Powered by Deep Web Technologies
Note: This page contains sample records for the topic "oxides carbon monoxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Why sequence carbon monoxide oxidizing thermophiles?  

NLE Websites -- All DOE Office Websites (Extended Search)

carbon monoxide oxidizing thermophiles? carbon monoxide oxidizing thermophiles? Many microbes that use carbon monoxide as an energy source are found in high temperature environments such as geothermal areas. Researchers think that these carboxydotrophs may be involved in reducing potentially toxic carbon monoxide hotspots by combine with water to form hydrogen, carbon dioxide and acetate, which are in turn used for thermophilic energy conservation and carbon sequestration mechanisms. The project focuses on sequencing two closely related microbes, one of which is Carboxydothermus hydrogenformans. A strain of C. hydrogenformans has been grown in hydrogen-enriched synthesis gas (syngas), which contains a mix of hydrogen and carbon monoxide. Researchers are interested in sequencing both microbial strains to track the genome's evolution and

2

Device for staged carbon monoxide oxidation  

DOE Patents (OSTI)

A method and apparatus for selectively oxidizing carbon monoxide in a hydrogen rich feed stream. The method comprises mixing a feed stream consisting essentially of hydrogen, carbon dioxide, water and carbon monoxide with a first predetermined quantity of oxygen (air). The temperature of the mixed feed/oxygen stream is adjusted in a first the heat exchanger assembly (20) to a first temperature. The mixed feed/oxygen stream is sent to reaction chambers (30,32) having an oxidation catalyst contained therein. The carbon monoxide of the feed stream preferentially absorbs on the catalyst at the first temperature to react with the oxygen in the chambers (30,32) with minimal simultaneous reaction of the hydrogen to form an intermediate hydrogen rich process stream having a lower carbon monoxide content than the feed stream. The elevated outlet temperature of the process stream is carefully controlled in a second heat exchanger assembly (42) to a second temperature above the first temperature. The process stream is then mixed with a second predetermined quantity of oxygen (air). The carbon monoxide of the process stream preferentially reacts with the second quantity of oxygen in a second stage reaction chamber (56) with minimal simultaneous reaction of the hydrogen in the process stream. The reaction produces a hydrogen rich product stream having a lower carbon monoxide content than the process stream. The product stream is then cooled in a third heat exchanger assembly (72) to a third predetermined temperature. Three or more stages may be desirable, each with metered oxygen injection.

Vanderborgh, Nicholas E. (Los Alamos, NM); Nguyen, Trung V. (College Station, TX); Guante, Jr., Joseph (Denver, CO)

1993-01-01T23:59:59.000Z

3

Size Effect of Ruthenium Nanoparticles in Catalytic Carbon Monoxide Oxidation  

Science Conference Proceedings (OSTI)

Carbon monoxide oxidation over ruthenium catalysts has shown an unusual catalytic behavior. Here we report a particle size effect on CO oxidation over Ru nanoparticle (NP) catalysts. Uniform Ru NPs with a tunable particle size from 2 to 6 nm were synthesized by a polyol reduction of Ru(acac){sub 3} precursor in the presence of poly(vinylpyrrolidone) stabilizer. The measurement of catalytic activity of CO oxidation over two-dimensional Ru NPs arrays under oxidizing reaction conditions (40 Torr CO and 100 Torr O{sub 2}) showed an activity dependence on the Ru NP size. The CO oxidation activity increases with NP size, and the 6 nm Ru NP catalyst shows 8-fold higher activity than the 2 nm catalysts. The results gained from this study will provide the scientific basis for future design of Ru-based oxidation catalysts.

Joo, Sang Hoon; Park, Jeong Y.; Renzas, J. Russell; Butcher, Derek R.; Huang, Wenyu; Somorjai, Gabor A.

2010-04-04T23:59:59.000Z

4

Carbon Monoxide Safety Tips  

E-Print Network (OSTI)

Protect yourself and your family from the deadly effects of carbon monoxide--a colorless, odorless poisonous gas. This publication describes the warning signs of carbon monoxide exposure and includes a home safety checklist.

Shaw, Bryan W.; Garcia, Monica L.

1999-07-26T23:59:59.000Z

5

Gold Nanoparticles Supported on Carbon Nitride: Influence of Surface Hydroxyls on Low Temperature Carbon Monoxide Oxidation  

SciTech Connect

This paper reports the synthesis of 2.5 nm gold clusters on the oxygen free and chemically labile support carbon nitride (C3N4). Despite having small particle sizes and high enough water partial pressure these Au/C3N4 catalysts are inactive for the gas phase and liquid phase oxidation of carbon monoxide. The reason for the lack of activity is attributed to the lack of surface OH groups on the C3N4. These OH groups are argued to be responsible for the activation of CO in the oxidation of CO. The importance of basic OH groups explains the well document dependence of support isoelectric point versus catalytic activity.

Singh, Joseph A [ORNL; Dudney, Nancy J [ORNL; Li, Meijun [ORNL; Overbury, Steven {Steve} H [ORNL; Veith, Gabriel M [ORNL

2012-01-01T23:59:59.000Z

6

Carbon monoxide oxidation over three different states of copper: Development of a model metal oxide catalyst  

SciTech Connect

Carbon monoxide oxidation was performed over the three different oxidation states of copper -- metallic (Cu), copper (I) oxide (Cu{sub 2}O), and copper (II) oxide (CuO) as a test case for developing a model metal oxide catalyst amenable to study by the methods of modern surface science and catalysis. Copper was deposited and oxidized on oxidized supports of aluminum, silicon, molybdenum, tantalum, stainless steel, and iron as well as on graphite. The catalytic activity was found to decrease with increasing oxidation state (Cu > Cu{sub 2}O > CuO) and the activation energy increased with increasing oxidation state (Cu, 9 kcal/mol < Cu{sub 2}O, 14 kcal/mol < CuO, 17 kcal/mol). Reaction mechanisms were determined for the different oxidation states. Lastly, NO reduction by CO was studied. A Cu and CuO catalyst were exposed to an equal mixture of CO and NO at 300--350 C to observe the production of N{sub 2} and CO{sub 2}. At the end of each reaction, the catalyst was found to be Cu{sub 2}O. There is a need to study the kinetics of this reaction over the different oxidation states of copper.

Jernigan, G.G. [California Univ., Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Berkeley Lab., CA (United States). Materials and Chemical Sciences Div.

1994-10-01T23:59:59.000Z

7

Interaction and reactivity of nitric oxide and carbon monoxide on ruthenium surfaces  

DOE Green Energy (OSTI)

A multifaceted investigation of the reduction of nitric oxide by carbon monoxide using a ruthenium (102) single crystal catalyst in the pressure range 10/sup -3/ to 10 Torr and temperature range of 300 to 475/sup 0/C has been undertaken. Kinetic and isotopic results indicate that the reaction products CO/sub 2/ and N/sub 2/ were produced via two reaction mechanisms. Using a reducing gas mixture (low P/sub NO//P/sub CO/ ratio) a two site mechanism was operative involving NO dissociation. The carbon monoxide kinetic order varied from +1 to -3 and the nitric oxide order varied from +1 to 0. The catalyst under these conditions was determined to be metallic ruthenium with oxygen bonded within the first surface layer. The oxygen was unreactive and formed a (1 x 3)-0 LEED pattern. Under oxidizing conditions (high P/sub NO//P/sub CO/ ratio) the catalyst was ruthenium dioxide and the functional mechanism under these reaction conditions yielded a nitric oxide order of +2 to -4. Inclusion of a site poisoning mechanism under reducing conditions and an RuO/sub 2/ growth mechanism involving ruthenium cation transfer under oxidizing conditions into the kinetic rate laws led to an overall rate law which could be fit to the carbon monoxide and nitric oxide order plots. Using isotopically oxygen labelled reactants, it was observed that the three possible isotopes of carbon dioxide were produced. A ..gamma..-CO surface species is postulated as an intermediate in the exchange process. The reaction was observed to be initially surface structure insensitive and the reaction kinetics were derived using a Langmuir-Hinshelwood formalism.

Quick, E.E.

1980-03-01T23:59:59.000Z

8

Reaction of uranium oxides with chlorine and carbon or carbon monoxide to prepare uranium chlorides  

SciTech Connect

The preferred preparation concept of uranium metal for feed to an AVLIS uranium enrichment process requires preparation of uranium tetrachloride (UCI{sub 4}) by reacting uranium oxides (UO{sub 2}/UO{sub 3}) and chlorine (Cl{sub 2}) in a molten chloride salt medium. UO{sub 2} is a very stable metal oxide; thus, the chemical conversion requires both a chlorinating agent and a reducing agent that gives an oxide product which is much more stable than the corresponding chloride. Experimental studies in a quartz reactor of 4-cm ID have demonstrated the practically of some chemical flow sheets. Experimentation has illustrated a sequence of results concerning the chemical flow sheets. Tests with a graphite block at 850{degrees}C demonstrated rapid reactions of Cl{sub 2} and evolution of carbon dioxide (CO{sub 2}) as a product. Use of carbon monoxide (CO) as the reducing agent also gave rapid reactions of Cl{sub 2} and formation of CO{sub 2} at lower temperatures, but the reduction reactions were slower than the chlorinations. Carbon powder in the molten salt melt gave higher rates of reduction and better steady state utilization of Cl{sub 2}. Addition of UO{sub 2} feed while chlorination was in progress greatly improved the operation by avoiding the plugging effects from high UO{sub 2} concentrations and the poor Cl{sub 2} utilizations from low UO{sub 2} concentrations. An UO{sub 3} feed gave undesirable effects while a feed of UO{sub 2}-C spheres was excellent. The UO{sub 2}-C spheres also gave good rates of reaction as a fixed bed without any molten chloride salt. Results with a larger reactor and a bottom condenser for volatilized uranium show collection of condensed uranium chlorides as a loose powder and chlorine utilizations of 95--98% at high feed rates. 14 refs., 7 figs., 14 tabs.

Haas, P.A.; Lee, D.D.; Mailen, J.C.

1991-11-01T23:59:59.000Z

9

Method of removing carbon monoxide from gases  

DOE Patents (OSTI)

A process and catalyst are disclosed for purifying an atmosphere containing carbon monoxide by passing the atmosphere through a bed of a catalyst of TbO.sub.x, where x = 1.8 to 1.5, which oxidizes the carbon monoxide to carbon dioxide.

