Powered by Deep Web Technologies
Note: This page contains sample records for the topic "oxides nox particulates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Wiremesh Substrates for Enhanced Particulate Oxidation and Efficient...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Wiremesh Substrates for Enhanced Particulate Oxidation and Efficient Urea SCR NOx Reduction Wiremesh Substrates for Enhanced Particulate Oxidation and Efficient Urea SCR NOx...

2

Diesel Particulate Oxidation Model: Combined Effects of Fixed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Volatile Carbon Diesel Particulate Oxidation Model: Combined Effects of Fixed & Volatile Carbon Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research...

3

Nitrogen Oxides (NOx), Why and How They are Controlled  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Air Quality EPA 456/F-99-006R Air Quality EPA 456/F-99-006R Environmental Protection Planning and Standards November 1999 Agency Research Triangle Park, NC 27711 Air EPA-456/F-99-006R November 1999 Nitrogen Oxides (NOx), Why and How They Are Controlled Prepared by Clean Air Technology Center (MD-12) Information Transfer and Program Integration Division Office of Air Quality Planning and Standards U.S. Environmental Protection Agency Research Triangle Park, North Carolina 27711 ii DISCLAIMER This report has been reviewed by the Information Transfer and Program Integration Division of the Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency and approved for publication. Approval does not signify that the contents of this report reflect the views and policies of the U.S. Environmental Protection Agency. Mention of trade

4

Impact of the Driving Cycle on the NOx and Particulate Matter Exhaust Emissions of Diesel Passenger Cars  

Science Journals Connector (OSTI)

Impact of the Driving Cycle on the NOx and Particulate Matter Exhaust Emissions of Diesel Passenger Cars ... The driving cycles used are the New European Driving Cycle (NEDC), the 11 and 15 modes Japanese cycles, and three U.S. driving cycles: Federal Test Procedure (FTP-75), US06, and Highway. ... In general, we can state that a reduction in compression ratio in combination with an advanced boosting system and a fast response of the EGR system with advanced EGR cooling leads to a reduction of the emission level. ...

Efthimios Zervas; George Bikas

2008-02-19T23:59:59.000Z

5

Oxidation State Optimization for Maximum Efficiency of NOx Adsorber...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. deer10li.pdf More Documents & Publications Lean NOx Trap...

6

Simulating the Impact of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions of Particulates and NOx  

SciTech Connect (OSTI)

We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models implemented in Matlab/Simulink to simulate the effect of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated engine is capable of both conventional diesel combustion (CDC) and premixed charge compression ignition (PCCI) over real transient driving cycles. Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results demonstrate that, in the simulated conventional vehicle, PCCI can significantly reduce fuel consumption and emissions by reducing the need for LNT and DPF regeneration. However, the opportunity for PCCI operation in the simulated HEV is limited because the engine typically experiences higher loads and multiple stop-start transients that are outside the allowable PCCI operating range. Thus developing ways of extending the PCCI operating range combined with improved control strategies for engine and emissions control management will be especially important for realizing the potential benefits of PCCI in HEVs.

Gao, Zhiming [ORNL; Daw, C Stuart [ORNL; Wagner, Robert M [ORNL; Edwards, Kevin Dean [ORNL; Smith, David E [ORNL

2013-01-01T23:59:59.000Z

7

Effect of Diesel Oxidation Catalysts on the Diesel Particulate Filter Regeneration Process  

Science Journals Connector (OSTI)

Effect of Diesel Oxidation Catalysts on the Diesel Particulate Filter Regeneration Process ... A Diesel Particulate Filter (DPF) regeneration process was investigated during aftertreatment exhaust of a simulated diesel engine under the influence of a Diesel Oxidation Catalyst (DOC). ... Diesel particulate matter (PM) significantly contributes to urban air pollution and has often been associated with adverse health effects. ...

Leonardo Lizarraga; Stamatios Souentie; Antoinette Boreave; Christian George; Barbara D’Anna; Philippe Vernoux

2011-11-03T23:59:59.000Z

8

Modeling Species Inhibition of NO oxidation in Urea-SCR Catalysts for Diesel Engine NOx Control  

SciTech Connect (OSTI)

Urea-selective catalytic reduction (SCR) catalysts are regarded as the leading NOx aftertreatment technology to meet the 2010 NOx emission standards for on-highway vehicles running on heavy-duty diesel engines. However, issues such as low NOx conversion at low temperature conditions still exist due to various factors, including incomplete urea thermolysis, inhibition of SCR reactions by hydrocarbons and H2O. We have observed a noticeable reduction in the standard SCR reaction efficiency at low temperature with increasing water content. We observed a similar effect when hydrocarbons are present in the stream. This effect is absent under fast SCR conditions where NO ~ NO2 in the feed gas. As a first step in understanding the effects of such inhibition on SCR reaction steps, kinetic models that predict the inhibition behavior of H2O and hydrocarbons on NO oxidation are presented in the paper. A one-dimensional SCR model was developed based on conservation of species equations and was coded as a C-language S-function and implemented in Matlab/Simulink environment. NO oxidation and NO2 dissociation kinetics were defined as a function of the respective adsorbate’s storage in the SCR catalyst. The corresponding kinetic models were then validated on temperature ramp tests that showed good match with the test data.

Devarakonda, Maruthi N.; Tonkyn, Russell G.; Tran, Diana N.; Lee, Jong H.; Herling, Darrell R.

2010-09-15T23:59:59.000Z

9

Modeling Species Inhibition of NO Oxidation in Urea-SCR Catalysts for Diesel Engine NOx Control  

SciTech Connect (OSTI)

Urea-selective catalytic reduction (SCR) catalysts are regarded as the leading NOx aftertreatment technology to meet the 2010 NOx emission standards for on-highway vehicles running on heavy-duty diesel engines. However, issues such as low NOx conversion at low temperature conditions still exist due to various factors, including incomplete urea thermolysis, inhibition of SCR reactions by hydrocarbons and H2O. We have observed a noticeable reduction in the standard SCR reaction efficiency at low temperature with increasing water content. We observed a similar effect when hydrocarbons are present in the stream. This effect is absent under fast SCR conditions where NO ~ NO2 in the feed gas. As a first step in understanding the effects of such inhibition on SCR reaction steps, kinetic models that predict the inhibition behavior of H2O and hydrocarbons on NO oxidation are presented in the paper. A one-dimensional SCR model was developed based on conservation of species equations and was coded as a C-language S-function and implemented in Matlab/Simulink environment. NO oxidation and NO2 dissociation kinetics were defined as a function of the respective adsorbate’s storage in the Fe-zeolite SCR catalyst. The corresponding kinetic models were then validated on temperature ramp tests that showed good match with the test data. Such inhibition models will improve the accuracy of model based control design for integrated DPF-SCR aftertreatment systems.

Devarakonda, Maruthi N.; Tonkyn, Russell G.; Tran, Diana N.; Lee, Jong H.; Herling, Darrell R.

2011-04-20T23:59:59.000Z

10

Mass Balance of Gaseous and Particulate Products from ?-Pinene/O3/Air in the Absence of Light and ?-Pinene/NOx/Air in the Presence of Natural Sunlight  

Science Journals Connector (OSTI)

The gas and particle phase products from the reaction of ?-pinene with the atmospheric oxidants O3 and OH radicals in the presence of NOx were investigated using both gas chromatography-mass spectrometry (GC-MS) ...

M. Jaoui; R. M. Kamens

2003-06-01T23:59:59.000Z

11

16 - Ultra-low nitrogen oxides (NOx) emissions combustion in gas turbine systems  

Science Journals Connector (OSTI)

Abstract: The historical development of gas turbine low \\{NOx\\} combustion from the pioneering NASA work in the early 1970s to the present generation of ultra-low \\{NOx\\} industrial gas turbine combustors is reviewed. The principles of operation of single digit ultra-low \\{NOx\\} gas turbine combustion for industrial applications are outlined. The review shows the potential has been demonstrated by several investigators using different flame stabilizers for \\{NOx\\} to be reduced to 1 ppm at 1700 K, 2 ppm at 1800 K and 3–4 ppm at 1900 K with no influence of operating pressure and with a practical operating flame stability margin. Under these conditions it is shown that no thermal \\{NOx\\} should occur and all the \\{NOx\\} is formed by the prompt \\{NOx\\} mechanisms. The elimination of thermal \\{NOx\\} makes the \\{NOx\\} emissions independent of residence time or reference velocity and independent of pressure. Also there is no influence of air inlet temperature for the same flame temperature. Where legislation requires emissions to be as low as can be achieved, emissions below 4 ppm in production engines are current technology and this review shows the potential to get even lower than this in the future.

G.E. Andrews

2013-01-01T23:59:59.000Z

12

REAL-WORLD EFFICACY OF HEAVY DUTY DIESEL TRUCK NOX AND PM EMISSIONS CONTROLS  

E-Print Network [OSTI]

are International. b DOC = Diesel Oxidation Catalyst; DPF = Diesel Particulate Filter; EGR = Exhaust GasREAL-WORLD EFFICACY OF HEAVY DUTY DIESEL TRUCK NOX AND PM EMISSIONS CONTROLS Gurdas Sandhu H 26-28, 2012 #12;2 Objectives 1. Quantify inter-run variability in exhaust emission rates 2. Assess

Frey, H. Christopher

13

Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts  

Broader source: Energy.gov [DOE]

Presents latest progress in the development of a new type of lean NOx trapping catalyst based on heterogenous composite nanowires, which could potentially be used in gasoline and diesel engines.

14

JV Task 117 - Impact of Lignite Properties on Powerspan's NOx Oxidation System  

SciTech Connect (OSTI)

Powerspan's multipollutant control process called electrocatalytic oxidation (ECO) technology is designed to simultaneously remove SO{sub 2}, NO{sub x}, PM{sub 2.5}, acid gases (such as hydrogen fluoride [HF], hydrochloric acid [HCl], and sulfur trioxide [SO{sub 3}]), Hg, and other metals from the flue gas of coal-fired power plants. The core of this technology is a dielectric barrier discharge reactor composed of cylindrical quartz electrodes residing in metal tubes. Electrical discharge through the flue gas, passing between the electrode and the tube, produces reactive O and OH radicals. The O and OH radicals react with flue gas components to oxidize NO to NO{sub 2} and HNO{sub 3} and a small portion of the SO{sub 2} to SO{sub 3} and H{sub 2}SO{sub 4}. The oxidized compounds are subsequently removed in a downstream scrubber and wet electrostatic precipitator. A challenging characteristic of selected North Dakota lignites is their high sodium content. During high-sodium lignite combustion and gas cooling, the sodium vaporizes and condenses to produce sodium- and sulfur-rich aerosols. Based on past work, it was hypothesized that the sodium aerosols would deposit on and react with the silica electrodes and react with the silica electrodes, resulting in the formation of sodium silicate. The deposit and reacted surface layer would then electrically alter the electrode, thus impacting its dielectric properties and NO{sub x} conversion capability. The purpose of this project was to determine the impact of lignite-derived flue gas containing sodium aerosols on Powerspan's dielectric barrier discharge (DBD) reactor with specific focus on the interaction with the quartz electrodes. Partners in the project were Minnkota Power Cooperative; Basin Electric Power Cooperative; Montana Dakota Utilities Co.; Minnesota Power; the North Dakota Industrial Commission, the Lignite Energy Council, and the Lignite Research Council; the Energy & Environmental Research Center (EERC); and the U.S. Department of Energy. An electrocatalytic oxidation (ECO) reactor slipstream system was designed by Powerspan and the EERC. The slipstream system was installed by the EERC at Minnkota Power Cooperative's Milton R. Young Station Unit 1 downstream of the electrostatic precipitator where the flue gas temperature ranged from 300 to 350 F. The system was commissioned on July 3, 2007, operated for 107 days, and then winterized upon completion of the testing campaign. Operational performance of the system was monitored, and data were archived for postprocessing. A pair of electrodes were extracted and replaced on a biweekly basis. Each pair of electrodes was shipped to Powerspan to determine NO conversion efficiency in Powerspan's laboratory reactor. Tested electrodes were then shipped to the EERC for scanning electron microscopy (SEM) and x-ray microanalysis. Measurement of NO{sub x} conversion online in operating the slipstream system was not possible because the nitric and sulfuric acid production by the DBD reactor results in conditioning corrosion challenges in the sample extraction system and NO measurement technologies. The operational observations, performance results, and lab testing showed that the system was adversely affected by accumulation of the aerosol materials on the electrode. NO{sub x} conversion by ash-covered electrodes was significantly reduced; however, with electrodes that were rinsed with water, the NOx conversion efficiency recovered to nearly that of a new electrode. In addition, the visual appearance of the electrode after washing did not show evidence of a cloudy reacted surface but appeared similar to an unexposed electrode. Examination of the electrodes using SEM x-ray microanalysis showed significant elemental sodium, sulfur, calcium, potassium, and silica in the ash coating the electrodes. There was no evidence of the reaction of the sodium with the silica electrodes to produce sodium silicate layers. All SEM images showed a clearly marked boundary between the ash and the silica. Sodium and sulfur are the main culprits in the

Scott Tolbert; Steven Benson

2008-02-29T23:59:59.000Z

15

Back-Trajectory Analysis and Source-Receptor Relationships: Particulate Matter and Nitrogen Isotopic Composition in  

E-Print Network [OSTI]

. The chemical components of these acids, including nitrogen oxides (NOx nitric acid [NO] nitrogen dioxide [NO2Back-Trajectory Analysis and Source-Receptor Relationships: Particulate Matter and Nitrogen- search suggests that this agricultural presence emits a significant portion of the state's nitrogen (i

Niyogi, Dev

16

Solid State Electrochemical Sensors for Nitrogen Oxide (NOx) Detection in Lean Exhaust Gases  

E-Print Network [OSTI]

for Application in Solid Oxide Fuel Cells", (DoctoralImpedance of Solid Oxide Fuel Cell LSM/YSZ CompositeCathode materials of solid oxide fuel cells: a review”, J

Rheaume, Jonathan Michael

2010-01-01T23:59:59.000Z

17

NOx | OpenEI  

Open Energy Info (EERE)

NOx NOx Dataset Summary Description Emissions from energy use in buildings are usually estimated on an annual basis using annual average multipliers. Using annual numbers provides a reasonable estimation of emissions, but it provides no indication of the temporal nature of the emissions. Therefore, there is no way of understanding the impact on emissions from load shifting and peak shaving technologies such as thermal energy storage, on-site renewable energy, and demand control. Source NREL Date Released April 11th, 2011 (3 years ago) Date Updated April 11th, 2011 (3 years ago) Keywords buildings carbon dioxide emissions carbon footprinting CO2 commercial buildings electricity emission factors ERCOT hourly emission factors interconnect nitrogen oxides NOx SO2 sulfur dioxide emissions

18

180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Technical progress report, Third quarter 1992  

SciTech Connect (OSTI)

The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NOx combustion technologies on NOx emissions and boiler performance. A target of achieving 50% NOx reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NOx control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NOx concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NOx reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progress report presents the LNCFS Level 1 long-term data collected during this quarter. In addition, a comparison of all the long-term emissions data that have been collected to date is included.

Not Available

1992-12-31T23:59:59.000Z

19

SURFACE OXIDATION OF DIESEL PARTICULATE MATTER IN PRESENCE OF O3 +NOX: NEW TD/GC/MS ANALYSIS METHOD  

E-Print Network [OSTI]

in the atmosphere. TD-GC-MS ANALYSIS METHODOLOGY A thermal desorption (TD) injection device (M. Ezrin, 1991. Valve Spindle 10. Carrier Gas Inlet 11. Inlet Assembly 12. Injection Port Insert PAH standard Solution, 1ppm, 1µL injection Alkanes Standard Solution, 0.1ppm, 1µL injection FUTURE EXPERIMENTS Verify PM

Holmén, Britt A.

20

NETL: News Release - Projects Selected to Study Coal Plant Particulate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5, 2004 5, 2004 Projects Selected to Study Coal Plant Particulate Matter, Human Health PITTSBURGH, PA - The Department of Energy has selected three projects to help determine whether fine particulates emitted from coal-fired power plants affect human health, and which components of the particulates may be most problematic. Past studies have established that particulate matter smaller than 2.5 microns in diameter from all sources does affect human health, but there is scant information to provide a link between PM2.5 emitted specifically from coal plants and cardiac or respiratory health problems in humans. PM2.5 refers to particles-invisible to the eye-no more than 1/30th of the width of a human hair Coal plants emit only small quantities of "primary" PM2.5 (e.g., fly ash) because all plants have high-efficiency particulate-collection devices. However, coal plants are responsible for a great deal of "secondary" PM2.5, which forms in the atmosphere from emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx). Data collected in the new studies will be used to help design standards reviews and to devise strategies for controlling power plant emissions of PM2.5, SO2, and NOx.

Note: This page contains sample records for the topic "oxides nox particulates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Technical progress report, First quarter 1991  

SciTech Connect (OSTI)

This project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 (LS-2) located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NOx combustion technologies on NOx emissions and boiler performance. The stepwise approach that is being used to evaluate the NOx control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NOx concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NOx reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This quarterly update provides a description of the flow modeling study. This modeling effort centers on evaluating the in-furnace flow and mixing phenomena for the various low NOx firing systems being demonstrated at LS-2. Testing on the 1/12 scale model of the LS-2 boiler and the 1/6 scale model of the overfire air ductwork was completed. The test matrix included an analysis of the overfire air ductwork and three different boiler configurations. This report also contains results from the Phase 1 baseline tests. Data from the diagnostic, performance, and verification tests are presented. In addition, NOx emissions data and unit load profiles collected during long-term testing are reported. At the full load condition, the baseline NOx emission level at LS-2 is 0.62 lb/mBtu.

Not Available

1991-12-31T23:59:59.000Z

22

NOx Adsorber (Lean NOx Trap) Fundamentals (Agreement #10049 ...  

Broader source: Energy.gov (indexed) [DOE]

NOx Adsorber (Lean NOx Trap) Fundamentals (Agreement 10049 - PNNL Project 47120) NOx Adsorber (Lean NOx Trap) Fundamentals (Agreement 10049 - PNNL Project 47120) Presentation...

23

Non-thermal Aftertreatment of Particulates  

SciTech Connect (OSTI)

Modern diesel passenger vehicles employing common rail, high speed direct injection engines are capable of matching the drivability of gasoline powered vehicles with the additional benefit of providing high torque at low engine speed [1]. The diesel engine also offers considerable fuel economy and CO2 emissions advantages. However, future emissions standards [2,3] present a significant challenge for the diesel engine, as its lean exhaust precludes the use of aftertreatment strategies employing 3- way catalytic converters, which operate under stoichiometric conditions. In recent years significant developments by diesel engine manufacturers have greatly reduced emissions of both particulates (PM) and oxides of nitrogen (NOx) [4,5]. However to achieve compliance with future legislative limits it has been suggested that an integrated approach involving a combination of engine modifications and aftertreatment technology [1] will be required. A relatively new approach to exhaust aftertreatment is the application of non-thermal plasma (NTP) or plasma catalyst hybrid systems. These have the potential for treatment of both NOx and PM emissions [6- 8]. The primary focus of recent plasma aftertreatment studies [9-12] has concentrated on the removal of NOx. It has been shown that by combining plasmas with catalysts it is possible to chemically reduce NOx. The most common approach is to use a 2- stage system relying upon the plasma oxidation of hydrocarbons to promote NO to NO2 conversion as a precursor to NO2 reduction over a catalyst. However, relatively little work has yet been published on the oxidation of PM by plasma [ 8,13]. Previous investigations [8] have reported that a suitably designed NTP reactor containing a packing material designed to filter and retain PM can effect the oxidation of PM in diesel exhausts at low temperatures. It has been suggested that the retained PM competes with hydrocarbons for O, and possibly OH, radicals. This is an important consideration in plasma - catalyst hybrid schemes for the removal of NOx employing an NO2 selective catalyst, as the oxidation of PM may deplete the key radicals necessary for NO to NO2 conversion. It was also suggested that where simultaneous NOx and PM removal are required, alternative catalyst formulations may be needed which may be selective to NO rather than NO2.

Thomas, S.E.

2000-08-20T23:59:59.000Z

24

Field Demonstration of 0.2 Grams Per Horsepower-Hour (g/bhp-hr) Oxides of Nitrogen (NOx) Natural  

E-Print Network [OSTI]

: · Reducing health and environmental impacts from air pollution, and greenhouse gas emissions related pollution and greenhouse gas emissions beyond applicable standards, and that benefit natural gas ratepayers of nitrogen (NOx) emission standard of 0.20 g/bhp-hr for heavy duty engines to reduce levels of this critical

25

Reducing NOx in Fired Heaters and Boilers  

E-Print Network [OSTI]

-6, 2000 Reducing NOx in Fired Heaters Air Pollution Control and Boilers Keeping the environment clean Presented by Ashutosh Garg Furnace Improvements Low cost solutions for fired heaters Trace compounds ? Nitric oxides ? Carbon monoxide ? Sulfur... it is essential to estimate accurately baseline NOx emissions. ? This will establish each units current compliance status. ? Emissions ? Current excess air level ? Carbon monoxide ? Combustibles ? NOx corrected to 3% 02 314 ESL-IE-00-04-46 Proceedings...

Garg, A.

26

A Return Stroke NOx Production Model  

Science Journals Connector (OSTI)

A model is introduced for estimating the nitrogen oxides (NOx = NO + NO2) production from a lightning return stroke channel. A realistic Modified Transmission Line Model return stroke current is assumed to propagate vertically upward along a ...

William J. Koshak; Richard J. Solakiewicz; Harold S. Peterson

27

On-Board Engine Exhaust Particulate Matter Sensor for HCCI and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Demonstration of an Electronic Particulate Matter Sensor for Both Engine-Out and Post-DPF Exhaust Monitoring Particle Sensor for Diesel Combustion Monitoring NOx sensor development...

28

Atmospheric pressure gas plasma-induced colorectal cancer cell death is mediated by Nox2–ASK1 apoptosis pathways and oxidative stress is mitigated by Srx–Nrf2 anti-oxidant system  

Science Journals Connector (OSTI)

Abstract Atmospheric pressure gas plasma (AGP) generates reactive oxygen species (ROS) that induce apoptosis in cultured cancer cells. The majority of cancer cells develop a ROS-scavenging anti-oxidant system regulated by Nrf2, which confers resistance to ROS-mediated cancer cell death. Generation of ROS is involved in the AGP-induced cancer cell death of several colorectal cancer cells (Caco2, HCT116 and SW480) by activation of ASK1-mediated apoptosis signaling pathway without affecting control cells (human colonic sub-epithelial myofibroblasts; CO18, human fetal lung fibroblast; MRC5 and fetal human colon; FHC). However, the identity of an oxidase participating in AGP-induced cancer cell death is unknown. Here, we report that AGP up-regulates the expression of Nox2 (NADPH oxidase) to produce ROS. RNA interference designed to target Nox2 effectively inhibits the AGP-induced ROS production and cancer cell death. In some cases both colorectal cancer HT29 and control cells showed resistance to AGP treatment. Compared to AGP-sensitive Caco2 cells, HT29 cells show a higher basal level of the anti-oxidant system transcriptional regulator Nrf2 and its target protein sulfiredoxin (Srx) which are involved in cellular redox homeostasis. Silencing of both Nrf2 and Srx sensitized HT29 cells, leads to ROS overproduction and decreased cell viability. This indicates that in HT29 cells, Nrf2/Srx axis is a protective factor against AGP-induced oxidative stress. The inhibition of Nrf2/Srx signaling should be considered as a central target in drug-resistant colorectal cancer treatments.

Musarat Ishaq; Margaret D.M. Evans; Kostya (Ken) Ostrikov

2014-01-01T23:59:59.000Z

29

Low NOx combustion system for heavy oil  

SciTech Connect (OSTI)

As a result of the increasing demand for white oil as one of countermeasures for pollution control and as a fuel for motor vehicle, coupled with the increasing import of heavy crude oil, heavy oils such as asphalt and distillation residue have become surplus in Japan. It is difficult by the conventional low NOx technology to control the NOx emission from the industrial small and medium capacity boilers, which use heavy oil as their fuels. The authors have been developing and improving NOx control technologies for boilers such as low NOx burners, two-stage combustion methods and so on. They have developed a new combustion system for heavy oil, which generates less NOx and soot than conventional systems, by applying the knowledge, obtained in the course of their development of Coal Partial Combustor (CPC). The conventional low NOx combustion method for oil firing boilers has been developed based on decreasing the flame temperature and delaying the combustion reaction. In the system, however, the heavy oil shall be combusted in the intense reducing atmosphere at the high flame temperature between 1,500 C and 1,600 C, and then the combustions gas shall be cooled and oxidized by two-stage combustion air. With this system, NOx emission can be suppressed below 100ppm (converted as O{sub 2}=4%).

Kurata, Chikatoshi; Sasaki, Hideki

1999-07-01T23:59:59.000Z

30

Diesel emission control: Catalytic filters for particulate removal  

Science Journals Connector (OSTI)

The European diesel engine industry represents a vital sector across the Continent, with more than 2 million direct work positions and a turnover of over 400 billion Euro. Diesel engines provide large paybacks to society since they are extensively used to transport goods, services and people. In recent years increasing attention has been paid to the emissions from diesel engines which, like gasoline engine emissions, include carbon monoxide (CO), hydrocarbons (HC) and oxides of nitrogen (NOx). Diesel engines also produce significant levels of particulate matter (PM), which consists mostly of carbonaceous soot and a soluble organic fraction (SOF) of hydrocarbons that have condensed on the soot.Meeting the emission levels imposed for NOx and PM by legislation (Euro IV in 2005 and, in the 2008 perspective, Euro V) requires the development of a number of critical technologies to fulfill these very stringent emission limits (e.g. 0.005 g/km for PM). This review is focused on these innovative technologies with special reference to catalytic traps for diesel particulate removal.

Debora Fino

2007-01-01T23:59:59.000Z

31

Low NOx combustion  

SciTech Connect (OSTI)

Combustion of hydrocarbon liquids and solids is achieved with less formation of NOx by feeding a small amount of oxygen into the fuel stream.

Kobayashi; Hisashi (Putnam Valley, NY), Bool, III; Lawrence E. (Aurora, NY)

2007-06-05T23:59:59.000Z

32

Low NOx combustion  

SciTech Connect (OSTI)

Combustion of hydrocarbon liquids and solids is achieved with less formation of NOx by feeding a small amount of oxygen into the fuel stream.

Kobayashi, Hisashi (Putnam Valley, NY); Bool, III, Lawrence E. (Aurora, NY)

2008-10-21T23:59:59.000Z

33

Fe Promoted NOx Storage Materials: Structural Properties and NOx Uptake  

Science Journals Connector (OSTI)

According to the European Union regulations (EURO VI),(2) by the end of 2014, diesel passenger cars will be subject to a 3-fold decrease in NOx emissions from 0.25 to 0.08 g km?1. ... Barium oxide crystallizes in the rock salt structure, and the first order Raman scattering is symmetry forbidden(32, 33) However, broad and weak bands within 350?500 cm?1 due to the lattice modes of the defective BaO domains can still be visible via Raman spectroscopy (see for instance, Figure 3 in the Supporting Information). ...

Emine Kayhan; Stanislava M. Andonova; Go?ksu S. S?entu?rk; Charles C. Chusuei; Emrah Ozensoy

2009-12-11T23:59:59.000Z

34

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Fourth quarterly technical progress report, [October--December, 1992  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of a U. S. Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NOx combustion technologies on NOx emissions and boiler performance. A target of achieving fifty percent NOx reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NOx control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NOx concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NOx reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. During this quarter, tests of the LNCFS Level III system were conducted to determine the effect that fuel fineness has on NOx emissions and unburned carbon levels. Results showed that changing the fineness of the fuel has almost no effect on NOx emissions; however, unburned carbon levels can be reduced significantly by increasing fuel fineness.

Not Available

1992-12-31T23:59:59.000Z

35

Air Pollution Control Regulations: No. 41 - Nox Budget Trading Program  

Broader source: Energy.gov (indexed) [DOE]

41 - Nox Budget Trading 41 - Nox Budget Trading Program (Rhode Island) Air Pollution Control Regulations: No. 41 - Nox Budget Trading Program (Rhode Island) < Back Eligibility Commercial Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Rhode Island Program Type Environmental Regulations Provider Department of Environmental Management These regulations establish a budget trading program for nitrogen oxide emissions, setting NOx budget units for generators and an NOx Allowance Tracking System to account for emissions. These regulations apply to units that serve generators with a nameplate capacity greater than 15 MWe and sell any amount of electricity, as well as to units that have a maximum

36

NOx Reduction from Biodiesel Fuels  

Science Journals Connector (OSTI)

NOx Reduction from Biodiesel Fuels ... NOx emissions appear to be different for biodiesels from different feedstocks. ... For the suite of biodiesels prepared from nearly pure fatty acids, all biodiesel fuels produced higher NOx than certification diesel with the following exceptions:? methyl palmitate, methyl laurate, ethyl stearate, and the ethyl ester of hydrogenated soybean oil. ...

Sandun Fernando; Chris Hall; Saroj Jha

2005-11-19T23:59:59.000Z

37

Understanding the Distributed Intra-Catalyst Impact of Sulfation on Water Gas Shift in a Lean NOx Trap Catalyst  

Broader source: Energy.gov [DOE]

The Lean NOx Trap catalyst is an aftertreatment technology for abatement of nitrogen-oxide emissions from lean-burn vehicle engines.

38

Reduction of NOx emission on NiCrAl-Titanium Oxide coated direct injection diesel engine fuelled with radish (Raphanus sativus) biodiesel  

Science Journals Connector (OSTI)

The main aim of this study is the experimental investigation of single cylinder DI diesel engine with and without coating. Diesel and radish (Raphanus sativus) oil Methyl Ester are used as fuels and the results are compared to find the effect of biodiesel in a thermal barrier coating engine. For this purpose engine cylinder head valves and piston crown are coated with 100??m of nickel-chrome-aluminium bond coat and 450??m of TiO2 by the plasma spray method. Radish oil methyl ester is produced by the transesterification process method. From the experimental investigation slight increase in specific fuel consumption in thermal barrier coating engine is observed when compared with the uncoated engine whereas NOx HC Smoke and CO emissions decreased with coated engine for all test fuels used in the coated engine when compared with that of the uncoated engine.

V. Ravikumar; D. Senthilkumar

2013-01-01T23:59:59.000Z

39

A model cerium oxide matrix composite reinforced with a homogeneous dispersion of silver particulate - prepared using the glycine-nitrate process  

SciTech Connect (OSTI)

Recently a new method of ceramic brazing has been developed. Based on a two-phase liquid composed of silver and copper oxide, brazing is conducted directly in air without the need of an inert cover gas or the use of surface reactive fluxes. Because the braze displays excellent wetting characteristics on a number ceramic surfaces, including alumina, various perovskites, zirconia, and ceria, we were interested in investigating whether a metal-reinforced ceramic matrix composite (CMC) could be developed with this material. In the present study, two sets of homogeneously mixed silver/copper oxide/ceria powders were synthesized using a combustion synthesis technique. The powders were compacted and heat treated in air above the liquidus temperature for the chosen Ag-CuO composition. Metallographic analysis indicates that the resulting composite microstructures are extremely uniform with respect to both the size of the metallic reinforcement as well as its spatial distribution within the ceramic matrix. The size, morphology, and spacing of the metal particulate in the densified composite appears to be dependent on the original size and the structure of the starting combustion synthesized powders.

Weil, K. Scott; Hardy, John S.

2005-01-31T23:59:59.000Z

40

Experimental investigation of the effect of combined hydrogen and diesel combustion on the particulate size distribution from a high speed direct injection diesel engine  

Science Journals Connector (OSTI)

The effects of hydrogen addition and exhaust gas recirculation (EGR) levels on the exhaust particulate matter size distribution in a diesel engine have been investigated. The experiments were performed on a 2.0 litre, 4-cylinder, direct injection engine equipped with a modern high-pressure common rail. A nano-Micro-Orifice Uniform Deposit Impactor (nano-MOUDI) was used in this work to study the particulate matter size distribution. All tests were conducted at the set operating point of 1,500 rpm. The experimental work showed that the particulate matter size distribution was not dramatically altered by the addition of EGR, but the main peak was shifted towards the nucleation mode with the addition of hydrogen. The addition of hydrogen increases the emissions of nitrogen oxides (NOx), but reduces the emissions of unburnt hydrocarbons (THC). Conversely, the addition of EGR reduces NOx, but can increase THC. Hydrogen addition increases the peak cylinder pressure and the maximum rate of pressure rise.

L. McWilliam; A. Megaritis

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxides nox particulates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Global impact of fossil fuel combustion on atmospheric NOx Larry W. Horowitz  

E-Print Network [OSTI]

potential than emissions in the United States to perturb the global oxidizing power of the atmosphere. #12% of NOx concentrations in the lower and middle troposphere throughout the extratropical northern of the ocean. Sources in the United States are found to contribute about half of the fossil fuel NOx over

Jacob, Daniel J.

42

Measurement and Characterization of NOx Adsorber Regeneration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion with Lean-NOx Trap Yields Progress Toward Targets of Efficient NOx Control for Diesels Intra-catalyst Reductant Chemistry in Lean NOx Traps: A Study on Sulfur Effects...

43

NETL: Advanced NOx Emissions Control: Control Technology - NOx Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Emissions from Multi-Burners Emissions from Multi-Burners The University of Utah working with Reaction Engineering International and Brigham Young University is investigating a project that consists of integrated experimental, theoretical and computational modeling efforts. The primary objective is to evaluate NOx formation/destruction processes as they occur in multi-burner arrays, a geometry almost always utilized in utility practice. Most controlled experimental work examining NOx has been conducted on single burners. The range of potential intra-burner interactions are likely to provide added degrees of freedom for reducing NOx. The resultant findings may allow existing utilities to arrange fuel and air distribution to minimize NOx. In new applications, orientation of individual burners within an array may also be altered to reduce NOx. Comprehensive combustion codes will be modified to incorporate the latest submodels of nitrogen release and heterogeneous chemistry. Comparison of pilot scale experiments and simulations will be utilized to validate/develop theory.

44

Compact Potentiometric NOx Sensor | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Potentiometric NOx Sensor Compact Potentiometric NOx Sensor 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

45

9, 11231155, 2009 Lightning NOx  

E-Print Network [OSTI]

of lightning intensities. By im-20 posing an updated lightning NO production value of 520 mol NO/Flash, weACPD 9, 1123­1155, 2009 Lightning NOx emissions over the USA investigated using TES L. Jourdain et to the corresponding final paper in ACP if available. Lightning NOx emissions over the USA investigated using TES, NLDN

46

NETL: Advanced NOx Emissions Control: Control Technology - Model for NOx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Model for NOx Emissions in Biomass Cofiring Model for NOx Emissions in Biomass Cofiring Southern Research Institute is developing a validated tool or methodology to accurately and confidently design and optimize biomass-cofiring systems for full-scale utility boilers to produce the lowest NOX emissions and the least unburned carbon. The computer model will be validated through an extensive set of tests at the 6 MMBtu/hr pilot combustor in the Southern Company/Southern Research Institute Combustion Research Facility. Full-scale demonstration testing can be compared to the model for further validation. The project is designed to balance the development of a systematic and expansive database detailing the effects of cofiring parameters on NOx formation with the complementary modeling effort that will yield a capability to predict, and therefore optimize, NOx reductions by the selection of those parameters. The database of biomass cofiring results will be developed through an extensive set of pilot-scale tests at the Southern Company/Southern Research Institute Combustion Research Facility. The testing in this program will monitor NOx, LOI, and other emissions over a broad domain of biomass composition, coal quality, and cofiring injection configurations to quantify the dependence of NOx formation and LOI on these parameters. This database of cofiring cases will characterize an extensive suite of emissions and combustion properties for each of the fuel and injection configuration combinations tested.

47

Nox1 and Nox4 enzymes are persistently elevated in human hepatocytes producing infectious hepatitis C virus  

E-Print Network [OSTI]

location of NOX4 and NOX1 enzymes by cell fractionation. 6.13. Proposed role of hepatocyte NOX enzymes in HCV-inducedMERCED Nox1 and Nox4 enzymes are persistently elevated in

Reyes de Mochel, Nabora Soledad

2009-01-01T23:59:59.000Z

48

Time and location differentiated NOX control in competitive electricity markets using cap-and-trade mechanisms  

E-Print Network [OSTI]

Due to variations in weather and atmospheric chemistry, the timing and location of nitrogen oxide (NOX) reductions determine their effectiveness in reducing ground-level ozone, which adversely impacts human health. Electric ...

Martin, Katherine C.

2007-01-01T23:59:59.000Z

49

Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NOx) emissions from high-sulfur coal-fired boilers  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor.

Not Available

1991-11-01T23:59:59.000Z

50

The Advanced Tangentially Fired Combustion Techniques for the Reduction of Nitrogen Oxides (NOx) Emissions From Coal-Fired Boilers Demonstration Project: A DOE Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 The Advanced Tangentially Fired Combustion Techniques for the Reduction of Nitrogen Oxides (NO ) Emissions From Coal-Fired Boilers X Demonstration Project: A DOE Assessment March 2000 U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 and P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

51

NOx Sensor Development  

Broader source: Energy.gov (indexed) [DOE]

zirconia (PSZ) for better mechanical properties * (bottom) Dense LSM (Strontium-doped lanthanum manganite oxide) with yttria fully- stabilized zirconia (YSZ) for...

52

Transient Dynamometer Testing of a Single Leg NOx Adsorber Combined...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transient Dynamometer Testing of a Single Leg NOx Adsorber Combined with a Fuel Processor for Enhanced NOx Control Transient Dynamometer Testing of a Single Leg NOx Adsorber...

53

Benchmark Reaction Mechanisms and Kinetics for Lean NOx Traps...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Benchmark Reaction Mechanisms and Kinetics for Lean NOx Traps Development of Chemical Kinetic Models for Lean NOx Traps Modeling the Regeneration Chemistry of Lean NOx Traps...

54

EA-1472: Commercial Demonstration fo the Low Nox Burner/Separated Over-Fire  

Broader source: Energy.gov (indexed) [DOE]

472: Commercial Demonstration fo the Low Nox Burner/Separated 472: Commercial Demonstration fo the Low Nox Burner/Separated Over-Fire Air (LNB/SOFA) Integration System Emission Reduction Technology, Holcolm Station, Sunflower Electric Power Corporation Finnety County, Kansas EA-1472: Commercial Demonstration fo the Low Nox Burner/Separated Over-Fire Air (LNB/SOFA) Integration System Emission Reduction Technology, Holcolm Station, Sunflower Electric Power Corporation Finnety County, Kansas SUMMARY The DOE has prepared an Environmental Assessment (EA), to analyze the potential impacts of the commercial application of the Low-NOx Burner/Separated Over-Fire Air (LNB/SOFA) integration system to achieve nitrogen oxide (NOx) emissions reduction at Sunflower's Holcomb Unit No. 1 (Holcomb Station), located near Garden City, in Finney County, Kansas.

55

Control of NOx by combustion process modifications  

E-Print Network [OSTI]

A theoretical and experimental study was carried out to determine lower bounds of NOx emission from staged combustion of a 0.7%N #6 fuel oil. Thermodynamic and chemical kinetic calculations have shown minimum NOx emissions ...

Ber?, J. M.

1981-01-01T23:59:59.000Z

56

Diesel particulate filters  

Science Journals Connector (OSTI)

Is the broad market introduction of diesel particulate filters throughout Europe wishful thinking or reality? The challenges facing the introduction of diesel particulate filters with a fuel-borne catalyst...

Pierre Macaudière; Laurent Rocher; Wolfgang Naschke

2004-04-01T23:59:59.000Z

57

Impact of Biodiesel-Based Na on the Selective Catalytic Reduction (SCR) of NOx Using Cu-zeolite  

Broader source: Energy.gov [DOE]

Discusses the impact of Na in biodiesel on three emission control devices: the diesel particulate filter, diesel oxidation catalyst, and zeolyte-based SCR catalyst

58

NETL: News Release - DOE Selects Five NOx-Control Projects to Combat Acid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

November 5, 2004 November 5, 2004 DOE Selects Five NOx-Control Projects to Combat Acid Rain and Smog Industry Partners to Focus on Reducing Emissions While Cutting Energy Costs PITTSBURGH, PA - Continuing efforts to cut acid rain and smog-producing nitrogen oxides (NOx) have prompted the U.S. Department of Energy to partner with industry experts to develop advanced NOx-control technologies. With the selection of five new NOx-control projects, the Energy Department continues as a leader in developing advanced technologies to achieve environmental compliance for the nation's fleet of coal-fired power plants. Although today's NOx-control workhorses, such as low-NOx burners and selective catalytic reduction (SCR), have been successfully deployed to address existing regulations, proposed regulations will require deeper cuts in NOx emissions, at a greater number of generating facilities. Many of the smaller affected plants will not be able to cost-effectively use today's technologies; these are the focus of the advanced technologies selected in this announcement.

59

Dual Fuel Diesel Engine Operation Using H2. Effect on Particulate Emissions  

Science Journals Connector (OSTI)

Dual Fuel Diesel Engine Operation Using H2. ... School of Engineering, Mechanical and Manufacturing Engineering, The University of Birmingham, Birmingham B15 2TT, United Kingdom, Universidad de Castilla?La Mancha, Edificio Politecnico, Escuela Tecnica Superior de Ingenieros Industriales, Avda. ... In diesel engines, the reduction of particulate emissions must be achieved in conjunction with the reduction of NOx emissions. ...

A. Tsolakis; J. J. Hernandez; A. Megaritis; M. Crampton

2005-01-11T23:59:59.000Z

60

NETL: Advanced NOx Emissions Control: Control Technology - Ultra Low-NOx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ultra Low NOx Integrated System Ultra Low NOx Integrated System TFS 2000(tm) Low NOx Firing System Project Summary: ALSTOM Power Inc.'s Power Plant Laboratories, working in concert with ALSTOM Power's Performance Projects Group, has teamed with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient NOx control technologies for retrofit to pulverized coal fired utility boilers. The objective of this project was to develop retrofit NOx control technology to achieve less than 0.15 lb/MMBtu NOx (for bituminous coals) and 0.10 lb/MMBtu NOx (for subbituminous coals) from existing pulverized coal fired utility boilers at a cost which is at least 25% less than SCR technology. Efficient control of NOx is seen as an important,

Note: This page contains sample records for the topic "oxides nox particulates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

LOW NOx EMISSIONS IN A FUEL FLEXIBLE GAS TURBINE  

SciTech Connect (OSTI)

In alignment with Vision 21 goals, a study is presented here on the technical and economic potential for developing a gas turbine combustor that is capable of generating less that 2 ppm NOx emissions, firing on either coal synthesis gas or natural gas, and being implemented on new and existing systems. The proposed solution involves controlling the quantity of H2 contained in the fuel. The presence of H2 leads to increased flame stability such that the combustor can be operated at lower temperatures and produce less thermal NOx. Coal gas composition would be modified using a water gas shift converter, and natural gas units would implement a catalytic partial oxidation (CPOX) reactor to convert part of the natural gas feed to a syngas before fed back into the combustor. While both systems demonstrated technical merit, the economics involved in implementing such a system are marginal at best. Therefore, Praxair has decided not to pursue the technology any further at this time.

