National Library of Energy BETA

Sample records for oxides nox sulfur

  1. Sulfur oxide adsorbents and emissions control

    DOE Patents [OSTI]

    Li, Liyu; King, David L.

    2006-12-26

    High capacity sulfur oxide absorbents utilizing manganese-based octahedral molecular sieve (Mn--OMS) materials are disclosed. An emissions reduction system for a combustion exhaust includes a scrubber 24 containing these high capacity sulfur oxide absorbents located upstream from a NOX filter 26 or particulate trap.

  2. Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Presents ...

  3. Impact of Sulfur Dioxide on Lean NOx Trap Catalysts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sulfur Dioxide on Lean NOx Trap Catalysts Impact of Sulfur Dioxide on Lean NOx Trap Catalysts 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: University of New Mexico 2004_deer_hammache.pdf (249.2 KB) More Documents & Publications CLEERS Aftertreatment Modeling and Analysis CLEERS Aftertreatment Modeling and Analysis An Improvement of Diesel PM and NOx Reduction System

  4. Oxidation State Optimization for Maximum Efficiency of NOx Adsorber...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Optimization for Maximum Efficiency of NOx Adsorber Catalysts Oxidation State Optimization for Maximum Efficiency of NOx Adsorber Catalysts Presentation given at the 16th ...

  5. Mechanisms of Sulfur Poisoning of NOx Adsorber (LNT) Materials | Department

    Broader source: Energy.gov (indexed) [DOE]

    of Energy ace_24_peden.pdf (1.7 MB) More Documents & Publications Enhanced High Temperature Performance of NOx Storage/Reduction (NSR) Materials Deactivation Mechanisms of Base Metal/Zeolite Urea Selective Catalytic Reduction Materials Enhanced High Temperature Performance of NOx Storage/Reduction (NSR) Materials

  6. Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalysts | Department of Energy Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Presents latest progress in the development of a new type of lean NOx trapping catalyst based on heterogenous composite nanowires, which could potentially be used in gasoline and diesel engines. deer11_gao.pdf (4.18 MB) More Documents & Publications Three-Dimensional Composite

  7. Intra-catalyst Reductant Chemistry in Lean NOx Traps: A Study on Sulfur

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effects | Department of Energy Intra-catalyst Reductant Chemistry in Lean NOx Traps: A Study on Sulfur Effects Intra-catalyst Reductant Chemistry in Lean NOx Traps: A Study on Sulfur Effects Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_parks.pdf (655.5 KB) More Documents & Publications The Next Regulatory Chapter for Commercial Vehicles Review of Diesel

  8. Oxidation State Optimization for Maximum Efficiency of NOx Adsorber

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalysts | Department of Energy State Optimization for Maximum Efficiency of NOx Adsorber Catalysts Oxidation State Optimization for Maximum Efficiency of NOx Adsorber Catalysts Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. deer10_li.pdf (1.68 MB) More Documents & Publications Lean NOx Trap Regeneration Selectivity Towards N2O -- Similarities and Differences Between H2, CO and C3H6

  9. Investigation on continuous soot oxidation and NOx reduction...

    Broader source: Energy.gov (indexed) [DOE]

    Evaluation of CSI catalyst for NOx removal and soot oxidation. deer09iretskaya.pdf (2.63 MB) More Documents & Publications Development of SCR on Diesel Particulate Filter System ...

  10. Investigation on continuous soot oxidation and NOx reduction by SCR coated

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DPF | Department of Energy on continuous soot oxidation and NOx reduction by SCR coated DPF Investigation on continuous soot oxidation and NOx reduction by SCR coated DPF Evaluation of CSI catalyst for NOx removal and soot oxidation. deer09_iretskaya.pdf (2.63 MB) More Documents & Publications Development of SCR on Diesel Particulate Filter System for Heavy Duty Applications Two Catalyst Formulations - One Solution for NOx After-treatment Systems SCR-DPF Integrations for Diesel

  11. Effect of Thermal Aging on NO oxidation and NOx storage in a

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fully-Formulated Lean NOx Trap | Department of Energy Thermal Aging on NO oxidation and NOx storage in a Fully-Formulated Lean NOx Trap Effect of Thermal Aging on NO oxidation and NOx storage in a Fully-Formulated Lean NOx Trap Thermal aging of LNT has numerous material and chemical effects deer09_toops.pdf (2.72 MB) More Documents & Publications Impacts of Biodiesel on Emission Control Devices NOx Abatement Research and Development CRADA with Navistar Incorporated Thermal Deactivation

  12. Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 3: SOx/NOx/Hg Removal for Low Sulfur Coal

    SciTech Connect (OSTI)

    Zanfir, Monica; Solunke, Rahul; Shah, Minish

    2012-06-01

    The goal of this project was to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxycombustion technology. The objective of Task 3 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning low sulfur coal in oxy-combustion power plants. The goal of the program was to conduct an experimental investigation and to develop a novel process for simultaneously removal of SOx and NOx from power plants that would operate on low sulfur coal without the need for wet-FGD & SCRs. A novel purification process operating at high pressures and ambient temperatures was developed. Activated carbon's catalytic and adsorbent capabilities are used to oxidize the sulfur and nitrous oxides to SO{sub 3} and NO{sub 2} species, which are adsorbed on the activated carbon and removed from the gas phase. Activated carbon is regenerated by water wash followed by drying. The development effort commenced with the screening of commercially available activated carbon materials for their capability to remove SO{sub 2}. A bench-unit operating in batch mode was constructed to conduct an experimental investigation of simultaneous SOx and NOx removal from a simulated oxyfuel flue gas mixture. Optimal operating conditions and the capacity of the activated carbon to remove the contaminants were identified. The process was able to achieve simultaneous SOx and NOx removal in a single step. The removal efficiencies were >99.9% for SOx and >98% for NOx. In the longevity tests performed on a batch unit, the retention capacity could be maintained at high level over 20 cycles. This process was able to effectively remove up to 4000 ppm SOx from the simulated feeds corresponding to oxyfuel flue gas from high sulfur coal plants. A dual bed continuous unit with five times the capacity of the batch unit was constructed to test continuous operation and longevity. Full

  13. Metal/metal oxide doped oxide catalysts having high deNOx selectivity for lean NOx exhaust aftertreatment systems

    DOE Patents [OSTI]

    Park, Paul W.

    2004-03-16

    A lean NOx catalyst and method of preparing the same is disclosed. The lean NOx catalyst includes a ceramic substrate, an oxide support material, preferably .gamma.-alumina, deposited on the substrate and a metal promoter or dopant introduced into the oxide support material. The metal promoters or dopants are selected from the group consisting of indium, gallium, tin, silver, germanium, gold, nickel, cobalt, copper, iron, manganese, molybdenum, chromium, cerium, vanadium, oxides thereof, and combinations thereof. The .gamma.-alumina preferably has a pore volume of from about 0.5 to about 2.0 cc/g; a surface area of between about 80 to 350 m.sup.2 /g; an average pore size diameter of between about 3 to 30 nm; and an impurity level of less than or equal to 0.2 weight percent. In a preferred embodiment the .gamma.-alumina is prepared by a sol-gel method, with the metal doping of the .gamma.-alumina preferably accomplished using an incipient wetness impregnation technique.

  14. Sodium sulfur container with chromium/chromium oxide coating

    DOE Patents [OSTI]

    Ludwig, Frank A.; Higley, Lin R.

    1981-01-01

    A coating of chromium/chromium oxide is disclosed for coating the surfaces of electrically conducting components of a sodium sulfur battery. This chromium/chromium oxide coating is placed on the surfaces of the electrically conducting components of the battery which are in contact with molten polysulfide and sulfur reactants during battery operation.

  15. Method of preparing doped oxide catalysts for lean NOx exhaust

    DOE Patents [OSTI]

    Park, Paul W.

    2004-03-09

    The lean NOx catalyst includes a substrate, an oxide support material, preferably .gamma.-alumina deposited on the substrate and a metal or metal oxide promoter or dopant introduced into the oxide support material. The metal promoters or dopants are selected from the group consisting of indium, gallium, tin, silver, germanium, gold, nickel, cobalt, copper, iron, manganese, molybdenum, chromium cerium, and vanadium, and oxides thereof, and any combinations thereof. The .gamma.-alumina preferably has a pore volume of from about 0.5 to about 2.0 cc/g; a surface area of between 80 and 350 m.sup.2 /g; an average pore size diameter of between about 3 to 30 nm; and an impurity level of less than or equal to about 0.2 weight percent. In a preferred embodiment the .gamma.-alumina is prepared by a sol-gel method, with the metal doping of the .gamma.-alumina preferably accomplished using an incipient wetness impregnation technique.

  16. Deactivation mechanisms of NOx storage materials arising from thermal aging and sulfur poisoning

    Broader source: Energy.gov [DOE]

    Presents the reliationship between Pt particle size and NOx storage performance over model catalysts. Novel reaction protocol designed to decouple effects of thermal deactivation and incomplete desulfation.

  17. Hydrothermally Stable, Sulfur-Tolerant Platinum-Based Oxidation Catalysts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    via Surface Modification of SiO2 with TiO2 and ZrO2 | Department of Energy Hydrothermally Stable, Sulfur-Tolerant Platinum-Based Oxidation Catalysts via Surface Modification of SiO2 with TiO2 and ZrO2 Hydrothermally Stable, Sulfur-Tolerant Platinum-Based Oxidation Catalysts via Surface Modification of SiO2 with TiO2 and ZrO2 This study demonstrates the feasibility of developing highly stable, sulfur-tolerant oxidation catalysts that use less Pt via surface modification of silica supports

  18. Electrostatic self-assembly of graphene oxide wrapped sulfur particles for lithium–sulfur batteries

    SciTech Connect (OSTI)

    Wu, Haiwei; Huang, Ying Zong, Meng; Ding, Xiao; Ding, Juan; Sun, Xu

    2015-04-15

    Highlights: • Researched graphene oxide wrapped sulfur particles for lithium–sulfur batteries. • New approach for core–shell GO/S composites by electrostatic self-assembly method. • Both core–shell structure and the GO support help to retard the diffusion of polysulfides during the electrochemical cycling process of GO/S cathode. - Abstract: A novel graphene oxide (GO)/sulfur (S) composite is developed by electrostatic self-assembly method. Remarkably, the core–shell structure of the composite and the GO support helps to retard the diffusion of polysulfides during the electrochemical cycling process. The GO/sulfur cathode presents enhanced cycling ability. Specific discharge capacities up to 494.7 mAh g{sup −1} over 200 cycles at 0.1 C is achieved with enhanced columbic efficiency around 95%, representing a good cathode material for lithium–sulfur batteries.

  19. Sulfur-Graphene Oxide Nanocomposite Cathodes for Lithium/Sulfur...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    They are produced using simple chemical deposition techniques and a relatively low-temperature (155 C) thermal treatment process. Graphene oxide transforms insulating graphene ...

  20. Diesel Fuel Sulfur Effects on the Performance of Diesel Oxidation Catalysts

    SciTech Connect (OSTI)

    Whitacre, Shawn D.

    2000-08-20

    Research focus: - Impact of sulfur on: Catalyst performance; Short term catalyst durability. This presentation summarizes results from fresh catalyst performance evaluations - WVU contracted to conduct DOC and Lean NOx catalyst testing for DECSE DECSE program. (experimental details discussed previously)

  1. JV Task 117 - Impact of Lignite Properties on Powerspan's NOx Oxidation System

    SciTech Connect (OSTI)

    Scott Tolbert; Steven Benson

    2008-02-29

    the U.S. Department of Energy. An electrocatalytic oxidation (ECO) reactor slipstream system was designed by Powerspan and the EERC. The slipstream system was installed by the EERC at Minnkota Power Cooperative's Milton R. Young Station Unit 1 downstream of the electrostatic precipitator where the flue gas temperature ranged from 300 to 350 F. The system was commissioned on July 3, 2007, operated for 107 days, and then winterized upon completion of the testing campaign. Operational performance of the system was monitored, and data were archived for postprocessing. A pair of electrodes were extracted and replaced on a biweekly basis. Each pair of electrodes was shipped to Powerspan to determine NO conversion efficiency in Powerspan's laboratory reactor. Tested electrodes were then shipped to the EERC for scanning electron microscopy (SEM) and x-ray microanalysis. Measurement of NO{sub x} conversion online in operating the slipstream system was not possible because the nitric and sulfuric acid production by the DBD reactor results in conditioning corrosion challenges in the sample extraction system and NO measurement technologies. The operational observations, performance results, and lab testing showed that the system was adversely affected by accumulation of the aerosol materials on the electrode. NO{sub x} conversion by ash-covered electrodes was significantly reduced; however, with electrodes that were rinsed with water, the NOx conversion efficiency recovered to nearly that of a new electrode. In addition, the visual appearance of the electrode after washing did not show evidence of a cloudy reacted surface but appeared similar to an unexposed electrode. Examination of the electrodes using SEM x-ray microanalysis showed significant elemental sodium, sulfur, calcium, potassium, and silica in the ash coating the electrodes. There was no evidence of the reaction of the sodium with the silica electrodes to produce sodium silicate layers. All SEM images showed a clearly

  2. Simultaneous removal of nitrogen oxides and sulfur oxides from combustion gases

    DOE Patents [OSTI]

    Clay, David T.; Lynn, Scott

    1976-10-19

    A process for the simultaneous removal of sulfur oxides and nitrogen oxides from power plant stack gases comprising contacting the stack gases with a supported iron oxide catalyst/absorbent in the presence of sufficient reducing agent selected from the group consisting of carbon monoxide, hydrogen, and mixtures thereof, to provide a net reducing atmosphere in the SO.sub.x /NO.sub.x removal zone. The sulfur oxides are removed by absorption substantially as iron sulfide, and nitrogen oxides are removed by catalytic reduction to nitrogen and ammonia. The spent iron oxide catalyst/absorbent is regenerated by oxidation and is recycled to the contacting zone. Sulfur dioxide is also produced during regeneration and can be utilized in the production of sulfuric acid and/or sulfur.

  3. Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 2: SOx/Nox/Hg Removal for High Sulfur Coal

    SciTech Connect (OSTI)

    Nick Degenstein; Minish Shah; Doughlas Louie

    2012-05-01

    The goal of this project is to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxy-combustion technology. The objective of Task 2 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning high sulfur coal in oxy-combustion power plants. The goal of the program was not only to investigate a new method of flue gas purification but also to produce useful acid byproduct streams as an alternative to using a traditional FGD and SCR for flue gas processing. During the project two main constraints were identified that limit the ability of the process to achieve project goals. 1) Due to boiler island corrosion issues >60% of the sulfur must be removed in the boiler island with the use of an FGD. 2) A suitable method could not be found to remove NOx from the concentrated sulfuric acid product, which limits sale-ability of the acid, as well as the NOx removal efficiency of the process. Given the complexity and safety issues inherent in the cycle it is concluded that the acid product would not be directly saleable and, in this case, other flue gas purification schemes are better suited for SOx/NOx/Hg control when burning high sulfur coal, e.g. this project's Task 3 process or a traditional FGD and SCR.

  4. Catalysts for the selective oxidation of hydrogen sulfide to sulfur

    DOE Patents [OSTI]

    Srinivas, Girish; Bai, Chuansheng

    2000-08-08

    This invention provides catalysts for the oxidation of hydrogen sulfide. In particular, the invention provides catalysts for the partial oxidation of hydrogen sulfide to elemental sulfur and water. The catalytically active component of the catalyst comprises a mixture of metal oxides containing titanium oxide and one or more metal oxides which can be selected from the group of metal oxides or mixtures of metal oxides of transition metals or lanthanide metals. Preferred metal oxides for combination with TiO.sub.2 in the catalysts of this invention include oxides of V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Mo, Tc, Ru, Rh, Hf, Ta, W, Au, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Catalysts which comprise a homogeneous mixture of titanium oxide and niobium (Nb) oxide are also provided. A preferred method for preparing the precursor homogenous mixture of metal hydroxides is by coprecipitation of titanium hydroxide with one or more other selected metal hydroxides. Catalysts of this invention have improved activity and/or selectivity for elemental sulfur production. Further improvements of activity and/or selectivity can be obtained by introducing relatively low amounts (up to about 5 mol %)of a promoter metal oxide (preferably of metals other than titanium and that of the selected second metal oxide) into the homogeneous metal/titanium oxide catalysts of this invention.

  5. Method for removing sulfur oxides from a hot gas

    SciTech Connect (OSTI)

    Morris, W.P.; Hurst, T.B.

    1984-06-05

    An improved method for removing sulfur oxides from a hot gas by introducing the gas into a first compartment of a spray drying reactor chamber for settleable particulate removal, by then directing the gas to a second compartment of the reactor chamber wherein the gas is contacted with an atomized alkali slurry for sulfur oxide removal by formation of a dry mixture of sulfite and sulfate compounds, by removing a portion of the dry mixture from the gas in the second compartment and by passing the gas from the second compartment to a dry particle collection zone for removal of substantially all of the remaining gas entrained dry mixture.

  6. NOx reduction by sulfur tolerant coronal-catalytic apparatus and method

    DOE Patents [OSTI]

    Mathur, V.K.; Breault, R.W.; McLarnon, C.R.; Medros, F.G.

    1993-08-31

    This invention presents an NO[sub x] environment effective reduction apparatus comprising a sulfur tolerant coronal-catalyst such as high dielectric coronal-catalysts like glass wool, ceramic-glass wool or zirconium glass wool and method of use. In one embodiment the invention comprises an NO[sub x] reduction apparatus of sulfur tolerant coronal-catalyst adapted and configured for hypercritical presentation to an NO[sub x] bearing gas stream at a minimum of at least about 75 watts/cubic meter.

  7. Hydrothermally Stable, Sulfur-Tolerant Platinum-Based Oxidation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of SiO2 with TiO2 and ZrO2 Hydrothermally Stable, Sulfur-Tolerant Platinum-Based Oxidation Catalysts via Surface Modification of SiO2 with TiO2 and ZrO2 This study ...

  8. Method of removing oxides of sulfur and oxides of nitrogen from exhaust gases

    DOE Patents [OSTI]

    Walker, Richard J.

    1986-01-01

    A continuous method is presented for removing both oxides of sulfur and oxides of nitrogen from combustion or exhaust gases with the regeneration of the absorbent. Exhaust gas is cleaned of particulates and HCl by a water scrub prior to contact with a liquid absorbent that includes an aqueous solution of bisulfite and sulfite ions along with a metal chelate, such as, an iron or zinc aminopolycarboxylic acid. Following contact with the combustion gases the spent absorbent is subjected to electrodialysis to transfer bisulfite ions into a sulfuric acid solution while splitting water with hydroxide and hydrogen ion migration to equalize electrical charge. The electrodialysis stack includes alternate layers of anion selective and bipolar membranes. Oxides of nitrogen are removed from the liquid absorbent by air stripping at an elevated temperature and the regenerated liquid absorbent is returned to contact with exhaust gases for removal of sulfur oxides and nitrogen oxides.

  9. Measurement and Characterization of NOx Adsorber Regeneration...

    Broader source: Energy.gov (indexed) [DOE]

    Combustion with Lean-NOx Trap Yields Progress Toward Targets of Efficient NOx Control for Diesels Intra-catalyst Reductant Chemistry in Lean NOx Traps: A Study on Sulfur Effects

  10. Modeling Species Inhibition of NO Oxidation in Urea-SCR Catalysts for Diesel Engine NOx Control

    SciTech Connect (OSTI)

    Devarakonda, Maruthi N.; Tonkyn, Russell G.; Tran, Diana N.; Lee, Jong H.; Herling, Darrell R.

    2011-04-20

    Urea-selective catalytic reduction (SCR) catalysts are regarded as the leading NOx aftertreatment technology to meet the 2010 NOx emission standards for on-highway vehicles running on heavy-duty diesel engines. However, issues such as low NOx conversion at low temperature conditions still exist due to various factors, including incomplete urea thermolysis, inhibition of SCR reactions by hydrocarbons and H2O. We have observed a noticeable reduction in the standard SCR reaction efficiency at low temperature with increasing water content. We observed a similar effect when hydrocarbons are present in the stream. This effect is absent under fast SCR conditions where NO ~ NO2 in the feed gas. As a first step in understanding the effects of such inhibition on SCR reaction steps, kinetic models that predict the inhibition behavior of H2O and hydrocarbons on NO oxidation are presented in the paper. A one-dimensional SCR model was developed based on conservation of species equations and was coded as a C-language S-function and implemented in Matlab/Simulink environment. NO oxidation and NO2 dissociation kinetics were defined as a function of the respective adsorbate’s storage in the Fe-zeolite SCR catalyst. The corresponding kinetic models were then validated on temperature ramp tests that showed good match with the test data. Such inhibition models will improve the accuracy of model based control design for integrated DPF-SCR aftertreatment systems.

  11. Modeling Species Inhibition of NO oxidation in Urea-SCR Catalysts for Diesel Engine NOx Control

    SciTech Connect (OSTI)

    Devarakonda, Maruthi N.; Tonkyn, Russell G.; Tran, Diana N.; Lee, Jong H.; Herling, Darrell R.

    2010-09-15

    Urea-selective catalytic reduction (SCR) catalysts are regarded as the leading NOx aftertreatment technology to meet the 2010 NOx emission standards for on-highway vehicles running on heavy-duty diesel engines. However, issues such as low NOx conversion at low temperature conditions still exist due to various factors, including incomplete urea thermolysis, inhibition of SCR reactions by hydrocarbons and H2O. We have observed a noticeable reduction in the standard SCR reaction efficiency at low temperature with increasing water content. We observed a similar effect when hydrocarbons are present in the stream. This effect is absent under fast SCR conditions where NO ~ NO2 in the feed gas. As a first step in understanding the effects of such inhibition on SCR reaction steps, kinetic models that predict the inhibition behavior of H2O and hydrocarbons on NO oxidation are presented in the paper. A one-dimensional SCR model was developed based on conservation of species equations and was coded as a C-language S-function and implemented in Matlab/Simulink environment. NO oxidation and NO2 dissociation kinetics were defined as a function of the respective adsorbate’s storage in the SCR catalyst. The corresponding kinetic models were then validated on temperature ramp tests that showed good match with the test data.

  12. Simulation of catalytic oxidation and selective catalytic NOx reduction in lean-exhaust hybrid vehicles

    SciTech Connect (OSTI)

    Gao, Zhiming; Daw, C Stuart; Chakravarthy, Veerathu K

    2012-01-01

    We utilize physically-based models for diesel exhaust catalytic oxidation and urea-based selective catalytic NOx reduction to study their impact on drive cycle performance of hypothetical light-duty diesel powered hybrid vehicles. The models have been implemented as highly flexible SIMULINK block modules that can be used to study multiple engine-aftertreatment system configurations. The parameters of the NOx reduction model have been adjusted to reflect the characteristics of Cu-zeolite catalysts, which are of widespread current interest. We demonstrate application of these models using the Powertrain System Analysis Toolkit (PSAT) software for vehicle simulations, along with a previously published methodology that accounts for emissions and temperature transients in the engine exhaust. Our results illustrate the potential impact of DOC and SCR interactions for lean hybrid electric and plug-in hybrid electric vehicles.

  13. Catalytic effects of minerals on NOx emission from coal combustion

    SciTech Connect (OSTI)

    Yao, M.Y.; Che, D.F.

    2007-07-01

    The catalytic effects of inherent mineral matters on NOx emissions from coal combustion have been investigated by a thermo-gravimetric analyzer (TGA) equipped with a gas analyzer. The effect of demineralization and the individual effect of Na, K, Ca, Mg, and Fe on the formation of NOx are studied as well as the combined catalytic effects of Ca + Na and Ca + Ti. Demineralization causes more Fuel-N to retain in the char, and reduction of NOx mostly. But the mechanistic effect on NOx formation varies from coal to coal. Ca and Mg promote NOx emission. Na, K, Fe suppress NOx formation to different extents. The effect of transition element Fe is the most obvious. The combination of Ca + Na and Ca + Ti can realize the simultaneous control of sulfur dioxide and nitrogen oxides emissions.

  14. Use of selective oxidation of petroleum residue for production of low-sulfur coke

    SciTech Connect (OSTI)

    Hairudinov, I.R.; Kul`chitskaya, O.V.; Imashev, U.B.

    1995-12-10

    The chemical nature of liquid-phase oxidation of sulfurous petroleum residues by cumene hydroperoxide was studied by a tracer technique. Sulfur compounds are selectively oxidized in the presence of catalytic additives of molybdenum salts. Desulfurization of distillate products and coke during coking of preoxidized raw materials was revealed.