Gerstein, Bernard C. (Ames, IA); Macaulay, David B. (Arlington Heights, IL)

1976-06-01T23:59:59.000Z

10

Biomass burning sources of nitrogen oxides, carbon monoxide, and non-methane hydrocarbons  

SciTech Connect

Biomass burning is an important source of many key tropospheric species, including aerosols, carbon dioxide (CO{sub 2}), nitrogen oxides (NO{sub {times}}=NO+NO{sub 2}), carbon monoxide (CO), methane (CH{sub 4}), nitrous oxide (N{sub 2}O), methyl bromide (CH{sub 3}Br), ammonia (NH{sub 3}), non-methane hydrocarbons (NMHCs) and other species. These emissions and their subsequent products act as pollutants and affect greenhouse warming of the atmosphere. One important by-product of biomass burning is tropospheric ozone, which is a pollutant that also absorbs infrared radiation. Ozone is formed when CO, CH{sub 4}, and NMHCs react in the presence of NO{sub {times}} and sunlight. Ozone concentrations in tropical regions (where the bulk of biomass burning occurs) may increase due to biomass burning. Additionally, biomass burning can increase the concentration of nitric acid (HNO{sub 3}), a key component of acid rain.

Atherton, C.S.

1995-11-01T23:59:59.000Z

11

EXAFS of carbon monoxide oxidation on supported Pt fuel cell electrocatalysts  

Science Conference Proceedings (OSTI)

The potential dependence of the extended X-ray absorption fine structure (EXAFS) obtained at the Pt L{sub III} absorption edge for a carbon supported Pt electrocatalyst exposed to carbon monoxide is presented. The data have been analyzed using the difference file method to separate the dominant contributions of the Pt neighbors from contributions to the EXAFS from the adsorbed species. The presence of adsorbed CO is clearly observed with a Pt-C distance of 1.85 {angstrom} at potentials less than 0.5 V vs. RHE. Increasing the potential above 0.5 V resulted first in the removal of the adsorbed CO and at more positive potentials, e.g., 1.05 V, in the formation of an oxide layer, as evidenced by the presence of a Pt-O coordination shell at 2.00 {angstrom}. These results demonstrate that in situ EXAFS of supported Pt electrocatalysts may be used to probe adsorbate structures.

Maniguet, S.; Mathew, R.J.; Russell, A.E.

2000-03-09T23:59:59.000Z

12

Review Article A Review on Preferential Oxidation of Carbon Monoxide in Hydrogen Rich Gases  

E-Print Network (OSTI)

In this review, recent works on the preferential oxidation of carbon monoxide in hydrogen rich gases for fuel cell applications are summarized. H2 is used as a fuel for polymer-electrolyte membrane fuel cell (PEMFC). It is produced by reforming of natural gas or liquid fuels followed by water gas shift reaction. The produced gas consists of H2, CO, and CO2. In which CO content is around 1%, which is highly poisonous for the Pt anode of the PEMFC so that further removal of CO is needed. Catalytic preferential oxidation of CO (CO-PROX) is one of the most suitable methods of purification of H2 because of high CO conversion rate at low temperature range, which is preferable for PEMFC operating conditions. Catalysts used for CO-PROX are mainly noble metal based; gold based and base metal oxide catalysts among them Copper-Ceria based catalysts are the most appropriate due to its low cost, easy availability and result obtained by these catalysts are comparable with the conventional noble metal catalysts. Copyright © 2011 by BCREC UN-

A. Mishra; R. Prasad

2010-01-01T23:59:59.000Z

13

Method and apparatus for selective removal of carbon monoxide  

DOE Patents (OSTI)

There is provided a method and apparatus for treatment of a hydrogen-rich gas to reduce the carbon monoxide content thereof by reacting the carbon monoxide in the gas with an amount of oxygen sufficient to oxidize at least a portion of the carbon monoxide in the presence of a catalyst in a desired temperature range without substantial reaction of hydrogen. The catalyst is an iridium-based catalyst dispersed on, and supported on, a carrier. In the presence of the catalyst, carbon monoxide in a hydrogen-rich feed gas is selectively oxidized such that a product stream is produced with a very low carbon monoxide content.

Borup, Rodney L. (East Rochester, NY); Skala, Glenn W. (Churchville, NY); Brundage, Mark A. (Pittsford, NY); LaBarge, William J. (Bay City, MI)

2000-01-01T23:59:59.000Z

14

REFORMULATION OF COAL-DERIVED TRANSPORTATION FUELS: SELECTIVE OXIDATION OF CARBON MONOXIDE ON METAL FOAM CATALYSTS  

DOE Green Energy (OSTI)

Several different catalytic reactions must be carried out in order to convert hydrocarbons (or alcohols) into hydrogen for use as a fuel for polyelectrolyte membrane (PEM) fuel cells. Each reaction in the fuel-processing sequence has a different set of characteristics, which influences the type of catalyst support that should be used for that particular reaction. A wide range of supports are being evaluated for the various reactions in the fuel-processing scheme, including porous and non-porous particles, ceramic and metal straight-channel monoliths, and ceramic and metal monolithic foams. These different types of support have distinctly different transport characteristics. The best choice of support for a given reaction will depend on the design constraints for the system, e.g., allowable pressure drop, and on the characteristics of the reaction for which the catalyst is being designed. Three of the most important reaction characteristics are the intrinsic reaction rate, the exothermicity/endothermicity of the reaction, and the nature of the reaction network, e.g., whether more than one reaction takes place and, in the case of multiple reactions, the configuration of the network. Isotopic transient kinetic analysis was used to study the surface intermediates. The preferential oxidation of low concentrations of carbon monoxide in the presence of high concentrations of hydrogen (PROX) is an important final step in most fuel processor designs. Data on the behavior of straight-channel monoliths and foam monolith supports will be presented to illustrate some of the factors involved in choosing a support for this reaction.

Mr. Paul Chin; Dr. Xiaolei Sun; Professor George W. Roberts; Professor James J. Spivey; Mr. Amornmart Sirijarhuphan; Dr. James G. Goodwin, Jr.; Dr. Richard W. Rice

2002-12-31T23:59:59.000Z

15

Carbon Monoxide Tolerant Electrocatalyst with Low Platinum ...  

Carbon Monoxide Tolerant Electrocatalyst with Low Platinum Loading and a Process for its Preparation Brookhaven National Laboratory. Contact BNL About ...

16

Roles of Surface Step on Pt Nanoparticles in Electro-oxidation of Carbon Monoxide and Methanol  

DOE Green Energy (OSTI)

Design of highly active nanoscale catalysts for electro-oxidation of small organic molecules is of great importance to the development of efficient fuel cells. Increasing steps on single-crystal Pt surfaces is shown to enhance the activity of CO and methanol electro-oxidation up to several orders of magnitude. However, little is known about the surface atomic structure of nanoparticles with sizes of practical relevance, which limits the application of fundamental understanding in the reaction mechanisms established on single-crystal surfaces to the development of active, nanoscale catalysts. In this study, we reveal the surface atomic structure of Pt nanoparticles supported on multiwall carbon nanotubes, from which the amount of high-index surface facets on Pt nanoparticles is quantified. Correlating the surface steps on Pt nanoparticles with the electrochemical activity and stability clearly shows the significant role of surface steps in enhancing intrinsic activity for CO and methanol electro-oxidation. Here, we show that increasing surface steps on Pt nanoparticles of {approx}2 nm can lead to enhanced intrinsic activity up to {approx}200% (current normalized to Pt surface area) for electro-oxidation of methanol.

Lee, S.W.; Vescovo, E.; Chen, S.; Sheng, W.; Yabuuchi, N.; Kim, Y.T.; Mitani, T.; Shao-Horn, Y.

2009-10-13T23:59:59.000Z

17

Carbon Monoxide, Ozone, Hydrocarbon Air Quality Standards, and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Monoxide, Ozone, Hydrocarbon Air Quality Standards, and Related Emission Requirements (Ohio) Carbon Monoxide, Ozone, Hydrocarbon Air Quality Standards, and Related Emission...

18

REFORMULATION OF COAL-DERIVED TRANSPORTATION FUELS: SELECTIVE OXIDATION OF CARBON MONOXIDE ON METAL FOAM CATALYSTS  

DOE Green Energy (OSTI)

Hydrocarbon fuels must be reformed in a series of steps to provide hydrogen for use in proton exchange membrane fuel cells (PEMFCs). Preferential oxidation (PROX) is one method to reduce the CO concentration to less than 10 ppm in the presence of {approx}40% H{sub 2}, CO{sub 2}, and steam. This will prevent CO poisoning of the PEMFC anode. Structured supports, such as ceramic monoliths, can be used for the PROX reaction. Alternatively, metal foams offer a number of advantages over the traditional ceramic monolith.

Paul Chin; Xiaolei Sun; George W. Roberts; Amornmart Sirijarhuphan; Sourabh Pansare; James G. Goodwin Jr; Richard W. Rice; James J. Spivey

2005-06-01T23:59:59.000Z

19

REFORMULATION OF COAL-DERIVED TRANSPORTATION FUELS: SELECTIVE OXIDATION OF CARBON MONOXIDE ON METAL FOAM CATALYSTS  

DOE Green Energy (OSTI)

Uses for structured catalytic supports, such as ceramic straight-channel monoliths and ceramic foams, have been established for a long time. One of the most prominent examples is the washcoated ceramic monolith as a three-way catalytic converter for gasoline-powered automobiles. A distinct alternative to the ceramic monolith is the metal foam, with potential use in fuel cell-powered automobiles. The metal foams are characterized by their pores per inch (ppi) and density ({rho}). In previous research, using 5 wt% platinum (Pt) and 0.5 wt% iron (Fe) catalysts, washcoated metal foams, 5.08 cm in length and 2.54 cm in diameter, of both varying and similar ppi and {rho} were tested for their activity (X{sub CO}) and selectivity (S{sub CO}) on a CO preferential oxidation (PROX) reaction in the presence of a H{sub 2}-rich gas stream. The variances in these metal foams' activity and selectivity were much larger than expected. Other structured supports with 5 wt% Pt, 0-1 wt% Fe weight loading were also examined. A theory for this phenomenon states that even though these structured supports have a similar nominal catalyst weight loading, only a certain percentage of the Pt/Fe catalyst is exposed on the surface as an active site for CO adsorption. We will use two techniques, pulse chemisorption and temperature programmed desorption (TPD), to characterize our structured supports. Active metal count, metal dispersion, and other calculations will help clarify the causes for the activity and selectivity variations between the supports. Results on ceramic monoliths show that a higher Fe loading yields a lower dispersion, potentially because of Fe inhibition of the Pt surface for CO adsorption. This theory is used to explain the reason for activity and selectivity differences for varying ppi and {rho} metal foams; less active and selective metal foams have a lower Fe loading, which justifies their higher metal dispersion. Data on the CO desorption temperature and average metal crystallite size for TPD are also collected.