Raymond Drnevich; James Meagher; Vasilis Papavassiliou; Troy Raybold; Peter Stuttaford; Leonard Switzer; Lee Rosen

2004-08-01T23:59:59.000Z

62

SOx-NOx-Rox Box{trademark} flue gas clean-up demonstration. Final report  

SciTech Connect (OSTI)

Babcock and Wilcox`s (B and W) SOx-NOx-Rox Box{trademark} process effectively removes SOx, NOx and particulate (Rox) from flue gas generated from coal-fired boilers in a single unit operation, a high temperature baghouse. The SNRB technology utilizes dry sorbent injection upstream of the baghouse for removal of SOx and ammonia injection upstream of a zeolitic selective catalytic reduction (SCR) catalyst incorporated in the baghouse to reduce NOx emissions. Because the SOx and NOx removal processes require operation at elevated gas temperatures (800--900 F) for high removal efficiency, high-temperature fabric filter bags are used in the baghouse. The SNRB technology evolved from the bench and laboratory pilot scale to be successfully demonstrated at the 5-MWe field scale. This report represents the completion of Milestone M14 as specified in the Work Plan. B and W tested the SNRB pollution control system at a 5-MWe demonstration facility at Ohio Edison`s R.E. Burger Plant located near Shadyside, Ohio. The design and operation were influenced by the results from laboratory pilot testing at B and W`s Alliance Research Center. The intent was to demonstrate the commercial feasibility of the SNRB process. The SNRB facility treated a 30,000 ACFM flue gas slipstream from Boiler No. 8. Operation of the facility began in May 1992 and was completed in May 1993. About 2,300 hours of high-temperature operation were achieved. The main emissions control performance goals of: greater than 70% SO{sub 2} removal using a calcium-based sorbent; greater than 90% NOx removal with minimal ammonia slip; and particulate emissions in compliance with the New Source Performance Standards (NSPS) of 0.03 lb/million Btu were exceeded simultaneously in the demonstration program when the facility was operated at optimal conditions. Testing also showed significant reductions in emissions of some hazardous air pollutants.

NONE

1995-09-01T23:59:59.000Z

63

CLEERS Activities: Diesel Soot Filter Characterization & NOx...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Control Fundamentals CLEERS Activities: Diesel Soot Filter Characterization & NOx Control Fundamentals 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit...

64

Measuring PM Distribution in a Catalyzed Particulate Filter using a Terahertz Wave Scanner  

Broader source: Energy.gov [DOE]

Terahertz scanning system produced 3-dimensional image of local PM density in catatalyzed particulate filters tested under loading and oxidizing conditions

65

Combustor for fine particulate coal  

DOE Patents [OSTI]

A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover. 4 figs.

Carlson, L.W.

1988-01-26T23:59:59.000Z

66

Combustor for fine particulate coal  

DOE Patents [OSTI]

A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover.

Carlson, Larry W. (Oswego, IL)

1988-01-01T23:59:59.000Z

67

NETL: Advanced NOx Emissions Control: Control Technology - NOx Combustion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Control Options and Integration Control Options and Integration Reaction Engineering International (REI) is optimizing the performance of, and reduce the technical risks associated with the combined application of low-NOx firing systems (LNFS) and post combustion controls through modeling, bench-scale testing, and field verification. Teaming with REI are the University of Utah and Brown University. During this two-year effort, REI will assess real-time monitoring equipment to evaluate waterwall wastage, soot formation, and burner stoichiometry, demonstrate analysis techniques to improve LNFS in combination with reburning/SNCR, assess selective catalytic reduction catalyst life, and develop UBC/fly ash separation processes. The REI program will be applicable to coal-fired boilers currently in use in the United States, including corner-, wall-, turbo-, and cyclone-fired units. However, the primary target of the research will be cyclone boilers, which are high NOx producing units and represent about 20% of the U.S. generating capacity. The results will also be applicable to all U.S. coals. The research will be divided into four key components:

68

Pitch based foam with particulate  

DOE Patents [OSTI]

A thermally conductive, pitch based foam composite having a particulate content. The particulate alters the mechanical characteristics of the foam without severely degrading the foam thermal conductivity. The composite is formed by mixing the particulate with pitch prior to foaming.

Klett, James W. (Knoxville, TN)

2001-01-01T23:59:59.000Z

69

Transmural Catalysis - High Efficiency Catalyst Systems for NOx...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transmural Catalysis - High Efficiency Catalyst Systems for NOx Adsorbers and SCR Transmural Catalysis - High Efficiency Catalyst Systems for NOx Adsorbers and SCR Presentation...

70

SCR Technologies for NOx Reduction | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies for NOx Reduction SCR Technologies for NOx Reduction 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deerhesser.pdf More...

71

An Improvement of Diesel PM and NOx Reduction System | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Publications Development on simultaneous reduction system of NOx and PM from a diesel engine An Improvement of Diesel PM and NOx Reduction System New Diesel Emissions...

72

Development on simultaneous reduction system of NOx and PM from...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications An Improvement of Diesel PM and NOx Reduction System An Improvement of Diesel PM and NOx Reduction System EPA Mobile Source Rule Update...

73

Passive Catalytic Approach to Low Temperature NOx Emission Abatement...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Catalytic Approach to Low Temperature NOx Emission Abatement Passive Catalytic Approach to Low Temperature NOx Emission Abatement Numerically evaluated and optimized proposed...

74

Three-Dimensional Composite Nanostructures for Lean NOx Emission...  

Broader source: Energy.gov (indexed) [DOE]

Three-Dimensional Composite Nanostructures for Lean NOx Emission Control Three-Dimensional Composite Nanostructures for Lean NOx Emission Control 2010 DOE Vehicle Technologies and...

75

Effect of Biodiesel Blends on NOx Emissions | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biodiesel Blends on NOx Emissions Effect of Biodiesel Blends on NOx Emissions Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007)....

76

H2-Assisted NOx Traps: Test Cell Results Vehicle Installations...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

H2-Assisted NOx Traps: Test Cell Results Vehicle Installations H2-Assisted NOx Traps: Test Cell Results Vehicle Installations 2003 DEER Conference Presentation: ArvinMeritor...

77

Enhanced High and Low Temperature Performance of NOx Reduction...  

Broader source: Energy.gov (indexed) [DOE]

Enhanced High and Low Temperature Performance of NOx Reduction Materials Enhanced High and Low Temperature Performance of NOx Reduction Materials 2013 DOE Hydrogen and Fuel Cells...

78

Virtual Oxygen Sensor for Innovative NOx and PM Emission Control...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Virtual Oxygen Sensor for Innovative NOx and PM Emission Control Technologies Virtual Oxygen Sensor for Innovative NOx and PM Emission Control Technologies A virtual O2 sensor for...

79

Modeling the Regeneration Chemistry of Lean NOx Traps | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the Regeneration Chemistry of Lean NOx Traps Modeling the Regeneration Chemistry of Lean NOx Traps Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored...

80

Electrochemical NOxSensor for Monitoring Diesel Emissions | Department...  

Broader source: Energy.gov (indexed) [DOE]

Diesel Emissions Electrochemical NOxSensor for Monitoring Diesel Emissions pm02glass.pdf More Documents & Publications Electrochemical NOx Sensor for Monitoring Diesel...

Note: This page contains sample records for the topic "oxides nox particulates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Effects of Fuel Dilution with Biodiesel on Lubricant Acidity, Oxidation and Corrosion  

Broader source: Energy.gov [DOE]

In-cylinder fuel injection to produce rich exhaust for regeneration of lean NOx trap catalyst and diesel particulate filter results in substantial fuel dilution of lubricating oil cause changes of lubricating oil properties and scuffing of engine components.

82

IEP - Advanced NOx Emissions Control: Regulatory Drivers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

IEP - Advanced NOx Emissions Control Regulatory Drivers Regulatory Drivers for Existing Coal-Fired Power Plants Regulatory and legislative requirements have predominantly driven the need to develop NOx control technologies for existing coal-fired power plants. The first driver was the Title IV acid rain program, established through the 1990 Clean Air Act Amendments (CAAA). This program included a two-phase strategy to reduce NOx emissions from coal-fired power plants – Phase I started January 1, 1996 and Phase II started January 1, 2000. The Title IV NOx program was implemented through unit-specific NOx emission rate limits ranging from 0.40 to 0.86 lb/MMBtu depending on the type of boiler/burner configuration and based on application of LNB technology.

83

Photochemical Oxidant Processes in the Presence of Dust: An Evaluation of the Impact of Dust on Particulate Nitrate and Ozone Formation  

Science Journals Connector (OSTI)

The influence of dust on the tropospheric photochemical oxidant cycle is studied through the use of a detailed coupled aerosol and gas-phase chemistry model. Dust is a significant component of the troposphere throughout Asia and provides a ...

Yang Zhang; Young Sunwoo; Veerabhadra Kotamarthi; Gregory R. Carmichael

1994-07-01T23:59:59.000Z

84

Reduction of particulate matter and gaseous emission from marine diesel engines using a catalyzed particulate filter  

Science Journals Connector (OSTI)

Diesel engines are used widely as the power sources of coastal ships and international vessels primarily due to their high thermal efficiency, high fuel economy and durable performance. However, the gaseous and solid substances exhausted from diesel engines during the combustion process cause air pollution, in particular around harbor regions. In order to effectively reduce particulate matter and gaseous pollution emissions, a catalyzed particulate filter was equipped in the tail pipe of a marine diesel engine. The engine's performance and emission characteristics under various engine speeds and torques were measured using a computerized engine data control and acquisition system accompanied with an engine dynamometer. The effectiveness of installing a catalyzed particulate filter on the reduction of pollutant emissions was examined. The experimental results show that the exhaust gas temperature, carbon monoxide and smoke opacity were reduced significantly upon installation of the particulate filter. In particular, larger conversion of carbon monoxide to carbon dioxide — and thus larger CO2 and lower CO emissions — were observed for the marine diesel engine equipped with a catalyzed particulate filter and operated at higher engine speeds. This is presumably due to enhancement of the catalytic oxidation reaction that results from an exhaust gas with stronger stirring motion passing through the filter. The absorption of partial heating energy from the exhaust gas by the physical structure of the particulate filter resulted in a reduction in the exhaust gas temperature. The particulate matter could be burnt to a greater extent due to the effect of the catalyst coated on the surface of the particulate filter. Moreover, the fuel consumption rate was increased slightly while the excess oxygen emission was somewhat decreased with the particulate filter.

Cherng-Yuan Lin

2002-01-01T23:59:59.000Z

85

A Fundamental Consideration on NOx Adsorber Technology for DI Diesel Application  

SciTech Connect (OSTI)

Diesel engines are far more efficient than gasoline engines of comparable size, and emit less greenhouse gases that have been implicated in global warming. In 2000, the US EPA proposed very stringent emissions standards to be introduced in 2007 along with low sulfur (< 15 ppm) diesel fuel. The California Air Resource Board (CARB) has also established the principle that future diesel fueled vehicles should meet the same low emissions standards as gasoline fueled vehicles and the EPA followed suit with its Tier II emissions regulation. Achieving such low emissions cannot be done through engine development and fuel reformulation alone, and requires application of NOx and particulate matter (PM) aftertreatment control devices. There is a widespread consensus that NOx adsorbers and particulate filter are required in order for diesel engines to meet the 2007 emissions regulations for NOx and PM. In this paper, the key exhaust characteristics from an advanced diesel engine are reviewed. Development of the NOx adsorber technology is discussed. Spectroscopic techniques are applied to understand the underlying chemical reactions over the catalyst surface during NOx trapping and regeneration periods. In-situ surface probes are useful in providing not only thermodynamic and kinetics information required for model development but also a fundamental understanding of storage capacity and degradation mechanisms. The distribution of various nitration/sulfation species is related to surface basicity. Surface displacement reactions of carbonates also play roles in affecting the trapping capability of NOx adsorbers. When ultralow-S fuel is used as a reductant during the regeneration, sulfur induced performance degradation is still observed in an aged catalyst. Other possible sources related to catalyst deactivation include incomplete reduction of surface nitration, coke formation derived from incomplete hydrocarbon burning, and lubricant formulations. Sulfur management and the direction of future work for the successful implementation of such integrated engine and aftertreatment technology are discussed. SAE Paper SAE-2002-01-2889 {copyright} 2002 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.

Fang, Howard L.; Huang, Shyan C.; Yu, Robert C. (Cummins, Inc.); Wan, C. Z. (Engelhard Corp.); Howden, Ken (U.S. Dept. of Energy)

2002-10-01T23:59:59.000Z

86

Ammonia-Free NOx Control System  

SciTech Connect (OSTI)

Research is being conducted under United States Department of Energy (DOE) Contract DEFC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia. This report describes the work performed during the January 1 to March 31, 2004 time period.

S. Wu; Z. Fan; R. Herman

2004-03-31T23:59:59.000Z

87

Ammonia-Free NOx Control System  

SciTech Connect (OSTI)

Research is being conducted under United States Department of Energy (DOE) Contract DEFC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia. This report describes the work performed during the October 1 to December 31, 2003 time period.

S. Wu

2003-12-31T23:59:59.000Z

88

Electrochemical NOx Sensors for Monitoring Diesel Emissions  

Broader source: Energy.gov [DOE]

A unique electrochemical sensing strategy correlating the level of NOx with an impedance-based signal shows promise for sensitivity, stability, and accuracy while incorporating single-cell structures and simple electronics into low-cost designs

89

Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels  

SciTech Connect (OSTI)

This final report documents the technical results of the 3-year project entitled, “Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels,” funded under the NETL of DOE. The research was conducted under six main tasks: 1) program management and planning; 2) turbulent flame speed measurements of syngas mixtures; 3) laminar flame speed measurements with diluents; 4) NOx mechanism validation experiments; 5) fundamental NOx kinetics; and 6) the effect of impurities on NOx kinetics. Experiments were performed using primary constant-volume vessels for laminar and turbulent flame speeds and shock tubes for ignition delay times and species concentrations. In addition to the existing shock- tube and flame speed facilities, a new capability in measuring turbulent flame speeds was developed under this grant. Other highlights include an improved NOx kinetics mechanism; a database on syngas blends for real fuel mixtures with and without impurities; an improved hydrogen sulfide mechanism; an improved ammonia kintics mechanism; laminar flame speed data at high pressures with water addition; and the development of an inexpensive absorption spectroscopy diagnostic for shock-tube measurements of OH time histories. The Project Results for this work can be divided into 13 major sections, which form the basis of this report. These 13 topics are divided into the five areas: 1) laminar flame speeds; 2) Nitrogen Oxide and Ammonia chemical kinetics; 3) syngas impurities chemical kinetics; 4) turbulent flame speeds; and 5) OH absorption measurements for chemical kinetics.

Peterson, Eric; Krejci, Michael; Mathieu, Olivier; Vissotski, Andrew; Ravi, Sankat; Plichta, Drew; Sikes, Travis; Levacque, Anthony; Camou, Alejandro; Aul, Christopher

2013-09-30T23:59:59.000Z

90

OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL  

SciTech Connect (OSTI)

Conventional wisdom says adding oxygen to a combustion system enhances product throughput, system efficiency, and, unless special care is taken, increases NOx emissions. This increase in NOx emissions is typically due to elevated flame temperatures associated with oxygen use leading to added thermal NOx formation. Innovative low flame temperature oxy-fuel burner designs have been developed and commercialized to minimize both thermal and fuel NOx formation for gas and oil fired industrial furnaces. To be effective these systems require close to 100% oxy-fuel combustion and the cost of oxygen is paid for by fuel savings and other benefits. For applications to coal-fired utility boilers at the current cost of oxygen, however, it is not economically feasible to use 100% oxygen for NOx control. In spite of this conventional wisdom, Praxair and its team members, in partnership with the US Department of Energy National Energy Technology Laboratory, have developed a novel way to use oxygen to reduce NOx emissions without resorting to complete oxy-fuel conversion. In this concept oxygen is added to the combustion process to enhance operation of a low NOx combustion system. Only a small fraction of combustion air is replaced with oxygen in the process. By selectively adding oxygen to a low NOx combustion system it is possible to reduce NOx emissions from nitrogen-containing fuels, including pulverized coal, while improving combustion characteristics such as unburned carbon. A combination of experimental work and modeling was used to define how well oxygen enhanced combustion could reduce NOx emissions. The results of this work suggest that small amounts of oxygen replacement can reduce the NOx emissions as compared to the air-alone system. NOx emissions significantly below 0.15 lbs/MMBtu were measured. Oxygen addition was also shown to reduce carbon in ash. Comparison of the costs of using oxygen for NOx control against competing technologies, such as SCR, show that this concept offers substantial savings over SCR and is an economically attractive alternative to purchasing NOx credits or installing other conventional technologies. In conjunction with the development of oxygen based low NOx technology, Praxair also worked on developing the economically enhancing oxygen transport membrane (OTM) technology which is ideally suited for integration with combustion systems to achieve further significant cost reductions and efficiency improvements. This OTM oxygen production technology is based on ceramic mixed conductor membranes that operate at high temperatures and can be operated in a pressure driven mode to separate oxygen with infinite selectivity and high flux. An OTM material was selected and characterized. OTM elements were successfully fabricated. A single tube OTM reactor was designed and assembled. Testing of dense OTM elements was conducted with promising oxygen flux results of 100% of target flux. However, based on current natural gas prices and stand-alone air separation processes, ceramic membranes do not offer an economic advantage for this application. Under a different DOE-NETL Cooperative Agreement, Praxair is continuing to develop oxygen transport membranes for the Advanced Boiler where the economics appear more attractive.

David R. Thompson; Lawrence E. Bool; Jack C. Chen

2004-04-01T23:59:59.000Z

91

ADVANCED HYBRID PARTICULATE COLLECTOR  

SciTech Connect (OSTI)

A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the US Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a manner that has not been done before. The AHPC concept consists of a combination of fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emission with conventional ESPs, and it solves the problem of reentrainment and collection of dust in conventional baghouses. The AHPC is currently being tested at the 2.7-MW scale at the Big Stone power station.

Stanley Miller; Rich Gebert; William Swanson

1999-11-01T23:59:59.000Z

92

NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS  

SciTech Connect (OSTI)

This is the fifth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing cofunding for this program. This program contains multiple tasks and good progress is being made on all fronts. Field tests for NOx reduction in a cyclone fired utility boiler due to using Rich Reagent Injection (RRI) have been started. CFD modeling studies have been started to evaluate the use of RRI for NOx reduction in a corner fired utility boiler using pulverized coal. Field tests of a corrosion monitor to measure waterwall wastage in a utility boiler have been completed. Computational studies to evaluate a soot model within a boiler simulation program are continuing. Research to evaluate SCR catalyst performance has started. A literature survey was completed. Experiments have been outlined and two flow reactor systems have been designed and are under construction. Commercial catalyst vendors have been contacted about supplying catalyst samples. Several sets of new experiments have been performed to investigate ammonia removal processes and mechanisms for fly ash. Work has focused on a promising class of processes in which ammonia is destroyed by strong oxidizing agents at ambient temperature during semi-dry processing (the use of moisture amounts less than 5 wt-%). Both ozone and an ozone/peroxide combination have been used to treat both basic and acidic ammonia-laden ashes.

Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Eddings; Larry Baxter

2001-10-10T23:59:59.000Z

93

Electrically-Assisted Diesel Particulate Filter Regeneration...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Substrate Studies of an Electrically-Assisted Diesel Particulate Filter Electrically-Assisted Diesel Particulate Filter Regeneration...

94

Ammonia Sensor for SCR NOX Reduction | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sensor for SCR NOX Reduction Ammonia Sensor for SCR NOX Reduction Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August,...

95

Lean NOx Reduction with Dual Layer LNT/SCR Catalysts  

Broader source: Energy.gov [DOE]

Results show that a series of dual layer catalysts with a bottom layer of LNT catalyst and a top layer of SCR catalyst can carry out coupled ammonia generation and NOx reduction, achieving high NOx conversion with minimal ammonia slip

96

Methods for making lithium vanadium oxide electrode materials  

DOE Patents [OSTI]

A method of making vanadium oxide formulations is presented. In one method of preparing lithium vanadium oxide for use as an electrode material, the method involves: admixing a particulate form of a lithium compound and a particulate form of a vanadium compound; jet milling the particulate admixture of the lithium and vanadium compounds; and heating the jet milled particulate admixture at a temperature below the melting temperature of the admixture to form lithium vanadium oxide.

Schutts, Scott M. (Menomonie, WI); Kinney, Robert J. (Woodbury, MN)

2000-01-01T23:59:59.000Z

97

Enhanced Combustion Low NOx Pulverized Coal Burner  

SciTech Connect (OSTI)

For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for economic evaluation and commercial application. During the project performance period, Alstom performed computational fluid dynamics (CFD) modeling and large pilot scale combustion testing in its Industrial Scale Burner Facility (ISBF) at its U.S. Power Plant Laboratories facility in Windsor, Connecticut in support of these objectives. The NOx reduction approach was to optimize near-field combustion to ensure that minimum NOx emissions are achieved with minimal impact on unburned carbon in ash, slagging and fouling, corrosion, and flame stability/turn-down. Several iterations of CFD and combustion testing on a Midwest coal led to an optimized design, which was extensively combustion tested on a range of coals. The data from these tests were then used to validate system costs and benefits versus SCR. Three coals were evaluated during the bench-scale and large pilot-scale testing tasks. The three coals ranged from a very reactive subbituminous coal to a moderately reactive Western bituminous coal to a much less reactive Midwest bituminous coal. Bench-scale testing was comprised of standard ASTM properties evaluation, plus more detailed characterization of fuel properties through drop tube furnace testing and thermogravimetric analysis. Bench-scale characterization of the three test coals showed that both NOx emissions and combustion performance are a strong function of coal properties. The more reactive coals evolved more of their fuel bound nitrogen in the substoichiometric main burner zone than less reactive coal, resulting in the potential for lower NOx emissions. From a combustion point of view, the more reactive coals also showed lower carbon in ash and CO values than the less reactive coal at any given main burner zone stoichiometry. According to bench-scale results, the subbituminous coal was found to be the most amenable to both low NOx, and acceptably low combustibles in the flue gas, in an air staged low NOx system. The Midwest bituminous coal, by contrast, was predicted to be the most challenging of the three coals, with the Western bituminous coal predicted to beh

David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

2007-06-30T23:59:59.000Z

98

Oxygen Reactivity of Devolatilized Diesel Engine Particulates from Conventional and Biodiesel Fuels  

Science Journals Connector (OSTI)

Oxygen Reactivity of Devolatilized Diesel Engine Particulates from Conventional and Biodiesel Fuels ... Abatement of diesel particulates has led to an overall decrease in the fuel efficiency of diesel engines, and overcoming these losses has been one of the more challenging problems in exhaust aftertreatment. ... (16-18) Establishing a general physical basis for modeling diesel particulate oxidation is especially challenging because of the large variations in microscopic structure that it can have. ...

Andrea Strzelec; Todd J. Toops; C. Stuart Daw

2013-06-10T23:59:59.000Z

99

NETL: Advanced NOx Emissions Control: Control Technology - Methane de-NOx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

METHANE de-NOx® METHANE de-NOx® The Gas Technology Institute (GTI) is teaming with the All-Russian Thermal Engineering Institute and DB Riley to develop a pulverized-coal (PC)-combustion system that is an extension of IGT's METHANE de-NOx® technology. The technology is composed of a novel PC burner design using natural gas fired coal preheating developed and demonstrated in Russia, LNBs with internal combustion staging, and additional natural gas injection with overfire air. The coal is preheated at elevated temperatures (up to 1500oF) in oxygen deficient conditions prior to combustion. Coal preheat releases fuel-bound nitrogen together with volatiles present in the coal. These conditions promote the conversion of fuel-bound nitrogen to molecular nitrogen rather than to NOx.

100

Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NOx) emissions from high-sulfur coal-fired boilers. Quarterly report No. 5, July--September 1991  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor.

Not Available

1991-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxides nox particulates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Particulate matter dynamics  

E-Print Network [OSTI]

A substantial fraction of the particulate matter released into the atmosphere by industrial or natural processes corresponds to particles whose aerodynamic diameters are greater than 50 mm. It has been shown that, for these particles, the classical description of Gaussian plume diffusion processes, is inadequate to describe the transport and deposition. In this paper we present new results concerning the dispersion of coarse particulate matter. The simulations are done with our own code that uses the Bulirsch Stoer numerical integrator to calculate threedimensional trajectories of particles released into the environment under very general conditions. Turbulent processes are simulated by the Langevin equation and weather conditions are modeled after stable (Monin-Obukhov length L> 0) and unstable conditions (L <0). We present several case studies based on Monte Carlo simulations and discusses the effect of weather on the final deposition of these particles.

Cionco, Rodolfo G; Caligaris, Marta G

2012-01-01T23:59:59.000Z

102

Implications of Near-Term Coal Power Plant Retirement for SO2 and NOX and Life Cycle GHG Emissions  

Science Journals Connector (OSTI)

Implications of Near-Term Coal Power Plant Retirement for SO2 and NOX and Life Cycle GHG Emissions ... Life cycle GHG emissions were found to decrease by less than 4% in almost all scenarios modeled. ... Resulting changes in fuel use, life cycle greenhouse gas (GHG) emissions, and emissions of sulfur and nitrogen oxides are estimated. ...

Aranya Venkatesh; Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews

2012-08-13T23:59:59.000Z

103

Effect of B20 and Low Aromatic Diesel on Transit Bus NOx Emissions Over Driving Cycles with a Range of Kinetic Intensity  

SciTech Connect (OSTI)

Oxides of nitrogen (NOx) emissions for transit buses for up to five different fuels and three standard transit duty cycles were compared to establish whether there is a real-world biodiesel NOx increase for transit bus duty cycles and engine calibrations. Six buses representing the majority of the current national transit fleet and including hybrid and selective catalyst reduction systems were tested on a heavy-duty chassis dynamometer with certification diesel, certification B20 blend, low aromatic (California Air Resources Board) diesel, low aromatic B20 blend, and B100 fuels over the Manhattan, Orange County and UDDS test cycles. Engine emissions certification level had the dominant effect on NOx; kinetic intensity was the secondary driving factor. The biodiesel effect on NOx emissions was not statistically significant for most buses and duty cycles for blends with certification diesel, except for a 2008 model year bus. CARB fuel had many more instances of a statistically significant effect of reducing NOx. SCR systems proved effective at reducing NOx to near the detection limit on all duty cycles and fuels, including B100. While offering a fuel economy benefit, a hybrid system significantly increased NOx emissions over a same year bus with a conventional drivetrain and the same engine.

Lammert, M. P.; McCormick, R. L.; Sindler, P.; Williams, A.

2012-10-01T23:59:59.000Z

104

A decoupled approach for NOx–N2O 3-D CFD modeling in CFB plants  

Science Journals Connector (OSTI)

Abstract In this study, a 3D CFD model for the formation of \\{NOx\\} and N2O in a lignite fired 1.2 MWth CFB pilot plant is developed. The decoupled approach (decoupled from combustion simulation) is tested for the minimization of computational cost. As combustion simulation is prerequired, this was achieved through a simplified 3-D CFD combustion model. The developed model is then applied to the pilot-scale 1.2 MWth CFB plant and validated against experimental data. As concerns the NOx–N2O model, an extensive literature review is also carried out for the incorporation of the appropriate reactions network and respective reaction rates expressions. Results show that homogenous reactions are favoured on the lower section of the bed, due to the abundance of fuel devolatilization products. On the other hand, on the upper section, heterogeneous reactions govern nitric oxide formation/reduction. It is found that for the lignite examined in this work, HCN is released in negligible amounts during char combustion. The proposed and validated CFD model for \\{NOx\\} and N2O, is capable of examining the effect of different operational parameters and coal properties on the overall nitric oxides emissions from a CFB combustor, with low computational cost and without the additional expenses for pilot-scale experiments.

A. Nikolopoulos; I. Malgarinos; N. Nikolopoulos; P. Grammelis; S. Karrelas; E. Kakaras

2014-01-01T23:59:59.000Z

105

HYDROGEN GENERATION FROM PLASMATRON REFORMERS: A PROMISING TECHNOLOGY FOR NOX ADSORBER REGENERATION AND OTHER AUTOMOTIVE APPLICATIONS  

SciTech Connect (OSTI)

Plasmatron reformers are being developed at MIT and ArvinMeritor [1]. In these reformers a special low power electrical discharge is used to promote partial oxidation conversion of hydrocarbon fuels into hydrogen and CO. The partial oxidation reaction of this very fuel rich mixture is difficult to initiate. The plasmatron provides continuous enhanced volume initiation. To minimize electrode erosion and electrical power requirements, a low current, high voltage discharge with wide area electrodes is used. The reformers operate at or slightly above atmospheric pressure. Plasmatron reformers provide the advantages of rapid startup and transient response; efficient conversion of the fuel to hydrogen rich gas; compact size; relaxation or elimination of reformer catalyst requirements; and capability to process difficult to reform fuels, such as diesel and bio-oils. These advantages facilitate use of onboard hydrogen-generation technology for diesel exhaust after-treatment. Plasma-enhanced reformer technology can provide substantial conversion even without the use of a catalyst. Recent progress includes a substantial decrease in electrical power consumption (to about 200 W), increased flow rate (above 1 g/s of diesel fuel corresponding to approximately 40 kW of chemical energy), soot suppression and improvements in other operational features.. Plasmatron reformer technology has been evaluated for regeneration of NOx adsorber after-treatment systems. At ArvinMeritor tests were performed on a dual-leg NOx adsorber system using a Cummins 8.3L diesel engine both in a test cell and on a vehicle. A NOx adsorber system was tested using the plasmatron reformer as a regenerator and without the reformer i.e., with straight diesel fuel based regeneration as the baseline case. The plasmatron reformer was shown to improve NOx regeneration significantly compared to the baseline diesel case. The net result of these initial tests was a significant decrease in fuel penalty, roughly 50% at moderate adsorber temperatures. This fuel penalty improvement is accompanied by a dramatic drop in slipped hydrocarbon emissions, which decreased by 90% or more. Significant advantages are demonstrated across a wide range of engine conditions and temperatures. The study also indicated the potential to regenerate NOx adsorbers at low temperatures where diesel fuel based regeneration is not effective, such as those typical of idle conditions. Two vehicles, a bus and a light duty truck, have been equipped for plasmatron reformer NOx adsorber regeneration tests.

Bromberg, L.; Crane, S; Rabinovich, A.; Kong, Y; Cohn, D; Heywood, J; Alexeev, N.; Samokhin, A.

2003-08-24T23:59:59.000Z

106

Pleated Ceramic Fiber Diesel Particulate Filter | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Pleated Ceramic Fiber Diesel Particulate Filter Pleated Ceramic Fiber Diesel Particulate Filter 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters...

107

Particle Number & Particulate Mass Emissions Measurements on...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Number & Particulate Mass Emissions Measurements on a 'Euro VI' Heavy-duty Engine using the PMP Methodologies Particle Number & Particulate Mass Emissions Measurements on a 'Euro...

108

Particulate Emissions Control by Advanced Filtration Systems...  

Broader source: Energy.gov (indexed) [DOE]

Particulate Emissions Control by Advanced Filtration Systems or GDI Engines Particulate Emissions Control by Advanced Filtration Systems or GDI Engines 2013 DOE Hydrogen and Fuel...

109

Synthetic zeolites and other microporous oxide molecular sieves  

Science Journals Connector (OSTI)

...Many variations on the process cycle were developed to improve efficiency...NOx ) emitted from lean-burn diesel engines. Many catalyst developers...hydrocarbon oxidation in conventional diesel engines and NOx reduction...reduction and system durability. General Motors achieved 50,000-mile-aged...

John D. Sherman

1999-01-01T23:59:59.000Z

110

Lower Freezing DEF For Higher NOx Reduction Attainment  

Broader source: Energy.gov [DOE]

NOx emissions data from bench-scale experiments and Class III truck operated using a low freezing point diesel exhaust fluid

111

Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

CumminsORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines Vehicle Technologies Office Merit Review 2014: Cummins-ORNLFEERC Emissions CRADA:...

112

Unique Catalyst System for NOx Reduction in Diesel Exhaust |...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Noxtechs PAC System Development and Demonstration Plasma Assisted Catalysis System for NOx Reduction Clean Diesel Engine Component Improvement...

113

Two Catalyst Formulations - One Solution for NOx After-treatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Two Catalyst Formulations - One Solution for NOx After-treatment Systems Low-temperature SCR combined with standard high-temperature SCR catalyst formulation in one system provides...

114

Measurement and Characterization of Lean NOx Adsorber Regeneration...  

Broader source: Energy.gov (indexed) [DOE]

for the Department of Energy Purpose of Work: Enable efficient lean engine market penetration by meeting emission regulations with aftertreatment * Research of Lean NOx...

115

Enhanced High and Low Temperature Performance of NOx Reduction...  

Broader source: Energy.gov (indexed) [DOE]

and Low Temperature Performance of NOx Reduction Materials 2013 DOE AMR Review This presentation does not contain any proprietary, confidential, or otherwise restricted...

116

NOx Adsorbers for Heavy Duty Truck Engines - Testing and Simulation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Adsorbers for Heavy Duty Truck Engines - Testing and Simulation NOx Adsorbers for Heavy Duty Truck Engines - Testing and Simulation This report provides the results of an...

117

H2-Assisted NOx Traps: Test Cell Results Vehicle Installations  

Broader source: Energy.gov (indexed) [DOE]

Sam Crane August 28, 2003 H 2 -Assisted NOx Traps: Test Cell Results Vehicle Installations 2 Project Objectives * Determine Advantages of H 2 Assisted NO x Trap Regeneration *...

118

Investigation of Aging Mechanisms in Lean NOx Traps | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

"Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland. merit08johnson.pdf More Documents & Publications Investigation of Aging Mechanisms in Lean NOx Traps...

119

Fuel Processor Enabled NOx Adsorber Aftertreatment System for...  

Broader source: Energy.gov (indexed) [DOE]

for Diesel Engine Emissions Control R. Dalla Betta, D. Sheridan, J. Cizeron Catalytica Energy Systems Inc. Mountain View, California 2 Outline Why use a fuel processor for NOx...

120

Status of APBF-DEC NOx Adsorber/DPF Projects  

Broader source: Energy.gov (indexed) [DOE]

* Examine other fuel properties 6 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Each platform will determine effects of fuel properties on: * NOx and PM reduction...

Note: This page contains sample records for the topic "oxides nox particulates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Virtual Oxygen Sensor for Innovative NOx and PM Emission Control...  

Broader source: Energy.gov (indexed) [DOE]

2009 - Poster Session August 3 rd , Hyatt Regency Dearborn Hotel Virtual Oxygen Sensor Innovative NOx and PM Emission Control Technologies J. Seebode, E. Stlting,...

122

Three-Dimensional Composite Nanostructures for Lean NOx Emission...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Emission Control Catalysts Three-Dimensional Composite Nanostructures for Lean NOx Emission Control Ultra-efficient, Robust and Well-defined Nano-Array based Monolithic Catalysts...

123

Three-Dimensional Composite Nanostructures for Lean NOx Emission...  

Broader source: Energy.gov (indexed) [DOE]

Nanowire Lean NOx Emission Control Catalysts Ultra-efficient, Robust and Well-defined Nano-Array based Monolithic Catalysts Three-Dimensional Composite Nanostructures for Lean...

124

Passive Catalytic Approach to Low Temperature NOx Emission Abatement  

Broader source: Energy.gov [DOE]

Numerically evaluated and optimized proposed state-of-the-art passive catalytic technology designed to reduce NOx released during vehicle cold start portion of the FTP-75 cycle

125

Rapid Aging Protocols for Diesel Aftertreatment Devices: NOx...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Aftertreatment (Agreement 13415) Thermal Deactivation Mechanisms of Fully-Formed Lean NOx Trap Catalysts Aged by LeanRich Cycling Impacts of Biodiesel on Emission Control Devices...

126

Nitrogen oxide emissions from a kraft recovery furnace  

SciTech Connect (OSTI)

Nitrogen Oxide (NOx) emissions from a rebuilt kraft recovery furnace slightly exceeded the specified limit of 1.1 lb/ton (0.55 kg/metric ton) of black-liquor solids. Mill trials were undertaken to determine whether NOx emissions could be minimized by modifying furnace operation. NOx emissions increased when secondary air was shifted to tertiary ports. NOx emissions fell when the amounts of primary and total air were decreased, but this increased emissions of other pollutants. After demonstrating that best operation of the furnace could not meet the permit with an emissions limit that matched the furnace's performance at best operation.

Prouty, A.L.; Stuart, R.C. (James River Corp., Camas, WA (United States)); Caron, A.L. (NCASI West Coast Regional Office, Corvallis, OR (United States))

1993-01-01T23:59:59.000Z

127

Transient Dynamometer Testing of a Single-Leg NOX Adsorber Combined...  

Broader source: Energy.gov (indexed) [DOE]

Transient Dynamometer Testing of a Single-Leg NOX Adsorber Combined with a Fuel Processor for Enhanced NOx Control Transient Dynamometer Testing of a Single-Leg NOX Adsorber...

128

Fuel Consumption and NOx Trade-offs on a Port-Fuel-Injected SI...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Consumption and NOx Trade-offs on a Port-Fuel-Injected SI Gasoline Engine Equipped with a Lean-NOx Trap Fuel Consumption and NOx Trade-offs on a Port-Fuel-Injected SI Gasoline...

129

Biodiesel Fuel Property Effects on Particulate Matter Reactivity  

SciTech Connect (OSTI)

Controlling diesel particulate emissions to meet the 2007 U.S. standard requires the use of a diesel particulate filter (DPF). The reactivity of soot, or the carbon fraction of particulate matter, in the DPF and the kinetics of soot oxidation are important in achieving better control of aftertreatment devices. Studies showed that biodiesel in the fuel can increase soot reactivity. This study therefore investigated which biodiesel fuel properties impact reactivity. Three fuel properties of interest included fuel oxygen content and functionality, fuel aromatic content, and the presence of alkali metals. To determine fuel effects on soot reactivity, the performance of a catalyzed DPF was measured with different test fuels through engine testing and thermo-gravimetric analysis. Results showed no dependence on the aromatic content or the presence of alkali metals in the fuel. The presence and form of fuel oxygen was the dominant contributor to faster DPF regeneration times and soot reactivity.

Williams, A.; Black, S.; McCormick, R. L.

2010-06-01T23:59:59.000Z

130

Oxidation State Optimization for Maximum Efficiency of NOx Adsorber Catalysts  

Broader source: Energy.gov [DOE]

Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

131

Flexible CHP System with Low NOx, CO, and VOC Emissions - Presentation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

CHP System with Low NOx, CO, and VOC Emissions - Presentation by the Gas Technology Institute (GTI), June 2011 Flexible CHP System with Low NOx, CO, and VOC Emissions -...

132

Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity...  

Broader source: Energy.gov (indexed) [DOE]

NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity Fuels - Fact Sheet, 2011 Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity Fuels - Fact Sheet, 2011...

133

Experimental investigation of the thermal and diluent effects of EGR components on combustion and \\{NOx\\} emissions of a turbocharged natural gas SI engine  

Science Journals Connector (OSTI)

Abstract Exhaust gas recirculation (EGR) is one of effective measures used in natural gas (NG) engines to reduce nitrogen oxides (NOx) emissions. Each component of EGR gases can exert different effects on NG combustion and \\{NOx\\} formation rates, such as thermal effect, diluent effect, and chemical effect. In this study, the thermal and diluent effects of the main components of EGR gases, including carbon dioxide (CO2) and nitrogen (N2), were experimentally investigated. The experiments were arranged based on an electronically controlled heavy-duty natural gas spark-ignition (SI) engine with multi-point injection and 6-cylinder. In order to define the diluent effect of EGR components, argon (Ar) was introduced to the test, for its low and unchangeable specific heat capacity under different temperatures. The results showed that the contribution of the diluent effect on \\{NOx\\} reductions was 50–60% and 41–53% for N2 and CO2 respectively, and the relevant contribution of the thermal effect was 40–50% and 47–59% respectively. CO2 had greater effects on NG combustion and \\{NOx\\} formation rates than N2 at the same dilution ratio. Increasing Ar improved the thermal efficiency due to the higher specific heat ratio provided. Meanwhile, \\{NOx\\} emissions were found to be decreased with increasing DR as a result of the diluent effect of Ar on combustion and \\{NOx\\} formations.

Weifeng Li; Zhongchang Liu; Zhongshu Wang; Yun Xu

2014-01-01T23:59:59.000Z

134

High Efficiency Particulate Air Filters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High Efficiency Particulate Air (HEPA) Filters High Efficiency Particulate Air (HEPA) Filters Home Standards DOE Workshops Nuclear Air Cleaning Conference Proceedings Qualified Filter List News Items Related Sites HEPA Related Lessons Learned Contact Us HSS Logo High Efficiency Particulate Air Filters The HEPA Filter web site provides a forum for informing and reporting department-wide activities related to filtration and ventilation issues with special reference to the High Efficiency Particulate Air (HEPA) Filters' use, inspection, and testing. This site contains essentials of DOE HEPA filter test program, procedures, requirements and quality assurance aspects applicable to HEPA filters used in DOE facilities. This site contains information about the DOE-accepted Filter Test Facility and its management, operation and quality assuranceprogram.

135

Just the Basics: Particulate Matter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is Particulate is Particulate Matter? One of the major components of air pollution is particulate matter, or PM. PM refers to airborne particles that include dust, dirt, soot, smoke, and liquid droplets. These particles can range in size from microscopic to large enough to be seen. PM is characterized by its size, with fine particles of less than 2.5 micrometers in size designated as PM 2.5 and coarser particles between 2.5 and 10 micrometers in size designated as PM 10 . PM arises from many sources, including combustion occurring in factories, power plants, cars, trucks, buses, trains, or wood fires; or through simple agitation of existing particulates by tilling of land, quarrying and stone-crushing, and off- road vehicular movement. Of particular interest is PM generated during diesel

136

Particulate Contaminant Descriptions and Definitions  

Science Journals Connector (OSTI)

Particulate contaminants can be either solid or liquid. Many of these materials were originally suspended in air or in a process fluid; others derive from nearby sources, such as activities of personnel working i...

Alvin Lieberman

1992-01-01T23:59:59.000Z

137

Ammonia Generation over TWC for Passive SCR NOX Control for Lean Gasoline Engines  

SciTech Connect (OSTI)

A commercial three-way catalyst (TWC) was evaluated for ammonia (NH3) generation on a 2.0-liter BMW lean burn gasoline direct injection engine as a component in a passive ammonia selective catalytic reduction (SCR) system. The passive NH3 SCR system is a potential low cost approach for controlling nitrogen oxides (NOX) emissions from lean burn gasoline engines. In this system, NH3 is generated over a close-coupled TWC during periodic slightly rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean, NOX passes through the TWC and is reduced by the stored NH3 on the SCR catalyst. NH3 generation was evaluated at different air-fuel equivalence ratios at multiple engine speed and load conditions. Near complete conversion of NOX to NH3 was achieved at =0.96 for nearly all conditions studied. At the =0.96 condition, HC emissions were relatively minimal, but CO emissions were significant. Operation at AFRs richer than =0.96 did not provide more NH3 yield and led to higher HC and CO emissions. Results of the reductant conversion and consumption processes were used to calculate a representative fuel consumption of the engine operating with an ideal passive SCR system. The results show a 1-7% fuel economy benefit at various steady-state engine speed and load points relative to a stoichiometric engine operation.

Prikhodko, Vitaly Y [ORNL] [ORNL; Parks, II, James E [ORNL; Pihl, Josh A [ORNL] [ORNL; Toops, Todd J [ORNL] [ORNL

2014-01-01T23:59:59.000Z

138

Ultra-Low NOx Advanced Vortex Combustor  

SciTech Connect (OSTI)

An ultra lean-premixed Advanced Vortex Combustor (AVC) has been developed and tested. The natural gas fueled AVC was tested at the U.S. Department of Energy’s National Energy Technology Laboratory (USDOE NETL) test facility in Morgantown (WV). All testing was performed at elevated pressures and inlet temperatures and at lean fuel-air ratios representative of industrial gas turbines. The improved AVC design exhibited simultaneous NOx/CO/UHC emissions of 4/4/0 ppmv (all emissions are at 15% O2 dry). The design also achieved less than 3 ppmv NOx with combustion efficiencies in excess of 99.5%. The design demonstrated tremendous acoustic dynamic stability over a wide range of operating conditions which potentially makes this approach significantly more attractive than other lean premixed combustion approaches. In addition, a pressure drop of 1.75% was measured which is significantly lower than conventional gas turbine combustors. Potentially, this lower pressure drop characteristic of the AVC concept translates into overall gas turbine cycle efficiency improvements of up to one full percentage point. The relatively high velocities and low pressure drops achievable with this technology make the AVC approach an attractive alternative for syngas fuel applications.

