These regulations limit particulate emissions into the atmosphere by process weight per hour, where process weight is the total weight of all materials introduced into any specific process which...

  19. Flue Gas Conditioning to Reduce Particulate Emissions in Industrial Coal-Fired Boilers 

    E-Print Network [OSTI]

    Miller, B.; Keon, E.

    1980-01-01T23:59:59.000Z

    Chemical technology has been used successfully to solve many of the operational and emissions problems that result from burning coal. This paper describes the use of blended chemical flue gas conditioners to significantly reduce particulate...

  20. Neutral carbohydrate geochemistry of particulate material (trap and core sediments) in an eutrophic lake (Aydat,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Neutral carbohydrate geochemistry of particulate material (trap and core sediments) in an eutrophic Carbohydrate compositions were determined on sinking particles and core samples from eutrophic lake Aydat; Eutrophic lake; Aydat lake 1. Introduction Polysaccharides are common structural and storage polymers

  1. Effects of calcium carbonate particulate releasing surgical anchors on bone and tendon healing

    E-Print Network [OSTI]

    Medeiros, Jordan-Ryan J. I. K

    2007-01-01T23:59:59.000Z

    The Calaxo ® screw, developed by Smith and Nephew, is a novel biomedical composite composed of poly-DL-lactide-co-glycolide (PLLA:PGA) 85:15 and calcium carbonate particulates. Comparisons to an identical surgical anchor ...

  2. Passive regeneration : long-term effects on ash characteristics and diesel particulate filter performance

    E-Print Network [OSTI]

    Bahr, Michael J., Nav. E. (Michael James). Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    Diesel particulate filters (DPF) have seen widespread growth as an effective means for meeting increasingly rigorous particle emissions regulations. There is growing interest to exploit passive regeneration of DPFs to ...

  3. Determination of particulate lead using aerosol mass spectrometry: MILAGRO/MCMA-2006 observations

    E-Print Network [OSTI]

    Salcedo, D.

    We report the first measurements of particulate lead (Pb) from Aerodyne Aerosol Mass Spectrometers, which were deployed in and around Mexico City during the Megacity Initiative: Local and Global Research Observations ...

  4. OPERATING EXPERIENCE LEVEL 3, Requalification Test Failure of Certain High Efficiency Particulate Air (HEPA) Filters- Update

    Broader source: Energy.gov [DOE]

    Operating Experience Level 3 (OE-3) document provides information regarding the previous requalification test failure and subsequent successful requalification, of certain high efficiency particulate air (HEPA) filter models manufactured by Flanders Corporation.

  5. Dipolar Dark Matter

    E-Print Network [OSTI]

    Blanchet, Luc

    2015-01-01T23:59:59.000Z

    Massive gravity theories have been developed as viable IR modifications of gravity motivated by dark energy and the problem of the cosmological constant. On the other hand, modified gravity and modified dark matter theories were developed with the aim of solving the problems of standard cold dark matter at galactic scales. Here we propose to adapt the framework of ghost-free massive bigravity theories to reformulate the problem of dark matter at galactic scales. We investigate a promising alternative to dark matter called dipolar dark matter (DDM) in which two different species of dark matter are separately coupled to the two metrics of bigravity and are linked together by an internal vector field. We show that this model successfully reproduces the phenomenology of dark matter at galactic scales (i.e. MOND) as a result of a mechanism of gravitational polarisation. The model is safe in the gravitational sector, but because the two types of dark matter interact through the vector field, a ghostly degree of fre...

  6. Dark matter and cosmology

    SciTech Connect (OSTI)

    Schramm, D.N.

    1992-03-01T23:59:59.000Z

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold`` and ``hot`` non-baryonic candidates is shown to depend on the assumed ``seeds`` that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  7. Dark matter and cosmology

    SciTech Connect (OSTI)

    Schramm, D.N.

    1992-03-01T23:59:59.000Z

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between cold'' and hot'' non-baryonic candidates is shown to depend on the assumed seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  8. Optical backscatter probe for sensing particulate in a combustion gas stream

    DOE Patents [OSTI]

    Parks, James E; Partridge, William P

    2013-05-28T23:59:59.000Z

    A system for sensing particulate in a combustion gas stream is disclosed. The system transmits light into a combustion gas stream, and thereafter detects a portion of the transmitted light as scattered light in an amount corresponding to the amount of particulates in the emissions. Purge gas may be supplied adjacent the light supply and the detector to reduce particles in the emissions from coating or otherwise compromising the transmission of light into the emissions and recovery of scattered light from the emissions.

  9. Relationship between meteorological variables and total suspended and heavy metal particulates in Little Rock, Arkansas

    E-Print Network [OSTI]

    Avery, Mary Gwendolyn

    1985-01-01T23:59:59.000Z

    RELATIONSHIP BETWEEN METEOROLOGICAL VARIABLES AND TOTAL SUSPENDED AND HEAVY NFXAL PARTICULATES IN LITTLE ROCK, ARKANSAS A Thesis MARY GWENDOLl'N AVERY Submitted to the Graduate College of Texas ALM University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 1985 Major Subject: Meteorology RELATIONSHIP BETWEEN METEOROLOGICAL VARIABLES AND TOTAL SUSPENDED AND HEAVY METAL PARTICULATES IN LITTLE ROCK, ARKANSAS A Thesis MARY GWENDOLYN AVERY Approved...