Paul Chin; George W. Roberts; James J. Spivey

2003-12-31T23:59:59.000Z

20

Enhanced carbon monoxide utilization in methanation process  

DOE Green Energy (OSTI)

Carbon monoxide - containing gas streams are passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. The active carbon is subsequently reacted with steam or hydrogen to form methane. Surprisingly, hydrogen and water vapor present in the feed gas do not adversely affect CO utilization significantly, and such hydrogen actually results in a significant increase in CO utilization.

Elek, Louis F. (Peekskill, NY); Frost, Albert C. (Congers, NY)

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxides carbon monoxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Final Technical Report "Catalytic Hydrogenation of Carbon Monoxide and Olefin Oxidation" Grant number : DE-FG02-86ER13615  

SciTech Connect

Title: Catalytic Hydrogenation of Carbon Monoxide and Olefin Oxidation Grant No. DE-FG02-86ER13615 PI: Wayland, B. B. (wayland@sas.upenn.edu) Abstract Development of new mechanistic strategies and catalyst materials for activation of CO, H2, CH4, C2H4, O2, and related substrates relevant to the conversion of carbon monoxide, alkanes, and alkenes to organic oxygenates are central objectives encompassed by this program. Design and synthesis of metal complexes that manifest reactivity patterns associated with potential pathways for the hydrogenation of carbon monoxide through metallo-formyl (M-CHO), dimetal ketone (M-C(O)-M), and dimetal dionyl (M-C(O)-C(O)-M) species is one major focus. Hydrocarbon oxidation using molecular oxygen is a central goal for methane activation and functionalization as well as regioselective oxidation of olefins. Discovery of new reactivity patterns and control of selectivity are pursued through designing new metal complexes and adjusting reaction conditions. Variation of reaction media promotes distinct reaction pathways that control both reaction rates and selectivities. Dimetalloradical diporphyrin complexes preorganize transition states for substrate reactions that involve two metal centers and manifest large rate increases over mono-metalloradical reactions of hydrogen, methane, and other small molecule substrates. Another broad goal and recurring theme of this program is to contribute to the thermodynamic database for a wide scope of organo-metal transformations in a range of reaction media. One of the most complete descriptions of equilibrium thermodynamics for organometallic reactions in water and methanol is emerging from the study of rhodium porphyrin substrate reactions in aqueous and alcoholic media. Water soluble group nine metalloporphyrins manifest remarkably versatile substrate reactivity in aqueous and alcoholic media which includes producing rhodium formyl (Rh-CHO) and hydroxy methyl (Rh-CH2OH) species. Exploratory directions for this program include expending new strategies for anti-Markovnikov addition of water, alcohols, and amines with olefins, developing catalytic reactions of CO to give formamides and formic esters, and evaluating the potential for coupling reactions of CO to produce organic building blocks.

Wayland, B.B.

2009-08-31T23:59:59.000Z

22

Carbon Monoxide in type II supernovae  

E-Print Network (OSTI)

Infrared spectra of two type II supernovae 6 months after explosion are presented. The spectra exhibit a strong similarity to the observations of SN 1987A and other type II SNe at comparable epochs. The continuum can be fitted with a cool black body and the hydrogen lines have emissivities that are approximately those of a Case B recombination spectrum. The data extend far enough into the thermal region to detect emission by the first overtone of carbon monoxide. The molecular emission is modeled and compared with that in the spectra of SN 1987A. It is found that the flux in the CO first overtone is comparable to that found in SN 1987A. We argue that Carbon Monoxide forms in the ejecta of all type II SNe during the first year after explosion.

J. Spyromilio; B. Leibundgut; R. Gilmozzi

2001-07-16T23:59:59.000Z

23

Electrocatalytic reduction of carbon dioxide to carbon monoxide by rhenium and manganese polypyridyl catalysts  

E-Print Network (OSTI)

for reduction of carbon dioxide. IR-SpectroelectrochemicalElectrocatalytic reduction of carbon dioxide mediated by Re(Reduction of Carbon Dioxide to Carbon Monoxide Mediated by (

Smieja, Jonathan Mark

2012-01-01T23:59:59.000Z

24

CO (Carbon Monoxide Mixing Ratio System) Handbook  

Science Conference Proceedings (OSTI)

The main function of the CO instrument is to provide continuous accurate measurements of carbon monoxide mixing ratio at the ARM SGP Central Facility (CF) 60-meter tower (36.607 °N, 97.489 °W, 314 meters above sea level). The essential feature of the control and data acquisition system is to record signals from a Thermo Electron 48C and periodically calibrate out zero and span drifts in the instrument using the combination of a CO scrubber and two concentrations of span gas (100 and 300 ppb CO in air). The system was deployed on May 25, 2005.

Biraud, S

2011-02-23T23:59:59.000Z

25

Search of medical literature for indoor carbon monoxide exposure  

SciTech Connect

This report documents a literature search on carbon monoxide. The search was limited to the medical and toxicological databases at the National Library of Medicine (MEDLARS). The databases searched were Medline, Toxline and TOXNET. Searches were performed using a variety of strategies. Combinations of the following keywords were used: carbon, monoxide, accidental, residential, occult, diagnosis, misdiagnosis, heating, furnace, and indoor. The literature was searched from 1966 to the present. Over 1000 references were identified and summarized using the following abbreviations: The major findings of the search are: (1) Acute and subacute carbon monoxide exposures result in a large number of symptoms affecting the brain, kidneys, respiratory system, retina, and motor functions. (2) Acute and subacute carbon monoxide (CO) poisonings have been misdiagnosed on many occasions. (3) Very few systematic investigations have been made into the frequency and consequences of carbon monoxide poisonings.

Brennan, T.; Ivanovich, M.

1995-12-01T23:59:59.000Z

26

Reduction of Carbon Monoxide. Past Research Summary  

DOE R&D Accomplishments (OSTI)

Research programs for the year on the preparation, characterization, and reactions of binuclear tantalum complexes are described. All evidence to date suggest the following of these dimeric molecules: (1) the dimer does not break into monomers under mild conditions; (2) intermolecular hydride exchange is not negligible, but it is slow; (3) intermolecular non-ionic halide exchange is fast; (4) the ends of the dimers can rotate partially with respect to one another. The binuclear tantalum hydride complexes were found to react with carbon monoxide to give a molecule which is the only example of reduction of CO by a transition metal hydride to give a complex containing a CHO ligand. Isonitrides also reacted in a similar manner with dimeric tantalum hydride. (ATT)

Schrock, R. R.

1982-00-00T23:59:59.000Z

27

Carbon Monoxide Poisoning Avoided Through Weatherization | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Monoxide Poisoning Avoided Through Weatherization Carbon Monoxide Poisoning Avoided Through Weatherization Carbon Monoxide Poisoning Avoided Through Weatherization October 5, 2010 - 10:56am Addthis Joshua DeLung What does this mean for me? Getting your heating pipes fixed can not only save you money, but also improve your health. "If we'd had a couple cold nights where I would've had to use my heat more than usual, it probably would've put me to sleep and left me there -- it was just too much carbon monoxide coming out in the house," says Mark Pickartz, of Van Buren, Ark. Pickartz's home was weatherized in February by his local community action agency, Crawford-Sebastian Community Development Council (C-SCDC). When energy auditors arrived to his house, they found that his home's heater was severely leaking the poisonous gas. C-SCDC, based in Fort Smith, Ark.,

28

Photochemistry and Transport of Carbon Monoxide in the Middle Atmosphere  

Science Conference Proceedings (OSTI)

Two-dimensional model calculations of the photochemistry and transport of carbon monoxide in the stratosphere, mesosphere, and lower thermosphere are presented. Results are compared to available observations at midlatitudes, where both ...

S. Solomon; R. R. Garcia; J. J. Olivero; R. M. Bevilacqua; P. R. Schwartz; R. T. Clancy; D. O. Muhleman

1985-05-01T23:59:59.000Z

29

Inhibition of Premixed Carbon Monoxide-Hydrogen-Oxygen ...  

Science Conference Proceedings (OSTI)

... The fuel gas is carbon monoxide (Mathe- son UHP, 99.9% CO, with the sum of ... filters) gener- ates the schlieren image of the flame for capture by a ...

2012-09-07T23:59:59.000Z

30

Carbon Monoxide, Ozone, Hydrocarbon Air Quality Standards, and Related  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Monoxide, Ozone, Hydrocarbon Air Quality Standards, and Monoxide, Ozone, Hydrocarbon Air Quality Standards, and Related Emission Requirements (Ohio) Carbon Monoxide, Ozone, Hydrocarbon Air Quality Standards, and Related Emission Requirements (Ohio) < Back Eligibility Agricultural Commercial Construction Fuel Distributor Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Transportation Tribal Government Utility Savings Category Buying & Making Electricity Program Info State Ohio Program Type Environmental Regulations Provider Ohio Environmental Protection Agency This chapter defining the roles of the Ohio Environmental Protection Agency gives specific detail on the regulation point-source air pollution for a variety of industries and pollutants.

31

Terpolymerization of ethylene, sulfur dioxide and carbon monoxide  

DOE Patents (OSTI)

This invention relates to a high molecular weight terpolymer of ethylene, sulfur dioxide and carbon monoxide stable to 280.degree. C. and containing as little as 36 mol % ethylene and about 41-51 mol % sulfur dioxide; and to the method of producing said terpolymer by irradiation of a liquid and gaseous mixture of ethylene, sulfur dioxide and carbon monoxide by means of Co-60 gamma rays or an electron beam, at a temperature of about 10.degree.-50.degree. C., and at a pressure of about 140 to 680 atmospheres, to initiate polymerization.

Johnson, Richard (Shirley, NY); Steinberg, Meyer (Huntington Station, NY)

1981-01-01T23:59:59.000Z

32

Process for producing methane from gas streams containing carbon monoxide and hydrogen  

DOE Patents (OSTI)

Carbon monoxide-containing gas streams are passed over a catalyst capable of catalyzing the disproportionation of carbon monoxide so as to deposit a surface layer of active surface carbon on the catalyst essentially without formation of inactive coke thereon. The surface layer is contacted with steam and is thus converted to methane and CO.sub.2, from which a relatively pure methane product may be obtained. While carbon monoxide-containing gas streams having hydrogen or water present therein can be used only the carbon monoxide available after reaction with said hydrogen or water is decomposed to form said active surface carbon. Although hydrogen or water will be converted, partially or completely, to methane that can be utilized in a combustion zone to generate heat for steam production or other energy recovery purposes, said hydrogen is selectively removed from a CO--H.sub.2 -containing feed stream by partial oxidation thereof prior to disproportionation of the CO content of said stream.

