Powered by Deep Web Technologies
Note: This page contains sample records for the topic "oxides emissions connecticut" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Reduction of Greenhouse Gas Emissions (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reduction of Greenhouse Gas Emissions (Connecticut) Reduction of Greenhouse Gas Emissions (Connecticut) Reduction of Greenhouse Gas Emissions (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Connecticut Program Type Climate Policies Provider Department of Energy and Environmental Protection

2

Abatement of Air Pollution: Greenhouse Gas Emissions Offset Projects (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

Projects that either capture and destroy landfill methane, avoid sulfur hexafluoride emissions, sequester carbon through afforestation, provideáend-use energy efficiency, or avoid methane emissions...

3

EIA - Greenhouse Gas Emissions - Nitrous Oxide Emissions  

Gasoline and Diesel Fuel Update (EIA)

4. Nitrous Oxide Emissions 4. Nitrous Oxide Emissions 4.1 Total emissions U.S. nitrous oxide emissions in 2009 were 4 MMTCO2e (1.7 percent) below their 2008 total (Table 22). Sources of U.S. nitrous oxide emissions include agriculture, energy use, industrial processes, and waste management (Figure 22). The largest source is agriculture (73 percent), and the majority of agricultural emissions result from nitrogen fertilization of agricultural soils (87 percent of the agriculture total) and management of animal waste (13 percent). U.S. nitrous oxide emissions rose from 1990 to 1994, fell from 1994 to 2002, and returned to an upward trajectory from 2003 to 2007, largely as a result of increased use of synthetic fertilizers. Fertilizers are the primary contributor of emissions from nitrogen fertilization of soils, which grew by more than 30 percent from

4

Abatement of Air Pollution: Control of Nitrogen Oxides Emissions (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations may apply to reciprocating engines, fuel-burning equipment, or waste combusting equipment which are either attached to major stationary sources of NOx or have high potential NOx...

5

Gas Companies Operating Within the State of Connecticut (Connecticut...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Companies Operating Within the State of Connecticut (Connecticut) Gas Companies Operating Within the State of Connecticut (Connecticut) Eligibility Agricultural Commercial...

6

Abatement of Air Pollution: Control of Particulate Matter and Visible Emissions (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations set emissions opacity standards for stationary sources with opacity continuous emissions monitoring equipment, stationary sources without such equipment, and mobile sources. The...

7

Nitrous oxide emissions  

SciTech Connect

The purpose of this paper is to report the effect of key operating parameters, the relative importance of coal type, and the potentially significant coal properties for producing N{sub 2}O emissions in an atmospheric circulating fluidized-bed combustor (CFBC) and pressurized bubbling fluidized-bed combustor (PFBC). The generation of N{sub 2}O emissions is quantified in an empirical model based on the experimental data.

Mann, M.D.; Collings, M.E.; Young, B.C.

1992-12-01T23:59:59.000Z

8

Nitrous oxide emissions  

SciTech Connect

The purpose of this paper is to report the effect of key operating parameters, the relative importance of coal type, and the potentially significant coal properties for producing N[sub 2]O emissions in an atmospheric circulating fluidized-bed combustor (CFBC) and pressurized bubbling fluidized-bed combustor (PFBC). The generation of N[sub 2]O emissions is quantified in an empirical model based on the experimental data.

Mann, M.D.; Collings, M.E.; Young, B.C.

1992-01-01T23:59:59.000Z

9

Connecticut Wells | Open Energy Information  

Open Energy Info (EERE)

Connecticut Wells Jump to: navigation, search Name Connecticut Wells Place Bethlehem, Connecticut Zip 6751 Sector Geothermal energy Product A Connecticut-based geothermal heat pump...

10

Connecticut | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Financing Connecticut homeowners and customers of Connecticut Light and Power Company (CL&P), and United Illuminating Company (UI) may apply for up to 100% financing for eligible...

11

Alternative Fuels Data Center: Connecticut Laws and Incentives for Air  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Air Quality / Emissions to someone by E-mail Air Quality / Emissions to someone by E-mail Share Alternative Fuels Data Center: Connecticut Laws and Incentives for Air Quality / Emissions on Facebook Tweet about Alternative Fuels Data Center: Connecticut Laws and Incentives for Air Quality / Emissions on Twitter Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Air Quality / Emissions on Google Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Air Quality / Emissions on Delicious Rank Alternative Fuels Data Center: Connecticut Laws and Incentives for Air Quality / Emissions on Digg Find More places to share Alternative Fuels Data Center: Connecticut Laws and Incentives for Air Quality / Emissions on AddThis.com... More in this section... Federal State

12

Nitrogen Oxides Emission Control Options  

NLE Websites -- All DOE Office Websites (Extended Search)

Nitrogen Nitrogen Oxides Emission Control Options for Coal-Fired Electric Utility Boilers Ravi K. Srivastava and Robert E. Hall U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Air Pollution Prevention and Control Division, Research Triangle Park, NC Sikander Khan and Kevin Culligan U.S. Environmental Protection Agency, Office of Air and Radiation, Clean Air Markets Division, Washington, DC Bruce W. Lani U.S. Department of Energy, National Energy Technology Laboratory, Environmental Projects Division, Pittsburgh, PA ABSTRACT Recent regulations have required reductions in emissions of nitrogen oxides (NO x ) from electric utility boilers. To comply with these regulatory requirements, it is increas- ingly important to implement state-of-the-art NO x con- trol technologies on coal-fired utility boilers. This paper reviews NO x control

13

Categorical Exclusion Determinations: Connecticut | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Connecticut Connecticut Categorical Exclusion Determinations: Connecticut Location Categorical Exclusion Determinations issued for actions in Connecticut. DOCUMENTS AVAILABLE FOR DOWNLOAD August 15, 2013 CX-010757: Categorical Exclusion Determination The New England Solar cost-Reduction Challenge Partnership CX(s) Applied: A9, A11 Date: 08/15/2013 Location(s): Vermont, New Hampshire, Rhode Island, Massachusetts, Connecticut Offices(s): Golden Field Office June 3, 2013 CX-010467: Categorical Exclusion Determination Metal Oxide/Nitride Heterostructured Nanowire Arrays for Ultra-Sensitive and Selective Sensors CX(s) Applied: B3.6 Date: 06/03/2013 Location(s): Connecticut Offices(s): National Energy Technology Laboratory May 9, 2013 CX-010562: Categorical Exclusion Determination

14

State of Connecticut Connecticut State Library  

E-Print Network (OSTI)

to all employees of state agencies within the executive department, towns, cities, boroughs, districts, and ┬ž7-109 of the General Statutes of Connecticut (CGS). Definitions "Agency" means a state agencyState of Connecticut Connecticut State Library Office of the Public Records Administrator www

Holsinger, Kent

15

EIA - Greenhouse Gas Emissions - Nitrous Oxide Emissions  

Annual Energy Outlook 2012 (EIA)

nitrous oxide emisssions from industrial sources, 1990, 2005, 2008, and 2009 4.5. Waste management sources In 2009, treatment of residential and commercial wastewater produced 92...

16

Connecticut | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 9, 2010 CX-002889: Categorical Exclusion Determination Connecticut Clean Cities Future Fuels Project CX(s) Applied: B5.1 Date: 07092010 Location(s): Meriden, Connecticut...

17

Connecticut Gasoline Price Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Connecticut Connecticut Exit Fueleconomy.gov The links below are to pages that are not part of the fueleconomy.gov. We offer these external links for your convenience in accessing additional information that may be useful or interesting to you. Selected Cities Bridgeport BridgeportGasPrices.com Automotive.com MapQuest.com Hartford HartfordGasPrices.com Automotive.com MapQuest.com New Haven NewHavenGasPrices.com Automotive.com MapQuest.com Stamford Automotive.com MapQuest.com Waterbury Automotive.com MapQuest.com West Hartford Automotive.com MapQuest.com Other Connecticut Cities ConnecticutGasPrices.com (search by city or ZIP code) - GasBuddy.com Connecticut Gas Prices (selected cities) - GasBuddy.com Connecticut Gas Prices (organized by county) - Automotive.com Gas Prices of the United States: Connecticut Cities - MapQuest

18

Abatement of Air Pollution: Connecticut Primary and Secondary...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Connecticut Primary and Secondary Standards (Connecticut) Abatement of Air Pollution: Connecticut Primary and Secondary Standards (Connecticut) Eligibility Agricultural Commercial...

19

Sulfur oxide adsorbents and emissions control  

DOE Patents (OSTI)

High capacity sulfur oxide absorbents utilizing manganese-based octahedral molecular sieve (Mn--OMS) materials are disclosed. An emissions reduction system for a combustion exhaust includes a scrubber 24 containing these high capacity sulfur oxide absorbents located upstream from a NOX filter 26 or particulate trap.

Li, Liyu (Richland, WA); King, David L. (Richland, WA)

2006-12-26T23:59:59.000Z

20

Connecticut Environmental Policy Act (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Connecticut Environmental Policy Act (Connecticut) Connecticut Environmental Policy Act (Connecticut) Connecticut Environmental Policy Act (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Connecticut Program Type Siting and Permitting Provider Connecticut Department of Environmental Protection

Note: This page contains sample records for the topic "oxides emissions connecticut" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Connecticut | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Waste Facilities Siting (Connecticut) These regulations describe the siting and permitting process for hazardous waste facilities and reference rules for construction,...

22

Connecticut | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Connecticut December 11, 2009 CX-002588: Categorical Exclusion Determination A Novel Biogas Desulfurization Sorbent Technology for Molten Carbonate Fuel Cell-Based Combined Heat...

23

,"Connecticut Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Connecticut Natural Gas Prices",10,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

24

Connecticut | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

that has been subject to environmental contamination. July 12, 2013 Tidal Wetlands Regulations (Connecticut) Most activities occurring in or near tidal wetlands are regulated,...

25

,"Connecticut Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Connecticut Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

26

Connecticut Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Connecticut Quick Facts. Connecticut ranked fifth lowest among the States in per capita energy consumption in 2010. One of the Nationĺs two Northeast Home Heating ...

27

Connecticut Water Diversion Policy Act (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Connecticut Water Diversion Policy Act (Connecticut) Connecticut Water Diversion Policy Act (Connecticut) Connecticut Water Diversion Policy Act (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Water Buying & Making Electricity Program Info State Connecticut Program Type Siting and Permitting Provider Department of Energy and Environmental Protection This section describes regulations and permit requirements for projects or

28

Abatement of Air Pollution: The Clean Air Interstate Rule (CAIR) Nitrogen Oxides (Nox) Ozone Season Trading Program (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations may apply to fossil-fuel fired emission units, and describe nitrogen emission allocations that owners of such units must meet. The regulations also contain provisions for...

29

State Energy Program Assurances - Connecticut Governor Rell ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Energy Program Assurances - Connecticut Governor Rell State Energy Program Assurances - Connecticut Governor Rell Letter from Connecticut Governor Rell providing Secretary...

30

Energy Crossroads: Utility Energy Efficiency Programs Connecticut...  

NLE Websites -- All DOE Office Websites (Extended Search)

Connecticut Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Connecticut Light & Power Information for Businesses Southern Connecticut Gas...

31

Connecticut | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 19, 2011 CX-007063: Categorical Exclusion Determination Geothermal Incentive Program CX(s) Applied: A1, A9, B5.1 Date: 10192011 Location(s): Windsor, Connecticut...

32

Direct Loan Program (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

The Connecticut Development Authorityĺs Direct Loan Program provides direct senior and subordinated loans and mezzanine investments to companies creating or maintaining jobs. Up to $20,000 per job...

33

Connecticut | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 1, 2011 CX-006283: Categorical Exclusion Determination Fuel Cell Program CX(s) Applied: A1, B2.2, B5.1 Date: 08012011 Location(s): Hamden, Connecticut Office(s): Energy...

34

Connecticut/Incentives | Open Energy Information  

Open Energy Info (EERE)

Incentives Incentives < Connecticut Jump to: navigation, search Contents 1 Financial Incentive Programs for Connecticut 2 Rules, Regulations and Policies for Connecticut Download All Financial Incentives and Policies for Connecticut CSV (rows 1 - 173) Financial Incentive Programs for Connecticut Download Financial Incentives for Connecticut CSV (rows 1 - 95) Incentive Incentive Type Active Alternative Fuel Vehicles and Associated Equipment (Connecticut) Sales Tax Incentive No Alternative Fueled Vehicle Charging Station Credit (Connecticut) Corporate Tax Credit No Alternative Fueled Vehicle Incremental Cost Credit (Connecticut) Corporate Tax Credit No CCEF - ARRA Commercial Solar PV Program (Connecticut) State Grant Program No CCEF - Affordable Housing Initiative Solar PV Rebate Program (Connecticut) State Rebate Program No

35

Better Buildings Neighborhood Program: Connecticut  

NLE Websites -- All DOE Office Websites (Extended Search)

TN | TX | VT | VI | VA WA | WI Connecticut Volunteers Help Connecticut Homeowners Save Energy Photo of a variety of buildings in an urban area, with a river flowing in the...

36

Alternative Fuels Data Center: Connecticut Information  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Connecticut Connecticut Information to someone by E-mail Share Alternative Fuels Data Center: Connecticut Information on Facebook Tweet about Alternative Fuels Data Center: Connecticut Information on Twitter Bookmark Alternative Fuels Data Center: Connecticut Information on Google Bookmark Alternative Fuels Data Center: Connecticut Information on Delicious Rank Alternative Fuels Data Center: Connecticut Information on Digg Find More places to share Alternative Fuels Data Center: Connecticut Information on AddThis.com... Connecticut Information This state page compiles information related to alternative fuels and advanced vehicles in Connecticut and includes new incentives and laws, alternative fueling station locations, truck stop electrification sites, fuel prices, and local points of contact.

37

Connecticut.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

Connecticut Connecticut www.effi cientwindows.org March 2013 1. Meet the Energy Code and Look for the ENERGY STAR ® Windows must comply with your local energy code. Windows that are ENERGY STAR qualifi ed typically meet or exceed energy code requirements. To verify if specific window energy properties comply with the local code requirements, go to Step 2. 2. Look for Effi cient Properties on the NFRC Label The National Fenestration Rating Council (NFRC) label is needed for verifi cation of energy code compliance (www.nfrc. org). The NFRC label displays whole- window energy properties and appears on all fenestration products which are part of the ENERGY STAR program.

38

Spatiotemporal modelling in estimation of nitrous oxide emissions from soil.  

E-Print Network (OSTI)

??Nitrous oxide is a major greenhouse gas emission. The aim of this research was to develop and apply statistical models to characterize the complex spatialů (more)

Huang, Xiaodong

2013-01-01T23:59:59.000Z

39

Connecticut Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

40

Connecticut Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

As of June 2012, Connecticut led New England in committing demand resources (those resources that can be turned off during periods of peak demand) ...

Note: This page contains sample records for the topic "oxides emissions connecticut" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Connecticut Datos del Precio de la Gasolina  

NLE Websites -- All DOE Office Websites (Extended Search)

(Busqueda por Ciudad o Cdigo Postal) - GasBuddy.com Connecticut Gas Prices (Ciudades Selectas) - GasBuddy.com Connecticut Gas Prices (Organizado por Condado) -...

42

Connecticut/EZ Policies | Open Energy Information  

Open Energy Info (EERE)

provides access to loan funds that are otherwise unavailable to the borrower. EXP Job Creation Incentive Program (Connecticut) Connecticut Loan Program Yes StateProvince...

43

Connecticut's 3rd congressional district: Energy Resources |...  

Open Energy Info (EERE)

Connecticut. Registered Energy Companies in Connecticut's 3rd congressional district Avalence LLC Lite Trough LLC Nxegen Opel International Inc Poulsen Hybrid, LLC Sunlight Solar...

44

Microsoft Word - connecticut.doc  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Connecticut NERC Region(s) ....................................................................................................... NPCC Primary Energy Source........................................................................................... Nuclear Net Summer Capacity (megawatts) ....................................................................... 8,284 35 Electric Utilities ...................................................................................................... 160 46 Independent Power Producers & Combined Heat and Power ................................ 8,124 15 Net Generation (megawatthours) ........................................................................... 33,349,623 40

45

Microsoft Word - connecticut.doc  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut Connecticut NERC Region(s) ....................................................................................................... NPCC Primary Energy Source........................................................................................... Nuclear Net Summer Capacity (megawatts) ....................................................................... 8,284 35 Electric Utilities ...................................................................................................... 160 46 Independent Power Producers & Combined Heat and Power ................................ 8,124 15 Net Generation (megawatthours) ........................................................................... 33,349,623 40

46

Energy Project Financing (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Project Financing (Connecticut) Energy Project Financing (Connecticut) Energy Project Financing (Connecticut) < Back Eligibility Commercial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Connecticut Program Type Loan Program Provider Connecticut Development Authority and Connecticut Energy, Finance and Investment Authority CDA, in collaboration with the Connecticut Energy, Finance and Investment Authority (CEFIA), provides Energy Project Financing to promote advancements in energy technologies which will create business and job growth. CDA helps to provide investment capital through its loan and loan guarantee programs, attracting additional lenders who can help lower risks and costs

47

Abatement of Air Pollution: Connecticut Primary and Secondary Standards (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

No person shall operate a source which has a significant impact on air quality in such a manner as to cause or contribute to a violation of ambient air quality standards. Connecticut primary and...

48

Connecticut Clean Energy Fund (CCEF)  

Energy.gov (U.S. Department of Energy (DOE))

Connecticut's 1998 electric restructuring legislation (Public Act 98-28) created separate funds to support [http://www.dsireusa.org/incentives/incentive.cfm?Incentive_Code=CT12R&re... energy...

49

Nitrogen Oxide Emission Statements (Ohio) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nitrogen Oxide Emission Statements (Ohio) Nitrogen Oxide Emission Statements (Ohio) Nitrogen Oxide Emission Statements (Ohio) < Back Eligibility Agricultural Commercial Construction Fuel Distributor Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Ohio Program Type Environmental Regulations Provider Ohio Environmental Protection Agency This chapter of the law establishes that the Ohio Environmental Protection Agency requires any facility that emits 25 tons or more of NOx and/or 25 tons or more of VOC during the calendar year and is located in a county designated as nonattainment for the National Ambient Air Quality Standards for ozone submit emission statements. Any facility that is located in a county described above is exempt from these requirements. If NOx

50

Recovery Act State Memos Connecticut  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Connecticut Connecticut For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 4

51

Evaluation of Partial Oxidation Reformer Emissions  

DOE Green Energy (OSTI)

In this study, a gasoline fuel processor and an ethanol fuel processor were operated under conditions simulating both startup and normal operation. Emissions were measured before and after the AGB in order to quantify the effectiveness of the burner catalyst in controlling emissions. The emissions sampling system includes CEM for O2, CO2, CO, NOx, and THC. Also, integrated gas samples are collected in evacuated canisters for hydrocarbon speciation analysis via GC. This analysis yields the concentrations of the hydrocarbon species required for the California NMOG calculation. The PM concentration in the anode burner exhaust was measured through the placement of a filter in the exhaust stream. The emissions from vehicles with fully developed on board reformer systems were estimated.

Unnasch, Stefan; Fable, Scott; Waterland, Larry

2006-01-06T23:59:59.000Z

52

Connecticut/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Connecticut Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Connecticut Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Connecticut No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Connecticut No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Connecticut No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Connecticut Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

53

Permit Fees for Hazardous Waste Material Management (Connecticut...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Material Management (Connecticut) Permit Fees for Hazardous Waste Material Management (Connecticut) Eligibility Agricultural Commercial Construction Fed. Government...

54

Energy Incentive Programs, Connecticut | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Connecticut Connecticut Energy Incentive Programs, Connecticut October 29, 2013 - 11:29am Addthis Updated October 2012 What public-purpose-funded energy efficiency programs are available in my state? Connecticut's electricity restructuring law provides annual funding for energy efficiency through a non-bypassable surcharge. Roughly $120 million was available in 2011 across all program types (including low-income and residential). These public-purpose-funded energy efficiency programs are overseen by the Connecticut Energy Efficiency Fund and administered by the state's investor-owned electric and gas utilities, Connecticut Light & Power, United Illuminating, Connecticut Natural Gas, Yankee Gas, and Southern Connecticut Gas. All five offer the following programs: The Energy Conscious Blueprint program offers technical support and pays up

55

Climate Action Plan (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Connecticut) Connecticut) Climate Action Plan (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Connecticut Program Type Climate Policies Provider Department of Energy and Environmental Protection Connecticut's climate change initiative is led and directed by the

56

Solid Waste Management (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Connecticut) Connecticut) Solid Waste Management (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Connecticut Program Type Siting and Permitting Provider Department of Energy and Environmental Protection Solid waste facilities operating in Connecticut must abide by these regulations, which describe requirements and procedures for issuing construction and operating permits; environmental considerations;

57

Tax Incremental Financing (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incremental Financing (Connecticut) Incremental Financing (Connecticut) Tax Incremental Financing (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Connecticut Program Type Bond Program Provider Connecticut Development Authority CDA provides Tax Incremental Financing for significant economic

58

Forestry Policies (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Connecticut) Connecticut) Forestry Policies (Connecticut) < Back Eligibility Agricultural Commercial Program Info State Connecticut Program Type Environmental Regulations Provider Department of Energy and Environmental Protection The state of Connecticut is home to a large area of productive forested lands. These forests are managed primarily by the Division of Forestry, under the State Department of Energy and Environmental Protection (DEEP). In 2010, The State issued its Forest Resource Assessment and Strategy document: http://www.ct.gov/dep/lib/dep/forestry/assessment_and_strategy/assessmen... The Resource Assessment and Strategy document discusses a proposed Harvesting Guidelines study that is still under development, in the interim the State is considering using the Forest Guild Northeast Region's

59

Solar Connecticut | Open Energy Information  

Open Energy Info (EERE)

Connecticut Connecticut Jump to: navigation, search Name Solar Connecticut Address PO Box 515 Place Higganum, Connecticut Zip 06441 Region Northeast - NY NJ CT PA Area Notes Mission is to facilitate the building of a state-wide community of stakeholders and tap into a body of expert resources Website http://www.solarconnecticut.or Coordinates 41.4689045┬░, -72.5914616┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4689045,"lon":-72.5914616,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

60

Connecticut Yankee Decommissioning Experience Report  

Science Conference Proceedings (OSTI)

Several U.S. nuclear power plants entered decommissioning in the 1990's. Based on current information, the next group of plants whose license will expire will not begin decommissioning for nearly a decade. This report provides detailed information on the decommissioning of one power reactor - Connecticut Yankee, in order to provide their experience for future plants.

2006-11-20T23:59:59.000Z

Note: This page contains sample records for the topic "oxides emissions connecticut" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

On-farm Assessment of Nitrogen Fertilizer application to corn on Nitrous Oxide Emissions  

E-Print Network (OSTI)

mitigation of greenhouse gas emissions by agriculture. Nutr.1998. Nitrous oxide emission in three years as affected by2008. Soil-surface gas emissions. p.851-861. In: M.R. Carter

2009-01-01T23:59:59.000Z

62

Connecticut Yankee risk reduction initiative  

Science Conference Proceedings (OSTI)

A Risk Reduction Task Force, comprised of an interdisciplinary team of Connecticut Yankee (CY) and Northeast Utilities (NU) personnel, was formed to identify means of reducing the core-melt frequency (CMF) and the overall risk at CY. Currently, Connecticut Yankee is the only NU nuclear power plant with a CMF significantly above the corporate nuclear safety goal of < 10{sup {minus}4}/yr. It was the purpose of this task force to brainstorm ideas for design and/or procedural changes that would improve safety while allowing for operational flexibility, and also give consideration to licensing issues and design basis/deterministic concerns. The final recommendations by the task force include the installation of a tornado-protected, air-cooled diesel generator; reconfiguration of the auxiliary feedwater (AFW) flow path; addition of a diverse AFW pump; additional modifications to address tornado concerns; and repowering of several motor-operated valves.

Oswald, E.A.; Dube, D.A.; Becker, W.H.; Flannery, G.A.; Weyland, S.J. (Northeast Utilities Service Co., Hartford, CT (United States))

1992-01-01T23:59:59.000Z

63

Abatement of Air Pollution: Control of Carbon Dioxide Emissions...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Dioxide EmissionsCarbon Dioxide Budget Trading Program (Connecticut) Abatement of Air Pollution: Control of Carbon Dioxide EmissionsCarbon Dioxide Budget Trading Program...

64

EMISSIONS OF NITROUS OXIDE AND METHANE FROM CONVENTIONAL AND ALTERNATIVE FUEL MOTOR VEHICLES  

E-Print Network (OSTI)

EMISSIONS OF NITROUS OXIDE AND METHANE FROM CONVENTIONAL AND ALTERNATIVE FUEL MOTOR VEHICLES from motor vehicles because unlike emissions of CO2, which are relatively easy to estimate, emissions-related emissions. In the U.S., for example, emissions of carbon dioxide (CO2) from the production and use of motor

Kammen, Daniel M.

65

Dam Safety Regulations (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety Regulations (Connecticut) Safety Regulations (Connecticut) Dam Safety Regulations (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Water Buying & Making Electricity Program Info State Connecticut Program Type Siting and Permitting Provider Department of Energy and Environmental Protection All dams, except those owned by the U.S., are under the jurisdiction of these regulations. These dams will be classified by hazard rating, and may

66

Abatement of Air Pollution: Distributed Generators (Connecticut) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Distributed Generators (Connecticut) Distributed Generators (Connecticut) Abatement of Air Pollution: Distributed Generators (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Connecticut Program Type Environmental Regulations Provider Department of Energy and Environmental Protection

67

Connecticut Number of Natural Gas Consumers  

Gasoline and Diesel Fuel Update (EIA)

California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan...

68

Guaranteed Loan Program (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Connecticut Program...

69

Building Energy Code (Connecticut) | Open Energy Information  

Open Energy Info (EERE)

modified on September 28, 2012. Rules Regulations Policies Program Place Connecticut Name Building Energy Code Incentive Type Building Energy Code Applicable Sector Commercial,...

70

Connecticut Light & Power - Energy Conscious Blueprint Grant...  

Open Energy Info (EERE)

Prescriptive design grants calculated on a per sq. ft basis Funding Source Connecticut Energy Efficiency Fund Maximum Incentive 750,000 per Customer's Federal Tax ID number per...

71

Connecticut's 1st congressional district: Energy Resources |...  

Open Energy Info (EERE)

district Aztech Engineers Connecticut Light and Power Infinity Fuel Cell and Hydrogen Inc LiquidPiston Inc Nxegen SmartPower United Technologies Corp Registered Financial...

72

Connecticut Natural Gas Pipeline and Distribution Use (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Connecticut Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Connecticut Natural Gas Pipeline and Distribution Use...

73

Hess Retail Natural Gas and Elec. Acctg. (Connecticut) | Open...  

Open Energy Info (EERE)

Hess Retail Natural Gas and Elec. Acctg. (Connecticut) Jump to: navigation, search Name Hess Retail Natural Gas and Elec. Acctg. Place Connecticut Utility Id 22509 References EIA...

74

Developing Greenhouse Gas Emissions Offsets by Reducing Nitrous Oxide (N2O) Emissions in Agricultural Crop Production  

Science Conference Proceedings (OSTI)

This final project report describes a three-year long EPRI supplemental project entitled "Developing Greenhouse Gas Emissions Offsets by Reducing Nitrous Oxide (N2O) Emissions." This EPRI-sponsored project investigated an innovative approach to developing large-scale, cost-effective greenhouse gas (GHG) emissions offsets that potentially can be implemented across broad geographic areas of the United States and internationally.