  10. Development of a hot isostatic pressing process for manufacturing silicon carbide particulate reinforced iron 

    E-Print Network [OSTI]

    Oakeson, David Oscar

    1992-01-01T23:59:59.000Z

    to aluminum, titanium, and some other metals and alloys. However, information obtained in processing iron can be used in developing guidelines for processing other metals. For example, the processing temperature as a fraction of the melting temperature... processes can be used for particulate reinforced MMCs which would break whisker or fiber reinforcements. ~' Conse- quently, particulate reinforced MMCs have appeared in other industries and have been demonstrated in applications including aluminum...

  11. Electrically conductive polycrystalline diamond and particulate metal based electrodes

    DOE Patents [OSTI]

    Swain, Greg M.; Wang, Jian

    2005-04-26T23:59:59.000Z

    An electrically conducting and dimensionally stable diamond (12, 14) and metal particle (13) electrode produced by electrodepositing the metal on the diamond is described. The electrode is particularly useful in harsh chemical environments and at high current densities and potentials. The electrode is particularly useful for generating hydrogen, and for reducing oxygen and oxidizing methanol in reactions which are of importance in fuel cells.

  12. 110K Bi-Sr-Ca-Cu-O superconductor oxide and method for making same

    DOE Patents [OSTI]

    Veal, B.W.; Downey, J.W.; Lam, D.J.; Paulikas, A.P.

    1992-12-22T23:59:59.000Z

    A superconductor is disclosed consisting of a sufficiently pure phase of the oxides of Bi, Sr, Ca, and Cu to exhibit a resistive zero near 110K resulting from the process of forming a mixture of Bi[sub 2]O[sub 3], SrCO[sub 3], CaCO[sub 3] and CuO into a particulate compact wherein the atom ratios are Bi[sub 2], Sr[sub 1.2-2.2], Ca[sub 1.8-2.4], Cu[sub 3]. Thereafter, heating the particulate compact rapidly in the presence of oxygen to an elevated temperature near the melting point of the oxides to form a sintered compact, and then maintaining the sintered compact at the elevated temperature for a prolonged period of time. The sintered compact is cooled and reground. Thereafter, the reground particulate material is compacted and heated in the presence of oxygen to an elevated temperature near the melting point of the oxide and maintained at the elevated temperature for a time sufficient to provide a sufficiently pure phase to exhibit a resistive zero near 110K. 7 figs.

  13. Ice particle size matters | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ice particle size matters Ice particle size matters Released: May 04, 2014 Fine-tuning cloud models for improved climate predictions The Science Arctic clouds are widespread and...

  14. Hot and dark matter

    E-Print Network [OSTI]

    D'Eramo, Francesco

    2012-01-01T23:59:59.000Z

    In this thesis, we build new Effective Field Theory tools to describe the propagation of energetic partons in hot and dense media, and we propose two new reactions for dark matter in the early universe. In the first part, ...

  15. Programmable matter by folding

    E-Print Network [OSTI]

    Wood, R. J.

    Programmable matter is a material whose properties can be programmed to achieve specific shapes or stiffnesses upon command. This concept requires constituent elements to interact and rearrange intelligently in order to ...

  16. The Heart of Matter

    E-Print Network [OSTI]

    Rohini M. Godbole

    2010-06-30T23:59:59.000Z

    In this article I trace the development of the human understanding of the "Heart of Matter" from early concepts of "elements" (or alternatively "Panchmahabhootas") to the current status of "quarks" and "leptons" as the fundamental constituents of matter, interacting together via exchange of the various force carrier particles called "gauge bosons" such as the photon, W/Z-boson etc. I would like to show how our understanding of the fundamental constituents of matter has gone hand in hand with our understanding of the fundamental forces in nature. I will also outline how the knowledge of particle physics at the "micro" scale of less than a Fermi(one millionth of a nanometer), enables us to offer explanations of Cosmological observations at the "macro" scale. Consequently these observations, may in turn, help us address some very fundamental questions of the Physics at the "Heart of the Matter".

  17. Matter & Energy Electronics

    E-Print Network [OSTI]

    Suslick, Kenneth S.

    See also: Matter & Energy Electronics· Detectors· Technology· Construction· Sports Science Electronic Tongue Tastes Wine Variety, Vintage (Aug. 12, 2008) -- You don't need a wine expert to Advance

  18. Gaseous dark matter detectors

    E-Print Network [OSTI]

    Martoff, C. J.

    Dark matter (DM) detectors with directional sensitivity have the potential of yielding an unambiguous positive observation of WIMPs as well as discriminating between galactic DM halo models. In this paper, we introduce the ...

  19. Asphalt Oxidation Kinetics and Pavement Oxidation Modeling

    E-Print Network [OSTI]

    Jin, Xin

    2012-07-16T23:59:59.000Z

    Most paved roads in the United States are surfaced with asphalt. These asphalt pavements suffer from fatigue cracking and thermal cracking, aggravated by the oxidation and hardening of asphalt. This negative impact of asphalt oxidation on pavement...