Edmonds, R.G. (Ramgen Power Systems, Inc., Bellevue, WA); Steele, R.C. (Ramgen Power Systems, Inc., Bellevue, WA); Williams, J.T. (Ramgen Power Systems, Inc., Bellevue, WA); Straub, D.L.; Casleton, K.H.; Bining, Avtar (California Energy Commission, Sacramento, CA)

2006-05-01T23:59:59.000Z

139

ULTRA-LOW NOX ADVANCED VORTEX COMBUSTOR  

SciTech Connect (OSTI)

An ultra lean-premixed Advanced Vortex Combustor (AVC) has been developed and tested. The natural gas fueled AVC was tested at the U.S. Department of Energy’s National Energy Technology Laboratory (USDOE NETL) test facility in Morgantown (WV). All testing was performed at elevated pressures and inlet temperatures and at lean fuel-air ratios representative of industrial gas turbines. The improved AVC design exhibited simultaneous NOx/CO/UHC emissions of 4/4/0 ppmv (all emissions are at 15% O2 dry). The design also achieved less than 3 ppmv NOx with combustion efficiencies in excess of 99.5%. The design demonstrated tremendous acoustic dynamic stability over a wide range of operating conditions which potentially makes this approach significantly more attractive than other lean premixed combustion approaches. In addition, a pressure drop of 1.75% was measured which is significantly lower than conventional gas turbine combustors. Potentially, this lower pressure drop characteristic of the AVC concept translates into overall gas turbine cycle efficiency improvements of up to one full percentage point. The relatively high velocities and low pressure drops achievable with this technology make the AVC approach an attractive alternative for syngas fuel applications.

Ryan G. Edmonds; Robert C. Steele; Joseph T. Williams; Douglas L. Straub; Kent H. Casleton; Avtar Bining

2006-05-01T23:59:59.000Z

140

OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL  

SciTech Connect (OSTI)

This quarterly technical progress report will summarize work accomplished for the Program through the twelfth quarter, January-March 2003, in the following task areas: Task 1--Oxygen Enhanced Combustion, Task 2--Oxygen Transport Membranes, Task 3--Economic Evaluation and Task 4--Program Management. The program is proceeding in accordance with the objectives for the third year. Pilot scale experiments conducted at the University of Utah explored both the effectiveness of oxygen addition and the best way to add oxygen with a scaled version of Riley Power's newest low NOx burner design. CFD modeling was done to compare the REI's modeling results for James River Unit 3 with the NOx and LOI results obtained during the demonstration program at that facility. Investigation of an alternative method of fabrication of PSO1d elements was conducted. OTM process development work has concluded with the completion of a long-term test of a PSO1d element Economic evaluation has confirmed the advantage of oxygen-enhanced combustion. Proposals have been submitted for two additional beta test sites. Commercial proposals have been submitted. Economic analysis of a beta site test performance was conducted.

David R. Thompson; Lawrence E. Bool; Jack C. Chen

2003-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxides nox particulates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL  

SciTech Connect (OSTI)

This quarterly technical progress report will summarize work accomplished for the Program in the seventh quarter October-December 2001 in the following task areas: Task 1 - Oxygen Enhanced Combustion, Task 2 - Oxygen Transport Membranes, Task 3 - Economic Evaluation and Task 4 - Program Management. Computational fluid dynamic (CFD) modeling of oxygen injection strategies was performed during the quarter resulting in data that suggest the oxygen injection reduces NOx emissions while reducing LOI. Pilot-scale testing activities concluded at the University of Utah this quarter. Testing demonstrated that some experimental conditions can lead to NOx emissions well below the 0.15 lb/MMBtu limit. Evaluation of alternative OTM materials with improved mechanical properties continued this quarter. Powder procedure optimization continued and sintering trial began on an element with a new design. Several OTM elements were tested in Praxair's single tube high-pressure test facility under various conditions. A modified PSO1d element demonstrated stable oxygen product purity of >98% and oxygen flux of 68% of target. Updated test results and projected economic performance have been reviewed with the Utility Industrial Advisors. The economic comparison remains very favorable for O{sub 2} enhanced combustion. Discussions regarding possible Beta sites have been held with three other utilities in addition to the industrial advisors. Proposals will be prepared after the completion of full scale burner testing. Beta test cost estimating work has been initiated.

David R. Thompson; Lawrence E. Bool; Jack C. Chen

2002-01-01T23:59:59.000Z

142

NETL: Emissions Characterization - Adv. Low-NOx Burner Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Low-NOx Burner Emissions Characterization Advanced Low-NOx Burner Emissions Characterization The goal of this work is to develop a comprehensive, high-quality database characterizing PM2.5 emissions from utility plants firing high sulfur coals. The specific objectives are to: 1) develop and test an ultra low-NOx pulverized coal burner for plug-in retrofit applications without boiler wall tube modifications, 2) assess the impact of low-NOx PC burner operation on NOx and PM2.5 emissions, and 3) provide high-quality data to ensure that future PM2.5 regulations are based on good scientific information. The work will be performed in the Clean Environment Development Facility (CEDF), a 100 million Btu/hr near-full-scale facility located at the Alliance Research Center. Related Papers and Publications:

143

Fluidizable particulate materials and methods of making same  

DOE Patents [OSTI]

The invention provides fluidizable, substantially spherical particulate material of improved attrition resistance having an average particle size from about 100 to about 400 microns useful as sorbents, catalysts, catalytic supports, specialty ceramics or the like. The particles are prepared by spray drying a slurry comprising inorganic starting materials and an organic binder. Exemplary inorganic starting materials include mixtures of zinc oxide with titanium dioxide, or with iron oxide, alumina or the like. Exemplary organic binders include polyvinyl alcohol, hydroxypropylemethyl cellulose, polyvinyl acetate and the like. The spray dried particles are heat treated at a first temperature wherein organic binder material is removed to thereby provide a porous structure to the particles, and thereafter the particles are calcined at a higher temperature to cause reaction of the inorganic starting materials and to thereby form the final inorganic particulate material.

Gupta, Raghubir P. (Durham, NC)

1999-01-01T23:59:59.000Z

144

NETL Report format template  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NGCC Natural gas combined cycle NOx Oxides of nitrogen PC Sub Pulverized coal subcritical PC Sup Pulverized coal supercritical PM Particulate matter SO 2 Sulfur dioxide...

145

Investigation of HDDE exhaust flow mixing devices to enhance SCR performance.  

E-Print Network [OSTI]

??The 2010 regulations implemented by the U.S. Environmental Protection Agency (EPA) require significant reduction in Oxides of Nitrogen (NOx) and Particulate Matter (PM). These regulations… (more)

Sathi, Venkata Reddy.

2010-01-01T23:59:59.000Z

146

Hybrid Locomotive | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

two main culprits: nitrogen oxide (NOx) and particulate matter (PM) like tiny chemical, metal, soil and dust particles. Tier 4 emission standards will kick in for locomotives on...

147

Vehicle Emissions Review - 2011 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

NOx control, diesel oxidation catalysts, gasoline particulate filters deer11johnson.pdf More Documents & Publications Vehicle Emissions Review - 2012 Diesel Emission...

148

Development of Land Use Regression Models for elemental, organic carbon, PAH and hopanes/steranes in 10 ESCAPE/TRANSPHORM European study areas  

Science Journals Connector (OSTI)

Land use regression (LUR) models have been used to model concentrations of mainly traffic related air pollutants (nitrogen oxides (NOx), particulate matter (PM) mass or absorbance). ...

Aleksandra Jedynska; Gerard Hoek; Meng Wang; Marloes Eeftens; Josef Cyrys; Menno Keuken; Christophe Ampe; Rob Beelen; Giulia Cesaroni; Francesco Forastiere; Marta Cirach; Kees de Hoogh; Audrey De Nazelle; Wenche Nystad; Christophe Declercq; Kirsten Thorup Eriksen; Konstantina Dimakopoulou; Timo Lanki; Kees Meliefste; Mark J Nieuwenhuijsen; Tarja Yli-Tuomi; Ole Raaschou-Nielsen; Bert Brunekreef; Ingeborg Kooter

2014-10-15T23:59:59.000Z

149

Characterization of Particulate Matter Emissions from a Common-Rail Diesel Engine  

Science Journals Connector (OSTI)

Department of Materials Science and Chemical Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy ... The preferred approach to control the emissions of diesel engines is the adoption of an exhaust gas recirculation (EGR) system followed by a diesel oxidation catalyst (DOC) in front of a diesel particulate filter (DPF). ... Some fundamental information on the particulate matter (PM) characteristics emitted by an automotive diesel engine was gathered in order to provide a precious tool for the knowledge-based design of a new generation of diesel particulate traps in the EURO VI regulation perspective. ...

D. Fino; N. Russo

2011-02-02T23:59:59.000Z

150

OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL  

SciTech Connect (OSTI)

This quarterly technical progress report will summarize work accomplished for the Program through the fourth quarter January-March 2001 in the following task areas: Task 1 - Oxygen Enhanced Combustion, Task 2 - Oxygen Transport Membranes and Task 4 - Program Management. This report will also recap the results of the past year. The program is proceeding in accordance with the objectives for the first year. OTM material characterization was completed. 100% of commercial target flux was demonstrated with OTM disks. The design and assembly of Praxair's single tube high-pressure test facility was completed. The production of oxygen with a purity of better than 99.5% was demonstrated. Coal combustion testing was conducted at the University of Arizona. Modest oxygen enhancement resulted in NOx emissions reduction. The injector for oxygen enhanced coal based reburning was conducted at Praxair. Combustion modeling with Keystone boiler was completed. Pilot-scale combustion test furnace simulations continued this quarter.

David R. Thompson; Lawrence E. Bool; Jack C. Chen

2001-04-01T23:59:59.000Z

151

OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL  

SciTech Connect (OSTI)

This quarterly technical progress report will summarize work accomplished for the Program through the thirteenth quarter, April-June 2003, in the following task areas: Task 1--Oxygen Enhanced Combustion, Task 3--Economic Evaluation and Task 4--Program Management. The program is proceeding in accordance with project objectives. REI's model was modified to evaluate mixing issues in the upper furnace of a staged unit. Analysis of the results, and their potential application to this unit is ongoing. Economic evaluation continues to confirm the advantage of oxygen-enhanced combustion. A contract for a commercial demonstration has been signed with the Northeast Generation Services Company to supply oxygen and license the oxygen enhanced low NOx combustor technology for use at the 147-megawatt coal fired Mt. Tom Station in Holyoke, MA. Commercial proposals have been submitted. Economic analysis of a beta site test performance was conducted.

David R. Thompson; Lawrence E. Bool; Jack C. Chen

2003-08-01T23:59:59.000Z

152

US Tier 2 Bin 2 Diesel Research Progress  

Broader source: Energy.gov [DOE]

Describes how Tier 2 Bin 5 and US06 engine-out NOx levels were achieved and progress to meet Bin 2 through latest advances in lean NOx trap, diesel oxidation catalyst, and diesel particulate filter.

153

Flexible CHP System with Low NOx, CO and VOC Emissions- Fact Sheet, 2014  

Broader source: Energy.gov [DOE]

Utilizing Supplemental Ultra-Low-NOx Burner Technology to Meet Emissions Standards and Improve System Efficiency

154

Ion-mobility Spectrometry Based NOx Sensor - Nuclear Engineering Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NPNS > Sensors and NPNS > Sensors and Instrumentation and NDE > Energy System Application > DOE Office of Transportation Technologies > Ion-mobility Spectrometry Based NOx Sensor Capabilities Sensors and Instrumentation and Nondestructive Evaluation Overview Energy System Applications Overview DOE Office of Fossil Energy DOE Office of Transportation Technologies Ion-mobility Spectrometry Based NOx Sensor DOE Office of Power Technology Work for Others Safety-Related Applications Homeland Security Applications Biomedical Applications Millimiter Wave Group Papers Other NPNS Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Sensors and Instrumentation and Nondestructive Evaluation Ion-mobility Spectrometry Based NOx Sensor

155

Effectiveness of Diesel Oxidation Catalyst in Reducing HC and CO Emissions from Reactivity Controlled Compression Ignition  

SciTech Connect (OSTI)

Reactivity Controlled Compression Ignition (RCCI) has been shown to allow for diesel-like or better brake thermal efficiency with significant reductions in nitrogen oxide (NOX) particulate matter (PM) emissions. Hydrocarbon (HC) and carbon monoxide (CO) emission levels, on the other hand, are similar to those of port fuel injected gasoline engines. The higher HC and CO emissions combined with the lower exhaust temperatures with RCCI operation present a challenge for current exhaust aftertreatments. The reduction of HC and CO emissions in a lean environment is typically achieved with an oxidation catalyst. In this work, several diesel oxidation catalysts (DOC) with different precious metal loadings were evaluated for effectiveness to control HC and CO emissions from RCCI combustion in a light-duty multi-cylinder engine operating on gasoline and diesel fuels. Each catalyst was evaluated in a steady-state engine operation with temperatures ranging from 160 to 260 C. A shift to a higher light-off temperature was observed during the RCCI operation. In addition to the steady-state experiments, the performances of the DOCs were evaluated during multi-mode engine operation by switching from diesel-like combustion at higher exhaust temperature and low HC/CO emissions to RCCI combustion at lower temperature and higher HC/CO emissions. High CO and HC emissions from RCCI generated an exotherm keeping the catalyst above the light-off temperature.

Prikhodko, Vitaly Y [ORNL; Curran, Scott [ORNL; Parks, II, James E [ORNL; Wagner, Robert M [ORNL

2013-01-01T23:59:59.000Z

156

Functionality of Commercial NOx Storage-Reduction Catalysts and...  

Broader source: Energy.gov (indexed) [DOE]

N.A. Ottinger, J.A. Pihl, T.J. Toops, C. Finney, M. Lance, C. Stuart Daw, "Types, Spatial Distribution, Stability, and Performance Impact of Sulfur on a Lean NOx Trap...

157

Reducing NOx emissions using the humid air motor concept  

Science Journals Connector (OSTI)

The use of water to prevent NOx...formation during the combustion process is well known. The H.A.M. system (Humid Air Motor) is an original and promising solution compared ... . This system involves evaporating l...

Emmanuel Riom; Lars-Ola Larsson; Ulf Hagström

2002-05-01T23:59:59.000Z

158

Enhanced High Temperature Performance of NOx Storage/Reduction...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. ace026peden2010o.pdf More Documents & Publications Mechanisms of Sulfur Poisoning of NOx Adsorber (LNT) Materials...

159

Lean Gasoline Engine Reductant Chemistry During Lean NOx Trap Regeneration  

SciTech Connect (OSTI)

Lean NOx Trap (LNT) catalysts can effectively reduce NOx from lean engine exhaust. Significant research for LNTs in diesel engine applications has been performed and has led to commercialization of the technology. For lean gasoline engine applications, advanced direct injection engines have led to a renewed interest in the potential for lean gasoline vehicles and, thereby, a renewed demand for lean NOx control. To understand the gasoline-based reductant chemistry during regeneration, a BMW lean gasoline vehicle has been studied on a chassis dynamometer. Exhaust samples were collected and analyzed for key reductant species such as H2, CO, NH3, and hydrocarbons during transient drive cycles. The relation of the reductant species to LNT performance will be discussed. Furthermore, the challenges of NOx storage in the lean gasoline application are reviewed.

Choi, Jae-Soon [ORNL] [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL; Partridge Jr, William P [ORNL] [ORNL; Parks, II, James E [ORNL; Norman, Kevin M [ORNL] [ORNL; Huff, Shean P [ORNL] [ORNL; Chambon, Paul H [ORNL] [ORNL; Thomas, John F [ORNL] [ORNL

2010-01-01T23:59:59.000Z

160

Process for particulate removal from coal liquids  

DOE Patents [OSTI]

Suspended solid particulates are removed from liquefied coal products by first subjecting such products to hydroclone action for removal in the underflow of the larger size particulates, and then subjecting the overflow from said hydroclone action, comprising the residual finer particulates, to an electrostatic field in an electrofilter wherein such finer particulates are deposited in the bed of beads of dielectric material on said filter. The beads are periodically cleaned by backwashing to remove the accumulated solids.

Rappe, Gerald C. (Macungie, PA)

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxides nox particulates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Preserving Diesel Exhaust Ultrafine (Nano-) Particulate Structure...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Preserving Diesel Exhaust Ultrafine (Nano-) Particulate Structure in Genotoxicity Studies to Support Engineering Development of Emission Controls Preserving Diesel Exhaust...

162

Durability of Diesel Particulate Filters - Bench Studies on Cordierite...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Publications Requirements-Driven Diesel Catalyzed Particulate Trap Design and Optimization Development of Advanced Diesel Particulate Filtration (DPF) Systems fundamental...

163

Reducing fishing vessel fuel consumption and NOX emissions  

Science Journals Connector (OSTI)

There is a growing concern with the impact of marine operations on the environment. This requires reducing fuel consumption and vessel pollution during operation. On-board computers and satellite communications will enable the operator to reduce fuel consumption and NOX emissions during vessel operations. This paper presents the results of a study on this problem and how such an on-board system could be implemented to reduce fuel consumption and engine NOX emissions.

Robert Latorre

2001-01-01T23:59:59.000Z

164

Group effects on fuel NOx emissisons from coal  

E-Print Network [OSTI]

GROUP EFFECTS ON FUEL NOX EMISSIONS FROM COAL A Thesis by ANAND ANAKKARA VADAKKATH Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August... 1991 Major Subject: Mechanical Engineering GROUP EFFECTS ON FUEL NOX EMISSIONS FROM COAL A Thesis by ANAND ANAKKARA VADAKKATH Approved ss to style and content by: K. Annamalai (Chair of Committee) Cr, R. Laster (Member) J. Wagne (Member...

Vadakkath, Anand Anakkara

2012-06-07T23:59:59.000Z

165

OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL  

SciTech Connect (OSTI)

This quarterly technical progress report will summarize work accomplished for the Program through the ninth quarter April-June 2002 in the following task areas: Task 1--Oxygen Enhanced Combustion, Task 2--Oxygen Transport Membranes, Task 3--Economic Evaluation and Task 4--Program Management. The program is proceeding in accordance with the objectives for the third year. Full-scale testing using the Industrial Boiler Simulation Facility (ISBF) at Alstom Power was completed. The pilot scale experiments to evaluate the effect of air preheat and transport air stoichiometric ratio (SR) on NOx emissions were conducted at the University of Utah. Combustion modeling activities continued with full-scale combustion test furnace simulations. An OTM element was tested in Praxair's single tube high-pressure test facility and two thermal cycles were completed. PSO1d elements of new dimension were tested resulting in a lower flux than previous PSO1d elements of different dimensions, however, no element deformation was observed. Economic evaluation has confirmed the advantage of oxygen-enhanced combustion. Two potential host beta sites have been identified and proposals submitted.

David R. Thompson; Lawrence E. Bool; Jack C. Chen

2002-08-01T23:59:59.000Z

166

OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL  

SciTech Connect (OSTI)

This quarterly technical progress report will summarize work accomplished for the Program through the fourth quarter January-March 2002 in the following task areas: Task 1--Oxygen Enhanced Combustion, Task 2--Oxygen Transport Membranes, Task 3--Economic Evaluation and Task 4--Program Management. This report will also recap the results of the past year. The program is proceeding in accordance with the objectives for the second year. The first round of pilot scale testing with 3 bituminous coals was completed at the University of Utah. Full-scale testing equipment is in place and experiments are underway. Coal combustion lab-scale testing was completed at the University of Arizona. Modest oxygen enhancement resulted in NOx emissions reduction. Combustion modeling activities continued with pilot-scale combustion test furnace simulations. 75% of target oxygen flux was demonstrated with small PSO1 tube in Praxair's single tube high-pressure test facility. The production of oxygen with a purity of better than 99.999% was demonstrated. Economic evaluation has confirmed the advantage of oxygen-enhanced combustion. Two potential host sites have been identified.

David R. Thompson; Lawrence E. Bool; Jack C. Chen

2002-04-01T23:59:59.000Z

167

NOx Control Options and Integration for US Coal Fired Boilers  

SciTech Connect (OSTI)

This is the sixteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. During an unplanned outage, damage occurred to the electrochemical noise corrosion probes installed at the AEP Gavin plant; testing is expected to resume in August. The KEMCOP corrosion coupons were not affected by the unplanned outage; the coupons were removed and sent for analysis. BYU conducted a series of tests before the ISSR lab was relocated. Ammonia adsorption experiments provided clear evidence of the types of acidic sites present on catalyst surfaces. Data collected this quarter indicate that surface sulfation decreases Lewis acid site concentrations for all catalysts thus far studied, confirming that catalytic activity under commercial coal-based SCR conditions occurs primarily on Br{o}nsted acid sites and would be susceptible to basic impurities such as alkali and alkaline earth oxides, chlorides, and sulfates. SCR activity tests based on MS analysis showed that increasing sulfation generally increases NO reduction activity for both 0% and 1% vanadia catalysts. During this quarter, the slipstream reactor at Rockport operated for 720 hours on flue gas. Catalyst exposure time reached 4500 hours since installation. The reactor is out of service at the Rockport plant and plans are being made to move it to the Gadsden Plant. At Gadsden, modifications have begun in preparation for installation of the slipstream reactor next quarter.

Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

2004-06-30T23:59:59.000Z

168

Regenerative catalytic oxidation  

SciTech Connect (OSTI)

Currently Regenerative Thermal Oxidizers (R.T.O.`s) are an accepted technology for the control of volatile organic compounds (VOC`s) and hazardous air pollutants (HAP`s). This control technology, when introduced, offered substantial reductions in operating costs, especially auxiliary fuel requirements when compared to existing control technologies such as recuperative thermal and recuperative catalytic oxidizers. While these savings still exist, there is a demand for control of new and/or hybrid technologies, one of which is Regenerative Catalytic Oxidizers (R.C.O.`s). This paper will explore the development of regenerative catalytic oxidation from the theoretical stage through pilot testing through a commercial installation. The operating cost of R.C.O.`s will be compared to R.T.O.`s to verify the savings that are achievable through the use of regenerative catalytic oxidation. In the development of this technology, which is a combination of two (2) existing technologies, R.T.O.`s and catalysis, a second hybrid technology was explored and pilot tested. This is a combination R.C.O. for VOC and HAP control and simultaneous SCR (Selective Catalytic Reduction) for NOx (Oxides of Nitrogen) control. Based on the pilot and full scale testing, both regenerative catalytic oxidizers and systems which combine R.C.O. with SCR for both VOC and NOx reduction are economically viable and are in fact commercially available. 6 figs., 2 tabs.

Gribbon, S.T. [Engelhard Process Emission Systems, South Lyon, MI (United States)

1996-12-31T23:59:59.000Z

169

Impact of Sugarcane Renewable Fuel on In-Use Gaseous and Particulate Matter Emissions from a Marine Vessel  

Science Journals Connector (OSTI)

In-use emissions aboard a Stalwart class vessel, the T/S State of Michigan, were measured from a four-stroke marine diesel generator operating on two fuels: ultra-low-sulfur diesel (ULSD) fuel and ULSD mixed with Amyris renewable diesel (S33; 33% by volume) produced from sugarcane feedstocks with 67% by volume ULSD. ... A model 6V92TA Detroit Diesel Corporation diesel engine (9.0 L) was fueled on blends of 10, 20, 30 and 40% soydiesel-diesel fuel. ... Fueling with biodiesel/diesel fuel blends reduced particulate matter (PM), total hydrocarbons (THC) and CO, while increasing NOx. ...

Nicholas R. Gysel; Robert L. Russell; William A. Welch; David R. Cocker; III; Sujit Ghosh

2014-04-30T23:59:59.000Z

170

Effects of diesel-water emulsion combustion on diesel engine NOx emissions. Final report, 1 January 1998--1 May 1999  

SciTech Connect (OSTI)

This study examines the effects of combusting a mixture of diesel fuel, water, and surfactant on the nitrogen oxides (NOx) emissions from a compression ignition diesel engine. Extensive previous research in the literature has attributed the observed reduction of nitrogen oxide emissions to a suppression of flame temperature due to quenching effects from the water, thereby reducing thermal NOx formation. The report highlights the relevant theory, operation, and design parameters of diesel internal combustion engines. Experimental procedures conducted using a Detroit Diesel 4-cylinder diesel engine are discussed. Results from testing diesel fuel with varying ratios of water balanced with a surfactant to stabilize the emulsion are presented and discussed. The data shows significant NOx emission reduction with up to 45 percent water, by volume, in the fuel. These results are correlated with thermodynamic first law and equilibrium combustion products analyses to estimate the adiabatic flame temperature of the standard fuel and fuel-water emulsion cases. Results indicate that thermal NOx is indeed reduced by quenching and flame temperature suppression, confirming reports in the literature. Recommendations are given for further studies, including improving the fuel-water emulsion and considerations for long-term testing.

Canfield, A.C.

1999-05-01T23:59:59.000Z

171

NETL: Advanced NOx Emissions Control: Control Technology - SCNR Field  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SNCR Field Demonstration SNCR Field Demonstration American Electric Power (AEP), in conjunction with the U.S. Department of Energy, FuelTech, the Ohio Coal Development Office, and fourteen EPRI member utilities, performed a full-scale demonstration of a urea-based Selective Non-Catalytic Reduction (SNCR) system at Cardinal Unit 1. Cardinal Unit 1 is a 600MWe opposed-wall dry bottom pulverized coal-fired boiler that began service in 1967. This unit burns eastern bituminous high-sulfur coal, (3.72%S). This unit was retrofitted with low NOx burners (LNB's) during its scheduled fall 1998 outage and the SNCR system was installed concurrently. SNCR is a post-combustion NOx control process developed to reduce NOx emissions from fossil-fuel combustion systems. SNCR processes involve the injection of a chemical containing nitrogen into the combustion products, where the temperature is in the range of 1600°F - 2200°F (870°C - 1205°C). In this temperature range, the chemical reacts selectively with NOx in the presence of oxygen, forming primarily nitrogen and water. Although a number of chemicals have been investigated and implemented for SNCR NOx reduction, urea and ammonia have been most widely used for full-scale applications.

172

NETL: Advanced NOx Emissions Control: Control Technology - Optimized Fuel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optimized Fuel Injector Design Optimized Fuel Injector Design This project includes fundamental research and engineering development of low NOx burners and reburning fuel injectors. The team of Reaction Engineering International (REI), the University of Utah, Brown University and DB Riley, Inc., will develop fundamental information on low NOx burners. The work has two phases. In the first phase, the University of Utah will examine two-phase mixing and near-field behavior of coal injectors using a 15-million Btu/hr bench-scale furnace, Brown University will examine char deactivation and effectiveness of reburning, and REI will develop a comprehensive burner model using the data produced by the University of Utah and Brown University. In the second phase, an optimized injector design will be tested at the 100-million Btu/hr Riley Coal Burner Test Facility. It is anticipated that this work will provide improved hardware designs and computer simulation models for reduced NOx emissions and minimized carbon loss.

173

SCReaming for Low NOx - SCR for the Light Duty Market | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

SCReaming for Low NOx - SCR for the Light Duty Market SCReaming for Low NOx - SCR for the Light Duty Market Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan....

174

Engine and Reactor Evaluations of HC-SCR for Diesel NOx Reduction...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Engine and Reactor Evaluations of HC-SCR for Diesel NOx Reduction Engine and Reactor Evaluations of HC-SCR for Diesel NOx Reduction Focus is the heavy duty, US dynamometer...

175

Safe and compact ammonia storage/delivery systems for SCR-DeNOX...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Safe and compact ammonia storagedelivery systems for SCR-DeNOX in automotive units Safe and compact ammonia storagedelivery systems for SCR-DeNOX in automotive units Presentation...

176

Development of a Stand-Alone Urea-SCR System for NOx Reduction...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Stand-Alone Urea-SCR System for NOx Reduction in Marine Diesel Engines Development of a Stand-Alone Urea-SCR System for NOx Reduction in Marine Diesel Engines Stand-alone urea SCR...

177

Fuel-Borne Reductants for NOx Aftertreatment: Preliminary EtOH...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Reductants for NOx Aftertreatment: Preliminary EtOH SCR Study Fuel-Borne Reductants for NOx Aftertreatment: Preliminary EtOH SCR Study 2003 DEER Conference Presentation: Oak Ridge...

178

Initial Results of the DeNOx SCR System by Urea Injection in...  

Broader source: Energy.gov (indexed) [DOE]

Initial Results of the DeNOx SCR System by Urea Injection in the Euro 5 Bus Initial Results of the DeNOx SCR System by Urea Injection in the Euro 5 Bus 2005 Diesel Engine Emissions...

179

The Effects of Hydrocarbons on NOx Reduction over Fe-based SCR Catalyst  

Broader source: Energy.gov [DOE]

Study of effects of hydrocarbons on ammonia storage and NOx reduction over a commercial Fe-zeolite SCR catalyst to understand catalyst behaviors at low temperatures and improve NOx reduction performance and reduce system cost

180

Industry-Utility Collaborative Efforts to Address Environmental Concerns- Dispatching for Localized NOx Reduction  

E-Print Network [OSTI]

these objectives. The approach involves dispatching NOx-producing equipment (e.g., boilers and gas turbines) to achieve minimum NOx production during ozone alert periods and purchasing supplemental power under a special tariff to replace any loss in self...

Hamilton, D. E.; Helmick, R. W.; Lambert, W. J.

Note: This page contains sample records for the topic "oxides nox particulates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Intra-catalyst Reductant Chemistry in Lean NOx Traps: A Study...  

Broader source: Energy.gov (indexed) [DOE]

Intra-catalyst Reductant Chemistry in Lean NOx Traps: A Study on Sulfur Effects Intra-catalyst Reductant Chemistry in Lean NOx Traps: A Study on Sulfur Effects Presentation given...

182

NOx formation by steam injection using detailed chemical kinetics  

Science Journals Connector (OSTI)

In order to improve thermal efficiency of gas turbine system and better control NOx emission, the injection of steam into a gas turbine combustor has been employed. This study has used both chemical equilibrium calculations and the counterflow diffusion flame calculations of methane-air flame aiming at the elucidation of the NOx reduction mechanism due to the steam injection. The influence of the equivalence ratios, the amount of steam and method of injection, the influence of the temperature of the preheated air and fuel has been also investigated. In this study, the GRI-Mech was employed for modelling the chemical reactions.

H. Yamashita; D. Zhao; S.N. Danov; T. Furuhata; N. Arai

2001-01-01T23:59:59.000Z

183

Aeroderivative Gas Turbines Can Meet Stringent NOx Control Requirements  

E-Print Network [OSTI]

for controlling NOx emissions will be discussed. Steam injection has a very favorable effect on engine performance raising both the power output and efficiency. As an example, full steam injection in the GE LM5000 gas turbine :tncreases the power output from... methods for reducing the NOx levels of the LM2500 and LM5000 engines. These engines are aircraft-derivative turbine engines, which are used in a variety of industrial applications. Efforts have been concentrated on the use of water or steam injection...

Keller, S. C.; Studniarz, J. J.

184

Diesel particulate filter with zoned resistive heater  

DOE Patents [OSTI]

A diesel particulate filter assembly comprises a diesel particulate filter (DPF) and a heater assembly. The DPF filters a particulate from exhaust produced by an engine. The heater assembly has a first metallic layer that is applied to the DPF, a resistive layer that is applied to the first metallic layer, and a second metallic layer that is applied to the resistive layer. The second metallic layer is etched to form a plurality of zones.

Gonze, Eugene V [Pinckney, MI

2011-03-08T23:59:59.000Z

185

Zone heated diesel particulate filter electrical connection  

DOE Patents [OSTI]

An electrical connection system for a particulate filter is provided. The system includes: a particulate filter (PF) disposed within an outer shell wherein the PF is segmented into a plurality of heating zones; an outer mat disposed between the particulate filter and the outer shell; an electrical connector coupled to the outer shell of the PF; and a plurality of printed circuit connections that extend along the outer surface of the PF from the electrical connector to the plurality of heating zones.

Gonze, Eugene V. (Pinckney, MI); Paratore, Jr., Michael J. (Howell, MI)

2010-03-30T23:59:59.000Z

186

Electrically-Assisted Diesel Particulate Filter Regeneration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Evaluation pm041lance2011p.pdf More Documents & Publications Electrically-Assisted Diesel Particulate Filter Regeneration Substrate Studies of an Electrically-Assisted Diesel...

187

Electrically heated particulate filter embedded heater design  

DOE Patents [OSTI]

An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine and wherein an upstream surface of the particulate filter includes machined grooves. A grid of electrically resistive material is inserted into the machined grooves of the exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF.

Gonze, Eugene V.; Chapman, Mark R.

2014-07-01T23:59:59.000Z

188

Electrically heated particulate filter using catalyst striping  

DOE Patents [OSTI]

An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine. A grid of electrically resistive material is applied to an exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF. A catalyst coating is applied to the PF that increases a temperature of the combustion of the particulates within the PF.

Gonze, Eugene V; Paratore, Jr., Michael J; Ament, Frank

2013-07-16T23:59:59.000Z

189

Methods of separating particulate residue streams  

DOE Patents [OSTI]

A particulate residue separator and a method for separating a particulate residue stream may include an air plenum borne by a harvesting device, and have a first, intake end and a second, exhaust end; first and second particulate residue air streams that are formed by the harvesting device and that travel, at least in part, along the air plenum and in a direction of the second, exhaust end; and a baffle assembly that is located in partially occluding relation relative to the air plenum and that substantially separates the first and second particulate residue air streams.

Hoskinson, Reed L. (Rigby, ID); Kenney, Kevin L. (Idaho Falls, ID); Wright, Christopher T. (Idaho Falls, ID); Hess, J. Richard (Idaho Falls, ID)

2011-04-05T23:59:59.000Z

190

NETL: Emissions Characterization - Adv. Low-NOx Burner Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Characterization of Fine Particulate Emissions using Subcritical Water Characterization of Fine Particulate Emissions using Subcritical Water As part of a Cooperative Agreement with DOE-NETL, the University of North Dakota Energy and Environmental Research Center (EERC) is developing advanced sampling and analysis methodologies for particulate matter that can be used for source apportionment and to assist in health studies. These techniques will be used to determine sources of fine particulate matter in rural states such as North Dakota. One of the primary activities of this effort is the development of a procedure using subcritical water to fractionate organics in air particulates, and test the toxicity of the fractionated organics using various tests. In contrast to inorganic aerosols, which are often well characterized, only ca. 15%–50% of the organic carbonaceous (OC) particulate mass has been characterized. The characterized compounds are almost exclusively nonpolar. The limited knowledge on OC fractions is due to the use of organic solvents which are able to extract only nonpolar or slightly polar organics. Subcritical water has not previously been used to fractionate OC from air particulates, but should have the ability to extract a broad range of polar to low-polarity OC, as well as to provide extracts in a solvent (water) which is directly useful for biological tests. Earlier studies have shown that compounds of different polarities, such as phenols, PAHs, and alkanes, can be sequentially extracted from a petroleum waste sludge by increases in subcritical water temperature.

191

NOx, SO{sub 3} in the spotlight at NETL's 2006 Environmental Controls conference  

SciTech Connect (OSTI)

As emissions caps drop, technological solutions must become increasingly effective and efficient. Researchers, equipment vendors, and plant operators are exploring alternatives to SCR and SNCR, with a view to reducing the overall costs of NOx reduction. They have also achieved 95% to 99% removal of SO{sub 3}, with no visible plume opacity. These topics were discussed at ECC 2006. The first conference session focussed on selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR) control of nitrogen oxide emissions; the second session addressed the related issue of reducing stack emissions and flue gas concentrations of sulfur trioxide. The article summarises many papers presented. Summaries and/or full versions of all the papers mentioned, and others, are posted at www.netl.doe.gov/publications/proceedings/06/ecc/index.html. 2 figs.

Mann, A.N.; Makovsky, L.E.; Sarkus, T.A. [Technology and Management Services Inc. (United States)

2007-02-15T23:59:59.000Z

192

The Chemistry of the Thermal DeNOx Process: A Review of the Technology's Possible Application to control of NOx from Diesel Engines  

SciTech Connect (OSTI)

This paper presents a review of the Thermal DeNOx process with respect to its application to control of NOx emissions from diesel engines. The chemistry of the process is discussed first in empirical and then theoretical terms. Based on this discussion the possibilities of applying the process to controlling NOx emissions from diesel engines is considered. Two options are examined, modifying the requirements of the chemistry of the Thermal DeNOx process to suit the conditions provided by diesel engines and modifying the engines to provide the conditions required by the process chemistry. While the former examination did not reveal any promising opportunities, the latter did. Turbocharged diesel engine systems in which the turbocharger is a net producer of power seem capable of providing the conditions necessary for NOx reduction via the Thermal DeNOx reaction.

Lyon, Richard

2001-08-05T23:59:59.000Z

193

Edinburgh Research Explorer Pulmonary diesel particulate increases susceptibility to  

E-Print Network [OSTI]

Edinburgh Research Explorer Pulmonary diesel particulate increases susceptibility to myocardial, MR & Gray, GA 2014, 'Pulmonary diesel particulate increases susceptibility to myocardial ischemia. Pulmonary diesel particulate increases susceptibility to myocardial ischemia/reperfusion injury via

Millar, Andrew J.

194

NETL: Advanced NOx Emissions Control: Control Technology - ALTA for Cyclone  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Full-Scale Demonstration of ALTA NOx Control for Cyclone-Fired Boilers Full-Scale Demonstration of ALTA NOx Control for Cyclone-Fired Boilers The primary goal of this project was to evaluate a technology called advanced layered technology application (ALTA) as a means to achieve NOx emissions below 0.15 lb/MMBtu in a cyclone boiler. Reaction Engineering International (REI) conducted field testing and combustion modeling to refine the process design, define the optimum technology parameters, and assess system performance. The ALTA NOx control technology combines deep staging from overfire air, rich reagent injection (RRI), and selective non-catalytic reduction (SNCR). Field testing was conducted during May-June 2005 at AmerenUE's Sioux Station Unit 1, a 500 MW cyclone boiler unit that typically burns an 80/20 blend of Powder River Basin subbituminous coal and Illinois No. 6 bituminous coal. Parametric testing was also conducted with 60/40 and 0/100 blends. The testing also evaluated process impacts on balance-of-plant issues such as the amount of unburned carbon in the ash, slag tapping, waterwall corrosion, ammonia slip, and heat distribution.

195

Lean NOx Reduction with Dual Layer LNT/SCR Catalysts  

Broader source: Energy.gov (indexed) [DOE]

Roles of ceria in LNT SCR: I ncreases NOx storage & NO conversion at low tem perature P rom otes W GS reaction Conditions: Lean: 500 ppm NO, 5% O 2 ; 60s Rich: 2.5% H 2 ; 5s X H2...

196

Advanced particulate matter control apparatus and methods  

DOE Patents [OSTI]

Apparatus and methods for collection and removal of particulate matter, including fine particulate matter, from a gas stream, comprising a unique combination of high collection efficiency and ultralow pressure drop across the filter. The apparatus and method utilize simultaneous electrostatic precipitation and membrane filtration of a particular pore size, wherein electrostatic collection and filtration occur on the same surface.

Miller, Stanley J. (Grand Forks, ND); Zhuang, Ye (Grand Forks, ND); Almlie, Jay C. (East Grand Forks, MN)

2012-01-10T23:59:59.000Z

197

Detailed Assessment of Particulate Characteristics from Low-Temperatur...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Detailed Assessment of Particulate Characteristics from Low-Temperature Combustion Engines Detailed Assessment of Particulate Characteristics from Low-Temperature Combustion...

198

Development of SCR on Diesel Particulate Filter System for Heavy...  

Broader source: Energy.gov (indexed) [DOE]

SCR on Diesel Particulate Filter System for Heavy Duty Applications Development of SCR on Diesel Particulate Filter System for Heavy Duty Applications Evaluation of a system...

199

Update on 2007 Diesel Particulate Measurement Research | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2007 Diesel Particulate Measurement Research Update on 2007 Diesel Particulate Measurement Research 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and...

200

Expanded Capacity Microwave-Cleaned Diesel Particulate Filter...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Expanded Capacity Microwave-Cleaned Diesel Particulate Filter Expanded Capacity Microwave-Cleaned Diesel Particulate Filter 2002 DEER Conference Presentation: Industrial Ceramic...

Note: This page contains sample records for the topic "oxides nox particulates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Predicting Thermal Stress in Diesel Particulate Filters | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Stress in Diesel Particulate Filters Predicting Thermal Stress in Diesel Particulate Filters 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Corning...

202

The State of the Science in Diesel Particulate Control | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The State of the Science in Diesel Particulate Control The State of the Science in Diesel Particulate Control 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations...

203

A New CFD Model for understanding and Managing Diesel Particulate...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Publications Substrate Studies of an Electrically-Assisted Diesel Particulate Filter Diesel Particulate Filter: A Success for Faurecia Exhaust Systems Vehicle Evaluation of...

204

Ultra-Lite Diesel Particulate Filter Cartridge for Reduced Regeneratio...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lite Diesel Particulate Filter Cartridge for Reduced Regeneration Time and Fuel Consumption Ultra-Lite Diesel Particulate Filter Cartridge for Reduced Regeneration Time and Fuel...

205

Neutron Imaging of Diesel Particulate Filters | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Neutron Imaging of Diesel Particulate Filters Neutron Imaging of Diesel Particulate Filters Neutron computed tomography shows soot and ash loading in a cordierite diesel...

206

Local Soot Loading Distribution in Cordierite Diesel Particulate...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Local Soot Loading Distribution in Cordierite Diesel Particulate Filters by Dynamic Neutron Radiography Local Soot Loading Distribution in Cordierite Diesel Particulate Filters by...

207

Non-Destructive Neutron Imaging to Analyze Particulate Filters...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Neutron Imaging to Analyze Particulate Filters Non-Destructive Neutron Imaging to Analyze Particulate Filters Non-destructive, non-invasive imaging is being employed in the...

208

Durability of Diesel Engine Particulate Filters (Agreement ID...  

Broader source: Energy.gov (indexed) [DOE]

Durability of Diesel Engine Particulate Filters (Agreement ID:10461) Durability of Diesel Engine Particulate Filters (Agreement ID:10461) 2013 DOE Hydrogen and Fuel Cells Program...

209

Improvement and Simplification of Diesel Particulate Filter System...  

Broader source: Energy.gov (indexed) [DOE]

and Simplification of Diesel Particulate Filter System using a Ceria-Based Fuel-Borne Catalyst in Serial Applications Improvement and Simplification of Diesel Particulate Filter...

210

Reduction of Transient Particulate Matter Spikes with Decision...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transient Particulate Matter Spikes with Decision Tree Based Control Reduction of Transient Particulate Matter Spikes with Decision Tree Based Control Using a non-parametric...

211

Final Report: Particulate Emissions Testing, Unit 1, Potomac...  

Broader source: Energy.gov (indexed) [DOE]

Final Report: Particulate Emissions Testing, Unit 1, Potomac River Generating Station, Alexandria, Virginia Final Report: Particulate Emissions Testing, Unit 1, Potomac River...

212

Vehicle Technologies Office Merit Review 2014: Particulate Emissions...  

Broader source: Energy.gov (indexed) [DOE]

Particulate Emissions Control by Advanced Filtration Systems for GDI Engines Vehicle Technologies Office Merit Review 2014: Particulate Emissions Control by Advanced Filtration...

213

Optical Backscatter Probe for Sensing Particulate Matter - Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

particulate concentration is then determined by measuring the amount of backscattered light transmitted by particulate matter contained in a sample of engine exhaust. The speed...

214

Elementary Steps and Site Requirements for NOx Adsorption and Oxidation on Metal and Oxide Surfaces  

E-Print Network [OSTI]

Ed. ), CRC Handbook of Chemistry and Physics, 89 th ed. ,Haynes, CRC Handbook of Chemistry and Physics, 91st Edition,Haynes, CRC Handbook of Chemistry and Physics, 91st Edition,

Weiss, Brian M.