2009-12-17T23:59:59.000Z

75

Nitrogen oxide emissions from coal fired MHD plants  

DOE Green Energy (OSTI)

In this topical report, the nitrogen oxide emission issues from a coal fired MHD steam combined cycle power plant are summarized, both from an experimental and theoretical/calculational viewpoint. The concept of staging the coal combustion to minimize NO{sub x} is described. The impact of NO{sub x} control design choices on electrical conductivity and overall plant efficiency are described. The results of the NO{sub x} measurements in over 3,000 hours of coal fired testing are summarized. A chemical kinetics model that was used to model the nooks decomposition is described. Finally, optimum design choices for a low nooks plant are discussed and it is shown that the MHD Steam Coal Fired Combined Cycle Power Plant can be designed to operate with nooks emissions less than 0.05 lbm/MMBTU.

Chapman, J.N. [ed.

1996-03-01T23:59:59.000Z

76

Developing Greenhouse Gas Emissions Offsets by Reducing Nitrous Oxide (N2O) Emissions in Agricultural Crop Production  

Science Conference Proceedings (OSTI)

This report covers the first two years of a three-year long project entitled "Developing Greenhouse Gas Emissions Offsets by Reducing Nitrous Oxide (N2O) Emissions." This EPRI-sponsored project is investigating an innovative approach to developing large-scale and potentially cost-effective greenhouse gas (GHG) emissions offsets that could be implemented across broad geographic areas of the U.S. and internationally. The tools and information developed in this project will broaden the GHG emissions offset ...

2008-11-11T23:59:59.000Z

77

Influence of fuel sulfur content on emissions from diesel engines equipped with oxidation catalysts.  

E-Print Network (OSTI)

??Diesel oxidation catalysts (DOCs) are a viable exhaust aftertreatment alternative for alleviating regulated exhaust emissions of hydrocarbon (HC), carbon monoxide (CO), and particulate matter (PM)ů (more)

Evans, Jason Carter.

2000-01-01T23:59:59.000Z

78

Connecticut Price of Natural Gas Delivered to Residential ...  

U.S. Energy Information Administration (EIA)

Connecticut Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)

79

Connecticut Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Connecticut Recovery Act State Memo Connecticut Recovery Act State Memo Connecticut Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful downpayment on the nation's energy and environmental future. The Recovery Act investments in Connecticut are supporting abroad range of clean energy projects, from energy efficiency and the smartgrid to alternative fuels and geothermal energy. Through these investments, Connecticut's businesses, universities,non-profits, and local governments are creating quality jobs today and positioning Connecticut to play an important role in the new energy economy of the future. Connecticut Recovery Act State Memo More Documents & Publications California Recovery Act State Memo District of Columbia Recovery Act State Memo

80

Alternative Fuels Data Center: Connecticut Points of Contact  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Connecticut Points of Connecticut Points of Contact to someone by E-mail Share Alternative Fuels Data Center: Connecticut Points of Contact on Facebook Tweet about Alternative Fuels Data Center: Connecticut Points of Contact on Twitter Bookmark Alternative Fuels Data Center: Connecticut Points of Contact on Google Bookmark Alternative Fuels Data Center: Connecticut Points of Contact on Delicious Rank Alternative Fuels Data Center: Connecticut Points of Contact on Digg Find More places to share Alternative Fuels Data Center: Connecticut Points of Contact on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Connecticut Points of Contact The following people or agencies can help you find more information about Connecticut's clean transportation laws, incentives, and funding

Note: This page contains sample records for the topic "oxides emissions connecticut" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Alternative Fuels Data Center: Connecticut Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Connecticut Laws and Connecticut Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Connecticut Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Connecticut Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Connecticut Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Connecticut Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Connecticut Laws and Incentives Listed below are incentives, laws, and regulations related to alternative fuels and advanced vehicles for Connecticut. Your Clean Cities coordinator

82

Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Connecticut: Energy Resources Connecticut: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6032207,"lon":-73.087749,"alt":0,"address":"Connecticut","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

83

Developing Greenhouse Gas Emissions Offsets by Reducing Nitrous Oxide (N2O) Emissions in Agricultural Crop Production  

Science Conference Proceedings (OSTI)

This Technical Update covers the first year of a three-year-long EPRI research project entitled Developing Greenhouse Gas Emissions Offsets by Reducing Nitrous Oxide (N2O) Emissions in Agricultural Crop Production. The report provides a project overview and explains the preliminary results yielded from the first year of on-farm research.

2007-10-30T23:59:59.000Z

84

Categorical Exclusion Determinations: Connecticut | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 15, 2011 July 15, 2011 CX-006144: Categorical Exclusion Determination Geothermal Incentive Program CX(s) Applied: A1, B5.1 Date: 07/15/2011 Location(s): Mystic, Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory June 30, 2011 CX-006305: Categorical Exclusion Determination Connecticut-City-Waterbury CX(s) Applied: A9, A11, B2.5, B5.1 Date: 06/30/2011 Location(s): Waterbury, Connecticut Office(s): Energy Efficiency and Renewable Energy June 28, 2011 CX-006123: Categorical Exclusion Determination Fuel Cell Program CX(s) Applied: A1, B1.15, B2.2, B5.1 Date: 06/28/2011 Location(s): New Britain, Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory June 28, 2011 CX-006122: Categorical Exclusion Determination

85

Connecticut Light and Power | Open Energy Information  

Open Energy Info (EERE)

Connecticut Light and Power Connecticut Light and Power Jump to: navigation, search Name Connecticut Light and Power Address P.O. Box 270 Place Hartford, Connecticut Zip 06141 Sector Services Product Green Power Marketer Website http://www.cl-p.com/ Coordinates 41.7638┬░, -72.6859┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7638,"lon":-72.6859,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

86

Connecticut Clean Energy Fund | Open Energy Information  

Open Energy Info (EERE)

Connecticut Clean Energy Fund Connecticut Clean Energy Fund Address 200 Corporate Place Place Rocky Hill, Connecticut Zip 06067 Region Northeast - NY NJ CT PA Area Website http://www.ctcleanenergy.com/ Notes Promotes, develops, and invests in clean energy sources for the benefit of Connecticut ratepayers Coordinates 41.6526382┬░, -72.675239┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6526382,"lon":-72.675239,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

87

Categorical Exclusion Determinations: Connecticut | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 5, 2010 August 5, 2010 CX-003313: Categorical Exclusion Determination Connecticut Clean Cities Future Fuels Project CX(s) Applied: B5.1 Date: 08/05/2010 Location(s): West Haven, Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory July 29, 2010 CX-003323: Categorical Exclusion Determination Next Generation Refrigerant Lubricants CX(s) Applied: B3.6 Date: 07/29/2010 Location(s): Middlebury, Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory July 29, 2010 CX-003322: Categorical Exclusion Determination Next Generation Refrigerant Lubricants CX(s) Applied: B3.6 Date: 07/29/2010 Location(s): Naugatuck, Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy

88

Categorical Exclusion Determinations: Connecticut | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 27, 2010 January 27, 2010 CX-000644: Categorical Exclusion Determination Recovery Act: State of Connecticut Energy Efficiency and Conservation Block Grant CX(s) Applied: A9, A11, B5.1 Date: 01/27/2010 Location(s): Connecticut Office(s): Energy Efficiency and Renewable Energy, Golden Field Office January 5, 2010 CX-000698: Categorical Exclusion Determination Connecticut - State Building Energy Improvements: 79 Elm Street CX(s) Applied: B1.3, B1.4, B1.24, B1.31, B2.5, B5.1 Date: 01/05/2010 Location(s): Hartford, Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 28, 2009 CX-000272: Categorical Exclusion Determination Tailored Working Fluids for Enhanced Binary Geothermal Power Plants CX(s) Applied: A9, B3.6, B5.1

89

Categorical Exclusion Determinations: Connecticut | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 13, 2012 February 13, 2012 CX-007945: Categorical Exclusion Determination Geothermal Incentive Program - Griswold Elementary School CX(s) Applied: A1, B5.19 Date: 02/13/2012 Location(s): Connecticut Offices(s): National Energy Technology Laboratory February 10, 2012 CX-007897: Categorical Exclusion Determination State Geological Survey Contributions to the National Geothermal Data System┬Ě New Data Massachusetts and Connecticut CX(s) Applied: B3.1, B3.6 Date: 02/10/2012 Location(s): Massachusetts, Connecticut Offices(s): Golden Field Office January 30, 2012 CX-007957: Categorical Exclusion Determination Geothermal Incentive Program CX(s) Applied: B5.1 Date: 01/30/2012 Location(s): Connecticut Offices(s): National Energy Technology Laboratory January 27, 2012 CX-007862: Categorical Exclusion Determination

90

Connecticut Natural Gas Underground Storage Withdrawals (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Withdrawals (Million Cubic Feet) Connecticut Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

91

Stream Flow Standards and Regulations (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations apply to all rivers and streams in Connecticut. Dam owners need to comply with these regulations unless the dam is principally used for hydroelectric power generation and is under...

92

Evaluation of the Decontamination of the Reactor Coolant Systems at Maine Yankee and Connecticut Yankee  

Science Conference Proceedings (OSTI)

In 1998, utilities carried out chemical decontamination of the reactor coolant loops at two permanently closed PWR plants. They used EPRI's Decontamination For Decommissioning (DFD) process at Maine Yankee, and Siemens' Chemical Oxidation Reduction Decontamination (CORD) process at Connecticut Yankee. This report describes each application, and presents the results and lessons learned.

1999-03-08T23:59:59.000Z

93

Geothermal Switch Pays Off For Connecticut Business | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Switch Pays Off For Connecticut Business Geothermal Switch Pays Off For Connecticut Business Geothermal Switch Pays Off For Connecticut Business March 11, 2010 - 12:11pm Addthis Connecticut Wells at work installing a geothermal system. | Photo courtesy of Connecticut Wells Connecticut Wells at work installing a geothermal system. | Photo courtesy of Connecticut Wells Connecticut Wells has gone through many changes since its inception in the 1960s. One of the most significant is its transformation into a thriving geothermal well-drilling business. In the beginning, the small business drilled water wells throughout Connecticut. It was the main source of revenue for the company, "There was a big demand for many years but when building construction declined in the mid-80s, so did the demand for water wells," says president Anthony

94

Engines - Emissions Control - cerium-oxide catalyst, diesel,...  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions Control Heavy duty diesel vehicles product particulate matter emissions. The U.S. Environmental Protection Agency regulations require that heavy-duty diesel vehicles have...

95

Economic Inducement Financing Program (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Economic Inducement Financing Program (Connecticut) Economic Inducement Financing Program (Connecticut) Economic Inducement Financing Program (Connecticut) < Back Eligibility Commercial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Connecticut Program Type Loan Program Provider Connecticut Development Authority Companies relocating to or expanding within the state are eligible for CDA direct loans up to $5 million through its Economic Inducement Financing Program. proceeds may be used for working capital, equipment, facilities, or mortgages. Eligible companies must contribute to Connecticut's technology base, intellectual capital, urban infrastructure, economic base, employment, tax revenues, or export of products and services

96

Alternative Fuels Data Center: Connecticut Laws and Incentives for  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Registration / Licensing to someone by E-mail Registration / Licensing to someone by E-mail Share Alternative Fuels Data Center: Connecticut Laws and Incentives for Registration / Licensing on Facebook Tweet about Alternative Fuels Data Center: Connecticut Laws and Incentives for Registration / Licensing on Twitter Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Registration / Licensing on Google Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Registration / Licensing on Delicious Rank Alternative Fuels Data Center: Connecticut Laws and Incentives for Registration / Licensing on Digg Find More places to share Alternative Fuels Data Center: Connecticut Laws and Incentives for Registration / Licensing on AddThis.com... More in this section... Federal

97

Oxides Emissions from Coal-Fired Boilers TOPICAL REPORT NUMBER 14  

NLE Websites -- All DOE Office Websites (Extended Search)

Reburning Technologies for the Control of Nitrogen Reburning Technologies for the Control of Nitrogen Oxides Emissions from Coal-Fired Boilers TOPICAL REPORT NUMBER 14 MAY 1999 TOPICAL REPORT NUMBER 14 A report on three projects conducted under separate cooperative agreements between: The U.S. Department of Energy and * The Babcock & Wilcox Company * Energy and Environmental Research Corporation * New York State Electric & Gas Corporation MAY 1999 Reburning Technologies for the Control of Nitrogen Oxides Emissions from Coal-Fired Boilers Cover image: Schematic of reburning technology Source: Energy and Environmental Research Corporation Reburning Technologies for the Control of Nitrogen Oxides Emissions from Coal-Fired Boilers Executive Summary ..................................................................................................

98

Alternative Fuels Data Center: Connecticut Utility Fleet Operates Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Connecticut Utility Connecticut Utility Fleet Operates Vehicles on Alternative Fuels to someone by E-mail Share Alternative Fuels Data Center: Connecticut Utility Fleet Operates Vehicles on Alternative Fuels on Facebook Tweet about Alternative Fuels Data Center: Connecticut Utility Fleet Operates Vehicles on Alternative Fuels on Twitter Bookmark Alternative Fuels Data Center: Connecticut Utility Fleet Operates Vehicles on Alternative Fuels on Google Bookmark Alternative Fuels Data Center: Connecticut Utility Fleet Operates Vehicles on Alternative Fuels on Delicious Rank Alternative Fuels Data Center: Connecticut Utility Fleet Operates Vehicles on Alternative Fuels on Digg Find More places to share Alternative Fuels Data Center: Connecticut Utility Fleet Operates Vehicles on Alternative Fuels on AddThis.com...

99

Alternative Fuels Data Center: Connecticut Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Connecticut Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Connecticut Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Connecticut Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Connecticut Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Connecticut Laws and Incentives for Other The list below contains summaries of all Connecticut laws and incentives

100

Alternative Fuels Data Center: Connecticut Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Connecticut Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Connecticut Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Connecticut Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Connecticut Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Connecticut Laws and Incentives for Other The list below contains summaries of all Connecticut laws and incentives

Note: This page contains sample records for the topic "oxides emissions connecticut" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Alternative Fuels Data Center: Connecticut Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Connecticut Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Connecticut Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Connecticut Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Connecticut Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Connecticut Laws and Incentives for Other The list below contains summaries of all Connecticut laws and incentives

102

Alternative Fuels Data Center: Connecticut Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Connecticut Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Connecticut Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Connecticut Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Connecticut Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Connecticut Laws and Incentives for Other The list below contains summaries of all Connecticut laws and incentives

103

Alternative Fuels Data Center: Connecticut Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Connecticut Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Connecticut Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Connecticut Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Connecticut Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Connecticut Laws and Incentives for EVs The list below contains summaries of all Connecticut laws and incentives

104

Alternative Fuels Data Center: Connecticut Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Connecticut Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Connecticut Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Connecticut Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Connecticut Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Connecticut Laws and Incentives for Ethanol The list below contains summaries of all Connecticut laws and incentives

105

Alternative Fuels Data Center: Connecticut Laws and Incentives for Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Grants to someone by E-mail Grants to someone by E-mail Share Alternative Fuels Data Center: Connecticut Laws and Incentives for Grants on Facebook Tweet about Alternative Fuels Data Center: Connecticut Laws and Incentives for Grants on Twitter Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Grants on Google Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Grants on Delicious Rank Alternative Fuels Data Center: Connecticut Laws and Incentives for Grants on Digg Find More places to share Alternative Fuels Data Center: Connecticut Laws and Incentives for Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Connecticut Laws and Incentives for Grants The list below contains summaries of all Connecticut laws and incentives

106

Alternative Fuels Data Center: Connecticut Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

to someone by E-mail to someone by E-mail Share Alternative Fuels Data Center: Connecticut Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Connecticut Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Connecticut Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Connecticut Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Connecticut Laws and Incentives Listed below are the summaries of all current Connecticut laws, incentives, regulations, funding opportunities, and other initiatives related to

107

Confirmatory Survey Results for the Emergency Operations Facility (EOF) at the Connecticut Yankee Haddam Neck Plant, Haddam, Connecticut  

Science Conference Proceedings (OSTI)

The U.S. Nuclear Regulatory Commission (NRC) requested that the Oak Ridge Institute for Science and Education (ORISE) perform a confirmatory survey on the Emergency Operations Facility (EOF) at the Connecticut Yankee Haddam Neck Plant (HNP) in Haddam, Connecticut

W. C. Adams

2007-07-03T23:59:59.000Z

108

Connecticut/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon ┬╗ Connecticut/Wind Resources < Connecticut Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Connecticut Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

109

Categorical Exclusion Determinations: Connecticut | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 17, 2010 November 17, 2010 CX-004412: Categorical Exclusion Determination Geothermal Incentive Program CX(s) Applied: A9, B5.1 Date: 11/17/2010 Location(s): Killingworth, Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory November 17, 2010 CX-004411: Categorical Exclusion Determination Geothermal Incentive Program - Darien Residential CX(s) Applied: A9, B5.1 Date: 11/17/2010 Location(s): Darien, Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory November 16, 2010 CX-004413: Categorical Exclusion Determination Geothermal Incentive Program - Unitarian Universalist Society: East CX(s) Applied: A9, B5.1 Date: 11/16/2010 Location(s): Manchester, Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy

110

Process Modeling of Global Soil Nitrous Oxide Emissions  

E-Print Network (OSTI)

Nitrous oxide is an important greenhouse gas and is a major ozone-depleting substance. To understand and

Saikawa, E.

2011-09-01T23:59:59.000Z

111

Wood and energy in connecticut. Staff report  

SciTech Connect

Telephone surveys of Connecticut households conducted in 1979 indicate a transition to wood heating in response to a series of conventional energy price increases and uncertainty in conventional energy supplies. Connecticut households consumed 668,000 cords of wood in the winter of 1978-79. The airtight wood stove has become the most commonly used wood-burning apparatus. Survey data of residential wood cutting, purchasing, and burning were analyzed by household tenure, wood-burning apparatus, and county. Residential use of wood for energy constitutes a new demand on the forest resource, increases local income and employment, displaces fuel oil and electricity, but may compromise household safety.

Bailey, M.R.; Wheeling, P.R.; Lenz, M.I.

1983-03-01T23:59:59.000Z

112

Connecticut Water Diversion Policy Act (Connecticut) | Open Energy...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

113

Power plant emissions of sulfur dioxide and nitrogen oxides ...  

U.S. Energy Information Administration (EIA)

State Energy Data System ... the program provided an economic incentive for coal-fired power plants to reduce emissions by installing pollution contro ...

114

Hazardous Waste Transporter Permits (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Waste Transporter Permits (Connecticut) Hazardous Waste Transporter Permits (Connecticut) Hazardous Waste Transporter Permits (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Connecticut Program Type Siting and Permitting Provider Department of Energy and Environmental Protection Transportation of hazardous wastes into or through the State of Connecticut requires a permit. Some exceptions apply. The regulations provide

115

NETL: Mercury Emissions Control Technologies - Oxidation of Mercury Across  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxidation of Mercury Across SCR Catalysts in Coal-Fired Power Plants Burning Low Rank Fuels Oxidation of Mercury Across SCR Catalysts in Coal-Fired Power Plants Burning Low Rank Fuels The objective of the proposed research is to assess the potential for the oxidation of mercury in flue gas across SCR catalysts in a coal fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. Results from the project will contribute to a greater understanding of mercury behavior across SCR catalysts. Additional tasks include: review existing pilot and field data on mercury oxidation across SCR catalysts and propose a mechanism for mercury oxidation and create a simple computer model for mercury oxidation based on the hypothetical mechanism. Related Papers and Publications: Final Report - December 31, 2004 [PDF-532KB]

116

Alternative Fuels Data Center: Connecticut Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Connecticut Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Connecticut Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Connecticut Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Connecticut Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Connecticut Laws and Incentives for Propane (LPG)

117

Alternative Fuels Data Center: Connecticut Laws and Incentives for Idle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction to someone by E-mail Idle Reduction to someone by E-mail Share Alternative Fuels Data Center: Connecticut Laws and Incentives for Idle Reduction on Facebook Tweet about Alternative Fuels Data Center: Connecticut Laws and Incentives for Idle Reduction on Twitter Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Idle Reduction on Google Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Idle Reduction on Delicious Rank Alternative Fuels Data Center: Connecticut Laws and Incentives for Idle Reduction on Digg Find More places to share Alternative Fuels Data Center: Connecticut Laws and Incentives for Idle Reduction on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Connecticut Laws and Incentives for Idle Reduction

118

Alternative Fuels Data Center: Connecticut Laws and Incentives for  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel to someone by E-mail Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Connecticut Laws and Incentives for Biodiesel on Facebook Tweet about Alternative Fuels Data Center: Connecticut Laws and Incentives for Biodiesel on Twitter Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Biodiesel on Google Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Biodiesel on Delicious Rank Alternative Fuels Data Center: Connecticut Laws and Incentives for Biodiesel on Digg Find More places to share Alternative Fuels Data Center: Connecticut Laws and Incentives for Biodiesel on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Connecticut Laws and Incentives for Biodiesel

119

Alternative Fuels Data Center: Connecticut Laws and Incentives for Natural  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas to someone by E-mail Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Connecticut Laws and Incentives for Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Connecticut Laws and Incentives for Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Natural Gas on Google Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Natural Gas on Delicious Rank Alternative Fuels Data Center: Connecticut Laws and Incentives for Natural Gas on Digg Find More places to share Alternative Fuels Data Center: Connecticut Laws and Incentives for Natural Gas on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Connecticut Laws and Incentives for Natural Gas

120

Alternative Fuels Data Center: Connecticut Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Connecticut Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Connecticut Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Connecticut Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Connecticut Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Connecticut Laws and Incentives for HEVs / PHEVs

Note: This page contains sample records for the topic "oxides emissions connecticut" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Alternative Fuels Data Center: Connecticut Laws and Incentives for  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Exemptions to someone by E-mail Exemptions to someone by E-mail Share Alternative Fuels Data Center: Connecticut Laws and Incentives for Exemptions on Facebook Tweet about Alternative Fuels Data Center: Connecticut Laws and Incentives for Exemptions on Twitter Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Exemptions on Google Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Exemptions on Delicious Rank Alternative Fuels Data Center: Connecticut Laws and Incentives for Exemptions on Digg Find More places to share Alternative Fuels Data Center: Connecticut Laws and Incentives for Exemptions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Connecticut Laws and Incentives for Exemptions

122

Effectiveness of Diesel Oxidation Catalyst in Reducing HC and CO Emissions from Reactivity Controlled Compression Ignition  

SciTech Connect

Reactivity Controlled Compression Ignition (RCCI) has been shown to allow for diesel-like or better brake thermal efficiency with significant reductions in nitrogen oxide (NOX) particulate matter (PM) emissions. Hydrocarbon (HC) and carbon monoxide (CO) emission levels, on the other hand, are similar to those of port fuel injected gasoline engines. The higher HC and CO emissions combined with the lower exhaust temperatures with RCCI operation present a challenge for current exhaust aftertreatments. The reduction of HC and CO emissions in a lean environment is typically achieved with an oxidation catalyst. In this work, several diesel oxidation catalysts (DOC) with different precious metal loadings were evaluated for effectiveness to control HC and CO emissions from RCCI combustion in a light-duty multi-cylinder engine operating on gasoline and diesel fuels. Each catalyst was evaluated in a steady-state engine operation with temperatures ranging from 160 to 260 C. A shift to a higher light-off temperature was observed during the RCCI operation. In addition to the steady-state experiments, the performances of the DOCs were evaluated during multi-mode engine operation by switching from diesel-like combustion at higher exhaust temperature and low HC/CO emissions to RCCI combustion at lower temperature and higher HC/CO emissions. High CO and HC emissions from RCCI generated an exotherm keeping the catalyst above the light-off temperature.