  20. High density matter

    E-Print Network [OSTI]

    J. R. Stone

    2013-02-11T23:59:59.000Z

    The microscopic composition and properties of matter at super-saturation densities have been the subject of intense investigation for decades. The scarcity of experimental and observational data has lead to the necessary reliance on theoretical models. However, there remains great uncertainty in these models, which, of necessity, have to go beyond the over-simple assumption that high density matter consists only of nucleons and leptons. Heavy strange baryons, mesons and quark matter in different forms and phases have to be included to fulfil basic requirements of fundamental laws of physics. In this review the latest developments in construction of the Equation of State (EoS) of high-density matter at zero and finite temperature assuming different composition of the matter are surveyed. Critical comparison of model EoS with available observational data on neutron stars, including gravitational masses, radii and cooling patterns is presented. The effect of changing rotational frequency on the composition of neutron stars during their lifetime is demonstrated. Compatibility of EoS of high-density, low temperature compact objects and low density, high temperature matter created in heavy-ion collisions is discussed.

  1. Laser ablation-inductively coupled plasma-mass spectrometry: Examinations of the origins of polyatomic ions and advances in the sampling of particulates

    SciTech Connect (OSTI)

    Witte, Travis

    2011-11-30T23:59:59.000Z

    This dissertation provides a general introduction to Inductively coupled plasma-mass spectrometry (ICP-MS) and laser ablation (LA) sampling, with an examination of analytical challenges in the employment of this technique. It discusses the origin of metal oxide ions (MO+) in LA-ICP-MS, as well as the effect of introducing helium and nitrogen to the aerosol gas flow on the formation of these polyatomic interferences. It extends the study of polyatomic ions in LA-ICP-MS to metal argide (MAr+) species, an additional source of possible significant interferences in the spectrum. It describes the application of fs-LA-ICP-MS to the determination of uranium isotope ratios in particulate samples.

  2. Exposure information in environmental health research: Current opportunities and future directions for particulate matter, ozone, and toxic air pollutants

    E-Print Network [OSTI]

    McKone, Thomas E.

    2008-01-01T23:59:59.000Z

    Hodis, H.N. Ambient air pollution and atherosclerosis in Loslife style, genetics, and air pollution). An accountabilityH.E. , Peters A. , Air pollution and markers of inflammation

  3. Particulate matter emissions from a DISI engine under cold-fast-idle conditions for ethanol-gasoline blends

    E-Print Network [OSTI]

    Dimou, Iason

    2011-01-01T23:59:59.000Z

    In an effort to build internal combustion engines with both reduced brake-specific fuel consumption and better emission control, engineers developed the Direct Injection Spark Ignition (DISI) engine. DISI engines combine ...

  4. Particles, Aerosols, and Their Transport in Built Environment Particles, aerosols, or collectively called particulate matters (PM) are ubiquitous indoor

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    1 Editorial Particles, Aerosols, and Their Transport in Built Environment Particles, aerosols or aerosols and their transport in built environment. The first five papers in this special issue addressed influences ozone removal and the secondary organic aerosols generation. The study from Zuraimi et al

  5. Barium in Twilight Zone suspended matter as a potential proxy for particulate organic carbon remineralization: Results for the North Pacific

    E-Print Network [OSTI]

    Dehairs, F.

    2008-01-01T23:59:59.000Z

    Dehairs, F. , Elskens, M. , Honda, M. , Karl, D.M. , Siegel,P.J. , Karl, D.M. , Jiao, N.Z. , Honda, M.C. , Elskens, M. ,69 (9), 5722-5725. Honda, M.C. , 2003. Biological pump in

  6. Hierarchical Bivariate Time Series Models: A Combined Analysis of the Effects of Particulate Matter on Morbidity and

    E-Print Network [OSTI]

    Dominici, Francesca

    for 10 metropolitan areas in the United States from 1986 to 1993. We postulate that these time series relative rates of mortality and morbidity associated with exposure to PM10 within each location. The sample covariance matrix of the estimated log relative rates is obtained using a novel generalized estimating

  7. Effects of fine particulate matter and its constituents on low birth weight among full-term infants in California

    SciTech Connect (OSTI)

    Basu, Rupa, E-mail: Rupa.Basu@oehha.ca.gov [California Office of Environmental Health Hazard Assessment, Air Pollution Epidemiology Section, Oakland, CA (United States)] [California Office of Environmental Health Hazard Assessment, Air Pollution Epidemiology Section, Oakland, CA (United States); Harris, Maria [School of Public Health, Boston University, Boston, MA (United States)] [School of Public Health, Boston University, Boston, MA (United States); Sie, Lillian [School of Public Health, University of California, Berkeley, CA (United States)] [School of Public Health, University of California, Berkeley, CA (United States); Malig, Brian; Broadwin, Rachel; Green, Rochelle [California Office of Environmental Health Hazard Assessment, Air Pollution Epidemiology Section, Oakland, CA (United States)] [California Office of Environmental Health Hazard Assessment, Air Pollution Epidemiology Section, Oakland, CA (United States)