Frost, Albert C. (Congers, NY)

1980-01-01T23:59:59.000Z

33

A Smart Sensor System for Carbon Monoxide Detection  

Science Conference Proceedings (OSTI)

This paper illustrates a smart sensor system for carbon monoxide detection. An innovative technological approach has been pursued to fabricate gas sensors on silicon substrate, compatible with IC fabrication. A mixed analog-digital electronic interface processes ... Keywords: sensor interfaces, sensors, sigma-delta converters

G. C. Cardinali; L. Dori; M. Fiorini; I. Sayago; G. Faglia; C. Perego; G. Sberveglieri; V. Liberali; F. Maloberti; D. Tonietto

1997-11-01T23:59:59.000Z

34

Carbon monoxide study - Seattle, Washington, October 6-November 2, 1977. Part 1. Executive summary report  

SciTech Connect

This report is a summary of EPA 910/9-78-054b, a study of the carbon monoxide problem in downtown Seattle.

Wilson, C.B.; Schweiss, J.W.

1978-12-01T23:59:59.000Z

35

An experimental investigation of the ignition properties of hydrogen and carbon monoxide  

E-Print Network (OSTI)

for syngas turbine applications S.M. Walton *, X. He, B.T. Zigler, M.S. Wooldridge Department of Mechanical of simulated syngas mixtures of hydrogen (H2), carbon monoxide (CO), oxygen (O2), nitrogen (N2), and carbon. Keywords: Carbon monoxide; Hydrogen; Syngas; Ignition; Rapid compression facility 1. Introduction Syngas

Wooldridge, Margaret S.

36

Transient PrOx carbon monoxide measurement, control, and optimization  

DOE Green Energy (OSTI)

Fuel processing systems for low temperature polymer electrolyte membrane (PEM) fuel cell systems require control of the carbon monoxide concentration to less than 100 ppm to 10 ppm in the anode feed. Conventional hydrocarbon fuel processors use a water-gas shift (WGS) reactor to react CO with water to form H2 and reduce the CO concentration. The CO conversion is limited by equilibrium at the outlet temperature of the WGS reactor. The WGS outlet CO concentration can range from over 1% to 2000 ppm depending on the system and its operating parameters. At these concentrations, CO poisons low temperature PEM fuel cells and the concentrations needs to be reduced further.

Inbody, M. A. (Michael A.); Borup, R. L. (Rodney L.); Tafoya, J. (Jose I.)

2002-01-01T23:59:59.000Z

37

Methanation of gas streams containing carbon monoxide and hydrogen  

DOE Patents (OSTI)

Carbon monoxide-containing gas streams having a relatively high concentration of hydrogen are pretreated so as to remove the hydrogen in a recoverable form for use in the second step of a cyclic, essentially two-step process for the production of methane. The thus-treated streams are then passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. This active carbon is reacted with said hydrogen removed from the feed gas stream to form methane. The utilization of the CO in the feed gas stream is appreciably increased, enhancing the overall process for the production of relatively pure, low-cost methane from CO-containing waste gas streams.

Frost, Albert C. (Congers, NY)

1983-01-01T23:59:59.000Z

38

717 Notices to Readers Carbon Monoxide Poisoning Deaths  

E-Print Network (OSTI)

Carbon Monoxide monoxide Poisoning (CO) is an odorless, — Continued colorless, nonirritating gas produced by the incomplete combustion of carbon-based fuels. CO exposure is responsible for more fatal unintentional poisonings in the United States than any other agent, with the highest incidence occurring during the cold-weather months (1). Although most of these deaths occur in residences or motor vehicles (2), two incidents among campers in Georgia illustrate the danger of CO in outdoor settings. This report describes the two incidents, which resulted in six deaths, and provides recommendations for avoiding CO poisoning in outdoor settings. Cases 1–4. On the afternoon of March 14, 1999, a 51-year-old man, his 10-year-old son, a 9-year-old boy, and a 7-year-old girl were found dead inside a zipped-up, 10-foot by 14-foot, two-room tent at their campsite in southeast Georgia (a pet dog also died). A propane gas stove, still burning, was found inside the tent; the stove apparently had been brought inside to provide warmth. The occupants had died during the night. Postmortem carboxyhemoglobin (COHb) levels measured 50%, 63%, 69%, and 63%, respectively, in the four decedents (in the general U.S. population, COHb concentrations

Basidiobolomycosis Arizona; North Carolinia

1999-01-01T23:59:59.000Z

39

Interaction of carbon monoxide and hydrogen with the (1010) face of ruthenium  

DOE Green Energy (OSTI)

The interaction was studied at 23.5, 200, and -135/sup 0/C with low energy electron diffraction (LEED) and Auger electron spectroscopy. (AES). Carbon monoxide adsorbs associatively at 23.5/sup 0/C, but is apparently dissociated by the LEED beam and hydrogen adsorbed from the ambient after a few minutes for less than 10 Langmuirs of carbon monoxide. For large doses of carbon monoxide at 23.5/sup 0/C, 10 Langmuirs or more, the LEED beam does not disociate carbon monoxide, but carbon monoxide and hydrogen adsorbed from the ambient do appear to be removed from the surface by the LEED beam. Carbon monoxide and hydrogen on the surface together will react and form surface complexes with distinctive LEED patterns at 23.5/sup 0/C though some of the interactions appear to be LEED beam induced. If sufficient hydrogen is present, some of these complexes are lost from the surface probably as methane and water. Carbon monoxide will react with itself and hydrogen at 23.5/sup 0/C with carbon being lost from the surface probably as carbon dioxide. At 200/sup 0/C, neither carbon monoxide nor hydrogen will absorb on Ru (1010) in significant amounts at the low dose pressures used. However, if the Ru(1010) crystal is allowed to cool below 70/sup 0/C, ambient carbon monoxide and hydrogen will adsorb on Ru (1010) and form LEED patterns like those formed at 23.5/sup 0/C. At -135/sup 0/C, carbon monoxide will react with itself and hydrogen readily most of the time producing surface complexes with distinctive LEED paterns. If a moderate amount of hydrogen is present, some of these complexes are lost from the surface, probably as methane. If a large amount of hydrogen is present, some of these complexes are lost from the surface probably as carbon dioxdie. 17 figures, 8 tables.

Tomcsik, T.L.

1979-01-01T23:59:59.000Z

40

Cyclic process for producing methane from carbon monoxide with heat removal  

DOE Patents (OSTI)

Carbon monoxide-containing gas streams are converted to methane by a cyclic, essentially two-step process in which said carbon monoxide is disproportionated to form carbon dioxide and active surface carbon deposited on the surface of a catalyst, and said carbon is reacted with steam to form product methane and by-product carbon dioxide. The exothermic heat of reaction generated in each step is effectively removed during each complete cycle so as to avoid a build up of heat from cycle-to-cycle, with particularly advantageous techniques being employed for fixed bed, tubular and fluidized bed reactor operations.

Frost, Albert C. (Congers, NY); Yang, Chang-lee (Spring Valley, NY)

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxides carbon monoxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Modeling Ambient Carbon Monoxide Trends to Evaluate Mobile Source Emissions Reductions  

Science Conference Proceedings (OSTI)

Regression models have been used with poor success to detect the effect of emission control programs in ambient concentration measurements of carbon monoxide. An advanced CO regression model is developed whose form is based on an understanding of ...

Robin L. Dennis; Mary W. Downton

1987-10-01T23:59:59.000Z

42

Production of carbon monoxide-free hydrogen and helium from a high-purity source  

DOE Patents (OSTI)

The invention provides vacuum swing adsorption processes that produce an essentially carbon monoxide-free hydrogen or helium gas stream from, respectively, a high-purity (e.g., pipeline grade) hydrogen or helium gas stream using one or two adsorber beds. By using physical adsorbents with high heats of nitrogen adsorption, intermediate heats of carbon monoxide adsorption, and low heats of hydrogen and helium adsorption, and by using vacuum purging and high feed stream pressures (e.g., pressures of as high as around 1,000 bar), pipeline grade hydrogen or helium can purified to produce essentially carbon monoxide -free hydrogen and helium, or carbon monoxide, nitrogen, and methane-free hydrogen and helium.

Golden, Timothy Christopher (Allentown, PA); Farris, Thomas Stephen (Bethlehem, PA)

2008-11-18T23:59:59.000Z

43

Basin-Scale Carbon Monoxide Distributions in the Parallel Ocean Program  

Science Conference Proceedings (OSTI)

As a primary photochemical constituent in upper-ocean and tropospheric geocycling, carbon monoxide is of interest to a variety of global change research communities. Dynamic three-dimensional simulations of its marine concentration patterns, ...

Shaoping Chu; Scott Elliott; David Erickson

2007-12-01T23:59:59.000Z

44

Discovery of carbon monoxide in the upper atmosphere of Pluto  

E-Print Network (OSTI)

Pluto's icy surface has changed colour and its atmosphere has swelled since its last closest approach to the Sun in 1989. The thin atmosphere is produced by evaporating ices, and so can also change rapidly, and in particular carbon monoxide should be present as an active thermostat. Here we report the discovery of gaseous CO via the 1.3mm wavelength J=2-1 rotational transition, and find that the line-centre signal is more than twice as bright as a tentative result obtained by Bockelee-Morvan et al. in 2000. Greater surface-ice evaporation over the last decade could explain this, or increased pressure could have caused the atmosphere to expand. The gas must be cold, with a narrow line-width consistent with temperatures around 50 K, as predicted for the very high atmosphere, and the line brightness implies that CO molecules extend up to approximately 3 Pluto radii above the surface. The upper atmosphere must have changed markedly over only a decade since the prior search, and more alterations could occur by the...

Greaves, J S; Friberg, P

2011-01-01T23:59:59.000Z

45

Substantially isotactic, linear, alternating copolymers of carbon monoxide and an olefin  

DOE Patents (OSTI)

The compound, [Pd(Me-DUPHOS)(MeCN){sub 2}](BF{sub 4}){sub 2}, [Me-DUPHOS: 1,2-bis(2,5-dimethylphospholano)benzene] is an effective catalyst for the highly enantioselective, alternating copolymerization of olefins, such as aliphatic {alpha}-olefins, with carbon monoxide to form optically active, isotactic polymers which can serve as excellent starting materials for the synthesis of other classes of chiral polymers. For example, the complete reduction of a propylene-carbon monoxide copolymer resulted in the formation of a novel, optically active poly(1,4-alcohol). Also, the previously described catalyst is a catalyst for the novel alternating isomerization cooligomerization of 2-butene with carbon monoxide to form optically active, isotactic poly(1,5-ketone).