  15. High-Potential Electrocatalytic O2 Reduction with Nitroxyl / NOx Mediators: Implications for Fuel Cells and Aerobic Oxidation Catalysis

    SciTech Connect (OSTI)

    Gerken, James B.; Stahl, Shannon S.

    2015-07-15

    Efficient reduction of O2 to water is a central challenge in energy conversion and aerobic oxidation catalysis. In the present study, we investigate the electrochemical reduction of O2 with soluble organic nitroxyl and nitrogen oxide (NOx) mediators. When used alone, neither organic nitroxyls, such as TEMPO (2,2,6,6-tetramethyl-1-piperidinyl-N-oxyl), nor NOx species, such as sodium nitrite, are effective mediators of electrochemical O2 reduction. The combination of nitroxyl/NOx species, however, mediates sustained O2 reduction at electrochemical potentials of 0.19–0.33 V (vs. Fc/Fc+) in acetonitrile containing trifluoroacetic acid. Mechanistic analysis of the coupled redox reactions supports a process in which the nitrogen oxide catalyst drives aerobic oxidation of a nitroxyl mediator to an oxoammonium species, which then is reduced back to the nitroxyl at the cathode. The electrolysis potential is dictated by the oxoammonium/nitroxyl reduction potential. The high potentials observed with this ORR system benefit from the mechanism-based specificity for four-electron reduction of oxygen to water mediated by NOx species, together with kinetically efficient reduction of oxidized NOx species by TEMPO and other organic nitroxyls. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center, funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

  16. Deactivation mechanisms of NOx storage materials arising from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deactivation mechanisms of NOx storage materials arising from thermal aging and sulfur poisoning Presents the reliationship between Pt particle size and NOx storage performance ...

  17. Effect of Sulfur on Solid Oxide Fuel Cell (SOFC) Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effect of Sulfur on SOFC Performance Using Diesel Reformate R. Kerr March 6-7, 2014 Workshop on Gas Cleanup for Fuel Cell Applications, ANL, March 6-7, 2014 Sulfur Poisoning Effect ...

  18. Sulfur oxidation to sulfate coupled with electron transfer to electrodes by Desulfuromonas strain TZ1

    SciTech Connect (OSTI)

    Zhang, T; Bain, TS; Barlett, MA; Dar, SA; Snoeyenbos-West, OL; Nevin, KP; Lovley, DR

    2014-01-02

    Microbial oxidation of elemental sulfur with an electrode serving as the electron acceptor is of interest because this may play an important role in the recovery of electrons from sulfidic wastes and for current production in marine benthic microbial fuel cells. Enrichments initiated with a marine sediment inoculum, with elemental sulfur as the electron donor and a positively poised (+300 mV versus Ag/AgCl) anode as the electron acceptor, yielded an anode biofilm with a diversity of micro-organisms, including Thiobacillus, Sulfurimonas, Pseudomonas, Clostridium and Desulfuromonas species. Further enrichment of the anode biofilm inoculum in medium with elemental sulfur as the electron donor and Fe(III) oxide as the electron acceptor, followed by isolation in solidified sulfur/Fe(III) medium yielded a strain of Desulfuromonas, designated strain TZ1. Strain TZ1 effectively oxidized elemental sulfur to sulfate with an anode serving as the sole electron acceptor, at rates faster than Desulfobulbus propionicus, the only other organism in pure culture previously shown to oxidize S with current production. The abundance of Desulfuromonas species enriched on the anodes of marine benthic fuel cells has previously been interpreted as acetate oxidation driving current production, but the results presented here suggest that sulfur-driven current production is a likely alternative.

  19. Process and apparatus for generating elemental sulfur and re-usable metal oxide from spent metal sulfide sorbents

    DOE Patents [OSTI]

    Ayala, Raul E.; Gal, Eli

    1995-01-01

    A process and apparatus for generating elemental sulfur and re-usable metal oxide from spent metal-sulfur compound. Spent metal-sulfur compound is regenerated to re-usable metal oxide by moving a bed of spent metal-sulfur compound progressively through a single regeneration vessel having a first and second regeneration stage and a third cooling and purging stage. The regeneration is carried out and elemental sulfur is generated in the first stage by introducing a first gas of sulfur dioxide which contains oxygen at a concentration less than the stoichiometric amount required for complete oxidation of the spent metal-sulfur compound. A second gas containing sulfur dioxide and excess oxygen at a concentration sufficient for complete oxidation of the partially spent metal-sulfur compound, is introduced into the second regeneration stage. Gaseous sulfur formed in the first regeneration stage is removed prior to introducing the second gas into the second regeneration stage. An oxygen-containing gas is introduced into the third cooling and purging stage. Except for the gaseous sulfur removed from the first stage, the combined gases derived from the regeneration stages which are generally rich in sulfur dioxide and lean in oxygen, are removed from the regenerator as an off-gas and recycled as the first and second gas into the regenerator. Oxygen concentration is controlled by adding air, oxygen-enriched air or pure oxygen to the recycled off-gas.

  20. Demonstration of SCR technology for the control of NOx emissions from high-sulfur coal-fired utility boilers

    SciTech Connect (OSTI)

    Hinton, W.S.; Maxwell, J.D.; Healy, E.C.; Hardman, R.R.; Baldwin, A.L.

    1997-12-31

    This paper describes the completed Innovative Clean Coal Technology project which demonstrated SCR technology for reduction of flue gas NO{sub x} emissions from a utility boiler burning US high-sulfur coal. The project was sponsored by the US Department of Energy, managed and co-funded by Southern Company Services, Inc. on behalf of the Southern Company, and also co-funded by the Electric Power Research Institute and Ontario Hydro. The project was located at Gulf Power Company`s Plant Crist Unit 5 (a 75 MW tangentially-fired boiler burning US coals that had a sulfur content ranging from 2.5--2.9%), near Pensacola, Florida. The test program was conducted for approximately two years to evaluate catalyst deactivation and other SCR operational effects. The SCR test facility had nine reactors: three 2.5 MW (5,000 scfm), and operated on low-dust flue gas. The reactors operated in parallel with commercially available SCR catalysts obtained from suppliers throughout the world. Long-term performance testing began in July 1993 and was completed in July 1995. A brief test facility description and the results of the project are presented in this paper.

  1. Sulfur dioxide and nitrogen oxides emissions from U.S. pulp and paper mills, 1980-2005

    SciTech Connect (OSTI)

    John E. Pinkerton

    2007-08-15

    Estimates of total SO{sub 2} and NOx emissions from U.S. pulp and paper mills were developed from industry-wide surveys conducted at 5-yr intervals from 1980 to 2005. The following conclusions were drawn from these estimates: (1) Total SO{sub 2} emissions from pulp and paper mills were 340,000 t in 2005. Since 1980, SO{sub 2} emissions have decreased steadily. The decline over the 25-yr period was over 60%. Paper production increased by 50% over the same period. (2) Boilers burning coal and oil are the primary source of SO{sub 2} emissions, with minor contributions from black liquor combustion in kraft recovery furnaces and the burning of noncondensable gases in boilers at kraft pulp mills. Factors contributing to the decline in boiler SO{sub 2} emissions include large reductions in residual oil use, recent decreases in coal use, declines in the average sulfur content of residual oil and coal being burned, and increasing use of flue gas desulfurization systems.(3) NOx emissions from pulp and paper mills were 230,000 t in 2005. NOx emissions were fairly constant through 1995, but then declined by 12% in 2000 and an additional 17% between 2000 and 2005. (4) In 2005, boilers accounted for two-thirds of the NOx emissions, and kraft mill sources approximately 30%. Boiler NOx emissions exhibited very little change through 1995, but decreased by one third in the next 10 yr. The lower emissions resulted from declines in fossil fuel use, a reduction in the EPA emission factors for natural gas combustion in boilers without NOx controls, and more widespread use of combustion modifications and add-on NOx control technologies, particularly on coal-fired boilers subject to EPA's NOx SIP call. Total NOx emissions from kraft mill sources changed little over the 25-yr period. 7 refs., 4 figs., 3 tabs.

  2. Effect of Thermal Aging on NO oxidation and NOx storage in a...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal aging of LNT has numerous material and chemical effects deer09toops.pdf (2.72 MB) More Documents & Publications Impacts of Biodiesel on Emission Control Devices NOx ...

  3. KINETICS OF DIRECT OXIDATION OF H2S IN COAL GAS TO ELEMENTAL SULFUR

    SciTech Connect (OSTI)

    K.C. Kwon

    2005-01-01

    The direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and the hot-gas desulfurization using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process. The objective of this research is to support the near- and long-term process development efforts to commercialize this direct oxidation technology. The objectives of this research are to measure kinetics of direct oxidation of H{sub 2}S to elemental sulfur in the presence of a simulated coal gas mixture containing SO{sub 2}, H{sub 2}, and moisture, using 160-{micro}m C-500-04 alumina catalyst particles and a micro bubble reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. To achieve the above-mentioned objectives, experiments on conversion of hydrogen sulfide into liquid elemental sulfur were carried out for the space time range of 0.059-0.87 seconds at 125-155 C to evaluate effects of reaction temperature, H{sub 2}S concentration, reaction pressure, and catalyst loading on conversion of hydrogen sulfide into liquid elemental sulfur. Simulated coal gas mixtures consist of 62-78 v% hydrogen, 3,000-7,000-ppmv hydrogen sulfide, 1,500-3,500 ppmv sulfur dioxide, and 10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to a micro bubble reactor are 50 cm{sup 3}/min at room temperature and atmospheric pressure. The temperature of the reactor is controlled in an

  4. KINETICS OF DIRECT OXIDATION OF H2S IN COAL GAS TO ELEMENTAL SULFUR

    SciTech Connect (OSTI)

    K.C. Kwon

    2004-01-01

    The direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and the hot-gas desulfurization using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process. The objective of this research is to support the near- and long-term process development efforts to commercialize this direct oxidation technology. The objectives of this research are to measure kinetics of direct oxidation of H{sub 2}S to elemental sulfur in the presence of a simulated coal gas mixture containing SO{sub 2}, H{sub 2}, and moisture, using 160-{micro}m C-500-04 alumina catalyst particles and a micro bubble reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. To achieve the above-mentioned objectives, experiments on conversion of hydrogen sulfide into liquid elemental sulfur were carried out for the space time range of 1-6 milliseconds at 125-155 C to evaluate effects of reaction temperature, moisture concentration, reaction pressure on conversion of hydrogen sulfide into liquid elemental sulfur. Simulated coal gas mixtures consist of 70 v% hydrogen, 2,500-7,500-ppmv hydrogen sulfide, 1,250-3,750 ppmv sulfur dioxide, and 0-15 vol% moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to a micro bubble reactor are 100 cm{sup 3}/min at room temperature and atmospheric pressure. The temperature of the reactor is controlled in an oven at 125-155 C. The

  5. Intra-catalyst Reductant Chemistry in Lean NOx Traps: A Study...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Intra-catalyst Reductant Chemistry in Lean NOx Traps: A Study on Sulfur Effects Intra-catalyst Reductant Chemistry in Lean NOx Traps: A Study on Sulfur Effects Presentation given ...

  6. Sulfur tolerant composite cermet electrodes for solid oxide electrochemical cells

    DOE Patents [OSTI]

    Isenberg, Arnold O.

    1987-01-01

    An electrochemical apparatus is made containing an exterior electrode bonded to the exterior of a tubular, solid, oxygen ion conducting electrolyte where the electrolyte is also in contact with an interior electrode, said exterior electrode comprising particles of an electronic conductor contacting the electrolyte, where a ceramic metal oxide coating partially surrounds the particles and is bonded to the electrolyte, and where a coating of an ionic-electronic conductive material is attached to the ceramic metal oxide coating and to the exposed portions of the particles.

  7. Longitudinal study of children exposed to sulfur oxides

    SciTech Connect (OSTI)

    Dodge, R.; Solomon, P.; Moyers, J.; Hayes, C.

    1985-05-01

    This study is a longitudinal comparison of the health of children exposed to markedly different concentrations of sulfur dioxide and moderately different concentrations of particulate sulfate. The four groups of subjects lived in two areas of one smelter town and in two other towns, one of which was also a smelter town. In the area of highest pollution, children were intermittently exposed to high SO/sub 2/ levels (peak three-hour average concentration exceeded 2,500 micrograms/m3) and moderate particulate SO/sub 4/= levels (average concentration was 10.1 micrograms/m3). When the children were grouped by the four gradients of pollution observed, the prevalence of cough (measured by questionnaire) correlated significantly with pollution levels (trend chi-square = 5.6, p = 0.02). No significant differences in the incidence of cough or other symptoms occurred among the groups of subjects over three years, and pulmonary function and lung function growth over the study were roughly equal among all the groups. These results suggest that intermittent elevations in SO/sub 2/ concentration, in the presence of moderate particulate SO/sub 4/= concentration, produced evidence of bronchial irritation in the subjects, but no chronic effect on lung function or lung function growth was detected.

  8. Regenerative process and system for the simultaneous removal of particulates and the oxides of sulfur and nitrogen from a gas stream

    DOE Patents [OSTI]

    Cohen, Mitchell R.; Gal, Eli

    1993-01-01

    A process and system for simultaneously removing from a gaseous mixture, sulfur oxides by means of a solid sulfur oxide acceptor on a porous carrier, nitrogen oxides by means of ammonia gas and particulate matter by means of filtration and for the regeneration of loaded solid sulfur oxide acceptor. Finely-divided solid sulfur oxide acceptor is entrained in a gaseous mixture to deplete sulfur oxides from the gaseous mixture, the finely-divided solid sulfur oxide acceptor being dispersed on a porous carrier material having a particle size up to about 200 microns. In the process, the gaseous mixture is optionally pre-filtered to remove particulate matter and thereafter finely-divided solid sulfur oxide acceptor is injected into the gaseous The government of the United States of America has rights in this invention pursuant to Contract No. DE-AC21-88MC 23174 awarded by the U.S. Department of Energy.

  9. Regenerative process and system for the simultaneous removal of particulates and the oxides of sulfur and nitrogen from a gas stream

    DOE Patents [OSTI]

    Cohen, M.R.; Gal, E.

    1993-04-13

    A process and system are described for simultaneously removing from a gaseous mixture, sulfur oxides by means of a solid sulfur oxide acceptor on a porous carrier, nitrogen oxides by means of ammonia gas and particulate matter by means of filtration and for the regeneration of loaded solid sulfur oxide acceptor. Finely-divided solid sulfur oxide acceptor is entrained in a gaseous mixture to deplete sulfur oxides from the gaseous mixture, the finely-divided solid sulfur oxide acceptor being dispersed on a porous carrier material having a particle size up to about 200 microns. In the process, the gaseous mixture is optionally pre-filtered to remove particulate matter and thereafter finely-divided solid sulfur oxide acceptor is injected into the gaseous mixture.

  10. Greenhouse gas emissions trading in U.S. States: observations and lessons from the OTC NOx Budget Program

    SciTech Connect (OSTI)

    Andrew Aulisi; Alexander E. Farrell; Jonathan Pershing; Stacy VanDeveer

    2005-07-01

    A number of U.S. states are considering market-based policies to reduce emissions of greenhouse gases (GHGs). The experience gained from emissions trading for sulfur dioxide and oxides of nitrogen (NOx) offers a useful body of information and data to draw on to design a GHG emissions trading system. This report examines NOx trading under the Ozone Transport Commission (OTC) NOx Budget Program, which resulted principally from the leadership, decisions, and actions by a group of states, ultimately becoming the first multilateral cap-and-trade system for emissions of air pollutants. 72 refs.

  11. Three-Dimensional Composite Nanostructures for Lean NOx Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Three-Dimensional Composite Nanostructures for Lean NOx Emission Control Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission...

  12. Nox control for high nitric oxide concentration flows through combustion-driven reduction

    DOE Patents [OSTI]

    Yeh, James T.; Ekmann, James M.; Pennline, Henry W.; Drummond, Charles J.

    1989-01-01

    An improved method for removing nitrogen oxides from concentrated waste gas streams, in which nitrogen oxides are ignited with a carbonaceous material in the presence of substoichiometric quantities of a primary oxidant, such as air. Additionally, reductants may be ignited along with the nitrogen oxides, carbonaceous material and primary oxidant to achieve greater reduction of nitrogen oxides. A scrubber and regeneration system may also be included to generate a concentrated stream of nitrogen oxides from flue gases for reduction using this method.

  13. Thermal Deactivation Mechanisms of Fully-Formed Lean NOx Trap...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Duty Linehaul Platform Project Update Effect of Thermal Aging on NO oxidation and NOx storage in a Fully-Formulated Lean NOx Trap Pt-free, Perovskite-based Lean NOx Trap Catalysts

  14. Effects of reactive element additions and sulfur removal on the oxidation behavior of FECRAL alloys

    SciTech Connect (OSTI)

    Stasik, M.C.; Pettit, F.S.; Meier, G.H. . Dept. of Materials Science and Engineering); Ashary, A. ); Smialek, J.L. )

    1994-12-15

    The results of this study have shown that desulfurization of FeCrAl alloys by hydrogen annealing can result in improvements in cyclic oxidation comparable to that achieved by doping with reactive elements. Moreover, specimens of substantial thicknesses can be effectively desulfurized because of the high diffusivity of sulfur in bcc iron alloys. The results have also shown that there is less stress generation during the cyclic oxidation of Y-doped FeCrAl compared to Ti-doped or desulfurized FeCrAl. This indicates that the growth mechanism, as well as the strength of the oxide/alloy interface, influences the ultimate oxidation morphology and stress state which will certainly affect the length of time the alumina remains protective.

  15. Kinetics of Direct Oxidation of H2S in Coal Gas to Elemental Sulfur

    SciTech Connect (OSTI)

    K.C. Kwon

    2005-11-01

    Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced Vision 21 plants that produce electric power and clean transportation fuels with coal and natural gas. These Vision 21 plants will require highly clean coal gas with H{sub 2}S below 1 ppm and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation Vision 21 plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2}S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. The direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The objectives of this research are to measure kinetics of direct

  16. Sulfurization behavior of cerium doped uranium oxides by CS{sub 2}

    SciTech Connect (OSTI)

    Sato, Nobuaki; Kato, Shintaro; Kirishima, Akira; Tochiyama, Osamu

    2007-07-01

    For the recovery of nuclear materials from the spent nuclear fuel, the sulfide process has been proposed and the voloxidation of spent fuel and selective sulfurization rare-earth elements has been proposed. In this paper, cerium was used as a stand-in of plutonium and sulfurization behavior of cerium doped uranium dioxide by CS{sub 2} was studied. UO{sub 2} was oxidized to U{sub 3}O{sub 8} in air, while the Ce doped UO{sub 2} solid solution was formed in the presence of CeO{sub 2} by the heat treatment in air. The effect of heating time, temperature and the ratio of uranium to cerium on the formation of solid solution was analyzed. The results were also compared with those of thermodynamic consideration. (authors)

  17. Degradation of solid oxide fuel cell metallic interconnects in fuels containing sulfur

    SciTech Connect (OSTI)

    Ziomek-Moroz, M.; Hawk, Jeffrey A.

    2005-01-01

    Hydrogen is the main fuel for all types of fuel cells except direct methanol fuel cells. Hydrogen can be generated from all manner of fossil fuels, including coal, natural gas, diesel, gasoline, other hydrocarbons, and oxygenates (e.g., methanol, ethanol, butanol, etc.). Impurities in the fuel can cause significant performance problems and sulfur, in particular, can decrease the cell performance of fuel cells, including solid oxide fuel cells (SOFC). In the SOFC, the high (800-1000°C) operating temperature yields advantages (e.g., internal fuel reforming) and disadvantages (e.g., material selection and degradation problems). Significant progress in reducing the operating temperature of the SOFC from ~1000 ºC to ~750 ºC may allow less expensive metallic materials to be used for interconnects and as balance of plant (BOP) materials. This paper provides insight on the material performance of nickel, ferritic steels, and nickel-based alloys in fuels containing sulfur, primarily in the form of H2S, and seeks to quantify the extent of possible degradation due to sulfur in the gas stream.

  18. UREA INFRASTRUCTURE FOR UREA SCR NOX REDUCTION

    SciTech Connect (OSTI)

    Bunting, Bruce G.

    2000-08-20

    Urea SCR is currently the only proven NOX aftertreatment for diesel engines - high NOX reduction possible - some SCR catalyst systems are robust against fuel sulfur - durability has been demonstrated - many systems in the field - long history in other markets - Major limitations to acceptance - distribution of urea solution to end user - ensuring that urea solution is added to vehicle.

  19. Evaluation of simultaneous SO2/NOx control technology. Final report, October 1990-May 1993

    SciTech Connect (OSTI)

    Bruce, K.R.; Hansen, W.F.

    1993-09-01

    The report gives results of work concentrating on characterizing three process operational parameters of a technology that combines sorbent injection and selective non-catalytic reduction for simultaneous sulfur dioxide/nitrogen oxide (SO2/NOx) removal from coal-fired industrial boilers: injection temperature, sorbent type, and reductant/pollutant stoichiometric ratio. Up to 80% reduction of SO2 and NOx at reactant/pollutant stoichiometric ratios of 2 and 1.5, respectively, was achieved. SO2 emission reductions from slurry injection were enhanced moderately when compared with dry sorbent injection methods, possibly caused by sorbent fracturing to smaller, more reactive particles. Emissions from ammonia (NH3) slip (unreacted nitrogen-based reducing agent) and nitrous oxide (N2O) formation were reduced in comparison with other published results, while similar NOx reductions were obtained.

  20. KINETICS OF DIRECT OXIDATION OF H2S IN COAL GAS TO ELEMENTAL SULFUR

    SciTech Connect (OSTI)

    K.C. Kwon

    2003-01-01

    The direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The objective of this research is to support the near- and long-term DOE efforts to commercialize this direct oxidation technology. The objectives of this research are to measure kinetics of direct oxidation of H{sub 2}S to elemental sulfur in the presence of a simulated coal gas mixture containing SO{sub 2}, H{sub 2}, and moisture, using 60-{micro}m C-500-04 alumina catalyst particles and a PFA differential fixed-bed micro reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. To achieve the above-mentioned objectives, experiments on conversion of hydrogen sulfide into elemental sulfur were carried out for the space time range of 0.01-0.047 seconds at 125-155 C to evaluate effects of reaction temperatures, moisture concentrations, reaction pressures on conversion of hydrogen sulfide into elemental sulfur. Simulated coal gas mixtures consist of 61-89 v% hydrogen, 2,300-9,200-ppmv hydrogen sulfide, 1,600-4,900 ppmv sulfur dioxide, and 2.6-13.7 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to the reactor are 100-110 cm{sup 3}/min at room temperature and atmospheric pressure (SCCM). The temperature of the reactor is controlled in an oven at 125-155 C. The pressure of the reactor is maintained at 28-127 psia. The following results were obtained based on experimental data generated from the differential reactor system, and their interpretations, (1) Concentration of moisture and concentrations of both H{sub 2}S and SO{sub 2} appear to affect slightly reaction

  1. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tao, Xinyong; Wang, Jianguo; Liu, Chong; Wang, Haotian; Yao, Hongbin; Zheng, Guangyuan; Seh, Zhi Wei; Cai, Qiuxia; Li, Weiyang; Zhou, Guangmin; et al

    2016-04-05

    Lithium–sulfur batteries have attracted attention due to their six-fold specific energy compared with conventional lithium-ion batteries. Dissolution of lithium polysulfides, volume expansion of sulfur and uncontrollable deposition of lithium sulfide are three of the main challenges for this technology. State-of-the-art sulfur cathodes based on metal-oxide nanostructures can suppress the shuttle-effect and enable controlled lithium sulfide deposition. However, a clear mechanistic understanding and corresponding selection criteria for the oxides are still lacking. Herein, various nonconductive metal-oxide nanoparticle-decorated carbon flakes are synthesized via a facile biotemplating method. The cathodes based on magnesium oxide, cerium oxide and lanthanum oxide show enhanced cycling performance.more » Adsorption experiments and theoretical calculations reveal that polysulfide capture by the oxides is via monolayered chemisorption. Moreover, we show that better surface diffusion leads to higher deposition efficiency of sulfide species on electrodes. Lastly, oxide selection is proposed to balance optimization between sulfide-adsorption and diffusion on the oxides.« less

  2. NOx adsorber and method of regenerating same

    DOE Patents [OSTI]

    Endicott, Dennis L.; Verkiel, Maarten; Driscoll, James J.