Prikhodko, Vitaly Y [ORNL; Curran, Scott [ORNL; Parks, II, James E [ORNL; Wagner, Robert M [ORNL

2013-01-01T23:59:59.000Z

123

Higganum, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Higganum, Connecticut: Energy Resources Higganum, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.4970432┬░, -72.5570348┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4970432,"lon":-72.5570348,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

124

Westbrook, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Connecticut: Energy Resources Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.2853769┬░, -72.4475874┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.2853769,"lon":-72.4475874,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

125

Southington, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Southington, Connecticut: Energy Resources Southington, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.5964869┬░, -72.8776013┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5964869,"lon":-72.8776013,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

126

Portland, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Connecticut: Energy Resources Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.5728766┬░, -72.6406483┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5728766,"lon":-72.6406483,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

127

Tariffville, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Tariffville, Connecticut: Energy Resources Tariffville, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9087087┬░, -72.7600951┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9087087,"lon":-72.7600951,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

128

Wallingford, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Connecticut: Energy Resources Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.4570418┬░, -72.8231552┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4570418,"lon":-72.8231552,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

129

Moosup, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Moosup, Connecticut: Energy Resources Moosup, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.7128767┬░, -71.8809054┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7128767,"lon":-71.8809054,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

130

Weatogue, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Weatogue, Connecticut: Energy Resources Weatogue, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.8437093┬░, -72.8284317┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8437093,"lon":-72.8284317,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

131

Thompsonville, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Thompsonville, Connecticut: Energy Resources Thompsonville, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9970407┬░, -72.5989777┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9970407,"lon":-72.5989777,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

132

Durham, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Durham, Connecticut: Energy Resources Durham, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.4817647┬░, -72.6812059┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4817647,"lon":-72.6812059,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

133

Terramuggus, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Terramuggus, Connecticut: Energy Resources Terramuggus, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.6350991┬░, -72.4703638┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6350991,"lon":-72.4703638,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

134

Glastonbury, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Glastonbury, Connecticut: Energy Resources Glastonbury, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.7123218┬░, -72.608146┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7123218,"lon":-72.608146,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

135

Eastford, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Eastford, Connecticut: Energy Resources Eastford, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9020418┬░, -72.0797979┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9020418,"lon":-72.0797979,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

136

Bloomfield, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bloomfield, Connecticut: Energy Resources Bloomfield, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.826488┬░, -72.7300945┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.826488,"lon":-72.7300945,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

137

Shelton, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Shelton, Connecticut: Energy Resources Shelton, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.3164856┬░, -73.0931641┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.3164856,"lon":-73.0931641,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

138

Avon, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Connecticut: Energy Resources Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.8098209┬░, -72.8306541┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8098209,"lon":-72.8306541,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

139

Bristol, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bristol, Connecticut: Energy Resources Bristol, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.6717648┬░, -72.9492703┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6717648,"lon":-72.9492703,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

140

Storrs, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Storrs, Connecticut: Energy Resources Storrs, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.8084314┬░, -72.2495231┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8084314,"lon":-72.2495231,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "oxides emissions connecticut" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Hazardville, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hazardville, Connecticut: Energy Resources Hazardville, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9873187┬░, -72.5448093┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9873187,"lon":-72.5448093,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

142

Kensington, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Connecticut: Energy Resources Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.6353769┬░, -72.7687083┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6353769,"lon":-72.7687083,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

143

Sterling, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Sterling, Connecticut: Energy Resources Sterling, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.707599┬░, -71.828682┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.707599,"lon":-71.828682,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

144

Enfield, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Enfield, Connecticut: Energy Resources Enfield, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9762077┬░, -72.5917554┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9762077,"lon":-72.5917554,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

145

Quinebaug, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Quinebaug, Connecticut: Energy Resources Quinebaug, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.0237077┬░, -71.9497954┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.0237077,"lon":-71.9497954,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

146

Wethersfield, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wethersfield, Connecticut: Energy Resources Wethersfield, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.7142665┬░, -72.6525922┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7142665,"lon":-72.6525922,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

147

Suffield, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Suffield, Connecticut: Energy Resources Suffield, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9817631┬░, -72.6506462┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9817631,"lon":-72.6506462,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

148

Pomfret, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Pomfret, Connecticut: Energy Resources Pomfret, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.8975977┬░, -71.9625736┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8975977,"lon":-71.9625736,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

149

Bethlehem, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bethlehem, Connecticut: Energy Resources Bethlehem, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.6398184┬░, -73.2084471┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6398184,"lon":-73.2084471,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

150

Killingly, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Killingly, Connecticut: Energy Resources Killingly, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.8122401┬░, -71.8334145┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8122401,"lon":-71.8334145,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

151

Canterbury, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Canterbury, Connecticut: Energy Resources Canterbury, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.6984319┬░, -71.9709075┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6984319,"lon":-71.9709075,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

152

Danielson, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Danielson, Connecticut: Energy Resources Danielson, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.8025986┬░, -71.8859054┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8025986,"lon":-71.8859054,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

153

Yalesville, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Yalesville, Connecticut: Energy Resources Yalesville, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.4937084┬░, -72.8237109┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4937084,"lon":-72.8237109,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

154

Stamford, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Stamford, Connecticut: Energy Resources Stamford, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.0534302┬░, -73.5387341┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.0534302,"lon":-73.5387341,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

155

Middlefield, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Middlefield, Connecticut: Energy Resources Middlefield, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.5173203┬░, -72.7120402┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5173203,"lon":-72.7120402,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

156

Wauregan, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wauregan, Connecticut: Energy Resources Wauregan, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.7442655┬░, -71.9092393┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7442655,"lon":-71.9092393,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

157

Chaplin, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Chaplin, Connecticut: Energy Resources Chaplin, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.7948205┬░, -72.1272989┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7948205,"lon":-72.1272989,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

158

Scotland, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Scotland, Connecticut: Energy Resources Scotland, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.6984319┬░, -72.081465┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6984319,"lon":-72.081465,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

159

Putnam, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Putnam, Connecticut: Energy Resources Putnam, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9150978┬░, -71.9089613┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9150978,"lon":-71.9089613,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

160

Canton, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Connecticut: Energy Resources Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.8245424┬░, -72.8937122┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8245424,"lon":-72.8937122,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "oxides emissions connecticut" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Marlborough, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Connecticut: Energy Resources Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.631488┬░, -72.459808┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.631488,"lon":-72.459808,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

162

Connecticut Light & Power - Small ZREC Tariff | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Connecticut Light & Power - Small ZREC Tariff Connecticut Light & Power - Small ZREC Tariff Connecticut Light & Power - Small ZREC Tariff < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Low-Income Residential Multi-Family Residential Nonprofit Residential Schools State Government Tribal Government Savings Category Water Buying & Making Electricity Solar Home Weatherization Wind Program Info Funding Source RPS Start Date 01/08/2013 State Connecticut Program Type Performance-Based Incentive Rebate Amount $164.22 per ZREC Provider Connecticut Light and Power Note: The 2013 application period has closed. In July 2011, Connecticut enacted legislation amending the state's [http://www.dsireusa.org/incentives/incentive.cfm?Incentive_Code=CT04R&re... Renewables Portfolio Standard] (RPS) and creating two new classes of

163

Connecticut Clean Energy Fund (CCEF) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Connecticut Clean Energy Fund (CCEF) Connecticut Clean Energy Fund (CCEF) Connecticut Clean Energy Fund (CCEF) < Back Eligibility Commercial Industrial Institutional Residential Utility Savings Category Biofuels Alternative Fuel Vehicles Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Hydrogen & Fuel Cells Water Energy Sources Solar Program Info State Connecticut Program Type Public Benefits Fund Provider Clean Energy Finance and Investment Authority '''''Note: Connecticut's 2013 Budget Bill, enacted in June 2013, transfers a total of $25.4 million out of the Clean Energy Finance and Investment Authority into the General Fund - $6.2 million in FY 2014 and $19.2 million in FY 2015.''''' Connecticut's 1998 electric restructuring legislation (Public Act 98-28)

164

Alternative Fuels Data Center: Connecticut Laws and Incentives for AFV  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

AFV Manufacturer/Retrofitter to someone by E-mail AFV Manufacturer/Retrofitter to someone by E-mail Share Alternative Fuels Data Center: Connecticut Laws and Incentives for AFV Manufacturer/Retrofitter on Facebook Tweet about Alternative Fuels Data Center: Connecticut Laws and Incentives for AFV Manufacturer/Retrofitter on Twitter Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for AFV Manufacturer/Retrofitter on Google Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for AFV Manufacturer/Retrofitter on Delicious Rank Alternative Fuels Data Center: Connecticut Laws and Incentives for AFV Manufacturer/Retrofitter on Digg Find More places to share Alternative Fuels Data Center: Connecticut Laws and Incentives for AFV Manufacturer/Retrofitter on AddThis.com...

165

Alternative Fuels Data Center: Connecticut Laws and Incentives for Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Owner/Driver to someone by E-mail Vehicle Owner/Driver to someone by E-mail Share Alternative Fuels Data Center: Connecticut Laws and Incentives for Vehicle Owner/Driver on Facebook Tweet about Alternative Fuels Data Center: Connecticut Laws and Incentives for Vehicle Owner/Driver on Twitter Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Vehicle Owner/Driver on Google Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Vehicle Owner/Driver on Delicious Rank Alternative Fuels Data Center: Connecticut Laws and Incentives for Vehicle Owner/Driver on Digg Find More places to share Alternative Fuels Data Center: Connecticut Laws and Incentives for Vehicle Owner/Driver on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

166

Alternative Fuels Data Center: Connecticut Laws and Incentives for  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Producer to someone by E-mail Producer to someone by E-mail Share Alternative Fuels Data Center: Connecticut Laws and Incentives for Alternative Fuel Producer on Facebook Tweet about Alternative Fuels Data Center: Connecticut Laws and Incentives for Alternative Fuel Producer on Twitter Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Alternative Fuel Producer on Google Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Alternative Fuel Producer on Delicious Rank Alternative Fuels Data Center: Connecticut Laws and Incentives for Alternative Fuel Producer on Digg Find More places to share Alternative Fuels Data Center: Connecticut Laws and Incentives for Alternative Fuel Producer on AddThis.com... More in this section... Federal State Advanced Search

167

Exemption from Electric Generation Tax (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exemption from Electric Generation Tax (Connecticut) Exemption from Electric Generation Tax (Connecticut) Exemption from Electric Generation Tax (Connecticut) < Back Eligibility Commercial Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Wind Energy Sources Solar Home Weatherization Program Info Start Date 07/01/2011 Expiration Date 10/01/2013 State Connecticut Program Type Sales Tax Incentive Rebate Amount 100% exemption Provider Connecticut Department of Revenue Services In 2011, Connecticut created a new tax requiring electric power plants in the state that generate and upload electricity to the regional bulk power grid to pay $2.50 per megawatt hour. Renewable energy facilities and customer-sited facilities are exempt from the tax. The tax and related

168

Alternative Fuels Data Center: Connecticut Laws and Incentives for Driving  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Connecticut Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Connecticut Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Connecticut Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Connecticut Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

169

Alternative Fuels Data Center: Connecticut Laws and Incentives for  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Acquisition / Fuel Use to someone by E-mail Acquisition / Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Connecticut Laws and Incentives for Acquisition / Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Connecticut Laws and Incentives for Acquisition / Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Acquisition / Fuel Use on Google Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Acquisition / Fuel Use on Delicious Rank Alternative Fuels Data Center: Connecticut Laws and Incentives for Acquisition / Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Connecticut Laws and Incentives for Acquisition / Fuel Use on AddThis.com... More in this section... Federal State Advanced Search

170

Alternative Fuels Data Center: Connecticut Laws and Incentives for Climate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Climate Change / Energy Initiatives to someone by E-mail Climate Change / Energy Initiatives to someone by E-mail Share Alternative Fuels Data Center: Connecticut Laws and Incentives for Climate Change / Energy Initiatives on Facebook Tweet about Alternative Fuels Data Center: Connecticut Laws and Incentives for Climate Change / Energy Initiatives on Twitter Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Climate Change / Energy Initiatives on Google Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Climate Change / Energy Initiatives on Delicious Rank Alternative Fuels Data Center: Connecticut Laws and Incentives for Climate Change / Energy Initiatives on Digg Find More places to share Alternative Fuels Data Center: Connecticut Laws and Incentives for Climate Change / Energy Initiatives on

171

Alternative Fuels Data Center: Connecticut Laws and Incentives for  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Dealer to someone by E-mail Dealer to someone by E-mail Share Alternative Fuels Data Center: Connecticut Laws and Incentives for Alternative Fuel Dealer on Facebook Tweet about Alternative Fuels Data Center: Connecticut Laws and Incentives for Alternative Fuel Dealer on Twitter Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Alternative Fuel Dealer on Google Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Alternative Fuel Dealer on Delicious Rank Alternative Fuels Data Center: Connecticut Laws and Incentives for Alternative Fuel Dealer on Digg Find More places to share Alternative Fuels Data Center: Connecticut Laws and Incentives for Alternative Fuel Dealer on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

172

Alternative Fuels Data Center: Connecticut Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Connecticut Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Connecticut Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Connecticut Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Connecticut Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section...

173

Alternative Fuels Data Center: Connecticut Laws and Incentives for  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Aftermarket Conversions to someone by E-mail Aftermarket Conversions to someone by E-mail Share Alternative Fuels Data Center: Connecticut Laws and Incentives for Aftermarket Conversions on Facebook Tweet about Alternative Fuels Data Center: Connecticut Laws and Incentives for Aftermarket Conversions on Twitter Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Aftermarket Conversions on Google Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Aftermarket Conversions on Delicious Rank Alternative Fuels Data Center: Connecticut Laws and Incentives for Aftermarket Conversions on Digg Find More places to share Alternative Fuels Data Center: Connecticut Laws and Incentives for Aftermarket Conversions on AddThis.com... More in this section... Federal State

174

Alternative Fuels Data Center: Connecticut Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Connecticut Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Connecticut Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Connecticut Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Connecticut Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State

175

Alternative Fuels Data Center: Connecticut Laws and Incentives for Hydrogen  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Fuel Cells to someone by E-mail Hydrogen Fuel Cells to someone by E-mail Share Alternative Fuels Data Center: Connecticut Laws and Incentives for Hydrogen Fuel Cells on Facebook Tweet about Alternative Fuels Data Center: Connecticut Laws and Incentives for Hydrogen Fuel Cells on Twitter Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Hydrogen Fuel Cells on Google Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Hydrogen Fuel Cells on Delicious Rank Alternative Fuels Data Center: Connecticut Laws and Incentives for Hydrogen Fuel Cells on Digg Find More places to share Alternative Fuels Data Center: Connecticut Laws and Incentives for Hydrogen Fuel Cells on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

176

Local Option - Commercial PACE Financing (Connecticut) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Local Option - Commercial PACE Financing (Connecticut) Local Option - Commercial PACE Financing (Connecticut) Local Option - Commercial PACE Financing (Connecticut) < Back Eligibility Commercial Industrial Low-Income Residential Multi-Family Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Construction Design & Remodeling Other Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Insulation Windows, Doors, & Skylights Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Energy Sources Buying & Making Electricity Solar Water Water Heating Wind Program Info Start Date 10/2012 State Connecticut Program Type PACE Financing Provider Clean Energy Finance and Investment Authority

177

Combined Heat and Power Pilot Grant Program (Connecticut ) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grant Program (Connecticut ) Grant Program (Connecticut ) Combined Heat and Power Pilot Grant Program (Connecticut ) < Back Eligibility Commercial Industrial Institutional Savings Category Commercial Heating & Cooling Manufacturing Buying & Making Electricity Maximum Rebate $450 per kilowatt Program Info Funding Source Clean Energy Finance and Investment Authority State Connecticut Program Type State Grant Program Rebate Amount Varies based on the specific technology, efficiency, and economics of the installation Provider Clean Energy Finance and Investment Authority Note: The initial application deadline was September 28, 2012. This solicitation is now closed. Check the program web site for information regarding the next solicitation. The Clean Energy Finance and Investment Authority (CEFIA) is administering

178

Environmental Land Use Restriction (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Land Use Restriction (Connecticut) Environmental Land Use Restriction (Connecticut) Environmental Land Use Restriction (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Connecticut Program Type Siting and Permitting Provider Department of Energy and Environmental Protection

179

Combined Heat and Power Pilot Loan Program (Connecticut) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Loan Program (Connecticut) Loan Program (Connecticut) Combined Heat and Power Pilot Loan Program (Connecticut) < Back Eligibility Commercial Industrial Institutional Savings Category Commercial Heating & Cooling Manufacturing Buying & Making Electricity Maximum Rebate $450 per kilowatt Program Info Funding Source Clean Energy Finance and Investment Authority Start Date 06/18/2012 State Connecticut Program Type State Loan Program Rebate Amount Varies based on the specific technology, efficiency, and economics of the installation Provider Clean Energy Finance and Investment Authority Note: The application deadline was September 28, 2012. This solicitation is now closed. Check the program web site for information regarding the next solicitation. The Clean Energy Finance and Investment Authority (CEFIA) is administering

180

Natural Gas Pipe Line Companies (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pipe Line Companies (Connecticut) Pipe Line Companies (Connecticut) Natural Gas Pipe Line Companies (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Connecticut Program Type Siting and Permitting Provider Public Utilities Regulatory Authority These regulations list standards and considerations for the design, construction, compression, metering, operation, and maintenance of natural gas pipelines, along with procedures for records, complaints, and service

Note: This page contains sample records for the topic "oxides emissions connecticut" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Hazardous Waste Minimum Distance Requirements (Connecticut) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minimum Distance Requirements (Connecticut) Minimum Distance Requirements (Connecticut) Hazardous Waste Minimum Distance Requirements (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Connecticut Program Type Siting and Permitting Provider Department of Energy and Environmental Protection These regulations set minimum distance requirements between certain types of facilities that generate, process, store, and dispose of hazardous waste

182

Registration of Electric Generators (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Registration of Electric Generators (Connecticut) Registration of Electric Generators (Connecticut) Registration of Electric Generators (Connecticut) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Water Wind Program Info State Connecticut Program Type Generation Disclosure Provider Department of Energy and Environmental Protection All electric generating facilities operating in the state, with the

183

Hazardous Waste Facilities Siting (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facilities Siting (Connecticut) Facilities Siting (Connecticut) Hazardous Waste Facilities Siting (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Connecticut Program Type Siting and Permitting Provider Department of Energy and Environmental Protection These regulations describe the siting and permitting process for hazardous waste facilities and reference rules for construction, operation, closure,

184

Connecticut - Compare - U.S. Energy Information Administration...  

U.S. Energy Information Administration (EIA) Indexed Site

California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan...

185

Waterbury Connecticut: A Study in Dynamic Economic and Demographic Change.  

E-Print Network (OSTI)

??Waterbury, Connecticut is known as the Brass City. To those who are familiar with it, they are also aware of its profound brass history. Theů (more)

Butler, James C.

2009-01-01T23:59:59.000Z

186

Clean Cities: Capitol Clean Cities of Connecticut coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

state of Connecticut, municipalities, and universities to include alternative fuel and hybrid vehicles in their fleets. Peters is involved in organizing and implementing...

187

Consolidated Edison Sol Inc (Connecticut) | Open Energy Information  

Open Energy Info (EERE)

"EIA Form EIA-861 Final Data File for 2010 - File22010" Retrieved from "http:en.openei.orgwindex.php?titleConsolidatedEdisonSolInc(Connecticut)&oldid412474...

188

Connecticut Natural Gas Underground Storage Injections All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Injections All Operators (Million Cubic Feet) Connecticut Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1...

189

Connecticut Natural Gas Underground Storage Net Withdrawals All...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals All Operators (Million Cubic Feet) Connecticut Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

190

Connecticut - Rankings - U.S. Energy Information Administration...  

U.S. Energy Information Administration (EIA) Indexed Site

not exist for . To view this page, please select a state: United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida...

191

Integrated assessment of the spatial variability of ozone impacts from emissions of nitrogen oxides  

Science Conference Proceedings (OSTI)

This paper examines the ozone (O{sub 3}) damages caused by nitrogen oxides (NOx) emissions in different locations around the Atlanta metropolitan area during a summer month. Ozone impacts are calculated using a new integrated assessment model that links pollution emissions to their chemical transformation, transport, population exposures, and effects on human health. It was found that increased NOx emissions in rural areas around Atlanta increase human exposure to ambient O{sub 3} twice as much as suburban emissions. However, increased NOx emissions in central city Atlanta actually reduce O{sub 3} exposures. For downtown emissions, the reduction in human exposures to O{sub 3} from titration by NO in the central city outweighs the effects from increased downwind O{sub 3}. The results indicate that the marginal damage from NOx emissions varies greatly across a metropolitan area. The results raise concerns if cap and trade regulations cause emissions to migrate toward higher marginal damage locations. 22 refs., 4 figs., 2 tabs.

Daniel Q. Tong; Nicholas Z. Muller; Denise L. Mauzerall; Robert O. Mendelsohn [Princeton University, Princeton, NJ (United States). Science, Technology and Environmental Policy Program, Woodrow Wilson School of Public and International Affairs

2006-03-01T23:59:59.000Z

192

Clean Cities: Capitol Clean Cities of Connecticut coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Capitol Clean Cities of Connecticut Coalition Capitol Clean Cities of Connecticut Coalition The Capitol Clean Cities of Connecticut coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Capitol Clean Cities of Connecticut coalition Contact Information Craig Peters 800-255-2631 craig.peters@manchesterhonda.com David Levine 860-653-7744 dave@ct.necoxmail.com Coalition Website Clean Cities Coordinators Coord Craig Peters Coord Coord David Levine Coord Photo of Craig Peters Craig Peters became involved with Capitol Clean Cities of Connecticut in 1999 and was elected coordinator/treasurer in 2005 due to his commitment to working with public and private entities to reduce dependency on imported oil. Peters' responsibilities as coordinator are to offer education and outreach

193

Qualifying RPS State Export Markets (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Connecticut) Connecticut) Qualifying RPS State Export Markets (Connecticut) < Back Eligibility Developer Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Connecticut Program Type Renewables Portfolio Standards and Goals This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Connecticut as eligible sources towards their RPS targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be delivered to an in-state utility or Load Serving Entity, and often only a portion of compliance

194

Covanta Mid-Connecticut Energy Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Mid-Connecticut Energy Biomass Facility Mid-Connecticut Energy Biomass Facility Jump to: navigation, search Name Covanta Mid-Connecticut Energy Biomass Facility Facility Covanta Mid-Connecticut Energy Sector Biomass Facility Type Municipal Solid Waste Location Hartford County, Connecticut Coordinates 41.7924343┬░, -72.8042797┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7924343,"lon":-72.8042797,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

195

Fixed Capital Investment Tax Credit (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fixed Capital Investment Tax Credit (Connecticut) Fixed Capital Investment Tax Credit (Connecticut) Fixed Capital Investment Tax Credit (Connecticut) < Back Eligibility Commercial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Connecticut Program Type Corporate Tax Incentive Provider Connecticut Department of Economic and Community Development The Fixed Capital Investment Tax Credit allows a tax credit of 5% of the amount paid for any new fixed capital investment. Companies with fewer than 800 full-time employees may take a tax credit for machinery and equipment purchased and installed in a facility. The credit is based on a percentage of the amount spent on machinery that exceeds the amount spend on machinery

196

Connecticut's 4th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Connecticut's 4th congressional district: Energy Resources Connecticut's 4th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Connecticut. Registered Energy Companies in Connecticut's 4th congressional district Alteris Renewables Alteris Renewables Inc formerly Solar Works Inc Clean Diesel Technologies Clean Diesel Technologies Inc International Plasma Sales Group IPSG Levco Energy MissionPoint Capital Partners Natural State Research, Inc. Noble Americas NuPower LLC Ocenergy Opel International Inc Poulsen Hybrid, LLC PurePower LLC Startech Environmental Corporation Steven Winter Associates (Consortium for Advanced Residential Buildings) Steven Winters Associates Inc (Connecticut)

197

Clean Cities: Connecticut Southwestern Area Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Connecticut Southwestern Area Clean Cities Coalition Connecticut Southwestern Area Clean Cities Coalition The Connecticut Southwestern Area Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Connecticut Southwestern Area Clean Cities coalition Contact Information Ed Boman 203-256-3010 eboman@town.fairfield.ct.us Clean Cities Coordinator Ed Boman Photo of Ed Boman Ed Boman has been a stakeholder of the Connecticut Southwestern Area Clean Cities coalition since 1995. In that time, he was the coordinator of energy alternatives, and the coalition received state and federal funding to install compressed natural gas stations in four municipalities and to buy over 40 vehicles. In 2009, he successfully partnered with three other

198

Effects of the Thickness of Niobium Surface Oxide Layers on Field Emission  

SciTech Connect

Field emission on the inner surfaces of niobium superconducting radio frequency cavities is still one of the major obstacles for reaching high accelerating gradients for SRF community. Our previous experimental results* seemed to imply that the threshold of field emission was related to the thickness of Nb surface oxide layers. In this contribution, a more detailed study on the influences of the surface oxide layers on the field emission on Nb surfaces will be reported. By anodization technique, the thickness of the surface pentoxide layer was artificially fabricated from 3 nm up to 460 nm. A home-made scanning field emission microscope was employed to perform the scans on the surfaces. Emitters were characterized using a scanning electron microscope together with an energy dispersive x-ray analyzer. The SFEM experimental results were analyzed in terms of surface morphology and oxide thickness of Nb samples and chemical composition and geographic shape of the emitters. A model based on the classic electromagnetic theory was developed trying to understand the experimental results. Possibly implications for Nb SRF cavity applications from this study will be discussed.

A.T. Wu, S. Jin, J.D. Mammosser, R.A. Rimmer, X.Y. Lu, K. Zhao

2011-09-01T23:59:59.000Z

199

Developing Greenhouse Gas Emissions Offsets by Reducing Nitrous Oxide (N2O) Emissions in Agricultural Crop Production: Experience Validating a New GHG Offset Protocol  

Science Conference Proceedings (OSTI)

This project report describes in part the second phase (years four through six, 2010ľ2012) of a two-phase, six-year long EPRI-sponsored research project entitled ôDeveloping Greenhouse Gas Emissions Offsets by Reducing Nitrous Oxide (N2O) Emissions.ö This project investigated an innovative approach to developing large-scale, cost-effective greenhouse gas (GHG) emissions offsets that potentially can be implemented across broad geographic areas of the ...

2013-05-28T23:59:59.000Z

200

Adsorption of collagen to indium oxide nanoparticles and infrared emissivity study thereon  

SciTech Connect

Adsorption of collagen to indium oxide nanoparticles was carried out in water-acetone solution at volumetric ratio of 1:1 with pH value varying from 3.2 to 9.3. As indicated by TGA, maximum collagen adsorption to indium oxide nanoparticles occurred at pH of 3.2. It was proposed that noncovalent interactions such as hydrogen bonding, hydrophilic and electrostatic interactions made main contributions to collagen adsorption. The IR emissivity values (8-14 {mu}m) of collagen-adsorbed indium oxide nanoparticles decreased significantly compared to either pure collagen or indium oxide nanoparticles possibly due to the interfacial interactions between collagen and indium oxide nanoparticles. And the lowest infrared emissivity value of 0.587 was obtained at collagen adsorption of 1.94 g/100 g In{sub 2}O{sub 3}. On the chance of improved compatibility with organic adhesives, the chemical activity of adsorbed collagen was further confirmed by grafting copolymerization with methyl methacrylate by formation of polymer shell outside, as evidenced by IR spectrum and transmission electron microscopy.

Zhou Yuming [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China)], E-mail: fchem@seu.edu.cn; Shan Yun; Sun Yanqing [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Ju Huangxian [School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)

2008-08-04T23:59:59.000Z

Note: This page contains sample records for the topic "oxides emissions connecticut" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Connecticut - U.S. Energy Information Administration (EIA) - U.S ...  

U.S. Energy Information Administration (EIA)

Nuclear & Uranium. Uranium fuel, ... Connecticut Department of Energy and Environmental Protection; ... Bureau of Ocean Energy Management;

202

Urban and Industrial Sites Reinvestment Tax Credit Program (Connecticut) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Industrial Sites Reinvestment Tax Credit Program and Industrial Sites Reinvestment Tax Credit Program (Connecticut) Urban and Industrial Sites Reinvestment Tax Credit Program (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Connecticut Program Type Corporate Tax Incentive Provider Department of Economic and Community Development

203

Endangered, Threatened, and Species of Special Concern (Connecticut) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Endangered, Threatened, and Species of Special Concern Endangered, Threatened, and Species of Special Concern (Connecticut) Endangered, Threatened, and Species of Special Concern (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Connecticut Program Type Environmental Regulations Provider Department of Energy and Environmental Protection

204

Abatement of Air Pollution: Control of Sulfur Compound Emissions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Abatement of Air Pollution: Control of Sulfur Compound Emissions Abatement of Air Pollution: Control of Sulfur Compound Emissions (Connecticut) Abatement of Air Pollution: Control of Sulfur Compound Emissions (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Connecticut Program Type Environmental Regulations Provider Department of Energy and Environmental Protection These regulations set limits on the sulfur content of allowable fuels (1.0%

205

Connecticut State Certification of Commercial and Residential Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Connecticut State Certification of Commercial and Residential Building Connecticut State Certification of Commercial and Residential Building Energy Codes The purpose of this letter is to document that the State of Connecticut has met its stautory requirement with regard to adoption of energy codes that meet or exceed the 2009 International Energy Conservation Code for residential buildings and ASHRAE Standard 90.1-2007 for commercial buildings. Publication Date: Tuesday, July 16, 2013 CT Certification of Building Energy Codes.pdf Document Details Last Name: Cassidy Initials: JV Affiliation: Connecticut Department of Administrative Services, Division of Construction Services Prepared by: prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program Focus: Adoption Building Type:

206

Gas Code of Conduct (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas Code of Conduct (Connecticut) Gas Code of Conduct (Connecticut) Gas Code of Conduct (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Connecticut Program Type Safety and Operational Guidelines Provider Public Utilities Regulatory Authority The Gas Code of Conduct sets forth the standard of conduct for transactions, direct or indirect, between gas companies and their affiliates. The purpose of these regulations is to promote competitive

207

Commercial Solar Thermal Incentive Program (Connecticut) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Thermal Incentive Program (Connecticut) Solar Thermal Incentive Program (Connecticut) Commercial Solar Thermal Incentive Program (Connecticut) < Back Eligibility Commercial Industrial Institutional Local Government Low-Income Residential Multi-Family Residential Nonprofit Schools Tribal Government Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $150,000 Program Info Funding Source Public Benefits Fund Start Date 03/15/2013 State Connecticut Program Type State Grant Program Provider Clean Energy Finance and Investment Authority '''''Note: This program is not currently accepting applications. Check the program web site for information regarding future financing programs. ''''' The Clean Energy Finance and Investment Authority is offering grants and loans to non-residential entities for solar hot water installations. Only

208

Connecticut Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Connecticut Regions Connecticut Regions National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov High School Regionals Connecticut Regions Print Text Size: A A A RSS Feeds FeedbackShare Page Connecticut Coaches can review the high school regional locations listed below. Please note: Registrations are based on the location of your school. Please be sure to select the regional that is designated for your

209

Clean Energy On-Bill Financing (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Energy On-Bill Financing (Connecticut) Clean Energy On-Bill Financing (Connecticut) Clean Energy On-Bill Financing (Connecticut) < Back Eligibility Residential Savings Category Biofuels Alternative Fuel Vehicles Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Hydrogen & Fuel Cells Water Solar Home Weatherization Heating & Cooling Water Heating Wind Program Info Start Date 4/1/2014 State Connecticut Program Type State Loan Program Provider Clean Energy Finance and Investment Authority By April 1, 2014, the Energy Conservation Management Board and the Clean Energy Finance and Investment Authority (CEFIA) must consult with electric distribution companies and gas companies to develop a residential clean energy on-bill repayment program. The program will be financed by

210

Connecticut - Seds - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut - Seds - U.S. Energy Information Administration (EIA) Connecticut - Seds - U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming The page does not exist for . To view this page, please select a state: Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida

211

Residential Solar Investment Program (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Investment Program (Connecticut) Solar Investment Program (Connecticut) Residential Solar Investment Program (Connecticut) < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Customer-owned: $11,500 Program Info Funding Source Clean Energy Finance and Investment Authority (CEFIA) Start Date 03/02/2012 State Connecticut Program Type State Rebate Program Rebate Amount Customer-owned: first 5 kW: $1.75/W, for the next 5 kW up to and including 10 kW: $0.55/W Third-party-owned: $0.300/kWh for six years Provider Clean Energy Finance and Investment Authority Note: This program has multiple steps in which incentives are periodically reduced. The rebate incentive is currently in step three; the performance-based incentive is in step two. For the latest update on

212

Minimum Stream Flow Standards (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minimum Stream Flow Standards (Connecticut) Minimum Stream Flow Standards (Connecticut) Minimum Stream Flow Standards (Connecticut) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Water Buying & Making Electricity Program Info State Connecticut Program Type Siting and Permitting Provider Department of Energy and Environmental Protection These regulations apply to all dams and structures which impound or divert waters on rivers or their tributaries, with some exceptions. The

213

Oil and Gas Exploration (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exploration (Connecticut) Exploration (Connecticut) Oil and Gas Exploration (Connecticut) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Connecticut Program Type Siting and Permitting These regulations apply to activities conducted for the purpose of obtaining geological, geophysical, or geochemical information about oil or gas including seismic activities but excluding exploratory well drilling or aerial surveys. Such exploration for oil or gas must be registered with the

214

Connecticut Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Connecticut Regions Connecticut Regions National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Middle School Regionals Connecticut Regions Print Text Size: A A A RSS Feeds FeedbackShare Page Connecticut Coaches can review the middle school regional locations listed below. Please note: Registrations are based on the location of your school. Please be sure to select the regional that is designated for your

215

Connecticut Light & Power Co | Open Energy Information  

Open Energy Info (EERE)

Connecticut Light & Power Co Connecticut Light & Power Co Place Connecticut Service Territory Connecticut Website www.cl-p.com/Home Green Button Landing Page www.cl-p.com/Home/SaveEne Green Button Reference Page www.cl-p.com/Home/SaveEne Green Button Implemented Yes Utility Id 4176 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it.