Sen, A.; Jiang, Z.

1996-05-28T23:59:59.000Z

46

Substantially isotactic, linear, alternating copolymers of carbon monoxide and an olefin  

DOE Patents (OSTI)

The compound, [Pd(Me-DUPHOS)(MeCN).sub.2 ](BF.sub.4).sub.2, [Me-DUPHOS: 1,2-bis(2,5-dimethylphospholano)benzene] is an effective catalyst for the highly enantioselective, alternating copolymerization of olefins, such as aliphatic .alpha.-olefins, with carbon monoxide to form optically active, isotactic polymers which can serve as excellent starting materials for the synthesis of other classes of chiral polymers. For example, the complete reduction of a propylene-carbon monoxide copolymer resulted in the formation of a novel, optically active poly(1,4-alcohol). Also, the previously described catalyst is a catalyst for the novel alternating isomerization cooligomerization of 2-butene with carbon monoxide to form optically active, isotactic poly(1,5-ketone)

Sen, Ayusman (State College, PA); Jiang, Zhaozhong (State College, PA)

1996-01-01T23:59:59.000Z

47

A Micro-Computer-Based Fuel Optimization System Utilizing In-Situ Measurement of Carbon Monoxide  

E-Print Network (OSTI)

A microcomputer-based control system utilizing a distributed intelligence architecture has been developed to control combustion in hydrocarbon fuel-fired boilers and heaters to significantly reduce fuel usage. The system incorporates a unique flue gas analyzer that mounts directly in the flue or stack to continuously measure carbon monoxide, unburned hydrocarbons, opacity and temperature. The control console interfaces directly with the boiler's existing analog control system to provide precise air fuel ratio control based on carbon monoxide measurements. Significant decreases in excess air result in reduced fuel usage while meeting steam demand. Actual performance on industrial boilers shows increases in efficiency of from 1% to 3% with substantial fuel savings.

DeVivo, D. G.

1980-01-01T23:59:59.000Z

48

Indonesia Forest Fires Exacerbate Carbon Monoxide Pollution over Peninsular Malaysia during July to September 2005  

Science Conference Proceedings (OSTI)

Wind carried the smoke further afield from forest fires in Sumatra caused worse air pollution in Malaysia reached extremely hazardous levels and forced schools and an airport to close. There were 3,258 'hot spots' recorded by NOAA satellites in the province ... Keywords: AIRS, Carbon monoxide, Peninsular

Jasim M. Rajab; M. Z. MatJafri; H. S. Lim; K. Abdullah

2009-08-01T23:59:59.000Z

49

Compressed Air Sample Technology for Isotopic Analysis of Atmospheric Carbon Monoxide  

Science Conference Proceedings (OSTI)

A methodology for the collection of large (1000 L) air samples for isotopic analysis of atmospheric carbon monoxide is presented. A low-background, high-pressure, high-flow sampling system with a residual background of less than 2 ppbv CO has ...

John E. Mak; Carl A. M. Brenninkmeijer

1994-04-01T23:59:59.000Z

50

Molten metal reactor and method of forming hydrogen, carbon monoxide and carbon dioxide using the molten alkaline metal reactor  

Science Conference Proceedings (OSTI)

A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

Bingham, Dennis N.; Klingler, Kerry M.; Turner, Terry D.; Wilding, Bruce M.

2012-11-13T23:59:59.000Z

51

Generation and Solid Oxide Fuel Cell Carbon Sequestration in Northwest Indiana  

DOE Green Energy (OSTI)

The objective of the project is to develop the technology capable of capturing all carbon monoxide and carbon dioxide from natural gas fueled Solid Oxide Fuel Cell (SOFC) system. In addition, the technology to electrochemically oxidize any remaining carbon monoxide to carbon dioxide will be developed. Success of this R&D program would allow for the generation of electrical power and thermal power from a fossil fuel driven SOFC system without the carbon emissions resulting from any other fossil fueled power generationg system.

Kevin Peavey; Norm Bessette

2007-09-30T23:59:59.000Z

52

In situ gasification process for producing product gas enriched in carbon monoxide and hydrogen  

SciTech Connect

The present invention is directed to an in situ coal gasification process wherein the combustion zone within the underground coal bed is fed with air at increasing pressure to increase pressure and temperature in the combustion zone for forcing product gases and water naturally present in the coal bed into the coal bed surrounding the combustion zone. No outflow of combustion products occurs during the build-up of pressure and temperature in the combustion zone. After the coal bed reaches a temperature of about 2000.degree. F and a pressure in the range of about 100-200 psi above pore pressure the airflow is terminated and the outflow of the combustion products from the combustion zone is initiated. The CO.sub.2 containing gaseous products and the water bleed back into the combustion zone to react endothermically with the hot carbon of the combustion zone to produce a burnable gas with a relatively high hydrogen and carbon monoxide content. About 11 to 29 percent of the gas recovered from the combustion zone is carbon monoxide which is considerably better than the 4 to 10 percent carbon monoxide obtained by employing previously known coal gasification techniques.

Capp, John P. (Morgantown, WV); Bissett, Larry A. (Morgantown, WV)

1978-01-01T23:59:59.000Z

53

Impact of emissions, chemistry, and climate on atmospheric carbon monoxide : 100-year predictions from a global chemistry-climate model  

E-Print Network (OSTI)

The possible trends for atmospheric carbon monoxide in the next 100 yr have been illustrated using a coupled atmospheric chemistry and climate model driven by emissions predicted by a global economic development model. ...

Wang, Chien.; Prinn, Ronald G.

54

One-dimensional turbulence model simulations of autoignition of hydrogen/carbon monoxide fuel mixtures in a turbulent jet  

Science Conference Proceedings (OSTI)

The autoignition of hydrogen/carbon monoxide in a turbulent jet with preheated co-flow air is studied using the one-dimensional turbulence (ODT) model. The simulations are performed at atmospheric pressure based on varying the jet Reynolds number and the oxidizer preheat temperature for two compositions corresponding to varying the ratios of H{sub 2} and CO in the fuel stream. Moreover, simulations for homogeneous autoignition are implemented for similar mixture conditions for comparison with the turbulent jet results. The results identify the key effects of differential diffusion and turbulence on the onset and eventual progress of autoignition in the turbulent jets. The differential diffusion of hydrogen fuels results in a reduction of the ignition delay relative to similar conditions of homogeneous autoignition. Turbulence may play an important role in delaying ignition at high-turbulence conditions, a process countered by the differential diffusion of hydrogen relative to carbon monoxide; however, when ignition is established, turbulence enhances the overall rates of combustion of the non-premixed flame downstream of the ignition point. (author)

Gupta, Kamlesh G.; Echekki, Tarek [Department of Mechanical and Aerospace Engineering, North Carolina State University, NC (United States)

2011-02-15T23:59:59.000Z

55

A survey of carbon monoxide and nitrogen dioxide in indoor ice arenas in Vermont  

Science Conference Proceedings (OSTI)

Because of the history of health problems traceable to the exhaust of ice resurfacing machines, state sanitarians used detector tubes to measure carbon monoxide (CO) and nitrogen dioxide (NO[sub 2]) levels in enclosed ice arenas in Vermont during high school hockey games. Five of eight arenas had average game CO measurements of 30 ppm carbon monoxide or more. Two of the three periods of play had average CO readings in excess of 100 ppm in one arena. Only six arenas had the complete series of nitrogen dioxide measurements. One had an average game NO[sub 2] level of 1.2 ppm. Two had one or more periods of play that averaged in excess of 0.5 ppm. Despite the ample documentation of the hazards of operating combustion-powered resurfacing machines inside enclosed ice arenas, a significant portion of the arenas had undesirable levels of carbon monoxide or nitrogen dioxide. Ice arenas should be routinely monitored for air contaminants. Considerations should be given to the purchase of electric ice resurfacing machines for new arenas and arenas that have air contamination that cannot be resolved with ventilation.

Paulozzi, L.J. (Vermont Health Dept., Burlington, VT (United States)); Spengler, R.F.; Vogt, R.L.; Carney, J.K.

1993-12-01T23:59:59.000Z

56

Thermal device and method for production of carbon monoxide and hydrogen by thermal dissociation of hydrocarbon gases  

DOE Patents (OSTI)

Carbon monoxide is produced in a fast quench reactor. The production of carbon monoxide includes injecting carbon dioxide and some air into a reactor chamber having a high temperature at its inlet and a rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Carbon dioxide and other reactants such as methane and other low molecular weight hydrocarbons are injected into the reactor chamber. Other gas may be added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream.

Detering, Brent A. (Idaho Falls, ID); Kong, Peter C. (Idaho Falls, ID)

2001-01-01T23:59:59.000Z

57

Role of carboxydobacteria in consumption of atmospheric carbon monoxide by soil  

Science Conference Proceedings (OSTI)

The carbon monoxide consumption rates of the carboxydobacteria Pseudomonas (Seliberia) carboxydohydrogena, P. carboxydovorans, and P. carboxydoflava were measured at high (50%) and low (0.5 ..mu..l liter/sup -1/) mixing ratios of CO in air. CO was only consumed when the bacteria had been grown under CO-autotrophic conditions. At low cell densities the CO comsumption rates measured at low CO mixing ratios were similar in cell suspensions and in mixtures of bacteria in soil. CO consumption observed in natural soil (loess, eolian sand, chernozem) as well as in suspensions or soil mixtures of carboxydobacteria showed Michaelis-Menten kinetics. Considering the difference of the K/sub m/, values and the observed V/sub max/ values, carboxydobacteria cannot contribute significantly to the consumption of atmospheric CO.

Conrad, R. (Max-Planck-Institut fuer Chemie, Mainz, Germany); Meyer, O.; Seiler, W.

1981-08-01T23:59:59.000Z

58

Premixed Carbon Monoxide–Nitrous Oxide–Hydrogen Flames ...  

Science Conference Proceedings (OSTI)

... the combustion emission charac- teristics of stationary and mobile power plants. ... present data are in good agreement with the low-hydro- gen data ...