    2014-01-15T23:59:59.000Z

    Relationships between prenatal exposure to fine particles (PM{sub 2.5}) and birth weight have been observed previously. Few studies have investigated specific constituents of PM{sub 2.5}, which may identify sources and major contributors of risk. We examined the effects of trimester and full gestational prenatal exposures to PM{sub 2.5} mass and 23 PM{sub 2.5} constituents on birth weight among 646,296 term births in California between 2000 and 2006. We used linear and logistic regression models to assess associations between exposures and birth weight and risk of low birth weight (LBW; <2500 g), respectively. Models were adjusted for individual demographic characteristics, apparent temperature, month and year of birth, region, and socioeconomic indicators. Higher full gestational exposures to PM{sub 2.5} mass and several PM{sub 2.5} constituents were significantly associated with reductions in term birth weight. The largest reductions in birth weight were associated with exposure to vanadium, sulfur, sulfate, iron, elemental carbon, titanium, manganese, bromine, ammonium, zinc, and copper. Several of these PM{sub 2.5} constituents were associated with increased risk of term LBW. Reductions in birth weight were generally larger among younger mothers and varied by race/ethnicity. Exposure to specific constituents of PM{sub 2.5}, especially traffic-related particles, sulfur constituents, and metals, were associated with decreased birth weight in California. -- Highlights: • Examine full gestational and trimester fine particle and its constituents on term birth weight. • Fine particles and several of its constituents associated with birth weight reductions. • Largest reductions for traffic-related particles, sulfur constituents, and metals. • Greater birth weight reductions for younger mothers, and varied by race/ethnicity.

  8. Superconducting magnetic control system for manipulation of particulate matter and magnetic probes in medical and industrial applications

    DOE Patents [OSTI]

    Cha, Yung Sheng; Hull, John R.; Askew, Thomas R.

    2006-07-11T23:59:59.000Z

    A system and method of controlling movement of magnetic material with at least first and second high temperature superconductors at spaced locations. A plurality of solenoids are associated with the superconductors to induce a persistent currents in preselected high temperature superconductors establishing a plurality of magnetic fields in response to pulsed currents introduced to one or more of the solenoids. Control mechanism in communication with said solenoids and/or said high temperature superconductors are used to demagnetize selected ones of the high temperature superconductors to reduce the magnetic fields substantially to zero. Magnetic material is moved between magnetic fields by establishing the presence thereof and thereafter reducing magnetic fields substantially to zero and establishing magnetic fields in other superconductors arranged in a predetermined configuration.

  9. XAFS Studies of Nickel And Sulfur Speciation in Residual Oil Fly-Ash Particulate Matters (ROFA PM)

    SciTech Connect (OSTI)

    Pattanaik, S.; Huggins, F.E.; Huffman, G.P.; Linak, W.P.; Miller, C.A.

    2007-07-12T23:59:59.000Z

    XAFS spectroscopy has been employed to evaluate the effect of fuel compositions and combustion conditions on the amount, form, and distribution of sulfur and nickel in size-fractionated ROFA PM. Analysis of S K-edge XANES establish that sulfate is abundant in all PM. However, depending upon the combustion conditions, lesser amounts of thiophenic sulfur, metal sulfide, and elemental sulfur may also be observed. Least-squares fitting of Ni K-edge XANES reveals that most of the nickel in PM is present as bioavailable NiSO{sub 4}.nH{sub 2}O. The insoluble Ni mainly exists as a minor species, as nickel ferrite in PM{sub 2.5} (PM < 2.5 {micro}m) and nickel sulfide, NixSy in PM{sub 2.5+} (PM > 2.5 {micro}m). The Ni K-edge XANES results are in agreement with the EXAFS data. Such detailed speciation of Ni and S in PM is needed for determining their mobility, bioavailability, and reactivity, and hence, their role in PM toxicity. This information is also important for understanding the mechanism of PM formation, developing effective remediation measures, and providing criteria for identification of potential emission sources. Transition metals complexing with sulfur is ubiquitous in nature. Therefore, this information on metal sulfur complex can be critical to a large body of environmental literature.

  10. Environmental Health Perspectives VOLUME 111 | NUMBER 1 | January 2003 39 National Maps of the Effects of Particulate Matter on Mortality

    E-Print Network [OSTI]

    Dominici, Francesca

    -series studies conducted in the last decade (1,2) have shown that air pollution in many cities in the United are geographically diverse. The National Morbidity Mortality Air Pollution Study (NMMAPS) (3,4) was intended, and national air pollution effects, multistage models were developed (6,7). In the first stage, a separate log

  11. DEMONSTRATION OF A FULL-SCALE RETROFIT OF THE ADVANCED HYBRID PARTICULATE COLLECTOR TECHNOLOGY

    SciTech Connect (OSTI)

    Tom Hrdlicka; William Swanson

    2005-12-01T23:59:59.000Z

    The Advanced Hybrid Particulate Collector (AHPC), developed in cooperation between W.L. Gore & Associates and the Energy & Environmental Research Center (EERC), is an innovative approach to removing particulates from power plant flue gas. The AHPC combines the elements of a traditional baghouse and electrostatic precipitator (ESP) into one device to achieve increased particulate collection efficiency. As part of the Power Plant Improvement Initiative (PPII), this project was demonstrated under joint sponsorship from the U.S. Department of Energy and Otter Tail Power Company. The EERC is the patent holder for the technology, and W.L. Gore & Associates was the exclusive licensee for this project. The project objective was to demonstrate the improved particulate collection efficiency obtained by a full-scale retrofit of the AHPC to an existing electrostatic precipitator. The full-scale retrofit was installed on an electric power plant burning Powder River Basin (PRB) coal, Otter Tail Power Company's Big Stone Plant, in Big Stone City, South Dakota. The $13.4 million project was installed in October 2002. Project related testing concluded in December 2005. The following Final Technical Report has been prepared for the project entitled ''Demonstration of a Full-Scale Retrofit of the Advanced Hybrid Particulate Collector Technology'' as described in DOE Award No. DE-FC26-02NT41420. The report presents the operation and performance results of the system.