2010-01-01T23:59:59.000Z

215

Oxyfuel CO2 compression: The gas phase reaction of elemental mercury and \\{NOx\\} at high pressure and absorption into nitric acid  

Science Journals Connector (OSTI)

Abstract Oxyfuel combustion is a technology which combusts coal in oxygen and recycled flue gas, producing a carbon dioxide rich flue gas for sequestration. Oxyfuel flue gas contains trace amounts of elemental mercury, which may corrode brazed aluminium heat exchangers used in the carbon dioxide purification system. International gas vendors have tested the use of the compression system to remove other flue gas impurities such as NOx; however, the reaction mechanism of mercury and its reaction products with \\{NOx\\} and nitric acid formed with condensed water vapour are unclear. This study used lab scale experiments to study the absorption of gaseous elemental mercury into nitric acid and the gas phase reaction between mercury and nitrogen dioxide formed from oxidised NO at pressures up to 25 bar. It was observed that mercury has limited absorption into nitric acid and may partially desorb out of solution after depressurisation. On the other hand, mercury reacted readily with nitrogen dioxide (formed from nitric oxide oxidation at high pressure) in the gas phase. These gas phase reactions from the oxidation of nitric oxide to nitrogen dioxide to the subsequent oxidation of elemental mercury by nitrogen dioxide were predicted using existing global kinetic equations. The limited absorption of gaseous elemental mercury in nitric acid and significant oxidation of gaseous elemental mercury by nitrogen dioxide suggests that the primary removal step for elemental mercury is through the gas phase reaction. Oxyfuel compression circuits should therefore allow sufficient residence time for this gas phase reaction to occur.

Timothy Ting; Rohan Stanger; Terry Wall

2014-01-01T23:59:59.000Z

216

DOE/EA-1472: Finding of No Significant Impact for the Commercial Demonstration of the Low NOx Burner/Separated Over-Fire Air Integration System Emission Reduction Technology (03/11/03)  

Broader source: Energy.gov (indexed) [DOE]

IMPACT IMPACT COMMERCIAL DEMONSRATION OF THE LOW NOx BURNER/SEPARATED OVER- FIRE AIR (LNB/SOFA) INTEGRATON SYSTEM EMISSION REDUCTION TECHNOLOGY HOLCOMB STATION SUNFLOWER ELECTRIC POWER CORPORATION FINNEY COUNTY, KANSAS AGENCY: U.S. Department of Energy (DOE) ACTION: Finding of No Significant Impact (FONSI) SUMMARY: The DOE has prepared an Environmental Assessment (EA), to analyze the potential impacts of the commercial application of the Low-NOx Burner/Separated Over-Fire Air (LNB/SOFA) integration system to achieve nitrogen oxide (NOx) emissions reduction at Sunflower's Holcomb Unit No. 1 (Holcomb Station), located near Garden City, in Finney County, Kansas. The Holcomb Station would be modified in three distinct phases to demonstrate the synergistic effect of layering NO,

217

Diesel Aftertreatment Modeling:? A Systems Approach to NOx Control  

Science Journals Connector (OSTI)

Diesel Aftertreatment Modeling:? A Systems Approach to NOx Control ... Despite these challenges, the proposed system was able to make several advances:? (1) meeting the T2B5 CO, HC, and PM standards; (2) quantifying the ability to meet T2B5 NOx levels with a more durable DOC and a rapid warm-up strategy to heat the exhaust, especially during the initial cold-start portion of the Federal Test Procedure (FTP) drive cycle. ... The remainder of this work is organized as follows:? The formulation, calibration, and validation of the DOC and SCR models are presented in section 2. The DOC and SCR models are combined for an analysis of the AT system as a whole in section 3. The final section of the article summarizes the results and offers some general conclusions. ...

Santhoji R. Katare; Joseph E. Patterson; Paul M. Laing

2007-03-16T23:59:59.000Z

218

Development of a Low-Cost Particulate Matter Monitor  

E-Print Network [OSTI]

Forward-looking infrared (FLIR) images taken as a singleforward-looking infrared (FLIR) instrumentation. Particulate

White, Richard M.

2010-01-01T23:59:59.000Z

219

Influence of operating conditions and coal properties on \\{NOx\\} and N2O emissions in pressurized fluidized bed combustion of subbituminous coals  

Science Journals Connector (OSTI)

This experimental study is aimed at finding effects of operating conditions in PFBC on nitrogen oxide emissions for subbituminous coals differing in ash content/composition, combustion/gasification reactivities and in particle size distribution. The experiments have been done on a smaller laboratory apparatus with ID=8 cm. The effects of operating pressure (0.1–1 MPa), temperature of the fluidized bed (800–900 °C), freeboard temperature and oxygen concentration (3–10 vol.%) on the nitrogen oxides emissions are relatively complex, coupled with temperature of burning coal particles. The coal ash content/composition (esp. CaO and Fe2O3) and fly ash freeboard concentration play an important role in formation/destruction chemistry of both NO and N2O. The \\{NOx\\} emissions decrease with increasing operating pressure at the same volumetric oxygen concentration and temperature. Temperature, volatile content, reactivities of coals and ash composition are the most important factors for N2O emissions. The N2O emissions are either almost constant or can exhibit a maximum at increasing operating pressure. Influence of increasing oxygen concentration on \\{NOx\\} and N2O emissions is more pronounced at lower operating pressures, esp. for the less reactive, medium ash coal. The particle size distribution of the coal (influence of coal dust) can cause characteristic changes in \\{NOx\\} and N2O emissions in PFBC, esp. at lower combustion temperatures (800–840 °C). The emission changes are dependent on ash properties/composition.

Karel Svoboda; Michael Poho?elý

2004-01-01T23:59:59.000Z

220

Particulate matter in the south Atlantic Ocean  

E-Print Network [OSTI]

The particulate matter (PM) distribution in the south Atlantic Ocean and its relationship to water masses and currents were determined from optical and hydrographic data. Attenuation coefficients were obtained by interfacing a beam transmissometer...

Wood, Megan Maria

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "oxides nox particulates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Investigation of Direct Injection Vehicle Particulate Matter...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Emissions This study focuses primarily on particulate matter mass analysis of a gasoline direct injection engine in a test cell with a chassis dynamometer. p-10gibbs.pdf...

222

NETL: Control Technology: Advanced Hybrid Particulate Collector  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Hybrid Particulate Collector Advanced Hybrid Particulate Collector Under DOE-NETL sponsorship, the University of North Dakota, Energy and Environmental Research Center (UND-EERC) has developed a new concept in particulate control, called an advanced hybrid particulate collector (AHPC). In addition to DOE and the EERC, the project team includes W.L. Gore & Associates, Inc., Allied Environmental Technologies, Inc., and the Otter Tail Power Company. The AHPC utilizes both electrostatic collection and filtration in a unique geometric configuration that achieves ultrahigh particle collection with much less collection area than conventional particulate control devices. The primary technologies for state-of-the-art particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). A major limitation of ESPs is that the fractional penetration of 0.1- to 1.0-µm particles is typically at least an order of magnitude greater than for 10-µm particles, so a situation exists where the particles that are of greatest health concern are collected with the lowest efficiency. Fabric filters are currently considered to be the best available control technology for fine particles, but emissions are dependent on ash properties and typically increase if the air-to-cloth (A/C) ratio is increased. In addition, many fabrics cannot withstand the rigors of high-SO2 flue gases, which are typical for bituminous fuels. Fabric filters may also have problems with bag cleanability and high pressure drop, which has resulted in conservatively designed, large, costly baghouses.

223

Diesel Particulate Filter Technology for Low-Temperature and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Low-Temperature and Low-NOxPM Applications 2004 DEER Conference Presentation: Johnson-Matthey Catalysts 2004deerchatterjee.pdf More Documents & Publications Performance...

224

NOx Control Options and Integration for US Coal Fired Boilers  

SciTech Connect (OSTI)

This is the Final Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project was to develop cost-effective analysis tools and techniques for demonstrating and evaluating low-NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) provided co-funding for this program. This project included research on: (1) In furnace NOx control; (2) Impacts of combustion modifications on boiler operation; (3) Selective Catalytic Reduction (SCR) catalyst testing and (4) Ammonia adsorption/removal on fly ash. Important accomplishments were achieved in all aspects of the project. Rich Reagent Injection (RRI), an in-furnace NOx reduction strategy based on injecting urea or anhydrous ammonia into fuel rich regions in the lower furnace, was evaluated for cyclone-barrel and PC fired utility boilers. Field tests successfully demonstrated the ability of the RRI process to significantly reduce NOx emissions from a staged cyclone-fired furnace operating with overfire air. The field tests also verified the accuracy of the Computational Fluid Dynamic (CFD) modeling used to develop the RRI design and highlighted the importance of using CFD modeling to properly locate and configure the reagent injectors within the furnace. Low NOx firing conditions can adversely impact boiler operation due to increased waterwall wastage (corrosion) and increased soot production. A corrosion monitoring system that uses electrochemical noise (ECN) corrosion probes to monitor, on a real-time basis, high temperature corrosion events within the boiler was evaluated. Field tests were successfully conducted at two plants. The Ohio Coal Development Office provided financial assistance to perform the field tests. To investigate soot behavior, an advanced model to predict soot production and destruction was implemented into an existing reacting CFD modeling tool. Comparisons between experimental data collected in a pilot scale furnace and soot behavior predicted by the CFD model showed good agreement. Field and laboratory tests were performed for SCR catalysts used for coal and biomass co-firing applications. Fundamental laboratory studies were performed to better understand mechanisms involved with catalyst deactivation. Field tests with a slip stream reactor were used to create catalyst exposed to boiler flue gas for firing coal and for co-firing coal and biomass. The field data suggests the mechanisms leading to catalyst deactivation are, in order of importance, channel plugging, surface fouling, pore plugging and poisoning. Investigations were performed to better understand the mechanisms involved with catalyst regeneration through mechanical or chemical methods. A computer model was developed to predict NOx reduction across the catalyst in a SCR. Experiments were performed to investigate the fundamentals of ammonia/fly ash interactions with relevance to the operation of advanced NOx control technologies such as selective catalytic reduction. Measurements were performed for ammonia adsorption isotherms on commercial fly ash samples subjected to a variety of treatments and on the chemistry of dry and semi-dry ammonia removal processes. This work resulted in the first fundamental ammonia isotherms on carbon-containing fly ash samples. This work confirms industrial reports that aqueous solution chemistry takes place upon the introduction of even very small amounts of water, while the ash remains in a semi-dry state.

Mike Bockelie; Marc Cremer; Kevin Davis; Martin Denison; Adel Sarofim; Connie Senior; Hong-Shig Shim; Dave Swenson; Bob Hurt; Eric Suuberg; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker

2006-06-30T23:59:59.000Z

225

A Fast Start-up On-Board Fuel Reformer for NOx Adsorber Regeneration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Processor for Rapid and Efficient Regeneration of Single Leg NOx Adsorber Systems Hydrogen generation from plasmatron reformers and use for diesel exhaust aftertreatment...

226

High-Throughput Program for the Discovery of NOx Reduction Catalysts...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2004deerblint.pdf More Documents & Publications WA02042GENERALMOTORSPOWERTRAINDIVWaiverofDomestic.pdf Heavy-Duty NOx Emissions Control: Reformer-Assisted vs....

227

Boosted HCCI for High Power without Engine Knock, and with Ultra-Low NOX Emissions  

Broader source: Energy.gov [DOE]

Advanced engines using HCCI or HCCI-like combustion can provide both high efficiencies and very low emissions of NOX and PM

228

Synergies of High-Efficiency Clean Combustion and Lean NOx Trap...  

Broader source: Energy.gov (indexed) [DOE]

Combustion and Lean NOx Trap Catalysts investigation of potential synergies of low emission advanced combustion techniques and advanced lean exhaust catalytic aftertreatment....

229

E-Print Network 3.0 - aluminosilicates nox reduction Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RELATIONSHIP BETWEEN Summary: Non-Catalytic Reduction SNCR NOx control throughout the United States and Canada. They correspond... explain why mass balances are not an appro...

230

Flexible CHP System with Low NOx, CO and VOC Emissions | Department...  

Broader source: Energy.gov (indexed) [DOE]

Emissions Flexible CHP System with Low NOx, CO and VOC Emissions Introduction A combined heat and power (CHP) system can be a financially attractive energy option for many...

231

Reduce NOx and Improve Energy Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes how the Industrial Technologies Program NOx and Energy Assessment Tool (NxEAT) can help petroleum refining and chemical plants improve energy efficiency.

Not Available

2008-12-01T23:59:59.000Z

232

Deactivation mechanisms of NOx storage materials arising from thermal aging and sulfur poisoning  

Broader source: Energy.gov [DOE]

Presents the reliationship between Pt particle size and NOx storage performance over model catalysts. Novel reaction protocol designed to decouple effects of thermal deactivation and incomplete desulfation.

233

Policy Brief October 2014  

E-Print Network [OSTI]

Standard) for electricity generation, reduced fuel carbon intensity (Low Carbon Fuel Standard), improvement by each AB 32 sector or sub-sector for total particulate matter (PM), particulate elemental carbon (EC), particulate organic carbon (OC), oxides of nitrogen (NOx), oxides of sulfur (SOx), reactive organic gases (ROG

California at Davis, University of

234

Reducing the contribution of the power sector to ground-level ozone pollution : an assessment of time-differentiated pricing of nitrogen oxide emissions  

E-Print Network [OSTI]

Nitrogen oxide (NOx) is a prevalent air pollutant across the United States and a requisite precursor for tropospheric (ground-level) ozone formation. Both pollutants significantly impact human health and welfare, so National ...

Craig, Michael T. (Michael Timothy)

2014-01-01T23:59:59.000Z

235

METHANE de-NOX FOR UTILITY PC BOILERS  

SciTech Connect (OSTI)

The project seeks to develop and validate a new pulverized coal combustion system to reduce utility PC boiler NOx emissions to 0.15 lb per million Btu or less without post-combustion flue gas cleaning. Work during previous reporting periods completed the design, installation, shakedown and initial PRB coal testing of a 3-million Btu/h pilot system at BBP's Pilot-Scale Combustion Facility (PSCF) in Worcester, MA. Based on these results, modifications to the gas-fired preheat combustor and PC burner were defined, along with a modified testing plan and schedule. A revised subcontract was executed with BBP to reflect changes in the pilot testing program. Modeling activities were continued to develop and verify revised design approaches for both the Preheat gas combustor and PC burner. Reactivation of the pilot test system was then begun with BBP personnel. During the previous reporting period, reactivation of the pilot test system was completed with the modified Preheat gas combustor. Following shakedown of the modified gas combustor alone, a series of successful tests of the new combustor with PRB coal using the original PC burner were completed. NOx at the furnace exit was reduced significantly with the modified gas combustor, to as low as 150 ppm with only 36 ppm CO (both corrected to 3% O2). Concurrent with testing, GTI and BBP collaborated on development of two modified designs for the PC burner optimized to fire preheated char and pyrolysis products from the Preheat gas combustor. During the current reporting period, one of the two modified PC burner designs was fabricated and installed in the pilot test facility. Testing of the modified pilot system (modified gas combustor and modified PC burner) during the quarter included 38 tests with PRB coal. NOx reduction was significantly improved to levels as low as 60-100 ppmv with CO in the range of 35-112 ppmv without any furnace air staging.

Joseph Rabovitser; Bruce Bryan; Serguei Nester; Stan Wohadlo

2002-01-31T23:59:59.000Z

236

SOx/NOx sorbent and process of use  

DOE Patents [OSTI]

An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 600 C. is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and dripped to form the stabilizing spheroidal alumina particles. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths.

Ziebarth, M.S.; Hager, M.J.; Beeckman, J.W.; Plecha, S.

1993-01-19T23:59:59.000Z

237

On the NOx production by laboratory electrical discharges and lightning Vernon Cooraya,, Mahbubur Rahman a  

E-Print Network [OSTI]

in estimating the global production of NOx by lightning flashes, including field measurements carried out during influence extrapolation of laboratory data to lightning flashes. Second, an estimation of the NOx yield per lightning flash is made by treating the lightning flash as a composite event consisting of several discharge

Florida, University of

238

Measurements of NOX produced by rocket-triggered lightning M. Rahman,1  

E-Print Network [OSTI]

lightning flashes were triggered using the rocket- and-wire technique at the International Center atmosphere. [3] A direct measurement of the NOX generated by a natural lightning flash is impractical because generated by lightning flashes. Due to a large number of uncertainties involved, the estimates of global NOX

Florida, University of

239

A Novel Technology for the Reduction of NOx on Char by Microwaves  

E-Print Network [OSTI]

of these applications. The technology is directed at NOx reduction but may also address other pollutants like SO2. The technology employees char, a heat treated and devolitilized form of coal, to adsorb NOx from the flue (or waste) gas. Adsorption of greater than 99...

Buenger, C.; Peterson, E.

240

Improvement of lightning NOx in the TM5 global chemistry transport model  

E-Print Network [OSTI]

, a key greenhouse gas, and for the formation of the hydroxyl28 radical, which removes methane, also a key greenhouse gas. Estimates of the global lightning NOx production vary29 by an order of magnitude interpreting the lighting NOx contribu-36 tion from satellite and aircraft observations of NO2 in comparison

Haak, Hein

Note: This page contains sample records for the topic "oxides nox particulates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Method of dispersing particulate aerosol tracer  

DOE Patents [OSTI]

A particulate aerosol tracer which comprises a particulate carrier of sheet silicate composition having a particle size up to one micron, and a cationic dopant chemically absorbed in solid solution in the carrier. The carrier is preferably selected from the group consisting of natural mineral clays such as bentonite, and the dopant is selected from the group consisting of rare earth elements and transition elements. The tracers are dispersed by forming an aqueous salt solution with the dopant present as cations, dispersing the carriers in the solution, and then atomizing the solution under heat sufficient to superheat the solution droplets at a level sufficient to prevent reagglomeration of the carrier particles.

O'Holleran, Thomas P. (Belleville, MI)

1988-01-01T23:59:59.000Z

242

Particulate hot gas stream cleanup technical issues  

SciTech Connect (OSTI)

The analyses of hot gas stream cleanup particulate samples and descriptions of filter performance studied under this contract were designed to address problems with filter operation that have been linked to characteristics of the collected particulate matter. One objective of this work was to generate an interactive, computerized data bank of the key physical and chemical characteristics of ash and char collected from operating advanced particle filters and to relate these characteristics to the operation and performance of these filters. The interactive data bank summarizes analyses of over 160 ash and char samples from fifteen pressurized fluidized-bed combustion and gasification facilities utilizing high-temperature, high pressure barrier filters.

Pontius, D.H.; Snyder, T.R.

1999-09-30T23:59:59.000Z

243

Development of a Stand-Alone Urea-SCR System for NOx Reduction in Marine Diesel Engines  

Broader source: Energy.gov [DOE]

Stand-alone urea SCR system was developed for marine diesel engines and showed a 50-percent reduction in NOx.

244

Development of Compact Gaseous Sensors with Internal Reference for Monitoring O2 and NOx in Combustion Environments  

Broader source: Energy.gov [DOE]

Compact sensors have been developed to allow for real-time monitoring of O2 and NOx during combustion.

245

Advanced NOx Emissions Control: Control Technology - Second Generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Second Generation Advanced Reburning Second Generation Advanced Reburning General Electric - Energy and Environmental Research Corporation (GE-EER) is carrying out a two Phase research program to develop novel Advanced Reburning (AR) concepts for high efficiency and low cost NOx control from coal-fired utility boilers. AR technologies are based on combination of basic reburning and N-agent/promoter injections. Phase I of the project was successfully completed and EER was selected to continue to develop AR technology during Phase II. Phase I demonstrated that AR technologies are able to provide effective NOx control for coal-fired combustors. Three technologies were originally envisioned for development: AR-Lean, AR-Rich, and Multiple Injection AR (MIAR). Along with these, three additional technologies were identified during the project: reburning plus promoted SNCR; AR-Lean plus promoted SNCR; and AR-Rich plus promoted SNCR. The promoters are sodium salts, in particular sodium carbonate. These AR technologies have different optimum reburn heat input levels and furnace temperature requirements. For full scale application, an optimum technology can be selected on a boiler-specific basis depending on furnace temperature profile and regions of injector access.

246

2004 Conference on Reburning for NOX Control Reburning on Trial  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2004 Conf. on Reburning for NOx Control Reburning on Trial 2004 Conf. on Reburning for NOx Control Reburning on Trial May 18, 2004 Table of Contents Disclaimer Papers and Presentations Reburning Overview Commercial Reburning Experience Biomass Reburning Other Applications of Reburning Posters Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

247

NETL: PPII - Integration of Low-NOx Burners with an Optimization Plan for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integration of Low-NOx Burners with an Optimization Plan for Boiler Combustion Integration of Low-NOx Burners with an Optimization Plan for Boiler Combustion - Project Brief [PDF-72KB] Sunflower Electric Power Corp., Garden City, Finney County, KS PROJECT FACT SHEET Achieving New Source Performance Standards (NSPS) Through Integration of Low-NOx Burners with an Optimization Plan for Boiler Combustion [PDF-260KB] (Oct 2008) PROGRAM PUBLICATIONS Final Report Achieving NSPS Emission Standards Through Integration of Low NOx Burners with an Optimization Plan for Boiler Combustion [PDF-3.4MB] (June 2006) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports Achieving New Source Performance Standards (NSPS) Emission Standards through Integration of Low-NOx Burners with an Optimization Plan for Boiler Combustion: A DOE Assessment [PDF-1.4MB] (Nov 2006)

248

Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 3: SOx/NOx/Hg Removal for Low Sulfur Coal  

SciTech Connect (OSTI)

The goal of this project was to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxycombustion technology. The objective of Task 3 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning low sulfur coal in oxy-combustion power plants. The goal of the program was to conduct an experimental investigation and to develop a novel process for simultaneously removal of SOx and NOx from power plants that would operate on low sulfur coal without the need for wet-FGD & SCRs. A novel purification process operating at high pressures and ambient temperatures was developed. Activated carbonâ??s catalytic and adsorbent capabilities are used to oxidize the sulfur and nitrous oxides to SO{sub 3} and NO{sub 2} species, which are adsorbed on the activated carbon and removed from the gas phase. Activated carbon is regenerated by water wash followed by drying. The development effort commenced with the screening of commercially available activated carbon materials for their capability to remove SO{sub 2}. A bench-unit operating in batch mode was constructed to conduct an experimental investigation of simultaneous SOx and NOx removal from a simulated oxyfuel flue gas mixture. Optimal operating conditions and the capacity of the activated carbon to remove the contaminants were identified. The process was able to achieve simultaneous SOx and NOx removal in a single step. The removal efficiencies were >99.9% for SOx and >98% for NOx. In the longevity tests performed on a batch unit, the retention capacity could be maintained at high level over 20 cycles. This process was able to effectively remove up to 4000 ppm SOx from the simulated feeds corresponding to oxyfuel flue gas from high sulfur coal plants. A dual bed continuous unit with five times the capacity of the batch unit was constructed to test continuous operation and longevity. Full-automation was implemented to enable continuous operation (24/7) with minimum operator supervision. Continuous run was carried out for 40 days. Very high SOx (>99.9%) and NOx (98%) removal efficiencies were also achieved in a continuous unit. However, the retention capacity of carbon beds for SOx and NOx was decreased from ~20 hours to ~10 hours over a 40 day period of operation, which was in contrast to the results obtained in a batch unit. These contradictory results indicate the need for optimization of adsorption-regeneration cycle to maintain long term activity of activated carbon material at a higher level and thus minimize the capital cost of the system. In summary, the activated carbon process exceeded performance targets for SOx and NOx removal efficiencies and it was found to be suitable for power plants burning both low and high sulfur coals. More efforts are needed to optimize the system performance.

Monica Zanfir; Rahul Solunke; Minish Shah

2012-06-01T23:59:59.000Z

249

In Vitro Genotoxicity of Particulate and Semi-Volatile Organic...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Particulate and Semi-Volatile Organic Compound Exhaust Materails from a Set of Gasoline and a Set of Diesel Engine Vehicles Operated at 30F In Vitro Genotoxicity of Particulate...

250

Next Generation Non-particulate Dry Nonwoven Pad for Chemical Warfare Agent Decontamination  

SciTech Connect (OSTI)

New, non-particulate decontamination materials promise to reduce both military and civilian casualties by enabling individuals to decontaminate themselves and their equipment within minutes of exposure to chemical warfare agents or other toxic materials. One of the most promising new materials has been developed using a needlepunching nonwoven process to construct a novel and non-particulate composite fabric of multiple layers, including an inner layer of activated carbon fabric, which is well-suited for the decontamination of both personnel and equipment. This paper describes the development of a composite nonwoven pad and compares efficacy test results for this pad with results from testing other decontamination systems. The efficacy of the dry nonwoven fabric pad was demonstrated specifically for decontamination of the chemical warfare blister agent bis(2-chloroethyl)sulfide (H or sulfur mustard). GC/MS results indicate that the composite fabric was capable of significantly reducing the vapor hazard from mustard liquid absorbed into the nonwoven dry fabric pad. The mustard adsorption efficiency of the nonwoven pad was significantly higher than particulate activated carbon (p=0.041) and was similar to the currently fielded US military M291 kit (p=0.952). The nonwoven pad has several advantages over other materials, especially its non-particulate, yet flexible, construction. This composite fabric was also shown to be chemically compatible with potential toxic and hazardous liquids, which span a range of hydrophilic and hydrophobic chemicals, including a concentrated acid, an organic solvent and a mild oxidant, bleach.

Ramkumar, S S; Love, A; Sata, U R; Koester, C J; Smith, W J; Keating, G A; Hobbs, L; Cox, S B; Lagna, W M; Kendall, R J

2008-05-01T23:59:59.000Z

251

Simultaneous Removal of NOx and Mercury in Low Temperature Selective Catalytic and Adsorptive Reactor  

SciTech Connect (OSTI)

The results of a 18-month investigation to advance the development of a novel Low Temperature Selective Catalytic and Adsorptive Reactor (LTSCAR), for the simultaneous removal of NO{sub x} and mercury (elemental and oxidized) from flue gases in a single unit operation located downstream of the particulate collectors, are reported. In the proposed LTSCAR, NO{sub x} removal is in a traditional SCR mode but at low temperature, and, uniquely, using carbon monoxide as a reductant. The concomitant capture of mercury in the unit is achieved through the incorporation of a novel chelating adsorbent. As conceptualized, the LTSCAR will be located downstream of the particulate collectors (flue gas temperature 140-160 C) and will be similar in structure to a conventional SCR. That is, it will have 3-4 beds that are loaded with catalyst and adsorbent allowing staged replacement of catalyst and adsorbent as required. Various Mn/TiO{sub 2} SCR catalysts were synthesized and evaluated for their ability to reduce NO at low temperature using CO as the reductant. It has been shown that with a suitably tailored catalyst more than 65% NO conversion with 100% N{sub 2} selectivity can be achieved, even at a high space velocity (SV) of 50,000 h-1 and in the presence of 2 v% H{sub 2}O. Three adsorbents for oxidized mercury were developed in this project with thermal stability in the required range. Based on detailed evaluations of their characteristics, the mercaptopropyltrimethoxysilane (MPTS) adsorbent was found to be most promising for the capture of oxidized mercury. This adsorbent has been shown to be thermally stable to 200 C. Fixed-bed evaluations in the targeted temperature range demonstrated effective removal of oxidized mercury from simulated flue gas at very high capacity ({approx}>58 mg Hg/g adsorbent). Extension of the capability of the adsorbent to elemental mercury capture was pursued with two independent approaches: incorporation of a novel nano-layer on the surface of the chelating mercury adsorbent to achieve in situ oxidation on the adsorbent, and the use of a separate titania-supported manganese oxide catalyst upstream of the oxidized mercury adsorbent. Both approaches met with some success. It was demonstrated that the concept of in situ oxidation on the adsorbent is viable, but the future challenge is to raise the operating capacity beyond the achieved limit of 2.7 mg Hg/g adsorbent. With regard to the manganese dioxide catalyst, elemental mercury was very efficiently oxidized in the absence of sulfur dioxide. Adequate resistance to sulfur dioxide must be incorporated for the approach to be feasible in flue gas. A preliminary benefits analysis of the technology suggests significant potential economic and environmental advantages.

Neville G. Pinto; Panagiotis G. Smirniotis

2006-03-31T23:59:59.000Z

252

Electrically heated particulate filter preparation methods and systems  

DOE Patents [OSTI]

A control system that controls regeneration of a particulate filter is provided. The system generally includes a fuel control module that controls injection of fuel into exhaust that passes through the particulate filter. A regeneration module controls current to the particulate filter to initiate regeneration after the fuel has been injected into the exhaust.

Gonze, Eugene V [Pinckney, MI

2012-01-31T23:59:59.000Z

253

Microscopy investigations of ash and particulate matter accumulation in diesel particulate filter surface pores  

E-Print Network [OSTI]

There has been increased focus on the environmental impact of automobile emissions in recent years. These environmental concerns have resulted in the creation of more stringent particulate matter emissions regulations in ...

Beauboeuf, Daniel P

2010-01-01T23:59:59.000Z

254

Low NOx burner retrofits and enhancements for a 518 MW oil and gas fired boiler  

SciTech Connect (OSTI)

Low NOx oil/gas burners originally supplied to Jacksonville Electric Authority, Northside No. 3 .500 MW unit, were based on a duplex air register design with lobed spray oil atomizers providing additional fuel staging. Although the burners could meet the targeted NOx levels of 0.3 and 0.2 lbs/10{sup 6} BTU on oil and gas respectively. There was insufficient margin on these NOx levels to enable continuous low NOx operation to be achieved. Further burner development was undertaken based on improved aerodynamic control within the burner design to give an approximate 25% improvement in NOx emission reduction thus providing an adequate operating margin. This `RoBTAS` (Round Burner with Tilted Air Supply) burner design based on techniques developed successfully for front wall coal firing applications achieved the required NOx reductions in full scale firing demonstrations on both heavy fuel oil and natural gas firing. The paper describes the development work and the subsequent application of the `RoBTAS` burners to the Northside No. 3 boiler. The burner will also be test fired on Orimulsion fuel and thus the comparison between heavy fuel oil firing and Orimulsion firing under ultra low NOx conditions will be made.

King, J.J. [Jacksonville Electric Authority, FL (United States); Allen, J.W.; Beal, P.R. [International Combustion Ltd., Derby (United Kingdom). Rolls-Royce Industrial Power Group

1995-12-31T23:59:59.000Z

255

Low NOx nozzle tip for a pulverized solid fuel furnace  

DOE Patents [OSTI]

A nozzle tip [100] for a pulverized solid fuel pipe nozzle [200] of a pulverized solid fuel-fired furnace includes: a primary air shroud [120] having an inlet [102] and an outlet [104], wherein the inlet [102] receives a fuel flow [230]; and a flow splitter [180] disposed within the primary air shroud [120], wherein the flow splitter disperses particles in the fuel flow [230] to the outlet [104] to provide a fuel flow jet which reduces NOx in the pulverized solid fuel-fired furnace. In alternative embodiments, the flow splitter [180] may be wedge shaped and extend partially or entirely across the outlet [104]. In another alternative embodiment, flow splitter [180] may be moved forward toward the inlet [102] to create a recessed design.

Donais, Richard E; Hellewell, Todd D; Lewis, Robert D; Richards, Galen H; Towle, David P

2014-04-22T23:59:59.000Z

256

METHANE de-NOX FOR UTILITY PC BOILERS  

SciTech Connect (OSTI)

The project seeks to develop and validate a new pulverized coal combustion system to reduce utility PC boiler NOx emissions to 0.15 lb/million Btu or less without post-combustion flue gas cleaning. Work during previous reporting periods completed the design, installation, shakedown and initial PRB coal testing of a 3-million Btu/h pilot system at BBP's Pilot-Scale Combustion Facility (PSCF) in Worcester, MA. Based on these results, modifications to the gas-fired preheat combustor and PC burner were defined, along with a modified testing plan and schedule. During the current reporting period, BBP's subcontract was modified to reflect changes in the pilot testing program, and the modifications to the gas-fired preheat combustor were completed. The Computational Fluid Dynamics (CFD) modeling approach was defined for the combined PC burner and 3-million Btu/h pilot system. Modeling of the modified gas-fired preheat combustor was also started.

Joseph Rabovitser; Bruce Bryan; Serguei Nester; Stan Wohadlo

2002-04-29T23:59:59.000Z

257

METHANE DE-NOX FOR UTILITY PC BOILERS  

SciTech Connect (OSTI)

The primary focus for the project continues to be on developing a PC PREHEAT system design suitable for use with caking coals and readying the 100 MMBtu/h CBTF for testing with noncaking PRB coal. During the current quarter, twenty-two pilot tests were conducted with Central Appalachian (CA) caking coal. The objective for these tests was to achieve continuous operation of the pilot system at its design coal feed rate of 156 lb/h, without plugging or agglomeration in the combustor. One combustor air distribution method tested achieved continuous operation at 110 lb/hr, and inspection of the combustor afterward indicated that this method has potential to solve the caking problem. The NOx results from the pilot caking coal runs indicate that even greater NOx reduction is possible with CA coal than with the PRB coal tested, to levels near 100 ppmv or lower at 4-6% exit oxygen. It was therefore decided to conduct additional pilot tests of the air distribution method to determine how to incorporate this into a workable CA combustor design. Based on current weather and manpower restrictions at the site, this pilot testing is expected to be started in February. The design for the 100 MMBtu/h unit for PRB testing in the CBTF was completed and fabrication and installation started during the quarter. While significant progress has been made in the installation of the unit, weather and combustor fabrication delays are expected to move the start of large-scale testing with PRB coal into February, which will push the project completion date beyond the current 3/30/04 end date. GTI is in the process of developing a revised project schedule and estimated cost to complete.

Bruce Bryan; Joseph Rabovitser; Serguei Nester; Stan Wohadlo

2004-02-06T23:59:59.000Z

258

METHANE de-NOX for Utility PC Boilers  

SciTech Connect (OSTI)

The primary focus for the project during the quarter was shakedown testing of the large-scale coal preheater prototype in the CBTF with non-caking PRB coal. Additional pilot-scale tests were conducted in the PSCF in support of developing a preheating system design suitable for use with caking coals. Thirty-two additional pilot tests were conducted during the quarter with caking coal. These tests further evaluated the use of the air-bleed and indirect air-cooled liner designs to reduce or eliminate combustor plugging with caking coal. The air-bleed configurations tested used air injection holes perpendicular to the liner's longitudinal axis with the number, size and air flow though the air-bleed holes varied to determine the effect on combustor plugging. The indirect cooling configurations tested included a stainless steel liner with spiral fins in the annular space between the liner and the combustor wall, and a silicon carbide liner without fins. Continuous pilot operation was maintained for up to 30 minutes at a coal feed rate of 50 lb/h with the air-bleed liner. The best result achieved was for the stainless steel indirect air-cooled liner with 20 minutes of continuous operation at 126 lb/h of coal followed by an additional 20 minutes at 150 lb/h. The NOx results from these continue to indicate that even greater NOx reduction is possible with caking coal than with the PRB coal tested. The installation of the large-scale prototype coal preheater for PRB testing in the CBTF was completed and shakedown testing with natural gas and PRB coal started during the quarter. Stable operation of the coal system, combustor and burner were achieved at coal feed rates up to 6000 lb/h (50 MMBtu/h).

Bruce Bryan; Joseph Rabovitser Serguei Nester; Stan Wohadlo

2004-06-30T23:59:59.000Z

259

Influencing factors on NOX emission level during grate conversion of three pelletized energy crops  

Science Journals Connector (OSTI)

Abstract NOX emission behavior of three different pelletized energy crops, a herbaceous one, Brassica carinata, a short rotation coppice, Populus sp., and a blend of them, was assessed during fixed grate conversion. Measurements of NOX emissions were done at combustion conditions that yielded both thermal efficiency and CO emissions according to the European norm (EN 303-5:2012), and results compared to limits established by the Austrian deviations. Based on the experimental data, NOX results fulfilled the Austrian restrictions except during combustion of brassica, which exhibited the highest Fuel-N content. The Fuel-NOX was identified as the main formation mechanism. An opposite relation was determined between the specific NOX emissions and the Fuel-N conversion ratio obtained between the N-rich and the N-lean fuels tested here. The influence of the air supply (amount and distribution) on the NOX formation was also noticeable. In general, a higher proportion of air increased the specific NOX emissions and the Fuel-N conversion ratio. Possibilities to control the NOX emissions level by air staging were rather limited, particularly, during combustion of brassica and the blend because of their peculiarities as ash-rich fuels with high slag formation risk. For attaining an appropriate conversion of these fuels, primary air requirements substantially increased. Due to limitations found during the energy crops conversion, efforts to minimize the level of NOX emissions identified here for the troublesome fuels tested should be mainly focused on attaining both a properly designed air supply system and the grate temperature control as well as on conditioning the Fuel-N content, for instance, by blending.

Maryori Díaz-Ramírez; Fernando Sebastián; Javier Royo; Adeline Rezeau

2014-01-01T23:59:59.000Z

260

Exergy analysis of combustion characteristics and NOx emissions of a dual-fuel engine  

Science Journals Connector (OSTI)

The combustion characteristics and NOx emissions of compression ignition engines working on a dual fuel mode are investigated numerically and their exergetic efficiencies are determined. The model has been validated with available experimental results. The simulation results show that dual fuel engine combustion and trend of NOx emissions are well predicted by the present model. Parametric study showed improvements in engine performance and an increase in NOx emissions with decreased advanced injection timing of the pilot fuel as well as with increased intake temperature and pilot fuel quantity. The maximum values for energy and exergy are found to be comparable.

Mohamed H. Morsy; Abdelrahman El-Leathy; Arif Hepbasli

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxides nox particulates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Influence of different configurations of a catalyst and a trap on particulate emission of a diesel passenger car  

Science Journals Connector (OSTI)

New particulate emission measurements performed on a diesel passenger car to see the influence of different configurations of after-treatment systems are reported. Five combinations of a particle trap and an oxidation catalyst are investigated. These configurations are discussed in view of particulate emission, measured by number and mass. All measurements were carried out at a chassis dynamometer of the EMPA. A diesel passenger car with an IDI engine was operated at four steady state conditions. Exhaust gas was diluted in a standard constant volume sampler (CVS) device (full flow dilution tunnel). Particulate size distributions were measured with a scanning mobility particle sizer (SMPS) and gravimetric measurements were performed according to regulations. Furthermore, measurements without CVS tunnel were done by using external dilution units to see the influence of the sampling method. We used a thermo desorber to distinguish volatile and non-volatile aerosol fractions and we analysed filter samples for determination of organic soluble fraction, water-soluble fraction and sulphur content. Huge differences depending on the configuration of the after-treatment system and load were observed. In general it was found that a large reduction of particulate emission could be obtained by using a particle trap. A catalyst converter has minor effect on particulate emission. Nucleation of new particles was observed under certain conditions depending on configuration and sampling method.

Urs Lehmann; Martin Mohr

2001-01-01T23:59:59.000Z

262

Generator powered electrically heated diesel particulate filter  

DOE Patents [OSTI]

A control circuit for a vehicle powertrain includes a switch that selectivity interrupts current flow between a first terminal and a second terminal. A first power source provides power to the first terminal and a second power source provides power to the second terminal and to a heater of a heated diesel particulate filter (DPF). The switch is opened during a DPF regeneration cycle to prevent the first power source from being loaded by the heater while the heater is energized.

Gonze, Eugene V; Paratore, Jr., Michael J

2014-03-18T23:59:59.000Z

263

Measurement of particulate densities in air  

Science Journals Connector (OSTI)

Clean air is one of the most important issues that govern the health of all live forms. However presently there are not many quick and simple methods for measuring impurities like particulates in air. These impurities have an enormous diversity in their physical and chemical structure. They may be unburned carbon particles from a diesel engine exhaust and chimney pollen grains in the spring air or asbestos in a factory. This paper shows that changes in the composition of the air cause a change in the speed of sound. Therefore by measuring the change in the speed of sound it is possible to monitor the density of particulates in the air. Preliminary tests are conducted on various smoke–air mixtures. The results demonstrate that this methodology is very sensitive to any changes in the composition of the air. Its implementation is very simple and efficient and costs much less than the conventional method currently used in the auto industry. This technique will be used to calculate the mass density of the particulates resulting from a diesel engine and results thus obtained will be compared with those calculated using other methods.

2001-01-01T23:59:59.000Z

264

Definition: Reduced Sox, Nox, And Pm-2.5 Emissions | Open Energy  

Open Energy Info (EERE)

Sox, Nox, And Pm-2.5 Emissions Sox, Nox, And Pm-2.5 Emissions Jump to: navigation, search Dictionary.png Reduced Sox, Nox, And Pm-2.5 Emissions Functions that provide this benefit can lead to avoided vehicle miles, decrease the amount of central generation needed to their serve load (through reduced electricity consumption, reduced electricity losses, more optimal generation dispatch), and or reduce peak generation. These impacts translate into a reduction in pollutant emissions produced by fossil-based electricity generators and vehicles.[1] Related Terms electricity generation, reduced electricity losses, smart grid References ↑ SmartGrid.gov 'Description of Benefits' An in LikeLike UnlikeLike You like this.Sign Up to see what your friends like. line Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Reduced_Sox,_Nox,_And_Pm-2.5_Emissions&oldid=502508

265

Demonstration of a Low-NOx Heavy-Duty Natural Gas Engine  

SciTech Connect (OSTI)

Results of a Next Generation Natural Gas Vehicle engine research project: A Caterpillar C-12 natural gas engine with Clean Air Power Dual-Fuel technology and exhaust gas recirculation demonstrated low NOx and PM emissions.

Not Available

2004-02-01T23:59:59.000Z

266

NH3 generation over commercial Three-Way Catalysts and Lean-NOx...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

formulations and operation for the in-situ generation of NH3, storage on a downstream SCR catalyst, and utilized to reduce the remaining NOx deer12toops.pdf More Documents &...

267

NOx Emissions of Alternative Diesel Fuels:? A Comparative Analysis of Biodiesel and FT Diesel  

Science Journals Connector (OSTI)

This study explores the diesel injection and combustion processes in an effort to better understand the differences in NOx emissions between biodiesel, Fischer?Tropsch (FT) diesel, and their blends with a conventional diesel fuel. Emissions studies were ...

James P. Szybist; Stephen R. Kirby; André L. Boehman

2005-05-14T23:59:59.000Z

268

Sulphur Removal Characteristics from a Commercial NOx Storage/Reduction Catalyst.  

E-Print Network [OSTI]

??The ability to effectively remove sulphur from sulphur-poisoned NOx storage/reduction (NSR) catalysts, while minimizing associated fuel penalties and thermal degradation, is important for commercial application… (more)

Kisinger, Darren

2009-01-01T23:59:59.000Z

269

A design strategy applied to sulfur resistant lean NOx̳ automotive catalysts  

E-Print Network [OSTI]

Catalyst poisoning due to sulfur compounds derived from fuel sulfur presents a major challenge, intractable thus far, to development of many advanced technologies for automotive catalysts such as the lean NOx, trap. Under ...

Tang, Hairong

2005-01-01T23:59:59.000Z

270

An experimental study on combustion processes and nox emission characteristics of the air-staged burner  

Science Journals Connector (OSTI)

The combustion processes and emission characteristics in air-staged burner...5H5N) is used to investigate the fuel NOX emission characteristics. Experiments are carried out for a wide range of operating condition...

Kook-Young Ahn; Han-Seok Kim; Eun-Seong Cho; Jin-Hyuk Ahn…

1999-06-01T23:59:59.000Z

271

Combining Low-Temperature Combustion with Lean-NOx Trap Yields...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Posters 2005deerhuff.pdf More Documents & Publications Intra-catalyst Reductant Chemistry in Lean NOx Traps: A Study on Sulfur Effects Reductant Utilization in a LNT + SCR...

272

Intra-catalyst Reductant Chemistry in Lean NOx Traps: A Study...  

Broader source: Energy.gov (indexed) [DOE]

Intra-catalyst Reductant Chemistry in Lean NOx Traps: A Study on Sulfur Effects Jim Parks (parksjeii@ornl.gov), Matt Swartz, Shean Huff, Brian West Oak Ridge National Laboratory...