    2007-01-30

    New technologies, such as NOx adsorber catalytic converters, are being used to meet increasingly stringent regulations on undesirable emissions, including NOx emissions. NOx adsorbers must be periodically regenerated, which requires an increased fuel consumption. The present disclosure includes a method of regenerating a NOx adsorber within a NOx adsorber catalytic converter. At least one sensor positioned downstream from the NOx adsorber senses, in the downstream exhaust, at least one of NOx, nitrous oxide and ammonia concentrations a plurality of times during a regeneration phase. The sensor is in communication with an electronic control module that includes a regeneration monitoring algorithm operable to end the regeneration phase when a time rate of change of the at least one of NOx, nitrous oxide and ammonia concentrations is after an expected plateau region begins.

  3. An Evolutionary Arms Race for Sulfur

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    globally distributed sulfur-oxidizing bacteria in the deep sea carry bacterial genes for the oxidation of elemental sulfur. Although such observations are common in...

  4. Fuel Sulfur Effects on a Medium-Duty Diesel Pick-Up with a NOx Adsorber, Diesel Particle Filter Emissions Control System: 2000-Hour Aging Results

    SciTech Connect (OSTI)

    Thornton, M.; Webb, C. C.; Weber, P. A.; Orban, J.; Slone, E.

    2006-05-01

    Discusses the emission results of a nitrogen oxide adsorber catalyst and a diesel particle filter in a medium-duty, diesel pick-up truck.

  5. Combining Low-Temperature Combustion with Lean-NOx Trap Yields...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Intra-catalyst Reductant Chemistry in Lean NOx Traps: A Study on Sulfur Effects Reductant Utilization in a LNT + SCR System Synergies of ...

  6. Three-Dimensional Composite Nanostructures for Lean NOx Emission...

    Broader source: Energy.gov (indexed) [DOE]

    Composite Nanostructures for Lean NOx Emission Control Vehicle Technologies Office Merit Review 2015: Metal Oxide Nano-Array Catalysts for Low Temperature Diesel Oxidation

  7. Catalytic Combustion for Ultra-Low NOx Hydrogen Turbines

    SciTech Connect (OSTI)

    Etemad, Shahrokh; Baird, Benjamin; Alavandi, Sandeep

    2011-06-30

    Precision Combustion, Inc., (PCI) in close collaboration with Solar Turbines, Incorporated, has developed and demonstrated a combustion system for hydrogen fueled turbines that reduces NOx to low single digit level while maintaining or improving current levels of efficiency and eliminating emissions of carbon dioxide. Full scale Rich Catalytic Hydrogen (RCH1) injector was developed and successfully tested at Solar Turbines, Incorporated high pressure test facility demonstrating low single digit NOx emissions for hydrogen fuel in the range of 2200F-2750F. This development work was based on initial subscale development for faster turnaround and reduced cost. Subscale testing provided promising results for 42% and 52% H2 with NOx emissions of less than 2 ppm with improved flame stability. In addition, catalytic reactor element testing for substrate oxidation, thermal cyclic injector testing to simulate start-stop operation in a gas turbine environment, and steady state 15 atm. operation testing were performed successfully. The testing demonstrated stable and robust catalytic element component life for gas turbine conditions. The benefit of the catalytic hydrogen combustor technology includes capability of delivering near-zero NOx without costly post-combustion controls and without requirement for added sulfur control. In addition, reduced acoustics increase gas turbine component life. These advantages advances Department of Energy (DOE’s) objectives for achievement of low single digit NOx emissions, improvement in efficiency vs. postcombustion controls, fuel flexibility, a significant net reduction in Integrated Gasification Combined Cycle (IGCC) system net capital and operating costs, and a route to commercialization across the power generation field from micro turbines to industrial and utility turbines.

  8. Method of removing and recovering elemental sulfur from highly reducing gas streams containing sulfur gases

    DOE Patents [OSTI]

    Gangwal, Santosh K.; Nikolopoulos, Apostolos A.; Dorchak, Thomas P.; Dorchak, Mary Anne

    2005-11-08

    A method is provided for removal of sulfur gases and recovery of elemental sulfur from sulfur gas containing supply streams, such as syngas or coal gas, by contacting the supply stream with a catalyst, that is either an activated carbon or an oxide based catalyst, and an oxidant, such as sulfur dioxide, in a reaction medium such as molten sulfur, to convert the sulfur gases in the supply stream to elemental sulfur, and recovering the elemental sulfur by separation from the reaction medium.

  9. Bioenergetic studies of coal sulfur oxidation by extremely thermophilic bacteria. Final report, September 15, 1992--August 31, 1997

    SciTech Connect (OSTI)

    Kelly, R.M.; Han, C.J.

    1997-12-31

    Thermoacidophilic microorganisms have been considered for inorganic sulfur removal from coal because of expected improvements in rates of both biotic and abiotic sulfur oxidation reactions with increasing temperature. In this study, the bioenergetic response of the extremely thermoacidophilic archaeon, Metallosphaera sedula, to environmental changes have been examined in relation to its capacity to catalyze pyrite oxidation in coal. Given an appropriate bioenergetic challenge, the metabolic response was to utilize additional amounts of energy sources (i.e., pyrite) to survive. Of particular interest were the consequences of exposing the organism to various forms of stress (chemical, nutritional, thermal, pH) in the presence of coal pyrite. Several approaches to take advantage of stress response to accelerate pyrite oxidation by this organism were examined, including attempts to promote acquired thermal tolerance to extend its functional range, exposure to chemical uncouplers and decouplers, and manipulation of heterotrophic and chemolithotrophic tendencies to optimize biomass concentration and biocatalytic activity. Promising strategies were investigated in a continuous culture system. This study identified environmental conditions that promote better coupling of biotic and abiotic oxidation reactions to improve biosulfurization rates of thermoacidophilic microorganisms.

  10. Current emission trends for nitrogen oxides, sulfur dioxide, and volatile organic compounds by month and state: Methodology and results

    SciTech Connect (OSTI)

    Kohout, E.J.; Miller, D.J.; Nieves, L.A.; Rothman, D.S.; Saricks, C.L.; Stodolsky, F.; Hanson, D.A.

    1990-08-01

    This report presents estimates of monthly sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), and nonmethane voltatile organic compound (VOC) emissions by sector, region, and state in the contiguous United States for the years 1975 through 1988. This work has been funded as part of the National Acid Precipitation Assessment Program`s Emissions and Controls Task Group by the US Department of Energy (DOE) Office of Fossil Energy (FE). The DOE project officer is Edward C. Trexler, DOE/FE Office of Planning and Environment.

  11. Current emission trends for nitrogen oxides, sulfur dioxide, and volatile organic compounds by month and state: Methodology and results

    SciTech Connect (OSTI)

    Kohout, E.J.; Miller, D.J.; Nieves, L.A.; Rothman, D.S.; Saricks, C.L.; Stodolsky, F.; Hanson, D.A.

    1990-08-01

    This report presents estimates of monthly sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), and nonmethane voltatile organic compound (VOC) emissions by sector, region, and state in the contiguous United States for the years 1975 through 1988. This work has been funded as part of the National Acid Precipitation Assessment Program's Emissions and Controls Task Group by the US Department of Energy (DOE) Office of Fossil Energy (FE). The DOE project officer is Edward C. Trexler, DOE/FE Office of Planning and Environment.

  12. Bacterial Sulfur Storage Globules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prominent among these are the sulfide-oxidizing bacteria that oxidize sulfide (S2-) to sulfate (SO42-). Many of these organisms can store elemental sulfur (S0) in "globules" for...

  13. Anaerobic oxidation of short-chain alkanes in hydrothermal sediments: potential influences on sulfur cycling and microbial diversity

    SciTech Connect (OSTI)

    Adams, MM; Hoarfrost, AL; Bose, A; Joye, SB; Girguis, PR

    2013-05-14

    Short-chain alkanes play a substantial role in carbon and sulfur cycling at hydrocarbon-rich environments globally, yet few studies have examined the metabolism of ethane (C-2), propane (C-3), and butane (C-4) in anoxic sediments in contrast to methane (C-1). In hydrothermal vent systems, short-chain alkanes are formed over relatively short geological time scales via thermogenic processes and often exist at high concentrations. The sediment-covered hydrothermal vent systems at Middle Valley (MV Juan de Fuca Ridge) are an ideal site for investigating the anaerobic oxidation of C-1-C-4 alkanes, given the elevated temperatures and dissolved hydrocarbon species characteristic of these metalliferous sediments. We examined whether MV microbial communities oxidized C-1-C-4 alkanes under mesophilic to thermophilic sulfate-reducing conditions. Here we present data from discrete temperature (25, 55, and 75 degrees C) anaerobic batch reactor incubations of MV sediments supplemented with individual alkanes. Co-registered alkane consumption and sulfate reduction (SR) measurements provide clear evidence for C-1-C-4 alkane oxidation linked to SR over time and across temperatures. In these anaerobic batch reactor sediments, 16S ribosomal RNA pyrosequencing revealed that Deltaproteobacteria, particularly a novel sulfate-reducing lineage, were the likely phylotypes mediating the oxidation of C-2-C-4 alkanes. Maximum C-1-C-4 alkane oxidation rates occurred at 55 degrees C, which reflects the mid-core sediment temperature profile and corroborates previous studies of rate maxima for the anaerobic oxidation of methane (AOM). Of the alkanes investigated, C-3 was oxidized at the highest rate over time, then C-4, C-2, and C-1, respectively. The implications of these results are discussed with respect to the potential competition between the anaerobic oxidation of C-2-C(4)alkanes with AOM for available oxidants and the influence on the fate of C-1 derived from these hydrothermal systems.

  14. Two Catalyst Formulations - One Solution for NOx After-treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    high-temperature SCR catalyst formulation in one system ... Investigation on continuous soot oxidation and NOx reduction by SCR coated DPF Advanced Technology Light Duty Diesel ...

  15. Three-Dimensional Composite Nanostructures for Lean NOx Emission Control |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy ace030_gao_2012_o.pdf (4.04 MB) More Documents & Publications Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Three-Dimensional Composite Nanostructures for Lean NOx Emission Control Vehicle Technologies Office Merit Review 2015: Metal Oxide Nano-Array Catalysts for Low Temperature Diesel Oxidation

  16. Process for forming sulfuric acid

    DOE Patents [OSTI]

    Lu, Wen-Tong P.

    1981-01-01

    An improved electrode is disclosed for the anode in a sulfur cycle hydrogen generation process where sulfur dioxie is oxidized to form sulfuric acid at the anode. The active compound in the electrode is palladium, palladium oxide, an alloy of palladium, or a mixture thereof. The active compound may be deposited on a porous, stable, conductive substrate.

  17. DIESEL REFORMERS FOR LEAN NOX TRAP REGENERATION AND OTHER ON-BOARD HYDROGEN APPLICATIONS

    SciTech Connect (OSTI)

    Mauss, M; Wnuck, W

    2003-08-24

    Many solutions to meeting the 2007 and 2010 diesel emissions requirements have been suggested. On board production of hydrogen for in-cylinder combustion and exhaust after-treatment provide promising opportunities for meeting those requirements. Other benefits may include using syngas to rapidly heat up exhaust after-treatment catalysts during engine startup. HydrogenSource's development of a catalytic partial oxidation reformer for generating hydrogen from ultra-low sulfur diesel fuel is presented. The system can operate on engine exhaust and diesel fuel with no water tank. Test data for hydrogen regeneration of a lean NOx trap is presented showing 90% NOx conversion at temperatures as low as 150 degrees C and 99% conversion at 300 degrees C. Finally, additional efforts required to fully understand the benefits and commercial challenges of this technology are discussed.

  18. Prevalence of persistent cough and phlegm in young adults in relation to long-term ambient sulfur oxide exposure

    SciTech Connect (OSTI)

    Chapman, R.S.; Calafiore, D.C.; Hasselblad, V.

    1985-01-01

    In early 1976, a survey of persistent co gh and plegma (PCP) prevalence was conducted in 5623 young adults in four Utah communities. Over the previous five years, community specific mean sulfur dioxide levels had been 11, 18, 36, and 115 ug/mT. Corresponding mean suspended sulfate levels had been 5, 7, 8, and 14 g/mT No intercommunity exposure gradient of total suspended particulates or suspended nitrates was observed. In mothers, PCP prevalence among non-smokers was 4.2% in the high-exposure community and about 2.0% in all other communities. In smoking mothers, PCP prevalence was 21.8% in the high-exposure community and about 15.0% elsewhere. In fathers, PCP prevalence among non-smokers was about 8.0% in the high-exposure community and averaged about 3.0% elsewhere. In smoking fathers, PCP prevalence was less strongly associated with sulfur oxide exposure. PCP prevalence rates estimated in a categorical logistic regression model were qualitatively consistent with the prevalences presented above.

  19. Development of catalyst for selective reduction of NOx and oxidation of CO and hydrocarbons. Phase 1 final report, 25 April--25 October 1997

    SciTech Connect (OSTI)

    Lyon, R.K.

    1998-12-31

    Presently available technologies for control of engine NOx are not applicable in diesel engines and research projects are in progress in both the US and Japan to find a practical method of catalytically reducing NOx in diesel exhaust. This report describes laboratory scale testing of two possible methods of doing this. Tests were done with gas mixtures which simulated diesel exhaust. Of the two NOx control methods tested, one was found unpromising while the other gave promising results when propane was used as the NOx reducing agent. Since, however, the results with diesel fuel as the reducing agent were not promising, further development did not seem justified. It appears likely than the need to used diesel fuel is the NOx reductant in any practical system will be an issue in the other research projects now ongoing.

  20. Fast-regenerable sulfur dioxide absorbents for lean-burn diesel engine emission control

    SciTech Connect (OSTI)

    Li, Liyu; King, David L.

    2010-01-23

    It is known that sulfur oxides contribute significantly and deleteriously to the overall performance of lean-burn diesel engine aftertreatment systems, especially in the case of NOx traps. A Ag-based, fast regenerable SO2 absorbent has been developed and will be described. Over a temperature range of 300oC to 550oC, it absorbs almost all of the SO2 in the simulated exhaust gases during the lean cycles and can be fully regenerated by the short rich cycles at the same temperature. Its composition has been optimized as 1 wt% Pt-5wt%Ag-SiO2, and the preferred silica source for the supporting material has been identified as inert Cabosil fumed silica. The thermal instability of Ag2O under fuel-lean conditions at 230oC and above makes it possible to fast regenerate the sulfur-loaded absorbent during the following fuel-rich cycles. Pt catalyst helps reducing Ag2SO4 during rich cycles at low temperatures. And the chemically inert fumed SiO2 support gives the absorbent long term stability. This absorbent shows great potential to work under the same lean-rich cycling conditions as those imposed on the NOx traps, and thus, can protect the downstream particulate filter and the NOx trap from sulfur poisoning.

  1. Effect of reductive treatments on Pt behavior and NOx storage in lean NOx trap catalysts

    SciTech Connect (OSTI)

    Wang, Xianqin; Kim, Do Heui; Kwak, Ja Hun; Wang, Chong M.; Szanyi, Janos; Peden, Charles HF

    2011-10-01

    Lean NOx trap (LNT) catalysts represent a promising approach to meet increasingly stringent NOx emission regulations on diesel and other lean-burn engines. Pt material properties, including dispersion and particle size, are known to be important factors in determining NOx uptake performance, since Pt provides active sites for NO oxidation to NO2 necessary for storing NOx as nitrates, and for the reduction of nitrates to N2. In this work, the physicochemical properties of Pt in Pt-BaO/Al2O3 LNT catalysts, such as the Pt accessible surface area and particle size, were investigated by using various tools, such as irreversible volumetric H2 chemisorption, high resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD), following successive reductive treatments at elevated temperatures. NOx uptake activities were also measured to establish a relationship between the properties of Pt and NOx storage following identical high-temperature reductive treatments. We find that the reductive treatments of Pt-BaO/Al2O3 lean NOx trap catalysts at temperatures up to 500 ºC promote a significant increase in NOx uptake explained, in part, by an induced close interaction between Pt and BaO phases in the catalyst, thus enabling facilitation of the NOx storage process.

  2. Sulfur-tolerant anode material for direct hydrocarbon solid oxide fuel cells

    DOE Patents [OSTI]

    Chen, Fanglin; Yang, Chenghao; Yang, Zhibin

    2016-08-02

    In one aspect, the present subject matter is directed to a composite anode for a hydrocarbon solid oxide fuel cell, the anode comprising a layered perovskite ceramic and a bi-metallic alloy.

  3. Complete genome sequence of Thioalkalivibrio paradoxus type strain ARh 1T, an obligately chemolithoautotrophic haloalkaliphilic sulfur-oxidizing bacterium isolated from a Kenyan soda lake

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Berben, Tom; Sorokin, Dimitry Y.; Ivanova, Natalia; Pati, Amrita; Kyrpides, Nikos; Goodwin, Lynne A.; Woyke, Tanja; Muyzer, Gerard

    2015-11-19

    Thioalkalivibrio paradoxus strain ARh 1T is a chemolithoautotrophic, non-motile, Gram-negative bacterium belonging to the Gammaproteobacteria that was isolated from samples of haloalkaline soda lakes. It derives energy from the oxidation of reduced sulfur compounds and is notable for its ability to grow on thiocyanate as its sole source of electrons, sulfur and nitrogen. The full genome consists of 3,756,729 bp and comprises 3,500 protein-coding and 57 RNA-coding genes. Moreover, this organism was sequenced as part of the community science program at the DOE Joint Genome Institute.

  4. Method of making sulfur tolerant composite cermet electrodes for solid oxide electrochemical cells

    DOE Patents [OSTI]

    Isenberg, Arnold O.

    1989-01-01

    An electrochemical apparatus is made containing an exterior electorde bonded to the exterior of a tubular, solid, oxygen ion conducting electrolyte where the electrolyte is also in contact with an interior electrode, said exterior electrode comprising particles of an electronic conductor contacting the electrolyte, where a ceramic metal oxide coating partially surrounds the particles and is bonded to the electrolyte, and where a coating of an ionic-electronic conductive material is attached to the ceramic metal oxide coating and to the exposed portions of the particles.

  5. Sulfur recovery process

    SciTech Connect (OSTI)

    Hise, R.E.; Cook, W.J.

    1991-06-04

    This paper describes a method for recovering sulfur from a process feed stream mixture of gases comprising sulfur-containing compounds including hydrogen sulfide using the Claus reaction to convert sulfur-containing compounds to elemental sulfur and crystallization to separate sulfur-containing compounds from a tail gas of the Claus reaction for further processing as a recycle stream. It comprises: providing a Claus feed stream containing a stoichiometric excess of hydrogen sulfide, the Claus feed stream including the process feed stream and the recycles stream; introducing the Claus feed stream and an oxidizing agent into a sulfur recovery unit for converting sulfur-containing compounds in the Claus feed stream to elemental sulfur; withdrawing the tail gas from the sulfur recovery unit; separating water from the tail gas to producing a dehydrated tail gas; separating sulfur-containing compounds including carbonyl sulfide from the dehydrated tail gas as an excluded material by crystallization and withdrawing an excluded material-enriched output from the crystallization to produce the recycle stream; and combining the recycle stream with the process feed stream to produce the Claus feed stream.

  6. Effects of ambient sulfur oxides and suspended particles on respiratory health of preadolescent children

    SciTech Connect (OSTI)

    Ware, J.H.; Ferris, B.G. Jr.; Dockery, D.W.; Spengler, J.D.; Stram, D.O.; Speizer, F.E.

    1986-05-01

    Reported here are the results from an ongoing study of outdoor air pollution and respiratory health of children living in six cities in the eastern and midwestern United States. The study enrolled 10,106 white preadolescent children between 1974 and 1977 in 3 successive annual visits to each city. Each child received a spirometric examination, and a parent completed a standard questionnaire. Of this cohort, 8,380 children were seen for a second examination 1 yr later. An air pollution monitoring program was begun in each community at about the time of the first examination. For this report, measurements of total suspended particulates (TSP), the sulfate fraction of TSP (TSO/sub 4/), and sulfur dioxide (SO2) concentrations at study-affiliated outdoor stations were combined with measurements at other public and private monitoring sites to create a record of TSP, TSO/sub 4/, and SO/sub 2/ concentrations in each of 9 air pollution regions during the 1-yr period preceding each examination and, for TSP, during each child's lifetime up to the time of testing. Across the 6 cities, frequency of cough was significantly associated with the average of 24-h mean concentrations of all 3 air pollutants during the year preceding the health examination (p less than 0.01). Rates of bronchitis and a composite measure of lower respiratory illness were significantly associated with average particulate concentrations (p less than 0.05). In analyses restricted to lifetime residents, these outcomes were significantly associated with measures of lifetime mean TSP concentration. Within the cities, however, temporal and spatial variation in air pollutant concentrations and illness and symptom rates were not positively associated.

  7. The effect of fuel sulfur level on the HC, CO and NOX conversion efficiencies of PD/RH, PT/RH, PD-only and tri-metal catalysts

    SciTech Connect (OSTI)

    DiCircco, D.M.; Adamczyk, A.A.; Patel, K.S.

    1995-12-31

    Due to additional requirements imposed by the 1990 amendments to the Clean Air Act, automotive emissions systems must perform at high efficiencies for 100,000 miles. However, fuels containing sulfur, can reduce the efficiency of many modern catalyst formulations. Additionally, the Northeast Ozone Transport Commission (OTC) has petitioned the US Environmental Protection Agency (EPA) to require region-wide adaptation of the California Low-Emission Vehicle standards without the application of California`s reformulated gasoline program which is necessary to keep the level of fuel sulfur low. As will be seen, this will result in reduced catalyst activity in the OTC, since typical gasolines contain sulfur levels which vary considerably. Gasolines containing 50ppmS and 500ppmS only represent the 10th and 75th percentile of US commercial summer fuels. As will be shown, these high levels of fuel sulfur will lower the performance of high activity catalyst formulations and may make compliance with LEV/ULEV emissions levels extremely difficult if not impossible without the adaptation of low-sulfur fuels.

  8. Lean NOx Trap Catalysis for Lean Natural Gas Engine Applications

    SciTech Connect (OSTI)

    Parks, II, James E; Storey, John Morse; Theiss, Timothy J; Ponnusamy, Senthil; Ferguson, Harley Douglas; Williams, Aaron M; Tassitano, James B

    2007-09-01

    oxidation and reforming chemistry, and the effects of sulfur poisons on the partial oxidation, reformer, and lean NOx trap catalysts. The initial work on NOx reduction efficiency demonstrated that NOx emissions <0.1 g/bhp-hr (the ARES goal) can be achieved with the lean NOx trap catalyst technology. Subsequent work focused on cost and size optimization and durability issues which addressed two specific ARES areas of interest to industry ('Cost of Power' and 'Availability, Reliability, and Maintainability', respectively). Thus, the research addressed the approach of the lean NOx trap catalyst technology toward the ARES goals as shown in Table 1-1.

  9. Method and system for the removal of oxides of nitrogen and sulfur from combustion processes

    DOE Patents [OSTI]

    Walsh, John V.

    1987-12-15

    A process for removing oxide contaminants from combustion gas, and employing a solid electrolyte reactor, includes: (a) flowing the combustion gas into a zone containing a solid electrolyte and applying a voltage and at elevated temperature to thereby separate oxygen via the solid electrolyte, (b) removing oxygen from that zone in a first stream and removing hot effluent gas from that zone in a second stream, the effluent gas containing contaminant, (c) and pre-heating the combustion gas flowing to that zone by passing it in heat exchange relation with the hot effluent gas.

  10. Method of preparing graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes

    SciTech Connect (OSTI)

    Liu, Jun; Lemmon, John P; Yang, Zhenguo; Cao, Yuliang; Li, Xiaolin

    2015-04-07

    A method of preparing a graphene-sulfur nanocomposite for a cathode in a rechargeable lithium-sulfur battery comprising thermally expanding graphite oxide to yield graphene layers, mixing the graphene layers with a first solution comprising sulfur and carbon disulfide, evaporating the carbon disulfide to yield a solid nanocomposite, and grinding the solid nanocomposite to yield the graphene-sulfur nanocomposite. Rechargeable-lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter of less than 50 nm.

  11. Low NOx combustion

    DOE Patents [OSTI]

    Kobayashi, Hisashi; Bool, III, Lawrence E.

    2008-10-21

    Combustion of hydrocarbon liquids and solids is achieved with less formation of NOx by feeding a small amount of oxygen into the fuel stream.

  12. Low NOx combustion

    DOE Patents [OSTI]

    Kobayashi; Hisashi , Bool, III; Lawrence E.

    2007-06-05

    Combustion of hydrocarbon liquids and solids is achieved with less formation of NOx by feeding a small amount of oxygen into the fuel stream.