2012-12-06T23:59:59.000Z

59

Retrieval of Tropospheric Carbon Monoxide Profiles from High-Resolution Interferometer Observations: A New Digital Gas Correlation (DGC)Method and Applications  

Science Conference Proceedings (OSTI)

Global tropospheric carbon monoxide (CO) distributions can be retrieved from observations by spaceborne gas correlation radiometers and high-resolution interferometers. The Measurement of Pollution in the Troposphere (MOPITT) is a gas correlation ...

Jinxue Wang; John C. Gille; Paul L. Bailey; Liwen Pan; David Edwards; James R. Drummond

1999-01-01T23:59:59.000Z

60

Carbon monoxide in indoor ice skating rinks: Evaluation of absorption by adult hockey players  

Science Conference Proceedings (OSTI)

We evaluated alveolar carbon monoxide (CO) levels of 122 male, adult hockey players active in recreational leagues of the Quebec City region (Canada), before and after 10 weekly 90-minute games in 10 different rinks. We also determined exposure by quantifying the average CO level in the rink during the games. Other variables documented included age, pulmonary function, aerobic capacity, and smoking status. Environmental concentrations varied from 1.6 to 131.5 parts per million (ppm). We examined the absorption/exposure relationship using a simple linear regression model. In low CO exposure levels, physical exercise lowered the alveolar CO concentration. However, we noted that for each 10 ppm of CO in the ambient air, the players had adsorbed enough CO to raise their carboxyhemoglobin (COHb) levels by 1 percent. This relationship was true both for smokers and non-smokers. We suggest that an average environmental concentration of 20 ppm of CO for the duration of a hockey game (90 minutes) should be reference limit not to be exceeded in indoor skating rinks.

Levesque, B.; Dewailly, E.; Lavoie, R.; Prud'Homme, D.; Allaire, S. (Centre hospitalier de l'Universite Laval, Quebec City (Canada))

1990-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxides carbon monoxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Highly ordered magnetic mesoporous silicas for effective elimination of carbon monoxide  

Science Conference Proceedings (OSTI)

Catalysts based on crystalline nanoparticles of Fe metal supported on mesoporous silica have been developed. The synthetic process involves hydrogen reduction processing for high abundant Fe metal nanoparticles within the mesopores, in which impregnated Fe salt in the inner nanopores of mesoporous silica is thermally treated under hydrogen at 500 Degree-Sign C. Detailed characterization was achieved by XRD, XPS, BET, and HR-TEM techniques. The catalytic efficiency was demonstrated as a function of the used amounts and reaction time. The results show that more than 90% of the carbon monoxide was eliminated at room temperature during a period 80 min with 0.5 g of catalyst. - Graphical abstract: Strategy for the preparation of highly abundant Fe nanoparticle embedded MS catalyst by hydrogen reduction process and HR-TEM images of cross-sectional and top view. Highlights: Black-Right-Pointing-Pointer MS based heterogeneous catalyst with Fe nanoparticles were demonstrated for CO elimination. Black-Right-Pointing-Pointer Highly Fe nanoparticle embedded MS catalyst prepared by hydrogen reduction process. Black-Right-Pointing-Pointer Systematic characterization was achieved by XRD, XPS, BET, and HR-TEM analyses. Black-Right-Pointing-Pointer More than 90% of the CO was eliminated at RT during 80 min with 0.5 g of catalyst.

Lee, Jiho [Korea Institute of Ceramic Engineering and Technology, Seoul 153-801 (Korea, Republic of); Department of Chemistry, Inha University, Incheon 402-751 (Korea, Republic of); Ho Chang, Jeong, E-mail: jhchang@kicet.re.kr [Korea Institute of Ceramic Engineering and Technology, Seoul 153-801 (Korea, Republic of)

2012-04-15T23:59:59.000Z

62

Thermodynamic investigation into steam-methane reforming and the synthesis of methane from carbon monoxide and hydrogen  

SciTech Connect

In this study the stream-methane equilibrium reaction was investigated by considering both methane synthesis from hydrogen and carbon monoxide and by considering steam-methane reforming from methane and steam. A FORTRAN computer program was written to carry out all the calculations over a wide range of temperatures, pressures, and initial compositions. The products of each process as a function of pressure, temperature, and starting ratio of reactant gases were calculated, as well as the heats involved. In both processes the minimum ratios above which no carbon precipitates were determined as a function of temperature and pressure were given.

Wu, L.H.; Lietzke, M.H.

1976-11-01T23:59:59.000Z

63

SOFT X-RAY IRRADIATION OF PURE CARBON MONOXIDE INTERSTELLAR ICE ANALOGUES  

SciTech Connect

There is an increasing evidence for the existence of large organic molecules in the interstellar and circumstellar medium. Very few among such species are readily formed in conventional gas-phase chemistry under typical conditions of interstellar clouds. Attention has therefore focused on interstellar ices as a potential source of these relatively complex species. Laboratory experiments show that irradiation of interstellar ice analogues by fast particles or ultraviolet radiation can induce significant chemical complexity. However, stars are sources of intense X-rays at almost every stage of their formation and evolution. Such radiation may thus provide chemical changes in regions where ultraviolet radiation is severely inhibited. After H{sub 2}O, CO is often the most abundant component of icy grain mantles in dense interstellar clouds and circumstellar disks. In this work we present irradiation of a pure carbon monoxide ice using a soft X-ray spectrum peaked at 0.3 keV. Analysis of irradiated samples shows formation of CO{sub 2}, C{sub 2}O, C{sub 3}O{sub 2}, C{sub 3}, C{sub 4}O, and CO{sub 3}/C{sub 5}. Comparison of X-rays and ultraviolet irradiation experiments, of the same energy dose, shows that X-rays are more efficient than ultraviolet radiation in producing new species. With the exception of CO{sub 2}, X-ray photolysis induces formation of a larger number of products with higher abundances, e.g., C{sub 3}O{sub 2} column density is about one order of magnitude higher in the X-ray experiment. To our knowledge this is the first report on X-ray photolysis of CO ices. The present results show that X-ray irradiation represents an efficient photo-chemical way to convert simple ices to more complex species.

Ciaravella, A.; Candia, R.; Collura, A. [INAF-Osservatorio Astronomico di Palermo, P.za Parlamento 1, 90134 Palermo (Italy); Jimenez-Escobar, A.; Munoz Caro, G. M. [Centro de Astrobiologia (CSIC-INTA), Carretera de Ajalvir, km 4, Torrejon de Ardoz, 28850 Madrid (Spain); Cecchi-Pestellini, C. [INAF-Osservatorio Astronomico di Cagliari, Strada n.54, Loc. Poggio dei Pini, I-09012 Capoterra (Italy); Giarrusso, S. [INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica, Via U. La Malfa 153, I-90146 Palermo (Italy); Barbera, M., E-mail: aciaravella@astropa.unipa.it [Dipartimento di Scienze Fisiche and Astronomiche, Universita di Palermo, Sezione di Astronomia, Piazza del Parlamento 1, I-90134 Palermo (Italy)

2012-02-10T23:59:59.000Z

64

Catalysts for the production of hydrocarbons from carbon monoxide and water  

DOE Patents (OSTI)

A method of converting low H.sub.2 /CO ratio syngas to carbonaceous products comprising reacting the syngas with water or steam at 200.degree. to 350.degree. C. in the presence of a metal catalyst supported on zinc oxide. Hydrocarbons are produced with a catalyst selected from cobalt, nickel or ruthenium and alcohols are produced with a catalyst selected from palladium, platinium, ruthenium or copper on the zinc oxide support. The ratio of the reactants are such that for alcohols and saturated hydrocarbons: (2n+1).gtoreq.x.gtoreq.O and for olefinic hydrocarbons: 2n.gtoreq.x.gtoreq.O where n is the number of carbon atoms in the product and x is the molar amount of water in the reaction mixture.

Sapienza, Richard S. (Shoreham, NY); Slegeir, William A. (Hampton Bays, NY); Goldberg, Robert I. (Selden, NY)

1987-01-01T23:59:59.000Z

65

Catalysts for the production of hydrocarbons from carbon monoxide and water  

DOE Patents (OSTI)

A method of converting low H/sub 2//CO ratio syngas to carbonaceous products comprising reacting the syngas with water or steam at 200 to 350/sup 0/C in the presence of a metal catalyst supported on zinc oxide. Hydrocarbons are produced with a catalyst selected from cobalt, nickel or ruthenium and alcohols are produced with a catalyst selected from palladium, platinum, ruthenium or copper on the zinc oxide support. The ratio of the reactants are such that for alcohols and saturated hydrocarbons: (2n + 1) greater than or equal to x greater than or equal to O and for olefinic hydrocarbons: 2n greater than or equal to x greater than or equal to O where n is the number of carbon atoms in the product and x is the molar amount of water in the reaction mixture.

Sapienza, R.S.; Slegeir, W.A.; Goldberg, R.I.

1985-11-06T23:59:59.000Z

66

HIGH-TEMPERATURE REACTIONS OF TYPE 304 STAINLESS STEEL IN LOW CONCENTRATIONS OF CARBON DIOXIDE AND CARBON MONOXIDE  

SciTech Connect

Compatibility studies of type 304 stainless steel in helium containing low concentrations of CO and CO/sub 2/ were conducted. The oxidation rates were insensitive to impurity concentrations between 0.0006--0.3 vol% in the temperature range 400--1000 deg C when P/sub co2/P/sub co/ was less than 0.66. Ratios above this value resulted initially in a slow oxidation rate, but was followed by an accelerated attack. The incubation period for the break-away varied with the P/sub co2//P/sub co/ ratio and the pressure of the two gases. The oxidation reactions proceeded through a selective depletion of chromium from the alloy which increased the carbon solubility and depletion of nickel which led to the transformation of austenite to ferrite. Parabolic reaction rates were observed for the formation of the protective oxides. Arrhenius plots of rate constants versus 1/T indicated the presence of several oxides which was confirmed by other methods. Carburization or decarburization reactions occurred coincidentally with oxidation and depended upon temperature and (P/sub CO/)/sup 2/ /P/sub CO2/ and the P/sub co2//P /sub CO/. Neither was detected below 600 deg C. Between 600--900 deg C, only carburization occurred and appeared to be mainly dependent on the temperature. Above 900 deg C, both carburization and decarburization occurred depending upon the (P/sub co/)/sup 2//P/sub co2/ and the P/sub co2//P/sub co/. The interactions of the oxidizing and carburization reactions resulted in carbon maxima at a (P/sub co/)/sup 2//P/sub co2/ ratio of 0.227. The results indicate that it may be impractical or unnecessary to reduce impurity gases to levels which do not cause surface reactions. It is concluded that undesirable oxidation and carburization reactions can be eliminated by controlling the ratios of the impurity gases. (auth)

Inouye, H.