216

Connecticut Natural Gas LNG Storage Withdrawals (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

Withdrawals (Million Cubic Feet) Connecticut Natural Gas LNG Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

217

Connecticut Natural Gas LNG Storage Net Withdrawals (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals (Million Cubic Feet) Connecticut Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

218

Connecticut Natural Gas LNG Storage Additions (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Additions (Million Cubic Feet) Connecticut Natural Gas LNG Storage Additions (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

219

Clean Cities: Connecticut Southwestern Area Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

He also worked as a project manager for the development and construction of a 75-MW green-power, waste-to-energy facility in Bridgeport, Connecticut. Town of Fairfield 725...

220

Connecticut Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Connecticut Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

Note: This page contains sample records for the topic "oxides emissions connecticut" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Qualified Small Business Job Creation Tax Credit (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

The Qualified Small Business Job Creation Tax Credit provides tax incentives for Connecticut based-businesses with less than 50 employees. The tax credit is equal to $200 per month for each new...

222

EXP Job Creation Incentive Program (Connecticut) | Open Energy...  

Open Energy Info (EERE)

Data Page Edit with form History Share this page on Facebook icon Twitter icon EXP Job Creation Incentive Program (Connecticut) This is the approved revision of this page, as...

223

Connecticut Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Connecticut Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

224

Preparations for Meeting New York and Connecticut MTBE Bans  

Reports and Publications (EIA)

In response to a Congressional request, EIA examined the progress being made to meet the bans on the use of methyl tertiary butyl ether (MTBE) being implemented in New York and Connecticut at the end of 2003.

Joanne Shore

2003-10-01T23:59:59.000Z

225

Zinc ion and neutral emission from single crystal zinc oxide during 193-nm excimer laser exposure  

SciTech Connect

Mass resolved time-of-flight measurements on neutral zinc atoms and zinc ions show energetic ions and neutrals during 193-nm irradiation of single crystals of semiconducting zinc oxide. Typical Zn+ kinetic energies are 3-5 eV. At fluences (energy per unit area per pulse) below 200 mJ/cm2, the ion intensities (per laser pulse) decrease monotonically to low values with laser pulse number. The depletion kinetics change from exponential to second order near 50 mJ/cm2. We attribute this change to the annihilation of defects yielding Zn+ emission when Zn+ or other surface defects become mobile. At fluences between 200 and 300 mJ/cm2, Zn+ emission becomes more sustained due to defects created by the laser. In this same fluence range, we observe the onset of detectable neutral atomic zinc emission. These neutral atoms display Maxwell-Boltzmann kinetic energy distributions w th effective surface temperatures that approach 5000 K as the fluence is raised to 350 mJ/cm2. These high surface temperatures are remarkable given the low etch rates observed at these fluences, suggesting that heated layer is extremely thin. We propose emission mechanisms and experiments to resolve outstanding questions.

Kahn, E. H. [Washington State University; Langford, S. C. [Washington State University; Boatner, Lynn A [ORNL; Dickinson, J. T. [Washington State University

2011-01-01T23:59:59.000Z

226

Impacts of Standard 90.1-2007 for Commercial Buildings at State Level - Connecticut  

NLE Websites -- All DOE Office Websites (Extended Search)

Connecticut Connecticut September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF STANDARD 90.1-2007 FOR COMMERCIAL BUILDINGS IN CONNECTICUT BUILDING ENERGY CODES PROGRAM IMPACTS OF STANDARD 90.1-2007 FOR COMMERCIAL BUILDINGS IN CONNECTICUT Connecticut Summary Standard 90.1-2007 contains improvements in energy efficiency over the current state code, the 2006 International Energy Conservation Code (IECC) 1 . Standard 90.1-2007 would improve energy efficiency in commercial buildings in Connecticut. The analysis of the impact of Standard 90.1-2007 resulted in energy and

227

MINIMIZING NET CO2 EMISSIONS BY OXIDATIVE CO-PYROLYSIS OF COAL / BIOMASS BLENDS  

DOE Green Energy (OSTI)

This study presents a set of thermodynamic calculations on the optimal mode of solid fuel utilization considering a wide range of fuel types and processing technologies. The technologies include stand-alone combustion, biomass/coal cofiring, oxidative pyrolysis, and straight carbonization with no energy recovery but with elemental carbon storage. The results show that the thermodynamically optimal way to process solid fuels depends strongly on the specific fuels and technologies available, the local demand for heat or for electricity, and the local baseline energy-production method. Burning renewable fuels reduces anthropogenic CO{sub 2} emissions as widely recognized. In certain cases, however, other processing methods are equally or more effective, including the simple carbonization or oxidative pyrolysis of biomass fuels.

Todd Lang; Robert Hurt

2001-12-23T23:59:59.000Z

228

MINIMIZING NET CARBON DIOXIDE EMISSIONS BY OXIDATIVE CO-PYROLYSIS OF COAL/BIOMASS BLENDS  

DOE Green Energy (OSTI)

Solid fuels vary significantly with respect to the amount of CO{sub 2} directly produced per unit heating value. Elemental carbon is notably worse than other solid fuels in this regard, and since carbon (char) is an intermediate product of the combustion of almost all solid fuels, there is an opportunity to reduce specific CO{sub 2} emissions by reconfiguring processes to avoid char combustion wholly or in part. The primary goal of this one-year Innovative Concepts project is to make a fundamental thermodynamic assessment of three modes of solid fuel use: (1) combustion, (2) carbonization, and (3) oxidative pyrolysis, for a wide range of coal and alternative solid fuels. This period a large set of thermodynamic calculations were carried out to assess the potential of the three processes. The results show that the net carbon dioxide emissions and the relative ranking of the different processes depends greatly on the particular baseline fossil fuel being displaced by the new technology. As an example, in a baseline natural gas environment, it is thermodynamically more advantageous to carbonize biomass than to combust it, and even more advantageous to oxidatively pyrolyze the biomass.

Robert Hurt; Todd Lang

2001-06-25T23:59:59.000Z

229

ZERO EMISSION POWER PLANTS USING SOLID OXIDE FUEL CELLS AND OXYGEN TRANSPORT MEMBRANES  

DOE Green Energy (OSTI)

Over 16,700 hours of operational experience was gained for the Oxygen Transport Membrane (OTM) elements of the proposed SOFC/OTM zero-emission power generation concept. It was repeatedly demonstrated that OTMs with no additional oxidation catalysts were able to completely oxidize the remaining depleted fuel in a simulated SOFC anode exhaust at an O{sub 2} flux that met initial targets. In such cases, neither residual CO nor H{sub 2} were detected to the limits of the gas chromatograph (<10 ppm). Dried OTM afterburner exhaust streams contained up to 99.5% CO{sub 2}. Oxygen flux through modified OTMs was double or even triple that of the standard OTMs used for the majority of testing purposes. Both the standard and modified membranes in laboratory-scale and demonstration-sized formats exhibited stable performance over extended periods (2300 to 3500 hours or 3 to 5 months). Reactor contaminants, were determined to negatively impact OTM performance stability. A method of preventing OTM performance degradation was developed and proven to be effective. Information concerning OTM and seal reliability over extended periods and through various chemical and thermal shocks and cycles was also obtained. These findings were used to develop several conceptual designs for pilot (10 kWe) and commercial-scale (250 kWe) SOFC/OTM zero emission power generation systems.

G. Maxwell Christie; Troy M. Raybold

2003-06-10T23:59:59.000Z

230

Air Quality Responses to Changes in Black Carbon and Nitrogen Oxide Emissions  

E-Print Network (OSTI)

2005). Particulate emissions from construction activities.M. S. , (2000b). In-use emissions from heavy- duty dieseland nitrogen dioxide emissions from gasoline- and diesel-

Millstein, Dev

2009-01-01T23:59:59.000Z

231

Connecticut Municipal Electric Energy Cooperative Smart Grid Project | Open  

Open Energy Info (EERE)

Smart Grid Project Smart Grid Project Jump to: navigation, search Project Lead Connecticut Municipal Electric Energy Cooperative Country United States Headquarters Location Norwich, Connecticut Recovery Act Funding $9,188,050.00 Total Project Value $18,376,100.00 Coverage Area Coverage Map: Connecticut Municipal Electric Energy Cooperative Smart Grid Project Coordinates 41.5242649┬░, -72.0759105┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

232

Steven Winters Associates Inc (Connecticut) | Open Energy Information  

Open Energy Info (EERE)

Connecticut) Connecticut) Jump to: navigation, search Name Steven Winters Associates Inc Address 50 Washington Street Place Norwalk, Connecticut Zip 06854 Sector Buildings Product Research, design and consulting for high performance buildings Website http://www.swinter.com/ Coordinates 41.100098┬░, -73.420395┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.100098,"lon":-73.420395,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

233

United Illuminating - ZREC and LREC Long Term Contracts (Connecticut) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United Illuminating - ZREC and LREC Long Term Contracts United Illuminating - ZREC and LREC Long Term Contracts (Connecticut) United Illuminating - ZREC and LREC Long Term Contracts (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Industrial Installer/Contractor Institutional Local Government Low-Income Residential Multi-Family Residential Nonprofit Schools State Government Tribal Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Wind Maximum Rebate $325.50 per ZREC; $200 per LREC Program Info Funding Source RPS Start Date 05/01/2012 State Connecticut Program Type Performance-Based Incentive Provider The United Illuminating Company Note: The deadline for the second request for proposals (RFP) under this program is June 13, 2013.

234

Connecticut/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Connecticut/Wind Resources/Full Version Connecticut/Wind Resources/Full Version < ConnecticutÔÇÄ | Wind Resources Jump to: navigation, search Print PDF Connecticut Wind Resources ConneticutMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

235

Connecticut Company to Advance Hydrogen Infrastructure and Fueling Station  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Connecticut Company to Advance Hydrogen Infrastructure and Fueling Connecticut Company to Advance Hydrogen Infrastructure and Fueling Station Technologies Connecticut Company to Advance Hydrogen Infrastructure and Fueling Station Technologies July 18, 2012 - 3:36pm Addthis As part of the U.S. Energy Department's commitment to give American businesses more options to cut energy costs and reduce reliance on imported oil, the Department today announced a $1.4 million investment to Wallingford- based Proton Energy Systems to collect and analyze performance data for hydrogen fueling stations and advanced refueling components. The projects will also help to track the performance and technical progress of innovative refueling systems to find ways to lower costs and improve operation. These investments are part of the Department's broader strategy

236

PRELIMINARY SURVEY OF BRIDGEPORT BRASS COMPANY SEYMOUR, CONNECTICUT  

Office of Legacy Management (LM)

BRIDGEPORT BRASS COMPANY BRIDGEPORT BRASS COMPANY SEYMOUR, CONNECTICUT Work performed by the Health and Safety Research Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830 March 1980 OAK RIDGE NATIONAL LABORATORY operated by UNION CARBIDE CORPORATION for the DEPARTMENT OF ENERGY as part of the Formerly Utilized Sites-- Remedial Action Program BRIDGEPORT BRASS COMPANY SEYMOUR, CONNECTICUT At the request of the Department of Energy (then ERDA), a preliminary survey was performed at the Bridgeport Brass Company in Seymour, Connecticut (Fig. 1) on January 26, 1977, to assess the radiological status of those facilities used under Atomic Energy Commission (AEC) contract during the period 1962 through 1964. Mr. Edwin F. Rich, Plant Engineer, provided information about the project and identified those

237

City of South Norwalk, Connecticut (Utility Company) | Open Energy  

Open Energy Info (EERE)

South Norwalk, Connecticut (Utility Company) South Norwalk, Connecticut (Utility Company) Jump to: navigation, search Name City of South Norwalk Place Connecticut Utility Id 17569 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Rate 10 - Residential Electric Service Clean Renewable Energy Residential Rate 10 - Residential Electric Service Regular Residential Rate 14 - Unmetered Street and Flood Lights 250 watts Clean Renewable Energy Lighting Rate 14 - Unmetered Street and Flood Lights 400 watts Clean Renewable

238

City of Norwich, Connecticut (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Norwich, Connecticut (Utility Company) Norwich, Connecticut (Utility Company) Jump to: navigation, search Name City of Norwich Place Connecticut Utility Id 13831 Utility Location Yes Ownership M NERC Location NPCC Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png City Street Lighting Lighting City Traffic Lights Lighting Commercial and Industrial (Manufacturers) Industrial Commercial and Industrial (Non-Manufacturers) Industrial General City Use Commercial

239

Connecticut Municipal Electric Energy Cooperative | Open Energy Information  

Open Energy Info (EERE)

Municipal Electric Energy Cooperative Municipal Electric Energy Cooperative Jump to: navigation, search Name Connecticut Mun Elec Engy Coop Place Norwich, Connecticut Utility Id 4180 Utility Location Yes Ownership A NERC Location NPCC NERC NPCC Yes ISO NE Yes Operates Generating Plant Yes Activity Generation Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] SGIC[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Connecticut Municipal Electric Energy Cooperative Smart Grid Project was awarded $9,188,050 Recovery Act Funding with a total project value of $18,376,100. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available

240

City of Jewett City, Connecticut (Utility Company) | Open Energy  

Open Energy Info (EERE)

Jewett City, Connecticut (Utility Company) Jewett City, Connecticut (Utility Company) Jump to: navigation, search Name Jewett City City of Place Connecticut Utility Id 9734 Utility Location Yes Ownership M NERC Location NPCC ISO NE Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Floodlights (1000W) Lighting Floodlights (400W) Lighting Rate No. 1 Commercial Service Commercial Rate No. 2 Residential Service & Rate No. 17 Residential Rate No. 3 Commercial Service Commercial Rate No. 4 Residential Service Residential Rate No. 5 Commercial Service Commercial Rate No. 6 Commercial Service Commercial

Note: This page contains sample records for the topic "oxides emissions connecticut" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Town of Wallingford, Connecticut (Utility Company) | Open Energy  

Open Energy Info (EERE)

Wallingford, Connecticut (Utility Company) Wallingford, Connecticut (Utility Company) Jump to: navigation, search Name Wallingford Town of Place Connecticut Utility Id 20038 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large General Service - Northford Industrial Large General Service - Wallingford Industrial Large General Service, Manufacturer - Northford Industrial Large General Service, Manufacturer - Wallingford Industrial Non-Municipal Lighting - 70 Watt Street Light Lighting

242

Neutron Emission Characteristics of Two Mixed-Oxide Fuels: Simulations and Initial Experiments  

Science Conference Proceedings (OSTI)

Simulations and experiments have been carried out to investigate the neutron emission characteristics of two mixed-oxide (MOX) fuels at Idaho National Laboratory (INL). These activities are part of a project studying advanced instrumentation techniques in support of the U.S. Department of Energy's Fuel Cycle Research and Development program and it's Materials Protection, Accounting, and Control for Transmutation (MPACT) campaign. This analysis used the MCNP-PoliMi Monte Carlo simulation tool to determine the relative strength and energy spectra of the different neutron source terms within these fuels, and then used this data to simulate the detection and measurement of these emissions using an array of liquid scintillator neutron spectrometers. These calculations accounted for neutrons generated from the spontaneous fission of the actinides in the MOX fuel as well as neutrons created via (alpha,n) reactions with oxygen in the MOX fuel. The analysis was carried out to allow for characterization of both neutron energy as well as neutron coincidences between multiple detectors. Coincidences between prompt gamma rays and neutrons were also analyzed. Experiments were performed at INL with the same materials used in the simulations to benchmark and begin validation tests of the simulations. Data was collected in these experiments using an array of four liquid scintillators and a high-speed waveform digitizer. Advanced digital pulse-shape discrimination algorithms were developed and used to collect this data. Results of the simulation and modeling studies are presented together with preliminary results from the experimental campaign.

D. L. Chichester; S. A. Pozzi; J. L. Dolan; M. Flaska; J. T. Johnson; E. H. Seabury; E. M. Gantz

2009-07-01T23:59:59.000Z

243

Geothermal Rebate Program (Connecticut) | Open Energy Information  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View...

244

Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Preliminary Evaluation Results  

DOE Green Energy (OSTI)

This report provides preliminary results from a National Renewable Energy Laboratory evaluation of a protoptye fuel cell transit bus operating at Connecticut Transit in Hartford. Included are descriptions of the planned fuel cell bus demonstration and equipment; early results and agency experience are also provided.

Chandler, K.; Eudy, L.

2008-10-01T23:59:59.000Z

245

A Review of Connecticut's Renewable Portfolio Standards Prepared by  

E-Print Network (OSTI)

between an RPS, wholesale electricity prices, regional transmission expansion policies, and regional air electricity rates (although by a relatively small amount), which has a slight drag on the economy, and most that the effect that the RPS has on increasing Connecticut's electricity prices is very small, between less than 1

Goodman, Robert M.

246

Zero Emission Power Plants Using Solid Oxide Fuel Cells and Oxygen Transport Membranes  

DOE Green Energy (OSTI)

Siemens Westinghouse Power Corp. (SWPC) is engaged in the development of Solid Oxide Fuel Cell stationary power systems. SWPC has combined DOE Developmental funds with commercial customer funding to establish a record of successful SOFC field demonstration power systems of increasing size. SWPC will soon deploy the first unit of a newly developed 250 kWe Combined Heat Power System. It will generate electrical power at greater than 45% electrical efficiency. The SWPC SOFC power systems are equipped to operate on lower number hydrocarbon fuels such as pipeline natural gas, which is desulfurized within the SOFC power system. Because the system operates with a relatively high electrical efficiency, the CO2 emissions, {approx}1.0 lb CO2/ kW-hr, are low. Within the SOFC module the desulfurized fuel is utilized electrochemically and oxidized below the temperature for NOx generation. Therefore the NOx and SOx emissions for the SOFC power generation system are near negligible. The byproducts of the power generation from hydrocarbon fuels that are released into the environment are CO2 and water vapor. This forward looking DOE sponsored Vision 21 program is supporting the development of methods to capture and sequester the CO2, resulting in a Zero Emission power generation system. To accomplish this, SWPC is developing a SOFC module design, to be demonstrated in operating hardware, that will maintain separation of the fuel cell anode gas, consisting of H2, CO, H2O and CO2, from the vitiated air. That anode gas, the depleted fuel stream, containing less than 18% (H2 + CO), will be directed to an Oxygen Transport Membrane (OTM) Afterburner that is being developed by Praxair, Inc.. The OTM is supplied air and the depleted fuel. The OTM will selectively transport oxygen across the membrane to oxidize the remaining H2 and CO. The water vapor is then condensed from the totally 1.5.DOC oxidized fuel stream exiting the afterburner, leaving only the CO2 in gaseous form. That CO2 can then be compressed and sequestered, resulting in a Zero Emission power generation system operating on hydrocarbon fuel that adds only water vapor to the environment. Praxair has been developing oxygen separation systems based on dense walled, mixed electronic, oxygen ion conducting ceramics for a number of years. The oxygen separation membranes find applications in syngas production, high purity oxygen production and gas purification. In the SOFC afterburner application the chemical potential difference between the high temperature SOFC depleted fuel gas and the supplied air provides the driving force for oxygen transport. This permeated oxygen subsequently combusts the residual fuel in the SOFC exhaust. A number of experiments have been carried out in which simulated SOFC depleted fuel gas compositions and air have been supplied to either side of single OTM tubes in laboratory-scale reactors. The ceramic tubes are sealed into high temperature metallic housings which precludes mixing of the simulated SOFC depleted fuel and air streams. In early tests, although complete oxidation of the residual CO and H2 in the simulated SOFC depleted fuel was achieved, membrane performance degraded over time. The source of degradation was found to be contaminants in the simulated SOFC depleted fuel stream. Following removal of the contaminants, stable membrane performance has subsequently been demonstrated. In an ongoing test, the dried afterburner exhaust composition has been found to be stable at 99.2% CO2, 0.4% N2 and 0.6%O2 after 350 hours online. Discussion of these results is presented. A test of a longer, commercial demonstration size tube was performed in the SWPC test facility. A similar contamination of the simulated SOFC depleted fuel stream occurred and the performance degraded over time. A second test is being prepared. Siemens Westinghouse and Praxair are collaborating on the preliminary design of an OTM equipped Afterburner demonstration unit. The intent is to test the afterburner in conjunction with a reduced size SOFC test module that has the anode gas separati

Shockling, Larry A.; Huang, Keqin; Gilboy, Thomas E. (Siemens Westinghouse Power Corporation); Christie, G. Maxwell; Raybold, Troy M. (Praxair, Inc.)

2001-11-06T23:59:59.000Z

247

Nitrogen oxides emission control through reburning with biomass in coal-fired power plants  

E-Print Network (OSTI)

Oxides of nitrogen from coal-fired power stations are considered to be major pollutants, and there is increasing concern for regulating air quality and offsetting the emissions generated from the use of energy. Reburning is an in-furnace, combustion control technology for NOx reduction. Another environmental issue that needs to be addressed is the rapidly growing feedlot industry in the United States. The production of biomass from one or more animal species is in excess of what can safely be applied to farmland in accordance with nutrient management plans and stockpiled waste poses economic and environmental liabilities. In the present study, the feasibility of using biomass as a reburn fuel in existing coal-fired power plants is considered. It is expected to utilize biomass as a low-cost, substitute fuel and an agent to control emission. The successful development of this technology will create environment-friendly, low cost fuel source for the power industry, provide means for an alternate method of disposal of biomass, and generate a possible revenue source for feedlot operators. In the present study, the effect of coal, cattle manure or feedlot biomass, and blends of biomass with coal on the ability to reduce NOx were investigated in the Texas A&M University 29.31 kW (100,000 Btu/h) reburning facility. The facility used a mixture of propane and ammonia to generate the 600 ppm NOx in the primary zone. The reburn fuel was injected using air. The stoichiometry tested were 1.00 to 1.20 in the reburn zone. Two types of injectors, circular jet and fan spray injectors, which produce different types of mixing within the reburn zone, were studied to find their effect on NOx emissions reduction. The flat spray injector performed better in all cases. With the injection of biomass as reburn fuel with circular jet injector the maximum NOx reduction was 29.9 % and with flat spray injector was 62.2 %. The mixing time was estimated in model set up as 936 and 407 ms. The maximum NOx reduction observed with coal was 14.4 % and with biomass it was 62.2 % and the reduction with blends lay between that of coal and biomass.