  13. Ceramatec NOx Sensor and NOx Catalyst Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ceramatec NOx Sensor and NOx Catalyst Technologies Ceramatec NOx Sensor and NOx Catalyst Technologies 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Ceramatec, Inc., Advanced Ionic Technologies 2004_deer_nair.pdf (195.74 KB) More Documents & Publications Enhanced High Temperature Performance of NOx Storage/Reduction (NSR) Materials Pt-free, Perovskite-based Lean NOx Trap Catalysts Active Soot Filter Regeneration

  14. Elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, Maria; Hu, Zhicheng

    1993-01-01

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO.sub.2 -containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO.sub.2 to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO.sub.2 in the regenerator off gas stream to elemental sulfur in the presence of a catalyst.

  15. Elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, M.; Zhicheng Hu.

    1993-09-07

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.

  16. DeNOx characteristics using two staged radical injection techniques

    SciTech Connect (OSTI)

    Kambara, S.; Kumano, Y.; Yukimura, K.

    2009-06-15

    Ammonia radical injection using pulsed dielectric barrier discharge (DBD) plasma has been investigated as a means to control NOx emissions from combustors. When DBD plasma-generated radicals (NH{sub 2}, NH, N, and H) are injected into a flue gas containing nitrogen oxide (NOx), NOx is removed efficiently by chain reactions in the gas phase. However, because the percentage of NOx removal gradually decreases with increasing oxygen concentrations beyond 1% O{sub 2}, improvement of the DeNOx (removal of nitrogen oxide) characteristics at high O{sub 2} concentrations was necessary for commercial combustors. A two-staged injection of the DeNOx agent was developed based on the detailed mechanisms of electron impact reactions and gas phase reactions. A concentration of H radical was observed to play an important role in NOx formation and removal. The effects of applied voltages, oxygen concentrations, and reaction temperatures on NOx removal were investigated under normal and staged injection. NOx removal was improved by approximately 20% using staged injection at O{sub 2} concentrations of 1 to 4%.

  17. Process for reducing sulfur in coal char

    DOE Patents [OSTI]

    Gasior, Stanley J.; Forney, Albert J.; Haynes, William P.; Kenny, Richard F.

    1976-07-20

    Coal is gasified in the presence of a small but effective amount of alkaline earth oxide, hydroxide or carbonate to yield a char fraction depleted in sulfur. Gases produced during the reaction are enriched in sulfur compounds and the alkaline earth compound remains in the char fraction as an alkaline earth oxide. The char is suitable for fuel use, as in a power plant, and during combustion of the char the alkaline earth oxide reacts with at least a portion of the sulfur oxides produced from the residual sulfur contained in the char to further lower the sulfur content of the combustion gases.

  18. ADVANCED SULFUR CONTROL CONCEPTS

    SciTech Connect (OSTI)

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  19. NOx Reduction with Natural Gas for Lean Large-Bore Engine Applications Using Lean NOx Trap Aftertreatment

    SciTech Connect (OSTI)

    Parks, JE

    2005-02-11

    Large-bore natural gas engines are used for distributed energy and gas compression since natural gas fuel offers a convenient and reliable fuel source via the natural gas pipeline and distribution infrastructure. Lean engines enable better fuel efficiency and lower operating costs; however, NOx emissions from lean engines are difficult to control. Technologies that reduce NOx in lean exhaust are desired to enable broader use of efficient lean engines. Lean NOx trap catalysts have demonstrated greater than 90% NOx reduction in lean exhaust from engines operating with gasoline, diesel, and natural gas fuels. In addition to the clean nature of the technology, lean NOx traps reduce NOx with the fuel source of the engine thereby eliminating the requirement for storage and handling of secondary fuels or reducing agents. A study of lean NOx trap catalysts for lean natural gas engines is presented here. Testing was performed on a Cummins C8.3G (CG-280) engine on a motor dynamometer. Lean NOx trap catalysts were tested for NOx reduction performance under various engine operating conditions, and the utilization of natural gas as the reductant fuel source was characterized. Engine test results show that temperature greatly affects the catalytic processes involved, specifically methane oxidation and NOx storage on the lean NOx trap. Additional studies on a bench flow reactor demonstrate the effect of precious metal loading (a primary cost factor) on lean NOx trap performance at different temperatures. Results and issues related to the potential of the lean NOx trap technology for large-bore engine applications will be discussed.

  20. Novel Catalysts for Nox Reduction with Reductants Produced in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ID:9130) Project ID:18519 Development of NOx Adsorber System for Dodge Ram 2007 Heavy duty Pickup Truck Progress on Acidic Zirconia Mixed Oxides for Efficient NH3-SCR Catalysis

  1. Impact of Lubricant Formulation on the Performance of NOx Adsorber Catalysts (Presentation)

    SciTech Connect (OSTI)

    Whitacre, S. D.

    2005-08-25

    Discusses the impact of lubricant formulation on the performance of oxides of nitrogen (NOx) Adsorber Catalysts, including background/motivation for study, experimental design, and results.

  2. Doped Yttrium Chromite-Ceria Composite as a Redox-Stable and Sulfur-Tolerant Anode for Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Yoon, Kyung J.; Coyle, Christopher A.; Marina, Olga A.

    2011-12-11

    A Ca- and Co-doped yttrium chromite (YCCC) - samaria-doped ceria (SDC) composite was studied in relation to a potential use as a solid oxide fuel cell (SOFC) anode material. Tests performed using the yttria-stabilized zirconia (YSZ) electrolyte-supported cells revealed that the electrocatalytic activity of the YCCC-SDC anode towards hydrogen oxidation at 800 C was comparable to that of the Ni-YSZ anode. In addition, the YCCC-SDC anode exhibited superior sulfur tolerant characteristics showing less than 10% increase in a polarization resistance, fully reversible, upon exposure to 20 ppm H2S at 800 C. No performance degradation was observed during multiple reduction-oxidation (redox) cycles when the anode was intentionally exposed to the air environment followed by the reduction in hydrogen. The redox tolerance of the YCCC-SDC anode was attributed to the dimensional and chemical stability of the YCCC exhibiting minimal isothermal chemical expansion upon redox cycling.

  3. A Damage Model for Degradation in the Electrodes of solid oxide fuel cells: Modeling the effects of sulfur and antimony in the anode

    SciTech Connect (OSTI)

    Ryan, Emily M.; Xu, Wei; Sun, Xin; Khaleel, Mohammad A.

    2012-07-15

    Over their designed lifetime, high temperature electrochemical devices, such as solid oxide fuel cells (SOFCs), can experience degradation in their electrochemical performance due to environmental conditions, operating conditions, contaminants, and other factors. Understanding the different degradation mechanisms in SOFCs and other electrochemical devices is essential to reducing performance degradation and increasing the lifetime of these devices. In this paper SOFC degradation mechanisms are discussed and a damage model is presented which describes performance degradation in SOFCs due to damage or degradation in the electrodes of the SOFC. A degradation classification scheme is presented that divides the various SOFC electrode degradation mechanisms into categories based on their physical effects on the SOFC. The application of the damage model and the classification method is applied to sulfur poisoning and antimony poisoning which occur in the anode of SOFCs. For sulfur poisoning the model is able to predict the degradation in SOFC performance based on the operating temperature and voltage of the fuel cell and the concentration of gaseous sulfur species in the anode. For antimony poisoning the effects of nickel removal from the anode matrix is investigated.

  4. Catalytic conversion of sulfur dioxide and trioxide

    SciTech Connect (OSTI)

    Solov'eva, E.L.; Shenfel'd, B.E.; Kuznetsova, S.M.; Khludenev, A.G.

    1987-11-10

    The reclamation and utilization of sulfur-containing wastes from the flue gas of fossil-fuel power plants and the subsequent reduction in sulfur emission is addressed in this paper. The authors approach this problem from the standpoint of the catalytic oxidation of sulfur dioxide on solid poison-resistant catalysts with subsequent sorption of the sulfur trioxide and its incorporation into the manufacture of sulfuric acid. The catalyst they propose is a polymetallic dust-like waste from the copper-smelting industry comprised mainly of iron and copper oxides. Experiments with this catalyst were carried out using multifactorial experiment planning.

  5. Cost Analysis of NOx Control Alternatives for Stationary Gas Turbines,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    November 1999 | Department of Energy Cost Analysis of NOx Control Alternatives for Stationary Gas Turbines, November 1999 Cost Analysis of NOx Control Alternatives for Stationary Gas Turbines, November 1999 The use of stationary gas turbines for power generation has been growing rapidly with continuing trends predicted well into the future. This study compares the costs of the principal emission control technologies being employed or nearing commercialization for control of oxides of

  6. Diesel DeNOx Catalyst - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Industrial Technologies Industrial Technologies Advanced Materials Advanced Materials Find More Like This Return to Search Diesel DeNOx Catalyst New Argonne-Developed Catalyst Can Reduce NOx Emissions From Diesel Engines by 80-85% Argonne National Laboratory Contact ANL About This Technology Inventor Chris Marshall shows the new catalyst that could help remove nitrogen oxides from diesel engine exhaust while saving energy. Inventor Chris Marshall shows the

  7. APBF-DEC NOx Adsorber/DPF Project: Light-Duty Passenger Car Platform

    SciTech Connect (OSTI)

    Tomazic, D; Tatur, M; Thornton, M

    2003-08-24

    A 1.9L turbo direct injection (TDI) diesel engine was modified to achieve the upcoming Tier 2 Bin 5 emission standard in combination with a NOx adsorber catalyst (NAC) and a diesel particulate filter (DPF). The primary objective for developing this test bed is to investigating the effects of different fuel sulfur contents on the performance of an advanced emission control system (ECS) in a light-duty application. During the development process, the engine-out emissions were minimized by applying a state-of-the-art combustion system in combination with cooled exhaust gas recirculation (EGR). The subsequent calibration effort resulted in emission levels requiring 80-90 percent nitrogen-oxide (NOx) and particulate matter (PM) conversion rates by the corresponding ECS. The strategy development included ean/rich modulation for NAC regeneration, as well as, the desulfurization of the NAC and the regeneration of the DPF. Two slightly different ECS were investigated and calibrated. The initial vehicle results in an Audi A4 station wagon over the federal test procedure (FTP), US 06, and the highway fuel economy test (HFET) cycle indicate the potential of these configuration to meet the future Tier 2 emission standard.

  8. Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-Duty Engine in Conjunction with Ultralow-Sulfur Fuel | Department of Energy Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-Duty Engine in Conjunction with Ultralow-Sulfur Fuel Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-Duty Engine in

  9. Impact of Sulfation and Desulfation on NOx Reduction Using Cu-Chabazite SCR Catalysts

    SciTech Connect (OSTI)

    Brookshear, Daniel W; Nam, Jeong-Gil; Nguyen, Ke; Toops, Todd J; Binder, Andrew J

    2015-01-01

    This bench reactor study investigates the impact of gaseous sulfur on the NOx reduction activity of Cu-chabazite SCR (Cu-CHA) catalysts at SO2 concentrations representative of marine diesel engine exhaust. After two hours of 500 ppm SO2 exposure at 250 and 400 C in the simulated diesel exhaust gases, the NOx reduction activity of the sulfated Cu-CHA SCR catalysts is severely degraded at evaluation temperatures below 250 C; however, above 250 C the impact of sulfur exposure is minimal. EPMA shows that sulfur is located throughout the washcoat and along the entire length of the sulfated samples. Interestingly, BET measurements reveal that the sulfated samples have a 20% decrease in surface area. Furthermore, the sulfated samples show a decrease in NOx/nitrate absorption during NO exposure in a DRIFTS reactor which suggests that Cu sites in the catalyst are blocked by the presence of sulfur. SO2 exposure also results in an increase in NH3 storage capacity, possibly due to the formation of ammonium sulfate species in the sulfated samples. In all cases, lean thermal treatments as low as 500 C reverse the effects of sulfur exposure and restore the NOx reduction activity of the Cu-CHA catalyst to that of the fresh condition.

  10. Impact of sulfation and desulfation on NOx reduction using Cu-chabazite SCR catalysts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brookshear, Daniel William; Nam, Jeong -Gil; Nguyen, Ke; Toops, Todd J.; Binder, Andrew J.

    2015-06-05

    This bench reactor study investigates the impact of gaseous sulfur on the NOx reduction activity of Cu-chabazite SCR (Cu-CHA) catalysts at SO2 concentrations representative of marine diesel engine exhaust. After two hours of 500 ppm SO2 exposure at 250 and 400 °C in the simulated diesel exhaust gases, the NOx reduction activity of the sulfated Cu-CHA SCR catalysts is severely degraded at evaluation temperatures below 250 °C; however, above 250 °C the impact of sulfur exposure is minimal. EPMA shows that sulfur is located throughout the washcoat and along the entire length of the sulfated samples. Interestingly, BET measurements revealmore » that the sulfated samples have a 20% decrease in surface area. Moreover, the sulfated samples show a decrease in NOx/nitrate absorption during NO exposure in a DRIFTS reactor which suggests that Cu sites in the catalyst are blocked by the presence of sulfur. SO2 exposure also results in an increase in NH3 storage capacity, possibly due to the formation of ammonium sulfate species in the sulfated samples. In all cases, lean thermal treatments as low as 500 °C reverse the effects of sulfur exposure and restore the NOx reduction activity of the Cu-CHA catalyst to that of the fresh condition.« less

  11. Understanding NOx SCR Mechanism and Activity on Cu/Chabazite Structures throughout the Catalyst Life Cycle

    SciTech Connect (OSTI)

    Ribeiro, Fabio; Delgass, Nick; Gounder, Rajmani; Schneider, William F.; Miller, Jeff; Yezerets, Aleksey; McEwen, Jean-Sabin; Peden, Charles HF; Howden, Ken

    2014-12-09

    Oxides of nitrogen (NOx) compounds contribute to acid rain and photochemical smog and have been linked to respiratory ailments. NOx emissions regulations continue to tighten, driving the need for high performance, robust control strategies. The goal of this project is to develop a deep, molecular level understanding of the function of Cu-SSZ-13 and Cu-SAPO-34 materials that catalyze the SCR of NOx with NH3.

  12. Ammonia reactions with the stored oxygen in a commercial lean NOx trap catalyst

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bartova, Sarka; Mracek, David; Koci, Petr; Marek, Milos; Choi, Jae -Soon

    2014-10-12

    Ammonia is an important intermediate of the NOx reduction in a NOx storage and reduction catalyst (aka lean NOx trap). NH3 formed under rich conditions in the reduced front part of the catalyst is transported by convection downstream to the unregenerated (still oxidized) zone of the catalyst, where it further reacts with the stored oxygen and NOx. In this paper, the kinetics and selectivity of NH3 reactions with the stored oxygen are studied in detail with a commercial Ba-based NOx storage catalyst containing platinum group metals (PGM), Ba and Ce oxides. Furthermore, steady-state NH3 decomposition, NH3 oxidation by O2 andmore » NO, and N2O decomposition are examined in light-off experiments. Periodic lean/rich cycling is measured first with O2 and NH3, and then with NOx + O2 and NH3 to discriminate between the NH3 reactions with the stored oxygen and the stored NOx. The reaction of NH3 with the stored O2 is highly selective towards N2, however a certain amount of NOx and N2O is also formed. The formed NOx by-product is efficiently adsorbed on the NOx storage sites such that the NOx is not detected at the reactor outlet except at high temperatures. The stored NOx reacts with NH3 feed in the next rich phase, contributing to the N2O formation. Water inhibits the reactions of NH3 with the stored oxygen. On the contrary, the presence of CO2 increases the NH3 consumption. Furthermore, CO2 is able to provide additional oxygen for NH3 oxidation, forming –CO in analogy to the reverse water gas shift reaction.« less

  13. Flexible CHP System with Low NOx, CO and VOC Emissions | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Flexible CHP System with Low NOx, CO and VOC Emissions Flexible CHP System with Low NOx, CO and VOC Emissions Introduction A combined heat and power (CHP) system can be a financially attractive energy option for many industrial and commercial facilities. This is particularly the case in areas of the country with high electricity rates. However, regions with air quality concerns often have strict limits on criteria pollutants, such as nitrogen oxide (NOx), carbon monoxide (CO), and

  14. Complete genome sequence of Thioalkalivibrio paradoxus type strain ARh 1T, an obligately chemolithoautotrophic haloalkaliphilic sulfur-oxidizing bacterium isolated from a Kenyan soda lake

    SciTech Connect (OSTI)

    Berben, Tom; Sorokin, Dimitry Y.; Ivanova, Natalia; Pati, Amrita; Kyrpides, Nikos; Goodwin, Lynne A.; Woyke, Tanja; Muyzer, Gerard

    2015-11-19

    Thioalkalivibrio paradoxus strain ARh 1T is a chemolithoautotrophic, non-motile, Gram-negative bacterium belonging to the Gammaproteobacteria that was isolated from samples of haloalkaline soda lakes. It derives energy from the oxidation of reduced sulfur compounds and is notable for its ability to grow on thiocyanate as its sole source of electrons, sulfur and nitrogen. The full genome consists of 3,756,729 bp and comprises 3,500 protein-coding and 57 RNA-coding genes. Moreover, this organism was sequenced as part of the community science program at the DOE Joint Genome Institute.

  15. Compact Potentiometric NOx Sensor | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potentiometric NOx Sensor Compact Potentiometric NOx Sensor 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation pm023_singh_2011_p.pdf (1.09 MB) More Documents & Publications Compact Potentiometric O2/NOx Sensor Compact Potentiometric NOx Sensor Compact Potentiometric NOx

  16. In situ derivation of sulfur activated TiO{sub 2} nano porous layers through pulse-micro arc oxidation technology

    SciTech Connect (OSTI)

    Bayati, M.R.; Golestani-Fard, F.; Center of Excellence for Advanced Materials, Iran University of Science and Technology, P.O. Box 16845-195, Tehran ; Moshfegh, A.Z.; Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 14588-89694, Tehran ; Molaei, Roya

    2011-10-15

    Highlights: {yields} S-TiO{sub 2} layers were grown by MAO technique under pulse current for the first time. {yields} Effect of growth parameters on chemical composition, topography, and morphology of the layers was studied. {yields} A correlation between photocatalytic performance and growth conditions was proposed. -- Abstract: Micro arc oxidation technique, as a facile and efficient process, was employed to grow sulfur doped titania porous layers. This research sheds light on the photocatalytic performance of the micro arc oxidized S-TiO{sub 2} nano-porous layers fabricated under pulse current. Morphological and topographical studies, performed by SEM and AFM techniques, revealed that increasing the frequency and/or decreasing the duty cycle resulted in formation of finer pores and smoother surfaces. XRD and XPS results showed that the layers consisted of anatase and rutile phases whose fraction was observed to change depending on the synthesis conditions. The highest anatase relative content was obtained at the frequency of 500 Hz and the duty cycle of 5%. Furthermore, photocatalytic activity of the layers was examined by measuring the decomposition rate of methylene blue under both ultraviolet and visible photo irradiations. Maximum photodegradation reaction rate constants over the pulse-grown S-TiO{sub 2} layers were respectively measured as 0.0202 and 0.0110 min{sup -1} for ultraviolet and visible irradiations.

  17. Three-Dimensional Composite Nanostructures for Lean NOx Emission Control |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace030_gao_2011_o.pdf (2.36 MB) More Documents & Publications Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Vehicle Technologies Office Merit Review 2015: Metal Oxide Nano-Array Catalysts for Low Temperature Diesel Oxidation Vehicle Technologies Office Merit Review 2016

  18. Process for removing sulfur from coal

    DOE Patents [OSTI]

    Aida, T.; Squires, T.G.; Venier, C.G.

    1983-08-11

    A process is disclosed for the removal of divalent organic and inorganic sulfur compounds from coal and other carbonaceous material. A slurry of pulverized carbonaceous material is contacted with an electrophilic oxidant which selectively oxidizes the divalent organic and inorganic compounds to trivalent and tetravalent compounds. The carbonaceous material is then contacted with a molten caustic which dissolves the oxidized sulfur compounds away from the hydrocarbon matrix.

  19. Process for removing sulfur from coal

    DOE Patents [OSTI]

    Aida, Tetsuo; Squires, Thomas G.; Venier, Clifford G.

    1985-02-05

    A process for the removal of divalent organic and inorganic sulfur compounds from coal and other carbonaceous material. A slurry of pulverized carbonaceous material is contacted with an electrophilic oxidant which selectively oxidizes the divalent organic and inorganic compounds to trivalent and tetravalent compounds. The carbonaceous material is then contacted with a molten caustic which dissolves the oxidized sulfur compounds away from the hydrocarbon matrix.

  20. Pt-free, Perovskite-based Lean NOx Trap Catalysts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pt-free, Perovskite-based Lean NOx Trap Catalysts Pt-free, Perovskite-based Lean NOx Trap Catalysts Perovskite-based lean NOx catalysts shown to achieve comparable NOx reduction performance as commercial platinum based counterpart deer10_qi.pdf (1.8 MB) More Documents & Publications Catalyst Design for Urea-less Passive Ammonia SCR Lean-Burn SIDI Aftertreatment System Emissions Control for Lean Gasoline Engines Vehicle Technologies Office Merit Review 2015: Metal Oxide Nano-Array Catalysts

  1. Further improvement of conventional diesel NOx aftertreatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Further improvement of conventional diesel NOx aftertreatment concepts as pathway for SULEV Further improvement of conventional diesel NOx aftertreatment concepts as pathway for ...

  2. NOx reduction aftertreatment system using nitrogen nonthermal plasma desorption

    SciTech Connect (OSTI)

    Okubo, M.; Inoue, M.; Kuroki, T.; Yamamoto, T.

    2005-08-01

    In the flue emission from an internal combustion system using diffusing combustion such as coal or oil fuel boiler, incinerator, or diesel engine, around 10% oxygen is usually included. It is difficult to reduce the NOx in the emission completely using catalysts or plasma alone because part of the NO is oxidized under an O{sub 2}-rich environment. In order to overcome these difficulties, we propose a new aftertreatment system of NOx included in the exhaust gas of the combustion system using nonthermal plasma (NTP) desorption and reduction. In this system, exchangeable adsorbent columns are equipped. As an initial step to realize such kind of aftertreatment system, the basic characteristics of the N{sub 2} NTP desorption and NOx reduction were examined experimentally using a pulse corona NTP reactor. After several adsorption/desorption processes, the amount of NOx adsorbed becomes equal to that of the NOx desorbed, that is, all the NO, was desorbed in a single desorption process. It is confirmed that the NOx complete reduction using N{sub 2} NTP desorption is possible not only for a simulated exhaust gas but for a real diesel engine gas. The effective specific energy density can be decreased down to 22 Wh/m{sup 3}.

  3. Metal-free g-C{sub 3}N{sub 4} photocatalyst by sulfuric acid activation for selective aerobic oxidation of benzyl alcohol under visible light

    SciTech Connect (OSTI)

    Zhang, Ligang; Liu, Di; Guan, Jing; Chen, Xiufang; Guo, Xingcui; Zhao, Fuhua; Hou, Tonggang; Mu, Xindong

    2014-11-15

    Highlights: A novel visible-light-driven acid-modified g-C{sub 3}N{sub 4} was prepared. The texture, electronic and surface property were tuned by acid modification. Acid-modified g-C{sub 3}N{sub 4} shows much higher activity for photocatalytic activity. Acid sites on the surface of g-C{sub 3}N{sub 4} favor efficient charge separation. - Abstract: In this work, modification of graphitic carbon nitride photocatalyst with acid was accomplished with a facile method through reflux in different acidic substances. The g-C{sub 3}N{sub 4}-based material was found to be a metal-free photocatalyst useful for the selective oxidation of benzyl alcohol with dioxygen as the oxidant under visible light irradiation. Acid modification had a significant influence on the photocatalytic performance of g-C{sub 3}N{sub 4}. Among all acid tested, sulfuric acid-modified g-C{sub 3}N{sub 4} showed the highest catalytic activity and gave benzaldehyde in 23% yield for 4 h under visible light irradiation, which was about 2.5 times higher than that of g-C{sub 3}N{sub 4}. The acid modification effectively improved surface area, reduced structural size, enlarged band gap, enhanced surface chemical state, and facilitated photoinduced charge separation, contributing to the enhanced photocatalytic activity. It is hoped that our work can open promising prospects for the utilization of metal free g-C{sub 3}N{sub 4}-based semiconductor as visible-light photocatalyst for selective organic transformation.

  4. Graphene-sulfur nanocomposites for rechargeable lithium-sulfur...

    Office of Scientific and Technical Information (OSTI)

    Title: Graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes Rechargeable lithium-sulfur batteries having a cathode that includes a graphene-sulfur ...