273

Evaluation of oxides of nitrogen emissions for the purpose of their transient regulation from a direct injection diesel engine  

Science Journals Connector (OSTI)

The concept of defining a regulatory standard for the maximum allowable emissions of oxides of nitrogen (NOx) from a heavy-duty diesel engine on an instantaneous basis is presented. The significance of this concept from a regulatory point of view is the possibility to realise a steady brake specific NOx emissions result independent of the test schedule used. The emissions of oxides of nitrogen from a state-of-the-art direct injection diesel engine have been examined on an integral as well as on an instantaneous basis over the Federal Test Procedure as well as over several other arbitrary transient cycles generated for this study. Three candidate standards of specific NOx emissions have been evaluated on a real-time, continuous basis. These include brake power specific, fuel mass specific, and carbon dioxide mass specific NOx emissions. Retaining the stock engine control module, the carbon dioxide specific emissions of NOx have been shown to be the most uniform, varying only by about 30% of its mean value regardless of the test schedule or engine operation. The instantaneous fuel specific NOx emissions are shown to be relatively less invariant and the least steady are the brake power specific emissions with a coefficient of variation of up to 200%. Advancing injection timing has been shown to have a wide range of authority over the specific emissions of oxides of nitrogen regardless of the units used, when operating at full load in the vicinity of peak torque speeds. The carbon dioxide specific NOx emissions have shown a linear dependence on the power specific emissions, independent of the examined operating conditions. The trade-off between better brake thermal efficiency, lower exhaust gas temperature at advanced timing and lower NOx emissions has also been shown to be independent of the units of the specific standard used.

Yasser Yacoub; Chris Atkinson

2001-01-01T23:59:59.000Z

274

Selectlive Catalytic Reducution of NOx wilth Diesel-Based Fuels...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of NO by Hydrocarbons Bifunctional Catalysts for the Selective Catalytic Reduction of NO by Hydrocarbons Progress on Acidic Zirconia Mixed Oxides for Efficient NH3-SCR Catalysis...

275

Advanced tangential low NOx systems - development and results  

SciTech Connect (OSTI)

The development of low NO{sub x} combustion systems has identified the near burner flame conditions as critical in determining the eventual NO{sub x} emission levels. In this paper the development of this criterion, in respect of tangentially coal ({open_quote}T{close_quote}) fired power generation boilers, is discussed together with their commercial application. The potential ultra low NO{sub x} performance of these techniques requires a deeper understanding of coal characteristics in addition to the standard properties involving volatile release rates, the behaviour of particulate clouds and their burning velocities. Aerodynamic properties including fuel air mixing, velocity and particulate distribution are all of fundamental importance and can be studied by means of isothermal physical modelling and computational fluid dynamics (CFD). Amalgamation of these various aspects into burner and combustion system design can be considered as NO{sub x} control by flame management and can be applied to conventional systems as well as to the development of advanced low NO{sub x} burner technology. Low NO{sub x} equipment based on this technology is known as the EnviroNO{sub x}{trademark} system.

Allen, J.W.; Beal, P.R. [Rolls-Royce Industrial Power Group, Derby (United Kingdom)

1996-01-01T23:59:59.000Z

276

Biomarker Response to Galactic Cosmic Ray-Induced NOx and the Methane Greenhouse Effect in the Atmosphere of an Earthlike Planet Orbiting an M-Dwarf Star  

E-Print Network [OSTI]

Planets orbiting in the habitable zone (HZ) of M-Dwarf stars are subject to high levels of galactic cosmic rays (GCRs) which produce nitrogen oxides in earthlike atmospheres. We investigate to what extent this NOx may modify biomarker compounds such as ozone (O3) and nitrous oxide (N2O), as well as related compounds such as water (H2O) (essential for life) and methane (CH4) (which has both abiotic and biotic sources) . Our model results suggest that such signals are robust, changing in the M-star world atmospheric column by up to 20% due to the GCR NOx effects compared to an M-star run without GCR effects and can therefore survive at least the effects of galactic cosmic rays. We have not however investigated stellar cosmic rays here. CH4 levels are about 10 times higher than on the Earth related to a lowering in hydroxyl (OH) in response to changes in UV. The increase is less than reported in previous studies. This difference arose partly because we used different biogenic input. For example, we employed 23% ...

Grenfell, J L; Patzer, B; Rauer, H; Segura, A; Stadelmann, A; Stracke, B; Titz, R; Von Paris, P; Grenfell, John Lee; Griessmeier, Jean-Mathias; Patzer, Beate; Rauer, Heike; Segura, Antigona; Stadelmann, Anja; Stracke, Barbara; Titz, Ruth; Paris, Philip von

2007-01-01T23:59:59.000Z

277

Optimization of Engine-out Emissions from a Diesel Engine to Meet Tier 2 Bin 5 Emission Limits  

Broader source: Energy.gov [DOE]

Drastic reduction of engine-out emissions and complicated aftertreatment system comprising of oxidation catalyst, particulate filter, and DeNOx catalyst are implemented to meet Tier 2 Bin 5 limits for U.S. market diesel engines.

278

METHANE de-NOX for Utility PC Boilers  

SciTech Connect (OSTI)

During the current quarter, pilot-scale testing with the modified air nozzle version of the PC burner was completed with PRB coal at the Riley Power Inc. (RPI) test facility. A total of 8 different burner configurations were tested utilizing various burner air nozzle arrangements in place of the burner air channels. It was found that with the arrangements tested, a stable flame could not be maintained at coal feed rates above 100 lb/h. While it is felt that the air nozzle approach can ultimately be used effectively, in the interest of holding to the current project schedule it was decided to proceed with the balance of the project using the air channel design. The pilot-scale PC burner was therefore restored to the air-channel configuration and benchmark testing with PRB coal to confirmed previous operating results. A series of tests was then conducted with PRB and West Virginia caking coal to evaluate modifications to the gas combustor configuration and operation for improved performance with caking coal. Continuous operation was achieved with caking coal up to 50 lb/h vs. the full load target of 150 lb/h. Impingement and deposition of partially devolatilized coal occurred at various points within the combustor when the caking coal feed was increased above 50 lb/h. The 100 MMBtu/h commercial-scale prototype design was continued with coal burner design input from both RPI and VTI. Based on typical burner installation layout considerations, it was decided that the preheat combustor should be oriented horizontally on the axial centerline of the coal burner. Accordingly, the pilot gas combustor was changed to this orientation so that the pilot results with caking coal will be directly applicable to the preferred 100 MMBtu design. Testing with caking coal in the horizontal pilot combustor achieved feed rates up to 126 lb/h, although some deposition and LOI issues remain. Several promising approaches to further improve operation with caking coal were identified. NOx results with caking coal are promising, with NOx as low as 150 ppmv at exit oxygen levels of 4% and higher. The 100 MMBtu/h commercial-scale prototype design is nearing completion. Design of the caking coal version of the unit continues with additional pilot testing in support of this design expected. GTI and RPI are expediting the fabrication of the 100 MMBtu/h PRB unit in order to start testing in early- to mid-December. Inspection and repair of the 100 MMBtu/h Coal Burner Test Facility (CBTF) is nearing completion. As of mid-September, this activity was 95% complete.

Bruce Bryan; Joseph Rabovitser; Serguei Nester; Stan Wohadlo

2003-09-30T23:59:59.000Z

279

Advanced furnace air staging and burner modifications for ultra-low NOx firing systems  

SciTech Connect (OSTI)

Overfire air is an effective means to reduce NOx emissions from coal fired furnaces. The current range of overfire air usage on wall-fired boilers in the US is in the range of 10 to 20%. In most cases this is enough to achieve current Title IV NOx reduction requirements. Future applications are likely to go beyond 20% Overfire Air to reduce NOx further for lower investment and operating costs of SCR retrofits. Summer ozone reduction requires NOx emissions of 0.15 lb/MBtu. Currently, industry is exploring the conditions under which this goal is attainable. The paper discussed the approach to achieve ultra-low NOx emissions by using advanced furnace air staging. It describes the unique approach of redesigning the burner to maintain low NOx burner performance when the overfire air system is added or increased in capacity. The impact on furnace corrosion and unburned carbon losses are presented. A case study is used to show the effects of overfire air both on emissions and unburned carbon.

McCarthy, K.; Laux, S.; Grusha, J.

1999-07-01T23:59:59.000Z

280

Controlling NOx to Obtain Offsets or Meet Compliance  

E-Print Network [OSTI]

monitored and regu lated a number of pollutants: lead, carbon monoxide, oxides of sulfur, oxides of nitrogen, ozone and PM-lO. The Clean Air Act Amendments increased the focus on these pollutants, mandating the reductions to specified limits. Title I...

Mincy, J. E.

Note: This page contains sample records for the topic "oxides nox particulates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Kinetics of Diesel Nanoparticle Oxidation  

Science Journals Connector (OSTI)

The oxidation rates in air of diesel nanoparticles sampled directly from the exhaust stream of a medium-duty diesel engine were measured over the temperature range of 800?1140 °C using online aerosol techniques. ... Particulate emission from diesel engines is currently a topic of great concern from both pollution and public health standpoints. ... In addition, the fundamental carbon-to-hydrogen ratio may be different in diesel particles as compared to the commonly used surrogates (15). ...

Kelly J. Higgins; Heejung Jung; David B. Kittelson; Jeffrey T. Roberts; Michael R. Zachariah

2003-03-25T23:59:59.000Z

282

Argonne TTRDC - Engines - Emissions Control - Advanced Diesel Particulate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development of Advanced Diesel Particulate Filtration Systems Development of Advanced Diesel Particulate Filtration Systems The U.S. Environmental Protection Agency regulations require that on-highway diesel vehicles have filtration systems to reduce tail-pipe soot emissions, known as particulate matter (PM). Diesel particulate filtration (DPF) systems are currently the most efficient at directly controlling PM. Argonne researchers, working with Corning, Inc., and Caterpillar, Inc., through a cooperative research and development agreement, are exploiting previously unavailable technology and research results on diesel PM filtration and regeneration processes, aiming to the technology transfer of advanced PM emission control to industry. Argonne's Research In operation of DPF systems, the filtration and regeneration of particulate emissions are the key processes to be controlled for high efficiency. Due to difficulties in accessing the micro-scaled structures of DPF membranes and monitoring particulate filtration and high-temperature thermal processes, however, research has been limited to macroscopic observation for the product.

283

Nitrogen Oxide Emission Statements (Ohio) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nitrogen Oxide Emission Statements (Ohio) Nitrogen Oxide Emission Statements (Ohio) Nitrogen Oxide Emission Statements (Ohio) < Back Eligibility Agricultural Commercial Construction Fuel Distributor Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Ohio Program Type Environmental Regulations Provider Ohio Environmental Protection Agency This chapter of the law establishes that the Ohio Environmental Protection Agency requires any facility that emits 25 tons or more of NOx and/or 25 tons or more of VOC during the calendar year and is located in a county designated as nonattainment for the National Ambient Air Quality Standards for ozone submit emission statements. Any facility that is located in a county described above is exempt from these requirements. If NOx

284

Impact of Biofuel Blending on Diesel Soot Oxidation: Implications for Aftertreatment  

SciTech Connect (OSTI)

Control strategies for diesel particulate filters (DPFs) remain one of the most important aspects of aftertreatment research and understanding the soot oxidation mechanism is key to controlling regeneration. Currently, most DPF models contain simple, first order heterogeneous reactions oxidation models with empirically fit parameters. This work improves the understanding of fundamental oxidation kinetics necessary to advance the capabilities of predictive modeling, by leading to better control over regeneration of the device. This study investigated the effects of blending soybean-derived biodiesel fuel on diesel particulate emissions under conventional combustion from a 1.7L direct injection, common rail diesel engine. Five biofuel blend levels were investigated and compared to conventional certification diesel for the nanostructure, surface chemistry and major constituents of the soluble organic fraction (SOF) of diesel particulate matter (PM), and the relationship between these properties and the particulate oxidation kinetics.

Strzelec, Andrea [ORNL; Toops, Todd J [ORNL; Lewis Sr, Samuel Arthur [ORNL; Daw, C Stuart [ORNL; Foster, David [University of Wisconsin; Rutland, Prof. Christopher J. [University of Wisconsin; Vander Wal, Dr. Randy [NASA-Glenn Research Center, Cleveland

2009-01-01T23:59:59.000Z

285

Characterization of particulate matter deposited in diesel particulate filters: Visual and analytical approach in macro-, micro- and nano-scales  

SciTech Connect (OSTI)

Multi-scale analytical investigations of particulate matter (soot and ash) of two loaded diesel particulate filters (DPF) from (a) a truck (DPF1) and (b) a passenger car (DPF2) reveal the following: in DPF1 (without fuel-borne additives), soot aggregates form an approximately 130-270 {mu}m thick, homogeneous porous cake with pronounced orientation. Soot aggregates consist of 15-30 nm large individual particles exhibiting relatively mature internal nanostructures, however, far from being graphite. Ash aggregates largely accumulate at the outlet part of DPF1, while minor amounts are deposited directly on the channel walls all along the filter length. They consist of crystalline phases with individual particles of sizes down to the nanoscale range. Chemically, the ash consists mainly of Mg, S, Ca, Zn and P, elements encountered in lubricating oil additives. In the passenger car DPF2 (with fuel-borne additives), soot aggregates form an approximately 200-500 {mu}m thick, inhomogeneous porous cake consisting of several superposed layers corresponding to different soot generations. The largest part of the soot cake is composed of unburned, oriented soot aggregates left behind despite repeated regenerations, while a small part constitutes a loose layer with randomly oriented aggregates, which was deposited last and has not seen any regeneration. Fe-oxide particles of micro- to nano-scale sizes, originating from the fuel-borne additive, are often dispersed within the part of the soot cake composed of the unburned soot leftovers. The individual soot nanoparticles in DPF2 are approximately 15-40 nm large and generally less mature than in the truck DPF1. The presence of soot leftovers in DPF2 indicates that the addition of fuel-borne material does not fully compensate for the temperatures needed for complete soot removal. Ash in DPF2 is filling up more than half of the filter volume (at the downstream part) and is dominated by Fe-oxide aggregates, due to the Fe-based fuel-borne additive, but otherwise its chemical composition reflects compounds of lubricating oil additives. (author)

Liati, Anthi; Dimopoulos Eggenschwiler, Panayotis [EMPA, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for I.C. Engines, Duebendorf (Switzerland)

2010-09-15T23:59:59.000Z

286

Advanced NOx Emissions Control: Control Technology - Second Generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

In Situ Device for Real-Time Catalyst Deactivation Measurements in Full-Scale SCR Systems In Situ Device for Real-Time Catalyst Deactivation Measurements in Full-Scale SCR Systems To support trends in the electric generating industry of moving from seasonal to year-round operation of Selective Catalytic Reduction (SCR) for control of NOx and mercury, as well as extending the time between generating unit outages, Fossil Energy Research Corporation (FERCo) is developing technology to determine SCR catalyst activity and remaining life without requiring an outage to obtain and analyze catalyst samples. FERCo intends to use SCR catalyst performance results measured with their in situ device at Alabama PowerÂ’s Plant Gorgas during the 2005 and 2006 ozone seasons, along with EPRIÂ’s CatReactTM catalyst management software, to demonstrate the value of real-time activity measurements with respect to the optimization of catalyst replacement strategy. Southern Company and the Electric Power Research Institute are co-funding the project.

287

Release of Ammonium and Mercury from NOx Controlled Fly Ash  

SciTech Connect (OSTI)

One of the goals of the Department of Energy is to increase the reuse of coal utilization byproducts (CUB) to 50% by 2010. This will require both developing new markets and maintaining traditional ones such as the use of fly ash in concrete. However, the addition of pollution control devices can introduce side-effects that affect the marketability of the CUB. Such can be the case when NOx control is achieved using selective catalytic or non-catalytic reduction (SCR or SNCR). Depending on site-specific details, the ammonia slip can cause elevated levels of NH3 in the fly ash. Disposal of ammoniated fly ash can present environmental concerns related to the amount of ammonia that might be released, the amount of water that might become contaminated, and the extent to which metals might be mobilized by the presence of the ammonia. Ammonia retained in fly ash appears to be present as either an ammonium salt or as a chemisorbed species. Mercury in the leachates correlated to neither the amount of leachable ammonium nor to the total amount of Hg in the ash. The strongest correlation was between the decreases in the amount of Hg leached with increased LOI.

Schroeder, K.T.; Cardone, C.R.; Kim, A.G

2007-07-01T23:59:59.000Z

288

A Standard Soot Generator for Diesel Particulate Filter Testing  

Broader source: Energy.gov (indexed) [DOE]

CAMBUSTION A Standard Soot Generator for Diesel Particulate Filter Testing Poster - P10 Diesel Engine Emission Reduction Conference 2007 Chris Nickolaus ...

289

Occupational Medicine Implications of Engineered Nanoscale Particulate Matter  

E-Print Network [OSTI]

Safety in Nanotechnology Research Occupational Medicinenanotechnology revolution promises dramatic advancements in science, technology, medicineMedicine Implications of Engineered Nanoscale Particulate Matter The emerging nanotechnology

Kelly, Richard J.

2008-01-01T23:59:59.000Z

290

Non-Destructive Neutron Imaging to Analyze Particulate Filters  

Broader source: Energy.gov [DOE]

Non-destructive, non-invasive imaging is being employed in the laboratory to understand how soot, ash, and catalytic washcoat are deposited within a diesel particulate filter.

291

Requirements-Driven Diesel Catalyzed Particulate Trap Design...  

Broader source: Energy.gov (indexed) [DOE]

Driven Diesel Catalyzed Particulate Trap (DCPT) Design and Optimization Tom Harris, Donna McConnell and Danan Dou Delphi Catalyst Tulsa, Oklahoma 2 Euro 45 Light Duty...

292

Failure Stress and Apparent Elastic Modulus of Diesel Particulate...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Elastic Modulus of Diesel Particulate Filter Ceramics Three established mechanical test specimen geometries and test methods for brittle materials are adapted to DPF...

293

The constitutive behaviour of strong cohesive particulate gels in compression  

E-Print Network [OSTI]

A simple and popular constitutive model used to describe the compressional strength of a consolidating strongly cohesive particulate gel is tested further with new experimental data.

A. A. Aziz; R. Buscall; R. de Kretzer; M. Kristjansson; P. J. Scales; A. D. Stickland; H-E Teo; S. P. Usher

2014-10-20T23:59:59.000Z

294

Partitioning of Volatile Organics in Diesel Particulate and Exhaust...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Exhaust Partitioning of Volatile Organics in Diesel Particulate and Exhaust Evaluation of how sampling details affect the measurement of volatile organic compounds in...

295

Characterization of Particulate Emissions from GDI Engine Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Emissions from GDI Engine Combustion with Alcohol-blended Fuels Analysis showed that gasoline direct injection engine particulates from alcohol-blended fuels are significantly...

296

Development of a Criticality Evaluation Method Considering the Particulate Behavior of Nuclear Fuel  

SciTech Connect (OSTI)

In conventional criticality evaluations of nuclear powder systems, effects of particulate behavior were not considered. In other words, it is difficult to take into account the particle motion in the criticality evaluations. We have developed a novel criticality evaluation code to resolve this problem. The criticality evaluation code, coupling a discrete element method simulation code with a continuous-energy Monte Carlo transport code, makes it possible to study the effects of the particulate dynamics on criticality. This criticality evaluation code is applied to the mixed-oxide (MOX) fuel powder agitation process. The criticality evaluations are performed while mixing the MOX fuel powder and an additive powder in a stirred vessel to investigate the effects of the powder free surface deformation and the particulate mixture state on the effective multiplication factor. The evaluation results reveal that the effective multiplication factor decreases due to the powder boundary deformation while it increases as the mixture condition of MOX powder and Zn-St powder is close to homogeneous.

Sakai, Mikio; Yamamoto, Toshihiro; Murazaki, Minoru; Miyoshi, Yoshinori [Japan Atomic Energy Research Institute (Japan)

2005-02-15T23:59:59.000Z

297

Neutron Imaging of Diesel Particulate Filters  

SciTech Connect (OSTI)

This article presents nondestructive neutron computed tomography (nCT) measurements of Diesel Particulate Filters (DPFs) as a method to measure ash and soot loading in the filters. Uncatalyzed and unwashcoated 200cpsi cordierite DPFs exposed to 100% biodiesel (B100) exhaust and conventional ultra low sulfur 2007 certification diesel (ULSD) exhaust at one speed-load point (1500rpm, 2.6bar BMEP) are compared to a brand new (never exposed) filter. Precise structural information about the substrate as well as an attempt to quantify soot and ash loading in the channel of the DPF illustrates the potential strength of the neutron imaging technique.

Strzelec, Andrea [ORNL; Bilheux, Hassina Z [ORNL; FINNEY, Charles E A [ORNL; Daw, C Stuart [ORNL; Foster, Prof. Dave [University of Wisconsin; Rutland, Prof. Christopher J. [University of Wisconsin; Schillinger, Burkhard [FRM-II, Technische Universitaet Munchen; Schulz, Michael [FRM-II, Technische Universitaet Munchen

2009-01-01T23:59:59.000Z

298

Electrically heated particulate filter with reduced stress  

DOE Patents [OSTI]

A system comprises a particulate matter (PM) filter comprising an inlet for receiving exhaust gas. A zoned heater is arranged in the inlet and comprises a resistive heater comprising N zones, where N is an integer greater than one. Each of the N zones comprises M sub-zones, where M is an integer greater than one. A control module selectively activates one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones and deactivates others of the N zones.

Gonze, Eugene V.

2013-03-05T23:59:59.000Z

299

Utilization of computational fluid dynamics technique in low NOx burner/furnace retrofits  

SciTech Connect (OSTI)

A computational fluid dynamics (CFD) technique has been utilized to provide design guidance for retrofitting low NOx combustion systems and incorporating associated furnace modifications into existing utility boilers. The CFD program utilized is FW-FIRES (Fossil fuel, Water-walled Furnace Integrated Reaction and Emission Simulation) which simulates furnace combustion, heat transfer and pollutant formation based on fundamental principals of mass, momentum and energy conservations. The program models the gas flow field as a three-dimensional turbulent reacting continuum and the particle flow as a series of discrete particle trajectories through the gas continuum. Chemical reaction, heat transfer, and pollutant formation mechanisms are incorporated in the program. FW-FIRES furnace simulation of low NOx combustion system retrofits has been performed for various furnace configurations including front wall-fired, front and real wall-fired, and tangentially-fired furnaces, to determine the effects of burner/furnace modifications on the NOx emission, furnace exit gas temperature, furnace heat absorption, unburned carbon, and furnace wall corrosion. For front wall-fired, and front and real wall-fired furnaces, the NOx emission requirement is met by the use of Foster Wheeler lox NOx burners and overfire air (OFA) staging. Studies of burner and OFA quantify and spacing are conducted to limit NOx emission and unburned carbon to acceptable levels. A major concern in once-through supercritical units with OFA is furnace wall corrosion which is caused by high furnace wall metal temperature and corrosive hydrogen sulfide (H{sub 2}S) created in a reducing atmosphere from part of coal sulfur. The FW-FIRES code is used to minimize this corrosion potential by selecting the proper location and quantity of boundary air. A simulation of tangentially-fired unit, which has been retrofitted with low NOx burners, is used to study the effect of the burner tilt on the furnace exit gas temperature. This paper details the basis and results of several CFD analyses conducted for potential retrofit programs.

Cho, S.M.; Seltzer, A.H.; Ma, J.; Steitz, T.H.; Grusha, J.; Cole, R.W.

1999-07-01T23:59:59.000Z

300

Pilot-Scale Aftertreatment Using Nonthermal Plasma Reduction of Adsorbed NOx in Marine Diesel-Engine Exhaust Gas  

Science Journals Connector (OSTI)

Regulations governing marine diesel engine NOx emissions have recently become more stringent. As it is difficult to fulfill these requirements by combustion improvements alone, effective aftertreatment technologi...

Takuya Kuwahara; Keiichiro Yoshida…

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxides nox particulates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology...  

Broader source: Energy.gov (indexed) [DOE]

models 19 Technical Back-Up Slides 20 Managed by UT-Battelle for the Department of Energy * Step1: NO oxidation * Step2: SS NO x & NH 3 conversions, Parasitic NH 3...

302

Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology...  

Broader source: Energy.gov (indexed) [DOE]

barriers 16 Technical Back-Up Slides 17 Managed by UT-Battelle for the Department of Energy * Step1: NO oxidation * Step2: SS NO x & NH 3 conversions, Parasitic NH 3...

303

Solid State Electrochemical Sensors for Nitrogen Oxide (NOx) Detection in Lean Exhaust Gases  

E-Print Network [OSTI]

green sheet, (3) smoothing surface by chemically inducing reflow using a solvent,solvents comprised circa 35% of the weight of the feedstock materials for the green

Rheaume, Jonathan Michael

2010-01-01T23:59:59.000Z

304

Satellite constraints of nitrogen oxide (NOx) emissions from India based on OMI observations and WRFChem simulations  

E-Print Network [OSTI]

; Ghude et al., 2008]. Thermal power plants are the largest consumer of coal in India [Garg et al., 2001 and WRFChem simulations Sachin D. Ghude,1,2 Gabriele G. Pfister,2 Chinmay Jena,1 R.J. van der A,3 Louisa K tropospheric NO2 column retrievals over the Indian region, with tropospheric NO2 columns simulated

Haak, Hein

305

Solid State Electrochemical Sensors for Nitrogen Oxide (NOx) Detection in Lean Exhaust Gases  

E-Print Network [OSTI]

the unfired ceramic sample during thermal processing steps.ceramic samples were affixed to 4” silicon “handle” wafers using the following bonding agents: thermal

Rheaume, Jonathan Michael

2010-01-01T23:59:59.000Z

306

Solid State Electrochemical Sensors for Nitrogen Oxide (NOx) Detection in Lean Exhaust Gases  

E-Print Network [OSTI]

122 Table 22. Equivalent circuit model resistances for NOof the resistance elements of the equivalent circuit offersOver time, the resistance values of the equivalent circuit

Rheaume, Jonathan Michael

2010-01-01T23:59:59.000Z

307

High pressure conversion of \\{NOx\\} and Hg and their capture as aqueous condensates in a laboratory piston-compressor simulating oxy-fuel CO2 compression  

Science Journals Connector (OSTI)

Abstract Oxy-fuel technology for CO2 capture has largely focused on combustion characteristics as a driver towards demonstration. Impurity removal studies typically centre on the how current environmental control units (FGD, SCR, activated carbon beds) operate in oxy-fuel firing. However, it is expected that some removal of \\{NOx\\} and \\{SOx\\} may occur during compression of flue gas through the lead chamber process. Some commercial systems link the capture of mercury to the formation of acid condensates (as a soluble mercury salt). Mercury in compressed flue gas represents a potential corrosion risk in the processing of CO2 from oxy-fuel combustion processes. Gas phase elemental mercury (Hg0) is difficult to remove from the flue gas and the level of cleaning required to prevent corrosion of cryogenic brazed aluminium heat exchangers is uncertain. This work has investigated the behaviour of gaseous Hg0 in pressurised oxy-fuel systems in terms of the potential capture in acidic condensates, interaction with \\{NOx\\} gases and liquid stability on de-pressurisation. The work was undertaken on an adapted laboratory scale three stage axial-piston compressor with gas and liquid sampling at pressures up to 30 bar. The main finding was that gaseous Hg0 reacts readily with NO2 formed from NO oxidation at high pressure. This reaction occurred without the presence of water, either water vapour or liquid water, contrary to speculation in the literature. Without NO2, no capture of Hg0 was observed in the compression system. Overall, the capture of mercury during compression occurred as a consequence of high pressure, longer residence time and concentration of NO2. Capture rates of 100% Hg and 75–83% \\{NOx\\} were measured from the compressor exit at 30 bar g.

Rohan Stanger; Timothy Ting; Terry Wall

2014-01-01T23:59:59.000Z

308

METHANE de-NOX for Utility PC Boilers  

SciTech Connect (OSTI)

The overall project objective is the development and validation of an innovative combustion system, based on a novel coal preheating concept prior to combustion, that can reduce NO{sub x} emissions to 0.15 lb/million Btu or less on utility pulverized coal (PC) boilers. This NO{sub x} reduction should be achieved without loss of boiler efficiency or operating stability, and at more than 25% lower levelized cost than state-of-the-art SCR technology. A further objective is to ready technology for full-scale commercial deployment to meet the market demand for NO{sub x} reduction technologies. Over half of the electric power generated in the U.S. is produced by coal combustion, and more than 80% of these units utilize PC combustion technology. Conventional measures for NOx reduction in PC combustion processes rely on combustion and post-combustion modifications. A variety of combustion-based NO{sub x} reduction technologies are in use today, including low-NO{sub x} burners (LNBs), flue gas recirculation (FGR), air staging, and natural gas or other fuel reburning. Selective non-catalytic reduction (SNCR) and selective catalytic reduction (SCR) are post-combustion techniques. NO{sub x} reduction effectiveness from these technologies ranges from 30 to 60% and up to 90-93% for SCR. Typically, older wall-fired PC burner units produce NO{sub x} emissions in the range of 0.8-1.6 lb/million Btu. Low-NO{sub x} burner systems, using combinations of fuel staging within the burner and air staging by introduction of overfire air in the boiler, can reduce NO{sub x} emissions by 50-60%. This approach alone is not sufficient to meet the desired 0.15 lb/million Btu NO{sub x} standard with a range of coals and boiler loads. Furthermore, the heavy reliance on overfire air can lead to increased slagging and corrosion in furnaces, particularly with higher-sulfur coals, when LNBs are operated at sub-stoichiometric conditions to reduce fuel-derived NOx in the flame. Therefore, it is desirable to minimize the need for overfire air by maximizing NO{sub x} reduction in the burner. The proposed combustion concept aims to greatly reduce NO{sub x} emissions by incorporating a novel modification to conventional or low-NO{sub x} PC burners using gas-fired coal preheating to destroy NO{sub x} precursors and prevent NO{sub x} formation. A concentrated PC stream enters the burner, where flue gas from natural gas combustion is used to heat the PC up to about 1500 F prior to coal combustion. Secondary fuel consumption for preheating is estimated to be 3 to 5% of the boiler heat input. This thermal pretreatment releases coal volatiles, including fuel-bound nitrogen compounds into oxygen-deficient atmosphere, which converts the coal-derived nitrogen compounds to molecular N{sub 2} rather than NO. Design, installation, shakedown, and testing on Powder River Basin (PRB) coal at a 3-million Btu/h pilot system at RPI's (Riley Power, Inc.) pilot-scale combustion facility (PSCF) in Worcester, MA demonstrated that the PC PREHEAT process has a significant effect on final O{sub x} formation in the coal burner. Modifications to both the pilot system gas-fired combustor and the PC burner led to NO{sub x} reduction with PRB coal to levels below 0.15 lb/million Btu with CO in the range of 35-112 ppmv without any furnace air staging.

Bruce Bryan; Serguei Nester; Joseph Rabovitser; Stan Wohadlo

2005-09-30T23:59:59.000Z

309

Modeling and interpreting the observed effects of ash on diesel particulate filter performance and regeneration  

E-Print Network [OSTI]

Diesel particulate filters (DPF) are devices that physically capture diesel particulates to prevent their release to the atmosphere. Diesel particulate filters have seen widespread use in on- and off-road applications as ...

Wang, Yujun, Ph. D. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

310

Atmos. Chem. Phys., 11, 88098823, 2011 www.atmos-chem-phys.net/11/8809/2011/  

E-Print Network [OSTI]

of the particulate matter were carbonaceous materials, such as humic acid, water sol- uble organics, and less soluble in public concern regarding the emission of atmospheric pollutants, including gas phase and particulate from livestock include methane (CH4), ammonia (NH3), nitrogen oxides (NOx), and nitrous oxide (N2O

Meskhidze, Nicholas

311

Coal characterisation for \\{NOx\\} prediction in air-staged combustion of pulverised coals  

Science Journals Connector (OSTI)

A series of world-traded coal samples has been tested using the Imperial College high temperature wire mesh apparatus (HTWM) in order to assess the relationship between high temperature (1600°C) char nitrogen content and \\{NOx\\} formation in Hemweg Power Station (in the Netherlands) using deep furnace air staging. A linear relationship between high temperature char nitrogen and \\{NOx\\} formation has been confirmed. These results suggest that high temperature char N content is the main factor limiting \\{NOx\\} emissions with deep air-staged combustion. Char N and (hence apparently deep air-staged NOx) can be predicted with an accuracy of approximately ±20% for most coals from the coal proximate and ultimate analysis—but this might not be sufficient for stations operating close to their emission limits. Measuring high temperature char N directly reduces the likely uncertainty in deep air-staged \\{NOx\\} emissions for coals (and most blends) to approximately ±10%. Its use should be considered on a routine basis for coal selection on plants employing this technology.

C.K. Man; J.R. Gibbins; J.G. Witkamp; J. Zhang

2005-01-01T23:59:59.000Z

312

Method for immobilizing particulate materials in a packed bed  

DOE Patents [OSTI]

The present invention pertains generally to immobilizing particulate matter contained in a "packed" bed reactor so as to prevent powder migration, compaction, coalescence, or the like. More specifically, this invention relates to a technique for immobilizing particulate materials using a microporous foam-like polymer such that a) the particulate retains its essential chemical nature, b) the local movement of the particulate particles is not unduly restricted, c) bulk powder migration and is prevented, d) physical and chemical access to the particulate is unchanged over time, and e) very high particulate densities are achieved. The immobilized bed of the present invention comprises a vessel for holding particulate matter, inlet and an outlet ports or fittings, a loosely packed bed of particulate material contained within the vessel, and a three dimensional porous matrix for surrounding and confining the particles thereby fixing the movement of individual particle to a limited local position. The established matrix is composed of a series of cells or chambers comprising walls surrounding void space, each wall forming the wall of an adjacent cell; each wall containing many holes penetrating through the wall yielding an overall porous structure and allowing useful levels of gas transport.

Even, Jr., William R. (Livermore, CA); Guthrie, Stephen E. (Livermore, CA); Raber, Thomas N. (Livermore, CA); Wally, Karl (Lafayette, CA); Whinnery, LeRoy L. (Livermore, CA); Zifer, Thomas (Manteca, CA)

1999-01-01T23:59:59.000Z

313

Method for removing particulate matter from a gas stream  

DOE Patents [OSTI]

Particulate matter is removed from a stream of pressurized gas by directing the stream of gas upwardly through a bed of porous material, the porous bed being held in an open ended container and at least partially submerged in liquid. The passage of the gas through the porous bed sets up a circulation in the liquid which cleans the particulate matter from the bed.

Postma, Arlin K. (Benton City, WA)

1984-01-01T23:59:59.000Z

314

Advanced Particulate Filter Technologies for Direct Injection Gasoline Engine Applications  

Broader source: Energy.gov [DOE]

Specific designs and material properties have to be developed for gasoline particulate filters based on the different engine and exhaust gas characteristic of gasoline engines compared to diesel engines, e.g., generally lower levels of engine-out particulate emissions or higher GDI exhaust gas temperatures

315

Process for off-gas particulate removal and apparatus therefor  

DOE Patents [OSTI]

In the event of a breach in the off-gas line of a melter operation requiring closure of the line, a secondary vessel vent line is provided with a particulate collector utilizing atomization for removal of large particulates from the off-gas. The collector receives the gas containing particulates and directs a portion of the gas through outer and inner annular channels. The collector further receives a fluid, such as water, which is directed through the outer channel together with a second portion of the particulate-laden gas. The outer and inner channels have respective ring-like termination apertures concentrically disposed adjacent one another on the outer edge of the downstream side of the particulate collector. Each of the outer and inner channels curves outwardly away from the collector's centerline in proceeding toward the downstream side of the collector. Gasflow in the outer channel maintains the fluid on the channel's wall in the form of a "wavy film," while the gas stream from the inner channel shears the fluid film as it exits the outer channel in reducing the fluid to small droplets. Droplets formed by the collector capture particulates in the gas stream by one of three mechanisms: impaction, interception or Brownian diffusion in removing the particulates. The particulate-laden droplets are removed from the fluid stream by a vessel vent condenser or mist eliminator.

Carl, Daniel E. (Orchard Park, NY)

1997-01-01T23:59:59.000Z

316

Process for off-gas particulate removal and apparatus therefor  

DOE Patents [OSTI]

In the event of a breach in the off-gas line of a melter operation requiring closure of the line, a secondary vessel vent line is provided with a particulate collector utilizing atomization for removal of large particulates from the off-gas. The collector receives the gas containing particulates and directs a portion of the gas through outer and inner annular channels. The collector further receives a fluid, such as water, which is directed through the outer channel together with a second portion of the particulate-laden gas. The outer and inner channels have respective ring-like termination apertures concentrically disposed adjacent one another on the outer edge of the downstream side of the particulate collector. Each of the outer and inner channels curves outwardly away from the collector`s centerline in proceeding toward the downstream side of the collector. Gas flow in the outer channel maintains the fluid on the channel`s wall in the form of a ``wavy film,`` while the gas stream from the inner channel shears the fluid film as it exits the outer channel in reducing the fluid to small droplets. Droplets formed by the collector capture particulates in the gas stream by one of three mechanisms: impaction, interception or Brownian diffusion in removing the particulates. The particulate-laden droplets are removed from the fluid stream by a vessel vent condenser or mist eliminator. 4 figs.

Carl, D.E.

1997-10-21T23:59:59.000Z

317

AP-XPS Measures MIEC Oxides in Action  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AP-XPS Measures MIEC Oxides in AP-XPS Measures MIEC Oxides in Action AP-XPS Measures MIEC Oxides in Action Print Wednesday, 25 May 2011 00:00 Oxide materials with mixed ionic-electronic conductivity (MIEC) can conduct both electrons and oxygen ions. MIEC oxides have broad applications, including use in solid-oxide fuel cells, high-temperature electrolysis for synthetic fuel production, and oxygen-separating membranes for chemical processes or NOx-free combustion; however, their surface activity under reaction conditions has been difficult, if not impossible, to ascertain, until recently. A team from the University of Maryland and Sandia National Laboratories joined ALS scientists on Beamlines 9.3.2 and 11.0.2 to overcome the vacuum limitations of conventional XPS instruments using ambient-pressure x-ray photoelectron spectroscopy (AP-XPS), providing the first in situ measurements of local surface oxidation states and electric potential in active MIEC electrodes.

318

Final Report: Particulate Emissions Testing, Unit 1, Potomac River  

Broader source: Energy.gov (indexed) [DOE]

Final Report: Particulate Emissions Testing, Unit 1, Potomac River Final Report: Particulate Emissions Testing, Unit 1, Potomac River Generating Station, Alexandria, Virginia Final Report: Particulate Emissions Testing, Unit 1, Potomac River Generating Station, Alexandria, Virginia Docket No. EO-05-01: TRC Environmental Corporation (TRC) of Lowell, Massachusetts was retained by Mirant Potomac River, LLC (Mirant) to provide sampling and analytical support in completing a Particulate Emission Test of Unit 1 of the Potomac River generating facility. The Test Program at the Potomac facility involved the completion of two series of emissions tests for particulate matter (PM), the first during normal unit operation and the second with the injection of TRONA upstream of hot side ESP fields. All tests were completed while Unit 1 was operating at 90% of full load (84MW)

319

E-Print Network 3.0 - ambient particulate matter Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ambient particulate matter Page: << < 1 2 3 4 5 > >> 1 Statistical Issues in the Study of Air Pollution Involving Airborne Particulate Matter Summary: Ambient Air Quality Standards...

320

E-Print Network 3.0 - air particulate analysis Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

air particulate analysis Page: << < 1 2 3 4 5 > >> 1 Statistical Issues in the Study of Air Pollution Involving Airborne Particulate Matter Summary: and the composition of...

Note: This page contains sample records for the topic "oxides nox particulates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

E-Print Network 3.0 - air particulate samples Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

search results for: air particulate samples Page: << < 1 2 3 4 5 > >> 1 Prevention of Air Pollution from Ships: Diesel Engine Particulate Emission Reduction via...

322

E-Print Network 3.0 - ambient particulate matterpm10 Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

particulate matterpm10 Page: << < 1 2 3 4 5 > >> 1 Statistical Issues in the Study of Air Pollution Involving Airborne Particulate Matter Summary: Ambient Air Quality Standards...

323

E-Print Network 3.0 - ambient particulate matter-induced Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

particulate matter-induced Page: << < 1 2 3 4 5 > >> 1 Statistical Issues in the Study of Air Pollution Involving Airborne Particulate Matter Summary: Ambient Air Quality Standards...

324

Impact of Transportation on Cost, Energy and Particulate Emissions for Recycled Concrete Aggregate.  

E-Print Network [OSTI]

??IMPACT OF TRANSPORTATION ON COST, ENERGY AND PARTICULATE EMISSIONS FOR RECYCLED CONCRETE AGGREGATE Transportation distances can have a huge impact on cost, energy, and particulate… (more)

Hameed, Mohamed

2009-01-01T23:59:59.000Z

325

Impact of Biodiesel Blending on Diesel Soot and the Regeneration of Particulate Filters  

Science Journals Connector (OSTI)

Diesel fuel production from renewable sources such as vegetable oils and animal fats offers the potential of both reducing fossil carbon emissions and producing alternative ultraclean transportation fuels. ... For temperature-programmed oxidation (TPO) tests, bulk samples were collected in quartz filters from diluted exhaust gas via a mini-dilution tunnel (Sierra Instruments BG-1). ... In addition to PM mass measurement, particulate samples were extracted directly from the exhaust stream using a thermophoretic sampling approach patterned after the work of Megaridis15 and Koylu,16 and described previously by Song et al.17 The thermophoretic samples were collected on 3-mm-diameter grids, constructed of 1-?m-thick copper and coated on one side with silicon oxide, using a pneumatically controlled probe to inject the sampling grid into the undiluted exhaust near the location where the other emissions samples were obtained in the exhaust pipe. ...

André L. Boehman; Juhun Song; Mahabubul Alam

2005-06-01T23:59:59.000Z

326

Closed-loop control of a SCR system using a NOx sensor cross-sensitive to NH3  

E-Print Network [OSTI]

Closed-loop control of a SCR system using a NOx sensor cross-sensitive to NH3 A.Bonfils , Y. Creff for an automotive selective catalytic reduction (SCR) system, for which the feedback is based on a NOx sensor the variety of en- countered technologies, selective catalytic reduction (SCR) is one of the most appealing

327

Exhaust gas fuel reforming of Diesel fuel by non-thermal arc discharge for NOx trap regeneration  

E-Print Network [OSTI]

1 Exhaust gas fuel reforming of Diesel fuel by non- thermal arc discharge for NOx trap regeneration to the reforming of Diesel fuel with Diesel engine exhaust gas using a non-thermal plasma torch for NOx trap Diesel fuel reforming with hal-00617141,version1-17May2013 Author manuscript, published in "Energy

Boyer, Edmond

328

Nitrogen Isotopic Composition of Coal-Fired Power Plant NOx: Influence of Emission Controls and Implications for Global Emission  

E-Print Network [OSTI]

Nitrogen Isotopic Composition of Coal-Fired Power Plant NOx: Influence of Emission Controls and Implications for Global Emission Inventories J. David Felix,*, Emily M. Elliott, and Stephanie L. Shaw contributions, prior documentation of 15 N of various NOx emission sources is exceedingly limited

Elliott, Emily M.

329

Impact of Filtration Velocities and Particulate Matter Characteristics on Diesel Particulate Filter Wall Loading Performance  

SciTech Connect (OSTI)

The impact of different types of diesel particulate matter (PM) and different sampling conditions on the wall deposition and early soot cake build up within diesel particulate filters has been investigated. The measurements were made possible by a newly developed Diesel Exhaust Filtration Analysis (DEFA) system in which in-situ diesel exhaust filtration can be reproduced with in small cordierite wafer disks, which are essentially thin sections of a Diesel Particulate Filter (DPF) wall. The different types of PM were generated from selected engine operating conditions of a single-cylinder heavy-duty diesel engine. Two filtration velocities 4 and 8 cm/s were used to investigate PM deep-bed filtration processes. The loaded wafers were then analyzed in a thermal mass analyzer that measures the Soluble Organic Fraction (SOF) as well as soot and sulfate fractions of the PM. In addition, the soot residing in the wall of the wafer was examined under an optical microscope illuminated with Ultraviolet light and an Environmental Scanning Electron Microscope (E-SEM) to determine the bulk soot penetration depth for each loading condition. It was found that higher filtration velocity results in higher wall loading with approximately the same penetration depth into the wall. PM characteristics impacted both wall loading and soot cake layer characteristics. Results from imaging analysis indicate that soot the penetration depth into the wall was affected more by PM size (which changes with engine operating conditions) rather than filtration velocity.