  12. Phase transition from hadronic matter to quark matter

    E-Print Network [OSTI]

    P. Wang; A. W. Thomas; A. G. Williams

    2007-04-03T23:59:59.000Z

    We study the phase transition from nuclear matter to quark matter within the SU(3) quark mean field model and NJL model. The SU(3) quark mean field model is used to give the equation of state for nuclear matter, while the equation of state for color superconducting quark matter is calculated within the NJL model. It is found that at low temperature, the phase transition from nuclear to color superconducting quark matter will take place when the density is of order 2.5$\\rho_0$ - 5$\\rho_0$. At zero density, the quark phase will appear when the temperature is larger than about 148 MeV. The phase transition from nuclear matter to quark matter is always first order, whereas the transition between color superconducting quark matter and normal quark matter is second order.

  13. ARM - Field Campaign - 1999 Northeast Corridor Ozone & Particulate Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [FacilityMission Under5 Southern Oxidants689

  14. An Analytical Study of Thermophoretic Particulate Deposition in Turbulent Pipe Flows

    SciTech Connect (OSTI)

    Abarham, Mehdi [University of Michigan; Hoard, John W. [University of Michigan; Assanis, Dennis [University of Michigan; Styles, Dan [Ford Motor Company; Sluder, Scott [ORNL; Storey, John Morse [ORNL

    2010-01-01T23:59:59.000Z

    The presence of a cold surface in non-isothermal pipe flows conveying submicron particles causes thermophoretic particulate deposition. In this study, an analytical method is developed to estimate thermophoretic particulate deposition efficiency and its effect on overall heat transfer coefficient of pipe flows in transition and turbulent flow regimes. The proposed analytical solution has been validated against experiments conducted at Oak Ridge National Laboratory. Exhaust gas carrying submicron soot particles was passed through pipes with a constant wall temperature and various designed boundary conditions to correlate transition and turbulent flow regimes. Prediction of the reduction in heat transfer coefficient and particulate mass deposited has been compared with experiments. The results of the analytical method are in a reasonably good agreement with experiments.

  15. Apparatus for real-time airborne particulate radionuclide collection and analysis

    DOE Patents [OSTI]

    Smart, John E. (West Richland, WA); Perkins, Richard W. (Richland, WA)

    2001-01-01T23:59:59.000Z

    An improved apparatus for collecting and analyzing an airborne particulate radionuclide having a filter mounted in a housing, the housing having an air inlet upstream of the filter and an air outlet downstream of the filter, wherein an air stream flows therethrough. The air inlet receives the air stream, the filter collects the airborne particulate radionuclide and permits a filtered air stream to pass through the air outlet. The improvement which permits real time counting is a gamma detecting germanium diode mounted downstream of the filter in the filtered air stream. The gamma detecting germanium diode is spaced apart from a downstream side of the filter a minimum distance for a substantially maximum counting detection while permitting substantially free air flow through the filter and uniform particulate radionuclide deposition on the filter.

  16. Thermodynamics of clusterized matter

    E-Print Network [OSTI]

    Ad. R. Raduta; F. Gulminelli

    2009-08-26T23:59:59.000Z

    Thermodynamics of clusterized matter is studied in the framework of statistical models with non-interacting cluster degrees of freedom. At variance with the analytical Fisher model, exact Metropolis simulation results indicate that the transition from homogeneous to clusterized matter lies along the $\\rho=\\rho_0$ axis at all temperatures and the limiting point of the phase diagram is not a critical point even if the surface energy vanishes at this point. Sensitivity of the inferred phase diagram to the employed statistical framework in the case of finite systems is discussed by considering the grand-canonical and constant-pressure canonical ensembles. A Wigner-Seitz formalism in which the fragment charge is neutralized by an uniform electron distribution allows to build the phase diagram of neutron star matter.

  17. Axion Dark Matter Searches

    E-Print Network [OSTI]

    I. Stern

    2014-03-21T23:59:59.000Z

    Nearly all astrophysical and cosmological data point convincingly to a large component of cold dark matter in the Universe. The axion particle, first theorized as a solution to the strong charge-parity problem of quantum chromodynamics, has been established as a prominent CDM candidate. Cosmic observation and particle physics experiments have bracketed the unknown mass of the axion between approximately a $\\mu$eV and a meV. The Axion Dark Matter eXperiement (ADMX) has successfully completed searches between 1.9 and 3.7 $\\mu$eV down to the KSVZ photon-coupling limit. ADMX and the Axion Dark Matter eXperiement High-Frequency (ADMX-HF) will search for axions at weaker coupling and/or higher frequencies within the next few years. Status of the experiments, current research and development, and projected mass-coupling exclusion limits are presented.