  5. Uses of lunar sulfur

    SciTech Connect (OSTI)

    Vaniman, D.T.; Pettit, D.R.; Heiken, G.

    1988-01-01

    Sulfur and sulfur compounds have a wide range of applications for their fluid, electrical, chemical and biochemical properties. Although low in abundance on the Moon (/approximately/0.1% in mare soils), sulfur is surface-correlated and relatively extractable. Co-production of sulfur during oxygen extraction from ilmenite-rich soils could yield sulfur in masses up to 10% of the mass of oxygen produced. Sulfur deserves serious consideration as a lunar resource. 29 refs., 3 figs.

  6. Measurement and Characterization of Lean NOx Adsorber Regeneration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lean NOx Adsorber Regeneration and Desulfation and Controlling NOx from Multi-mode Measurement and Characterization of Lean NOx Adsorber Regeneration and Desulfation and ...

  7. Sulfuric acid-sulfur heat storage cycle

    DOE Patents [OSTI]

    Norman, John H.

    1983-12-20

    A method of storing heat is provided utilizing a chemical cycle which interconverts sulfuric acid and sulfur. The method can be used to levelize the energy obtained from intermittent heat sources, such as solar collectors. Dilute sulfuric acid is concentrated by evaporation of water, and the concentrated sulfuric acid is boiled and decomposed using intense heat from the heat source, forming sulfur dioxide and oxygen. The sulfur dioxide is reacted with water in a disproportionation reaction yielding dilute sulfuric acid, which is recycled, and elemental sulfur. The sulfur has substantial potential chemical energy and represents the storage of a significant portion of the energy obtained from the heat source. The sulfur is burned whenever required to release the stored energy. A particularly advantageous use of the heat storage method is in conjunction with a solar-powered facility which uses the Bunsen reaction in a water-splitting process. The energy storage method is used to levelize the availability of solar energy while some of the sulfur dioxide produced in the heat storage reactions is converted to sulfuric acid in the Bunsen reaction.

  8. Enhanced High Temperature Performance of NOx Reduction Catalyst Materials

    SciTech Connect (OSTI)

    Gao, Feng; Kim, Do Heui; Luo, Jinyong; Muntean, George G.; Peden, Charles HF; Howden, Ken; Currier, Neal; Kamasamudram, Krishna; Kumar, Ashok; Li, Junhui; Stafford, Randy; Yezerets, Aleksey; Castagnola, Mario; Chen, Hai Ying; Hess, Howard ..

    2012-12-31

    Two primary NOx after-treatment technologies have been recognized as the most promising approaches for meeting stringent NOx emission standards for diesel vehicles within the Environmental Protection Agencys (EPAs) 2007/2010 mandated limits, NOx Storage Reduction (NSR) and NH3 selective catalytic reduction (SCR); both are, in fact being commercialized for this application. However, in looking forward to 2015 and beyond with expected more stringent regulations, the continued viability of the NSR technology for controlling NOx emissions from lean-burn engines such as diesels will require at least two specific, significant and inter-related improvements. First, it is important to reduce system costs by, for example, minimizing the precious metal content while maintaining, even improving, performance and long-term stability. A second critical need for future NSR systems, as well as for NH3 SCR, will be significantly improved higher and lower temperature performance and stability. Furthermore, these critically needed improvements will contribute significantly to minimizing the impacts to fuel economy of incorporating these after-treatment technologies on lean-burn vehicles. To meet these objectives will require, at a minimum an improved scientific understanding of the following things: i) the various roles for the precious and coinage metals used in these catalysts; ii) the mechanisms for these various roles; iii) the effects of high temperatures on the active metal performance in their various roles; iv) mechanisms for higher temperature NOx storage performance for modified and/or alternative storage materials; v) the interactions between the precious metals and the storage materials in both optimum NOx storage performance and long term stability; vi) the sulfur adsorption and regeneration mechanisms for NOx reduction materials; vii) materials degradation mechanisms in CHA-based NH3 SCR catalysts. The objective of this CRADA project between PNNL and Cummins, Inc. is

  9. USE OF A DIESEL FUEL PROCESSOR FOR RAPID AND EFFICIENT REGENERATION OF SINGLE LEG NOX ADSORBER SYSTEMS

    SciTech Connect (OSTI)

    Betta, R; Cizeron, J; Sheridan, D; Davis, T

    2003-08-24

    Lean NOx adsorber systems are one of the primary candidate technologies for the control of NOx from diesel engines to meet the 2007-2010 US emissions regulations, which require a 90% reduction of NOx from the 2004 regulations. Several of the technical challenges facing this technology are regeneration at low exhaust temperatures and the efficient use of diesel fuel to minimize fuel penalty. A diesel processor system has been developed and tested in a single leg NOx adsorber configuration on a diesel engine test stand. During NOx adsorber regeneration, this fuel processor system performs reduces the exhaust O2 level to zero and efficiently processes the diesel fuel to H2 and CO. Combined with a Nox adsorber catalyst, this system has demonstrated NOx reduction above 90%, regeneration of the NOx adsorber H2/CO pulses as short as 1 second and fuel penalties in the 3 to 4% range at 50% load. This fuel processor system can also be used to provide the desulfation cycle required with sulfur containing fuels as well as providing thermal management for PM filter regeneration.

  10. DOE - Fossil Energy: Knocking the NOx Out of Coal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3-Knocking Out NOx An Energy Lesson Cleaning Up Coal Knocking the NOx Out of Coal - How NOx Forms - Formation of NOx - Air is mostly nitrogen molecules (green in the above diagram) ...

  11. Method for reducing the sulfur content of a sulfur-containing hydrocarbon stream

    DOE Patents [OSTI]

    Mahajan, Devinder

    2004-12-28

    The sulfur content of a liquid hydrocarbon stream is reduced under mild conditions by contracting a sulfur-containing liquid hydrocarbon stream with transition metal particles containing the transition metal in a zero oxidation state under conditions sufficient to provide a hydrocarbon product having a reduced sulfur content and metal sulfide particles. The transition metal particles can be produced in situ by adding a transition metal precursor, e.g., a transition metal carbonyl compound, to the sulfur-containing liquid feed stream and sonicating the feed steam/transition metal precursor combination under conditions sufficient to produce the transition metal particles.

  12. Innovative Clean Coal Technology (ICCT). Demonstration of Selective Catalytic Reduction (SCR) technology for the control of Nitrogen Oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, third and fourth quarters 1995

    SciTech Connect (OSTI)

    1996-05-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese, and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor.

  13. NOx sensor development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    sensor development NOx sensor development pm005_glass_2012_o.pdf (835.92 KB) More Documents & Publications NOxsensor development NOx Sensor Development Vehicle Technologies Office: 2013 Propulsion Materials R&D Annual Progress Report

  14. Fundamental limits on gas-phase chemical reduction of NOx in a plasma

    SciTech Connect (OSTI)

    Penetrante, B.M.; Hsiao, M.C.; Merritt, B.T.; Vogtlin, G.E.

    1997-12-31

    In the plasma, the electrons do not react directly with the NOx molecules. The electrons collide mainly with the background gas molecules like N{sub 2}, O{sub 2} and H{sub 2}O. Electron impact on these molecules result partly in dissociation reactions that produce reactive species like N, O and OH. The NOx in the engine exhaust gas initially consist mostly of NO. The ground state nitrogen atom, N, is the only species that could lead to the chemical reduction of NO to N{sub 2}. The O radical oxidizes NO to NO{sub 2} leaving the same amount of NOx. The OH radical converts NO{sub 2} to nitric acid. Acid products in the plasma can easily get adsorbed on surfaces in the plasma reactor and in the pipes. When undetected, the absence of these oxidation products can often be mistaken for chemical reduction of NOx. In this paper the authors will examine the gas-phase chemical reduction of NOx. They will show that under the best conditions, the plasma can chemically reduce 1.6 grams of NOx per brake-horsepower-hour [g(NOx)/bhp-hr] when 5% of the engine output energy is delivered to the plasma.

  15. Innovative Clean Coal Technology (ICCT). Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers: Volume 1. Final report

    SciTech Connect (OSTI)

    1996-10-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO.) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO. to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal- fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: 1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels. 2) performance of the technology and effects on the balance-of- plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. 3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacturer under typical high-sulfur coal-fired utility operating conditions. These uncertainties were explored by operating nine small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. In addition, the test facility operating experience provided a basis for an economic study investigating the implementation of SCR technology.

  16. Innovative Clean Coal Technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, third and fourth quarters 1994

    SciTech Connect (OSTI)

    1995-11-01

    The objective of this project is to demonstrate and evaluate commercially available selective catalytic reduction (SCR) catalysts from U.S., Japanese, and European catalyst suppliers on a high-sulfur U.S. Coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to form nitrogen and water vapor. Although SCR is widely practiced in Japan and European gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; performance of a wide variety of SCR catalyst compositions, geometries, and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small- scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. The demonstration is being performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida. The project is funded by the U.S. Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), the Electric Power Research Institute (EPRI), and Ontario Hydro. SCS is the participant responsible for managing al aspects of this project. 1 ref., 69 figs., 45 tabs.

  17. Response of fine particulate matter to emission changes of oxides of nitrogen and anthropogenic volatile organic compounds in the eastern United States

    SciTech Connect (OSTI)

    Alexandra P. Tsimpidi; Vlassis A. Karydis; Spyros N. Pandis

    2008-11-15

    A three-dimensional chemical transport model (Particulate Matter Comprehensive Air Quality Model with Extensions) is used to investigate changes in fine particle (PM2.5) concentrations in response to 50% emissions changes of oxides of nitrogen (NOx) and anthropogenic volatile organic compounds (VOCs) during July 2001 and January 2002 in the eastern United States. The reduction of NOx emissions by 50% during the summer results in lower average oxidant levels and lowers PM2.5 (8% on average), mainly because of reductions of sulfate (9-11%), nitrate (45-58%), and ammonium (7-11%). The organic particulate matter (PM) slightly decreases in rural areas, whereas it increases in cities by a few percent when NOx is reduced. Reduction of NOx during winter causes an increase of the oxidant levels and a rather complicated response of the PM components, leading to small net changes. Sulfate increases (8-17%), nitrate decreases (18-42%), organic PM slightly increases, and ammonium either increases or decreases a little. The reduction of VOC emissions during the summer causes on average a small increase of the oxidant levels and a marginal increase in PM2.5. This small net change is due to increases in the inorganic components and decreases of the organic ones. Reduction of VOC emissions during winter results in a decrease of the oxidant levels and a 5-10% reduction of PM2.5 because of reductions in nitrate (4-19%), ammonium (4-10%), organic PM (12-14%), and small reductions in sulfate. Although sulfur dioxide (SO{sub 2}) reduction is the single most effective approach for sulfate control, the coupled decrease of SO{sub 2} and NOx emissions in both seasons is more effective in reducing total PM2.5 mass than the SO{sub 2} reduction alone. 34 refs., 7 figs., 1 tab.

  18. Catalyst for elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, M.; Liu, W.

    1995-01-24

    A catalytic reduction process is described for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides high activity and selectivity, as well as stability in the reaction atmosphere, for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over a metal oxide composite catalyst having one of the following empirical formulas: [(FO[sub 2])[sub 1[minus]n](RO)[sub n

  19. Method And Apparatus For Regenerating Nox Adsorbers

    DOE Patents [OSTI]

    Driscoll, J. Joshua; Endicott, Dennis L.; Faulkner, Stephen A.; Verkiel, Maarten

    2006-03-28

    Methods and apparatuses for regenerating a NOx adsorber coupled with an exhaust of an engine. An actuator drives a throttle valve to a first position when regeneration of the NOx adsorber is desired. The first position is a position that causes the regeneration of the NOx adsorber. An actuator drives the throttle valve to a second position while regeneration of the NOx adsorber is still desired. The second position being a position that is more open than the first position and operable to regenerate a NOx adsorber.

  20. Controlling NOx emission from industrial sources

    SciTech Connect (OSTI)

    Srivastava, R.K.; Nueffer, W.; Grano, D.; Khan, S.; Staudt, J.E.; Jozewicz, W.

    2005-07-01

    A number of regulatory actions focused on reducing NOx emissions from stationary combustion sources have been taken in the United States in the last decade. These actions include the Acid Rain NOx regulations, the Ozone Transport Commission's NOx Budget Program, and the NOx SIP Call rulemakings. In addition to these regulations, the recent Interstate Air Quality Rulemaking proposal and other bills in the Congress are focusing on additional reductions of NOx. Industrial combustion sources accounted for about 18016 of NOx emissions in the United States in 2000 and constituted the second largest emitting source category within stationary sources, only behind electric utility sources. Based on these data, reduction of NOx emissions from industrial combustion sources is an important consideration in efforts undertaken to address the environmental concerns associated with NOx. This paper discusses primary and secondary NOx control technologies applicable to various major categories of industrial sources. The sources considered in this paper include large boilers, furnaces and fired heaters, combustion turbines, large IC engines, and cement kilns. For each source category considered in this paper, primary NOx controls are discussed first, followed by a discussion of secondary NOx controls.

  1. SELECTIVE NOx RECIRCULATION FOR STATIONARY LEAN-BURN NATURAL GAS ENGINES

    SciTech Connect (OSTI)

    Nigel Clark; Gregory Thompson; Richard Atkinson; Chamila Tissera; Matt Swartz; Emre Tatli; Ramprabhu Vellaisamy

    2005-01-01

    The research program conducted at the West Virginia University Engine and Emissions Research Laboratory (EERL) is working towards the verification and optimization of an approach to remove nitric oxides from the exhaust gas of lean burn natural gas engines. This project was sponsored by the US Department of Energy, National Energy Technology Laboratory (NETL) under contract number: DE-FC26-02NT41608. Selective NOx Recirculation (SNR) involves three main steps. First, NOx is adsorbed from the exhaust stream, followed by periodic desorption from the aftertreatment medium. Finally the desorbed NOx is passed back into the intake air stream and fed into the engine, where a percentage of the NOx is decomposed. This reporting period focuses on the NOx decomposition capability in the combustion process. Although researchers have demonstrated NOx reduction with SNR in other contexts, the proposed program is needed to further understand the process as it applies to lean burn natural gas engines. SNR is in support of the Department of Energy goal of enabling future use of environmentally acceptable reciprocating natural gas engines through NOx reduction under 0.1 g/bhp-hr. The study of decomposition of oxides of nitrogen (NOx) during combustion in the cylinder was conducted on a 1993 Cummins L10G 240 hp lean burn natural gas engine. The engine was operated at different air/fuel ratios, and at a speed of 800 rpm to mimic a larger bore engine. A full scale dilution tunnel and analyzers capable of measuring NOx, CO{sub 2}, CO, HC concentrations were used to characterize the exhaust gas. Commercially available nitric oxide (NO) was used to mimic the NOx stream from the desorption process through a mass flow controller and an injection nozzle. The same quantity of NOx was injected into the intake and exhaust line of the engine for 20 seconds at various steady state engine operating points. NOx decomposition rates were obtained by averaging the peak values at each set point minus

  2. Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines

    SciTech Connect (OSTI)

    Nigel N. Clark

    2006-12-31

    Nitric oxide (NO) and nitrogen dioxide (NO2) generated by internal combustion (IC) engines are implicated in adverse environmental and health effects. Even though lean-burn natural gas engines have traditionally emitted lower oxides of nitrogen (NOx) emissions compared to their diesel counterparts, natural gas engines are being further challenged to reduce NOx emissions to 0.1 g/bhp-hr. The Selective NOx Recirculation (SNR) approach for NOx reduction involves cooling the engine exhaust gas and then adsorbing the NOx from the exhaust stream, followed by the periodic desorption of NOx. By sending the desorbed NOx back into the intake and through the engine, a percentage of the NOx can be decomposed during the combustion process. SNR technology has the support of the Department of Energy (DOE), under the Advanced Reciprocating Engine Systems (ARES) program to reduce NOx emissions to under 0.1 g/bhp-hr from stationary natural gas engines by 2010. The NO decomposition phenomenon was studied using two Cummins L10G natural gas fueled spark-ignited (SI) engines in three experimental campaigns. It was observed that the air/fuel ratio ({lambda}), injected NO quantity, added exhaust gas recirculation (EGR) percentage, and engine operating points affected NOx decomposition rates within the engine. Chemical kinetic model predictions using the software package CHEMKIN were performed to relate the experimental data with established rate and equilibrium models. The model was used to predict NO decomposition during lean-burn, stoichiometric burn, and slightly rich-burn cases with added EGR. NOx decomposition rates were estimated from the model to be from 35 to 42% for the lean-burn cases and from 50 to 70% for the rich-burn cases. The modeling results provided an insight as to how to maximize NOx decomposition rates for the experimental engine. Results from this experiment along with chemical kinetic modeling solutions prompted the investigation of rich-burn operating conditions

  3. SULFURIC ACID REMOVAL PROCESS EVALUATION: LONG-TERM RESULTS

    SciTech Connect (OSTI)

    Gary M. Blythe; Richard McMillan

    2002-07-03

    The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project is being co-funded by the U.S. DOE National Energy Technology Laboratory, under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corp., the Tennessee Valley Authority, and Dravo Lime, Inc. Sulfuric acid controls are becoming of increasing interest to power generators with coal-fired units for a number of reasons. Sulfuric acid is a Toxic Release Inventory species and can cause a variety of plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NO{sub x} control on many coal-fired plants, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project previously tested the effectiveness of furnace injection of four different calcium-and/or magnesium-based alkaline sorbents on full-scale utility boilers. These reagents were tested during four one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide byproduct slurry produced from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization system. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercial magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners, while the other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace, either across from the nose of the furnace or across from the pendant superheater tubes. After completing the four one- to two-week tests, the most promising sorbents were selected for

  4. Selective Catalaytic Oxidation of Hydrogen Sulfide to Elemental...

    Office of Scientific and Technical Information (OSTI)

    Selective Catalytic Oxidation of Hydrogen Sulfide to Elemental Sulfur from Coal-Derived ... catalysts, are readily poisoned by hydrogen sulfide (H 2 S), a sulfur contaminant, ...

  5. Process for production of synthesis gas with reduced sulfur content

    DOE Patents [OSTI]

    Najjar, Mitri S.; Corbeels, Roger J.; Kokturk, Uygur

    1989-01-01

    A process for the partial oxidation of a sulfur- and silicate-containing carbonaceous fuel to produce a synthesis gas with reduced sulfur content which comprises partially oxidizing said fuel at a temperature in the range of 1800.degree.-2200.degree. F. in the presence of a temperature moderator, an oxygen-containing gas and a sulfur capture additive which comprises an iron-containing compound portion and a sodium-containing compound portion to produce a synthesis gas comprising H.sub.2 and CO with a reduced sulfur content and a molten slag which comprises (i) a sulfur-containing sodium-iron silicate phase and (ii) a sodium-iron sulfide phase. The sulfur capture additive may optionally comprise a copper-containing compound portion.

  6. Sulfur control in ion-conducting membrane systems

    DOE Patents [OSTI]

    Stein, VanEric Edward; Richards, Robin Edward; Brengel, David Douglas; Carolan, Michael Francis

    2003-08-05

    A method for controlling the sulfur dioxide partial pressure in a pressurized, heated, oxygen-containing gas mixture which is contacted with an ion-conducting metallic oxide membrane which permeates oxygen ions. The sulfur dioxide partial pressure in the oxygen-depleted non-permeate gas from the membrane module is maintained below a critical sulfur dioxide partial pressure, p.sub.SO2 *, to protect the membrane material from reacting with sulfur dioxide and reducing the oxygen flux of the membrane. Each ion-conducting metallic oxide material has a characteristic critical sulfur dioxide partial pressure which is useful in determining the required level of sulfur removal from the feed gas and/or from the fuel gas used in a direct-fired feed gas heater.

  7. NOx Sensor Development

    SciTech Connect (OSTI)

    Woo, L Y; Glass, R S

    2010-11-01

    NO{sub x} compounds, specifically NO and NO{sub 2}, are pollutants and potent greenhouse gases. Compact and inexpensive NO{sub x} sensors are necessary in the next generation of diesel (CIDI) automobiles to meet government emission requirements and enable the more rapid introduction of more efficient, higher fuel economy CIDI vehicles. Because the need for a NO{sub x} sensor is recent and the performance requirements are extremely challenging, most are still in the development phase. Currently, there is only one type of NO{sub x} sensor that is sold commercially, and it seems unlikely to meet more stringent future emission requirements. Automotive exhaust sensor development has focused on solid-state electrochemical technology, which has proven to be robust for in-situ operation in harsh, high-temperature environments (e.g., the oxygen stoichiometric sensor). Solid-state sensors typically rely on yttria-stabilized zirconia (YSZ) as the oxygen-ion conducting electrolyte and then target different types of metal or metal-oxide electrodes to optimize the response. Electrochemical sensors can be operated in different modes, including amperometric (a current is measured) and potentiometric (a voltage is measured), both of which employ direct current (dc) measurements. Amperometric operation is costly due to the electronics necessary to measure the small sensor signal (nanoampere current at ppm NO{sub x} levels), and cannot be easily improved to meet the future technical performance requirements. Potentiometric operation has not demonstrated enough promise in meeting long-term stability requirements, where the voltage signal drift is thought to be due to aging effects associated with electrically driven changes, both morphological and compositional, in the sensor. Our approach involves impedancemetric operation, which uses alternating current (ac) measurements at a specified frequency. The approach is described in detail in previous reports and several publications

  8. NOX REDUCTION FOR LEAN EXHAUST USING PLASMA ASSISTED CATALYSIS

    SciTech Connect (OSTI)

    Bhatt, B.

    2000-08-20

    Currently CARB estimates on road diesel vehicles contribute 50% of the NOX and 78% of the particulates being discharged from mobile sources. Diesel emissions obviously must be reduced if future air quality targets are to be met. A critical technological barrier exists because there are no commercial technologies available, which can reduce NOX from diesel (lean), exhaust containing 5-15% O2 concentration. One promising approach to reducing NOX and particulates from diesel exhaust is to use a combination of plasma with catalyst. Plasma can be generated thermally or non-thermally. Thermal plasma is formed by heating the system to an exceedingly high temperature (>2000 C). High temperature requirements for plasma makes thermal plasma inefficient and requires skillful thermal management and hence is considered impractical for mobile applications. Non-thermal plasma directs electrical energy into the creation of free electrons, which in turn react with gaseous species thus creating plasma. A combination of non-thermal plasma with catalysts can be referred to Plasma Assisted Catalysts or PAC. PAC technology has been demonstrated in stationary sources where non-thermal plasma catalysis is carried out in presence of NH3 as a reductant. In stationary applications NO is oxidized to HNO3 and then into ammonium nitrate where it is condensed and removed. This approach is impractical for mobile application because of the ammonia requirement and the ultimate mechanism by which NOX is removed. However, if a suitable catalyst can be found which can use onboard fuel as reductant then the technology holds a considerable promise. NOX REDUCTION FOR LEAN EXHAUST USING PLASMA ASSISTED CATALYSIS Ralph Slone, B. Bhatt and Victor Puchkarev NOXTECH INC. In addition to the development of an effective catalyst, a non-thermal plasma reactor needs be scaled and demonstrated along with a reliable and cost effective plasma power source and onboard HC source needs to be proven. Under the work

  9. Method of burning sulfur-containing fuels in a fluidized bed boiler

    DOE Patents [OSTI]

    Jones, Brian C.

    1982-01-01

    A method of burning a sulfur-containing fuel in a fluidized bed of sulfur oxide sorbent wherein the overall utilization of sulfur oxide sorbent is increased by comminuting the bed drain solids to a smaller average particle size, preferably on the order of 50 microns, and reinjecting the comminuted bed drain solids into the bed. In comminuting the bed drain solids, particles of spent sulfur sorbent contained therein are fractured thereby exposing unreacted sorbent surface. Upon reinjecting the comminuted bed drain solids into the bed, the newly-exposed unreacted sorbent surface is available for sulfur oxide sorption, thereby increasing overall sorbent utilization.

  10. LOW NOx EMISSIONS IN A FUEL FLEXIBLE GAS TURBINE

    SciTech Connect (OSTI)

    Raymond Drnevich; James Meagher; Vasilis Papavassiliou; Troy Raybold; Peter Stuttaford; Leonard Switzer; Lee Rosen

    2004-08-01

    In alignment with Vision 21 goals, a study is presented here on the technical and economic potential for developing a gas turbine combustor that is capable of generating less that 2 ppm NOx emissions, firing on either coal synthesis gas or natural gas, and being implemented on new and existing systems. The proposed solution involves controlling the quantity of H2 contained in the fuel. The presence of H2 leads to increased flame stability such that the combustor can be operated at lower temperatures and produce less thermal NOx. Coal gas composition would be modified using a water gas shift converter, and natural gas units would implement a catalytic partial oxidation (CPOX) reactor to convert part of the natural gas feed to a syngas before fed back into the combustor. While both systems demonstrated technical merit, the economics involved in implementing such a system are marginal at best. Therefore, Praxair has decided not to pursue the technology any further at this time.