Lance, Michael J [ORNL; Walker, Larry R [ORNL; Yapaulo, Renato A [ORNL; Orita, Tetsuo [ORNL; Wirojsakunchai, Ekathai [University of Wisconsin; Foster, David [University of Wisconsin; Akard, Michael [Horiba Instruments Inc.

2009-01-01T23:59:59.000Z

330

Particulate contamination removal from wafers using plasmas and mechanical agitation  

DOE Patents [OSTI]

Particulate contamination removal from wafers is disclosed using plasmas and mechanical agitation. The present invention includes the use of plasmas with mechanical agitation for removing particulate matter from the surface of a wafer. The apparatus hereof comprises a mechanical activator, at least one conducting contact pin for transferring the vibration from the activator to the wafer, clamp fingers that maintain the wafer`s position, and means for generating a plasma in the vicinity of the surface of the wafer, all parts of the cleaning apparatus except the mechanical activator and part of the contact pin being contained inside the processing chamber. By exposing a wafer to a plasma and providing motion thereto in a direction perpendicular to its surface, the bonding between the particulate matter and the surface may be overcome. Once free of the wafer surface, the particulates become charged by electrons from the plasma and are drawn into the plasma by attractive forces which keep them from redepositing. The introduction of a flowing gas through the plasma sweeps the particulates away from the wafer and out of the plasma. The entire surface is cleaned during one cleaning step. The use of an rf plasma to accomplish the particulate removal was found to remove more than 90% of the particulates. 4 figs.

Selwyn, G.S.

1998-12-15T23:59:59.000Z

331

Particulate contamination removal from wafers using plasmas and mechanical agitation  

DOE Patents [OSTI]

Particulate contamination removal from wafers using plasmas and mechanical agitation. The present invention includes the use of plasmas with mechanical agitation for removing particulate matter from the surface of a wafer. The apparatus hereof comprises a mechanical activator, at least one conducting contact pin for transferring the vibration from the activator to the wafer, clamp fingers that maintain the wafer's position, and means for generating a plasma in the vicinity of the surface of the wafer, all parts of the cleaning apparatus except the mechanical activator and part of the contact pin being contained inside the processing chamber. By exposing a wafer to a plasma and providing motion thereto in a direction perpendicular to its surface, the bonding between the particulate matter and the surface may be overcome. Once free of the wafer surface, the particulates become charged by electrons from the plasma and are drawn into the plasma by attractive forces which keep them from redepositing. The introduction of a flowing gas through the plasma sweeps the particulates away from the wafer and out of the plasma. The entire surface is cleaned during one cleaning step. The use of an rf plasma to accomplish the particulate removal was found to remove more than 90% of the particulates.

Selwyn, Gary S. (Los Alamos, NM)

1998-01-01T23:59:59.000Z

332

Lanthanides as particulate flow markers in ruminants  

E-Print Network [OSTI]

!er (Langlands e+ al. , 1963; Thompson and Lamming, 1378; Uiyatt and I', acqae, 1974). Som" investigators have concluded that distritoution oi chromic oxide approximated that of t:hc dry matter (Corbett ei al. , 1958; Corbet t et al. , 1959) while others sugg... indicate ei ther adsorption or associ ated flow. For example, chromic oxide would cosediment with digosta solids, solely due to its insolu- b-ility, without being physicaily associated with the feed residues in any mann r. Advancements in analytical...

Conner, Michael Cronan

1977-01-01T23:59:59.000Z

333

Source Contribution Analysis of Surface Particulate Polycyclic Aromatic Hydrocarbon Concentrations in Northeastern Asia by Source-receptor Relationships  

SciTech Connect (OSTI)

We analyzed the sourceereceptor relationships for particulate polycyclic aromatic hydrocarbon (PAH) concentrations in northeastern Asia using an aerosol chemical transport model. The model successfully simulated the observed concentrations. In Beijing (China) benzo[a]pyren (BaP) concentrations are due to emissions from its own domain. In Noto, Oki and Tsushima (Japan), transboundary transport from northern China (>40°N, 40-60%) and central China (30-40°N, 10-40%) largely influences BaP concentrations from winter to spring, whereas the relative contribution from central China is dominant (90%) in Hedo. In the summer, the contribution from Japanese domestic sources increases (40-80%) at the 4 sites. Contributions from Japan and Russia are additional source of BaP over the northwestern Pacific Ocean in summer. The contribution rates for the concentrations from each domain are different among PAH species depending on their particulate phase oxidation rates. Reaction with O3 on particulate surfaces may be an important component of the PAH oxidation processes.

Inomata, Yayoi; Kajino, Mizuo; Sato, Keiichi; Ohara, Toshimasa; Kurokawa, Jun-Ichi; Ueda, Hiromasa; Tang, Ning; Hayakawa, Kazuichi; Ohizumi, Tsuyoshi; Akimoto, Hajime

2013-11-01T23:59:59.000Z

334

AP-XPS Measures MIEC Oxides in Action  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AP-XPS Measures MIEC Oxides in Action Print AP-XPS Measures MIEC Oxides in Action Print Oxide materials with mixed ionic-electronic conductivity (MIEC) can conduct both electrons and oxygen ions. MIEC oxides have broad applications, including use in solid-oxide fuel cells, high-temperature electrolysis for synthetic fuel production, and oxygen-separating membranes for chemical processes or NOx-free combustion; however, their surface activity under reaction conditions has been difficult, if not impossible, to ascertain, until recently. A team from the University of Maryland and Sandia National Laboratories joined ALS scientists on Beamlines 9.3.2 and 11.0.2 to overcome the vacuum limitations of conventional XPS instruments using ambient-pressure x-ray photoelectron spectroscopy (AP-XPS), providing the first in situ measurements of local surface oxidation states and electric potential in active MIEC electrodes.

335

AP-XPS Measures MIEC Oxides in Action  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AP-XPS Measures MIEC Oxides in Action Print AP-XPS Measures MIEC Oxides in Action Print Oxide materials with mixed ionic-electronic conductivity (MIEC) can conduct both electrons and oxygen ions. MIEC oxides have broad applications, including use in solid-oxide fuel cells, high-temperature electrolysis for synthetic fuel production, and oxygen-separating membranes for chemical processes or NOx-free combustion; however, their surface activity under reaction conditions has been difficult, if not impossible, to ascertain, until recently. A team from the University of Maryland and Sandia National Laboratories joined ALS scientists on Beamlines 9.3.2 and 11.0.2 to overcome the vacuum limitations of conventional XPS instruments using ambient-pressure x-ray photoelectron spectroscopy (AP-XPS), providing the first in situ measurements of local surface oxidation states and electric potential in active MIEC electrodes.

336

AP-XPS Measures MIEC Oxides in Action  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AP-XPS Measures MIEC Oxides in Action Print AP-XPS Measures MIEC Oxides in Action Print Oxide materials with mixed ionic-electronic conductivity (MIEC) can conduct both electrons and oxygen ions. MIEC oxides have broad applications, including use in solid-oxide fuel cells, high-temperature electrolysis for synthetic fuel production, and oxygen-separating membranes for chemical processes or NOx-free combustion; however, their surface activity under reaction conditions has been difficult, if not impossible, to ascertain, until recently. A team from the University of Maryland and Sandia National Laboratories joined ALS scientists on Beamlines 9.3.2 and 11.0.2 to overcome the vacuum limitations of conventional XPS instruments using ambient-pressure x-ray photoelectron spectroscopy (AP-XPS), providing the first in situ measurements of local surface oxidation states and electric potential in active MIEC electrodes.

337

NOx Control Options and Integration for US Coal Fired Boilers  

SciTech Connect (OSTI)

This is the fifteenth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. At AEP's Gavin Plant, data from the corrosion probes showed that corrosion rate increased as boiler load was increased. During an outage at the plant, the drop in boiler load, sensor temperature and corrosion rate could all be seen clearly. Restarting the boiler saw a resumption of corrosion activity. This behavior is consistent with previous observations made at a 600MWe utility boiler. More data are currently being examined for magnitudes of corrosion rates and changes in boiler operating conditions. Considerable progress was made this quarter in BYU's laboratory study of catalyst deactivation. Surface sulfation appears to partially suppress NO adsorption when the catalyst is not exposed to NH3; NH3 displaces surface-adsorbed NO on SCR catalysts and surface sulfation increases the amount of adsorbed NH3, as confirmed by both spectroscopy and TPD experiments. However, there is no indication of changes in catalyst activity despite changes in the amount of adsorbed NH3. A monolith test reactor (MTR), completed this quarter, provided the first comparative data for one of the fresh and field-exposed monolith SCR catalysts yet developed in this project. Measurements of activity on one of the field-exposed commercial monolith catalysts do not show significant changes in catalyst activity (within experimental error) as compared to the fresh catalyst. The exposed surface of the sample contains large amounts of Ca and Na, neither of which is present in the fresh sample, even after removal of visibly obvious fouling deposits. However, these fouling compounds do not deactivate the catalyst to the extent that these same poisons do in the deliberately wet-impregnated laboratory-prepared samples (1%V{sub 2}O{sub 5}-9%WO{sub 3}/TiO{sub 2}). At least in this case, the fouling deposits generated by field exposure present little if any chemical deactivation or barrier to mass transfer. During this quarter, the slipstream reactor at Rockport operated for 1000 hours on flue gas. Periodic NO{sub x} reduction measurements were made, showing some decrease in activity relative to fresh catalyst samples. Plans are being made to take the reactor out of service at the Rockport plant and move it to Plant Gadsden. At Gadsden, inlet and outlet ports were installed on Unit 1 for the slipstream reactor during an outage.

Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

2004-03-31T23:59:59.000Z

338

Impacts of a Nanosized Ceria Additive on Diesel Engine Emissions of Particulate and Gaseous Pollutants  

E-Print Network [OSTI]

reductions of CO2, CO, total particulate mass, formaldehyde, acetaldehyde, acrolein, and several polycyclic

Garfunkel, Eric

339

Li2O Particulate Flow Concept, APPLE APEX Interim Report November, 1999  

E-Print Network [OSTI]

Li2O Particulate Flow Concept, APPLE APEX Interim Report November, 1999 9-1 CHAPTER 9: Li2O PARTICULATE FLOW CONCEPT ­ APPLE DESIGN Contributors Lead Author: Dai Kai Sze Dai Kai Sze, Zhanhe Wang (ANL Particulate Flow Concept, APPLE APEX Interim Report November, 1999 9-2 9. LI2O PARTICULATE FLOW CONCEPT

California at Los Angeles, University of

340

Influence of combustion parameters on NOx production in an industrial boiler  

E-Print Network [OSTI]

Influence of combustion parameters on NOx production in an industrial boiler M.A. Habib a,*, M pollution using a model furnace of an industrial boiler utilizing fuel gas. The importance of this problem is mainly due to its relation to the pollutants produced by large boiler furnaces used widely in thermal

Aldajani, Mansour A.

Note: This page contains sample records for the topic "oxides nox particulates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Consequences of propene and propane on plasma remediation of NOx Rajesh Doraia)  

E-Print Network [OSTI]

. INTRODUCTION Plasma remediation of exhaust from internal combustion engines, and diesel engines in particular of achieving high E/N electric field/ gas number density are promising in this regard.11 Actual diesel exhaust discharge DBD reactors are being investigated for plasma remediation of NOx from the exhaust of internal

Kushner, Mark

342

tive emissions from EVs (e.g., power plant NOx) and GPVs (tailpipe and  

E-Print Network [OSTI]

a few sluggish electric vehicles would cause enough traffic slowing that the gasoline- powered fleet Analy- sis article on battery-powered vehicles (Sept. 1996, p. 402A) serves as a useful remindertive emissions from EVs (e.g., power plant NOx) and GPVs (tailpipe and associated NO.,. emissions

Denver, University of

343

Observation of NOx enhancement and ozone depletion in the Northern and Southern  

E-Print Network [OSTI]

Clarmann, G. P. Stiller, M. Ho¨pfner, S. Kellmann, and H. Fischer Institut fu¨r Meteorologie und Clarmann, G. P. Stiller, M. Ho¨pfner, S. Kellmann, H. Fischer, and C. H. Jackman (2005), Observation of NOx

Jackman, Charles H.

344

Atmospheric Environment 38 (2004) 27792787 First detection of nitrogen from NOx in tree rings: a 15  

E-Print Network [OSTI]

abies; Air pollution; Dendroecology; Nitrogen deposition; Stable isotopes; Nitrogen dioxide 1Atmospheric Environment 38 (2004) 2779­2787 First detection of nitrogen from NOx in tree rings 2004; accepted 27 February 2004 Abstract Nitrogen isotope analysis (d15 N) of tree rings is potentially

345

Transport of NOx in East Asia identified by satellite and in situ measurements  

E-Print Network [OSTI]

Research Laboratory, Boulder, Colorado, USA, 3 Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado, USA, 4 School of Earth and Environmental Sciences, Seoul burning, and natural phenomena like lightning, wildfires, and soil microbial activity. NOx play

Park, Rokjin

346

NOx reduction with the use of feedlot biomass as a reburn fuel  

E-Print Network [OSTI]

. Additional air called overfire air (about 20 % of total air) is injected in order to complete combustion. Typically reburn fuel is natural gas (NG). From previous research at TAMU, it was found that firing feedlot biomass (FB) as reburn fuel lowers the NOx...

Goughnour, Paul Gordon

2009-05-15T23:59:59.000Z

347

PILOT-SCALE EVALUATION OF THE IMPACT OF SELECTIVE CATALYTIC REDUCTION FOR NOx ON MERCURY SPECIATION  

SciTech Connect (OSTI)

Full-scale tests in Europe and bench-scale tests in the United States have indicated that the catalyst, normally vanadium/titanium metal oxide, used in the selective catalytic reduction (SCR) of NO{sub x}, may promote the formation of Hg{sup 2+} and/or particulate-bound mercury (Hg{sub p}). To investigate the impact of SCR on mercury speciation, pilot-scale screening tests were conducted at the Energy & Environmental Research Center. The primary research goal was to determine whether the catalyst or the injection of ammonia in a representative SCR system promotes the conversion of Hg{sup 0} to Hg{sup 2+} and/or Hg{sub p} and, if so, which coal types and parameters (e.g., rank and chemical composition) affect the degree of conversion. Four different coals, three eastern bituminous coals and a Powder River Basin (PRB) subbituminous coal, were tested. Three tests were conducted for each coal: (1) baseline, (2) NH{sub 3} injection, and (3) SCR of NO{sub x}. Speciated mercury, ammonia slip, SO{sub 3}, and chloride measurements were made to determine the effect the SCR reactor had on mercury speciation. It appears that the impact of SCR of NO{sub x} on mercury speciation is coal-dependent. Although there were several confounding factors such as temperature and ammonia concentrations in the flue gas, two of the eastern bituminous coals showed substantial increases in Hg{sub p} at the inlet to the ESP after passing through an SCR reactor. The PRB coal showed little if any change due to the presence of the SCR. Apparently, the effects of the SCR reactor are related to the chloride, sulfur and, possibly, the calcium content of the coal. It is clear that additional work needs to be done at the full-scale level.

Dennis L. Laudal; John H. Pavlish; Kevin C. Galbreath; Jeffrey S. Thompson; Gregory F. Weber; Everett Sondreal

2000-12-01T23:59:59.000Z

348

Biomarker Response to Galactic Cosmic Ray-Induced NOx and the Methane Greenhouse Effect in the Atmosphere of an Earthlike Planet Orbiting an M-Dwarf Star  

E-Print Network [OSTI]

Planets orbiting in the habitable zone (HZ) of M-Dwarf stars are subject to high levels of galactic cosmic rays (GCRs) which produce nitrogen oxides in earthlike atmospheres. We investigate to what extent this NOx may modify biomarker compounds such as ozone (O3) and nitrous oxide (N2O), as well as related compounds such as water (H2O) (essential for life) and methane (CH4) (which has both abiotic and biotic sources) . Our model results suggest that such signals are robust, changing in the M-star world atmospheric column by up to 20% due to the GCR NOx effects compared to an M-star run without GCR effects and can therefore survive at least the effects of galactic cosmic rays. We have not however investigated stellar cosmic rays here. CH4 levels are about 10 times higher than on the Earth related to a lowering in hydroxyl (OH) in response to changes in UV. The increase is less than reported in previous studies. This difference arose partly because we used different biogenic input. For example, we employed 23% lower CH4 fluxes compared to those studies. Unlike on the Earth, relatively modest changes in these fluxes can lead to larger changes in the concentrations of biomarker and related species on the M-star world. We calculate a CH4 greenhouse heating effect of up to 4K. O3 photochemistry in terms of the smog mechanism and the catalytic loss cycles on the M-star world differs considerably compared with the Earth.

John Lee Grenfell; Jean-Mathias Griessmeier; Beate Patzer; Heike Rauer; Antigona Segura; Anja Stadelmann; Barbara Stracke; Ruth Titz; Philip von Paris

2007-02-23T23:59:59.000Z

349

Latest developments and application of DB Riley's low NOx CCV{reg{underscore}sign} burner technology  

SciTech Connect (OSTI)

Recent developments in DB Riley (DBR) low NOx burner technology and the application of this technology in coal fired utility boilers are discussed. Since the promulgation of the Clean Air Act Amendment in 1990, DBR has sold nearly 1,500 Controlled Combustion Venturi (CCV{reg{underscore}sign}) burners on pulverized coal fired utility boilers reducing NOx emissions 50--70% from uncontrolled levels. This technology has been retrofitted on boiler designs ranging in size and type from 50 MW front wall fired boilers to 1,300 MW opposed fired cell type boilers. In DBR's latest version of the CCV{reg{underscore}sign} burner, a second controlled flow air zone was added to enhance NOx control capability. Other developments included improved burner air flow measurement accuracy and several mechanical design upgrades such as new coal spreader designs for 3 year wear life. Test results of the CCV{reg{underscore}sign} dual air zone burner in DBR's 100 million Btu/hr (29 MW) coal burner test facility are presented. In the test program, coals from four utility boiler sites were fired to provide a range of coal properties. A baseline high volatile bituminous coal was also fired to provide a comparison with 1992 test data for the CCV{reg{underscore}sign} single register burner. The tests results showed that the second air zone enhanced NOx reduction capability by an additional 20% over the single register design. Computational fluid dynamic (DFD) modeling results of the CCV{reg{underscore}sign} dual air zone burner are also presented showing near field mixing patterns conducive to low NOx firing. DBR was recently awarded Phase IV of the Low Emission Boiler System (LEBS) program by the US Department of Energy to build a proof of concept facility representing the next major advancement in pulverized coal burning technology. A key part of winning that award were test results of the CCV{reg{underscore}sign} dual air zone burner with advanced air staging and coal reburning in a 100 million Btu/hr (20 MW) U-fired slagging combustor test facility. These results showed NOx emissions of less than 0.2 lb/million Btu (0.086 g/MJ) while converting the coal ash into an inert, non-leachable solid. This results is an 80% reduction in NOx emissions from currently operating U-fired slagging boilers.

Penterson, C.; Ake, T.

1998-07-01T23:59:59.000Z

350

Engineering analysis of fugitive particulate matter emissions from cattle feedyards  

E-Print Network [OSTI]

An engineering analysis of the fugitive particulate matter emissions from a feedyard is not simple. The presence of an evening dust peak in concentration measurements downwind of a feedyard complicates the calculation of an average 24-h emission...

Hamm, Lee Bradford

2006-04-12T23:59:59.000Z

351

REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS Supplemental Report # 2  

E-Print Network [OSTI]

Arnold University of Minnesota Department of Mechanical Engineering Center for Diesel Research aerosol. This report focuses on the fundamental chemical and physical processes that affect diesel aerosolREVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS Supplemental Report # 2 AEROSOL DYMAMICS

Minnesota, University of

352

Automated particulate sampler field test model operations guide  

SciTech Connect (OSTI)

The Automated Particulate Sampler Field Test Model Operations Guide is a collection of documents which provides a complete picture of the Automated Particulate Sampler (APS) and the Field Test in which it was evaluated. The Pacific Northwest National Laboratory (PNNL) Automated Particulate Sampler was developed for the purpose of radionuclide particulate monitoring for use under the Comprehensive Test Ban Treaty (CTBT). Its design was directed by anticipated requirements of small size, low power consumption, low noise level, fully automatic operation, and most predominantly the sensitivity requirements of the Conference on Disarmament Working Paper 224 (CDWP224). This guide is intended to serve as both a reference document for the APS and to provide detailed instructions on how to operate the sampler. This document provides a complete description of the APS Field Test Model and all the activity related to its evaluation and progression.

Bowyer, S.M.; Miley, H.S.

1996-10-01T23:59:59.000Z

353

Diesel Particulate Filters and NO2 Emission Limits | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Filters and NO2 Emission Limits Diesel Particulate Filters and NO2 Emission Limits EPAs New air quality standards for NO2 will impact future DPF designs deer09ibrahim.pdf More...

354

JV Task 95-Particulate Control Consulting for Minnesota Ore Operations  

SciTech Connect (OSTI)

The purpose of the project was to assist U.S. Steel in the evaluation, selection, planning, design, and testing of potential approaches to help meet U.S. Steel's goal for low-particulate matter emissions and regulatory compliance. The energy-intensive process for producing iron pellets includes treating the pellets in high-temperature kilns in which the iron is converted from magnetite to hematite. The kilns can be fired with either natural gas or a combination of gas and coal or biomass fuel and are equipped with wet venturi scrubbers for particulate control. Particulate measurements at the inlet and outlet of the scrubbers and analysis of size-fractionated particulate samples led to an understanding of the effect of process variables on the measured emissions and an approach to meet regulatory compliance.

Stanley Miller

2008-10-31T23:59:59.000Z

355

Zone heated inlet ignited diesel particulate filter regeneration  

SciTech Connect (OSTI)

An exhaust system that processes exhaust generated by an engine is provided. The system includes: a particulate filter (PF) that is disposed downstream of the engine and that filters particulates from the exhaust; and a grid that includes electrically resistive material that is segmented by non-conductive material into a plurality of zones and wherein the grid is applied to an exterior upstream surface of the PF.

Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

2012-06-26T23:59:59.000Z

356

Chemistry of NOx on TiO2 surfaces studied by ambient pressure XPS:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemistry of NOx on TiO2 surfaces studied by ambient pressure XPS: Chemistry of NOx on TiO2 surfaces studied by ambient pressure XPS: products, effect of UV irradiation, water and coadsorbed K+ Title Chemistry of NOx on TiO2 surfaces studied by ambient pressure XPS: products, effect of UV irradiation, water and coadsorbed K+ Publication Type Journal Article Year of Publication 2013 Authors Rosseler, Olivier, Mohamad Sleiman, Nahuel V. Montesinos, Andrey Shavorskiy, Valerie Keller, Nicolas Keller, Marta I. Litter, Hendrik Bluhm, Miquel Salmeron, and Hugo Destaillats Journal J. Phys. Chem. Lett. Volume 4 Start Page 536 Issue 3 Pagination 536-541 Date Published 01/2013 Abstract Self-cleaning surfaces containing TiO2 nanoparticles have been postulated to efficiently remove NOx from the atmosphere. However, UV irradiation of NOx adsorbed on TiO2 also was shown to form harmful gas-phase byproducts such as HONO and N2O that may limit their depolluting potential. Ambient pressure XPS was used to study surface and gas-phase species formed during adsorption of NO2 on TiO2 and subsequent UV irradiation at λ = 365 nm. It is shown here that NO3-, adsorbed on TiO2 as a byproduct of NO2 disproportionation, was quantitatively converted to surface NO2 and other reduced nitrogenated species under UV irradiation in the absence of moisture. When water vapor was present, a faster NO3- conversion occurred, leading to a net loss of surface-bound nitrogenated species. Strongly adsorbed NO3- in the vicinity of coadsorbed K+ cations was stable under UV light, leading to an efficient capture of nitrogenated compounds.

357

PARTICULATE EMISSION ABATEMENT FOR KRAKOW BOILERHOUSES  

SciTech Connect (OSTI)

A U.S./Polish Bilateral Steering Committee (BSC) and the Department of Energy (DOE) selected LSR Technologies, Inc. as a contractor to participate in the Krakow Clean Fuels and Energy Efficiency Program. The objective of this program was the formation of business ventures between U.S. and Polish firms to provide equipment and services to reduce air emissions in the city of Krakow. A cooperative agreement was entered into by DOE and LSR to begin work in April 1994 involving implementation of particulate control technology called a Core Separator{trademark} for coal-fueled boilerhouses in the city. The major work tasks included: (1) conducting a market analysis, (2) completion of a formal marketing plan, (3) obtaining patent protection within Poland, (4) selecting a manufacturing partner, and (5) completing a demonstration unit and commercial installations. In addition to work performed by LSR Technologies, key contributors to this project were (1) the Polish Foundation for Energy Efficiency (FEWE), a non-profit consulting organization specializing in energy and environmental-related technologies, and (2) EcoInstal, a privately held Polish company serving the air pollution control market. As the project concluded in late 1998, five (5) Core Separator{trademark} installations had been implemented in the city of Krakow, while about 40 others were completed in other regions of Poland.

Bruce H. Easom; Leo A, Smolensky; S. Ronald Wysk; Jan Surowka; Miroslaw Litke; Jacek Ginter

1998-09-30T23:59:59.000Z

358

NETL: Ambient Monitoring - Southern Fine Particulate Monitoring Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Southern Fine Particulate Monitoring Project (SRI) Southern Fine Particulate Monitoring Project (SRI) Southern Research Institute (SRI), Birmingham, AL, is operating a research station in North Birmingham for monitoring fine particulate matter (PM2.5) that exists in that part of the Deep South. The station will be a core PM2.5 mass monitoring and chemical speciation station in the nationwide EPA PM2.5 network. As such, it will be a complement and supplement to DOE-NETL's other ongoing projects for monitoring fine particulate matter in the upper Ohio River valley. Locating additional monitoring equipment in the Deep South will fill an important gap in the national particulate monitoring effort. The region's topography, weather patterns, and variety of emission sources may affect the chemical make-up and airborne transport of fine particles in ways that are different than in other parts of the country. The project's results will support DOE's comprehensive program to evaluate ambient fine particulate matter through better understanding of the chemical and physical properties of these materials.

359

Combustion and \\{NOx\\} emissions of biomass-derived syngas under various gasification conditions utilizing oxygen-enriched-air and steam  

Science Journals Connector (OSTI)

The purpose of this study is to investigate the \\{NOx\\} emissions from combustion of syngas derived from gasification of three different biomass feedstock (i.e., pine, maple–oak mixture, and seed corn) at different oxygen-enriched-air and steam conditions. Three different oxygen-enriched-air and steam conditions were tested for each feedstock, thus resulting in nine different sets of syngas. The biomass-derived syngas was burned in an industrial burner that was integrated into the gasification system. The gasifier and burner are rated at 800 kW and 879 kW thermal, respectively. For each set of biomass-derived syngas, \\{NOx\\} emissions were measured at different burner operating conditions including various heat rates and equivalence ratios using emission analyzers with chemiluminescence technology. All the combustion test conditions are in the lean mixture ranges in order to avoid the peak temperature limitation of both the burner and combustion chamber. Results show that \\{NOx\\} emissions using syngas obtained from woody feedstock decrease almost linearly as the combustion mixture becomes leaner and the heat rate decreases. When compared to natural gas, syngas from both woody feedstock generates higher \\{NOx\\} emissions even when the heat rates are comparable, indicating that fuel \\{NOx\\} formation is highly important in biomass-derived syngas combustion. In contrast to syngas from woody feedstock, syngas from seed corn results in peak \\{NOx\\} emissions before \\{NOx\\} decreases with leaner conditions. The trend is observed for all fuel flow rates and all oxygen-enriched-air and steam conditions of seed corn-derived syngas. Among the three feedstock, seed corn has the highest nitrogen content which yields the highest ammonia concentration in syngas, which, in turn, results in the highest \\{NOx\\} emissions for all test conditions. Overall, the \\{NOx\\} emissions from seed corn-derived syngas combustion are approximately in the range of 450–900 ppm higher compared to those from wood-derived syngas combustion.

Cuong Van Huynh; Song-Charng Kong

2013-01-01T23:59:59.000Z

360

Development of SCR on Diesel Particulate Filter System for Heavy Duty Applications  

Broader source: Energy.gov [DOE]

Evaluation of a system consisting of SCRDPF in comparison to a commercial 2010 CDPF system on an engine under high and low engine-out NOx conditions

Note: This page contains sample records for the topic "oxides nox particulates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

On the Promoting Effect of Water during NOx Removal over Single-Site Copper in Hydrophobic Silica APD-Aerogels  

Science Journals Connector (OSTI)

Reversibility of the Cu2+/Cu+ redox pair was confirmed in the Cu-aerogel during and after wet redox cycling. ... (1) Popular solutions to selective catalytic reduction of NOx include the use of exhaust hydrocarbon residuals (SCR-HC-deNOx) or ammonia added to the exhaust (SCR-NH3-deNOx) as the reductant; the former technology being suitable for light duty passenger vehicles, whereas the latter is applied to medium or heavy duty vehicles. ... During vehicle use, the converter is exposed to heat, which causes the metal particles to agglomerate and grow, and their overall surface area to decrease. ...

Tina Kristiansen; Karina Mathisen

2014-01-10T23:59:59.000Z

362

Spatial and diurnal variability in reactive nitrogen oxide chemistry as reflected in the isotopic composition of atmospheric nitrate  

E-Print Network [OSTI]

exchange between gas-phase precursors and variability in reactive nitrogen sources. These findings product of NOx in the atmosphere. Due to its exceptionally high solubility in water, nitrate is rapidly deSpatial and diurnal variability in reactive nitrogen oxide chemistry as reflected in the isotopic

363

Oxidation of Proximal Protein Sulfhydryls by Phenanthraquinone, a Component of Diesel Exhaust Particles  

Science Journals Connector (OSTI)

Oxidation of Proximal Protein Sulfhydryls by Phenanthraquinone, a Component of Diesel Exhaust Particles ... Diesel exhaust particles (DEP) contain quinones that are capable of catalyzing the generation of reactive oxygen species in biological systems, resulting in induction of oxidative stress. ... 9,10-Phenanthrenequinone (9,10-PQ) is a PAHQ found in diesel exhaust particulates ... ...

Yoshito Kumagai; Sachie Koide; Keiko Taguchi; Akiko Endo; Yumi Nakai; Toshikazu Yoshikawa; Nobuhiro Shimojo

2002-02-28T23:59:59.000Z

364

BaO/Al2O3/NiAl(110) Model NOx Storage Materials: the effect of BaO film thickness on the amorphous-to-crystalline Ba(NO3)2 phase transition  

SciTech Connect (OSTI)

The reaction of NO2 with BaO (0.15 – 2 ML and > 30 ML)/Al2O3(12 ML)/NiAl(110) model NOx storage materials was studied. A thick (~12 ML), ordered Al2O3 film was prepared as the support oxide on a NiAl(110) substrate in order to minimize the effect of the intermixing between the two oxide phases (BaO and Al2O3) on the NOx chemistry of BaO. The growth of a thick alumina film, prepared by atomic oxygen deposition onto NiAl(110), follows a layer-by-layer growth mode and the resulting film is much more stable when exposed to NO2 than the ultra-thin alumina films studied before. The interaction of NO2 with the model NOx storage systems at low coverages of BaO show fundamentally different behaviors from a thick BaO film, as nitrite species form at low exposures of NO2, followed by nitrate formation at high NO2 exposures. In contrast, on the thick BaO layer nitrite-nitrate ion pairs form at 300 K under UHV conditions (PNO2 ~ 1 ? 10-9 Torr). However, at elevated NO2 pressures (? 1 ? 10-5 Torr) the thick BaO film is gradually converted into amorphous Ba(NO3)2 at 300 K. Raising the temperature of the samples with ?BaO > 1 ML after NO2 exposure (in the absence of gas phase NO2) leads to the phase transformation of the amorphous Ba(NO3)2 layer into crystalline Ba(NO3)2 particles in the temperature range of 500 – 600 K. No phase transformation is observed in samples with ?BaO < 1 ML.

Yi, Cheol-Woo W.; Szanyi, Janos

2009-01-15T23:59:59.000Z

365

Continuous particulate monitoring for emission control  

SciTech Connect (OSTI)

An optical continuous particle monitoring system has been developed to overcome common problems associated with emissions monitoring equipment. Opacity monitors generally use a single- or double-pass system to analyze the presence of dust particles in the flue gas stream. The particles scatter and absorb light as it passes through the stack. As the particle content in the gas stream increases due to bag failure or some other problem, the amount of light that is blocked also increases. The opacity monitor compares the amount of lost light energy to the total energy of the light available and translates the signal to percentage of opacity. Opacity monitors are typically installed to meet the requirements set forth by pollution control agencies. Most opacity monitors are designed to meet all of the requirements of the Environmental Protection Agency (EPA) 40 CFR, Part 60, Appendix B, Performance Specification. The new continuous particle monitor (CPM) increases the accuracy of emission monitoring and overcomes typical problems found in conventional emission monitoring devices. The CPM is an optically based, calibratible, continuous dust monitor that uses a microprocessor, transmitter head, and receiver head. When calibrated with an isokinetic sample, a continuous readout of particulate concentration (in mg/m[sup 3]) in the exhaust gas is provided. The system can be used as a filter bag failure system or a long-term emission trend analyzer. Formal testing was conducted to evaluate the effectiveness of the optically based CPM. The monitor was calibrated using particles of a range of compositions, size distributions, and concentrations. The feasibility of using the instrument to measure particle concentration as low as 10 mg/m[sup 3] was examined.

Bock, A.H. (BHA Group, Inc., Kansas City, MO (United States))

1993-08-01T23:59:59.000Z

366

Diesel Soot Oxidation with NO2:? Engine Experiments and Simulations  

Science Journals Connector (OSTI)

Diesel Soot Oxidation with NO2:? Engine Experiments and Simulations ... Particulate filtration in the exhaust system of diesel engines is increasingly gaining in importance for both light- and heavy-duty applications. ... The reaction rates are, in general, in the same order of magnitude with the engine-out soot emission rates. ...

Ioannis P. Kandylas; Onoufrios A. Haralampous; Grigorios C. Koltsakis

2002-09-20T23:59:59.000Z

367

Single Wall Diesel Particulate Filter (DPF) Filtration Efficiency Studies Using Laboratory Generated Particles  

SciTech Connect (OSTI)

Diesel offers higher fuel efficiency, but produces higher exhaust particulate matter. Diesel particulate filters are presently the most efficient means to reduce these emissions. These filters typically trap particles in two basic modes: at the beginning of the exposure cycle the particles are captured in the filter holes, and at longer times the particles form a "cake" on which particles are trapped. Eventually the "cake" removed by oxidation and the cycle is repeated. We have investigated the properties and behavior of two commonly used filters: silicon carbide (SiC) and cordierite (DuraTrap® RC) by exposing them to nearly-spherical ammonium sulfate particles. We show that the transition from deep bed filtration to "cake" filtration can easily be identified by recording the change in pressure across the filters as a function of exposure. We investigated performance of these filters as a function of flow rate and particle size. The filters trap small and large particles more efficiently than particles that are ~80 to 200 nm in aerodynamic diameter. A comparison between the experimental data and a simulation using incompressible lattice-Boltzmann model shows very good qualitative agreement, but the model overpredicts the filter’s trapping efficiency.

Yang, Juan; Stewart, Marc; Maupin, Gary D.; Herling, Darrell R.; Zelenyuk, Alla

2009-04-15T23:59:59.000Z

368

An Analysis of the health impacts from PM and NOx emissions resulting from train operations in the Alameda Corridor, CA  

E-Print Network [OSTI]

2009). Estimating PM and NOx Train Emissions in the AlamedaAuthority. Number of Trains Running on the Alameda Corridor.x emissions resulting from train operations in the Alameda

Sangkapichai, Mana; Saphores, Jean-Daniel M; Ogunseitan, Oladele; Ritchie, Stephen G.; You, Soyoung Iris; Lee, Gunwoo

2010-01-01T23:59:59.000Z

369

Heavy-duty diesel vehicle Nox? aftertreatment in 2010 : the infrastructure and compliance challenges of urea-SCR  

E-Print Network [OSTI]

Increasingly stringent heavy-duty vehicle emission regulations are prompting the use of PM and NOx aftertreatment systems in the US, the EU and Japan. In the US, the EPA Highway Diesel Rule, which will be fully implemented ...

Bodek, Kristian M

2008-01-01T23:59:59.000Z

370

Cold-Start Emissions Control in Hybrid Vehicles Equipped with a Passive Adsorber for Hydrocarbons and NOx  

Broader source: Energy.gov [DOE]

Reports results from study of potential for using chemisorbing materials to temporally trap HC and NOx emissions during cold-start of HEVs and PHEVs over transient driving cycles

371

NOx Emissions Reductions from Implementation of the 2000 IECC/IRC Conservation Code to Residential Construction in Texas  

E-Print Network [OSTI]

.1000 0.1500 0.2000 0.2500 0.3000 0.3500 0.4000 0.0000 0.0500 0.1000 0.1500 0.2000 0.2500 0.3000 0.3500 0.4000 To ns - NOx/day (average) Tons - NOX/day (p eak) Apx 2x difference 1:1 2...

Haberl, J. S.; Im, P.; Culp, C.; Yazdani, B.; Fitzpatrick, T.

2004-01-01T23:59:59.000Z

372

Application of Taguchi's orthogonal array in reducing the NOx emission of a stationary diesel engine  

Science Journals Connector (OSTI)

The main objective of this investigation is to reduce the NOx emission of a stationary diesel engine with less sacrifice on smoke intensity and brake thermal efficiency (BTE). Fuel injection timing, percentage of EGR and fuel injection pressure are chosen as factors influencing the objective. Three levels were chosen in each factor and design of experiments method was employed to design the experiments. Taguchi's L9 orthogonal array was used to conduct the engine tests with different levels of the chosen factors. Test results were analysed by analysis of variance (ANOVA) method and ANOVA table was formed for each response variable. From the ANOVA table the most influencing factor and also the significance of each factor affecting the NOx emission, smoke intensity and BTE was found out. Response graph was drawn for each response variable to determine the optimum combination of the factor levels. This optimum combination was confirmed experimentally. [Received: November 14, 2010; Accepted: March 17, 2011

S. Saravanan; G. Nagarajan; R. Ramanujam; S. Sampath

2011-01-01T23:59:59.000Z

373

UTILIZATION OF LOW NOx COAL COMBUSTION BY-PRODUCTS  

SciTech Connect (OSTI)

Potomac Electric Power Company (PEPCo) Class F fly ash is the first material to be worked on in this project. A head sample was taken and a screen analysis performed. Each size fraction was evaluated for LOI content. Table 1 shows the distribution of the as-received material by size and LOI content. From the data, 80% of the as-received material is finer than 400 mesh and the LOI content goes from high at coarse fractions and decreases to a low at the finest size fraction. SEM chemical analysis identified the as-received fly ash to mainly consist of silica (46%), aluminum oxide (21%), and iron in various forms (16%). The high iron content presents an extreme case as compared to other fly ash samples we have evaluated previously. Its effect on product testing applications could identify physical and chemical limitations as product testing progresses. Because of the high iron content, it was realized that magnetic separation would be incorporated into the early part of the pilot plant flowsheet to remove magnetic iron and, hopefully, reduce the total iron content. More analytical data will be presented in the next reporting period.

A.M. HEIN; J.Y. HWANG; M.G. MCKIMPSON; R.C. GREENLUND; X. HUANG

1998-10-01T23:59:59.000Z

374

Particulate control for low rank coals  

SciTech Connect (OSTI)

The power generating system in Victoria currently comprises a total capacity of 6650 MW. Eighty percent of this capacity consists of base load stations in the Latrobe Valley using brown coal. The Latrobe Valley brown coals have unique characteristics with high moisture content ranging from 58 percent to 70 percent and an ash content which is relatively low but very variable in nature. These and other factors associated with the coal have caused special problems in handling and combustion of the coal and the de-dusting of the boiler flue gases. In recent years, this has been the basis for the design parameters adopted for all the plants in the system. With respect to flue gas de-dusting, the SECV has carried out extensive laboratory studies to characterize the different ashes obtained from the Latrobe Valley brown coals, including precipitability and aerodynamic tests. It also carried out full-scale tests on operating plants and pilot tests have been conducted on inertial collectors, precipitators and bag filters. The Environmental Protection Authority of Victoria has established a particulate emission level of 0.150 grams/m{sup 3} n.t.p. dry for recent Latrobe Valley boilers. However, the mandated emission level takes into account wide variations in operating conditions, and the plants normally achieve much lower emission levels. The Latrobe Valley plants presently in operation include Yallourn W (2x350 MW + 2x375 MW), Morwell (170 MW total and briquette factory), Hazelwood (8x200 MW) and Loy Yang (4x500 MW). The Yalloum W boilers are supplied with coal from the Yalloum Open Cut, the Morwell and Hazelwood boilers from the Morwell Open Cut and Loy Yang boilers from the Loy Yang Open Cut. All boilers are pulverized coal fired (PCF) and incorporate special firing equipment to enable the as-mined wet coal to be fired directly into the furnaces. All boilers are fitted with electrostatic precipitators. The locations of the stations and open cuts are shown.

Touzel, R.McD.

1993-12-31T23:59:59.000Z

375

Contribution of organic carbon to wood smoke particulate matter absorption  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contribution of organic carbon to wood smoke particulate matter absorption Contribution of organic carbon to wood smoke particulate matter absorption of solar radiation Title Contribution of organic carbon to wood smoke particulate matter absorption of solar radiation Publication Type Journal Article Year of Publication 2012 Authors Kirchstetter, Thomas W., and Tracy L. Thatcher Journal Atmospheric Chemistry and Physics Volume 12 Pagination 6067-6072 Abstract A spectroscopic analysis of 115 wintertime partic- ulate matter samples collected in rural California shows that wood smoke absorbs solar radiation with a strong spectral se- lectivity. This is consistent with prior work that has demon- strated that organic carbon (OC), in addition to black car- bon (BC), appreciably absorbs solar radiation in the visible and ultraviolet spectral regions. We apportion light absorp-

376

Apparatus and method for void/particulate detection  

DOE Patents [OSTI]

Apparatus and method for detecting voids and particulates in a fluid within a containing vessel. A diffuse ultrasonic signal is coupled into the fluid by a first transducer and the portion of the ultrasonic signal transmitted through the fluid is detected by a second transducer. The received signal is analyzed by a processor to determine the void fraction of the fluid responsive to the attenuation of the received ultrasonic signal. In addition, voids and particulates are detected by evaluating the increase in side-band energy of the received signal.

Claytor, Thomas N. (Woodridge, IL); Ockert, Carl E. (Vienna, VA); Randall, Richard (Canoga Park, CA)

1987-01-01T23:59:59.000Z

377

A particulate non-specific alkaline phosphatase in Saccharomyces cerevisiae  

E-Print Network [OSTI]

. Dennis J. Opheim A previously undefined alkaline phosphatase in yeast, which is particulate, has been found. This latter form has no mobil- ity on polyacrylamide gels and can be sedimented after centri- fugation at 200, 000 x g for one hour. Over 90X... of the enzyme activity can be solubilized from the particulate fraction with 100 mM sodium cholate. In the solubilized state this enzyme has been found to migrate in the same position on polyacrylamide gels as the already known soluble repressible alkaline...

Mitchell, James Kent

1980-01-01T23:59:59.000Z

378

Argonne Chemical Sciences & Engineering - Catalysis & Energy Conversion -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Catalytic Removal of Oxides of Nitrogen from Diesel Exhaust Streams Catalytic Removal of Oxides of Nitrogen from Diesel Exhaust Streams Nox removal One of the planet's major pollutants, nitrogen oxides (NOx) are formed in all high temperature fuel-air flames, and so they are a particular emissions problem for diesel engines. Although diesel-fueled engines emit very small amounts of carbon monoxide (CO) and hydrocarbons (HCs), they do, however, release relatively high amounts of NOx and particulate matter (PM) or soot--the emissions that lead to acid rain, smog, and poor health conditions. Thus, removing NOx from emission streams has become a global concern. Argonne researchers have developed an innovative diesel DeNOx catalyst technology that provides industry with a totally passive, easy-to-use system for removing NOx from exhaust streams. Vehicle drivers do not need

379

Imaging of Diesel Particulate Filters using a High-Flux Neutron...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Imaging of Diesel Particulate Filters using a High-Flux Neutron Source Imaging of Diesel Particulate Filters using a High-Flux Neutron Source Detailed images of deposits identified...