  18. Axion dark matter searches

    SciTech Connect (OSTI)

    Stern, Ian P. [Department of Physics, Univerisity of Florida, Gainesville, FL 32611-8440 (United States); Collaboration: ADMX Collaboration; ADMX-HF Collaboration

    2014-06-24T23:59:59.000Z

    Nearly all astrophysical and cosmological data point convincingly to a large component of cold dark matter in the Universe. The axion particle, first theorized as a solution to the strong charge-parity problem of quantum chromodynamics, has been established as a prominent CDM candidate. Cosmic observation and particle physics experiments have bracketed the unknown mass of the axion between approximately a ?eV and a meV. The Axion Dark Matter eXperiement (ADMX) has successfully completed searches between 1.9 and 3.7 ?eV down to the KSVZ photon-coupling limit. ADMX and the Axion Dark Matter eXperiement High-Frequency (ADMX-HF) will search for axions at weaker coupling and/or higher frequencies within the next few years. Status of the experiments, current research and development, and projected mass-coupling exclusion limits are presented.

  19. Photo-oxidation catalysts

    DOE Patents [OSTI]

    Pitts, J. Roland (Lakewood, CO); Liu, Ping (Irvine, CA); Smith, R. Davis (Golden, CO)

    2009-07-14T23:59:59.000Z

    Photo-oxidation catalysts and methods for cleaning a metal-based catalyst are disclosed. An exemplary catalyst system implementing a photo-oxidation catalyst may comprise a metal-based catalyst, and a photo-oxidation catalyst for cleaning the metal-based catalyst in the presence of light. The exposure to light enables the photo-oxidation catalyst to substantially oxidize absorbed contaminants and reduce accumulation of the contaminants on the metal-based catalyst. Applications are also disclosed.

  20. Method for the removal of ultrafine particulates from an aqueous suspension

    DOE Patents [OSTI]

    Chaiko, David J. (Naperville, IL); Kopasz, John P. (Bolingbrook, IL); Ellison, Adam J. G. (Corning, NY)

    2000-01-01T23:59:59.000Z

    A method of separating ultra-fine particulates from an aqueous suspension such as a process stream or a waste stream. The method involves the addition of alkali silicate and an organic gelling agent to a volume of liquid, from the respective process or waste stream, to form a gel. The gel then undergoes syneresis to remove water and soluble salts from the gel containing the particulates, thus, forming a silica monolith. The silica monolith is then sintered to form a hard, nonporous waste form.

  1. The distribution of dissolved and particulate organic carbon in the southeastern Indian Ocean

    E-Print Network [OSTI]

    Abd El-Reheim, Hussein Anwar

    1976-01-01T23:59:59.000Z

    . rbe rloSxee of NASTI. R OP SCIENCE Decerabex 1976 Na)or Subject: OueanoStaPby THE DISTRIBUTION OF DISSOLVED AND PARTICULATE ORGANIC CARBON IN THE SOUTHEASTERN INDIAN OCEAN A Thesis by HUSSEIN ANWAR ABD EL-REHEIM (Co-Chairman of ommittee) (Co...-C irman of Commit e) (Head of Department) (Member) r (Member) December 1976 ABSTtlACT The Distribution of Dissolved and Particulate Organic Carbon In the Southeastern Indian Ocean. (December 1976) Hussein Anwan Abd El-Reheim B. Sc. , Alexandria...

  2. Control considerations for an on-line, active regeneration system for diesel particulate traps

    SciTech Connect (OSTI)

    Stiglic, P.; Hardy, J.; Gabelman, B. (Garrett Automotive Group, Allied-Singal, Torrance, CA (US))

    1989-07-01T23:59:59.000Z

    The authors are developing an exhaust aftertreatment system aimed at particulate emissions reduction from commercial diesel engines. The system uses a ceramic wall flow filter to trap the particulates, and regeneration is effected by raising gas temperature by throttling the exhaust downstream of the turbocharger. Lab testing at steady conditions demonstrated good performance with both catalyzed and uncatalyzed traps. Road testing shows the regeneration must be accomplished under severe transient conditions created by the normal vehicle operating modes. Primary efforts are to accommodate those transients using advanced control and digital computational techniques. Some of those techniques are described and are shown to yield improved control performance.

  3. PII S0016-7037(01)00632-9 Preservation of particulate non-lithogenic uranium in marine sediments

    E-Print Network [OSTI]

    van Geen, Alexander

    PII S0016-7037(01)00632-9 Preservation of particulate non-lithogenic uranium in marine sediments in revised form March 26, 2001) Abstract--Particulate non-lithogenic uranium (PNU), excess U above detrital removal pathways in the ocean via precipi- tation in chemically-reducing sediments (Anderson, 1987; Bar

  4. Prevention of Air Pollution from Ships: Diesel Engine Particulate Emission Reduction via Lube-Oil-Consumption Control

    E-Print Network [OSTI]

    Brown, Alan

    1 Prevention of Air Pollution from Ships: Diesel Engine Particulate Emission Reduction via Lube the effectiveness of reducing engine lube-oil consumption as a means to reduce particulate pollutants. In this study-lube-oil-consumption designs, for example, could be an option with existing engines. AIR POLLUTION FROM SHIPS The motivation

  5. Transpiring purging access probe for particulate laden or hazardous environments

    DOE Patents [OSTI]

    VanOsdol, John G

    2013-12-03T23:59:59.000Z

    An access probe for remote-sensing access through a viewing port, viewing volume, and access port into a vessel. The physical boundary around the viewing volume is partially formed by a porous sleeve lying between the viewing volume and a fluid conduit. In a first mode of operation, a fluid supplied to the fluid conduit encounters the porous sleeve and flows through the porous material to maintain the viewing volume free of ash or other matter. When additional fluid force is needed to clear the viewing volume, the pressure of the fluid flow is increased sufficiently to slidably translate the porous sleeve, greatly increasing the flow into the viewing volume. The porous sleeve is returned to position by an actuating spring. The access probe thereby provides for alternate modes of operation based on the pressure of an actuating fluid.