  11. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID REMOVAL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2004-01-01

    The objective of this project has been to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project was co-funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corporation, the Tennessee Valley Authority, and Carmeuse North America. Sulfuric acid controls are becoming of increased interest for coal-fired power generating units for a number of reasons. In particular, sulfuric acid can cause plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NOX control, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project tested the effectiveness of furnace injection of four different magnesium-based or dolomitic alkaline sorbents on full-scale utility boilers. These reagents were tested during one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide slurry byproduct from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercially available magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners. The other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests on two different units. The longer-term tests were conducted to confirm sorbent effectiveness over extended operation on two

  12. Small, Inexpensive Combined NOx Sensor and O2 Sensor

    SciTech Connect (OSTI)

    W. N. Lawless; C. F. Clark, Jr.

    2008-09-08

    It has been successfully demonstrated in this program that a zirconia multilayer structure with rhodium-based porous electrodes performs well as an amperometric NOx sensor. The sensitivity of the sensor bodies operating at 650 to 700 C is large, with demonstrated current outputs of 14 mA at 500 ppm NOx from sensors with 30 layers. The sensor bodies are small (4.5 x 4.2 x 3.1 mm), rugged, and inexpensive. It is projected the sensor bodies will cost $5 - $10 in production. This program has built on another successful development program for an oxygen sensor based on the same principles and sponsored by DOE. This oxygen sensor is not sensitive to NOx. A significant technical hurdle has been identified and solved. It was found that the 100% Rh electrodes oxidize rapidly at the preferred operating temperatures of 650 - 700 C, and this oxidation is accompanied by a volume change which delaminates the sensors. The problem was solved by using alloys of Rh and Pt. It was found that a 10%/90% Rh/Pt alloy dropped the oxidation rate of the electrodes by orders of magnitude without degrading the NOx sensitivity of the sensors, allowing long-term stable operation at the preferred operating temperatures. Degradation in the sensor output caused by temperature cycling was identified as a change in resistance at the junction between the sensor body and the external leads attached to the sensor body. The degradation was eliminated by providing strong mechanical anchors for the wire and processing the junctions to obtain good electrical bonds. The NOx sensors also detect oxygen and therefore the fully-packaged sensor needs to be enclosed with an oxygen sensor in a small, heated zirconia chamber exposed to test gas through a diffusion plug which limits the flow of gas from the outside. Oxygen is pumped from the interior of the chamber to lower the oxygen content and the combination of measurements from the NOx and oxygen sensors yields the NOx content of the gas. Two types of

  13. Three-Dimensional Composite Nanostructures for Lean NOx Emission Control

    SciTech Connect (OSTI)

    Gao, Pu-Xian

    2013-07-31

    This final report to the Department of Energy (DOE) and National Energy Technology Laboratory (NETL) for DE-EE0000210 covers the period from October 1, 2009 to July 31, 2013. Under this project, DOE awarded UConn about $1,248,242 to conduct the research and development on a new class of 3D composite nanostructure based catalysts for lean NOx emission control. Much of the material presented here has already been submitted to DOE/NETL in quarterly technical reports. In this project, through a scalable solution process, we have successfully fabricated a new class of catalytic reactors, i.e., the composite nanostructure array (nano-array) based catalytic converters. These nanocatalysts, distinct from traditional powder washcoat based catalytic converters, directly integrate monolithic substrates together with nanostructures with well-defined size and shape during the scalable hydrothermal process. The new monolithic nanocatalysts are demonstrated to be able to save raw materials including Pt-group metals and support metal oxides by an order of magnitude, while perform well at various oxidation (e.g., CO oxidation and NO oxidation) and reduction reactions (H{sub 2} reduction of NOx) involved in the lean NOx emissions. The size, shape and arrangement of the composite nanostructures within the monolithic substrates are found to be the key in enabling the drastically reduced materials usage while maintaining the good catalytic reactivity in the enabled devices. The further understanding of the reaction kinetics associated with the unique mass transport and surface chemistry behind is needed for further optimizing the design and fabrication of good nanostructure array based catalytic converters. On the other hand, the high temperature stability, hydrothermal aging stability, as well as S-poisoning resistance have been investigated in this project on the nanocatalysts, which revealed promising results toward good chemical and mechanical robustness, as well as S

  14. A Fundamental Consideration on NOx Adsorber Technology for DI Diesel Application

    SciTech Connect (OSTI)

    Fang, Howard L.; Huang, Shyan C.; Yu, Robert C.; Wan, C. Z.; Howden, Ken

    2002-10-01

    Diesel engines are far more efficient than gasoline engines of comparable size, and emit less greenhouse gases that have been implicated in global warming. In 2000, the US EPA proposed very stringent emissions standards to be introduced in 2007 along with low sulfur (< 15 ppm) diesel fuel. The California Air Resource Board (CARB) has also established the principle that future diesel fueled vehicles should meet the same low emissions standards as gasoline fueled vehicles and the EPA followed suit with its Tier II emissions regulation. Achieving such low emissions cannot be done through engine development and fuel reformulation alone, and requires application of NOx and particulate matter (PM) aftertreatment control devices. There is a widespread consensus that NOx adsorbers and particulate filter are required in order for diesel engines to meet the 2007 emissions regulations for NOx and PM. In this paper, the key exhaust characteristics from an advanced diesel engine are reviewed. Development of the NOx adsorber technology is discussed. Spectroscopic techniques are applied to understand the underlying chemical reactions over the catalyst surface during NOx trapping and regeneration periods. In-situ surface probes are useful in providing not only thermodynamic and kinetics information required for model development but also a fundamental understanding of storage capacity and degradation mechanisms. The distribution of various nitration/sulfation species is related to surface basicity. Surface displacement reactions of carbonates also play roles in affecting the trapping capability of NOx adsorbers. When ultralow-S fuel is used as a reductant during the regeneration, sulfur induced performance degradation is still observed in an aged catalyst. Other possible sources related to catalyst deactivation include incomplete reduction of surface nitration, coke formation derived from incomplete hydrocarbon burning, and lubricant formulations. Sulfur management and the

  15. Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction 2003 DEER Conference Presentation: Ford Motor ...

  16. Retrofit Diesel Emissions Control System Providing 50% NOxControl...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Emissions Control System Providing 50% NOxControl Retrofit Diesel Emissions Control System Providing 50% NOxControl 2005 Diesel Engine Emissions Reduction (DEER) Conference ...

  17. Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CumminsORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines Vehicle Technologies Office Merit Review 2015: Cummins-ORNLFEERC Emissions CRADA: NOx ...

  18. Enhanced High and Low Temperature Performance of NOx Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Low Temperature Performance of NOx Reduction Materials Enhanced High and Low Temperature Performance of NOx Reduction Materials 2013 DOE Hydrogen and Fuel Cells Program and ...

  19. The Impact of Lubricant Formulation on the Performance of NOx...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Formulation on the Performance of NOx Adsorber Catalysts The Impact of Lubricant Formulation on the Performance of NOx Adsorber Catalysts PDF icon 2005deerwhitacre.pdf More ...

  20. Development of Materials Analysis Tools for Studying NOx Adsorber...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Studying NOx Adsorber Catalysts A cooperative research and development agreement with Cummins Engine Company Development of Materials Analysis Tools for Studying NOx Adsorber ...

  1. Enhanced High Temperature Performance of NOx Storage/Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Enhanced High Temperature Performance of NOx StorageReduction (NSR) Materials Enhanced High Temperature Performance of NOx StorageReduction (NSR) ...

  2. Fuel Processor Enabled NOx Adsorber Aftertreatment System for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processor Enabled NOx Adsorber Aftertreatment System for Diesel Engine Emissions Control Fuel Processor Enabled NOx Adsorber Aftertreatment System for Diesel Engine Emissions ...

  3. Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CumminsORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines Vehicle Technologies Office Merit Review 2014: Cummins-ORNLFEERC Emissions CRADA: NOx ...

  4. NOx Adsorber Regeneration Phenomena In Heavy Duty Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adsorber Regeneration Phenomena In Heavy Duty Applications NOx Adsorber Regeneration ... More Documents & Publications Fuel-Borne Reductants for NOx Aftertreatment: Preliminary ...

  5. Parametric Study of NOx Adsorber Regeneration in Transient Cycles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Parametric Study of NOx Adsorber Regeneration in Transient Cycles Parametric Study of NOx Adsorber Regeneration in Transient Cycles 2002 DEER Conference Presentation: Oak Ridge ...

  6. Enhanced High Temperature Performance of NOx Storage/Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Enhanced High and Low Temperature Performance of NOx Reduction Materials Enhanced High Temperature Performance of NOx StorageReduction (NSR) ...

  7. Selective ammonia slip catalyst enabling highly efficient NOx...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    slip catalyst enabling highly efficient NOx removal requirements of the future Selective ammonia slip catalyst enabling highly efficient NOx removal requirements of the future A ...

  8. Development on simultaneous reduction system of NOx and PM from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on simultaneous reduction system of NOx and PM from a diesel engine Development on simultaneous reduction system of NOx and PM from a diesel engine 2003 DEER Converence ...

  9. Lean NOx Trap Regeneration Selectivity Towards N2O -- Similarities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lean NOx Trap Regeneration Selectivity Towards N2O -- Similarities and Differences Between ... More Documents & Publications Spatiotemporal Distribution of NOx Storage: a Factor ...

  10. Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines CLEERS Coordination & Development of Catalyst Process Kinetic Data CumminsORNL-FEERC CRADA: NOx Control ...

  11. Understanding NOx SCR Mechanism and Activity on Cu/Chabazite...

    Office of Scientific and Technical Information (OSTI)

    Book: Understanding NOx SCR Mechanism and Activity on CuChabazite Structures throughout the Catalyst Life Cycle Citation Details In-Document Search Title: Understanding NOx SCR...

  12. Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications CumminsORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines CumminsORNL-FEERC CRADA: NOx Control &...

  13. Virtual Oxygen Sensor for Innovative NOx and PM Emission Control...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virtual Oxygen Sensor for Innovative NOx and PM Emission Control Technologies Virtual Oxygen Sensor for Innovative NOx and PM Emission Control Technologies A virtual O2 sensor for ...

  14. Passive Catalytic Approach to Low Temperature NOx Emission Abatement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalytic Approach to Low Temperature NOx Emission Abatement Passive Catalytic Approach to Low Temperature NOx Emission Abatement Numerically evaluated and optimized proposed ...

  15. Cost Analysis of NOx Control Alternatives for Stationary Gas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost Analysis of NOx Control Alternatives for Stationary Gas Turbines, November 1999 Cost Analysis of NOx Control Alternatives for Stationary Gas Turbines, November 1999 The use of ...

  16. Transmural Catalysis - High Efficiency Catalyst Systems for NOx...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transmural Catalysis - High Efficiency Catalyst Systems for NOx Adsorbers and SCR Transmural Catalysis - High Efficiency Catalyst Systems for NOx Adsorbers and SCR Presentation ...

  17. Functionality of Commercial NOx Storage-Reduction Catalysts and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Pre-Competitive Catalysis Research: Fundamental SulfationDesulfation Studies of Lean NOx Traps Spatiotemporal Distribution of NOx Storage: a Factor ...

  18. Sulfur Resistant Electrodes for Zirconia Oxygen Sensors - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    oxide (Tb-YSZ) electrode have tested in a high-sulfur-coal fired power plant side by side against Zirconia-based O2 sensors with a standard platinum electrode. ...

  19. Reduce NOx and Improve Energy Efficiency

    SciTech Connect (OSTI)

    2005-05-01

    The U.S. Department of Energy's NOx and Energy Assessment Tool (NxEAT) is available at no charge to help the petroleum refining and chemicals industries develop a cost-effective, plant-wide strategy for NOx reduction and energy efficiency improvements.

  20. Laboratory evaluation of a reactive baffle approach to NOx control. Final technical report, February-April 1993

    SciTech Connect (OSTI)

    Nelson, S.G.; Van Stone, D.A.; Little, R.C.; Peterson, R.A.

    1993-09-01

    Vermiculite, vermiculite coated with magnesia, and activated carbon sorbents have successfully removed NOx (and carbon monoxide and particles) from combustion exhausts in a subscale drone jet engine test cell (JETC), but back pressure so generated elevated the temperature of the JETC and of the engine. The objective of this effort was to explore the feasibility of locating the sorbents in the face of the duct or of baffles parallel to the direction of flow within the ducts. Jet engine test cells (JETCs) are stationary sources of oxides of nitrogen (NOx), soot, and unburned or partially oxidized carbon compounds that form as byproducts of imperfect combustion. Regulation of NOx emissions is being considered for implementation under the Clean Air Act Amendments of 1990. Several principles have been examined as candidate methods to control NOx emissions from JETCs.

  1. Congressionally Directed Project for Passive NOx Removal Catalysts Research

    SciTech Connect (OSTI)

    Schneider, William

    2014-08-29

    The Recipient proposes to produce new scientific and technical knowledge and tools to enable the discovery and deployment of highly effective materials for the selective catalytic reduction (SCR) of nitrogen oxides (NOx) from lean combustion exhaust. A second goal is to demonstrate a closely coupled experimental and computational approach to heterogeneous catalysis research. These goals will be met through the completion of four primary technical objectives: First, an in-depth kinetic analysis will be performed on two prominent classes of NOx SCR catalysts, Fe- and Cu-exchanged beta and ZSM-5 zeolites, over a wide range of catalyst formulation and under identical, high conversion conditions as a function of gas phase composition. Second, the nanoscale structure and adsorption chemistry of these high temperature (HT) and low temperature (LT) catalysts will be determined using in situ and operando spectroscopy under the same reaction conditions. Third, first-principles molecular simulations will be used to model the metal-zeolite active sites, their adsorption chemistry, and key steps in catalytic function. Fourth, this information will be integrated into chemically detailed mechanistic and kinetic descriptions and models of the operation of these well- defined NOx SCR catalysts under practically relevant reaction conditions. The new knowledge and models that derive from this work will be published in the scientific literature.

  2. Future Sulfur Dioxide Emissions

    SciTech Connect (OSTI)

    Smith, Steven J.; Pitcher, Hugh M.; Wigley, Tom M.

    2005-12-01

    The importance of sulfur dioxide emissions for climate change is now established, although substantial uncertainties remain. This paper presents projections for future sulfur dioxide emissions using the MiniCAM integrated assessment model. A new income-based parameterization for future sulfur dioxide emissions controls is developed based on purchasing power parity (PPP) income estimates and historical trends related to the implementation of sulfur emissions limitations. This parameterization is then used to produce sulfur dioxide emissions trajectories for the set of scenarios developed for the Special Report on Emission Scenarios (SRES). We use the SRES methodology to produce harmonized SRES scenarios using the latest version of the MiniCAM model. The implications, and requirements, for IA modeling of sulfur dioxide emissions are discussed. We find that sulfur emissions eventually decline over the next century under a wide set of assumptions. These emission reductions result from a combination of emission controls, the adoption of advanced electric technologies, and a shift away from the direct end use of coal with increasing income levels. Only under a scenario where incomes in developing regions increase slowly do global emission levels remain at close to present levels over the next century. Under a climate policy that limits emissions of carbon dioxide, sulfur dioxide emissions fall in a relatively narrow range. In all cases, the relative climatic effect of sulfur dioxide emissions decreases dramatically to a point where sulfur dioxide is only a minor component of climate forcing by the end of the century. Ecological effects of sulfur dioxide, however, could be significant in some developing regions for many decades to come.

  3. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    SciTech Connect (OSTI)

    Mike Bockelie; Marc Cremer; Kevin Davis; Bob Hurt; Eric Eddings

    2001-07-27

    This is the third Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing cofunding for this program. This program contains multiple tasks and good progress is being made on all fronts. A Rich Reagent Injection (RRI) design has been developed for a cyclone fired utility boiler in which a field test of RRI will be performed later this year. Initial evaluations of RRI for PC fired boilers have been performed. Calibration tests have been developed for a corrosion probe to monitor waterwall wastage. Preliminary tests have been performed for a soot model within a boiler simulation program. Shakedown tests have been completed for test equipment and procedures that will be used to measure soot generation in a pilot scale test furnace. In addition, an initial set of controlled experiments for ammonia adsorption onto fly ash in the presence of sulfur have been performed that indicates the sulfur does enhance ammonia uptake.

  4. Attrition resistant, zinc titanate-containing, reduced sulfur sorbents and methods of use thereof

    DOE Patents [OSTI]

    Vierheilig, Albert A.; Gupta, Raghubir P.; Turk, Brian S.

    2006-06-27

    Reduced sulfur gas species (e.g., H.sub.2S, COS and CS.sub.2) are removed from a gas stream by compositions wherein a zinc titanate ingredient is associated with a metal oxide-aluminate phase material in the same particle species. Nonlimiting examples of metal oxides comprising the compositions include magnesium oxide, zinc oxide, calcium oxide, nickel oxide, etc.

  5. Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines

    SciTech Connect (OSTI)

    Nigel Clark; Gregory Thompson; Richard Atkinson; Richard Turton; Chamila Tissera; Emre Tatli; Andy Zimmerman

    2005-12-28

    Selective NOx Recirculation (SNR) involves cooling the engine exhaust gas and then adsorbing the oxides of nitrogen (NOx) from the exhaust stream, followed by the periodic desorption of NOx. By returning the desorbed, concentrated NOx into the engine intake and through the combustion chamber, a percentage of the NOx is decomposed during the combustion process. An initial study of NOx decomposition during lean-burn combustion was concluded in 2004 using a 1993 Cummins L10G 240hp natural gas engine. It was observed that the air/fuel ratio, injected NO (nitric oxide) quantity and engine operating points affected NOx decomposition rates of the engine. Chemical kinetic modeling results were also used to determine optimum NOx decomposition operating points and were published in the 2004 annual report. A NOx decomposition rate of 27% was measured from this engine under lean-burn conditions while the software model predicted between 35-42% NOx decomposition for similar conditions. A later technology 1998 Cummins L10G 280hp natural gas engine was procured with the assistance of Cummins Inc. to replace the previous engine used for 2005 experimental research. The new engine was equipped with an electronic fuel management system with closed-loop control that provided a more stable air/fuel ratio control and improved the repeatability of the tests. The engine was instrumented with an in-cylinder pressure measurement system and electronic controls, and was adapted to operate over a range of air/fuel ratios. The engine was connected to a newly commissioned 300hp alternating current (AC) motoring dynamometer. The second experimental campaign was performed to acquire both stoichiometric and slightly rich (0.97 lambda ratio) burn NOx decomposition rates. Effects of engine load and speed on decomposition were quantified, but Exhaust Gas Recirculation (EGR) was not varied independently. Decomposition rates of up to 92% were demonstrated. Following recommendations at the 2004 ARES peer

  6. Lean-NOx Catalyst Development for Diesel Engine Applications | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Lean-NOx Catalyst Development for Diesel Engine Applications Lean-NOx Catalyst Development for Diesel Engine Applications 2002 DEER Conference Presentation: Caterpillar Inc. 2002_deer_park.pdf (302.37 KB) More Documents & Publications Lean NOx Catalysis Research and Development Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions Control

  7. Influence of Ceria on the NOx Storage/Reduction Behavior of Lean NOx Trap Catalysts

    SciTech Connect (OSTI)

    Ji, Yaying; Choi, Jae-Soon; Toops, Todd J; Crocker, Dr. Mark; Naseri, Mojghan

    2008-01-01

    The effect of La2O3-stabilized ceria incorporation on the functioning of fully formulated lean NOx trap catalysts was investigated. Monolithic catalysts were prepared, corresponding to loadings of 0, 50 and 100 g CeO2/L, together with a catalyst containing 100 g/L of ceria-zirconia (Ce0.7Zr0.3O2). Loadings of the other main components (Pt, Rh and BaO) were held constant. Catalyst evaluation was performed on a bench flow reactor under simulated diesel exhaust conditions, employing NOx storage/reduction cycles. NOx storage efficiency in the temperature range 150-350 C was observed to increase with ceria loading, resulting in higher NOx conversion levels. At 150 C, high rich phase NOx slip was observed for all of the catalysts, resulting from an imbalance in the rates of nitrate decomposition and NOx reduction. Optimal NOx conversion was obtained in the range 250-350 C for all the catalysts, while at 450 C high rich phase NOx slip from the most highly loaded ceria-containing catalyst resulted in lower NOx conversion than for the ceria-free formulation. N2O was the major NOx reduction product at 150 C over all of the catalysts, although low NOx conversion levels limited the N2O yield. At higher temperatures N2 was the main product of NOx reduction, although NH3 formation was also observed. Selectivity to NH3 decreased with increasing ceria loading, indicating that NH3 is consumed by reaction with stored oxygen in the rear of the catalyst.

  8. Retrofit Diesel Emissions Control System Providing 50% NOxControl |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Diesel Emissions Control System Providing 50% NOxControl Retrofit Diesel Emissions Control System Providing 50% NOxControl 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_yee.pdf (660.21 KB) More Documents & Publications Transient Dynamometer Testing of a Single-Leg NOX Adsorber Combined with a Fuel Processor for Enhanced NOx Control Fuel Processor Enabled NOx Adsorber Aftertreatment System for Diesel Engine Emissions

  9. Parametric Study of NOx Adsorber Regeneration in Transient Cycles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Parametric Study of NOx Adsorber Regeneration in Transient Cycles Parametric Study of NOx Adsorber Regeneration in Transient Cycles 2002 DEER Conference Presentation: Oak Ridge National Laboratory 2002_deer_west.pdf (1.07 MB) More Documents & Publications Combining Low-Temperature Combustion with Lean-NOx Trap Yields Progress Toward Targets of Efficient NOx Control for Diesels Measurement and Characterization of NOx Adsorber Regeneration and Desulfation Measurement

  10. Durability of NOx Absorbers | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Cleaner Vehicles, Cleaner Fuel & Cleaner Air APBF-DEC Heavy Duty NOx AdsorberDPF Project: Heavy Duty Linehaul Platform Project Update LNT + SCR Aftertreatment for Medium-Heavy ...

  11. Ammonia-Free NOx Control System

    SciTech Connect (OSTI)

    Zhen Fan; Song Wu; Richard G. Herman

    2004-06-30

    Research is being conducted under United States Department of Energy (DOE) Contract DEFC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia. This report describes the work performed during the April 1 to June 30, 2004 time period.

  12. NOX: An Object-Oriented Nonlinear Solver

    Energy Science and Technology Software Center (OSTI)

    2002-11-15

    NOX is a C++ object-oriented library for the solving nonlinear equations. It can be used with an linear algebra package and includes interfaces to Epetra and PETSc.

  13. Electrochemical NOx Sensors for Monitoring Diesel Emissions

    Broader source: Energy.gov [DOE]

    A unique electrochemical sensing strategy correlating the level of NOx with an impedance-based signal shows promise for sensitivity, stability, and accuracy while incorporating single-cell structures and simple electronics into low-cost designs

  14. New operation strategy for driving the selectivity of NOx reduction to N2, NH3 or N2O during lean/rich cycling of a lean NOx trap catalyst

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mráček, David; Koci, Petr; Choi, Jae -Soon; Partridge, Jr., William P.

    2015-09-08

    Periodical regeneration of NOx storage catalyst (also known as lean NOx trap) by short rich pulses of CO, H2 and hydrocarbons is necessary for the reduction of nitrogen oxides adsorbed on the catalyst surface. Ideally, the stored NOx is converted into N2, but N2O and NH3 by-products can be formed as well, particularly at low-intermediate temperatures. The N2 and N2O products are formed concurrently in two peaks. The primary peaks appear immediately after the rich-phase inception, and tail off with the breakthrough of the reductant front accompanied by NH3 product. In addition, the secondary N2 and N2O peaks then appearmore » at the rich-to-lean transition as a result of reactions between surface-deposited reductants/intermediates (CO, HC, NH3, — NCO) and residual stored NOx under increasingly lean conditions.« less

  15. Biogenic sulfur source strengths

    SciTech Connect (OSTI)

    Adams, D.F.; Farwell, S.O.; Robinson, E.; Pack, M.R.; Bamesberger, W.L.