1962-08-29T23:59:59.000Z

67

Influence of fuel sulfur content on emissions from diesel engines equipped with oxidation catalysts.  

E-Print Network (OSTI)

??Diesel oxidation catalysts (DOCs) are a viable exhaust aftertreatment alternative for alleviating regulated exhaust emissions of hydrocarbon (HC), carbon monoxide (CO), and particulate matter (PM)… (more)

Evans, Jason Carter.

2000-01-01T23:59:59.000Z

68

The Performance of Planar Solid Oxide Fuel Cells using Hydrogen-depleted Coal Syngas.  

E-Print Network (OSTI)

??Since solid oxide fuel cells can operate on fuel containing both hydrogen and carbon monoxide, it may prove possible to remove hydrogen from syngas streams… (more)

Burnette, David D.

2007-01-01T23:59:59.000Z

69

Integrated Removal of NOx with Carbon Monoxide as Reductant, and Capture of Mercury in a Low Temperature Selective Catalytic and Adsorptive Reactor  

SciTech Connect

Coal will likely continue to be a dominant component of power generation in the foreseeable future. This project addresses the issue of environmental compliance for two important pollutants: NO{sub x} and mercury. Integration of emission control units is in principle possible through a Low Temperature Selective Catalytic and Adsorptive Reactor (LTSCAR) in which NO{sub x} removal is achieved in a traditional SCR mode but at low temperature, and, uniquely, using carbon monoxide as a reductant. The capture of mercury is integrated into the same process unit. Such an arrangement would reduce mercury removal costs significantly, and provide improved control for the ultimate disposal of mercury. The work completed in this project demonstrates that the use of CO as a reductant in LTSCR is technically feasible using supported manganese oxide catalysts, that the simultaneous warm-gas capture of elemental and oxidized mercury is technically feasible using both nanostructured chelating adsorbents and ceria-titania-based materials, and that integrated removal of mercury and NO{sub x} is technically feasible using ceria-titania-based materials.

Neville Pinto; Panagiotis Smirniotis; Stephen Thiel

2010-08-31T23:59:59.000Z

70

Carbon monoxide sensor for PEM fuel cell systems Christopher T. Holta,*  

E-Print Network (OSTI)

environment; Copper-halide 1. Introduction The use of hydrocarbon fuels for generating power for cars for both transportation and residential power systems. PEM fuel cells operate on hydro- gen. However, the infrastructure for hydrogen that will support large markets is decades away. The use of hydro- carbon fuels (e

Dutta, Prabir K.

71

Synthesis of higher alcohols from carbon monoxide and hydrogen in a slurry reactor  

DOE Green Energy (OSTI)

Higher, i.e. C{sub 2{sup +}}, alcohols are desired as gasoline additives, feedstocks for producing ethers and as alternative fuels for automobiles. In all cases, the backbone branching of an alcohol improves octane rating, which is essential for good engine performance. These types of branched, higher alcohols are the desired products for a process converting synthesis gas, a CO and H{sub 2} mixture, often generated from coal gasification. Based on this premise, promoted ZnCr oxide catalysts appear to be as one of the best avenues for further investigation. Once this investigation is complete, a natural extension is to replace the Cr in the ZnCr oxide catalyst with Mo and W, both in the same elemental triad with Cr. Mo has already been shown as an active HAS catalyst, both on a SiO{sub 2} support and in the MoS{sub 2} form. The three catalyst combinations, ZnMo, ZnW, and MnCr oxides will be tested in the stirred autoclave system. However, if none of the three indicate any comparable activity and/or selectivity toward higher alcohols as compared with other HAS catalysts, then an investigation of the effects of Cs promotion on the ZnCr oxide methanol catalysts will be executed.

McCutchen, M.S.

1992-08-28T23:59:59.000Z

72

Oxidation catalyst  

DOE Patents (OSTI)

The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

Ceyer, Sylvia T. (Cambridge, MA); Lahr, David L. (Cambridge, MA)

2010-11-09T23:59:59.000Z

73

Syngas formation in methane flames and carbon monoxide release during quenching  

SciTech Connect

Following a recent investigation into chemi-ionization and chemiluminescence during gradual aeration of small, laminar methane flames, we proposed that partial oxidation products, or syngas constituents, formed in the pre-flame zone well below the luminous region, were responsible for the observed effects. We therefore map temperature, CO, and H{sub 2} for geometries and conditions relevant to burners in domestic boiler systems, to assess the potential hazard of CO release into the ambient atmosphere, should any partial quenching occur. CO concentrations peaks of 5.5 volume % are recorded in the core surrounding the axis. Appreciable CO concentrations are also found in the absence of added air. Experiments on various burner port geometries and temperatures suggest that this is not due to air entrainment at the flame base but to diffusion from zones closer to the flame. Next, quenching surfaces such as grids, perforated plates and flame trap matrices of different metals are progressively lowered into the flame. To avoid flow line distortion, suction aspirates the quenched products. The highest emission rate occurs with the quenching plane some 4 mm above the burner; further lowering of the quenching surface causes flame extinction. The maximum CO release is close to converting 10% of the CH{sub 4} feed, with some variation with quenching material. Expressing this potential release in terms of, e.g. boiler power, predicts a potentially serious hazard. Results of numerical simulations adequately parallel the experimental sampling profiles and provide insights into local concentrations, as well as the spatially resolved CO flux, which is calculated for a parabolic inlet flow profile. Integration across the stream implies, on the basis of the simulation, a possible tripling of the experimental CO release, were quenching simply to release the local gas composition into the atmosphere. Comparison with experiment suggests some chemical interaction with the quenching surface. (author)

Weinberg, Felix; Carleton, Fred; Houdmont, Raphael [Department of Chemical Engineering, Imperial College, London (United Kingdom); Dunn-Rankin, Derek; Karnani, Sunny [Department of Mechanical and Aerospace Engineering, University of California, Irvine (United States)

2011-02-15T23:59:59.000Z

74

Carbon-13 kinetic isotope effects in CO oxidation by Ag  

SciTech Connect

In the catalytic oxidation of carbon monoxide over silver wool the {sup 13}C kinetic isotope effects in the 343--453 K temperature range were experimentally determined and the following temperature dependence was found: 100 ln(k{sub 12}/k{sub 13}) = (3.398--630/T) {+-} 0.083. A reaction CO/O{sub 2}gas mixture of 1:2 ratio was used in a static system with initial pressures ranging from 20 to 40 kPa. Under these conditions the reaction is of order 1 with respect to CO and order 0 with respect to O{sub 2} and CO{sub 2} pressure. The apparent activation energy is 59.3 {+-} 1.7 kJ/mol. In the authors theoretical interpretation of the experimental data various geometries of (CO{sub 2})* and (CO{sub 3})* transition states were applied, and only a (CO{sub 2})* with an interbond angle of 110{degree} and CO stretching force constants of 1,700 and 1,000--1,400 N/m, respectively, with an asymmetric reaction coordinate was found to be acceptable.

Kobal, I.; Burghaus, U.; Senegacnik, M.; Ogrinc, N.

1999-08-31T23:59:59.000Z

75

CATALYZED OXIDATION OF URANIUM IN CARBONATE SOLUTIONS  

DOE Patents (OSTI)

A process is given wherein carbonate solutions are employed to leach uranium from ores and the like containing lower valent uranium species by utilizing catalytic amounts of copper in the presence of ammonia therein and simultaneously supplying an oxidizing agent thereto. The catalysis accelerates rate of dissolution and increases recovery of uranium from the ore. (AEC)

Clifford, W.E.

1962-05-29T23:59:59.000Z

76

Structural Evolution of Carbon During Oxidation  

SciTech Connect

The examination of the structural evolution of carbon during oxidation has proven to be of scientific interest. Early modeling work of fluidized bed combustion showed that most of the reactions of interest occurs iOn the micropores, and this work has concentrated on these pores. This work has concentrated on evolution of macroporosity and rnicroporosity of carbons during kinetic controlled oxidation using SAXS, C02 and TEM analysis. Simple studies of fluidized bed combustion of coal chars has shown that many of the events considered fragmentation events previously may in fact be "hidden" or nonaccessible porosity. This makes the study of the microporous combustion characteristics of carbon even more important. The generation of a combustion resistant grid, coupled with measurements of the SAXS and C02 surface areas, fractal analysis and TEM studies has confined that soot particles shrink during their oxidation, as previously suspected. However, this shrinkage results in an overall change in structure. This structure becomes, on a radial basis, much more ordered near the edges, while the center itself becomes transparent to the TEM beam, implying a total lack of structure in this region. Although complex, this carbon structure is probably burning as to keep the density of the soot particles nearly the same. The TEM techniques developed for examination of soots has also been applied to Spherocarb. The Spherocarb during oxidation also increases its ordering,. This ordering, by present theories, would imply that the reactivity would go. However, the reactivity goes up, implying that structure of carbon is secondary in importance to catalytic effects.

Adel F. Sarofim; Angelo Kandas

1998-10-28T23:59:59.000Z

77

Thief Carbon Catalyst for Oxidation of Mercury in Effluent Stream  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Catalyst for Oxidation of Mercury in Effluent Carbon Catalyst for Oxidation of Mercury in Effluent Stream Contact NETL Technology Transfer Group techtransfer@netl.doe.gov January 2012 Significance * Oxidizes heavy metal contaminants, especially mercury, in gas streams * Uses partially combusted coal ("Thief" carbon) * Yields an inexpensive catalyst * Cheap enough to be a disposable catalyst * Cuts long-term costs * Simultaneously addresses oxidation and adsorption issues Applications * Any process requiring removal of heavy

78

Metal atom oxidation laser  

DOE Patents (OSTI)

A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides. (auth)

Jensen, R.J.; Rice, W.W.; Beattie, W.H.

1975-10-28T23:59:59.000Z

79

Metal atom oxidation laser  

DOE Patents (OSTI)

A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides.

Jensen, R.J.; Rice, W.W.; Beattie, W.H.