380

Radio Frequency Diesel Particulate Filter Sensor Reduces Fuel Consumption, Wins R&D 100 Award  

Office of Energy Efficiency and Renewable Energy (EERE)

Radio Frequency Diesel Particulate Filter Sensor (RF-DPF) is a sensor that uses radio frequencies to measure the amount and distribution of soot and ash in the filters that remove particulate matter from the exhaust of diesel engines.

Note: This page contains sample records for the topic "oxides nox particulates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Development of a Sub-Grid Model of a Diesel Particulate Filter...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sub-Grid Model of a Diesel Particulate Filter: application of the lattice-Boltzmann technique Development of a Sub-Grid Model of a Diesel Particulate Filter: application of the...

382

The effect of lubricant derived ash on the catalytic activity of diesel particulate filters  

E-Print Network [OSTI]

A diesel particulate filter (DPF) is an aftertreatment device used to remove hazardous particulate matter (PM) from diesel engine exhaust. Modem emission restrictions have limited the acceptable amount of PM output by ...

Murray, Timothy Quinn

2014-01-01T23:59:59.000Z

383

Macrophage-Mediated Endothelial Inflammatory Responses to Airborne Particulates: Impact of  

E-Print Network [OSTI]

-Fe/F-Al-Si). We have used these particulates, as well as coal fly ash (CFA) and diesel exhaust particulates (DEP remain unresolved. Using a microporous aluminosilicate zeolite Y as a manifold, we have synthesized 1 µm

Dutta, Prabir K.

384

Testing an Active Diesel Particulate Filter on a 2-Cycle Marine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Testing an Active Diesel Particulate Filter on a 2-Cycle Marine Engine Testing an Active Diesel Particulate Filter on a 2-Cycle Marine Engine Presentation given at DEER 2006,...

385

Characterization of Particulate Emissions from GDI Engine Combustion with Alcohol-blended Fuels  

Broader source: Energy.gov [DOE]

Analysis showed that gasoline direct injection engine particulates from alcohol-blended fuels are significantly different in morphology and nanostructures

386

Characterization of Pre-Commercial Gasoline Engine Particulates Through Advanced Aerosol Methods  

Broader source: Energy.gov [DOE]

Advanced aerosol analysis methods were used to examine particulates from single cylinder test engines running on gasoline and ethanol blends.

387

Higher modulus compositions incorporating particulate rubber  

DOE Patents [OSTI]

A plastic article having a number of surfaces with at least one surface being modified by contacting that surface with a reactive gas atmosphere containing F.sub.2, Cl.sub.2, O.sub.2, Ozone, SO.sub.3, oxidative acids, or mixtures thereof, at a temperature and gas partial pressure sufficient to increase the surface energy of the at least one surface being modified to at least 40 dynes/cm at a temperature of 20.degree. C., to enhance bonding of non-slip polymer coatings to the modified surface, to which coatings elastomeric or rigid particles may be admixed for imparting a surface profile and increasing the coefficient of friction between the coated surface and the counter-surface.

Bauman, Bernard D. (Emmaus, PA); Williams, Mark A. (Souderton, PA)

1999-01-01T23:59:59.000Z

388

\\{NOx\\} emission characteristics of fluidized bed combustion in atmospheres rich in oxygen and water vapor for high-nitrogen fuel  

Science Journals Connector (OSTI)

Abstract The present study examines the influence of water vapor in combustion atmosphere on \\{NOx\\} emission from oxygen-enriched combustion of air-dried distilled spirit lees and its char in a laboratory fluidized bed of 760 mm high and 68 mm in inner diameter. Steam was added into the fluidizing gas to vary the vapor content in the combustion atmosphere. At a combustion temperature of 950 °C and a steam-to-fuel mass ratio (S/F) of 0.5, the presence of water vapor reduced the \\{NOx\\} concentration in the flue gas for low O2 contents (?30 vol.%) in the combustion agent but increased the \\{NOx\\} emission for high O2 contents (?40 vol.%). The possible causes were clarified for this shift from suppression to promotion of fuel-N conversion into \\{NOx\\} with raising O2 concentration in the combustion agent. Varying temperature from 850 °C to 1150 °C resulted in a peak conversion of fuel-N to \\{NOx\\} in the temperature range of 950–1050 °C for all the tested O2 concentrations. Increasing the O2 concentration tended to lower the critical temperature corresponding to such a peak fuel-N conversion. Testing results also suggested that the presence of excessive water vapor in the combustion atmosphere would inhibit the release of fuel-N in the devolatilization stage and promote the formation of some reducing gases. In addition to the anticipated diluting effect, the steam addition also shortened the reaction time for homogeneous and heterogeneous \\{NOx\\} reduction by the reducing gases and char. It is postulated that the formation of OH radicals at high O2 content and high temperature could cause the observed increase in the \\{NOx\\} emission.

Chuanqiang Zhu; Shuyuan Liu; Huan Liu; Juan Yang; Xiaoxing Liu; Guangwen Xu

2015-01-01T23:59:59.000Z

389

Direct Capillary Gas Chromatography of Filter-Borne Particulate Emissions from Diesel Engines  

Science Journals Connector (OSTI)

......Filter-Borne Particulate Emissions from Diesel Engines R.D. Cuthbertson P.R. Shore...Filter-Borne Particulate Emissions from Diesel Engines R.D. Cuthbertson and P.R...oil-derived material. Introduction Diesel engines emit particulate matter consisting......

R.D. Cuthbertson; P.R. Shore

1988-03-01T23:59:59.000Z

390

PII S0016-7037(99)00361-0 Dissolved and particulate carbohydrates in contrasting marine sediments  

E-Print Network [OSTI]

PII S0016-7037(99)00361-0 Dissolved and particulate carbohydrates in contrasting marine sediments D) and mid-Atlantic shelf/slope break (continental margin) sediments. Particulate carbohydrates (PCHOs) rep- resented 5­9% of the total sediment particulate organic carbon (POC), and PCHO remineralization appeared

Burdige, David

391

REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS Supplemental Report # 1  

E-Print Network [OSTI]

.D. and Megan Arnold University of Minnesota Department of Mechanical Engineering Center for Diesel Research obtained from engine laboratory visits and present results from a diesel aerosol sampling questionnaireREVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS Supplemental Report # 1 DIESEL EXHAUST

Minnesota, University of

392

Removal of residual particulate matter from filter media  

DOE Patents [OSTI]

A method for removing residual filter cakes that remain adhered to a filter after typical particulate removal methodologies have been employed, such as pulse-jet filter element cleaning, for all cleanable filters used for air pollution control, dust control, or powder control.

Almlie, Jay C; Miller, Stanley J

2014-11-11T23:59:59.000Z

393

NUCLEATION PHENOMENON IN SiC PARTICULATE REINFORCED MAGNESIUM COMPOSITE  

E-Print Network [OSTI]

NUCLEATION PHENOMENON IN SiC PARTICULATE REINFORCED MAGNESIUM COMPOSITE Y. Cai, D. Taplin, M.J. Tan performance of matrix metals and alloys. Most magnesium alloy based MMCs are produced via a casting process into the last freezing interdendritic regions. For magnesium based composites, both particle pushing (or capture

Zhou, Wei

394

The distribution of particulate aluminum in the Gulf of Mexico  

E-Print Network [OSTI]

of runoff water in the oceans. Toyota and Okabe (1967) reported vertical distri- butions of particulate aluminum ranging from 1-50 ug Al/L in samples from the Western North Pacific, Indian and Antarctic Oceans. , Stefansson and Atkinson (1969) used...

Feely, Richard Alan

1971-01-01T23:59:59.000Z

395

Particulate matter as an amplifier for astronomical light pollution  

Science Journals Connector (OSTI)

......increased emission of particulate matter in the winter, mainly from coal-fired home heating systems (so-called low emission...Nielsen C. P., eds. Clearing the Air: The Health and Economic Damages of Air Pollution in China (2007) Cambridge, MA......

T. ?ci?zor; M. Kubala

2014-01-01T23:59:59.000Z

396

Development of a control-oriented model to optimise fuel consumption and NOX emissions in a DI Diesel engine  

Science Journals Connector (OSTI)

Abstract This paper describes a predictive NOX and consumption model, which is oriented to control and optimisation of DI Diesel engines. The model applies the Response Surface Methodology following a two-step process: firstly, the relationship between engine inputs (intake charge conditions and injection settings) and some combustion parameters (peak pressure, indicated mean effective pressure and burn angles) is determined; secondly, engine outputs (NOX and consumption) are predicted from the combustion parameters using NOX and mechanical losses models. Splitting the model into two parts allows using either experimental or modelled combustion parameters, thus enhancing the model flexibility. If experimental in-cylinder pressure is used to obtain combustion parameters, the mean error of predicted NOX and consumption are 2% and 6% respectively, with a calculation time of 5.5 ms. Using modelled parameters reduces the calculation time to 1.5 ms, with a penalty in the accuracy. The model performs well in a multi-objective optimisation, reducing NOX and consumption in different amounts depending on the objective of the optimisation.

S. Molina; C. Guardiola; J. Martín; D. García-Sarmiento

2014-01-01T23:59:59.000Z

397

Seasonal trends in the composition and ROS activity of fine particulate matter in Baghdad, Iraq  

Science Journals Connector (OSTI)

Abstract Baghdad suffers from severe atmospheric particulate matter (PM) pollution and has limited infrastructure to monitor and control PM-pollution. To help better understand the nature of particulate matter in Baghdad, daily PM2.5 samples were collected every 6th day from September, 2012 to September, 2013. The samples were analyzed for chemical composition and cellular oxidative stress activity using a macrophage-based assay. The annual average PM2.5 concentration was 50 ± 19 ?g m?3, and was comprised of approximately 28% crustal materials, 26% organic carbon (OC), 17% sulfate, 12% elemental carbon (EC), and 8.0% ammonium ion. No clear seasonal trend was observed for the total PM2.5 mass and PM2.5 OC, but EC exhibited higher concentrations in the warmer months, likely due to the extensive use of electric generators operated by diesel and gasoline for cooling. April showed the lowest levels of both EC and OC compared with other months due to both sand and rainstorm events which led to increased deposition and dispersion of local emissions. Concentrations of nitrate ion were low in all seasons due to the high temperatures and low humidity, but slightly higher levels were observed in the cooler months of winter. The oxidative stress (reactive oxygen species (ROS)) activity (59 ± 35 ?g Zymosan equivalents m?3) of the PM was relatively lower than in other studied areas. Association between the water soluble PM constituents and the oxidative activity was investigated using a multi-linear regression model which showed no strong relationships between ROS activity and the water soluble components of PM2.5, but a moderate correlation of water soluble organic carbon from biomass burning (WSOC-BB) was observed (R2 = 0.52). Biomass burning PM has been shown to be an important contributor to ROS activity in other published studies, but additional work is needed to better understand the sources leading to the ROS activity in Baghdad.

Samera Hussein Hamad; Martin Merrill Shafer; Ahmed K.H. Kadhim; Sabah M. Al-Omran; James Jay Schauer

2015-01-01T23:59:59.000Z

398

Processing and Protection of Rare Earth Permanent Magnet Particulate for Bonded Magnet Applications  

SciTech Connect (OSTI)

Rapid solidification of novel mixed rare earth-iron-boron, MRE{sub 2}Fe{sub 14}B (MRE = Nd, Y, Dy; currently), magnet alloys via high pressure gas atomization (HPGA) have produced similar properties and structures as closely related alloys produced by melt spinning (MS) at low wheel speeds. Recent additions of titanium carbide and zirconium to the permanent magnet (PM) alloy design in HPGA powder (using He atomization gas) have made it possible to achieve highly refined microstructures with magnetic properties approaching melt spun particulate at cooling rates of 10{sup 5}-10{sup 6}K/s. By producing HPGA powders with the desirable qualities of melt spun ribbon, the need for crushing ribbon was eliminated in bonded magnet fabrication. The spherical geometry of HPGA powders is more ideal for processing of bonded permanent magnets since higher loading fractions can be obtained during compression and injection molding. This increased volume loading of spherical PM powder can be predicted to yield a higher maximum energy product (BH){sub max} for bonded magnets in high performance applications. Passivation of RE-containing powder is warranted for the large-scale manufacturing of bonded magnets in applications with increased temperature and exposure to humidity. Irreversible magnetic losses due to oxidation and corrosion of particulates is a known drawback of RE-Fe-B based alloys during further processing, e.g. injection molding, as well as during use as a bonded magnet. To counteract these effects, a modified gas atomization chamber allowed for a novel approach to in situ passivation of solidified particle surfaces through injection of a reactive gas, nitrogen trifluoride (NF{sub 3}). The ability to control surface chemistry during atomization processing of fine spherical RE-Fe-B powders produced advantages over current processing methodologies. In particular, the capability to coat particles while 'in flight' may eliminate the need for post atomization treatment, otherwise a necessary step for oxidation and corrosion resistance. Stability of these thin films was attributed to the reduction of each RE's respective oxide during processing; recognizing that fluoride compounds exhibit a slightly higher (negative) free energy driving force for formation. Formation of RE-type fluorides on the surface was evidenced through x-ray photoelectron spectroscopy (XPS). Concurrent research with auger electron spectroscopy has been attempted to accurately quantify the depth of fluoride formation in order to grasp the extent of fluorination reactions with spherical and flake particulate. Gas fusion analysis on coated powders (dia. <45 {micro}m) from an optimized experiment indicated an as-atomized oxygen concentration of 343ppm, where typical, nonpassivated RE atomized alloys exhibit an average of 1800ppm oxygen. Thermogravimetric analysis (TGA) on the same powder revealed a decreased rate of oxidation at elevated temperatures up to 300 C, compared to similar uncoated powder.

Peter Kelly Sokolowski

2007-12-01T23:59:59.000Z

399

Flow reactor experiments on the selective non-catalytic removal of nitrogen oxides  

E-Print Network [OSTI]

?CO, and H, O are initially present in exhaust stream [57]. .. . . . 42 Fig. 21 Fig. 22 Reaction path diagram for RAPRENOx process [63]. .. . Reduction of nitric oxide as a function of temperature, concentration of oxygen, carbon monoxide, and water... the influence of carbon monoxide [89]. . . . . . . . . 58 Fig. 28 Effect of residence time on the NOxOUT process as a function of temperature, NO(initial)=125ppm, 0-ratio of 4 [90]. .. . . . . . . . . . . . . . . 60 Fig. 29 Ammonia slip as a function...

Gentemann, Alexander M.G.

2001-01-01T23:59:59.000Z

400

Correcting injection pressure maladjustments to reduce NOX emissions by marine diesel engines  

Science Journals Connector (OSTI)

Emissions from the exhausts of marine diesel engines comprises several different gases including NOX. These are currently regulated at the international level under Regulation 13 of ANNEX VI of MARPOL 73/78, but this regulation only applies to new engines and is based on bench tests, for only a single engine designated the “parent engine”. Here, the need to take measurements from across their whole range and once in operation on board a vessel is examined. This would not only improve assessment of new equipment against the current regulation, but would also detect defects in the functioning of the engine.

C. Vanesa Durán Grados; Zigor Uriondo; Manuel Clemente; Francisco J. Jiménez Espadafor; Juan Moreno Gutiérrez

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxides nox particulates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Technology innovations and experience curves for nitrogen oxides control technologies  

SciTech Connect (OSTI)

This paper reviews the regulatory history for nitrogen oxides (NOx) pollutant emissions from stationary sources, primarily in coal-fired power plants. Nitrogen dioxide (NO{sub 2}) is one of the six criteria pollutants regulated by the 1970 Clean Air Act where National Ambient Air Quality Standards were established to protect public health and welfare. Patent data are used to show that in the cases of Japan, Germany, and the United States, innovations in NOx control technologies did not occur until stringent government regulations were in place, thus 'forcing' innovation. It is demonstrated that reductions in the capital and operation and maintenance (O&M) costs of new generations of high-efficiency NOx control technologies, selective catalytic reduction (SCR), are consistently associated with the increasing adoption of the control technology: the so-called learning-by-doing phenomena. The results show that as cumulative world coal-fired SCR capacity doubles, capital costs decline to {approximately} 86% and O&M costs to 58% of their original values. The observed changes in SCR technology reflect the impact of technological advance as well as other factors, such as market competition and economies of scale. 38 refs., 10 figs., 3 tabs.

Sonia Yeh; Edward S. Rubin; Margaret R. Taylor; David A. Hounshell [U.S. Environmental Protection Agency, Research Triangle Park, NC (United States). National Risk Management Research Laboratory, Office of Research and Development,

2005-12-15T23:59:59.000Z

402

Biodiesel versus diesel exposure: Enhanced pulmonary inflammation, oxidative stress, and differential morphological changes in the mouse lung  

SciTech Connect (OSTI)

The use of biodiesel (BD) or its blends with petroleum diesel (D) is considered to be a viable approach to reduce occupational and environmental exposures to particulate matter (PM). Due to its lower particulate mass emissions compared to D, use of BD is thought to alleviate adverse health effects. Considering BD fuel is mainly composed of unsaturated fatty acids, we hypothesize that BD exhaust particles could induce pronounced adverse outcomes, due to their ability to readily oxidize. The main objective of this study was to compare the effects of particles generated by engine fueled with neat BD and neat petroleum-based D. Biomarkers of tissue damage and inflammation were significantly elevated in lungs of mice exposed to BD particulates. Additionally, BD particulates caused a significant accumulation of oxidatively modified proteins and an increase in 4-hydroxynonenal. The up-regulation of inflammatory cytokines/chemokines/growth factors was higher in lungs upon BD particulate exposure. Histological evaluation of lung sections indicated presence of lymphocytic infiltrate and impaired clearance with prolonged retention of BD particulate in pigment laden macrophages. Taken together, these results clearly indicate that BD exhaust particles could exert more toxic effects compared to D. - Highlights: • Exposure of mice to BDPM caused higher pulmonary toxicity compared to DPM. • Oxidative stress and inflammation were higher in BD vs to D exposed mice. • Inflammatory lymphocyte infiltrates were seen only in lungs of mice exposed to BD. • Ineffective clearance, prolonged PM retention was present only after BD exposure.

Yanamala, Naveena, E-mail: wqu1@cdc.gov [Pathology and Physiology Research Branch/NIOSH/CDC, Morgantown, WV 26505 (United States); Hatfield, Meghan K., E-mail: wla4@cdc.gov [Pathology and Physiology Research Branch/NIOSH/CDC, Morgantown, WV 26505 (United States); Farcas, Mariana T., E-mail: woe7@cdc.gov [Pathology and Physiology Research Branch/NIOSH/CDC, Morgantown, WV 26505 (United States); Schwegler-Berry, Diane [Pathology and Physiology Research Branch/NIOSH/CDC, Morgantown, WV 26505 (United States); Hummer, Jon A., E-mail: qzh3@cdc.gov [Office of Mine Safety and Health Research/NIOSH/CDC, Pittsburgh, PA 15236 (United States); Shurin, Michael R., E-mail: shurinmr@upmc.edu [Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Birch, M. Eileen, E-mail: mib2@cdc.gov [NIOSH/CDC, 4676 Columbia Parkway, Cincinnati, OH 45226 (United States); Gutkin, Dmitriy W., E-mail: dwgutkin@hotmail.com [Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Kisin, Elena, E-mail: edk8@cdc.gov [Pathology and Physiology Research Branch/NIOSH/CDC, Morgantown, WV 26505 (United States); Kagan, Valerian E., E-mail: kagan@pitt.edu [Department of Environmental and Occupational Health, University of Pittsburgh, PA (United States); Bugarski, Aleksandar D., E-mail: zjl1@cdc.gov [Office of Mine Safety and Health Research/NIOSH/CDC, Pittsburgh, PA 15236 (United States); Shvedova, Anna A., E-mail: ats1@cdc.gov [Pathology and Physiology Research Branch/NIOSH/CDC, Morgantown, WV 26505 (United States); Department Physiology and Pharmacology, WVU, Morgantown, WV 26505 (United States)

2013-10-15T23:59:59.000Z

403

System and method for selective catalytic reduction of nitrogen oxides in combustion exhaust gases  

DOE Patents [OSTI]

A multi-stage selective catalytic reduction (SCR) unit (32) provides efficient reduction of NOx and other pollutants from about 50-550.degree. C. in a power plant (19). Hydrogen (24) and ammonia (29) are variably supplied to the SCR unit depending on temperature. An upstream portion (34) of the SCR unit catalyzes NOx+NH.sub.3 reactions above about 200.degree. C. A downstream portion (36) catalyzes NOx+H.sub.2 reactions below about 260.degree. C., and catalyzes oxidation of NH.sub.3, CO, and VOCs with oxygen in the exhaust above about 200.degree. C., efficiently removing NOx and other pollutants over a range of conditions with low slippage of NH.sub.3. An ammonia synthesis unit (28) may be connected to the SCR unit to provide NH.sub.3 as needed, avoiding transport and storage of ammonia or urea at the site. A carbonaceous gasification plant (18) on site may supply hydrogen and nitrogen to the ammonia synthesis unit, and hydrogen to the SCR unit.

Sobolevskiy, Anatoly; Rossin, Joseph A

2014-04-08T23:59:59.000Z

404

Evaluation of the Emission, Transport, and Deposition of Mercury, Arsenic, and Fine Particulate Matter From Coal-Based Power Plants in the Ohio River Valley  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Kevin crist Kevin crist Principal Investigator Ohio University Research and Technology Center Athens, OH 45701 740-593-4751 cristk@ohiou.edu Environmental and Water Resources Evaluation of thE Emission, transport, and dEposition of mErcury, arsEnic, and finE particulatE mattEr from coal-BasEd powEr plants in thE ohio rivEr vallEy rEgion Background The U.S. Department of Energy's National Energy Technology Laboratory (NETL) has established an aggressive research initiative to address the technical and scientific issues surrounding the impact of coal-based power systems on ambient levels of fine particulate matter (PM 2.5 ), nitrogen oxides (NO X ), mercury/air toxics, and acid gases. Regulatory drivers such as the 1990 Clean Air Act Amendments, the 1997 revised National Ambient Air Quality Standards, and the 2005 Clean Air

405

Metal Oxides  

Science Journals Connector (OSTI)

Metal oxides are the class of materials having the widest application in gas sensors. This chapter presents information related to the application of various metal oxides in gas sensors designed on different p...

Ghenadii Korotcenkov

2013-01-01T23:59:59.000Z

406

Reduction of Transient Particulate Matter Spikes with Decision Tree Based Control  

Broader source: Energy.gov [DOE]

Using a non-parametric decision tree to measure transient PM could correctly identify 94% of high opacity spikes and used to take targeted action to reduce PM without affecting NOx.

407

Method for control of NOx emission from combustors using fuel dilution  

DOE Patents [OSTI]

A method of controlling NOx emission from combustors. The method involves the controlled addition of a diluent such as nitrogen or water vapor, to a base fuel to reduce the flame temperature, thereby reducing NOx production. At the same time, a gas capable of enhancing flame stability and improving low temperature combustion characteristics, such as hydrogen, is added to the fuel mixture. The base fuel can be natural gas for use in industrial and power generation gas turbines and other burners. However, the method described herein is equally applicable to other common fuels such as coal gas, biomass-derived fuels and other common hydrocarbon fuels. The unique combustion characteristics associated with the use of hydrogen, particularly faster flame speed, higher reaction rates, and increased resistance to fluid-mechanical strain, alter the burner combustion characteristics sufficiently to allow operation at the desired lower temperature conditions resulting from diluent addition, without the onset of unstable combustion that can arise at lower combustor operating temperatures.

Schefer, Robert W. (Alamo, CA); Keller, Jay O (Oakland, CA)

2007-01-16T23:59:59.000Z

408

Engines - Particulate Studies - Revealing the True Nature of Diesel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engine Nanoparticle Research: Revealing the True Nature of Diesel Particulates Engine Nanoparticle Research: Revealing the True Nature of Diesel Particulates Thermophoretic sampling device Argonne's test engine with the thermophoretic sampling device attached. Nanostructure of graphitic diesel soot under high engine load A transmission electron microscope reveals the nanostructures of graphitic diesel soot sampled under high engine loads. Morphology of particles collected from diesel combustion with iso-paraffin-enriched fuel. Morphology of particles collected from diesel combution with iso-paraffin-enriched fuel. Amorphous soot particle collected from biodiesel combustion undera low-temperature condition. Amorphous soot particle collected from biodiesel combustion under low temperature conditions. Researchers have many ideas about how to reduce the soot produced by diesel

409

Design characteristics for facilities which process hazardous particulate  

SciTech Connect (OSTI)

Los Alamos National Laboratory is establishing a research and processing capability for beryllium. The unique properties of beryllium, including light weight, rigidity, thermal conductivity, heat capacity, and nuclear properties make it critical to a number of US defense and aerospace programs. Concomitant with the unique engineering properties are the health hazards associated with processing beryllium in a particulate form and the potential for worker inhalation of aerosolized beryllium. Beryllium has the lowest airborne standard for worker protection compared to all other nonradioactive metals by more than an order of magnitude. This paper describes the design characteristics of the new beryllium facility at Los Alamos as they relate to protection of the workforce. Design characteristics to be reviewed include; facility layout, support systems to minimize aerosol exposure and spread, and detailed review of the ventilation system design for general room air cleanliness and extraction of particulate at the source.

Abeln, S.P.; Creek, K.; Salisbury, S.

1998-12-01T23:59:59.000Z

410

High efficiency particulate removal with sintered metal filters  

SciTech Connect (OSTI)

Because of their particle removal efficiencies and durability, sintered metal filters have been chosen for high efficiency particulate air (HEPA) filter protection in the off-gas treatment system for the proposed Idaho National Engineering Laboratory Transuranic Waste Treatment Facility. Process evaluation of sintered metal filters indicated a lack of sufficient process design data to ensure trouble-free operation. Subsequence pilot scale testing was performed with flyash as the test particulate. The test results showed that the sintered metal filters can have an efficiency greater than 0.9999999 for the specific test conditions used. Stable pressure drop characteristics were observed in pulsed and reversed flow blowback modes of operation. Over 4900 hours of operation were obtained with operating conditions ranging up to approximately 90/sup 0/C and 24 vol % water vapor in the gas stream.

Kirstein, B.E.; Paplawsky, W.J.; Pence, D.T.; Hedahl, T.G.

1981-01-01T23:59:59.000Z

411

Advanced hybrid particulate collector and method of operation  

DOE Patents [OSTI]

A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between the rows of filter elements are rows of high voltage discharge electrodes. Between the rows of discharge electrodes and the rows of filter elements are grounded perforated plates for creating electrostatic precipitation zones.

Miller, Stanley J. (Grand Forks, ND)

2003-04-08T23:59:59.000Z

412

Air Pollution Control Regulations: No.27 - Control of Nitrogen Oxide  

Broader source: Energy.gov (indexed) [DOE]

Air Pollution Control Regulations: No.27 - Control of Nitrogen Air Pollution Control Regulations: No.27 - Control of Nitrogen Oxide Emissions (Rhode Island) Air Pollution Control Regulations: No.27 - Control of Nitrogen Oxide Emissions (Rhode Island) < Back Eligibility Commercial Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Rhode Island Program Type Environmental Regulations Provider Department of Environmental Management These regulations apply to stationary sources with the potential to emit 50 tons of nitrogen oxides (NOx) per year from all pollutant-emitting equipment or activities. The regulations describe possibilities for exemptions (i.e., for sources which have the potential to emit 50 tons but do not actually reach that level) and Reasonably Available Control

413

Advanced Metal-Oxide based SCR Catalysts  

Broader source: Energy.gov [DOE]

SCR with ammonia as reductant is an effective strategy being utilized to reduce NOx emissions to meet regulated levels.

414

Source Apportionment of Airborne Particulate Matter using Inorganic and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Source Apportionment of Airborne Particulate Matter using Inorganic and Source Apportionment of Airborne Particulate Matter using Inorganic and Organic Species as Tracers Title Source Apportionment of Airborne Particulate Matter using Inorganic and Organic Species as Tracers Publication Type Journal Article Year of Publication 2012 Authors Wang, Yungang, Philip K. Hopke, X. Xia, Oliver V. Rattigan, David C. Chalupa, and M. J. Source Journal Atmospheric Environment Volume 55 Start Page 525 Pagination 525-532 Date Published 01/2012 Keywords source apportionment positive matrix factorization (pmf) particulate matter (pm) molecular markers (mm) aethalometer delta-c Abstract Source apportionment is typically performed on chemical composition data derived from particulate matter (PM) samples. However, many common sources no longer emit significant amounts of characteristic trace elements requiring the use of more comprehensive chemical characterization in order to fully resolve the PM sources. Positive matrix factorization (EPA PMF, version 4.1) was used to analyze 24-hr integrated molecular marker (MM), secondary inorganic ions, trace elements, carbonaceous species and light absorption data to investigate sources of PM2.5 in Rochester, New York between October 2009 and October 2010 to explore the role of specific MMs. An eight-factor solutionwas found for which the factors were identified as isoprene secondary organic aerosol (SOA), airborne soil, other SOA, diesel emissions, secondary sulfate, wood combustion, gasoline vehicle, and secondary nitrate contributing 6.9%, 12.8%, 3.7%, 7.8%, 45.5%, 9.1%, 7.9%, and 6.3% to the average PM2.5 concentration, respectively Concentrations of pentacosane, hexacosane, heptacosane, and octacosane in the gasoline vehicles factor were larger compared to diesel emissions. Aethalometer Delta-C was strongly associated with wood combustion. The compounds, n-heptacosanoic acid and n-octacosanoic acid, occasionally used in the past as tracers for road dust, were found to largely associate with SOA in this study. In comparison with a standard PMF analyses without MM, inclusion of themwas necessary to resolve SOA and wood combustion factors in urban areas.

415

N-nitrosamine and N-nitramine Formation from NOx Reactions with Amines during Amine-Based CO2  

E-Print Network [OSTI]

Capture for Post-combustion Carbon Sequestration Background! Generation of electricity and heat from power- combustion carbon sequestration, the capture and underground storage of CO2 from the exhaust gases of power formation from NOx reactions with amines during amine-based carbon dioxide capture for postcombustion carbon

Mitch, William A.

416

Nox reduction with CO over supported Pd catalysts under simulated post Euro-IV diesel exhaust conditions  

Science Journals Connector (OSTI)

The catalytic reduction of NOx with CO over Pd/Al2O3 and Pd/TiO2/Al2O3 under simulated post Euro-IV diesel exhaust conditions was studied. The catalytic activities obtained...2 loadings and total amounts of reduc...

Yinghua Li; Dae-Won Lee; Young-Chul Ko…

2008-12-01T23:59:59.000Z

417

Flexible CHP System with Low NOx, CO, and VOC Emissions- Presentation by the Gas Technology Institute (GTI), June 2011  

Broader source: Energy.gov [DOE]

Presentation on Flexible CHP System with Low NOx, CO, and VOC Emissions, given by David Cygan of the Gas Technology Institute, at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

418

Implications of near-term coal power plant retirement for SO2 and NOX, and life cycle GHG emissions  

E-Print Network [OSTI]

prices of electricity production Plant type Unit Price Nuclear ($/MWh) 16.51 Wind ($/MWh) 201 Hydro Top SO2 100 430 95 440 100 430 Top NOX 105 350 100 380 105 345 Small, inefficient 125 410 125 405 125) Manitoba Hydro Manitoba Hydro Undertaking # 57 http://www.pub.gov.mb.ca/exhibits/mh-83.pdf. (5) Sotkiewicz

Jaramillo, Paulina

419

Global partitioning of NOx sources using satellite observations: Relative roles of fossil fuel combustion, biomass burning and  

E-Print Network [OSTI]

combustion, biomass burning and soil emissions Lyatt Jaegle´ ,a Linda Steinberger,a Randall V. Martinbc anthropogenic emissions, mostly resulting from fossil fuel combustion and biomass burning, are superimposed-CHEM chemical transport model. Top-down NOx sources are partitioned among fuel combustion (fossil fuel

Lyatt Jaeglé

420

Abatement of Air Pollution: The Clean Air Interstate Rule (CAIR) Nitrogen Oxides (Nox) Ozone Season Trading Program (Connecticut)  

Broader source: Energy.gov [DOE]

These regulations may apply to fossil-fuel fired emission units, and describe nitrogen emission allocations that owners of such units must meet. The regulations also contain provisions for...

Note: This page contains sample records for the topic "oxides nox particulates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

\\{NOx\\} reduction from a large bore natural gas engine via reformed natural gas prechamber fueling optimization  

Science Journals Connector (OSTI)

Lean combustion is a standard approach used to reduce \\{NOx\\} emissions in large bore (35–56 cm) stationary natural gas engines. However, at lean operating points, combustion instabilities and misfires give rise to high total hydrocarbon (THC) and carbon monoxide (CO) emissions. To counteract this effect, precombustion chamber (PCC) technology is employed to allow engine operation at an overall lean equivalence ratio while mitigating the rise of THC and CO caused by combustion instability and misfires. A PCC is a small chamber, typically 1–2% of the clearance volume. A separate fuel line supplies gaseous fuel to the PCC and a standard spark plug ignites the slightly rich mixture (equivalence ratio 1.1–1.2) in the PCC. The ignited PCC mixture enters the main combustion chamber as a high energy flame jet, igniting the lean mixture in the main chamber. Typically, natural gas fuels both the main chamber and the PCC. In the current research, a mixture of reformed natural gas (syngas) and natural gas fuels the PCC. Syngas is a broad term that refers to a synthetic gaseous fuel. In this case, syngas specifically denotes a mixture of hydrogen, carbon monoxide, nitrogen, and methane generated in a natural gas reformer. Syngas has a faster flame speed and a wider equivalence ratio range of operation than methane. Fueling the PCC with Syngas reduces combustion instabilities and misfires. This extends the overall engine lean limit, enabling further \\{NOx\\} reductions. Research results presented are aimed at quantifying the benefits of syngas PCC fueling. A model is developed to calculate the equivalence ratio in the PCC for different mixtures and flowrates of fuel. An electronic injection valve is used to supply the PCC with syngas. The delivery pressure, injection timing, and flow rate are varied to optimize PCC equivalence ratio. The experimental results show that supplying the PCC with 100% syngas improves combustion stability by 21% compared to natural gas PCC fueling. A comparison at equivalent combustion stability operating points between 100% syngas and natural gas shows an 87% reduction in \\{NOx\\} emissions for 100% syngas PCC fueling compared to natural gas PCC fueling.

Mathew D. Ruter; Daniel B. Olsen; Mark V. Scotto; Mark A. Perna

2012-01-01T23:59:59.000Z

422

Effects of Catalysts on Emissions from Heavy-Duty Diesel Retrofits for PM and NOX Control  

Broader source: Energy.gov [DOE]

The more heavily catalyzed and the hotter the exhaust temperature, the more strongly the aftertreatment will oxidize the exhaust.

423

Assessment of soil nitrogen oxides emissions and implementation in LOTOS-EUROS  

E-Print Network [OSTI]

the formation and transport of nitrogen dioxide, ozone, particulate matter and other species throughout EuropeAssessment of soil nitrogen oxides emissions and implementation in LOTOS-EUROS Date 18 March 2013, climate and nitrogen availability. Nitrogen availability is in turn determined by N-deposition from

Haak, Hein

424

Method for reducing NOx during combustion of coal in a burner  

DOE Patents [OSTI]

An organically complexed nanocatalyst composition is applied to or mixed with coal prior to or upon introducing the coal into a coal burner in order to catalyze the removal of coal nitrogen from the coal and its conversion into nitrogen gas prior to combustion of the coal. This process leads to reduced NOx production during coal combustion. The nanocatalyst compositions include a nanoparticle catalyst that is made using a dispersing agent that can bond with the catalyst atoms. The dispersing agent forms stable, dispersed, nano-sized catalyst particles. The catalyst composition can be formed as a stable suspension to facilitate storage, transportation and application of the catalyst nanoparticles to a coal material. The catalyst composition can be applied before or after pulverizing the coal material or it may be injected directly into the coal burner together with pulverized coal.

Zhou, Bing (Cranbury, NJ); Parasher, Sukesh (Lawrenceville, NJ); Hare, Jeffrey J. (Provo, UT); Harding, N. Stanley (North Salt Lake, UT); Black, Stephanie E. (Sandy, UT); Johnson, Kenneth R. (Highland, UT)

2008-04-15T23:59:59.000Z

425

Exhaust Gas Fuel Reforming of Diesel Fuel by Nonthermal Arc Discharge for NOx Trap Regeneration Application  

Science Journals Connector (OSTI)

Exhaust Gas Fuel Reforming of Diesel Fuel by Nonthermal Arc Discharge for NOx Trap Regeneration Application ... It has been demonstrated that low current arc discharges are highly nonhomogenous. ... In the second case, which corresponds to the most favorable one, assuming (i) a 100 kW car engine thermal power (i.e., 40 kW mechanical power), (ii) that the plasma will treat only a small fraction of the exhaust gas (typically 3.5%), (iii) that the plasma will operate under a cycling operating mode, and (iv) an 80% efficiency for the onboard production of electricity from the car engine, one can estimate that the electric power needed to run the plasma will be around 2.2% of the engine power only during 12 s every 11 km (6.8 miles), that is, 12 s every 6 min assuming a 110 km·h?1 (68 mph) average car velocity. ...

Alexandre Lebouvier; Franc?ois Fresnet; Fre?de?ric Fabry; Vale?rie Boch; Vandad Rohani; Franc?ois Cauneau; Laurent Fulcheri

2011-02-03T23:59:59.000Z

426

New CoO?SiO2-Sol Pillared Clays as Catalysts for NOx Conversion  

Science Journals Connector (OSTI)

For this purpose, codoped SiO2 sol PILC (CoSi?PILC) is prepared via an organic template route and the interlayer pillar structure is systematically investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and nitrogen adsorption isotherm measurement, along with a preliminary test on the de-NOx catalytic activity. ... The steady-state selective catalytic reduction of NO with CO over CoSi?PILC catalyst was carried out in an isothermal fixed-bed continuous flow quartz reactor (o.d. ... The elemental composition of CoSi?PILC was analyzed to estimate the pillar content of SiO2 and CoO. ...

Jin-Ho Choy; Hyun Jung; Yang-Su Han; Joo-Byoung Yoon; Yong-Gun Shul; Hyun-Jong Kim

2002-08-20T23:59:59.000Z

427

On-Board Engine Exhaust Particulate Matter Sensor for HCCI and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Matter Sensor for Both Engine-Out and Post-DPF Exhaust Monitoring On-Board Engine Exhaust Particulate Matter Sensor for HCCI and Conventional Diesel Engines Vehicle...

428

Using rare earth elements to constrain particulate organic carbon flux in marginal seas.  

E-Print Network [OSTI]

??Fluxes of particulate organic carbon (POC) in the East China Sea (ECS) have been reported to decrease from the inner continental shelf towards the outer… (more)

Chen, Ya-Feng

2014-01-01T23:59:59.000Z

429

E-Print Network 3.0 - airborne particulates european Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

de mathmatiques Collection: Mathematics 12 Statistical Issues in the Study of Air Pollution Involving Airborne Particulate Matter Summary: Statistical Issues in the Study of...

430

Real-Time Particulate Mass Measurements Pre and Post Diesel Particulat...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2005deeranderson.pdf More Documents & Publications Advanced Radio Frequency-Based Sensors for Monitoring Diesel Particulate Filter Loading and Regeneration Real-Time...

431

Vehicle Technologies Office Merit Review 2014: Particulate Emissions Control by Advanced Filtration Systems for GDI Engines  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about particulate...

432

E-Print Network 3.0 - airborne particulates impact Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

public health threat of air pollution Summary: . Currently there are six "criteria pollutants" for air pollution: PM10 (defined as particulate matter... a more specific human...

433

E-Print Network 3.0 - airborne fine particulate Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

particulate matter otherwise known as aerosols. However health risks from these pollutants... Airborne Pollution In urban environments What are the real health effects of...

434

Development of particulate-based EPR oximetry for regional, temporal, and rapid measurements in tissue.  

E-Print Network [OSTI]

??Electron paramagnetic resonance (EPR) oximetry is a useful research technique and a potential clinical tool. The goal of this dissertation was to establish particulate-based EPR… (more)

Vikram, Deepti S.

2008-01-01T23:59:59.000Z

435

E-Print Network 3.0 - atmospheric fine particulate Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and characterizing the diversity of particulate matter produced from fossil fuel and biomass burn combustion... studies on the mixing state of atmospheric particles and their...

436

E-Print Network 3.0 - air pollution particulate Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: air pollution particulate Page: << < 1 2 3 4 5 > >> 1 COLUMBIA UNIVERSITY Department of...

437

E-Print Network 3.0 - air particulate matter Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Engineering ; Renewable Energy 3 Statistical Issues in the Study of Air Pollution Involving Airborne Particulate Matter Summary: Statistical Issues in the...

438

E-Print Network 3.0 - assisted particulate filter Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

University of Nebraska-Lincoln Collection: Engineering 3 Prevention of Air Pollution from Ships: Diesel Engine Particulate Emission Reduction via Lube-Oil-Consumption...

439

Particulate matter and atherosclerosis: role of particle size, composition and oxidative stress  

E-Print Network [OSTI]

the APHEA2 (Air Pollution and Health: A European Approach)Series Studies of Air Pollution and Health. Boston, MA:association of air pollution with adverse health effects [1-

Araujo, Jesus A; Nel, Andre E

2009-01-01T23:59:59.000Z

440

Gas-Phase OH Oxidation of Monoterpenes: Gaseous and Particulate Products  

Science Journals Connector (OSTI)

Smog chamber experiments have beenconducted in which cyclic monoterpenes were oxidisedin the gas phase by OH. The evolved secondary organicaerosol (SOA) was analysed by LC-MSn and thegas-phase products were analy...

Bo. R. Larsen; Dario Di Bella; Marianne Glasius…

2001-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxides nox particulates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Exploring relationships between outdoor air particulate-associated  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Exploring relationships between outdoor air particulate-associated Exploring relationships between outdoor air particulate-associated polycyclic aromatic hydrocarbon and PM2.5: A case study of benzo(a)pyrene in California metropolitan regions Title Exploring relationships between outdoor air particulate-associated polycyclic aromatic hydrocarbon and PM2.5: A case study of benzo(a)pyrene in California metropolitan regions Publication Type Journal Article LBNL Report Number LBNL-514E Year of Publication 2008 Authors Lobscheid, Agnes B., Thomas E. McKone, and D. A. Valleroc Journal Atmospheric Environment Volume 41 Start Page Chapter Pagination 5659-5672 Abstract Polycyclic aromatic hydrocarbons (PAHs) and particulate matter (PM) are co-pollutants emitted as by-products of combustion processes. Convincing evidence exists for PAHs as a primary toxic component of fine PM (PM2.5). Because PM2.5 is listed by the US EPA as a "Criteria Pollutant," it is monitored regularly at sites nationwide. In contrast, very limited data is available on measured ambient air concentrations of PAHs. However, between 1999-2001, ambient air concentrations of PM2.5 and benzo(a)pyrene (BaP) are available for California locations. We use multivariate linear regression models (MLRMs) to predict ambient air levels of BaP in four air basins based on reported PM2.5 concentrations and spatial, temporal and meteorological variables as variates. We obtain an R2 ranging from 0.57-0.72 among these basins. Significant variables (p<0.05) include the average daily PM2.5 concentration, wind speed, temperature and relative humidity, and the coastal distance as well as season, and holiday or weekend. Combining the data from all sites and using only these variables to estimate ambient BaP levels, we obtain an R2 of 0.55. These R2-values, combined with analysis of the residual error and cross validation using the PRESS-statistic, demonstrate the potential of our method to estimate reported outdoor air PAH exposure levels in metropolitan regions. These MLRMs provide a first step towards relating outdoor ambient PM2.5 and PAH concentrations for epidemiological studies when PAH measurements are unavailable, or limited in spatial coverage, based on publicly available meteorological and PM2.5 data

442

Electrically heated particulate filter with zoned exhaust flow control  

DOE Patents [OSTI]

A system includes a particulate matter (PM) filter that includes X zones. An electrical heater includes Y heater segments that are associated with respective ones of the X zones. The electrical heater is arranged upstream from and proximate with the PM filter. A valve assembly includes Z sections that are associated with respective ones of the X zones. A control module adjusts flow through each of the Z sections during regeneration of the PM filter via control of the valve assembly. X, Y and Z are integers.