    1981-12-01

    Conclusions are presented from a 4-yr field measurement study of biogenic sulfur gas emissions from soils, and some water and vegetated surfaces, at 35 locales in the eastern and southeastern United States. More than one soil order was examined whenever possible to increase the data base obtained from the 11 major soil orders comprising the study area. Data analysis and emission model development were based upon an (80 x 80)-km/sup 2/ grid system. The measured sulfur fluxes, adjusted for the annual mean temperature for each sampling locale, weigted by the percentage of each soil order within each grid, and averaged for each of the east-west grid tiers from 47/sup 0/N to 25/sup 0/N latitude, showed an exponential north-to-south increase in total sulfur gas flux. Our model predits an additional increase of nearly 25-fold in sulfur flux between 25/sup 0/N and the equator.

  16. EA-1472: Commercial Demonstration fo the Low Nox Burner/Separated Over-Fire Air (LNB/SOFA) Integration System Emission Reduction Technology, Holcolm Station, Sunflower Electric Power Corporation Finnety County, Kansas

    Broader source: Energy.gov [DOE]

    The DOE has prepared an Environmental Assessment (EA), to analyze the potential impacts of the commercial application of the Low-NOx Burner/Separated Over-Fire Air (LNB/SOFA) integration system to achieve nitrogen oxide (NOx) emissions reduction at Sunflower’s Holcomb Unit No. 1 (Holcomb Station), located near Garden City, in Finney County, Kansas. The Holcomb Station would be modified in three distinct phases to demonstrate the synergistic effect of layering NOx control technologies.

  17. H. R. 4177: A Bill to amend the Internal Revenue Code of 1986 to impose an excise tax on sulfur dioxide and nitrogen oxide emissions from utility plants. Introduced in the House of Representatives, One Hundredth First Congress, Second Session, March 5, 1990

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The tax imposed would begin in 1991 in the amount of 15 cents per pound of sulfur dioxide released and 10 cents per pound nitrogen oxide, and would increase so that the tax in 1997 and thereafter would be 45 cents per pound of sulfur dioxide and 30 cents per pound of nitrogen oxide released. An inflation adjustment is provided for years after 1997. The tax is imposed on emissions which exceed the exemption level for each pollutant, and these levels are specified herein as pounds exempted per million Btu's of fuel burned. No tax is imposed on units less than 75 megawatts, or units providing less than one-third of the electricity produced to a utility power distribution system for sale.

  18. Separation of sulfur isotopes

    DOE Patents [OSTI]

    DeWitt, Robert; Jepson, Bernhart E.; Schwind, Roger A.

    1976-06-22

    Sulfur isotopes are continuously separated and enriched using a closed loop reflux system wherein sulfur dioxide (SO.sub.2) is reacted with sodium hydroxide (NaOH) or the like to form sodium hydrogen sulfite (NaHSO.sub.3). Heavier sulfur isotopes are preferentially attracted to the NaHSO.sub.3, and subsequently reacted with sulfuric acid (H.sub.2 SO.sub.4) forming sodium hydrogen sulfate (NaHSO.sub.4) and SO.sub.2 gas which contains increased concentrations of the heavier sulfur isotopes. This heavy isotope enriched SO.sub.2 gas is subsequently separated and the NaHSO.sub.4 is reacted with NaOH to form sodium sulfate (Na.sub.2 SO.sub.4) which is subsequently decomposed in an electrodialysis unit to form the NaOH and H.sub.2 SO.sub.4 components which are used in the aforesaid reactions thereby effecting sulfur isotope separation and enrichment without objectionable loss of feed materials.

  19. Catalyst for elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, Maria; Liu, Wei

    1995-01-01

    A catalytic reduction process for the direct recovery of elemental sulfur from various SO.sub.2 -containing industrial gas streams. The catalytic process provides high activity and selectivity, as well as stability in the reaction atmosphere, for the reduction of SO.sub.2 to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over a metal oxide composite catalyst having one of the following empirical formulas: [(OF.sub.2).sub.1-n (RO.sub.1)n].sub.1-k M.sub.k, [(FO.sub.2).sub.1-n (RO.sub.1.5).sub.n ].sub.1-k M.sub.k, or [Ln.sub.x Zr.sub.1-x O.sub.2-0.5x ].sub.1-k M.sub.k wherein FO.sub.2 is a fluorite-type oxide; RO represents an alkaline earth oxide; RO.sub.1.5 is a Group IIIB or rare earth oxide; Ln is a rare earth element having an atomic number from 57 to 65 or mixtures thereof; M is a transition metal or a mixture of transition metals; n is a number having a value from 0.0 to 0.35; k is a number having a value from 0.0 to about 0.5; and x is a number having a value from about 0.45 to about 0.55.

  20. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect (OSTI)

    David R. Thompson; Lawrence E. Bool; Jack C. Chen

    2004-04-01

    Conventional wisdom says adding oxygen to a combustion system enhances product throughput, system efficiency, and, unless special care is taken, increases NOx emissions. This increase in NOx emissions is typically due to elevated flame temperatures associated with oxygen use leading to added thermal NOx formation. Innovative low flame temperature oxy-fuel burner designs have been developed and commercialized to minimize both thermal and fuel NOx formation for gas and oil fired industrial furnaces. To be effective these systems require close to 100% oxy-fuel combustion and the cost of oxygen is paid for by fuel savings and other benefits. For applications to coal-fired utility boilers at the current cost of oxygen, however, it is not economically feasible to use 100% oxygen for NOx control. In spite of this conventional wisdom, Praxair and its team members, in partnership with the US Department of Energy National Energy Technology Laboratory, have developed a novel way to use oxygen to reduce NOx emissions without resorting to complete oxy-fuel conversion. In this concept oxygen is added to the combustion process to enhance operation of a low NOx combustion system. Only a small fraction of combustion air is replaced with oxygen in the process. By selectively adding oxygen to a low NOx combustion system it is possible to reduce NOx emissions from nitrogen-containing fuels, including pulverized coal, while improving combustion characteristics such as unburned carbon. A combination of experimental work and modeling was used to define how well oxygen enhanced combustion could reduce NOx emissions. The results of this work suggest that small amounts of oxygen replacement can reduce the NOx emissions as compared to the air-alone system. NOx emissions significantly below 0.15 lbs/MMBtu were measured. Oxygen addition was also shown to reduce carbon in ash. Comparison of the costs of using oxygen for NOx control against competing technologies, such as SCR, show that this

  1. Satellite-observed US power plant NOx emission reductions and their impact on air quality - article no. L22812

    SciTech Connect (OSTI)

    Kim, S.W.; Heckel, A.; McKeen, S.A.; Frost, G.J.; Hsie, E.Y.; Trainer, M.K.; Richter, A.; Burrows, J.P.; Peckham, S.E.; Grell, G.A.

    2006-11-29

    Nitrogen oxide (NOx) emissions resulting from fossil fuel combustion lead to unhealthy levels of near-surface ozone (O{sub 3}). One of the largest U.S. sources, electric power generation, represented about 25% of the U.S. anthropogenic NOx emissions in 1999. Here we show that space-based instruments observed declining regional NOx levels between 1999 and 2005 in response to the recent implementation of pollution controls by utility companies in the eastern U.S. Satellite-retrieved summertime nitrogen dioxide (NO{sub 2}) columns and bottom-up emission estimates show larger decreases in the Ohio River Valley, where power plants dominate NOx emissions, than in the northeast U.S. urban corridor. Model simulations predict lower O{sub 3} across much of the eastern U.S. in response to these emission reductions.

  2. Oxide

    SciTech Connect (OSTI)

    2014-07-15

    Oxide is a modular framework for feature extraction and analysis of executable files. Oxide is useful in a variety of reverse engineering and categorization tasks relating to executable content.

  3. Simulation of NOx emission in circulating fluidized beds burning low-grade fuels

    SciTech Connect (OSTI)

    Afsin Gungor

    2009-05-15

    Nitrogen oxides are a major environmental pollutant resulting from combustion. This paper presents a modeling study of pollutant NOx emission resulting from low-grade fuel combustion in a circulating fluidized bed. The simulation model accounts for the axial and radial distribution of NOx emission in a circulating fluidized bed (CFB). The model results are compared with and validated against experimental data both for small-size and industrial-size CFBs that use different types of low-grade fuels given in the literature. The present study proves that CFB combustion demonstrated by both experimental data and model predictions produces low and acceptable levels of NOx emissions resulting from the combustion of low-grade fuels. Developed model can also investigate the effects of different operational parameters on overall NOx emission. As a result of this investigation, both experimental data and model predictions show that NOx emission increases with the bed temperature but decreases with excess air if other parameters are kept unchanged. 37 refs., 5 figs., 5 tabs.

  4. Synergies of PCCI-Type Combustion and Lean NOx Trap Catalysis for Diesel Engines

    SciTech Connect (OSTI)

    Parks, II, James E; Prikhodko, Vitaly Y; Kass, Michael D; Huff, Shean P

    2008-01-01

    It is widely recognized that future NOx and PM emission targets for diesel engines cannot be met solely via advanced combustion over the full engine drive cycle. Therefore some combination of advanced combustion methodology with an aftertreatment technology will be required. In this study, NOx reduction, fuel efficiency, and regeneration performance of lean NOx trap (LNT) were evaluated for four operating conditions. The combustion approaches included baseline engine operation with and without EGR, two exhaust enrichment methods (post injection and delayed injection), and one advanced combustion mode to enable high efficiency clean combustion (HECC). A 1.7 liter 4-cylinder diesel engine was operated under five conditions, which represent key interest points for light-duty diesel operation. At the low load setting the exhaust temperature was too low to enable LNT regeneration and oxidation; however, HECC (low NOx) was achievable. HECC was also reached under more moderate loads and the exhaust temperatures were high enough to enable even further NOx reductions by the LNT. At high loads HECC becomes difficult but the LNT performance improves and acceptable regeneration can be met with enrichment methodologies.

  5. Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels

    SciTech Connect (OSTI)

    Peterson, Eric; Krejci, Michael; Mathieu, Olivier; Vissotski, Andrew; Ravi, Sankat; Plichta, Drew; Sikes, Travis; Levacque, Anthony; Camou, Alejandro; Aul, Christopher

    2014-01-24

    This final report documents the technical results of the 3-year project entitled, “Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels,” funded under the NETL of DOE. The research was conducted under six main tasks: 1) program management and planning; 2) turbulent flame speed measurements of syngas mixtures; 3) laminar flame speed measurements with diluents; 4) NOx mechanism validation experiments; 5) fundamental NOx kinetics; and 6) the effect of impurities on NOx kinetics. Experiments were performed using primary constant-volume vessels for laminar and turbulent flame speeds and shock tubes for ignition delay times and species concentrations. In addition to the existing shock- tube and flame speed facilities, a new capability in measuring turbulent flame speeds was developed under this grant. Other highlights include an improved NOx kinetics mechanism; a database on syngas blends for real fuel mixtures with and without impurities; an improved hydrogen sulfide mechanism; an improved ammonia kintics mechanism; laminar flame speed data at high pressures with water addition; and the development of an inexpensive absorption spectroscopy diagnostic for shock-tube measurements of OH time histories. The Project Results for this work can be divided into 13 major sections, which form the basis of this report. These 13 topics are divided into the five areas: 1) laminar flame speeds; 2) Nitrogen Oxide and Ammonia chemical kinetics; 3) syngas impurities chemical kinetics; 4) turbulent flame speeds; and 5) OH absorption measurements for chemical kinetics.

  6. Sulfur Speciation of Different Kerogens using XANES Spectroscopy

    SciTech Connect (OSTI)

    Wiltfong,R.; Mitra-Kirtley, S.; Mullins, O.; Andrews, B.; Fujisawa, G.; Larsen, J.

    2005-01-01

    X-ray absorption near-edge structure (XANES) methodology has been employed to quantify the different sulfur structures present in three Type I and three Type II kerogens. Kerogens from the Green River (3), Bakken (1), Woodford (1), and Indiana limestone (1) formations were studied. Both aliphatic (sulfide) and aromatic (thiophene) forms of sulfur exist in all these kerogen samples. Except for Woodford, all of the kerogens contain oxidized functional groups. Sulfur in Types I and II kerogens mimics the carbon chemistry in that the sulfur structures are more aromatic in Type II than in Type I. It was impossible to differentiate elemental sulfur from pyrite in these samples by using K-edge XANES.

  7. Enhanced Combustion Low NOx Pulverized Coal Burner

    SciTech Connect (OSTI)

    Ray Chamberland; Aku Raino; David Towle

    2006-09-30

    For more than two decades, ALSTOM Power Inc. (ALSTOM) has developed a range of low cost, in-furnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes ALSTOM's internally developed TFS 2000 firing system, and various enhancements to it developed in concert with the U.S. Department of Energy (DOE). As of 2004, more than 200 units representing approximately 75,000 MWe of domestic coal fired capacity have been retrofit with ALSTOM low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coals to 0.10 lb/MMBtu for subbituminous coals, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing (retrofit) boiler equipment. If enacted, proposed Clear Skies legislation will, by 2008, require an average, effective, domestic NOx emissions rate of 0.16 lb/MMBtu, which number will be reduced to 0.13 lb/MMBtu by 2018. Such levels represent a 60% and 67% reduction, respectively, from the effective 2000 level of 0.40 lb/MMBtu. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. In light of these needs, ALSTOM, in cooperation with the DOE, is developing an enhanced combustion, low NOx pulverized coal burner which, when integrated with ALSTOM's state-of-the-art, globally air staged low NOx firing systems, will provide a means to achieve less than 0.15 lb/MMBtu NOx at less than 3/4 the cost of an SCR with low to no impact on balance of plant issues when firing a high volatile bituminous coal. Such coals can be more economic to fire than subbituminous or Powder River Basin (PRB) coals, but are more problematic from a NOx control standpoint as existing

  8. METHOD TO PREVENT SULFUR ACCUMULATION INSIDE MEMBRANE ELECTRODE ASSEMBLY

    SciTech Connect (OSTI)

    Steimke, J.; Steeper, T.; Herman, D.; Colon-Mercado, H.; Elvington, M.

    2009-06-22

    HyS is conceptually the simplest of the thermochemical cycles and involves only sulfur chemistry. In the HyS Cycle hydrogen gas (H{sub 2}) is produced at the cathode of the electrochemical cell (or electrolyzer). Sulfur dioxide (SO{sub 2}) is oxidized at the anode to form sulfuric acid (H{sub 2}SO{sub 4}) and protons (H{sup +}) as illustrated below. A separate high temperature reaction decomposes the sulfuric acid to water and sulfur dioxide which are recycled to the electrolyzers, and oxygen which is separated out as a secondary product. The electrolyzer includes a membrane that will allow hydrogen ions to pass through but block the flow of hydrogen gas. The membrane is also intended to prevent other chemical species from migrating between electrodes and undergoing undesired reactions that could poison the cathode or reduce overall process efficiency. In conventional water electrolysis, water is oxidized at the anode to produce protons and oxygen. The standard cell potential for conventional water electrolysis is 1.23 volts at 25 C. However, commercial electrolyzers typically require higher voltages ranging from 1.8 V to 2.6 V [Kirk-Othmer, 1991]. The oxidation of sulfur dioxide instead of water in the HyS electrolyzer occurs at a much lower potential. For example, the standard cell potential for sulfur dioxide oxidation at 25 C in 50 wt % sulfuric acid is 0.29 V [Westinghouse, 1980]. Since power consumption by the electrolyzers is equal to voltage times current, and current is proportional to hydrogen production, a large reduction in voltage results in a large reduction in electrical power cost per unit of hydrogen generated.

  9. Sodium-sulfur thermal battery

    SciTech Connect (OSTI)

    Ludwig, F.A.

    1990-12-11

    This paper discusses a sodium-sulfur thermal battery for generating electrical energy at temperatures above the melting point of sodium metal and sulfur. It comprises a sodium electrode comprising sodium metal; a sulfur electrode comprising sulfur; and a separator located between the sodium and sulfur electrodes. The separator having sufficient porosity to allow preliminary migration of fluid sodium metal and fluid sulfur and fluid sodium polysulfides therethrough during operation of the thermal battery to form a mixed polysulfides electrolyte gradient within the separator.

  10. High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures

    DOE Patents [OSTI]

    Young, J.E.; Jalan, V.M.

    1984-06-19

    A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

  11. High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures

    DOE Patents [OSTI]

    Young, John E.; Jalan, Vinod M.

    1984-01-01

    A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

  12. High-temperature sorbent method for removal of sulfur-containing gases from gaseous mixtures

    DOE Patents [OSTI]

    Young, J.E.; Jalan, V.M.

    1982-07-07

    A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorbtion capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

  13. New technology for controlling NOx from jet engine test cells. Phase 1. Final report, August 1988-February 1989

    SciTech Connect (OSTI)

    Lyon, R.K.

    1995-01-01

    For some time the U.S. Air Force has been concerned with NOx emissions from jet engine test cells operated by the Air Force. While there are no regulations limiting the NOx emissions of these facilities, such regulations could develop in the near future and would pose significant problems for the Air Force because no available technology is suited for application to jet engine test cells. This report describes laboratory studies of a new NOx control process based on the surprising ability of barium oxide to rapidly capture NO, a process that could be ideally suited to controlling NOx emission from jet engine test cells. Thus, experiments were done in which a simulated exhaust gas containing NO was passed through a bed of either granular barium oxide or barium oxide supported on high-strength alumina. Quantitative NO removals were achieved at space velocities ranging from 2010 to 28,000 v/v/hr temperatures from 21 deg C to 610 deg C, oxygen concentrations of 1.1 to 15.3 percent, and initial NO concentrations from 94 to 1700 ppm. When NO2 was present in the simulated exhaust, it was also removed. The barium oxide was able to capture NO and NO2 in amounts up to at least 23.5 percent of its initial weight. The practical implication is that NOx emissions of a jet engine test cell could be controlled by replacing the acoustic panels now used to decrease the cell`s emission of sound with a set of panel bed filters filled with barium oxide. These panel bed filters would also absorb sound, could fit in the space in the test cell now occupied by the acoustic panels, and would remove NO and NO2 from the exhaust before it is discharged to the environment. This NOx removal would occur spontaneously. without any actions by the personnel operating the test cell and without distracting them in any way from their normal tasks.

  14. Electro Catalytic Oxidation (ECO) Operation

    SciTech Connect (OSTI)

    Morgan Jones

    2011-03-31

    The power industry in the United States is faced with meeting many new regulations to reduce a number of air pollutants including sulfur dioxide, nitrogen oxides, fine particulate matter, and mercury. With over 1,000 power plants in the US, this is a daunting task. In some cases, traditional pollution control technologies such as wet scrubbers and SCRs are not feasible. Powerspan's Electro-Catalytic Oxidation, or ECO{reg_sign} process combines four pollution control devices into a single integrated system that can be installed after a power plant's particulate control device. Besides achieving major reductions in emissions of sulfur dioxide (SO{sub 2}), nitrogen oxides (NOx), fine particulate matter (PM2.5) and mercury (Hg), ECO produces a highly marketable fertilizer, which can help offset the operating costs of the process system. Powerspan has been operating a 50-MW ECO commercial demonstration unit (CDU) at FirstEnergy Corp.'s R.E. Burger Plant near Shadyside, Ohio, since February 2004. In addition to the CDU, a test loop has been constructed beside the CDU to demonstrate higher NOx removal rates and test various scrubber packing types and wet ESP configurations. Furthermore, Powerspan has developed the ECO{reg_sign}{sub 2} technology, a regenerative process that uses a proprietary solvent to capture CO{sub 2} from flue gas. The CO{sub 2} capture takes place after the capture of NOx, SO{sub 2}, mercury, and fine particulate matter. Once the CO{sub 2} is captured, the proprietary solution is regenerated to release CO{sub 2} in a form that is ready for geological storage or beneficial use. Pilot scale testing of ECO{sub 2} began in early 2009 at FirstEnergy's Burger Plant. The ECO{sub 2} pilot unit is designed to process a 1-MW flue gas stream and produce 20 tons of CO{sub 2} per day, achieving a 90% CO{sub 2} capture rate. The ECO{sub 2} pilot program provided the opportunity to confirm process design and cost estimates, and prepare for large scale capture and

  15. Sodium sulfur battery seal

    DOE Patents [OSTI]

    Mikkor, Mati

    1981-01-01

    This disclosure is directed to an improvement in a sodium sulfur battery construction in which a seal between various battery compartments is made by a structure in which a soft metal seal member is held in a sealing position by holding structure. A pressure applying structure is used to apply pressure on the soft metal seal member when it is being held in sealing relationship to a surface of a container member of the sodium sulfur battery by the holding structure. The improvement comprises including a thin, well-adhered, soft metal layer on the surface of the container member of the sodium sulfur battery to which the soft metal seal member is to be bonded.

  16. System and method for diagnosing EGR performance using NOx sensor

    DOE Patents [OSTI]

    Mazur, Christopher John

    2003-12-23

    A method and system for diagnosing a condition of an EGR valve used in an engine system. The EGR valve controls the portion exhaust gases produced by such engine system and fed back to an intake of such engine system. The engine system includes a NOx sensor for measuring NOx in such exhaust. The method includes: determining a time rate of change in NOx measured by the NOx sensor; comparing the determined time rate of change in the measured NOx with a predetermined expected time rate of change in measured NOx; and determining the condition of the EGR valve as a function of such comparison. The method also includes: determining from NOx measured by the NOx sensor and engine operating conditions indications of instances when samples of such measured NOx are greater than an expected maximum NOx level for such engine condition and less than an expected minimum NOx level for such engine condition; and determining the condition of the EGR valve as a function of a statistical analysis of such indications. The method includes determining whether the NOx sensor is faulty and wherein the EGR condition determining includes determining whether the NOx sensor is faulty.

  17. Catalyst for the reduction of sulfur dioxide to elemental sulfur

    DOE Patents [OSTI]

    Jin, Yun; Yu, Qiquan; Chang, Shih-Ger

    1996-01-01

    The inventive catalysts allow for the reduction of sulfur dioxide to elemental sulfur in smokestack scrubber environments. The catalysts have a very high sulfur yield of over 90% and space velocity of 10,000 h.sup.-1. They also have the capacity to convert waste gases generated during the initial conversion into elemental sulfur. The catalysts have inexpensive components, and are inexpensive to produce. The net impact of the invention is to make this technology practically available to industrial applications.

  18. Verification of simplified procedures for site-specific SO sub 2 and NOx control cost estimates. Final report, March 1988-May 1989

    SciTech Connect (OSTI)

    Emmel, T.E.; Maibodi, M.

    1990-02-01

    The report documents results of an evaluation to verify the accuracy of simplified procedures for estimating sulfur dioxide (SO2) and nitrogen oxides (NOx) retrofit control costs and performance for 200 SO2-emitting coal-fired power plants in the 31-state eastern region. Initially, detailed retrofit studies were conducted for 12 coal-fired plants in Ohio, Kentucky, and the Tennessee Valley Authority system. Because detailed studies are expensive and time-consuming, results from the 12-plant study were used to develop simplified procedures which require less time, data, and preparation effort. The evaluation compared the costs for a number of plants estimated using the simplified procedures to costs estimated using detailed procedures, actual retrofit costs, and more detailed cost estimates provided by utility companies. Based on the evaluation, recommendations for changes to the simplified procedures were developed. Control technologies addressed in the report are conventional lime/limestone flue gas desulfurization, lime spray drying, furnace sorbent injection, duct spray drying, coal switching, physical coal cleaning, and selective catalytic reduction. In general, it was found that the simplified procedures can be used to generate improved cost performance estimates based on generally available information.

  19. Evaluation of Gas Reburning & Low NOx Burners on a Wall Fired Boiler Performance and Economics Report Gas Reburning-Low NOx Burner System Cherokee Station Unit 3 Public Service Company of Colorado

    SciTech Connect (OSTI)

    1998-07-01

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NOX reduction (70%) could be achieved. Sponsors of the project included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was performed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado Bituminous, low-sulfur coal. It had a baseline NOX emission level of 0.73 lb/106 Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50%. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NOX in the flue gas by staged fuel combustion. This technology involves the introduction of natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NOX emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX reduction of 65% was

  20. Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air 2005 Diesel Engine ...

  1. A Systematic Investigation of Parameters Affecting Diesel NOx...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Pt-free, Perovskite-based Lean NOx Trap Catalysts Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration of Single Leg NOx Adsorber ...

  2. The Options for Weatherization Programs in the NOx Tradable Emission Permit Program

    SciTech Connect (OSTI)

    Jones, D.W.