  6. Dark matter axions `96

    SciTech Connect (OSTI)

    Sikivie, P.

    1996-12-31T23:59:59.000Z

    This report discusses why axions have been postulated to exist, what cosmology implies about their presence as cold dark matter in the galactic halo, how axions might be detected in cavities wherein strong magnetic fields stimulate their conversion into photons, and relations between axions` energy spectra and galactic halos` properties.

  7. Matter & Energy Solar Energy

    E-Print Network [OSTI]

    Rogers, John A.

    See Also: Matter & Energy Solar Energy· Electronics· Materials Science· Earth & Climate Energy at the University of Illinois, the future of solar energy just got brighter. Although silicon is the industry Electronics Over 1.2 Million Electronics Parts, Components and Equipment. www.AlliedElec.com solar energy

  8. Matter & Energy Engineering

    E-Print Network [OSTI]

    Sóbester, András

    .com/products/seahawk/ Maryland Solar Panels-- Solar Installations from BGE HOME $0 Down For Big Energy Savings! www.bgehome.com/SolarLike 6 0 | More APA MLA See Also: Matter & Energy Petroleum Engineering Fossil Fuels Earth believe may be contributing to global warming. The UK government has just announced it is investing £1

  9. Asymmetric condensed dark matter

    E-Print Network [OSTI]

    Aguirre, Anthony

    2015-01-01T23:59:59.000Z

    We explore the viability of a boson dark matter candidate with an asymmetry between the number densities of particles and antiparticles. A simple thermal field theory analysis confirms that, under certain general conditions, this component would develop a Bose-Einstein condensate in the early universe that, for appropriate model parameters, could survive the ensuing cosmological evolution until now. The condensation of a dark matter component in equilibrium with the thermal plasma is a relativistic process, hence the amount of matter dictated by the charge asymmetry is complemented by a hot relic density frozen out at the time of decoupling. Contrary to the case of ordinary WIMPs, dark matter particles in a condensate can be very light, $10^{-22}\\,{\\rm eV} \\lesssim m \\lesssim 10^2\\,{\\rm eV}$; the lower limit arises from constraints on small-scale structure formation, while the upper bound ensures that the density from thermal relics is not too large. Big-Bang nucleosynthesis constrains the temperature of deco...

  10. Oxidation of propylene over copper oxide catalysts

    E-Print Network [OSTI]

    Billingsley, David Stuart

    1958-01-01T23:59:59.000Z

    results were obtained using an asbestos supported CuO-Cr203 catalyst. Venkataramam and his co-workers (66) studied the catalytic oxidation of ethylene to ethylene oxide by the fluidized bed technique using a static bed of catalyst. Precipitated Ag20... in the air-ethylene ratio to maintain good yields of ethylene oxide. Wan (68) reported the oxidation of ethylene to acetaldehyde by use of a silver catalyst in a 5/16 dnch inner diameter stainless steel tube with a catalyst bed up to 30. 3 centimeters...

  11. Cerium Oxide Coating for Oxidation Reduction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Award In order to produce power more efficiently and cleanly, the next generation of power plant boilers, turbines, solid oxide fuel cells (SOFCs) and other essential...

  12. Energy Matters in Washington State Page 1 Energy Matters

    E-Print Network [OSTI]

    Collins, Gary S.

    Energy Matters in Washington State ­ Page 1 Energy Matters in Washington State June 2008 Updated November 2009 Updated and Revised October 2013 Grand Coulee Dam #12;Energy Matters in Washington State ­ Page 2 Copyright © 2013 Washington State University Energy Program. 905 Plum Street SE, P.O. Box 43169

  13. Cyano- and polycyanometallo-porphyrins as catalysts for alkane oxidation

    DOE Patents [OSTI]

    Ellis, Jr., Paul E. (Downingtown, PA); Lyons, James E. (Wallingford, PA)

    1993-01-01T23:59:59.000Z

    New compositions of matter comprising cyano-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has cyano groups attached thereto in meso and/or .beta.-pyrrolic positions.

  14. Cyano- and polycyanometallo-porphyrins as catalysts for alkane oxidation

    DOE Patents [OSTI]

    Ellis, Jr., Paul E. (Downingtown, PA); Lyons, James E. (Wallingford, PA)

    1995-01-01T23:59:59.000Z

    New compositions of matter comprising cyano-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has cyano groups attached thereto in meso and/or .beta.-pyrrolic positions.