Gonze, Eugene V [Pinckney, MI

2012-06-26T23:59:59.000Z

443

Apparatus for removal of particulate matter from gas streams  

DOE Patents [OSTI]

An apparatus for the removal of particulate matter from the gaseous product stream of an entrained flow coal gasifier which apparatus includes an initial screen, an intermediate screen which is aligned with the direction of flow of the gaseous product stream and a final screen transversely disposed to the flow of gaseous product and which apparatus is capable of withstanding at least a pressure differential of about 10 psi (68.95 kPa) or greater at the temperatures of the gaseous product stream.

Smith, Peyton L. (Baton Rouge, LA); Morse, John C. (Baton Rouge, LA)

2000-01-01T23:59:59.000Z

444

Prospecting by sampling and analysis of airborne particulates and gases  

DOE Patents [OSTI]

A method is claimed for prospecting by sampling airborne particulates or gases at a ground position and recording wind direction values at the time of sampling. The samples are subsequently analyzed to determine the concentrations of a desired material or the ratios of the desired material to other identifiable materials in the collected samples. By comparing the measured concentrations or ratios to expected background data in the vicinity sampled, one can select recorded wind directions indicative of the upwind position of the land-based source of the desired material.

Sehmel, G.A.

1984-05-01T23:59:59.000Z

445

Innovative Clean Coal Technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Quarterly report No. 6, October--December, 1991  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor.

Not Available

1992-02-01T23:59:59.000Z

446

Innovative Clean Coal Technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO sub x ) emissions from high-sulfur coal-fired boilers  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor.

Not Available

1992-02-01T23:59:59.000Z

447

Innovative clean coal technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Quarterly report No. 3, January--March 1991  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor.

Not Available

1991-07-01T23:59:59.000Z

448

Innovative clean coal technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO sub x ) emissions from high-sulfur coal-fired boilers  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor.

Not Available

1991-07-01T23:59:59.000Z

449

Crystal Structure and Characterization of Particulate Methane Monooxygenase from Methylocystis species Strain M  

SciTech Connect (OSTI)

Particulate methane monooxygenase (pMMO) is an integral membrane metalloenzyme that oxidizes methane to methanol in methanotrophic bacteria. Previous biochemical and structural studies of pMMO have focused on preparations from Methylococcus capsulatus (Bath) and Methylosinus trichosporium OB3b. A pMMO from a third organism, Methylocystis species strain M, has been isolated and characterized. Both membrane-bound and solubilized Methylocystis sp. strain M pMMO contain {approx}2 copper ions per 100 kDa protomer and exhibit copper-dependent propylene epoxidation activity. Spectroscopic data indicate that Methylocystis sp. strain M pMMO contains a mixture of Cu{sup I} and Cu{sup II}, of which the latter exhibits two distinct type 2 Cu{sup II} electron paramagnetic resonance (EPR) signals. Extended X-ray absorption fine structure (EXAFS) data are best fit with a mixture of Cu-O/N and Cu-Cu ligand environments with a Cu-Cu interaction at 2.52-2.64 {angstrom}. The crystal structure of Methylocystis sp. strain M pMMO was determined to 2.68 {angstrom} resolution and is the best quality pMMO structure obtained to date. It provides a revised model for the pmoA and pmoC subunits and has led to an improved model of M. capsulatus (Bath) pMMO. In these new structures, the intramembrane zinc/copper binding site has a different coordination environment from that in previous models.

Smith, Stephen M.; Rawat, Swati; Telser, Joshua; Hoffman, Brian M.; Stemmler, Timothy L.; Rosenzweig, Amy C. (WSU-MED); (NWU)

2012-02-08T23:59:59.000Z

450

Toward Distinguishing Woodsmoke and Diesel Exhaust in Ambient Particulate Matter  

SciTech Connect (OSTI)

Particulate matter (PM) from biomass burning and diesel exhaust has distinct X-ray spectroscopic, carbon specific signatures, which can be employed for source apportionment. Characterization of the functional groups of a wide selection of PM samples (woodsmoke, diesel soot, urban air PM) was carried out using the soft X-ray spectroscopy capabilities at the synchrotron radiation sources in Berkeley (ALS) and Brookhaven (NSLS). The spectra reveal that diesel exhaust particulate (DEP) matter is made up from a semigraphitic solid core and soluble organic matter, predominantly with carboxylic functional groups. Woodsmoke PM has no or a less prevalent, graphitic signature, instead it contains carbon-hydroxyl groups. Using these features to apportion the carbonaceous PM in ambient samples we estimate that the relative contribution of DEP to ambient PM in an urban area such as Lexington, KY and St. Louis, MO is 7% and 13.5%, respectively. These values are comparable to dispersion modeling data from nonurban and urban areas in California, and with elemental carbon measurements in urban locations such as Boston, MA, Rochester, NY, and Washington, DC.

Braun,A.; Huggins, F.; Kubatova, A.; Wirick, S.; Maricq, M.; Mun, B.; McDonald, J.; Kelly, K.; Shah, N.; Huffman, G.

2008-01-01T23:59:59.000Z

451

Cooler and particulate separator for an off-gas stack  

DOE Patents [OSTI]

This report describes an off-gas stack for a melter, furnace or reaction vessel comprising an air conduit leading to two sets of holes, one set injecting air into the off-gas stack near the melter plenum and the second set injecting air downstream of the first set. The first set injects air at a compound angle, having both downward and tangential components, to create a reverse vortex flow, counter to the direction of flow of gas through the stack and also along the periphery of the stack interior surface. Air from the first set of holes prevents recirculation zones from forming and the attendant accumulation of particulate deposits on the wall of the stack and will also return to the plenum any particulate swept up in the gas entering the stack. The second set of holes injects air in the same direction as the gas in the stack to compensate for the pressure drop and to prevent the concentration of condensate in the stack. A set of sprayers, receiving water from a second conduit, is located downstream of the second set of holes and sprays water into the gas to further cool it.

Wright, G.T.

1991-04-08T23:59:59.000Z

452

Characterization and modification of particulate properties to enhance filtration performance  

SciTech Connect (OSTI)

The specific objectives of this project are to characterize the particulate properties that determine the filtration performance of fabric filters, and to investigate methods for modifying these particulate properties to enhance filtration performance. Inherent in these objectives is the development of an experimental approach that will lead to full-scale implementation of beneficial conditioning processes identified during the project. The general approach has included a large number of laboratory evaluations to be followed by optional field tests of a new successful conditioning processes performed on a sidestream device. This project was divided into five tasks. The schedule followed for these tasks is shown in Figure 4. Tasks 2 and 3 each focus on one of the two complementary parts of the project. Task 2 Parametric Tests of Ashes and Fabrics, evaluates the degree to which ash properties and fabric design determine filtration performance. Task 3 Survey of Methods to Modify the Particle Filtration Properties, provides a literature review and laboratory study of techniques to modify ash properties. The results of these two tasks were used in Task 4 Proof-of-Concept Tests of Methods to Modify Particle Filtration Properties to demonstrate the effects on filtration performance of modifying ash properties. The findings of all the tasks are summarized in this Final Report. 13 refs.

Snyder, T.R.; Vann Bush, P.; Robinson, M.S.

1990-06-01T23:59:59.000Z

453

Cooler and particulate separator for an off-gas stack  

DOE Patents [OSTI]

An off-gas stack for a melter comprising an air conduit leading to two sets of holes, one set injecting air into the off-gas stack near the melter plenum and the second set injecting air downstream of the first set. The first set injects air at a compound angle, having both downward and tangential components, to create a reverse vortex flow, counter to the direction of flow of gas through the stack and also along the periphery of the stack interior surface. Air from the first set of holes pervents recirculation zones from forming and the attendant accumulation of particulate deposits on the wall of the stack and will also return to the plenum any particulate swept up in the gas entering the stack. The second set of holes injects air in the same direction as the gas in the stack to compensate for the pressure drop and to prevent the concentration of condensate in the stack. A set of sprayers, receiving water from a second conduit, is located downstream of the second set of holes and sprays water into the gas to further cool it.

Wright, George T. (15 Cherry Hills Dr., Aiken, SC 29803)

1992-01-01T23:59:59.000Z

454

Shifting primary energy source and NOx emission location with plug-in hybrid vehicles  

Science Journals Connector (OSTI)

Plug-in hybrid vehicles (PHEVs) present an interesting technological opportunity for using non-fossil primary energy in light duty passenger vehicles, with the associated potential for reducing air pollutant and greenhouse gas emissions, to the extent that the electric power grid is fed by non-fossil sources. This perspective, accompanying the article by Thompson et al (2011) in this issue, will touch on two other studies that are directly related: the Argonne study (Elgowainy et al 2010) and a PhD thesis from Utrecht (van Vliet 2010). Thompson et al (2011) have examined air quality effects in a case where the grid is predominantly fossil fed. They estimate a reduction of 7.42 tons/day of NOx from motor vehicles as a result of substituting electric VMTs for 20% of the light duty gasoline vehicle miles traveled. To estimate the impact of this reduction on air quality they also consider the increases in NOx emissions due to the increased load on electricity generating units. The NOx emission increases are estimated as 4.0, 5.5 and 6.3 tons for the Convenience, Battery and Night charging scenarios respectively. The net reductions are thus in the 1.1–3.4 tons/day range. The air quality modelling results presented show that the air quality impact from a ground-level ozone perspective is favorable overall, and while the effect is stronger in some localities, the difference between the three scenarios is small. This is quite significant and suggests that localization of the NOx emissions to point sources has a more pronounced effect than the absolute reductions achieved. Furthermore it demonstrates that localization of NOx emissions to electricity generating units by using PHEVs in vehicle traffic has beneficial effects for air quality not only by minimizing direct human exposure to motor vehicle emissions, but also due to reduced exposure to secondary pollutants (i.e. ozone). In an electric power grid with a smaller share of fossil fired generating units, the beneficial effects would be more pronounced. In such a case, it would also be possible to realize reductions in greenhouse gas emissions. The significance of the electric power generation mix for plug-in hybrid vehicles and battery electric vehicles is a key aspect of Argonne National Laboratories' well-to-wheel study which focuses on petroleum use and greenhouse gas emissions (Elgowainy et al 2010). The study evaluates possible reductions in petroleum use and GHG emissions in the electric power systems in four major regions of the United States as well as the US average generation mix, using Argonne's GREET life-cycle analysis model. Two PHEV designs are investigated through a Powertrain System Analysis Toolkit (PSAT) model: the power-split configuration (e.g. the current Toyota Prius model with Hymotion conversion), and a future series configuration where the engine powers a generator, which charges a battery that is used by the electric motor to propel the vehicle. Since the petroleum share is small in the electricity generation mix for most regions in the United States, it is possible to achieve significant reductions in petroleum use by PHEVs. However, GHG reduction is another story. In one of the cases in the study, PHEVs in the charge depleting mode and recharging from a mix with a large share of coal generation (e.g., Illinois marginal mix) produce GHG emissions comparable to those of baseline gasoline internal combustion engine vehicles (with a range from ?15% to +10%) but significantly higher than those of gasoline hybrid electric vehicles (with a range from +20% to +60%). In what is called the unconstrained charging scenario where investments in new generation capacity with high efficiency and low carbon intensity are envisaged, it becomes possible to achieve significant reductions in both petroleum use and GHG emissions. In a PhD dissertation at Utrecht University, van Vliet (2010) presents a comprehensive analysis of alternatives to gasoline and diesel by looking at various fuel and vehicle technologies. Three chapters are of particular interest from the

Deniz Karman

2011-01-01T23:59:59.000Z

455

An Experimental Investigation of the Origin of Increased NOx Emissions When Fueling a Heavy-Duty Compression-Ignition Engine with Soy Biodiesel  

Broader source: Energy.gov [DOE]

Optical engine experiments suggest that near stoichiometric charge-gas mixtures in the standing premixed autoignition zone near flame lift-off length explains biodiesel NOx increase under all conditions

456

Pillared smectite modified with carbon and manganese as catalyst for SCR of NOx with NH3. Part I. General characterization and catalyst screening  

Science Journals Connector (OSTI)

Carbon- and manganese-modified zirconia-pillared smectites were prepared, characterized (XRD, BET and pore analysis, XPS) and tested in selective catalytic reduction of NOx with NH3. Both untreated and acidic pre...

Lucjan Chmielarz; Roman Dziembaj; Teresa Grzybek; Jerzy Klinik…

457

Enrichment and Association of Bacteria and Particulates in Salt Marsh Surface Water  

Science Journals Connector (OSTI)

...Bacteria and Particulates in Salt Marsh Surface Water R. W. Harvey L. Y. Young Environmental...Bacteria and Particulates in Salt Marsh Surface Water R. W. HARVEY AND L. Y. YOUNG...surface. (A) Sippewissett marsh, n = 23, r = 0.91. (B) Palo Alto marsh...

R. W. Harvey; L. Y. Young

1980-04-01T23:59:59.000Z

458

Seasonality and Interaction of Biogenic and Lithogenic Particulate Flux at the Panama Basin  

Science Journals Connector (OSTI)

...particulate flux at the Panama Basin Honjo Susumu Author Woods Hole...Particulate Flux at the Panama Basin Abstract. Time-series sediment...3860 meters) in the Panama Basin. The amount ofhorizontal and...to deep water in the Panama Bight. During January through March...

SUSUMU HONJO

1982-11-26T23:59:59.000Z

459

Probing into regional ozone and particulate matter pollution in the United States  

E-Print Network [OSTI]

) and fine particulate matter (PM2.5) air pollution and associated health effects have been one of the majorProbing into regional ozone and particulate matter pollution in the United States: 1. A 1 year CMAQ-term simulations using the Community Multiscale Air Quality (CMAQ) modeling system and subsequent process analyses

Jacobson, Mark

460

Developing an accelerated aging system for gasoline particulate filters and an evaluation test for effects on engine performance  

E-Print Network [OSTI]

Stringent regulations worldwide will limit the level of particulate matter (PM) emitted from gasoline engines equipped with direct fuel injection. Gasoline particulate filters (GPFs) present one strategy for meeting PM ...

Jorgensen, James E. (James Eastman)

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxides nox particulates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Development of a dry low-NOx gas turbine combustor for a natural-gas fueled 2MW co-generation system  

SciTech Connect (OSTI)

A dry low-NOx gas turbine combustor has been developed for natural-gas fueled co-generation systems in the power range of 1--4MW. The combustor. called the Double Swirler Combustor, uses the lean premixed combustion to reduce NOx emission. The combustor is characterized by two staged lean premixed combustion with two coaxial annular burners and a simple fuel control system without the complex variable geometry. Substantially low NOx level has been achieved to meet the strict NOx regulation to co-generation systems in Japan. High combustion efficiency has been obtained for a wide operating range. In 1994, Tokyo Gas and Ishikawajima-Harima Heavy Industries initiated a collaborative program to develop a natural-gas fueled low NOx gas turbine engine for new 2MW class co-generation system, named IM270. The Double Swirler Combustor, originally developed by Tokyo Gas, was introduced into the natural gas fueled version of the IM270. Engine test of the first production unit was successfully conducted to confirm substantially low NOx level of less than 15 ppm (O{sub 2} = 16%) with the output power of more than 2MW. Test for the durability and the reliability of the system is being conducted at Tokyo Gas Negishi LNG Terminal in Kanagawa, Japan and successful results have been so far obtained.

Mori, Masaaki; Sato, Hiroshi

1998-07-01T23:59:59.000Z

462

Evaluation of the Impacts of Biodiesel and Second Generation Biofuels on NOx Emissions for CARB Diesel Fuels  

Science Journals Connector (OSTI)

McCormick, R. L.; Graboski, M. S.; Alleman, T. L.; Herring, A. M.; Tyson, K. S.Impact of Biodiesel Source Material and Chemical Structure on Emissions of Criteria Pollutants from a Heavy-Duty Engine Environ. ... McCormick, Robert L.; Graboski, Michael S.; Alleman, Teresa L.; Herring, Andrew M.; Tyson, K. Shaine ... McCormick, R.; Alvarez, J.; Graboski, M.; Tyson, K.Fuel Additive and Blending Approaches to Reducing NOx Emissions from Biodiesel SAE Tech. ...

Maryam Hajbabaei; Kent C. Johnson; Robert A. Okamoto; Alexander Mitchell; Marcie Pullman; Thomas D. Durbin

2012-07-12T23:59:59.000Z

463

Thermo-Oxidation of Tokamak Carbon Dust  

SciTech Connect (OSTI)

The oxidation of dust and flakes collected from the DIII-D tokamak, and various commercial dust specimens, has been measured at 350 ºC and 2.0 kPa O2 pressure. Following an initial small mass loss, most of the commercial dust specimens showed very little effect due to O2 exposure. Similarly, dust collected from underneath DIII-D tiles, which is thought to comprise largely Grafoil™ particulates, also showed little susceptibility to oxidation at this temperature. However, oxidation of the dust collected from tile surfaces has led to ~ 18% mass loss after 8 hours; thereafter, little change in mass was observed. This suggests that the surface dust includes some components of different composition and/or structure – possibly fragments of codeposited layers. The oxidation of codeposit flakes scraped form DIII-D upper divertor tiles showed an initial 25% loss in mass due to heating in vacuum, and the gradual loss of 30-38% mass during the subsequent 24 hours exposure to O2. This behavior is significantly different from that observed for the oxidation of thinner DIII-D codeposit specimens which were still adhered to tile surfaces, and this is thought to be related to the low deuterium content (D/C ~ 0.03 – 0.04) of the flakes.

J.W. Davis; B.W.N. Fitzpatrick; J.P. Sharpe; A.A. Haasz

2008-04-01T23:59:59.000Z

464

NOx, FINE PARTICLE AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT  

SciTech Connect (OSTI)

This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and coal. The objective is to determine the relationship between (1) fraction sludge in the sludge/coal mixture, and (2) combustion conditions on (a) NOx concentrations in the exhaust, (b) the size segregated fine and ultra-fine particle composition in the exhaust, and (c) the partitioning of toxic metals between vapor and condenses phases, within the process. The proposed study will be conducted in concert with an existing ongoing research on toxic metal partitioning mechanisms for very well characterized pulverized coals alone. Both high NOx and low NOx combustion conditions will be investigated (unstaged and staged combustion). Tradeoffs between CO{sub 2} control, NO{sub x} control, and inorganic fine particle and toxic metal emissions will be determined. Previous research results have demonstrated that the inhalation of coal/MSS ash particles cause an increase in lung permeability than coal ash particles alone. Elemental analysis of the coal/MSS ash particles showed that Zn was more abundant in these ash particles than the ash particles of coal ash alone.

Jost O.L. Wendt

2003-01-31T23:59:59.000Z

465

An Optical Backscatter Sensor for Particulate Matter Measurement  

SciTech Connect (OSTI)

Diesel engines are prone to emit particulate matter (PM) emissions under certain operation conditions. In-cylinder production of PM from diesel combustion control can occur under a wide variety of operating conditions, and in some cases, operation of a multi-cylinder engine can further complicate PM emissions due to variations in air or fuel charge due to manifold mixing effects. In this study, a probe for detecting PM in diesel exhaust was evaluated on a light-duty diesel engine. The probe is based on an optical backscattering effect. Due to the optical nature of the probe, PM sensing can occur at high rates. The feasibility of the probe for examining PM emissions in the exhaust manifold will be discussed.

Parks, II, James E [ORNL; Prikhodko, Vitaly Y [ORNL; Partridge Jr, William P [ORNL

2009-01-01T23:59:59.000Z

466

Direct and quantitative photothermal absorption spectroscopy of individual particulates  

SciTech Connect (OSTI)

Photonic structures can exhibit significant absorption enhancement when an object's length scale is comparable to or smaller than the wavelength of light. This property has enabled photonic structures to be an integral component in many applications such as solar cells, light emitting diodes, and photothermal therapy. To characterize this enhancement at the single particulate level, conventional methods have consisted of indirect or qualitative approaches which are often limited to certain sample types. To overcome these limitations, we used a bilayer cantilever to directly and quantitatively measure the spectral absorption efficiency of a single silicon microwire in the visible wavelength range. We demonstrate an absorption enhancement on a per unit volume basis compared to a thin film, which shows good agreement with Mie theory calculations. This approach offers a quantitative approach for broadband absorption measurements on a wide range of photonic structures of different geometric and material compositions.

Tong, Jonathan K.; Hsu, Wei-Chun; Eon Han, Sang; Burg, Brian R.; Chen, Gang, E-mail: gchen2@mit.edu [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)] [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Zheng, Ruiting [Key Laboratory of Radiation Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China)] [Key Laboratory of Radiation Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Shen, Sheng [Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States)] [Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States)

2013-12-23T23:59:59.000Z

467

Mechanisms governing fine particulate emissions from coal flames  

SciTech Connect (OSTI)

The primary objective of this program was to provide a basic understanding of the principal processes that govern the formation of particulate matter in the 0.5--10 {mu}m size range in pulverized coal flames. The mechanism that produces ash particles in this size range is not clear. Particle sizes smaller than the 0.5--10 {mu}m size range are generally accepted to result from a vaporization/condensation mechanism while particles larger than this size result from the coalescence of ash in coal particles which may breakup as they burn. This program combined experimental and theoretical studies to understand the mechanisms which control the production of ash in the 0.5--10 {mu}m size range. (VC)

Newton, G.H.; Schieber, C.; Socha, R.G.; Kramlich, J.C.

1990-04-01T23:59:59.000Z

468

Mechanisms governing fine particulate emissions from coal flames. Final report  

SciTech Connect (OSTI)

The primary objective of this program was to provide a basic understanding of the principal processes that govern the formation of particulate matter in the 0.5--10 {mu}m size range in pulverized coal flames. The mechanism that produces ash particles in this size range is not clear. Particle sizes smaller than the 0.5--10 {mu}m size range are generally accepted to result from a vaporization/condensation mechanism while particles larger than this size result from the coalescence of ash in coal particles which may breakup as they burn. This program combined experimental and theoretical studies to understand the mechanisms which control the production of ash in the 0.5--10 {mu}m size range. (VC)

Newton, G.H.; Schieber, C.; Socha, R.G.; Kramlich, J.C.

1990-04-01T23:59:59.000Z

469

Multi-Pollutant Emissions Control: Pilot Plant Study of Technologies for Reducing Hg, SO3, NOx and CO2 Emissions  

SciTech Connect (OSTI)

A slipstream pilot plant was built and operated to investigate technology to adsorb mercury (Hg) onto the existing particulate (i.e., fly ash) by cooling flue gas to 200-240 F with a Ljungstrom-type air heater or with water spray. The mercury on the fly ash was then captured in an electrostatic precipitator (ESP). An alkaline material, magnesium hydroxide (Mg(OH){sub 2}), is injected into flue gas upstream of the air heater to control sulfur trioxide (SO{sub 3}), which prevents acid condensation and corrosion of the air heater and ductwork. The slipstream was taken from a bituminous coal-fired power plant. During this contract, Plant Design and Construction (Task 1), Start Up and Maintenance (Task 2), Baseline Testing (Task 3), Sorbent Testing (Task 4), Parametric Testing (Task 5), Humidification Tests (Task 6), Long-Term Testing (Task 7), and a Corrosion Study (Task 8) were completed. The Mercury Stability Study (Task 9), ESP Report (Task 11), Air Heater Report (Task 12) and Final Report (Task 14) were completed. These aspects of the project, as well as progress on Public Outreach (Task 15), are discussed in detail in this final report. Over 90% mercury removal was demonstrated by cooling the flue gas to 200-210 F at the ESP inlet; baseline conditions with 290 F flue gas gave about 26% removal. Mercury removal is sensitive to flue gas temperature and carbon content of fly ash. At 200-210 F, both elemental and oxidized mercury were effectively captured at the ESP. Mg(OH){sub 2} injection proved effective for removal of SO{sub 3} and eliminated rapid fouling of the air heater. The pilot ESP performed satisfactorily at low temperature conditions. Mercury volatility and leaching tests did not show any stability problems. No significant corrosion was detected at the air heater or on corrosion coupons at the ESP. The results justify larger-scale testing/demonstration of the technology. These conclusions are presented and discussed in two presentations given in July and September of 2005 and are included in Appendices E and F.

Michael L. Fenger; Richard A. Winschel

2005-08-31T23:59:59.000Z

470

Development of All-Solid-State Sensors for Measurement of Nitric Oxide and Ammonia Concentrations by Optical Absorption in Particle-Laden Combustion Exhaust Streams  

SciTech Connect (OSTI)

An all-solid-state continuous-wave (cw) laser system for ultraviolet absorption measurements of the nitric oxide (NO) molecule has been developed and demonstrated. For the NO sensor, 250 nW of tunable cw ultraviolet radiation is produced by sum-frequency-mixing of 532-nm radiation from a diode-pumped Nd:YAG laser and tunable 395-nm radiation from an external cavity diode laser (ECDL). The sum-frequency-mixing process occurs in a beta-barium borate crystal. The nitric oxide absorption measurements are performed by tuning the ECDL and scanning the sum-frequency-mixed radiation over strong nitric oxide absorption lines near 226 nm. In Year 1 of the research, the nitric oxide sensor was used for measurements in the exhaust of a coal-fired laboratory combustion facility. The Texas A&M University boiler burner facility is a 30 kW (100,000 Btu/hr) downward-fired furnace with a steel shell encasing ceramic insulation. Measurements of nitric oxide concentration in the exhaust stream were performed after modification of the facility for laser based NOx diagnostics. The diode-laser-based ultraviolet absorption measurements were successful even when the beam was severely attenuated by particulate in the exhaust stream and window fouling. Single-laser-sweep measurements were demonstrated with an effective time resolution of 100 msec, limited at this time by the scan rate of our mechanically tuned ECDL system. In Year 2, the Toptica ECDL in the original system was replaced with a Sacher Lasers ECDL. The mode-hop-free tuning range and tuning rate of the Toptica ECDL were 25 GHz and a few Hz, respectively. The mode-hop-free tuning range and tuning rate of the Sacher Lasers ECDL were 90 GHz and a few hundred Hz, respectively. The Sacher Lasers ECDL thus allows us to scan over the entire NO absorption line and to determine the absorption baseline with increased accuracy and precision. The increased tuning rate is an advantage in that data can be acquired much more rapidly and the absorption measurements are less susceptible to the effects of transient fluctuations in the properties of the coal combustor exhaust stream. Gas cell measurements were performed using the NO sensor with the new ECDL, and a few spectra were acquired from the coal exhaust stream. However, the laser diode in the new ECDL failed during the coal combustor tests. In Year 3, however, we obtained a new GaN laser diode for our ECDL system, installed it, and completed an extensive series of measurements in the Texas A&M coal-fired laboratory combustion facility. The combustor was operated with coal and coal/biomass as fuels, with and without reburn, and with and without ammonia injection. Several different fuel equivalence ratios were investigated for each operating condition.

Jerald A. Caton; Kalyan Annamalai; Robert P. Lucht

2006-12-31T23:59:59.000Z

471

NOx diesel exhaust treatment using a pulsed corona discharge: the pulse repetition rate effect  

Science Journals Connector (OSTI)

The pulsed corona offers real promise for degradation of pollutants in gas and water streams. This paper presents a study of NOx removal from diesel exhaust. Special emphasis is laid on the investigation of the dependence of the NO removal rate and efficiency on the pulse repetition rate (PRR). A nanosecond solid state power supply (45?kV, 60?ns, up to 1?kHz) was used for driving the corona reactor. A Mitsubishi 10?kW 3-cylinder diesel-generator engine with a total volume of 1300?cm3 was used as a source of exhaust gas. At an NO removal rate of 35% the NO removal efficiency was 53?g?kW?1h?1 for PRR = 500?Hz and the initial NO concentration was 375?ppm. A semi-empirical expression for the corona reactor removal efficiency related both to PRR and to the residence time is presented. The removal efficiency decreases with increasing PRR at constant flow rate or constant residence time. This expression demonstrates reasonable agreement between the calculation results and the experimental data.

Y Yankelevich; M Wolf; R Baksht; A Pokryvailo; J Vinogradov; B Rivin; E Sher

2007-01-01T23:59:59.000Z

472

Low NOx Burner Design and Analysis for Conceptual Design of Oxygen-Based PC Boiler  

SciTech Connect (OSTI)

The objective of the low NOx burner design and analysis task of the Conceptual Design of Oxygen-Based PC Boiler study is to optimize the burner design to ensure stable ignition, to provide safe operation, and to minimize pollutant formation. The burners were designed and analyzed using the Fluent computer program. Four burner designs were developed: (1) with no over-fire gas (OFG) and 65% flue gas recycle, (2) with 20% OFG and 65% flue gas recycle, (3) with no OFG and 56% flue gas recycle and (4) with 20% OFG and 56% flue gas recycle. A 3-D Fluent simulation was made of a single wall-fired burner and horizontal portion of the furnace from the wall to the center. Without primary gas swirl, coal burnout was relatively small, due to the low oxygen content of the primary gas stream. Consequently, the burners were modified to include primary gas swirl to bring the coal particles in contact with the secondary gas. An optimal primary gas swirl was chosen to achieve sufficient burnout.

Andrew Seltzer

2005-05-01T23:59:59.000Z

473

Smoking Status and Occupational Exposure Affects Oxidative DNA Injury in Boilermakers Exposed to Metal Fume and Residual Oil Fly Ash  

Science Journals Connector (OSTI)

...sensitization by residual oil fly ash particles...composition of residual oil fly ash determines...coupled plasma sector field mass spectrometry...particulate-mediated cytokine production in lung epithelial...et al. Residual oil fly ash induces cytotoxicity...probably through cumulative oxidative DNA damage...

Sutapa Mukherjee; Lyle J. Palmer; Jee Young Kim; David B. Aeschliman; Robert S. Houk; Mark A. Woodin; and David C. Christiani

2004-03-01T23:59:59.000Z

474

EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION  

SciTech Connect (OSTI)

Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

Kevin Crist

2004-10-02T23:59:59.000Z

475

Evaluation of the Emission, Transport, and Deposition of Mercury, Fine Particulate Matter, and Arsenic from Coal-Based Power Plants in the Ohio River Valley Region  

SciTech Connect (OSTI)

Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

Kevin Crist

2005-10-02T23:59:59.000Z

476

EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION  

SciTech Connect (OSTI)

Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc. (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal-fired power plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley Region, operated independently of this project. These sites may include (1) the DOE National Energy Technology Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

Kevin Crist

2004-04-02T23:59:59.000Z

477

Oxidation catalysts comprising metal exchanged hexaaluminate wherein the metal is Sr, Pd, La, and/or Mn  

DOE Patents [OSTI]

The present invention provides metal-exchanged hexaaluminate catalysts that exhibit good catalytic activity and/or stability at high temperatures for extended periods with retention of activity as combustion catalysts, and more generally as oxidation catalysts, that make them eminently suitable for use in methane combustion, particularly for use in natural gas fired gas turbines. The hexaaluminate catalysts of this invention are of particular interest for methane combustion processes for minimization of the generation of undesired levels (less than about 10 ppm) of NOx species. Metal exchanged hexaaluminate oxidation catalysts are also useful for oxidation of volatile organic compounds (VOC), particularly hydrocarbons. Metal exchanged hexaaluminate oxidation catalysts are further useful for partial oxidation, particularly at high temperatures, of reduced species, particularly hydrocarbons (alkanes and alkenes).

Wickham, David (Boulder, CO); Cook, Ronald (Lakewood, CO)

2008-10-28T23:59:59.000Z

478

Nature of airborne particulates at tropic exposure sites. Final report, November 1982-September 1984  

SciTech Connect (OSTI)

Airborne particulates were collected at five exposure sites in Panama using cascade impactor air samplers. Scanning electron microscopy, energy dispersive x-ray analysis, and culture identification techniques were used to analyze the particulates. Analysis revealed that the particulates consist of silicates, chlorides, and sulfur-rich and phosphorus-rich particles. Atmospheric particle levels were higher in the dry season than in the rainy season, and the predominant fungal species varied at each exposure site. The open direct exposure of culture plates served as a simple, appropriate method for monitoring atmospheric fungal spores.

Chen, F.; Dement, W.A.

1984-09-01T23:59:59.000Z

479

Size-Resolved Density Measurements of Particulate Emissions from an Advanced Combustion Diesel Engine: Effect of Aggregate Morphology  

SciTech Connect (OSTI)

We report the first in situ size-resolved density measurements of particles produced by premixed charge compression ignition (PCCI) and compare these with conventional diesel particles. The densities of size-classified particles were determined by measurements with a differential mobility analyzer (DMA) and an aerosol particle mass analyzer (APM). Particle masses of the different size classes were evaluated with a proposed DMA-APM response function for aggregates. Our results indicate that the effective densities of PCCI and conventional diesel particles were approximately the same for 50 and 100 nm electrical mobility diameters (0.9 and 0.6 g/cc, respectively), but the PCCI particle effective density (0.4 g/cc) was less than the conventional (0.5 g/cc) for 150 nm. The lowest effective particle densities were observed for exhaust gas recirculation (EGR) levels somewhat less than that required for PCCI operation. The inherent densities of conventional particles in the 50 and 100 nm size classes were 1.22 and 1.77 g/cc, which is in good agreement with Park et al. (2004). PCCI inherent particle densities for these same size classes were higher (1.27 and 2.10 g/cc), suggesting that there may have been additional adsorbed liquid hydrocarbons. For 150 nm particles, the inherent densities were nearly the same for PCCI and conventional particles at 2.20 g/cc. We expect that the lower effective density of PCCI particles may improve particulate emissions control with diesel particulate filters (DPFs). The presence of liquid hydrocarbons may also promote oxidation in DPFs.

Barone, Teresa L [ORNL; Storey, John Morse [ORNL; Prikhodko, Vitaly Y [ORNL; Parks, II, James E [ORNL

2011-01-01T23:59:59.000Z

480

The Southeastern Aerosol Research and Characterization Study, Part 3: Continuous measurements of fine particulate matter mass and composition  

SciTech Connect (OSTI)

Deployment of continuous analyzers in the Southeastern Aerosol Research and Characterization Study (SEARCH) network began in 1998 and continues today as new technologies are developed. Measurement of fine particulate matter (PM2.5) mass is performed using a dried, 30 {sup o}C tapered element oscillating microbalance (TEOM). TEOM measurements are complemented by observations of light scattering by nephelometry. Measurements of major constituents include: (1) SO{sub 4}{sup 2-} via reduction to SO{sub 2}; (2) NH{sub 4}{sup +} and NO{sub 3}{sup -} via respective catalytic oxidation and reduction to NO, (3) black carbon (BC) by optical absorption,(4) total carbon by combustion to CO{sup 2}, and (5) organic carbon by difference between the latter two measurements. Several illustrative examples of continuous data from the SEARCH network are presented. A distinctive composite annual average diurnal pattern is observed for PM2.5 mass, nitrate, and BC, likely indicating the influence of traffic-related emissions, growth, and break up of the boundary layer and formation of ammonium nitrate. Examination of PM2.5 components indicates the need to better understand the continuous composition of the unmeasured 'other' category, because it contributes a significant fraction to total mass during periods of high PM2.5 loading. Selected episodes are presented to illustrate applications of SEARCH data. An SO{sub 2} conversion rate of 0.2%/hr is derived from an observation of a plume from a coal-fired power plant during early spring, and the importance of local, rural sources of NH{sub 3} to the formation of ammonium nitrate in particulate matter (PM) is demonstrated. 41 refs., 15 figs., 3 tabs.

Edgerton, E.S.; Hartsell, B.E.; Saylor, R.D.; Jansen, J.J.; Hansen, D.A.; Hidy, G.M. [Atmospheric Research & Analysis, Inc., Cary, NC (United States)

2006-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "oxides nox particulates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Alternatives to Diesel Fuel in California - Fuel Cycle Energy and Emission Effects of Possible Replacements Due to the TAC Diesel Particulate Decision  

SciTech Connect (OSTI)

Limitations on petroleum-based diesel fuel in California could occur pursuant to the 1998 declaration by California's Air Resources Board (CARB) that the particulate matter component of diesel exhaust is a carcinogen, therefore a toxic air contaminant (TAC) subject to the state's Proposition 65. It is the declared intention of CARB not to ban or restrict diesel fuel, per se, at this time. Assuming no total ban, Argonne National Laboratory (ANL) explored two feasible ''mid-course'' strategies, each of which results in some degree of (conventional) diesel displacement. In the first case, with substantial displacement of compression ignition by spark ignition engines, diesel fuel is assumed admissible for ignition assistance as a pilot fuel in natural gas (NG)-powered heavy-duty vehicles. Gasoline demand in California increases by 32.2 million liters (8.5 million gallons) per day overall, about 21 percent above projected 2010 baseline demand. Natural gas demand increases by 13.6 million diesel liter (3.6 million gallon) equivalents per day, about 7 percent above projected (total) consumption level. In the second case, ressionignition engines utilize substitutes for petroleum-based diesel having similar ignition and performance properties. For each case we estimated localized air emission plus generalized greenhouse gas and energy changes. Fuel replacement by di-methyl ether yields the greatest overall reduction in NOx emissions, though all scenarios bring about PM10 reductions relative to the 2010 baseline, with greatest reductions from the first case described above and the least from fuel replacement by Fischer-Tropsch synthetic diesel. Economic implications of vehicle and engine replacement were not formally evaluated.

Christopher L. Saraicks; Donald M. Rote; Frank Stodolsky; James J. Eberhardt

2000-05-01T23:59:59.000Z

482

Clean Air Interstate Rule (released in AEO2009)  

Reports and Publications (EIA)

Clean Air Interstate Rule (CAIR) is a cap-and-trade program promulgated by the Environmental Protection Agency in 2005, covering 28 eastern U.S. states and the District of Columbia. It was designed to reduce sulfur dioxide (SO2) and nitrogen oxide (NOx) emissions in order to help states meet their National Ambient Air Quality Standards (NAAQS) for ozone and particulate matter (PM2.5) and to further emissions reductions already achieved through the Acid Rain Program and the NOx State Implementation Plan call program. The rule was set to commence in 2009 for seasonal and annual NOx emissions and in 2010 for SO2 emissions.

2009-01-01T23:59:59.000Z

483

A science based emission factor for particulate matter emitted from cotton harvesting  

E-Print Network [OSTI]

practice plans detailing the actions taken by the producer to reduce fugitive PM emissions from field operations. The objective of this work was to develop accurate PM emission factors for cotton harvesting in terms of total suspended particulate (TSP), PM...

Wanjura, John David

2009-05-15T23:59:59.000Z

484

Air Pollution Control Regulations: No. 3- Particulate Emissions from Industrial Processes (Rhode Island)  

Broader source: Energy.gov [DOE]

These regulations limit particulate emissions into the atmosphere by process weight per hour, where process weight is the total weight of all materials introduced into any specific process which...

485

E-Print Network 3.0 - airborne fungi particulate Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

<< < 1 2 3 4 5 > >> 1 Correlating Bioaerosol Load with PM2.5 and PM10 Concentrations Jordan Peccia1, Ann M. Dillner1,2, Justin Boreson1 Summary: of airborne particulate matter....

486

E-Print Network 3.0 - airborne particulates Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

<< < 1 2 3 4 5 > >> 1 Correlating Bioaerosol Load with PM2.5 and PM10 Concentrations Jordan Peccia1, Ann M. Dillner1,2, Justin Boreson1 Summary: of airborne particulate matter....

487

E-Print Network 3.0 - airborne particulate matter Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

<< < 1 2 3 4 5 > >> 1 Correlating Bioaerosol Load with PM2.5 and PM10 Concentrations Jordan Peccia1, Ann M. Dillner1,2, Justin Boreson1 Summary: of airborne particulate matter....

488

Errors associated with particulate matter measurements on rural sources: appropriate basis for regulating cotton gins  

E-Print Network [OSTI]

Agricultural operations across the United States are encountering difficulties complying with current air pollution regulations for particulate matter (PM). PM is currently regulated in terms of particle diameters less than or equal to a nominal 10...

Buser, Michael Dean

2004-09-30T23:59:59.000Z

489

Engine-External HC-Dosing for Regeneration of Diesel Particulate...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Heavy Duty and NRMM According to Annex XXVII StVZO This presentation discusses how a diesel particulate filter can be integrated in the exhaust piping of a heavy-duty engine....

490

fundamental Modeling and Experimental Studies of Acicular Mullite Diesel Particulate Filters  

Broader source: Energy.gov [DOE]

Pore-scale simulations of filtration and regeneration in acicular muillite diesel particulate filters have suggested underlying mechanisms that contribute to lower back pressures compared to other common DPF substrates.

491

Currents and suspended particulate matter in tidal channels of the Sylt-Rømø basin  

Science Journals Connector (OSTI)

Measurements of fluxes of water and suspended particulate matter (SPM) through the inlet and the three major channels of the Sylt-Rømø bight covering several tidal periods in August 1992 ... budgets a relationshi...

Jens Kappenberg; Hans-Ulrich Fanger; Agmar Müller

492

Determination of particulate lead using aerosol mass spectrometry: MILAGRO/MCMA-2006 observations  

E-Print Network [OSTI]

We report the first measurements of particulate lead (Pb) from Aerodyne Aerosol Mass Spectrometers, which were deployed in and around Mexico City during the Megacity Initiative: Local and Global Research Observations ...

Salcedo, D.

493

Impact of Biomass Combustion on Urban Fine Particulate Matter in Central and Northern Europe  

Science Journals Connector (OSTI)

The impact of biomass combustion on atmospheric particulate matter was investigated at...2.5...) and size-segregated samples were collected with a virtual impactor and a ten-stage Berner low-pressure impactor, re...

Sanna K. Saarikoski; Markus K. Sillanpää…

2008-06-01T23:59:59.000Z

494

Source Apportionment of Heavy Metals in Air Particulate Matter Using Automated Electron Probe Micro Analysis  

Science Journals Connector (OSTI)

Source apportionment of air particulate matter, using receptor ... not well adapted for situations with a complex source composition because of the inherent inability to resolve chemically equivalent sources. Alt...

W. Van Borm; F. Adams

1988-01-01T23:59:59.000Z

495

Occurrence of Aliphatic Hydrocarbons in Water, Suspended Particulate Matter and Sediments of Daliao River System, China  

Science Journals Connector (OSTI)

In August of 2005 a study was carried out to evaluate contamination of aliphatic hydrocarbons(AHc) in water, suspended particulate matter (SPM) and sediments...?1 in surface water, from 22.68 to 5,725.36...?1 in ...

W. Guo; M. C. He; Z. F. Yang; C. Y. Lin…

2010-05-01T23:59:59.000Z

496

Numerical Modeling and Experimental Study of Combustion and Soot Formation in a Direct Injection Diesel Engine  

Science Journals Connector (OSTI)

Numerical Modeling and Experimental Study of Combustion and Soot Formation in a Direct Injection Diesel Engine ... The major problems associated with diesel engines are the high levels of nitrogen oxides (NOX) and particulate emissions. ... (11)?Flagan, R. C.; Seinfeld, J. H. Fundamentals of Air Pollution Engineering; Prentice Hall Inc.:? New York, 1988. ...

T. L. Chan; X. B. Cheng

2007-04-10T23:59:59.000Z

497

Clean Coal Technology Demonstration Program  

Broader source: Energy.gov [DOE]

The Office of Fossil Energy’s Clean Coal Technology Demonstration Program (1986-1993) laid the foundation for effective technologies now in use that have helped significantly lower emissions of sulfur dioxide (SO2), nitrogen oxides (NOx) and airborne particulates (PM10).

498