Arumugam, Senthilvasan

2004-12-01T23:59:59.000Z

248

Abatement of Air Pollution: Control of Carbon Dioxide Emissions/Carbon  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Dioxide Carbon Dioxide Emissions/Carbon Dioxide Budget Trading Program (Connecticut) Abatement of Air Pollution: Control of Carbon Dioxide Emissions/Carbon Dioxide Budget Trading Program (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Connecticut

249

Central Manchester, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Manchester, Connecticut: Energy Resources Manchester, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.7812924┬░, -72.514567┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7812924,"lon":-72.514567,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

250

Rocky Hill, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hill, Connecticut: Energy Resources Hill, Connecticut: Energy Resources Jump to: navigation, search This article is a stub. You can help OpenEI by expanding it. Equivalent URI DBpedia Coordinates 41.6648216┬░, -72.6392587┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6648216,"lon":-72.6392587,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

251

Old Saybrook, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Saybrook, Connecticut: Energy Resources Saybrook, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.2917652┬░, -72.3761956┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.2917652,"lon":-72.3761956,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

252

Westbrook Center, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Westbrook Center, Connecticut: Energy Resources Westbrook Center, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.28008┬░, -72.443454┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.28008,"lon":-72.443454,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

253

Canton Valley, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Connecticut: Energy Resources Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.8342645┬░, -72.8917676┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8342645,"lon":-72.8917676,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

254

Glastonbury Center, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Glastonbury Center, Connecticut: Energy Resources Glastonbury Center, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.7009327┬░, -72.5995347┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7009327,"lon":-72.5995347,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

255

Tolland County, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Tolland County, Connecticut: Energy Resources Tolland County, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.8418987┬░, -72.3784679┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8418987,"lon":-72.3784679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

256

Windsor Locks, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Locks, Connecticut: Energy Resources Locks, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9292639┬░, -72.6273123┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9292639,"lon":-72.6273123,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

257

Deep River, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Connecticut: Energy Resources Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.3856546┬░, -72.4356422┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.3856546,"lon":-72.4356422,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

258

New Haven County, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Haven County, Connecticut: Energy Resources Haven County, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.3266911┬░, -72.8042797┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.3266911,"lon":-72.8042797,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

259

Middlesex County, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Middlesex County, Connecticut: Energy Resources Middlesex County, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.4698505┬░, -72.4731529┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4698505,"lon":-72.4731529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

260

Broad Brook, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Brook, Connecticut: Energy Resources Brook, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9123195┬░, -72.5450873┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9123195,"lon":-72.5450873,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "oxides emissions connecticut" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Simsbury Center, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Simsbury Center, Connecticut: Energy Resources Simsbury Center, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.88295┬░, -72.81138┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.88295,"lon":-72.81138,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

262

East Windsor, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Connecticut: Energy Resources Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.8945836┬░, -72.5914616┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8945836,"lon":-72.5914616,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

263

South Windham, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Windham, Connecticut: Energy Resources Windham, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.679543┬░, -72.1703555┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.679543,"lon":-72.1703555,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

264

East Haddam, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Haddam, Connecticut: Energy Resources Haddam, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.4531547┬░, -72.4611984┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4531547,"lon":-72.4611984,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

265

Putnam District, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Putnam District, Connecticut: Energy Resources Putnam District, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9257629┬░, -71.9104934┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9257629,"lon":-71.9104934,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

266

East Brooklyn, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Brooklyn, Connecticut: Energy Resources Brooklyn, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.7967652┬░, -71.8972946┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7967652,"lon":-71.8972946,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

267

New London County, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

London County, Connecticut: Energy Resources London County, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.5185189┬░, -72.0468164┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5185189,"lon":-72.0468164,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

268

Chester Center, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Chester Center, Connecticut: Energy Resources Chester Center, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.400461┬░, -72.453803┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.400461,"lon":-72.453803,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

269

Salmon Brook, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Brook, Connecticut: Energy Resources Brook, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9564854┬░, -72.795374┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9564854,"lon":-72.795374,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

270

New Canaan, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Canaan, Connecticut: Energy Resources Canaan, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.146763┬░, -73.4948445┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.146763,"lon":-73.4948445,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

271

Plainfield Village, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Plainfield Village, Connecticut: Energy Resources Plainfield Village, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.6753587┬░, -71.9253141┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6753587,"lon":-71.9253141,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

272

New Haven, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Haven, Connecticut: Energy Resources Haven, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.3081527┬░, -72.9281577┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.3081527,"lon":-72.9281577,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

273

Sandy Hook, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hook, Connecticut: Energy Resources Hook, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.4200956┬░, -73.2820608┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4200956,"lon":-73.2820608,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

274

South Windsor, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

South Windsor, Connecticut: Energy Resources South Windsor, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.8489872┬░, -72.5717551┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8489872,"lon":-72.5717551,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

275

Old Saybrook Center, Connecticut: Energy Resources | Open Energy  

Open Energy Info (EERE)

Center, Connecticut: Energy Resources Center, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.2917769┬░, -72.3607108┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.2917769,"lon":-72.3607108,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

276

Connecticut Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Connecticut Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 144 1,584 1,077 291 239 343 298 180 245 251 1990's 111 146 40 94 29 68 48 37 33 31 2000's 20 6 6 57 191 273 91 0 0 1 2010's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Connecticut Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

277

Suffield Depot, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Suffield Depot, Connecticut: Energy Resources Suffield Depot, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9812074┬░, -72.6498129┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9812074,"lon":-72.6498129,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

278

Blue Hills, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Connecticut: Energy Resources Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.812877┬░, -72.6975934┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.812877,"lon":-72.6975934,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

279

Lake Pocotopaug, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Pocotopaug, Connecticut: Energy Resources Pocotopaug, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.5984325┬░, -72.5103654┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5984325,"lon":-72.5103654,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

280

Hartford County, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hartford County, Connecticut: Energy Resources Hartford County, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.7924343┬░, -72.8042797┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7924343,"lon":-72.8042797,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "oxides emissions connecticut" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Sherwood Manor, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Manor, Connecticut: Energy Resources Manor, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.0134293┬░, -72.5642544┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.0134293,"lon":-72.5642544,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

282

North Grosvenor Dale, Connecticut: Energy Resources | Open Energy  

Open Energy Info (EERE)

Grosvenor Dale, Connecticut: Energy Resources Grosvenor Dale, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9856531┬░, -71.8986833┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9856531,"lon":-71.8986833,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

283

Deep River Center, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Center, Connecticut: Energy Resources Center, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.3729131┬░, -72.4435674┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.3729131,"lon":-72.4435674,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

284

Southwood Acres, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Southwood Acres, Connecticut: Energy Resources Southwood Acres, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.962567┬░, -72.571962┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.962567,"lon":-72.571962,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

285

New Britain, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Britain, Connecticut: Energy Resources Britain, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.6612104┬░, -72.7795419┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6612104,"lon":-72.7795419,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

286

Connecticut Regional Middle School Science Bowl | U.S. DOE Office of  

Office of Science (SC) Website

Connecticut Regions » Connecticut Regional Connecticut Regions » Connecticut Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Connecticut Regions Connecticut Regional Middle School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Ashley Butler Email: Ashley.butler@uconn.edu Regional Event Information Date: February 22, 2013

287

Connecticut Regional High School Science Bowl| U.S. DOE Office of Science  

Office of Science (SC) Website

Connecticut Regions » Connecticut Regional Connecticut Regions » Connecticut Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Connecticut Regions Connecticut Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Kevin McLaughlin Email: kjm@engr.uconn.edu Regional Event Information Date: Saturday, March 1, 2014

288

Connecticut Regional Middle School Science Bowl | U.S. DOE Office...  

Office of Science (SC) Website

Fee: NA Regional Geographic Information: Connecticut, Rhode Island Date of Electric Car Competition: February 22, 2013 Please contact the regional coordinator for more...

289

The Sweet Taste of Defeat: American Electric Power Co v. Connecticut and Federal Greenhouse Gas Regulation  

E-Print Network (OSTI)

contribute findings for greenhouse gases under section 202(Connecticut and Federal Greenhouse Gas Regulation KatherineWHAT NEXT? REDUCING GREENHOUSE GASES THROUGH STATE PUBLIC

Trisolini, Katherine A.

2012-01-01T23:59:59.000Z

290

Reducing Emissions of Sulfur Dioxide, Nitrogen Oxides, and Mercury from Electric Power Plants  

Reports and Publications (EIA)

This analysis responds to a request from Senators Bob Smith, George Voinovich, and Sam Brownback to examine the costs of specific multi-emission reduction strategies

J. Alan Beamon

2001-10-01T23:59:59.000Z

291

NETL: News Release - Solid Oxide Fuel Cells to Advance Zero-Emissions...  

NLE Websites -- All DOE Office Websites (Extended Search)

20 percent, focus on solving the remaining issues in developing solid oxide fuel cell (SOFC) systems for commercial use. "The President's Hydrogen and Climate Initiatives envision...

292

Connecticut Energy and Cost Savings for New Single- and Multifamily Homes  

NLE Websites -- All DOE Office Websites (Extended Search)

Connecticut Connecticut Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC BUILDING TECHNOLOGIES PROGRAM 2 2012 IECC AS COMPARED TO THE 2009 IECC Connecticut Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC The 2012 International Energy Conservation Code (IECC) yields positive benefits for Connecticut homeowners. Moving to the 2012 IECC from the 2009 IECC is cost-effective over a 30-year life cycle. On average, Connecticut homeowners will save $9,903 with the 2012 IECC. Each year, the reduction to energy bills will significantly exceed increased mortgage costs. After accounting for up-front costs and additional costs financed in the mortgage, homeowners should

293

Observation of green emission from Ce3+ doped gadolinium oxide nanoparticles  

SciTech Connect

Green emission at around 500 nm is observed in Gd2O3:Ce3+ nanoparticles and the intensity is highly dependent on the concentration of Ce3+ in the nanoparticles. The luminescence of this emission displays both picosecond and millisecond lifetimes. The msec lifetime is over four orders of magnitude longer than typical luminescence lifetimes (10-40 ns) of Ce3+ in traditional Ce3+ doped phosphors and therefore likely originates from defect states. The picosecond lifetime is shorter than the typical Ce3+ value and is also likely due to defect or surface states. When the samples are annealed at 700 oC, this emission disappears possibly due to changes in the defect moieties or concentration. In addition, a blue emission at around 430 nm is observed in freshly-prepared Gd2O3 undoped nanoparticles which is attributed to the stabilizer, polyethylene glycol biscarboxymethyl ether. Upon aging, the undoped particles show similar emission to the doped particles with similar luminescence lifetimes. When Eu3+ ions are co-doped in Gd2O3:Ce nanoparticles, both the green emission and the emission at 612 nm from Eu3+ are observed.

Woo, Boon K.; Joly, Alan G.; Chen, Wei

2011-01-01T23:59:59.000Z

294

Connecticut Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Connecticut Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.35 0.68 0.30 1970's 0.32 0.32 0.35 0.40 0.50 0.58 0.59 1.50 2.60 2.53 1980's 2.76 2.94 3.53 3.30 3.18 3.71 2.53 2.52 2.13 2.97 1990's 3.68 3.08 2.95 3.53 2.62 2.20 3.50 1.54 3.00 0.59 2000's 4.82 4.93 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Connecticut Natural Gas Prices

295

Resonant soft X-ray emission spectroscopy of vanadium oxides and related compounds  

E-Print Network (OSTI)

lithium-ion battery comprises a lithium containing transition metal oxide (TMO) cathode,ion battery using a Li- TMO cathode [95] (e.g. LiCoO 2 ), lithium

Schmitt, Thorsten

2004-01-01T23:59:59.000Z

296

Modeling global atmospheric CO2 with improved emission inventories and CO2 production from the oxidation of other carbon species  

Science Conference Proceedings (OSTI)

The use of global three-dimensional (3-D) models with satellite observations of CO2 in inverse modeling studies is an area of growing importance for understanding Earth s carbon cycle. Here we use the GEOS-Chem model (version 8-02-01) CO2 mode with multiple modifications in order to assess their impact on CO2 forward simulations. Modifications include CO2 surface emissions from shipping (0.19 PgC yr 1), 3-D spatially-distributed emissions from aviation (0.16 PgC yr 1), and 3-D chemical production of CO2 (1.05 PgC yr 1). Although CO2 chemical production from the oxidation of CO, CH4 and other carbon gases is recognized as an important contribution to global CO2, it is typically accounted for by conversion from its precursors at the surface rather than in the free troposphere. We base our model 3-D spatial distribution of CO2 chemical production on monthly-averaged loss rates of CO (a key precursor and intermediate in the oxidation of organic carbon) and apply an associated surface correction for inventories that have counted emissions of CO2 precursors as CO2. We also explore the benefit of assimilating satellite observations of CO into GEOS-Chem to obtain an observation-based estimate of the CO2 chemical source. The CO assimilation corrects for an underestimate of atmospheric CO abundances in the model, resulting in increases of as much as 24% in the chemical source during May June 2006, and increasing the global annual estimate of CO2 chemical production from 1.05 to 1.18 Pg C. Comparisons of model CO2 with measurements are carried out in order to investigate the spatial and temporal distributions that result when these new sources are added. Inclusion of CO2 emissions from shipping and aviation are shown to increase the global CO2 latitudinal gradient by just over 0.10 ppm (3%), while the inclusion of CO2 chemical production (and the surface correction) is shown to decrease the latitudinal gradient by about 0.40 ppm (10%) with a complex spatial structure generally resulting in decreased CO2 over land and increased CO2 over the oceans. Since these CO2 emissions are omitted or misrepresented in most inverse modeling work to date, their implementation in forward simulations should lead to improved inverse modeling estimates of terrestrial biospheric fluxes.

Nassar, Ray [University of Toronto; Jones, DBA [University of Toronto; Suntharalingam, P [University of East Anglia, Norwich, United Kingdom; Chen, j. [University of Toronto; Andres, Robert Joseph [ORNL; Wecht, K. J. [Harvard University; Yantosca, R. M. [Harvard University; Kulawik, SS [Jet Propulsion Laboratory, Pasadena, CA; Bowman, K [Jet Propulsion Laboratory, Pasadena, CA; Worden, JR [Jet Propulsion Laboratory, Pasadena, CA; Machida, T [National Institute for Environmental Studies, Japan; Matsueda, H [Meteorological Research Institute, Japan

2010-01-01T23:59:59.000Z

297

Influence of solid fuel on the carbon-monoxide and nitrogen-oxide emissions on sintering  

SciTech Connect

Laboratory and industrial research now underway at the sintering plant of AO Mittal Steel Temirtau is focusing on the preparation of fuel of optimal granulometric composition, the replacement of coke fines, and the adaptation of fuel-input technology so as to reduce fuel consumption and toxic emissions without loss of sinter quality.

M.F. Vitushchenko; N.L. Tatarkin; A.I. Kuznetsov; A.E. Vilkov [AO Mittal Steel Temirtau, Temirtau (Kazakhstan)

2007-07-01T23:59:59.000Z

298

Preparations for Meeting New York and Connecticut MTBE Bans  

Gasoline and Diesel Fuel Update (EIA)

2 2 Preparations for Meeting New York and Connecticut MTBE Bans October 2003 Office of Oil and Gas Energy Information Administration U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. Contacts and Acknowledgments This report was prepared by the Office of Oil and Gas of the Energy Information Administration (EIA) under the direction of John Cook, Director, Petroleum Division. Questions concerning the report may be directed to Joanne Shore (202/586-4677),

299

U.S. hydropower resource assessment for Connecticut  

DOE Green Energy (OSTI)

The Department of Energy is developing an estimate of the undeveloped hydro-power potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Connecticut.

Francfort, J.E.; Rinehart, B.N.

1995-07-01T23:59:59.000Z

300

Health physics support for thermal shield repair at Connecticut Yankee  

Science Conference Proceedings (OSTI)

This article describes the radiation and safety controls used by Connecticut Yankee Atomic Power Company to support underwater repair work on the Haddam Neck Plant's core barrel thermal shield. The work was conducted by divers in the reactor cavity using remote tools and protected by a specially-constructed physical barrier that restricted their movements to a carefully defined and thoroughly surveyed area. A unique dosimetry test rig was used to determine the dose rate profiles within the work areas, and all underwater survey equipment was qualified against personnel dosimetric devices. Underwater operations were monitored and controlled by remote means (video surveillance and dosimetry telemetry), and health physics technicians were rotated through job coverage to avoid complacency and maximize training opportunities. A single, hot particle event occurred during one dive, but this was identified almost immediately and controlled to prevent excessive exposure to the diver.

Nevelos, W.F.; Gates, W.J. (Connecticut Yankee Atomic Power Co., East Hampton, CT (United States))

1988-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxides emissions connecticut" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Reduction of nitrogen oxide emissions from fossil fuels. (Latest citations from Pollution abstracts). Published Search  

Science Conference Proceedings (OSTI)

The bibliography contains citations concerning the removal of nitrogen compounds from fossil fuels and their post-combustion emissions. Removal methods include biological denitrification, fluidized bed combustion, and flue gas denitrification. Applications to utilities, petroleum refineries, and other industries are presented. The design of nitrogen control systems and process optimization are described. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1996-01-01T23:59:59.000Z

302

Reduction of nitrogen oxide emissions from fossil fuels. (Latest citations from Pollution abstracts). Published Search  

SciTech Connect

The bibliography contains citations concerning the removal of nitrogen compounds from fossil fuels and their post-combustion emissions. Removal methods include biological denitrification, fluidized bed combustion, and flue gas denitrification. Applications to utilities, petroleum refineries, and other industries are presented. The design of nitrogen control systems and process optimization are described. (Contains a minimum of 92 citations and includes a subject term index and title list.)

NONE

1995-01-01T23:59:59.000Z

303

Reduction of nitrogen oxide emissions from fossil fuels. (Latest citations from Pollution abstracts). Published Search  

SciTech Connect

The bibliography contains citations concerning the removal of nitrogen compounds from fossil fuels and their post-combustion emissions. Removal methods include biological denitrification, fluidized bed combustion, and flue gas denitrification. Applications to utilities, petroleum refineries, and other industries are presented. The design of nitrogen control systems and process optimization are described. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1997-05-01T23:59:59.000Z

304

OLENDER REPORTING, INC. 1100 Connecticut Ave., NW, Suite 810, Washington, DC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

100 Connecticut Ave., NW, Suite 810, Washington, DC 100 Connecticut Ave., NW, Suite 810, Washington, DC 20036 Washington: (202) 898-1108 / Baltimore: (410) 752-3376 Toll Free: (888) 445-3376 1 Electricity Advisory Committee Meeting 8:33 a.m. through 2:49 p.m. October 29, 2010 OLENDER REPORTING, INC. 1100 Connecticut Ave., NW, Suite 810, Washington, DC 20036 Washington: (202) 898-1108 / Baltimore: (410) 752-3376 Toll Free: (888) 445-3376 2 National Rural Electric Cooperative Conference Center 4301 Wilson Boulevard Arlington, VA 22203 OLENDER REPORTING, INC. 1100 Connecticut Ave., NW, Suite 810, Washington, DC 20036 Washington: (202) 898-1108 / Baltimore: (410) 752-3376 Toll Free: (888) 445-3376 3 ELECTRICITY ADVISORY MEMBERS PRESENT: Richard Cowart

305

State Agency Energy Efficiency or Renewable Energy Technology Test Program (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

The State of Connecticut has an established pathway to test new energy efficiency or renewable energy technologies in state offices. The technology, product or process must be presently available...

306

HIGH EFFICIENCY, LOW EMISSIONS, SOLID OXIDE FUEL CELL SYSTEMS FOR MULTIPLE APPLICATIONS  

DOE Green Energy (OSTI)

Technology Management Inc. (TMI), teamed with the Ohio Office of Energy Efficiency and Renewable Energy, has engineered, constructed, and demonstrated a stationary, low power, multi-module solid oxide fuel cell (SOFC) prototype system operating on propane and natural gas. Under Phase I, TMI successfully operated two systems in parallel, in conjunction with a single DC-AC inverter and battery bus, and produced net AC electricity. Phase II testing expanded to include alternative and renewable fuels typically available in rural regions of Ohio. The commercial system is expected to have ultra-low pollution, high efficiency, and low noise. The TMI SOFC uses a solid ceramic electrolyte operating at high temperature (800-1000 C) which electrochemically converts gaseous fuels (hydrogen or mixed gases) and oxygen into electricity. The TMI system design oxidizes fuel primarily via electrochemical reactions and uses no burners (which pollute and consume fuel)--resulting in extremely clean exhaust. The use of proprietary sulfur tolerant materials developed by TMI allows system operation without additional fuel pre-processing or sulfur removal. Further, the combination of high operating temperatures and solid state operation increases the potential for higher reliability and efficiencies compared to other types of fuel cells. Applications for the TMI SOFC system cover a wide range of transportation, building, industrial, and military market sectors. A generic technology, fuel cells have the potential to be embodied into multiple products specific to Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) program areas including: Fuel Cells and Microturbines, School Buildings, Transportation, and Bioenergy. This program focused on low power stationary applications using a multi-module system operating on a range of common fuels. By producing clean electricity more efficiently (thus using less fuel), fuel cells have the triple effect of cleaning up the environment, reducing the amount of fuel consumed and, for energy intensive manufacturers, boosting their profits (by reducing energy expenses). Compared to conventional power generation technologies such as internal combustion engines, gas turbines, and coal plants, fuel cells are extremely clean and more efficient, particularly at smaller scales.

Sara Ward; Michael A. Petrik

2004-07-28T23:59:59.000Z

307

Connecticut Natural Gas Delivered to Commercial Consumers for the Account  

Gasoline and Diesel Fuel Update (EIA)

Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Connecticut Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 533 513 2,680 1990's 1,169 1,887 1,037 602 7,455 6,836 5,193 7,709 13,270 17,692 2000's 10,509 9,953 11,188 12,350 11,013 10,606 9,458 10,252 11,032 12,324 2010's 14,068 15,519 14,774 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Delivered to Commercial Consumers for the Account of Others

308

Greenhouse gas emissions in biogas production systems  

E-Print Network (OSTI)

Cameron KC. Nitrous oxide emissions from two dairy pastureand land use on N 2 O emissions from an imperfectly drainedoptions for N 2 O emissions from differently managed

Dittert, Klaus; Senbayram, Mehmet; Wienforth, Babette; Kage, Henning; Muehling, Karl H

2009-01-01T23:59:59.000Z

309

The Windsor Locks, Connecticut Tornado of 3 October 1979: An Analysis of an Intermittent Severe Weather Event  

Science Conference Proceedings (OSTI)

On 3 October 1979 a violent F4 tornado struck without warning at Windsor Locks, Connecticut just before 1900 UTC. It was the most destructive storm ever to occur in Connecticut. Our case study of the storm was motivated by the rarity of tornadoes ...

Gary T. Riley; Lance F. Bosart

1987-08-01T23:59:59.000Z

310

Abatement of Air Pollution: Hazardous Air Pollutants (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations describe maximum allowable stack concentrations and hazard limiting values for the emission of hazardous air pollutants. The regulations also discuss sampling procedures for...

311

Abatement of Air Pollution: Prohibition of Air Pollution (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

All air pollution not otherwise covered by these regulations is prohibited. Stationary sources which cause air pollution must be operated in accordance with all applicable emissions standards and...

312

Connecticut Light & Power - ZREC and LREC Long Term Contracts...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

but this category could include facilities that generate electricity using fuel cells, biomass or landfill gas. Resulting low-emission RECs (LRECs) may be used for RPS...

313

Nitrogen Fertilizer Management for Nitrous Oxide (N2O) Mitigation in Intensive Corn (Maize) Production: An Emissions Reduction Proto col for US Midwest Agriculture  

Science Conference Proceedings (OSTI)

Status: Published Citation: Millar, N; Robertson, GP; Grace, PR; Gehl, RJ; and Hoben, JP. 2010. Nitrogen Fertilizer Management for Nitrous Oxide (N2O) Mitigation in Intensive Corn (Maize) Production: An Emissions Reduction Protocol for US Midwest Agriculture. In Journal of Mitigation and Adaptation Strategies for Global Change,Volume 15, Number 2, 2010, pp. 185-204. Link to Journal Publication: See Journal of Mitigation and Adaptation Strategies for Global Change.

2010-09-03T23:59:59.000Z

314

Nitrogen Fertilizer Management for Nitrous Oxide (N2O) Mitigation in Intensive Corn (Maize) Production: An Emissions Redu ction Protocol for U.S. Midwest Agriculture  

Science Conference Proceedings (OSTI)

Status: Published Citation: Millar, N; Robertson, GP; Grace, PR; Gehl, RJ; and Hoben; JP. 2010. Nitrogen Fertilizer Management for Nitrous Oxide (N2O) Mitigation in Intensive Corn (Maize) Production: An Emissions Reduction Protocol for U.S. Midwest Agriculture. In Mitigation and Adaptation Strategies for Global Change, Volume 15, Number 2, 2010, pp. 185-204. A peer-reviewed journal article that identifies, describes and analyzes socio-economic factors that may encourage or inhibit farmers from participat...

2009-12-17T23:59:59.000Z

315

Solar Thermal Incentive Program (Connecticut) | Open Energy Informatio...  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

316

Solar and Wind Contractor Licensing (Connecticut) | Open Energy...  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

317

An Isolated Winter Cloud-to-Ground Lightning Flash Causing Damage and Injury in Connecticut  

Science Conference Proceedings (OSTI)

An isolated lightning flash at 1436:52 UTC 11 February 1996 struck and destroyed a house in Burlington, Connecticut, injuring an occupant of the house. A flash detected simultaneously by the National Lightning Detection Network was within 1.1 km ...

Ronald L. Holle; Ra˙l E. Lˇpez; Kenneth W. Howard; Kenneth L. Cummins; Mark D. Malone; E. Philip Krider

1997-03-01T23:59:59.000Z

318

Spare-parts replacement and the commercial grade issues at Connecticut Yankee  

Science Conference Proceedings (OSTI)

Connecticut Yankee was designed and built according to code B31.1 of the American National Standards Institute for pressure piping and began commercial operations in 1968, 2 yr prior to 10CFR50 Appendix B of the Code of Federal Regulations. Therefore, at the time of commercial operation, the entire plant, except for several major primary plant components, met the current criteria for commercial grade items (CGIs). When spare parts were needed, 10CFR50 Appendix B and 10CFR21 requirements had to be backfitted onto suppliers who had not agreed to these requirements when supplying the original equipment. The problem of identifying original equipment manufacturers that would or would not accept these additional requirements was compounded at Connecticut Yankee by three related problems that also became apparent at approximately the same time: (1) The accuracy of the material, equipment, parts list (Q-list) was being questioned. (2) The use of existing spare parts bought without additional current quality assurance requirements and the adequacy of the existing inventory to support plant operations were being questioned. (3) The general industry concerns over use of GCIs in safety-related applications needed to be resolved. Connecticut Yankee management recognized the need to address each of these problems. Three specific actions were taken: (1) A Q-list upgrade program was funded. (2) A spare parts bill of materials (BOM) project was funded. (3) Connecticut Yankee's engineering department dedicated several engineers to address procurement issues and specifically to develop a CGI program.

Nichols, E.M.; Scott, D.J.; Maret, D.L.

1989-01-01T23:59:59.000Z

319

After starting with a 12,000-job bang in 2010-Q2, Connecticut's  

E-Print Network (OSTI)

- aged more than 7 degrees above nor- mal. Historically there's little correla- tion between unusual in the number of residents with jobs. Problematically, Connecticut's lower unemployment rate has triggered.5% Freight +6.3% State Tax Receipts Income +16.7% Sales +13.7% Real Estate Conveyance +34.8% Electricity

Holsinger, Kent

320

Public Records Laws Connecticut General Statutes revised to January 1, 2008  

E-Print Network (OSTI)

are related to public records in Connecticut, state agencies, and the Office of the Public Records and conversion of written records by governmental agencies. TITLE 4, CHAPTER 38: ORGANIZATION OF STATE AGENCIES to serve purposes of originals. Sec.1-17a. Photographs and computerized images of individuals. State

Oliver, Douglas L.

Note: This page contains sample records for the topic "oxides emissions connecticut" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Second Evaluation Report and Appendices  

DOE Green Energy (OSTI)

This report describes operations at Connecticut Transit (CTTRANSIT) in Hartford for one prototype fuel cell bus and three new diesel buses operating from the same location. The evaluation period in this report (January 2008 through February 2009) has been chosen to coincide with a UTC Power propulsion system changeout that occurred on January 15, 2008.

Chandler, K.; Eudy, L.

2009-05-01T23:59:59.000Z

322

Method for Determining Performance of Sulfur Oxide Adsorbents for Diesel Emission Control Using Online Measurement of SO2 and SO3 in the Effluent  

SciTech Connect

Upcoming regulations regarding diesel engine emissions require substantial reduction in particulate matter and nitrogen oxides through aftertreatment methods. Since sulfur oxides in the exhaust greatly reduce the performance of the aftertreatment system, a dedicated trap for removal of sulfur oxides has been considered. Most adsorbents are more effective in removing SO{sub 3} than SO{sub 2}; hence oxidation catalysts have been employed to maximize the concentration of SO{sub 3} in the effluent. Although SO{sub 2} concentrations are easily measured, SO3 is less easily quantified. As a result, the only figure of merit for the SOx trap performance has been total capacity, provided by post-characterization. In this paper we describe a chromatographic method for measurement of SO{sub 2} and SO{sub 3} adsorption in real time, which provides adsorbent performance data on breakthrough capacities and sulfur slip, especially important when operating at high space velocities. We also provide experimental measurements of break through capacities for SO{sub 2} and SO{sub 3} adsorption for some common metal oxide adsorbents using this analytical system.

Li, Liyu; King, David L.