    2001-04-05

    In September 1998, the U.S. Environmental Protection Agency (EPA) promulgated a rule to address the regional transport of ground-level ozone by reducing nitrogen oxide (NOx) emissions in states that were contributing significantly to air pollution problems for downwind states. One element of this program is a NOx tradable emission rights system, to be implemented by individual states. Large, stationary emission sources such as utilities and large cement plants will be issued certain quantities of emission rights, but EPA has encouraged states to set aside some proportion of these rights for energy-efficiency and renewable energy (EE/RE) programs, which could sell rights and use the proceeds to further support their programs. States have considerable leeway in specifying which EE/RE programs will receive emission rights. The U.S. Department of Energy's (DOE) Weatherization Assistance Program wanted to know whether the funding that could be derived from the sale of NOx emission rights would be large enough to justify the effort of verifying NOx reductions from its weatherization activities. This study projected the scope for NOx emission reductions from electricity-intensive weatherization measures in the twenty-two states, and the District of Columbia, included in the EPA ruling. The twenty-two states covered by the rule could expect from $6,000 to $66,000 per year from sale of NOx permits (at an average sale price of $3,000/ton), amounts which correspond to 0.08% to 0.25% of annual state weatherization expenditures in 1998. Some states may find the prospective revenues large enough to justify the cost of providing savings verification to state environmental agencies, and others may not.

  3. Enhanced Combustion Low NOx Pulverized Coal Burner

    SciTech Connect (OSTI)

    David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

    2007-06-30

    For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for economic

  4. Fuel Processor Enabled NOx Adsorber Aftertreatment System for Diesel Engine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Control | Department of Energy Processor Enabled NOx Adsorber Aftertreatment System for Diesel Engine Emissions Control Fuel Processor Enabled NOx Adsorber Aftertreatment System for Diesel Engine Emissions Control 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Catalytica Energy Systems 2004_deer_catalytica.pdf (331 KB) More Documents & Publications Transient Dynamometer Testing of a Single-Leg NOX Adsorber Combined with a Fuel Processor for Enhanced NOx

  5. Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction 2003 DEER Conference Presentation: Ford Motor Company 2003_deer_hoard.pdf (210.07 KB) More Documents & Publications Plasma Assisted Catalysis System for NOx Reduction Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions Control Non-thermal plasma based technologies for the aftertreatment of diesel exhaust particulates

  6. A Systematic Investigation of Parameters Affecting Diesel NOx Adsorber

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalyst Performance | Department of Energy A Systematic Investigation of Parameters Affecting Diesel NOx Adsorber Catalyst Performance A Systematic Investigation of Parameters Affecting Diesel NOx Adsorber Catalyst Performance 2002 DEER Conference Presentation: Dephi Corporation 2002_deer_dou.pdf (121.2 KB) More Documents & Publications Pt-free, Perovskite-based Lean NOx Trap Catalysts Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration of Single Leg NOx Adsorber Systems

  7. Measurement and Characterization of NOx Adsorber Regeneration and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Desulfation | Department of Energy Characterization of NOx Adsorber Regeneration and Desulfation Measurement and Characterization of NOx Adsorber Regeneration and Desulfation 2003 DEER Conference Presentation: Oak Ridge National Laboratory 2003_deer_huff.pdf (894.29 KB) More Documents & Publications Exploring Advanced Combustion Regimes for Efficiency and Emissions Combining Low-Temperature Combustion with Lean-NOx Trap Yields Progress Toward Targets of Efficient NOx Control for Diesels

  8. Sodium sulfur battery seal

    DOE Patents [OSTI]

    Topouzian, Armenag

    1980-01-01

    This invention is directed to a seal for a sodium sulfur battery in which a flexible diaphragm sealing elements respectively engage opposite sides of a ceramic component of the battery which separates an anode compartment from a cathode compartment of the battery.

  9. SULFUR POLYMER ENCAPSULATION.

    SciTech Connect (OSTI)

    KALB, P.

    2001-08-22

    Sulfur polymer cement (SPC) is a thermoplastic polymer consisting of 95 wt% elemental sulfur and 5 wt% organic modifiers to enhance long-term durability. SPC was originally developed by the U.S. Bureau of Mines as an alternative to hydraulic cement for construction applications. Previous attempts to use elemental sulfur as a construction material in the chemical industry failed due to premature degradation. These failures were caused by the internal stresses that result from changes in crystalline structure upon cooling of the material. By reacting elemental sulfur with organic polymers, the Bureau of Mines developed a product that successfully suppresses the solid phase transition and significantly improves the stability of the product. SPC, originally named modified sulfur cement, is produced from readily available, inexpensive waste sulfur derived from desulfurization of both flue gases and petroleum. The commercial production of SPC is licensed in the United States by Martin Resources (Odessa, Texas) and is marketed under the trade name Chement 2000. It is sold in granular form and is relatively inexpensive ({approx}$0.10 to 0.12/lb). Application of SPC for the treatment of radioactive, hazardous, and mixed wastes was initially developed and patented by Brookhaven National Laboratory (BNL) in the mid-1980s (Kalb and Colombo, 1985; Colombo et al., 1997). The process was subsequently investigated by the Commission of the European Communities (Van Dalen and Rijpkema, 1989), Idaho National Engineering Laboratory (Darnell, 1991), and Oak Ridge National Laboratory (Mattus and Mattus, 1994). SPC has been used primarily in microencapsulation applications but can also be used for macroencapsulation of waste. SPC microencapsulation has been demonstrated to be an effective treatment for a wide variety of wastes, including incinerator hearth and fly ash; aqueous concentrates such as sulfates, borates, and chlorides; blowdown solutions; soils; and sludges. It is not

  10. Ultra Low Sulfur Home Heating Oil Demonstration Project

    SciTech Connect (OSTI)

    Batey, John E.; McDonald, Roger

    2015-09-30

    This Ultra Low Sulfur (ULS) Home Heating Oil Demonstration Project was funded by the New York State Energy Research and Development Authority (NYSERDA) and has successfully quantified the environmental and economic benefits of switching to ULS (15 PPM sulfur) heating oil. It advances a prior field study of Low Sulfur (500 ppm sulfur) heating oil funded by NYSERDA and laboratory research conducted by Brookhaven National Laboratory (BNL) and Canadian researchers. The sulfur oxide and particulate matter (PM) emissions are greatly reduced as are boiler cleaning costs through extending cleaning intervals. Both the sulfur oxide and PM emission rates are directly related to the fuel oil sulfur content. The sulfur oxide and PM emission rates approach near-zero levels by switching heating equipment to ULS fuel oil, and these emissions become comparable to heating equipment fired by natural gas. This demonstration project included an in-depth review and analysis of service records for both the ULS and control groups to determine any difference in the service needs for the two groups. The detailed service records for both groups were collected and analyzed and the results were entered into two spreadsheets that enabled a quantitative side-by-side comparison of equipment service for the entire duration of the ULS test project. The service frequency for the ULS and control group were very similar and did indicate increased service frequency for the ULS group. In fact, the service frequency with the ULS group was slightly less (7.5 percent) than the control group. The only exception was that three burner fuel pump required replacement for the ULS group and none were required for the control group.

  11. Compact Potentiometric O2/NOx Sensor | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    12 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting pm043_singh_2012_o.pdf (1.97 MB) More Documents & Publications Compact Potentiometric NOx Sensor Compact Potentiometric NOx Sensor Compact Potentiometric NOx

  12. Lean NOx Catalysis Research and Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lean NOx Catalysis Research and Development Lean NOx Catalysis Research and Development 2003 DEER Conference Presentation: Caterpillar, Inc. 2003_deer_park.pdf (588.44 KB) More Documents & Publications Lean-NOx Catalyst Development for Diesel Engine Applications Fuel Effects on Emissions Control Technologies

  13. Plasma Assisted Catalysis System for NOx Reduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plasma Assisted Catalysis System for NOx Reduction Plasma Assisted Catalysis System for NOx Reduction 2002 DEER Conference Presentation: Noxtech, Inc. 2002_deer_slone.pdf (595.6 KB) More Documents & Publications Noxtechs PAC System Development and Demonstration Lean NOx Catalysis Research and Development

  14. Effect of air-staging on anthracite combustion and NOx formation

    SciTech Connect (OSTI)

    Weidong Fan; Zhengchun Lin; Youyi Li; Jinguo Kuang; Mingchuan Zhang

    2009-01-15

    Experiments were carried out in a multipath air inlet one-dimensional furnace to assess NOx emission characteristics of the staged combustion of anthracite coal. These experiments allowed us to study the impact of pulverized coal fineness and burnout air position on emission under both deep and shallow air-staged combustion conditions. We also studied the impact of char-nitrogen release on both the burning-out process of the pulverized coal and the corresponding carbon content in fly ash. We found that air-staged combustion affects a pronounced reduction in NOx emissions from the combustion of anthracite coal. The more the air is staged, the more NOx emission is reduced. In shallow air-staged combustion (f{sub M} = 0.85), the fineness of the pulverized coal strongly influences emissions, and finer coals result in lower emissions. Meanwhile, the burnout air position has only a weak effect. In the deep air-staged combustion (f{sub M} = 0.6), the effect of coal fineness is smaller, and the burnout air position has a stronger effect. When the primary combustion air is stable, NOx emissions increase with increasing burnout air. This proves that, in the burnout zone, coal char is responsible for the discharge of fuel-nitrogen that is oxidized to NOx. The measurement of secondary air staging in a burnout zone can help inhibit the oxidization of NO caused by nitrogen release. Air-staged combustion has little effect on the burnout of anthracite coal, which proves to be suitable for air-staged combustion. 31 refs., 11 figs., 1 tab.

  15. NOx Emission Reduction by Oscillating Combustion

    SciTech Connect (OSTI)

    2005-09-01

    This project focuses on a new technology that reduces NOx emissions while increasing furnace efficiency for both air- and oxygen-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace.

  16. Sulfur Effect and Performance Recovery of a DOC + CSF + Cu-Zeolite SCR

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System | Department of Energy Sulfur Effect and Performance Recovery of a DOC + CSF + Cu-Zeolite SCR System Sulfur Effect and Performance Recovery of a DOC + CSF + Cu-Zeolite SCR System effect and performance recovery studies at system level with typical diesel emission control consisting of diesel oxidation catalyst, catalyzed soot filter, and selective catalytic reduction deer11_tang.pdf (504.68 KB) More Documents & Publications Investigation of Sulfur Deactivation on Cu/Zeolite SCR

  17. NOx Sensor for Direct Injection Emission Control

    SciTech Connect (OSTI)

    Betteridge, William J

    2006-02-28

    The Electricore/Delphi team continues to leverage the electrochemical planar sensor technology that has produced stoichiometric planar and wide range oxygen sensors as the basis for development of a NOx sensor. Zirconia cell technology with an integrated heater will provide the foundation for the sensor structure. Proven materials and packaging technology will help to ensure a cost-effective approach to the manufacture of this sensor. The electronics technique and interface is considered to be an area where new strategies need to be employed to produce higher S/N ratios of the NOx signal with emphasis on signal stability over time for robustness and durability Both continuous mode and pulse mode control techniques are being evaluated. Packaging the electronics requires careful design and circuit partitioning so that only the necessary signal conditioning electronics are coupled directly in the wiring harness, while the remainder is situated within the ECM for durability and costs reasons. This task continues to be on hold due to the limitation that the definition of the interface electronics was unavailable until very late in the project. The sense element is based on the amperometric method utilizing integrated alumina and zirconia ceramics. Precious metal electrodes are used to form the integrated heater, the cell electrodes and leads. Inside the actual sense cell structure, it is first necessary to separate NOx from the remaining oxygen constituents of the exhaust, without reducing the NOx. Once separated, the NOx will be measured using a measurement cell. Development or test coupons have been used to facilitate material selection and refinement, cell, diffusion barrier, and chamber development. The sense element currently requires elaborate interconnections. To facilitate a robust durable connection, mechanical and metallurgical connections are under investigation. Materials and process refinements continue to play an important role in the development of the

  18. Removal of sulfur and nitrogen containing pollutants from discharge gases

    DOE Patents [OSTI]

    Joubert, James I.

    1986-01-01

    Oxides of sulfur and of nitrogen are removed from waste gases by reaction with an unsupported copper oxide powder to form copper sulfate. The resulting copper sulfate is dissolved in water to effect separation from insoluble mineral ash and dried to form solid copper sulfate pentahydrate. This solid sulfate is thermally decomposed to finely divided copper oxide powder with high specific surface area. The copper oxide powder is recycled into contact with the waste gases requiring cleanup. A reducing gas can be introduced to convert the oxide of nitrogen pollutants to nitrogen.

  19. A Numerical Investigation into the Anomalous Slight NOx Increase when Burning Biodiesel: A New (Old) Theory

    SciTech Connect (OSTI)

    Ban-Weiss, G A; Chen, J Y; Buchholz, B A; Dibble, R W

    2007-01-30

    Biodiesel is a notable alternative to petroleum derived diesel fuel because it comes from natural domestic sources and thus reduces dependence on diminishing petroleum fuel from foreign sources, it likely lowers lifecycle greenhouse gas emissions, and it lowers an engine's emission of most pollutants as compared to petroleum derived diesel. However, the use of biodiesel often slightly increases a diesel engine's emission of smog forming nitrogen oxides (NO{sub x}) relative to petroleum diesel. In this paper, previously proposed theories for this slight NOx increase are reviewed, including theories based on biodiesel's cetane number, which leads to differing amounts of charge preheating, and theories based on the fuel's bulk modulus, which affects injection timing. This paper proposes an additional theory for the slight NO{sub x} increase of biodiesel. Biodiesel typically contains more double bonded molecules than petroleum derived diesel. These double bonded molecules have a slightly higher adiabatic flame temperature, which leads to the increase in NOx production for biodiesel. Our theory was verified using numerical simulations to show a NOx increase, due to the double bonded molecules, that is consistent with observation. Further, the details of these numerical simulations show that NOx is predominantly due to the Zeldovich mechanism.

  20. RECENT ADVANCES IN THE DEVELOPMENT OF THE HYBRID SULFUR PROCESS FOR HYDROGEN PRODUCTION

    SciTech Connect (OSTI)

    Hobbs, D.

    2010-07-22

    Thermochemical processes are being developed to provide global-scale quantities of hydrogen. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process, which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce the hydrogen. In the HyS Process, sulfur dioxide is oxidized in the presence of water at the electrolyzer anode to produce sulfuric acid and protons. The protons are transported through a cation-exchange membrane electrolyte to the cathode and are reduced to form hydrogen. In the second stage of the process, the sulfuric acid by-product from the electrolyzer is thermally decomposed at high temperature to produce sulfur dioxide and oxygen. The two gases are separated and the sulfur dioxide recycled to the electrolyzer for oxidation. The Savannah River National Laboratory (SRNL) has been exploring a fuel-cell design concept for the SDE using an anolyte feed comprised of concentrated sulfuric acid saturated with sulfur dioxide. The advantages of this design concept include high electrochemical efficiency and small footprint compared to a parallel-plate electrolyzer design. This paper will provide a summary of recent advances in the development of the SDE for the HyS process.

  1. Commercial introduction of the Advanced NOxTECH system

    SciTech Connect (OSTI)

    Sudduth, B.C.

    1997-12-31

    NOxTECH is BACT for diesel electric generators. Emissions of NO{sub x} are reduced 95% or more with substantial concurrent reductions in CO, particulates, and ROG`s. No engine modifications or other exhaust aftertreatments can remove all criteria pollutants as effectively as NOxTECH. The NOxTECH system reliably maintains NH{sub 3} slip below 2 ppm. Unlike other emissions controls, NOxTECH does not generate hazardous by-products. The Advanced NOxTECH system reduces the size, weight, and cost for BACT emissions reductions. Based on the operation of a 150 kW prototype, NOxTECH, Inc. is quoting commercial units for diesel electric generators. Advanced NOxTECH equipment costs about half as much as SCR systems, and NO{sub x} reduction can exceed 95% with guarantees for emissions compliance.

  2. ULTRA LOW NOx INTEGRATED SYSTEM FOR NOx EMISSION CONTROL FROM COAL-FIRED BOILERS

    SciTech Connect (OSTI)

    Galen H. Richards; Charles Q. Maney; Richard W. Borio; Robert D. Lewis

    2002-12-30

    ALSTOM Power Inc.'s Power Plant Laboratories, working in concert with ALSTOM Power's Performance Projects Group, has teamed with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient NOx control technologies for retrofit to pulverized coal fired utility boilers. The objective of this project was to develop retrofit NOx control technology to achieve less than 0.15 lb/MMBtu NOx (for bituminous coals) and 0.10 lb/MMBtu NOx (for subbituminous coals) from existing pulverized coal fired utility boilers at a cost which is at least 25% less than SCR technology. Efficient control of NOx is seen as an important, enabling step in keeping coal as a viable part of the national energy mix in this century, and beyond. Presently 57% of U.S. electrical generation is coal based, and the Energy Information Agency projects that coal will maintain a lead in U.S. power generation over all other fuel sources for decades (EIA 1998 Energy Forecast). Yet, coal-based power is being strongly challenged by society's ever-increasing desire for an improved environment and the resultant improvement in health and safety. The needs of the electric-utility industry are to improve environmental performance, while simultaneously improving overall plant economics. This means that emissions control technology is needed with very low capital and operating costs. This project has responded to the industry's need for low NOx emissions by evaluating ideas that can be adapted to present pulverized coal fired systems, be they conventional or low NOx firing systems. The TFS 2000{trademark} firing system has been the ALSTOM Power Inc. commercial offering producing the lowest NOx emission levels. In this project, the TFS 2000{trademark} firing system served as a basis for comparison to other low NOx systems evaluated and was the foundation upon which refinements were made to further improve NOx emissions and

  3. Cellulosic emissions (kg of pollutant per km2 county area) -...

    Open Energy Info (EERE)

    Cellulosic emissions (kg of pollutant per km2 county area) Data reflects projected air emissions of nitrogen oxides (NOX), ammonia (NH3), carbon monoxide (CO), sulfur oxide (SOX),...

  4. Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma-Facilitated

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lean NOx Catalysis | Department of Energy NOx Emissions Control: Reformer-Assisted vs. Plasma-Facilitated Lean NOx Catalysis Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma-Facilitated Lean NOx Catalysis 2003 DEER Conference Presentation: Pacific Northwest National Laboratory 2003_deer_aardahl.pdf (962.36 KB) More Documents & Publications Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions Control Selective reduction of NOx in oxygen rich environments with

  5. Effect of B20 and Low Aromatic Diesel on Transit Bus NOx Emissions Over Driving Cycles with a Range of Kinetic Intensity

    SciTech Connect (OSTI)

    Lammert, M. P.; McCormick, R. L.; Sindler, P.; Williams, A.

    2012-10-01

    Oxides of nitrogen (NOx) emissions for transit buses for up to five different fuels and three standard transit duty cycles were compared to establish whether there is a real-world biodiesel NOx increase for transit bus duty cycles and engine calibrations. Six buses representing the majority of the current national transit fleet and including hybrid and selective catalyst reduction systems were tested on a heavy-duty chassis dynamometer with certification diesel, certification B20 blend, low aromatic (California Air Resources Board) diesel, low aromatic B20 blend, and B100 fuels over the Manhattan, Orange County and UDDS test cycles. Engine emissions certification level had the dominant effect on NOx; kinetic intensity was the secondary driving factor. The biodiesel effect on NOx emissions was not statistically significant for most buses and duty cycles for blends with certification diesel, except for a 2008 model year bus. CARB fuel had many more instances of a statistically significant effect of reducing NOx. SCR systems proved effective at reducing NOx to near the detection limit on all duty cycles and fuels, including B100. While offering a fuel economy benefit, a hybrid system significantly increased NOx emissions over a same year bus with a conventional drivetrain and the same engine.

  6. Catalyst for the reduction of sulfur dioxide to elemental sulfur

    DOE Patents [OSTI]

    Jin, Y.; Yu, Q.; Chang, S.G.

    1996-02-27

    The inventive catalysts allow for the reduction of sulfur dioxide to elemental sulfur in smokestack scrubber environments. The catalysts have a very high sulfur yield of over 90% and space velocity of 10,000 h{sup {minus}1}. They also have the capacity to convert waste gases generated during the initial conversion into elemental sulfur. The catalysts have inexpensive components, and are inexpensive to produce. The net impact of the invention is to make this technology practically available to industrial applications. 21 figs.

  7. Sulfur@Carbon Cathodes for Lithium Sulfur Batteries > Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Lithium Sulfur Batteries Better Ham & Cheese: Enhanced Anodes and Cathodes for Fuel Cells Epitaxial Single Crystal Nanostructures for Batteries & PVs High Performance ...

  8. Advantages of MgAlOx over gamma-Al2O3 as a support material for potassium-based high temperature lean NOx traps

    SciTech Connect (OSTI)

    Luo, Jinyong; Gao, Feng; Karim, Ayman M.; Xu, Pinghong; Browning, Nigel D.; Peden, Charles HF

    2015-08-07

    MgAlOx mixed oxides were employed as supports for potassium-based lean NOx traps (LNTs) targeted for high temperature applications. Effects of support compositions, K/Pt loadings, thermal aging and catalyst regeneration on NOx storage capacity were systematically investigated. The catalysts were characterized by XRD, NOx-TPD, TEM, STEM-HAADF and in-situ XAFS. The results indicate that MgAlOx mixed oxides have significant advantages over conventional gamma-Al2O3-supports for LNT catalysts, in terms of high temperature NOx trapping capacity and thermal stability. First, as a basic support, MgAlOx stabilizes stored nitrates (in the form of KNO3) to much higher temperatures than mildly acidic gamma-Al2O3. Second, MgAlOx minimizes Pt sintering during thermal aging, which is not possible for gamma-Al2O3 supports. Notably, combined XRD, in-situ XAFS and STEM-HAADF results indicate that Pt species in the thermally aged Pt/MgAlOx samples are finely dispersed in the oxide matrix as isolated atoms. This strong metal-support interaction stabilizes Pt and minimizes the extent of sintering. However, such strong interactions result in Pt oxidation via coordination with the support so that NO oxidation activity can be adversely affected after aging which, in turn, decreases NOx trapping ability for these catalysts. Interestingly, a high-temperature reduction treatment regenerates essentially full NOx trapping performance. In fact, regenerated Pt/K/MgAlOx catalyst exhibits much better NOx trapping performance than fresh Pt/K/Al2O3 LNTs over the entire temperature range investigated here. In addition to thermal aging, Pt/K loading effects were systemically studied over the fresh samples. The results indicate that NOx trapping is kinetically limited at low temperatures, while thermodynamically limited at high temperatures. A simple conceptual model was developed to explain the Pt and K loading effects on NOx storage. An optimized K loading, which allows balancing between the

  9. Evaluation of Sulfur in Syngas

    SciTech Connect (OSTI)

    None

    2006-04-01

    This project will define the options and costs at different scales of technology that can be used to remove sulfur from syngas.

  10. Ultra-low Sulfur Reduction Emission Control Device/Development of an On-board Fuel Sulfur Trap

    SciTech Connect (OSTI)

    Rohrbach, Ron; Barron, Ann

    2008-07-31

    Honeywell has completed working on a multiyear program to develop and demonstrate proof-of-concept for an 'on-vehicle' desulfurization fuel filter for both light duty and heavy-duty diesel engines. Integration of the filter into the vehicle fuel system will reduce the adverse effects sulfur has on post combustion emission control devices such as NOx adsorbers. The NOx adsorber may be required to meet the proposed new EPA Tier II and '2007-Rule' emission standards. The proposed filter concept is based on Honeywell's reactive filtration technology and experience in liquids handling and conditioning. A regeneration and recycling plan for the spent filters was also examined. We have chosen to develop and demonstrate this technology based on criteria set forth for a heavy duty CIDI engine system because it represents a more challenging set of conditions of service intervals and overall fuel usage over light duty systems. In the second phase of the program a light duty diesel engine test was also demonstrated. Further, technology developed under this proposal would also have application for the use of liquid based fuels for fuel cell power generation. The program consisted of four phases. Phase I focused on developing a concept design and analysis and resolution of technical barriers concerning removal of sulfur-containing species in low sulfur fuels. In Phase II concentrated on prototype filter design and preparation followed by qualification testing of this component in a fuel line application. Phase III studied life cycle and regeneration options for the spent filter. Phase IV focused on efficacy and benefits in the desulfation steps of a NOx adsorber on both a heavy and light duty engine. The project team included a number of partners, with Honeywell International as the prime contractor. The partners include an emission control technology developer (Honeywell International), a fuel technology developer (Marathon Ashland Petroleum), a catalyst technology developer