  15. Manganese Oxidation In A Natural Marine Environment- San Antonio Bay

    E-Print Network [OSTI]

    Neyin, Rosemary Ogheneochuko

    2013-04-12T23:59:59.000Z

    ................................................................................................................. 24 REFERENCES .................................................................................................................. 25 vii LIST OF FIGURES Page Figure 1 Study Area in ANWR, San Antonio Bay, Texas... by microorganisms, colloidal matter, mineral surfaces, or all three; and (3) is superoxide a significant proximal oxidant? 4 STUDY AREA The area chosen for this study was located in the Aransas National Wildlife Refuge (ANWR) in San Antonio...

  16. Cyano- and polycyanometallo-porphyrins as catalysts for alkane oxidation

    DOE Patents [OSTI]

    Ellis, P.E. Jr.; Lyons, J.E.

    1995-01-17T23:59:59.000Z

    New compositions of matter comprising cyano-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has cyano groups attached thereto in meso and/or [beta]-pyrrolic positions.

  17. Cyano- and polycyanometallo-porphyrins as catalysts for alkane oxidation

    DOE Patents [OSTI]

    Ellis, P.E. Jr.; Lyons, J.E.

    1993-05-18T23:59:59.000Z

    New compositions of matter comprising cyano-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has cyano groups attached thereto in meso- and/or [beta]-pyrrolic positions.

  18. Oxidation of Mercury in Products of Coal Combustion

    SciTech Connect (OSTI)

    Peter Walsh; Giang Tong; Neeles Bhopatkar; Thomas Gale; George Blankenship; Conrad Ingram; Selasi Blavo Tesfamariam Mehreteab; Victor Banjoko; Yohannes Ghirmazion; Heng Ban; April Sibley

    2009-09-14T23:59:59.000Z

    Laboratory measurements of mercury oxidation during selective catalytic reduction (SCR) of nitric oxide, simulation of pilot-scale measurements of mercury oxidation and adsorption by unburned carbon and fly ash, and synthesis of new materials for simultaneous oxidation and adsorption of mercury, were performed in support of the development of technology for control of mercury emissions from coal-fired boilers and furnaces. Conversion of gas-phase mercury from the elemental state to water-soluble oxidized form (HgCl{sub 2}) enables removal of mercury during wet flue gas desulfurization. The increase in mercury oxidation in a monolithic V{sub 2}O{sub 5}-WO{sub 3}/TiO{sub 2} SCR catalyst with increasing HCl at low levels of HCl (< 10 ppmv) and decrease in mercury oxidation with increasing NH{sub 3}/NO ratio during SCR were consistent with results of previous work by others. The most significant finding of the present work was the inhibition of mercury oxidation in the presence of CO during SCR of NO at low levels of HCl. In the presence of 2 ppmv HCl, expected in combustion products from some Powder River Basin coals, an increase in CO from 0 to 50 ppmv reduced the extent of mercury oxidation from 24 {+-} 3 to 1 {+-} 4%. Further increase in CO to 100 ppmv completely suppressed mercury oxidation. In the presence of 11-12 ppmv HCl, increasing CO from 0 to {approx}120 ppmv reduced mercury oxidation from {approx}70% to 50%. Conversion of SO{sub 2} to sulfate also decreased with increasing NH{sub 3}/NO ratio, but the effects of HCl and CO in flue gas on SO{sub 2} oxidation were unclear. Oxidation and adsorption of mercury by unburned carbon and fly ash enables mercury removal in a particulate control device. A chemical kinetic mechanism consisting of nine homogeneous and heterogeneous reactions for mercury oxidation and removal was developed to interpret pilot-scale measurements of mercury oxidation and adsorption by unburned carbon and fly ash in experiments at pilot scale, burning bituminous coals (Gale, 2006) and blends of bituminous coals with Powder River Basin coal (Gale, 2005). The removal of mercury by fly ash and unburned carbon in the flue gas from combustion of the bituminous coals and blends was reproduced with satisfactory accuracy by the model. The enhancement of mercury capture in the presence of calcium (Gale, 2005) explained a synergistic effect of blending on mercury removal across the baghouse. The extent of mercury oxidation, on the other hand, was not so well described by the simulation, because of oversensitivity of the oxidation process in the model to the concentration of unburned carbon. Combined catalysts and sorbents for oxidation and removal of mercury from flue gas at low temperature were based on surfactant-templated silicas containing a transition metal and an organic functional group. The presence of both metal ions and organic groups within the pore structure of the materials is expected to impart to them the ability to simultaneously oxidize elemental mercury and adsorb the resulting oxidized mercury. Twelve mesoporous organosilicate catalysts/sorbents were synthesized, with and without metals (manganese, titanium, vanadium) and organic functional groups (aminopropyl, chloropropyl, mercaptopropyl). Measurement of mercury oxidation and adsorption by the candidate materials remains for future work.

  19. Self assembly in soft matter 

    E-Print Network [OSTI]

    Chremos, Alexandros

    2009-01-01T23:59:59.000Z

    The term “soft matter” applies to a variety of physical systems, such as liquids, colloids, polymers, foams, gels, and granular materials. The most fascinating aspect of soft matter lies in the fact that they are not ...

  20. Self Assembly in Soft Matter 

    E-Print Network [OSTI]

    Chremos, Alexandros

    2009-01-01T23:59:59.000Z

    The term “soft matter” applies to a variety of physical systems, such as liquids, colloids, polymers, foams, gels, and granular materials. The most fascinating aspect of soft matter lies in the fact that they are not ...