2004-07-21T23:59:59.000Z

323

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards The Connecticut Low Emission Vehicles II Program requires that all new

324

Effects of Emissions Reductions on Ozone Predictions by the Regional Oxidant Model during the July 1988 Episode  

Science Conference Proceedings (OSTI)

The U.S. Environmental Protection Agency Regional Oxidant Model, ROM2.2, was applied to a 2?10 July 1988 episode to test the regional episodic ozone response to different combinations of the across-the-board nitrogen oxides (NOx) and volatile ...

Shao-Hang Chu; William M. Cox

1995-03-01T23:59:59.000Z

325

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut" Connecticut" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",11,11,9,8,9,10,10,11,6,1,19,11,5,3,3,3,3,2,3,1,1 " Petroleum",40,38,25,20,16,12,26,37,40,39,26,22,6,5,4,5,3,3,1,"*",1 " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*" " Other1",1,1,1,1,"*",4,5,5,5,5,6,"*","*","*","*","*","*","*","*","*","*"

326

,"Connecticut Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035ct3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035ct3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:24:02 PM" "Back to Contents","Data 1: Connecticut Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035CT3" "Date","Connecticut Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 36906,10.11

327

,"Connecticut Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sct_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sct_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:10 PM" "Back to Contents","Data 1: Connecticut Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SCT_2" "Date","Connecticut Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,0 33419,0 33785,0 34150,0 34515,2

328

Update of Summer Reformulated Gasoline Supply Assessment for New York and Connecticut  

Reports and Publications (EIA)

In October 2003, EIA published a review of the status of the methyl tertiary butyl ether (MTBE) ban transition in New York (NY) and Connecticut (CT) that noted significant uncertainties in gasoline supply for those States for the summer of 2004. To obtain updated information, EIA spoke to major suppliers to the two States over the past several months as the petroleum industry began the switch from winter- to summer-grade gasoline.

Information Center

2004-05-01T23:59:59.000Z

329

Emissions & Emission Controls - FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions and Emission Controls In conjunction with the research efforts at FEERC to improve fuel efficiency and reduce petroleum use, research on emissions is conducted with two...

330

Fuel Mix and Emissions Disclosure  

Energy.gov (U.S. Department of Energy (DOE))

Under Connecticutĺs restructuring law (P.A. 98-28), electric suppliers and electric distribution companies must disclose annually to the Public Utilities Regulatory Authority (PURA) and to...

331

Building Energy Software Tools Directory: EMISS  

NLE Websites -- All DOE Office Websites (Extended Search)

Three types of emission factors are currently included: carbon dioxide, sulfur dioxide, nitrous oxide. Emissions factors are specified separately for six different end-use...

332

The Advanced Tangentially Fired Combustion Techniques for the Reduction of Nitrogen Oxides (NOx) Emissions From Coal-Fired Boilers Demonstration Project: A DOE Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 The Advanced Tangentially Fired Combustion Techniques for the Reduction of Nitrogen Oxides (NO ) Emissions From Coal-Fired Boilers X Demonstration Project: A DOE Assessment March 2000 U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 and P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

333

Analysis of Strategies for Reducing Multiple Emissions from Electric Power Plants: Sulfur Dioxide, Nitrogen Oxides, Carbon Dioxide, and Mercury and a Renewable Portfolio Standard  

Gasoline and Diesel Fuel Update (EIA)

3 3 ERRATA Analysis of Strategies for Reducing Multiple Emissions from Electric Power Plants: Sulfur Dioxide, Nitrogen Oxides, Carbon Dioxide, and Mercury and a Renewable Portfolio Standard July 2001 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This Service Report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should be attributed to the Contacts This report was prepared by the Office of Integrated Analysis and Forecasting, Energy Information Adminis- tration. General questions concerning the report may be directed to Mary J. Hutzler (202/586-2222, mhutzler @eia.doe.gov), Director of the Office of Integrated Analysis and Forecasting, Scott B. Sitzer (202/586-2308,

334

,"Connecticut Natural Gas Underground Storage Withdrawals (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Withdrawals (MMcf)" Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Connecticut Natural Gas Underground Storage Withdrawals (MMcf)",1,"Annual",1996 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5060ct2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5060ct2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:29:19 PM"

335

,"Connecticut Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Connecticut Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_sct_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_sct_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:50 AM"

336

Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Third Evaluation Report and Appendices  

DOE Green Energy (OSTI)

This report describes operations at Connecticut Transit (CTTRANSIT) in Hartford for one prototype fuel cell bus and three new diesel buses operating from the same location. The prototype fuel cell bus was manufactured by Van Hool and ISE Corp. and features an electric hybrid drive system with a UTC Power PureMotion 120 Fuel Cell Power System and ZEBRA batteries for energy storage. The fuel cell bus started operation in April 2007, and evaluation results through October 2009 are provided in this report.

Chandler, K.; Eudy, L.

2010-01-01T23:59:59.000Z

337

Summerwood Associates, House M, Old Saybrook, Connecticut: Solar energy system performance evaluation, June 1980-May 1981  

DOE Green Energy (OSTI)

Summerwood Associates, House M is a single-family rowhouse residence in Connecticut. The active solar energy system is designed to supply 78% of the space heating and 100% of the hot water loads. It is equipped with 378 square feet of flat plate collectors, a 600-gallon concrete storage tank, and for auxiliary heating, a heat pump and electrical resistance heater. The system and subsystem performance are measured, including the solar fraction, solar savings ratio, conventional fuel savings, system performance factor, and solar system coefficient of performance. Also given are the system operating energy, energy savings, and weather conditions. (LEW)

Raymond, M.

1981-01-01T23:59:59.000Z

338

,"Connecticut Natural Gas Underground Storage Injections All Operators (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Injections All Operators (MMcf)" Injections All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Connecticut Natural Gas Underground Storage Injections All Operators (MMcf)",1,"Annual",1996 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5050ct2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5050ct2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:28:50 PM"

339

Biodiesel and Pollutant Emissions (Presentation)  

DOE Green Energy (OSTI)

Presents the results from three methods of testing--engine, chassis, and PEM--for testing nitrogen oxide (NOx) emissions from B20.

McCormick, R.; Williams, A.; Ireland, J.; Hayes, B.

2006-09-28T23:59:59.000Z

340

Joint Regulation of Radionuclides at Connecticut Yankee Haddam Neck Plant - Finding Common Ground and Lessons Learned  

Science Conference Proceedings (OSTI)

During the site closure of nuclear facilities where both radionuclides and chemicals are present in environmental media, state and federal regulatory agencies other than the Nuclear Regulatory Commission often have a stake in the regulation of the site closure process. At the Connecticut Yankee Atomic Power Company (CYAPCO) Haddam Neck Plant in Haddam, Connecticut, the site closure process includes both radiological and chemical cleanup which is regulated by two separate divisions within the state and two federal agencies. Each of the regulatory agencies has unique closure criteria which pertain to radionuclides and, consequently, there is overlapping and in some cases disparate regulation of radionuclides. Considerable effort has been expended by CYAPCO to find common ground in meeting the site closure requirements for radionuclides required by each of the agencies. This paper discusses the approaches that have been used by CYAPCO to address radionuclide site closure requirements. Significant lessons learned from these approaches include the demonstration that public health cleanup criteria for most radionuclides of concern at nuclear power generation facilities are protective for chemical toxicity concerns and are protective for ecological receptors and, consequently, performing a baseline ecological risk assessment for radionuclides at power generation facilities is not generally necessary. (authors)

Peters, J.; Glucksberg, N.; Fogg, A. [MACTEC Engineering and Consulting, Inc., Portland, Maine 04112 (United States); Couture, B. [Connecticut Yankee Atomic Power Company, Haddam Neck Plant, Haddam, Connecticut 06424 (United States)

2006-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxides emissions connecticut" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Reducing Diesel Engine Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Reducing Reducing Diesel Engine Emissions 2 0 1 0 Green TransporTaTion TechnoloGies Compared to traditional gasoline engines, diesel engines require less maintenance, generate energy more efficiently, and produce less carbon dioxide emissions. But when uncontrolled, diesel engines churn out harmful emissions like particu- late matter (PM) and nitrogen oxides (NO x ). Researchers at Argonne National Laboratory are currently working to develop

342

,"Connecticut Natural Gas Underground Storage Net Withdrawals All Operators (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals All Operators (MMcf)" Net Withdrawals All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Connecticut Natural Gas Underground Storage Net Withdrawals All Operators (MMcf)",1,"Annual",1996 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5070ct2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5070ct2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:29:45 PM"

343

NATURAL GAS VARIABILITY IN CALIFORNIA: ENVIRONMENTAL IMPACTS AND DEVICE PERFORMANCE EXPERIMENTAL EVALUATION OF POLLUTANT EMISSIONS FROM RESIDENTIAL APPLIANCES  

E-Print Network (OSTI)

emissionáfactorsáforácarbonámonoxide,ánitrogenáoxides,á nitrogenádioxide,áemissionáfactorsáwereádeterminedáforácarbonámonoxide,ánitrogenáoxides,ánitrogenádioxide,á

Singer, Brett C.

2010-01-01T23:59:59.000Z

344

CONFIRMATORY SURVEY RESULTS FOR PORTIONS OF THE ABB COMBUSTION ENGINEERING SITE IN WINDSOR, CONNECTICUT DURING THE FALL OF 2011  

SciTech Connect

From the mid-1950s until mid-2000, the Combustion Engineering, Inc. (CE) site in Windsor, Connecticut (Figure A-1) was involved in the research, development, engineering, production, and servicing of nuclear fuels, systems, and services. The site is currently undergoing decommissioning that will lead to license termination and unrestricted release in accordance with the requirements of the License Termination Rule in 10 CFR Part 20, Subpart E. Asea Brown Boveri Incorporated (ABB) has been decommissioning the CE site since 2001.

Wade C. Adams

2011-12-09T23:59:59.000Z

345

Epidemiological and Clinical Features of 1,149 Persons with Lyme Disease Identified by Laboratory-Based Surveillance in Connecticut  

E-Print Network (OSTI)

3,098 persons with suspected Lyme disease; 1,149 were defined as cases. Lyme disease incidence in Connecticut towns ranged from none to 1,407 cases per 100,000 population in 1985. A comparison of 1985 data with data from 1977 epidemiologic studies indicated that incidence increased by 129 percent to 453 percent in towns previously known to be endemic for Lyme disease and that Lyme disease had spread northward into towns thought to be free of Lyme disease in 1977. Children aged five to 14 years had the highest incidence. Of persons with Lyme disease, 83 percent had erythema migrans, 24 percent had arthritis, 8 percent had neurologic sequelae, and 2 percent had cardiac sequelae. The distribution of symptoms was age-dependent: case-persons Lyme disease is increasing in incidence and geographic distribution in Connecticut. Of those with Lyme disease, children may be more likely than adults to develop arthritis and have it as their first major disease manifestation. Lyme disease, discovered in 1975 in Connecticut, is now endemic in at least 19

Lyle R. Petersen; A Anne H. Sweeney; Patricia J. Checko; C Louis; A. Magnarelli, Ph.D.; Patricia A. Mshar; C Robert; A. Gunn; James; L. Hadler

1989-01-01T23:59:59.000Z

346

Integrated safety assessment of an oxygen reduction project at Connecticut Yankee Atomic Power's Haddam Neck plant  

SciTech Connect

Connecticut Yankee Atomic Power Company (CYAPCo) has implemented an Integrated Safety Assessment Program (ISAP) for the integrated evaluation and prioritization of plant-specific licensing issues, regulatory policy issues, and plant improvement projects. As part of the ISAP process, probabilistic risk assessment (PRA) is utilized to evaluate the net safety impact of plant modification projects. On a few occasions, implementation of this approach has resulted in the identification of projects with negative safety impacts that could not be quantified via the normal design review and 10CFR50.59 safety evaluation process. An example is a plant modification that was proposed to reduce the oxygen in the Haddam Neck plant's demineralized water storage tank (DWST). The project involved the design and installation of a nitrogen blanketing system on the DWST. The purpose of the project was to reduce the oxygen content on the secondary side, consistent with recommendations from the Electric Power Research Institute Steam Generator Owners Group. Oxygen is one of the contributors to the corrosion process in systems in contact with the feedwater and can cause damage to associated components if not controlled.

Aubrey, J.E.

1987-01-01T23:59:59.000Z

347

The Performance House: A Cold Climate Challenge Home, Old Greenwich, Connecticut (Fact Sheet)  

SciTech Connect

By working with builder partners on test homes, researchers from the U.S. Department of Energy's Building America program can vet whole-house building strategies and avoid potential unintended consequences of implementing untested solution packages on a production scale. To support this research, Building America team Consortium for Advanced Residential Buildings (CARB) partnered with Preferred Builders Inc. on a high-performance test home in Old Greenwich, Connecticut. The philosophy and science behind the 2,700 ft2 "Performance House" was based on the premise that homes should be safe, healthy, comfortable, durable, efficient, and adaptable to the needs of homeowners. The technologies and strategies used in the "Performance House" were best practices rather than cutting edge, with a focus on simplicity in construction, maintenance, and operation. Achieving 30% source energy savings compared with a home built to the 2009 International Energy Conservation Code in the cold climate zone requires that nearly all components and systems be optimized. Careful planning and design are critical. The end result was a DOE Challenge Home that achieved a Home Energy Rating System (HERS) Index Score of 20 (43 without photovoltaics [PV]).

Metzger, C.; Puttagunta, S.; Grab, J.; Williamson, J.

2013-11-01T23:59:59.000Z

348

500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, third quarter 1994, July 1994--September 1994  

Science Conference Proceedings (OSTI)

This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NOx combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NOx reduction using combustion modifications has been established for the project. The project provides a stepwise evaluation of the following NOx reduction technologies: Advanced overfire air (AOFA), Low NOx burners (LNB), LNB, with AOFA, and Advanced Digital Controls and Optimization Strategies. Baseline, AOFA, LNB, and LNB plus AOFA test segments have been completed. Based on a preliminary analysis, approximately 17 percent of the incremental change in NOx emissions between the LNB and LNB+AOFA configurations is the result of AOFA, the balance of the NOx reduction resulting from other operational adjustments. Preliminary diagnostic testing was conducted during August and September. The purpose of these tests was to determine the emissions and performance characteristics of the unit prior to activation of the advanced control/optimization strategies. Short-term, full load NOx emissions were near 0.47 lb/MBtu, slightly higher than that seen during the LNB+AOFA test phase. Long-term NO{sub x} emissions for this quarter averaged near 0.41 lb/MBtu. Due to turbine problems, a four week outage has been planned for Hammond 4 starting October 1. Two on-line carbon-in-ash monitors are being installed at Hammond Unit 4 as part of the Wall-Fired Project. These monitors will be evaluated as to their accuracy, repeatability, reliability, and serviceability.

NONE

1995-09-01T23:59:59.000Z

349

Emissions of Greenhouse Gases in the United States, 2004  

Reports and Publications (EIA)

This report presents the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

2005-12-19T23:59:59.000Z

350

Emissions of Greenhouse Gases in the United States, 2002  

Reports and Publications (EIA)

This report presents the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

2003-10-01T23:59:59.000Z

351

Emissions of Greenhouse Gases in the United States, 2005  

Reports and Publications (EIA)

This report presents the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

2006-11-14T23:59:59.000Z

352

Emissions of Greenhouse Gases in the United States, 1996  

Reports and Publications (EIA)

This report presents the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

1997-10-01T23:59:59.000Z

353

Emissions of Greenhouse Gases in the United States, 1995  

Reports and Publications (EIA)

This report presents the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

1996-10-01T23:59:59.000Z

354

Emissions of Greenhouse Gases in the United States, 1994  

Reports and Publications (EIA)

This report presents the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

1995-09-01T23:59:59.000Z

355

Emissions of Greenhouse Gases in the United States, 1999  

Reports and Publications (EIA)

This report presents the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

2000-10-01T23:59:59.000Z

356

Emissions of Greenhouse Gases in the United States, 2000  

Reports and Publications (EIA)

This report presents the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

2001-11-01T23:59:59.000Z

357

Emissions of Greenhouse Gases in the United States, 1997  

Reports and Publications (EIA)

This report presents the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

1998-10-01T23:59:59.000Z

358

Emissions of Greenhouse Gases in the United States, 1998  

Reports and Publications (EIA)

This report presents the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

1999-10-01T23:59:59.000Z

359

Emissions of Greenhouse Gases in the United States, 2001  

Reports and Publications (EIA)

This report presents the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

2002-12-01T23:59:59.000Z

360

Emissions of Greenhouse Gases in the United States, 2003  

Reports and Publications (EIA)

This report presents the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

2004-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxides emissions connecticut" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Update on State Air Emission Regulations That Affect Electric Power Producers (released in AEO2005)  

Reports and Publications (EIA)

Several States have recently enacted air emission regulations that will affect the electricity generation sector. The regulations are intended to improve air quality in the States and assist them in complying with the revised 1997 National Ambient Air Quality Standards (NAAQS) for ground-level ozone and fine particulates. The affected States include Connecticut, Massachusetts, Maine, Missouri, New Hampshire, New Jersey, New York, North Carolina, Oregon, Texas, and Washington. The regulations govern emissions of NOx, SO2, CO2, and mercury from power plants.

Information Center

2005-02-01T23:59:59.000Z

362

The interaction of 193-nm excimer laser radiation with single-crystal zinc oxide: The generation of atomic Zn line emission at laser fluences below breakdown  

SciTech Connect

The production of gas phase atomic and ionic line spectra accompanying the high laser fluence irradiation of solid surfaces is well known and is most often due to the production and interaction of high densities of atoms, ions, and electrons generated from laser-induced breakdown. The resulting plasma expands and moves rapidly away from the irradiated spot and is accompanied by intense emission of light. This type of plume is well studied and is frequently exploited in the technique of chemical analysis known as laser induced breakdown spectroscopy. Here, we describe a similar but weaker emission of light generated in vacuum by the laser irradiation of single crystal ZnO at fluences well below breakdown; this emission consists entirely of optical line emission from excited atomic Zn. We compare the properties of the resulting laser-generated gas-phase light emission (above and below breakdown) and describe a mechanism for the production of the low-fluence optical emission resulting from a fortuitous choice of material and laser wavelength.

Kahn, E. H. [Washington State University, Pullman; Langford, S. C. [Washington State University, Pullman; Dickinson, J. T. [Washington State University, Pullman; Boatner, Lynn A [ORNL

2013-01-01T23:59:59.000Z

363

500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Technical progress report, fourth quarter, 1994, October 1994--December 1994  

Science Conference Proceedings (OSTI)

This quarterly report discusses the technical progress of an innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NOx combustion equipment through the collection and analysis of long-term emissions data. The project provides a stepwise evaluation of the following NOx reduction technologies: Advanced overfire air (AOFA), Low NOx burners (LNB), LNB with AOFA, and Advanced Digital Controls and Optimization Strategies. The project has completed the baseline, AOFA, LNB, and LNB+AOFA test segments, fulfilling all testing originally proposed to DOE. Analysis of the LNB long-term data collected show the full load NOx emission levels to be near 0.65 lb/MBtu. This NOx level represents a 48 percent reduction when compared to the baseline, full load value of 1.24 lb/MBtu. These reductions were sustainable over the long-term test period and were consistent over the entire load range. Full load, fly ash LOI values in the LNB configuration were near 8 percent compared to 5 percent for baseline. Results from the LNB+AOFA phase indicate that full load NOx emissions are approximately 0.40 lb/MBtu with a corresponding fly ash LOI value of near 8 percent. Although this NOx level represents a 67 percent reduction from baseline levels, a substantial portion of the incremental change in NOx emissions between the LNB and LNB+AOFA configurations was the result of operational changes and not the result of the AOFA system. Phase 4 of the project is now underway.

NONE

1995-09-01T23:59:59.000Z

364

Observation-Based Assessment of the Impact of Nitrogen Oxides Emissions Reductions on Ozone Air Quality over the Eastern United States  

Science Conference Proceedings (OSTI)

Ozone is produced by chemical interactions involving nitrogen oxides (NOx) and volatile organic compounds in the presence of sunlight. At high concentrations, ground-level ozone has been shown to be harmful to human health and to the environment. ...

Edith GÚgo; P. Steven Porter; Alice Gilliland; S. Trivikrama Rao

2007-07-01T23:59:59.000Z

365

Abatement of Air Pollution: Permit to Construct and Operate Stationary Sources (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

Permits are required for the construction or major modification of a stationary source or emission unit. Some exemptions apply. These regulations describe permit requirements, authorized activities...

366

Property:Incentive/AuthDtEff | Open Energy Information  

Open Energy Info (EERE)

AuthDtEff AuthDtEff Jump to: navigation, search Property Name Incentive/AuthDtEff Property Type String Description Date Effective. Pages using the property "Incentive/AuthDtEff" Showing 25 pages using this property. (previous 25) (next 25) 3 30% Business Tax Credit for Solar (Vermont) + 07/01/2008 + A Abatement of Air Pollution: Air Pollution Control Equipment and Monitoring Equipment Operation (Connecticut) + 2004 + Abatement of Air Pollution: Connecticut Primary and Secondary Standards (Connecticut) + 2006 + Abatement of Air Pollution: Control of Carbon Dioxide Emissions/Carbon Dioxide Budget Trading Program (Connecticut) + 2008 + Abatement of Air Pollution: Control of Nitrogen Oxides Emissions (Connecticut) + 2006 + Abatement of Air Pollution: Control of Particulate Matter and Visible Emissions (Connecticut) + 2004 +

367

Stabilized chromium oxide film  

DOE Patents (OSTI)

Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150.ANG. are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

Garwin, Edward L. (Los Altos, CA); Nyaiesh, Ali R. (Palo Alto, CA)

1988-01-01T23:59:59.000Z

368

Stabilized chromium oxide film  

DOE Patents (OSTI)

Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150A are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

Nyaiesh, A.R.; Garwin, E.L.

1986-08-04T23:59:59.000Z

369

FUNDAMENTALS OF MERCURY OXIDATION IN FLUE GAS  

Science Conference Proceedings (OSTI)

The objective of this project is to understand the importance of and the contribution of gas-phase and solid-phase coal constituents in the mercury oxidation reactions. The project involves two experimental scales and a modeling effort. The team is comprised of University of Utah, Reaction Engineering International, and University of Connecticut. The objective is to determine the experimental parameters of importance in the homogeneous and heterogeneous oxidation reactions; validate models; and, improve existing models. Parameters to be studies include HCl, NOx, and SO{sub 2} concentrations, ash constituents, and temperature. This report summarizes Year 1 results for the experimental and modeling tasks. Experiments in the drop tube are just beginning and a new, speciated mercury analyzer is up and running. A preliminary assessment has been made for the drop tube experiments using the existing model of gas-phase kinetics.

JoAnn S. Lighty; Geoffrey Silcox; Andrew Fry; Constance Senior; Joseph Helble

2004-08-01T23:59:59.000Z

370

Pages that link to "Concentrating solar power" | Open Energy...  

Open Energy Info (EERE)

links) Participating Loan Program (Connecticut) ( links) Qualified Small Business Job Creation Tax Credit (Connecticut) ( links) Reduction of Greenhouse Gas Emissions...

371

Electron Emission From Slightly Oxidized Delta-stabilized Plutonium Generated by its Radioactivity, and Radiation Induced Ionization and Dissociation of Hydrogen at its Surface  

DOE Green Energy (OSTI)

Energy dependent electron emission between zero and 1.4 keV generated by the natural reactivity of plutonium was measured by an electrostatic spectrometer with known acceptance angle and acceptance area. The electron spectral intensity decreases continuously except for a distinctive feature of unknown origin at approximately 180eV. The spectrum was converted to energy dependent electron flux (e/cm{sup 2} s) using the assumption that the emission has a cosine angular distribution. The energy dependent electron mean free path in gases and literature cross sections for electron induced reactions were used to determine the number of ionization and dissociation reactions per cm{sup 2} second, found to be about 8*10{sup 8}/cm{sup 2}s and 1.5*10{sup 8}/cm{sup 2}s, respectively, for hydrogen. These results are to be used with caution until complementary measurements can be made, e.g. independent measurement of the total emitted electron current, since the results here are based on the assumption that the electron emission has a cosine angular distribution. That is unlikely to be correct.

Siekhaus, W J; Nelson, A J

2011-10-26T23:59:59.000Z

372

The Sweet Taste of Defeat: American Electric Power Co v. Connecticut and Federal Greenhouse Gas Regulation  

E-Print Network (OSTI)

limits on emissions of carbon dioxide from domestic powerin comparison to the warming effect of carbon dioxide. Thus,can be expressed as the "carbon dioxide equivalent" or "CO 2

Trisolini, Katherine A.

2012-01-01T23:59:59.000Z

373

Abatement of Air Pollution: Source Monitoring, Record Keeping, and Reporting (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

Equipment that either combusts coal in any amount, or enough gaseous, liquid, or solid fuels to meet the heat and emissions standards defined in these regulations, must be operated with an Opacity...

374

Electron Emission from Slightly Oxidized Depleted Uranium Generated by its Own Radioactivity Measured by Electron Spectroscopy, and Electron-Induced Dissociation and Ionization of Hydrogen Near its Surface.  

DOE Green Energy (OSTI)

Energy dependent electron emission (counts per second) between zero and 1.4 keV generated by the natural reactivity of uranium was measured by an electrostatic spectrometer with known acceptance angle and acceptance area. The electron intensity decreases continuously with energy, but at different rates in different energy regimes, suggesting that a variety of processes may be involved in producing the observed electron emission. The spectrum was converted to energy dependent electron flux (e-/cm{sup 2} s) using the assumption that the emission has a cosine angular distribution. The flux decreased rapidly from {approx}10{sup 6}/cm{sup 2}s to {approx}10{sup 5}/cm{sup 2}s in the energy range from zero to 200 eV, and then more slowly from {approx}10{sup 5}/cm{sup 2}s to {approx}3*10{sup 4}/cm{sup 2} s in the range from 200 to 1400 eV. The energy dependent electron mean free path in gases together with literature cross sections for electron induced reactions were used to determine the number of ionization and dissociation reactions per cm{sup 2}s within the inelastic mean free path of electrons, and found to be about 1.3*10{sup 8}/cm{sup 2}s and 1.5*10{sup 7}/cm{sup 2}s, respectively, for hydrogen. An estimate of the number of ionization and dissociation reactions occurring within the total range, rather than the mean free path of electrons in gases resulted in 6.2*10{sup 9}/cm{sup 2}s and 1.3*10{sup 9}/cm{sup 2}s, respectively. The total energy flux carried by electrons from the surface is suspiciously close to the total possible energy generated by one gram of uranium. A likely source of error is the assumption that the electron emission has a cosine distribution. Angular distribution measurements of the electron emission would check that assumption, and actual measurement of the total current emanating from the surface are needed to confirm the value of the current calculated in section II. These results must therefore be used with caution - until they are confirmed by other measurements.

Siekhaus, W J; Nelson, A J

2011-10-26T23:59:59.000Z

375

Gas turbine plant emissions  

SciTech Connect

Many cogeneration facilities use gas turbines combined with heat recovery boilers, and the number is increasing. At the start of 1986, over 75% of filings for new cogeneration plants included plans to burn natural gas. Depending on the geographic region, gas turbines are still one of the most popular prime movers. Emissions of pollutants from these turbines pose potential risks to the environment, particularly in geographical areas that already have high concentrations of cogeneration facilities. Although environmental regulations have concentrated on nitrogen oxides (NO/sub x/) in the past, it is now necessary to evaluate emission controls for other pollutants as well.

Davidson, L.N.; Gullett, D.E.

1987-03-01T23:59:59.000Z

376

Connecticut Department of Energy and Environmental Protection ´Çş Energy Efficiency and Conservation Block Grant Program Funds Provided by the American Recovery and Reinvestment Act of 2009, OAS-RA-13-14  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Connecticut Department of Energy Connecticut Department of Energy and Environmental Protection ´Çş Energy Efficiency and Conservation Block Grant Program Funds Provided by the American Recovery and Reinvestment Act of 2009 OAS-RA-13-14 February 2013 Department of Energy Washington, DC 20585 February 28, 2013 MEMORANDUM FOR THE ASSISTANT SECRETARY FOR ENERGY EFFICIENCY AND RENEWABLE ENERGY FROM: Rickey R. Hass Deputy Inspector General for Audits and Inspections Office of Inspector General SUBJECT: INFORMATION: Examination Report on "Connecticut Department of Energy and Environmental Protection - Energy Efficiency and Conservation Block Grant Program Funds Provided by the American Recovery and Reinvestment Act of 2009" INTRODUCTION AND OBJECTIVE

377

Innovative clean coal technology: 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Final report, Phases 1 - 3B  

SciTech Connect

This report presents the results of a U.S. Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The project was conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The technologies demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NOx burner. The primary objective of the demonstration at Hammond Unit 4 was to determine the long-term effects of commercially available wall-fired low NOx combustion technologies on NOx emissions and boiler performance. Short-term tests of each technology were also performed to provide engineering information about emissions and performance trends. A target of achieving fifty percent NOx reduction using combustion modifications was established for the project. Short-term and long-term baseline testing was conducted in an {open_quotes}as-found{close_quotes} condition from November 1989 through March 1990. Following retrofit of the AOFA system during a four-week outage in spring 1990, the AOFA configuration was tested from August 1990 through March 1991. The FWEC CF/SF low NOx burners were then installed during a seven-week outage starting on March 8, 1991 and continuing to May 5, 1991. Following optimization of the LNBs and ancillary combustion equipment by FWEC personnel, LNB testing commenced during July 1991 and continued until January 1992. Testing in the LNB+AOFA configuration was completed during August 1993. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NOx burners and advanced overfire systems.

NONE

1998-01-01T23:59:59.000Z

378

S T A T E OF CONNECTICUT E X E C U T I V E CHAMBERS M  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

T T A T E OF CONNECTICUT E X E C U T I V E CHAMBERS M . JODI R E L L GOVERNOR The Honorable Steven Chu, Secretary United States Department of Energy 1000 Independence Avenue, S. W. Washington, D.C. 20585 March 23,2009 Dear Secretary Chu: Re: State Energy Program Assurances In accordance with Section 41 0 of the American Recovery and Reinvestment Act of 2009,I hereby notify you that I have obtained necessary assurances that each of the following will occur: (1) The applicable State regulatory authority will seek to implement, in appropriate proceedings for each electric and gas utility, with respect to which the State regulatory authority has ratemaking authority, a general policy that ensures that utility financial incentives are aligned with helping their customers use energy more efficiently and that provide timely cost recovery

379

EIA - AEO2010 - Emissions projections  

Gasoline and Diesel Fuel Update (EIA)

Emissions Projections Emissions Projections Annual Energy Outlook 2010 with Projections to 2035 Emissions Projections Figure 93. Carbon dioxide emissions by sector and fuel, 2008 and 2035 Click to enlarge ┬╗ Figure source and data excel logo Figure 94. Sulfur dioxide emissions from electricity generation, 2000-2035 Click to enlarge ┬╗ Figure source and data excel logo Figure 95. Nitrogen oxide emissions from electricity generation, 2000-2035 Click to enlarge ┬╗ Figure source and data excel logo Growth of carbon dioxide emissions slows in the projections Federal and State energy policies recently enacted will stimulate increased use of renewable technologies and efficiency improvements in the future, slowing the growth of energy-related CO2 emissions through 2035. In the Reference case, emissions do not exceed pre-recession 2007 levels until 2025. In 2035, energy-related CO2 emissions total 6,320 million metric tons, about 6 percent higher than in 2007 and 9 percent higher than in 2008 (Figure 93). On average, emissions in the Reference case grow by 0.3 percent per year from 2008 to 2035, compared with 0.7 percent per year from 1980 to 2008.

380

Just the Basics: Vehicle Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Are Exhaust Are Exhaust Emissions? In most heavily settled areas of the U.S., the personal automobile is the single greatest producer of harmful vehicle exhaust emissions. Exhaust emissions are generated by the fuel-air mixture burning in internal combus- tion engines, both gasoline-powered and diesel-powered. Emissions are also produced by fuel evaporation within the vehicle when it is stopped, and again during fueling. The constituents of car (gasoline and diesel) and truck (diesel) emissions vary depending on fuel type and indi- vidual vehicle operating characteris- tics. The bulk of vehicular emissions are composed of water vapor, carbon dioxide, nitrogen, and oxygen (in unconsumed air). There are other pollutants, such as carbon monoxide, nitrogen oxides, unburned fuel, and

Note: This page contains sample records for the topic "oxides emissions connecticut" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

The use of onboard diagnostics to reduce emissions in automobiles  

E-Print Network (OSTI)

The emissions from automobiles are very harmful and include gases such as Carbon Dioxide, Nitrous Oxide, and Sulfur Dioxide. One of the main reasons OBD was created was to control emissions however it currently only monitors ...

Perez, Alberto, Jr

2009-01-01T23:59:59.000Z

382

Unintended Impacts of Increased Truck Loads on Pavement Supply-Chain Emissions  

E-Print Network (OSTI)

2007)áLong?termáchangesáináemissionsáofánitrogenáoxidesáandáofáalternativeáfuelá vehicles:áemissions,áenergy,á andácostáItsáEffectáOnáCO 2 á Emissions. áTransportáPolicy,á1,á125?

Sathaye, Nakul; Horvath, Arpad; Madanat, Samer

2009-01-01T23:59:59.000Z

383

Emissions of Greenhouse Gases in the United States, 2000 Executive Summary  

Reports and Publications (EIA)

Executive Summary on the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

2001-11-01T23:59:59.000Z

384

How Portfolio Manager calculates greenhouse gas emissions | ENERGY...  

NLE Websites -- All DOE Office Websites (Extended Search)

methane, and nitrous oxide) from on-site fuel combustion and purchased electricity and district heating and cooling. Portfolio Manager also enables tracking of avoided emissions...

385

electricity emission factors | OpenEI  

Open Energy Info (EERE)

emission factors emission factors Dataset Summary Description Emissions from energy use in buildings are usually estimated on an annual basis using annual average multipliers. Using annual numbers provides a reasonable estimation of emissions, but it provides no indication of the temporal nature of the emissions. Therefore, there is no way of understanding the impact on emissions from load shifting and peak shaving technologies such as thermal energy storage, on-site renewable energy, and demand control. Source NREL Date Released April 11th, 2011 (3 years ago) Date Updated April 11th, 2011 (3 years ago) Keywords buildings carbon dioxide emissions carbon footprinting CO2 commercial buildings electricity emission factors ERCOT hourly emission factors interconnect nitrogen oxides

386

sulfur dioxide emissions | OpenEI  

Open Energy Info (EERE)

sulfur dioxide emissions sulfur dioxide emissions Dataset Summary Description Emissions from energy use in buildings are usually estimated on an annual basis using annual average multipliers. Using annual numbers provides a reasonable estimation of emissions, but it provides no indication of the temporal nature of the emissions. Therefore, there is no way of understanding the impact on emissions from load shifting and peak shaving technologies such as thermal energy storage, on-site renewable energy, and demand control. Source NREL Date Released April 11th, 2011 (3 years ago) Date Updated April 11th, 2011 (3 years ago) Keywords buildings carbon dioxide emissions carbon footprinting CO2 commercial buildings electricity emission factors ERCOT hourly emission factors interconnect nitrogen oxides

387

Controlling diesel NOx & PM emissions using fuel components and enhanced aftertreatment techniques: developing the next generation emission control system.  

E-Print Network (OSTI)

??The following research thesis focuses on methods of controlling nitrogen oxides (NO(X)) and particulate matter (PM) emissions emitted from a low temperature diesel exhaust. Thisů (more)

Gill, Simaranjit Singh

2012-01-01T23:59:59.000Z

388

NETL: IEP - Mercury Emissions Control: Emissions Characterization  

NLE Websites -- All DOE Office Websites (Extended Search)

Control Control Emissions Characterization In anticipation of the 1990 CAAAs, specifically the draft Title III regarding the characterization of potential HAPs from electric steam generating units, DOE initiated a new Air Toxics Program in 1989. The DOE Mercury Measurement and Control Program evolved as a result of the findings from the comprehensive assessment of hazardous air pollutants studies conducted by DOE from 1990 through 1997. DOE, in collaboration with EPRI, performed stack tests at a number of coal-fired power plants (identified on map below) to accurately determine the emission rates of a series of potentially toxic chemicals. These tests had not been conducted previously because of their cost, about $1 million per test, so conventional wisdom on emissions was based on emission factors derived from analyses of coal. In general, actual emissions were found to be about one-tenth previous estimates, due to a high fraction of the pollutants being captured by existing particulate control systems. These data resulted in a decision by EPA that most of these pollutants were not a threat to the environment, and needed no further regulation at power plants. This shielded the coal-fired power industry from major (tens of millions) costs that would have resulted from further controlling these emissions. However, another finding of these studies was that mercury was not effectively controlled in coal-fired utility boiler systems. Moreover, EPA concluded that a plausible link exists between these emissions and adverse health effects. Ineffective control of mercury by existing control technologies resulted from a number of factors, including variation in coal composition and variability in the form of the mercury in flue gases. The volatility of mercury was the main contributor for less removal, as compared to the less volatile trace elements/metals which were being removed at efficiencies over 99% with the fly ash. In addition, it was determined that there was no reliable mercury speciation method to accurately distinguish between the elemental and oxidized forms of mercury in the flue gas. These two forms of mercury respond differently to removal techniques in existing air pollution control devices utilized by the coal-fired utility industry.

389

Emissions Of Greenhouse Gases From Rice Agriculture  

SciTech Connect

This project produced detailed data on the processes that affect methane and nitrous oxide emissions from rice agriculture and their inter-relationships. It defines the shifting roles and potential future of these gases in causing global warming and the benefits and tradeoffs of reducing emissions. The major results include: 1). Mechanisms and Processes Leading to Methane Emissions are Delineated. Our experiments have tested the standard model of methane emissions from rice fields and found new results on the processes that control the flux. A mathematical mass balance model was used to unravel the production, oxidation and transport of methane from rice. The results suggested that when large amounts of organic matter are applied, the additional flux that is observed is due to both greater production and reduced oxidation of methane. 2). Methane Emissions From China Have Been Decreasing Over the Last Two Decades. We have calculated that methane emissions from rice fields have been falling in recent decades. This decrease is particularly large in China. While some of this is due to reduced area of rice agriculture, the bigger effect is from the reduction in the emission factor which is the annual amount of methane emitted per hectare of rice. The two most important changes that cause this decreasing emission from China are the reduced use of organic amendments which have been replaced by commercial nitrogen fertilizers, and the increased practice of intermittent flooding as greater demands are placed on water resources. 3). Global Methane Emissions Have Been Constant For More Than 20 Years. While the concentrations of methane in the atmosphere have been leveling off in recent years, our studies show that this is caused by a near constant total global source of methane for the last 20 years or more. This is probably because as some anthropogenic sources have increased, others, such as the rice agriculture source, have fallen. Changes in natural emissions appear small. 4). Nitrous Oxide Emissions From Rice Fields Increase as Methane Emissions Drop. Inundated conditions favor anaerobic methane production with high emission rates and de-nitrification resulting in modest nitrous oxide emissions. Under drier conditions such as intermittent flooding, methane emissions fall and nitrous oxide emissions increase. Increased nitrogen fertilizer use increases nitrous oxide emissions and is usually accompanied by reduced organic matter applications which decreases methane emissions. These mechanisms cause a generally inverse relationship between methane and nitrous oxide emissions. Reduction of methane from rice agriculture to control global warming comes with tradeoffs with increased nitrous oxide emissions. 5). High Spatial Resolution Maps of Emissions Produced. Maps of methane and nitrous oxide emissions at a resolution of 5 min Î 5 min have been produced based on the composite results of this research. These maps are necessary for both scientific and policy uses.

M. Aslam K. Khalil

2009-07-16T23:59:59.000Z

390

Zero emission coal  

DOE Green Energy (OSTI)

We discuss a novel, emission-free process for producing hydrogen or electricity from coal. Even though we focus on coal, the basic design is compatible with any carbonaceous fuel. The process uses cyclical carbonation of calcium oxide to promote the production of hydrogen from carbon and water. The carbonation of the calcium oxide removes carbon dioxide from the reaction products and provides the additional energy necessary to complete hydrogen production without additional combustion of carbon. The calcination of the resulting calcium carbonate is accomplished using the high temperature waste heat from solid oxide fuel cells (SOFC), which generate electricity from hydrogen fuel. Converting waste heat back to useful chemical energy allows the process to achieve very high conversion efficiency from fuel energy to electrical energy. As the process is essentially closed-loop, the process is able to achieve zero emissions if the concentrated exhaust stream of CO{sub 2} is sequestered. Carbon dioxide disposal is accomplished by the production of magnesium carbonate from ultramafic rock. The end products of the sequestration process are stable naturally occurring minerals. Sufficient rich ultramafic deposits exist to easily handle all the world's coal.

Ziock, H.; Lackner, K.

2000-08-01T23:59:59.000Z

391

Fundamentals of Mercury Oxidation in Flue Gas  

SciTech Connect

The objective of this project was to understand the importance of and the contribution of gas-phase and solid-phase coal constituents in the mercury oxidation reactions. The project involved both experimental and modeling efforts. The team was comprised of the University of Utah, Reaction Engineering International, and the University of Connecticut. The objective was to determine the experimental parameters of importance in the homogeneous and heterogeneous oxidation reactions; validate models; and, improve existing models. Parameters studied include HCl, NO{sub x}, and SO{sub 2} concentrations, ash constituents, and temperature. The results suggested that homogeneous mercury oxidation is below 10% which is not consistent with previous data of others and work which was completed early in this research program. Previous data showed oxidation above 10% and up to 100%. However, the previous data are suspect due to apparent oxidation occurring within the sampling system where hypochlorite ion forms in the KCl impinger, which in turn oxidized mercury. Initial tests with entrained iron oxide particles injected into a flame reactor suggest that iron present on fly ash particle surfaces can promote heterogeneous oxidation of mercury in the presence of HCl under entrained flow conditions. Using the data generated above, with homogeneous reactions accounting for less than 10% of the oxidation, comparisons were made to pilot- and full-scale data. The results suggest that heterogeneous reactions, as with the case of iron oxide, and adsorption on solid carbon must be taking place in the full-scale system. Modeling of mercury oxidation using parameters from the literature was conducted to further study the contribution of homogeneous pathways to Hg oxidation in coal combustion systems. Calculations from the literature used rate parameters developed in different studies, in some cases using transition state theory with a range of approaches and basis sets, and in other cases using empirical approaches. To address this, rate constants for the entire 8-step homogeneous Hg oxidation sequence were developed using an internally consistent transition state approach. These rate constants when combined with the appropriate sub-mechanisms produced lower estimates of the overall extent of homogeneous oxidation, further suggesting that heterogeneous pathways play an important role in Hg oxidation in coal-fired systems.

JoAnn Lighty; Geoffrey Silcox; Constance Senior; Joseph Helble; Balaji Krishnakumar

2008-07-31T23:59:59.000Z

392

Diesel hybridization and emissions.  

DOE Green Energy (OSTI)

The CTR Vehicle Systems and Fuels team a diesel hybrid powertrain. The goal of this experiment was to investigate and demonstrate the potential of diesel engines for hybrid electric vehicles (HEVs) in a fuel economy and emissions. The test set-up consisted of a diesel engine coupled to an electric motor driving a Continuously Variable Transmission (CVT). This hybrid drive is connected to a dynamometer and a DC electrical power source creating a vehicle context by combining advanced computer models and emulation techniques. The experiment focuses on the impact of the hybrid control strategy on fuel economy and emissions-in particular, nitrogen oxides (NO{sub x}) and particulate matter (PM). The same hardware and test procedure were used throughout the entire experiment to assess the impact of different control approaches.

Pasquier, M.; Monnet, G.

2004-04-21T23:59:59.000Z

393

Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions  

DOE Green Energy (OSTI)

A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

Biruduganti, Munidhar S. (Naperville, IL); Gupta, Sreenath Borra (Naperville, IL); Sekar, R. Raj (Naperville, IL); McConnell, Steven S. (Shorewood, IL)

2008-11-25T23:59:59.000Z

394

Category:EZFeed Policies | Open Energy Information  

Open Energy Info (EERE)

EZFeed Policies EZFeed Policies Jump to: navigation, search This category uses the form EZFeed Policy. Download all EZ Feed Policies CSV (rows 1-500) CSV (rows 501-1000) CSV (rows 1001-1500) CSV (rows 1501-1709) Contents: Top - 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Pages in category "EZFeed Policies" The following 200 pages are in this category, out of 1,708 total. (previous 200) (next 200) 4 401 Certification (Vermont) A Abatement of Air Pollution: Air Pollution Control Equipment and Monitoring Equipment Operation (Connecticut) Abatement of Air Pollution: Connecticut Primary and Secondary Standards (Connecticut) Abatement of Air Pollution: Control of Carbon Dioxide Emissions/Carbon Dioxide Budget Trading Program (Connecticut) Abatement of Air Pollution: Control of Nitrogen Oxides Emissions (Connecticut)

395

Fundamentals of Mercury Oxidation in Flue Gas  

SciTech Connect

The objective of this project is to understand the importance of and the contribution of gas-phase and solid-phase coal constituents in the mercury oxidation reactions. The project involves both experimental and modeling efforts. The team is comprised of the University of Utah, Reaction Engineering International, and the University of Connecticut. The objective is to determine the experimental parameters of importance in the homogeneous and heterogeneous oxidation reactions; validate models; and, improve existing models. Parameters to be studied include HCl, NO{sub x}, and SO{sub 2} concentrations, ash constituents, and temperature. This report summarizes Year 3 results for the experimental and modeling tasks. Experiments have been completed on the effects of chlorine. However, the experiments with sulfur dioxide and NO, in the presence of water, suggest that the wet-chemistry analysis system, namely the impingers, is possibly giving erroneous results. Future work will investigate this further and determine the role of reactions in the impingers on the oxidation results. The solid-phase experiments have not been completed and it is anticipated that only preliminary work will be accomplished during this study.

JoAnn S. Lighty; Geoffrey Silcox; Andrew Fry; Joseph Helble; Balaji Krishnakumar

2006-07-31T23:59:59.000Z

396

Vehicle Emission Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Emission Basics Vehicle Emission Basics Vehicle Emission Basics November 22, 2013 - 2:07pm Addthis Vehicle emissions are the gases emitted by the tailpipes of vehicles powered by internal combustion engines, which include gasoline, diesel, natural gas, and propane vehicles. Vehicle emissions are composed of varying amounts of: water vapor carbon dioxide (CO2) nitrogen oxygen pollutants such as: carbon monoxide (CO) nitrogen oxides (NOx) unburned hydrocarbons (UHCs) volatile organic compounds (VOCs) particulate matter (PM) A number of factors determine the composition of emissions, including the vehicle's fuel, the engine's technology, the vehicle's exhaust aftertreatment system, and how the vehicle operates. Emissions are also produced by fuel evaporation during fueling or even when vehicles are

397

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Electricity Profile 2010 Connecticut profile Connecticut Electricity Profile 2010 Connecticut profile Table 1. 2010 Summary Statistics (Connecticut) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 8,284 35 Electric Utilities 160 46 Independent Power Producers & Combined Heat and Power 8,124 15 Net Generation (megawatthours) 33,349,623 40 Electric Utilities 65,570 45 Independent Power Producers & Combined Heat and Power 33,284,053 11 Emissions (thousand metric tons) Sulfur Dioxide 2 48 Nitrogen Oxide 7 45 Carbon Dioxide 9,201 41 Sulfur Dioxide (lbs/MWh) 0.1 48 Nitrogen Oxide (lbs/MWh) 0.5 49 Carbon Dioxide (lbs/MWh) 608 45 Total Retail Sales (megawatthours) 30,391,766 35 Full Service Provider Sales (megawatthours) 13,714,958 40

398

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut Electricity Profile 2010 Connecticut profile Connecticut Electricity Profile 2010 Connecticut profile Table 1. 2010 Summary Statistics (Connecticut) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 8,284 35 Electric Utilities 160 46 Independent Power Producers & Combined Heat and Power 8,124 15 Net Generation (megawatthours) 33,349,623 40 Electric Utilities 65,570 45 Independent Power Producers & Combined Heat and Power 33,284,053 11 Emissions (thousand metric tons) Sulfur Dioxide 2 48 Nitrogen Oxide 7 45 Carbon Dioxide 9,201 41 Sulfur Dioxide (lbs/MWh) 0.1 48 Nitrogen Oxide (lbs/MWh) 0.5 49 Carbon Dioxide (lbs/MWh) 608 45 Total Retail Sales (megawatthours) 30,391,766 35 Full Service Provider Sales (megawatthours) 13,714,958 40

399

Version 2 Global Fire Emissions Database Available  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Fire Emissions Database Available Global Fire Emissions Database Available The ORNL DAAC announces the release of the data set "Global Fire Emissions Database, Version 2 (GFEDv2)." This data set, which supersedes and replaces the Global Fire Emissions Database, Version 1 (GFEDv1), consists of 1 degree x 1 degree gridded monthly burned area, fuel loads, combustion completeness, and fire emissions of carbon (C), carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), non-methane hydrocarbons (NMHC), molecular hydrogen (H2), nitrogen oxides (NOx), nitrous oxide (N2O), particulate matter (PM2.5), total particulate matter (TPM), total carbon (TC), organic carbon (OC), and black carbon (BC) for the time period January 1997 - December 2004. For more information or to access this data set, please see the Vegetation

400

Mechanical Stability of Solid Oxide Fuel Cell (SOFC) Materials  

Science Conference Proceedings (OSTI)

Abstract Scope, Solid oxide fuel cells (SOFCs) are devices that convert chemical energy into electricity with high efficiency and low pollutant emissions. In caseá...

Note: This page contains sample records for the topic "oxides emissions connecticut" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Abatement of Air Pollution: Control of Sulfur Dioxide Emissions from Power Plants and Other Large Stationary Sources of Air Pollution (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations apply to fossil-fuel fired stationary sources which serve a generator with a nameplate capacity of 15 MW or more, or fossil-fuel fired boilers or indirect heat exchangers with a...

402

Emissions of greenhouse gases in the United States 1995  

Science Conference Proceedings (OSTI)

This is the fourth Energy Information Administration (EIA) annual report on US emissions of greenhouse gases. This report presents estimates of US anthropogenic (human-caused) emissions of carbon dioxide, methane, nitrous oxide, and several other greenhouse gases for 1988 through 1994. Estimates of 1995 carbon dioxide, nitrous oxide, and halocarbon emissions are also provided, although complete 1995 estimates for methane are not yet available. Emissions of carbon dioxide increased by 1.9% from 1993 to 1994 and by an additional 0.8% from 1994 to 1995. Most carbon dioxide emissions are caused by the burning of fossil fuels for energy consumption, which is strongly related to economic growth, energy prices, and weather. The US economy grew rapidly in 1994 and slowed in 1995. Estimated emissions of methane increased slightly in 1994, as a result of a rise in emissions from energy and agricultural sources. Estimated nitrous oxide emissions increased by 1.8% in 1995, primarily due to increased use of nitrogen fertilizers and higher output of chemicals linked to nitrous oxide emissions. Estimated emissions of hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs), which are known to contribute to global warming, increased by nearly 11% in 1995, primarily as a result of increasing substitution for chlorofluorocarbons (CFCs). With the exception of methane, the historical emissions estimates presented in this report are only slightly revised from those in last year`s report.

NONE

1996-10-01T23:59:59.000Z

403

HFC Emissions Estinating  

Science Conference Proceedings (OSTI)

... Dioxide Emissions Reporting Year: January ľ December, 200x Agent Type GWP Total Emission by Agent Type, kg Equivalent CO2 Emission by ...

2011-10-13T23:59:59.000Z

404

Saving Fuel, Reducing Emissions  

E-Print Network (OSTI)

lower greenhouse gas emissions from electricity productionAssessment of Greenhouse Gas Emissions from Plug-in Hybridof national greenhouse gas emissions. Both motor vehicle

Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

2009-01-01T23:59:59.000Z

405

CO2 Emissions - Gibraltar  

NLE Websites -- All DOE Office Websites (Extended Search)

Gibraltar CO2 Emissions from Gibraltar Data graphic Data CO2 Emissions from Gibraltar image Per capita CO2 Emission Estimates for Gibraltar...

406

CO2 Emissions - Mozambique  

NLE Websites -- All DOE Office Websites (Extended Search)

Mozambique Graphics CO2 Emissions from Mozambique Data graphic Data CO2 Emissions from Mozambique image Per capita CO2 Emission Estimates for Mozambique...

407

CO2 Emissions - Macau  

NLE Websites -- All DOE Office Websites (Extended Search)

Far East Macau CO2 Emissions from Macau Data graphic Data CO2 Emissions from Macau image Per capita CO2 Emission Estimates for Macau...

408

CO2 Emissions - Guadeloupe  

NLE Websites -- All DOE Office Websites (Extended Search)

Guadeloupe Graphics CO2 Emissions from Guadeloupe Data graphic Data CO2 Emissions from Guadeloupe image Per capita CO2 Emission Estimates for Guadeloupe...

409

CO2 Emissions - Ghana  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Ghana Graphics CO2 Emissions from Ghana Data graphic Data CO2 Emissions from Ghana image Per capita CO2 Emission Estimates for Ghana...

410

CO2 Emissions - Ireland  

NLE Websites -- All DOE Office Websites (Extended Search)

Ireland CO2 Emissions from Ireland Data graphic Data CO2 Emissions from Ireland image Per capita CO2 Emission Estimates for Ireland...

411

CO2 Emissions - Malta  

NLE Websites -- All DOE Office Websites (Extended Search)

Western Europe Malta CO2 Emissions from Malta Data graphic Data CO2 Emissions from Malta image Per capita CO2 Emission Estimates for Malta...

412

CO2 Emissions - Kyrgyzstan  

NLE Websites -- All DOE Office Websites (Extended Search)

Centrally Planned Europe Kyrgyzstan CO2 Emissions from Kyrgyzstan Data graphic Data CO2 Emissions from Kyrgyzstan image Per capita CO2 Emission Estimates for Kyrgyzstan...

413

CO2 Emissions - Mali  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Mali Graphics CO2 Emissions from Mali Data graphic Data CO2 Emissions from Mali image Per capita CO2 Emission Estimates for Mali...

414

CO2 Emissions - Portugal  

NLE Websites -- All DOE Office Websites (Extended Search)

Western Europe Portugal CO2 Emissions from Portugal Data graphic Data CO2 Emissions from Portugal image Per capita CO2 Emission Estimates for Portugal...

415

CO2 Emissions - Paraguay  

NLE Websites -- All DOE Office Websites (Extended Search)

Paraguay Graphics CO2 Emissions from Paraguay Data graphic Data CO2 Emissions from Paraguay image Per capita CO2 Emission Estimates for Paraguay...

416

CO2 Emissions - Macedonia  

NLE Websites -- All DOE Office Websites (Extended Search)

Western Europe Macedonia CO2 Emissions from Macedonia Data graphic Data CO2 Emissions from Macedonia image Per capita CO2 Emission Estimates for Macedonia...

417

CO2 Emissions - Malawi  

NLE Websites -- All DOE Office Websites (Extended Search)

Malawi Graphics CO2 Emissions from Malawi Data graphic Data CO2 Emissions from Malawi image Per capita CO2 Emission Estimates for Malawi...

418

CO2 Emissions - Gabon  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Gabon Graphics CO2 Emissions from Gabon Data graphic Data CO2 Emissions from Gabon image Per capita CO2 Emission Estimates for Gabon...

419

CO2 Emissions - Grenada  

NLE Websites -- All DOE Office Websites (Extended Search)

Grenada Graphics CO2 Emissions from Grenada Data graphic Data CO2 Emissions from Grenada image Per capita CO2 Emission Estimates for Grenada...

420

CO2 Emissions - Kiribati  

NLE Websites -- All DOE Office Websites (Extended Search)

Oceania Kiribati Graphics CO2 Emissions from Kiribati Data graphic Data CO2 Emissions from Kiribati image Per capita CO2 Emission Estimates for Kiribati...

Note: This page contains sample records for the topic "oxides emissions connecticut" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

CO2 Emissions - Israel  

NLE Websites -- All DOE Office Websites (Extended Search)

Israel Graphics CO2 Emissions from Israel Data graphic Data CO2 Emissions from Israel image Per capita CO2 Emission Estimates for Israel...

422

CO2 Emissions - Phillippines  

NLE Websites -- All DOE Office Websites (Extended Search)

Far East Phillippines CO2 Emissions from Phillippines Data graphic Data CO2 Emissions from Phillippines image Per capita CO2 Emission Estimates for Phillippines...

423

CO2 Emissions - Niger  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Niger Graphics CO2 Emissions from Niger Data graphic Data CO2 Emissions from Niger image Per capita CO2 Emission Estimates for Niger...

424

CO2 Emissions - Mauritius  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Mauritius Graphics CO2 Emissions from Mauritius Data graphic Data CO2 Emissions from Mauritius image Per capita CO2 Emission Estimates for Mauritius...

425

CO2 Emissions - Malaysia  

NLE Websites -- All DOE Office Websites (Extended Search)

Malaysia CO2 Emissions from Malaysia Data graphic Data CO2 Emissions from Malaysia image Per capita CO2 Emission Estimates for Malaysia...

426

CO2 Emissions - Reunion  

NLE Websites -- All DOE Office Websites (Extended Search)

Reunion Graphics CO2 Emissions from Reunion Data graphic Data CO2 Emissions from Reunion image Per capita CO2 Emission Estimates for Reunion...

427

CO2 Emissions - Guatemala  

NLE Websites -- All DOE Office Websites (Extended Search)

Guatemala Graphics CO2 Emissions from Guatemala Data graphic Data CO2 Emissions from Guatemala image Per capita CO2 Emission Estimates for Guatemala...

428

CO2 Emissions - Iceland  

NLE Websites -- All DOE Office Websites (Extended Search)

Iceland CO2 Emissions from Iceland Data graphic Data CO2 Emissions from Iceland image Per capita CO2 Emission Estimates for Iceland...

429

CO2 Emissions - Mongolia  

NLE Websites -- All DOE Office Websites (Extended Search)

Asia Mongolia CO2 Emissions from Mongolia Data graphic Data CO2 Emissions from Mongolia image Per capita CO2 Emission Estimates for Mongolia...

430

CO2 Emissions - Romania  

NLE Websites -- All DOE Office Websites (Extended Search)

Centrally Planned Europe Romania CO2 Emissions from Romania Data graphic Data CO2 Emissions from Romania image Per capita CO2 Emission Estimates for Romania...

431

CO2 Emissions - Panama  

NLE Websites -- All DOE Office Websites (Extended Search)

Panama Graphics CO2 Emissions from Panama Data graphic Data CO2 Emissions from Panama image Per capita CO2 Emission Estimates for Panama...

432

CO2 Emissions - Madagascar  

NLE Websites -- All DOE Office Websites (Extended Search)

Madagascar Graphics CO2 Emissions from Madagascar Data graphic Data CO2 Emissions from Madagascar image Per capita CO2 Emission Estimates for Madagascar...

433

CO2 Emissions - Netherlands  

NLE Websites -- All DOE Office Websites (Extended Search)

Netherlands CO2 Emissions from Netherlands Data graphic Data CO2 Emissions from Netherlands image Per capita CO2 Emission Estimates for Netherlands...

434

CO2 Emissions - Greenland  

NLE Websites -- All DOE Office Websites (Extended Search)

Greenland Graphics CO2 Emissions from Greenland Data graphic Data CO2 Emissions from Greenland image Per capita CO2 Emission Estimates for Greenland...

435

CO2 Emissions - Norway  

NLE Websites -- All DOE Office Websites (Extended Search)

Norway CO2 Emissions from Norway Data graphic Data CO2 Emissions from Norway image Per capita CO2 Emission Estimates for Norway...

436

CO2 Emissions - Guyana  

NLE Websites -- All DOE Office Websites (Extended Search)

Guyana Graphics CO2 Emissions from Guyana Data graphic Data CO2 Emissions from Guyana image Per capita CO2 Emission Estimates for Guyana...

437

CO2 Emissions - Mauritania  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Mauritania Graphics CO2 Emissions from Mauritania Data graphic Data CO2 Emissions from Mauritania image Per capita CO2 Emission Estimates for Mauritania...

438

CO2 Emissions - Lithuania  

NLE Websites -- All DOE Office Websites (Extended Search)

Centrally Planned Europe Lithuania CO2 Emissions from Lithuania Data graphic Data CO2 Emissions from Lithuania image Per capita CO2 Emission Estimates for Lithuania...

439

CO2 Emissions - Kenya  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Kenya Graphics CO2 Emissions from Kenya Data graphic Data CO2 Emissions from Kenya image Per capita CO2 Emission Estimates for Kenya...

440

CO2 Emissions - Latvia  

NLE Websites -- All DOE Office Websites (Extended Search)

Centrally Planned Europe Latvia CO2 Emissions from Latvia Data graphic Data CO2 Emissions from Latvia image Per capita CO2 Emission Estimates for Latvia...

Note: This page contains sample records for the topic "oxides emissions connecticut" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

CO2 Emissions - Georgia  

NLE Websites -- All DOE Office Websites (Extended Search)

Centrally Planned Europe Georgia CO2 Emissions from Georgia Data graphic Data CO2 Emissions from Georgia image Per capita CO2 Emission Estimates for Georgia...

442

CO2 Emissions - Gambia  

NLE Websites -- All DOE Office Websites (Extended Search)

Gambia Graphics CO2 Emissions from Gambia Data graphic Data CO2 Emissions from Gambia image Per capita CO2 Emission Estimates for Gambia...

443

CO2 Emissions - Montenegro  

NLE Websites -- All DOE Office Websites (Extended Search)

Centrally Planned Europe Montenegro CO2 Emissions from Montenegro Data graphic Data CO2 Emissions from Montenegro image Per capita CO2 Emission Estimates for Montenegro...

444

CO2 Emissions - Oman  

NLE Websites -- All DOE Office Websites (Extended Search)

Middle East Oman Graphics CO2 Emissions from Oman Data graphic Data CO2 Emissions from Oman image Per capita CO2 Emission Estimates for Oman...

445

CO2 Emissions - Kuwait  

NLE Websites -- All DOE Office Websites (Extended Search)

Middle East Kuwait Graphics CO2 Emissions from Kuwait Data graphic Data CO2 Emissions from Kuwait image Per capita CO2 Emission Estimates for Kuwait...

446

CO2 Emissions - Lebanon  

NLE Websites -- All DOE Office Websites (Extended Search)

Middle East Lebanon Graphics CO2 Emissions from Lebanon Data graphic Data CO2 Emissions from Lebanon image Per capita CO2 Emission Estimates for Lebanon...

447

CO2 Emissions - Nigeria  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Nigeria Graphics CO2 Emissions from Nigeria Data graphic Data CO2 Emissions from Nigeria image Per capita CO2 Emission Estimates for Nigeria...

448

CO2 Emissions - Maldives  

NLE Websites -- All DOE Office Websites (Extended Search)

Far East Maldives CO2 Emissions from Maldives Data graphic Data CO2 Emissions from Maldives image Per capita CO2 Emission Estimates for Maldives...

449

CO2 Emissions - Morocco  

NLE Websites -- All DOE Office Websites (Extended Search)

Morocco Graphics CO2 Emissions from Morocco Data graphic Data CO2 Emissions from Morocco image Per capita CO2 Emission Estimates for Morocco...

450

CO2 Emissions - Pakistan  

NLE Websites -- All DOE Office Websites (Extended Search)

Far East Pakistan CO2 Emissions from Pakistan Data graphic Data CO2 Emissions from Pakistan image Per capita CO2 Emission Estimates for Pakistan...

451

CO2 Emissions - Palau  

NLE Websites -- All DOE Office Websites (Extended Search)

Oceania Palau CO2 Emissions from Palau Data graphic Data CO2 Emissions from Palau image Per capita CO2 Emission Estimates for Palau...

452

CO2 Emissions - Qatar  

NLE Websites -- All DOE Office Websites (Extended Search)

Middle East Qatar Graphics CO2 Emissions from Qatar Data graphic Data CO2 Emissions from Qatar image Per capita CO2 Emission Estimates for Qatar...

453

CO2 Emissions - Guam  

NLE Websites -- All DOE Office Websites (Extended Search)

Oceania Guam Graphics CO2 Emissions from Guam Data graphic Data CO2 Emissions from Guam image Per capita CO2 Emission Estimates for Guam...

454

CO2 Emissions - Rwanda  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Rwanda Graphics CO2 Emissions from Rwanda Data graphic Data CO2 Emissions from Rwanda image Per capita CO2 Emission Estimates for Rwanda...

455

CO2 Emissions - Guinea  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Guinea Graphics CO2 Emissions from Guinea Data graphic Data CO2 Emissions from Guinea image Per capita CO2 Emission Estimates for Guinea...

456

CO2 Emissions - Luxembourg  

NLE Websites -- All DOE Office Websites (Extended Search)

Western Europe Luxembourg CO2 Emissions from Luxembourg Data graphic Data CO2 Emissions from Luxembourg image Per capita CO2 Emission Estimates for Luxembourg...

457

CO2 Emissions - Liberia  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Liberia Graphics CO2 Emissions from Liberia Data graphic Data CO2 Emissions from Liberia image Per capita CO2 Emission Estimates for Liberia...

458

CO2 Emissions - Haiti  

NLE Websites -- All DOE Office Websites (Extended Search)

Haiti Graphics CO2 Emissions from Haiti Data graphic Data CO2 Emissions from Haiti image Per capita CO2 Emission Estimates for Haiti...

459

CO2 Emissions - Iraq  

NLE Websites -- All DOE Office Websites (Extended Search)

Iraq Graphics CO2 Emissions from Iraq Data graphic Data CO2 Emissions from Iraq image Per capita CO2 Emission Estimates for Iraq...

460

CO2 Emissions - Hungary  

NLE Websites -- All DOE Office Websites (Extended Search)

Centrally Planned Europe Hungary CO2 Emissions from Hungary Data graphic Data CO2 Emissions from Hungary image Per capita CO2 Emission Estimates for Hungary...

Note: This page contains sample records for the topic "oxides emissions connecticut" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

CO2 Emissions - Nepal  

NLE Websites -- All DOE Office Websites (Extended Search)

Far East Nepal CO2 Emissions from Nepal Data graphic Data CO2 Emissions from Nepal image Per capita CO2 Emission Estimates for Nepal...

462

CO2 Emissions - Nauru  

NLE Websites -- All DOE Office Websites (Extended Search)

Nauru Graphics CO2 Emissions from Nauru Data graphic Data CO2 Emissions from Nauru image Per capita CO2 Emission Estimates for Nauru...

463

CO2 Emissions - Myanmar  

NLE Websites -- All DOE Office Websites (Extended Search)

Myanmar CO2 Emissions from Myanmar Data graphic Data CO2 Emissions from Myanmar image Per capita CO2 Emission Estimates for Myanmar...

464

Glossary Term - Neutron Emission  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron Previous Term (Neutron) Glossary Main Index Next Term (Niobe) Niobe Neutron Emission After neutron emission, an atom contains one less neutron. Neutron emission is one...

465

Glossary Term - Proton Emission  

NLE Websites -- All DOE Office Websites (Extended Search)

Proton Previous Term (Proton) Glossary Main Index Next Term (Quark) Quark Proton Emission After proton emission, an atom contains one less proton. Proton emission is one process...

466

CO2 Emissions - Jordan  

NLE Websites -- All DOE Office Websites (Extended Search)

Middle East Jordan Graphics CO2 Emissions from Jordan Data graphic Data CO2 Emissions from Jordan image Per capita CO2 Emission Estimates for Jordan...

467

CO2 Emissions - Greece  

NLE Websites -- All DOE Office Websites (Extended Search)

Western Europe Greece CO2 Emissions from Greece Data graphic Data CO2 Emissions from Greece image Per capita CO2 Emission Estimates for Greece...

468

Mitigating greenhouse gas emissions: Voluntary reporting  

Science Conference Proceedings (OSTI)

The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report on their emissions of greenhouse gases, and on actions taken that have reduced or avoided emissions or sequestered carbon, to the Energy Information Administration (EIA). This, the second annual report of the Voluntary Reporting Program, describes information provided by the participating organizations on their aggregate emissions and emissions reductions, as well as their emissions reduction or avoidance projects, through 1995. This information has been compiled into a database that includes reports from 142 organizations and descriptions of 967 projects that either reduced greenhouse gas emissions or sequestered carbon. Fifty-one reporters also provided estimates of emissions, and emissions reductions achieved, for their entire organizations. The projects described actions taken to reduce emissions of carbon dioxide from energy production and use; to reduce methane and nitrous oxide emissions from energy use, waste management, and agricultural processes; to reduce emissions of halocarbons, such as CFCs and their replacements; and to increase carbon sequestration.

NONE

1997-10-01T23:59:59.000Z

469

CO2 Emissions - Namibia  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil Fuel CO2 Emissions Regional Africa Namibia CO2 Emissions from Namibia Data graphic Data CO2 Emissions from Namibia image Per capita CO2 Emission Estimates for...

470

Emissions Characterization from Advanced Combustion & Alternative Fuels -  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions Characterization from Advanced Combustion & Emissions Characterization from Advanced Combustion & Alternative Fuels Exhaust emissions from engines operating in advanced combustion modes such as PCCI (Premixed Charge Compression Ignition) and HCCI (Homogeneous Charge Compression Ignition) are analyzed with an array of analytical tools. Furthermore, emissions from a variety of alternative fuels and mixtures thereof with conventional gasoline and diesel fuels are also measured. In addition to measuring the criteria pollutants nitrogen oxides (NOx), carbon monoxide (CO), hydrocarbons (HCs) are also measured and categorized based on chemistry. These chemical details of the emissions provide important information for optimizing combustion processes to maximize fuel efficiency while minimizing emissions

471

Fundamentals of Mercury Oxidation in Flue Gas  

SciTech Connect

The objective of this project is to understand the importance of and the contribution of gas-phase and solid-phase coal constituents in the mercury oxidation reactions. The project involves both experimental and modeling efforts. The team is comprised of the University of Utah, Reaction Engineering International, and the University of Connecticut. The objective is to determine the experimental parameters of importance in the homogeneous and heterogeneous oxidation reactions; validate models; and, improve existing models. Parameters to be studied include HCl, NO{sub x}, and SO{sub 2} concentrations, ash constituents, and temperature. This report summarizes Year 2 results for the experimental and modeling tasks. Experiments in the mercury reactor are underway and interesting results suggested that a more comprehensive look at catalyzed surface reactions was needed. Therefore, much of the work has focused on the heterogeneous reactions. In addition, various chemical kinetic models have been explored in an attempt to explain some discrepancies between this modeling effort and others.

JoAnn S. Lighty; Geoffrey Silcox; Andrew Fry; Constance Senior; Joseph Helble; Balaji Krishnakumar

2005-08-01T23:59:59.000Z

472

Low emission combustor  

SciTech Connect

A low emission combustor assembly particularly suited for an automotive gas turbine engine has an inlet plenum supplied with regenerated compressor discharge, an exhaust plenum, a diffusion flame combustion chamber disposed between the inlet and exhaust plenums, and a catalytic combustion chamber also disposed between the inlet and exhaust plenums so that parallel flow paths are established between the inlet and exhaust plenums. During engine start-up, fuel is supplied only to the diffusion flame combustion chamber and regenerated compressor discharge simultaneously flowing through the catalytic combustion chamber heats the catalyst to operating temperature and cools and dilutes exhaust from the diffusion flame combustion chamber. When the catalyst reaches operating temperature fuel is directed only to the catalytic combustion chamber wherein an ultra lean air/fuel ratio mixture is catalytically oxidized, the exhaust from this reaction being cooled and diluted by regenerated compressor discharge simultaneously flowing through the diffusion flame combustion chamber.

Cornelius, W.; Klomp, E.D.; Kosek, T.P.

1984-02-28T23:59:59.000Z

473

Pollution Markets with Imperfectly Observed Emissions  

E-Print Network (OSTI)

Another example with similar monitoring requirements is the Southern California RECLAIM program that implemented separated markets for nitrogen oxide (NOx) and SO2 emissions from power plants, refineries and other large stationary sources. This program did... to the allocation of permits, an emission standard specific to buses. It may also be optimal to use 28 I thank one of the referees for pointing out this case and its relevance for the Los Angelesĺ RECLAIM market. 26 different utilization factors (eq) for each group...

Montero, Juan-Pablo

2006-03-14T23:59:59.000Z

474

Non-Incineration Treatment to Reduce Benzene and VOC Emissions from Green Sand Molding Systems  

SciTech Connect

Final report describing laboratory, pilot scale and production scale evaluation of advanced oxidation systems for emissions and cost reduction in metal casting green sand systems.

Fred S. Cannon; Robert C. Voigt

2002-06-28T23:59:59.000Z

475

Connecticut | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agency-Energy December 11, 2009 CX-002588: Categorical Exclusion Determination A Novel Biogas Desulfurization Sorbent Technology for Molten Carbonate Fuel Cell-Based Combined Heat...

476

Connecticut Natural Gas Prices  

Gasoline and Diesel Fuel Update (EIA)

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Pipeline and Distribution Use Price 1967-2005 Citygate Price 8.67 10.24 6.81 6.58 5.92 5.12 1984-2012 Residential Price 16.39 17.85 14.81 14.93 13.83 14.17 1967-2012 Percentage of Total Residential Deliveries included in Prices 98.2 97.7 97.5 97.3 96.8 96.7 1989-2012 Commercial Price 12.61 13.81 9.92 9.55 8.48 8.40 1967-2012 Percentage of Total Commercial Deliveries included in Prices 71.5 70.7 69.0 65.4 65.4 65.1 1990-2012 Industrial Price 10.54 12.63 8.44 9.60 9.16 8.83 1997-2012 Percentage of Total Industrial Deliveries included in Prices 50.0 47.3 37.5 31.1 31.0 32.3 1997-2012 Vehicle Fuel Price 20.57 24.04 15.26 16.31 18.59 13.70 1992-2012 Electric Power Price 7.81 10.48 4.89 5.70 5.09 3.99 1997-2012

477

Department of Energy - Connecticut  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16:46:33 +0000 748921 at http:energy.gov The United Illuminating Company - Small ZREC Tariff http:energy.govsavingsunited-illuminating-company-small-zrec-tariff

478

Connecticut | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Thermal Incentive Program Note: This program is not currently accepting applications. Check the program web site for information regarding future financing programs. July 12,...

479

Connecticut Nuclear Profile - Millstone  

U.S. Energy Information Administration (EIA) Indexed Site

Millstone" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

480

Connecticut | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and conservation centers that generate at least 104 tons of organic waste each year to compost it. The Act goes into effect once the state has two source-separated organics...

Note: This page contains sample records for the topic "oxides emissions connecticut" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Connecticut Natural Gas Summary  

U.S. Energy Information Administration (EIA) Indexed Site

13.81 9.92 9.55 8.48 NA 1967-2012 Industrial 10.54 12.63 8.44 9.60 9.16 NA 1997-2012 Vehicle Fuel 20.57 24.04 15.26 16.31 18.59 1992-2011 Electric Power 7.81 10.48 4.89 5.70...

482

Connecticut | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clearance Line which cannot be crossed except in an emergency by any vessel transporting oil or hazardous materials in bulk in Long Island Sound. For the purpose of these...

483

Connecticut | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and agricultural customers for high-efficiency HVAC systems, premium efficiency electric motors, heating equipment for natural gas systems, and lighting retrofits. For...

484

Retail Unbundling - Connecticut  

Gasoline and Diesel Fuel Update (EIA)

Technology Committee on March 11, 2008, and referred to the Senate Committee on Appropriations, where no action was taken. Industrial and commercial customers have been able to...

485

Tidal Wetlands Regulations (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

Most activities occurring in or near tidal wetlands are regulated, and this section contains information on such activities and required permit applications for proposed activities. Applications...

486

Connecticut | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 16, 2010 CX-004413: Categorical Exclusion Determination Geothermal Incentive Program - Unitarian Universalist Society: East CX(s) Applied: A9, B5.1 Date: 11162010...

487

,"Connecticut Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 2","Underground Storage",3,"Annual",1996,"6301973" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2011,"6301980" ,"Data 4","Consumption",8,"Annual",2012,"...

488

Connecticut | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16, 2011 CX-006770: Categorical Exclusion Determination Coal-Based Integrated Gasification Fuel Cell Project: Phase II CX(s) Applied: B3.6 Date: 09162011 Location(s): South...

489

Connecticut Natural Gas Prices  

U.S. Energy Information Administration (EIA) Indexed Site

15.45 18.00 18.88 1989-2013 Percentage of Total Residential Deliveries included in Prices 97.3 96.9 96.3 96.3 96.6 96.4 2002-2013 Commercial Price 8.24 7.71 8.57 8.59 8.19 8.51...

490

Connecticut Natural Gas Prices  

U.S. Energy Information Administration (EIA) Indexed Site

14.81 14.93 13.83 NA 1967-2012 Percentage of Total Residential Deliveries included in Prices 98.2 97.7 97.5 97.3 96.8 NA 1989-2012 Commercial Price 12.61 13.81 9.92 9.55 8.48 NA...

491

Connecticut Export Connection  

NLE Websites -- All DOE Office Websites (Extended Search)

activities. The SBIR program does not fund Phase III. Phase III may involve follow-on non-SBIR funded R&D or production contracts for products, processes or services intended for...

492

Connecticut Natural Gas Prices  

Gasoline and Diesel Fuel Update (EIA)

5.88 7.48 1989-2013 Residential Price 13.09 13.07 12.76 12.10 11.25 13.54 1989-2013 Percentage of Total Residential Deliveries included in Prices 96.7 96.9 97.5 97.3 96.9 96.3...

493

The Performance House: A Cold Climate Challenge Home, Old Greenwich, Connecticut (Fact Sheet), Building America Case Study: Efficient Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Performance House: The Performance House: A Cold Climate Challenge Home Old Greenwich, Connecticut PROJECT INFORMATION Project Name: Performance House Location: Old Greenwich, CT Partners: Preferred Builders Inc. www.preferredbuilders.biz Consortium for Advanced Residential Buildings www.carb-swa.com Size: 2,700 ft 2 plus basement Year Completed: 2012 Climate Zone: Cold PERFORMANCE DATA Source Energy Savings: 30.9% HERS Index: 43 (20 with PV) Projected Annual Utility Costs: $2,508; $795 with PV Incremental Cost of Energy Efficiency Measures: $47,337 (excluding PV) Savings-to-Investment Ratio (over 15 years): * Solution Package (SP) = 0.29 * SP with Incentives = 0.34 * SP with Solar = 0.52 * SP with Solar & Incentives = 0.82 By working with builder partners on test homes, researchers from the U.S.

494

Emissions of Greenhouse Gases in the United States 2008  

U.S. Energy Information Administration (EIA)

stationary combustionŚprimarily from wood com-bustion for residential heatingŚincreased. Ľ Emissions of nitrous oxide (N 2O) increased by 0.4 MMTCO 2e (0.1 ...

495

Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Phase 3A, Low NO{sub x} burner tests  

SciTech Connect

This Phase 3A test report summarizes the testing activities and results for the third testing phase of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. Described in this report are the test plans, data measurements, and data analyses performed during the Phase 3A effort. The present report also contains sufficient background material to provide an understanding of the overall program scope, the relationship of Phase 3A to the overall program, the testing methodologies, testing procedures, and unit configuration. Results from 66 short-term tests indicate increasing NO{sub x} emissions over the load range ranging from 0.5 lb/MBtu at 300 NM to around 0.65 lb/MBtu at 480 MW. Fly ash loss-on-ignition (LOI) for these loads ranged from 5.4 to 8.6 percent. Long-term test results indicated high load (480 MW) NO{sub x} emissions of approximately 0.65 lb/MBtu. At the 300 MW mid load point, the emissions dropped to 0.47 lb/MBtu which is slightly lower than the 0.50 lb/MBtu shown for the short-term data. The annual and 30-day average achievable NO{sub x} emissions were determined to be 0.55 and 0.64 lb/MBtu, respectively, for the load scenario experienced during the Phase 3A, long-term test period. Based on the long-term test results for Phase 3A, at full-load the low NO{sub x} burners (LNB) retrofit resulted in a NO{sub x} reduction of 48 percent from baseline, while at 300 MW the reduction was approximately 50 percent. A series of tests was also conducted to evaluate the effects of various burner equipment settings and mill coal flow biasing on both NO{sub x} and LOI emissions.

Not Available

1993-03-15T23:59:59.000Z

496

Multifunctional Oxides  

Science Conference Proceedings (OSTI)

3) Electric, ferroelectric, magnetic and photonic properties of oxides 4) Theoretical modeling of epitaxial growth, interfaces and microstructures 5) Compositioná...

497

Mercury Oxidation Performance of Advanced SCR Catalyst  

Science Conference Proceedings (OSTI)

The ability of selective catalytic reduction (SCR) catalysts to oxidize mercury is an important aspect of many utilitiesĺ mercury control strategies. Improved SCR mercury oxidation will facilitate its capture in downstream wetľflue gas desulfurization systems and will generally result in lower emission rates. Recently, catalyst manufacturers have attempted to maximize mercury oxidation through advanced catalyst formulations.This study documents the performance of an advanced ...

2012-12-31T23:59:59.000Z

498

EIA - Greenhouse Gas Emissions - Methane Emissions  

U.S. Energy Information Administration (EIA)

Residential wood consumption accounted for just over 45 percent of U.S. methane emissions from stationary combustion in 2009.

499

CO2 Emissions - Peru  

NLE Websites -- All DOE Office Websites (Extended Search)

Central America, South America, and the Caribbean Nations Peru Graphics CO2 Emissions from Peru Data graphic Data CO2 Emissions from Peru image Per capita CO2 Emission Estimates...

500

CO2 Emissions - Bolivia  

NLE Websites -- All DOE Office Websites (Extended Search)

Central America, South America, and the Caribbean Nations Bolivia Graphics CO2 Emissions from Bolivia Data graphic Data CO2 Emissions from Bolivia image Per capita CO2 Emission...