1975-10-28T23:59:59.000Z

80

Recovery of iron, carbon and zinc from steel plant waste oxides using the AISI-DOE postcombustion smelting technology  

SciTech Connect

This report describes a process to recover steel plant waste oxides to be used in the production of hot metal. The process flowsheet used at the pilot plant. Coal/coke breeze and iron ore pellets/waste oxides are charged into the smelting reactor. The waste oxides are either agglomerated into briquettes (1 inch) using a binder or micro-agglomerated into pellets (1/4 inch) without the use of a binder. The iron oxides dissolve in the slag and are reduced by carbon to produce molten iron. The gangue oxides present in the raw materials report to the slag. Coal charged to the smelter is both the fuel as well as the reductant. Carbon present in the waste oxides is also used as the fuel/reductant resulting in a decrease in the coal requirement. Oxygen is top blown through a central, water-cooled, dual circuit lance. Nitrogen is injected through tuyeres at the bottom of the reactor for stirring purposes. The hot metal and slag produced in the smelting reactor are tapped at regular intervals through a single taphole using a mudgun and drill system. The energy requirements of the process are provided by (i) the combustion of carbon to carbon monoxide, referred to as primary combustion and (ii) the combustion of CO and H{sub 2} to CO{sub 2} and H{sub 2}O, known as postcombustion.

Sarma, B. [Praxair, Inc., Tarrytown, NY (United States); Downing, K.B. [Fluor Daniel, Greenville, SC (United States); Aukrust, E.

1996-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxides carbon monoxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Influence of solid fuel on the carbon-monoxide and nitrogen-oxide emissions on sintering  

SciTech Connect

Laboratory and industrial research now underway at the sintering plant of AO Mittal Steel Temirtau is focusing on the preparation of fuel of optimal granulometric composition, the replacement of coke fines, and the adaptation of fuel-input technology so as to reduce fuel consumption and toxic emissions without loss of sinter quality.

M.F. Vitushchenko; N.L. Tatarkin; A.I. Kuznetsov; A.E. Vilkov [AO Mittal Steel Temirtau, Temirtau (Kazakhstan)

2007-07-01T23:59:59.000Z

82

Nitric oxide and carbon monoxide in cigarette smoke in the development of cardiorespiratory disease in smokers  

E-Print Network (OSTI)

in General and Geriatric Medicine, West Suffolk Hospital . 1985 - 1986 . 3) Consultant Physician in General and Geriatric Medicine, Huntingdon District Health Au~hority. 1986. Acknowledgements I am most grateful to the East Anglian Regional Health... was starting in Virginia. Growing was also started at that time in other parts of the world where the climate was suitable e.g. Turkey (Akehurst 1981). During the 18th century snuff became the most popular way of taking tobacco but the habit rapidly...

Borland, Colin David Ross

1988-10-18T23:59:59.000Z

83

Thermochemical cyclic system for splitting water and/or carbon dioxide by means of cerium compounds and reactions useful therein  

DOE Patents (OSTI)

A thermochemical cyclic process for producing hydrogen from water comprises reacting ceric oxide with monobasic or dibasic alkali metal phosphate to yield a solid reaction product, oxygen and water. The solid reaction product, alkali metal carbonate or bicarbonate, and water, are reacted to yield hydrogen, ceric oxide, carbon dioxide and trialkali metal phosphate. Ceric oxide is recycled. Trialkali metal phosphate, carbon dioxide and water are reacted to yield monobasic or dibasic alkali metal phosphate and alkali metal bicarbonate, which are recycled. The cylic process can be modified for producing carbon monoxide from carbon dioxide by reacting the alkali metal cerous phosphate and alkali metal carbonate or bicarbonate in the absence of water to produce carbon monoxide, ceric oxide, carbon dioxide and trialkali metal phosphate. Carbon monoxide can be converted to hydrogen by the water gas shift reaction.

Bamberger, Carlos E. (Oak Ridge, TN); Robinson, Paul R. (Knoxville, TN)

1980-01-01T23:59:59.000Z

84

Ruthenium carbonyl catalyst supported on ceric oxide for preparation of olefins from synthesis gas  

DOE Patents (OSTI)

A catalyst comprising a ruthenium carbonyl compound deposited on a cerium oxide-containing support material provides for the selective synthesis of low molecular weight olefinic hydrocarbons from mixtures of hydrogen and carbon monoxide.

Pierantozzi, Ronald (Macungie, PA)

1985-01-01T23:59:59.000Z

85

Ruthenium carbonyl catalyst supported on ceric oxide for preparation of olefins from synthesis gas  

DOE Patents (OSTI)

A catalyst comprising a ruthenium carbonyl compound deposited on a cerium oxide-containing support material provides for the selective synthesis of low molecular weight olefinic hydrocarbons from mixtures of hydrogen and carbon monoxide.

Pierantozzi, R.

1985-04-02T23:59:59.000Z

86

Preparation of olefins from synthesis gas using ruthenium supported on ceric oxide  

DOE Patents (OSTI)

A catalyst comprising a ruthenium carbonyl compound deposited on a cerium oxide-containing support material provides for the selective synthesis of low molecular weight olefinic hydrocarbons from mixtures of hydrogen and carbon monoxide.

Pierantozzi, R.

1985-04-09T23:59:59.000Z

87

Synthesis and Characterization of Hydrous Ruthenium Oxide-Carbon Supercapacitors  

E-Print Network (OSTI)

Synthesis and Characterization of Hydrous Ruthenium Oxide-Carbon Supercapacitors Manikandan Ramani It is shown that composite Ru oxide-carbon based supercapacitors possess superior energy and power densities. Electrochemical capacitors or supercapacitors are novel power devices, which lie between batteries

Popov, Branko N.

88

Magnesium oxide inserts for the LECO Carbon Analyzer  

Science Conference Proceedings (OSTI)

LECO carbon analysis of plutonium metal and plutonium oxide at the Rocky Flats Plant generates several hundred kilograms of high silica residues each year. The plutonium in these residues is difficult and expensive to recover using production dissolution processes. A magnesium oxide (MgO) insert has been developed that significantly lowers the plutonium recovery costs without adversely affecting accuracy of the carbon analysis.

Bagaasen, L.M.; Jensen, C.M.

1991-01-16T23:59:59.000Z

89

Enhanced Electrochemical Performance of Oxide-carbon Composite ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Hierarchical oxide/carbon nanofiber composites with nanosized ... Engineering in Low Stacking Fault Energy Alloys on their Corrosion Resistance ... for Intrinsic Electrical Characterization of Graphene Filed-Effect Transistors.

90

Multiwalled carbon nanotubes decorated with cobalt oxide nanoparticles  

Science Conference Proceedings (OSTI)

Multiwalled carbon nanotubes (MWCNTs) synthesized by spray pyrolysis were decorated with cobalt oxide nanoparticles using a simple synthesis route. This wet chemistry method yielded nanoparticles randomly anchored to the surface of the nanotubes by decomposition ...

D. G. Larrude; P. Ayala; M. E. H. Maia da Costa; F. L. Freire

2012-01-01T23:59:59.000Z

91

Thief carbon catalyst for oxidation of mercury in effluent stream  

DOE Patents (OSTI)

A catalyst for the oxidation of heavy metal contaminants, especially mercury (Hg), in an effluent stream is presented. The catalyst facilitates removal of mercury through the oxidation of elemental Hg into mercury (II) moieties. The active component of the catalyst is partially combusted coal, or "Thief" carbon, which can be pre-treated with a halogen. An untreated Thief carbon catalyst can be self-promoting in the presence of an effluent gas streams entrained with a halogen.

Granite, Evan J. (Wexford, PA); Pennline, Henry W. (Bethel Park, PA)

2011-12-06T23:59:59.000Z

92

Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol  

E-Print Network (OSTI)

for measuring ecosystem carbon oxidation state and oxidativemean oxidation number of carbon (MOC) - A useful concept forJ.F. & Barsanti, K.C. The Carbon Number-Polarity Grid: A

Kroll, Jesse H.

2011-01-01T23:59:59.000Z

93

Characterization of hydrous ruthenium oxide/carbon nanocomposite supercapacitors prepared by a colloidal method  

E-Print Network (OSTI)

Characterization of hydrous ruthenium oxide/carbon nanocomposite supercapacitors prepared reserved. Keywords: Colloidal method; Ruthenium oxide; Nanocomposite; Supercapacitors 1. Introduction indicated that composite Ru oxide-carbon based supercapacitors possess superior energy and power densities

Popov, Branko N.

94

Thermo-Oxidation of Tokamak Carbon Dust  

Science Conference Proceedings (OSTI)

The oxidation of dust and flakes collected from the DIII-D tokamak, and various commercial dust specimens, has been measured at 350 ºC and 2.0 kPa O2 pressure. Following an initial small mass loss, most of the commercial dust specimens showed very little effect due to O2 exposure. Similarly, dust collected from underneath DIII-D tiles, which is thought to comprise largely Grafoil™ particulates, also showed little susceptibility to oxidation at this temperature. However, oxidation of the dust collected from tile surfaces has led to ~ 18% mass loss after 8 hours; thereafter, little change in mass was observed. This suggests that the surface dust includes some components of different composition and/or structure – possibly fragments of codeposited layers. The oxidation of codeposit flakes scraped form DIII-D upper divertor tiles showed an initial 25% loss in mass due to heating in vacuum, and the gradual loss of 30-38% mass during the subsequent 24 hours exposure to O2. This behavior is significantly different from that observed for the oxidation of thinner DIII-D codeposit specimens which were still adhered to tile surfaces, and this is thought to be related to the low deuterium content (D/C ~ 0.03 – 0.04) of the flakes.

J.W. Davis; B.W.N. Fitzpatrick; J.P. Sharpe; A.A. Haasz

2008-04-01T23:59:59.000Z

95

Zinc-catalyzed copolymerization of carbon dioxide and propylene oxide  

E-Print Network (OSTI)

The zinc-catalyzed copolymerization of carbon dioxide and propylene oxide, which is one of the promising reactions for the utilization of carbon dioxide, has been investigated from various aspects. Above all, considering that supercritical carbon dioxide has recently been paid attention in the field of extraction, separation, and reaction medium, its aptitude for both a reaction solvent and a reactant was examined in zinc glutarate-catalyzed reactions. As a result, it was proved that supercritical carbon dioxide was a suitable substitute for organic solvents in the copolymerization reactions. Great diffusivity of supercritical carbon dioxide into polymer segments was thought to promote carbon dioxide supply to the active sites of the zinc species and to afford alternating polycarbonate production. Low reaction temperature appeared to be advantageous to polycarbonate and cyclic carbonate formation. Apart from zinc glutarate catalyst whose detailed mechanistic studies were hard to perform due to its insolubility, some other zinc compounds were studied. A homogeneous catalyst, bis(ethyl fumarato)zinc, showed similar polycarbonate yield to zinc glutarate, and the method of the catalyst preparation affected its catalytic activity. Only a small amount of the catalyst was considered to be active in the copolymerization process even in the homogeneous systems. In the zinc dicarboxylate complexes, the carbon number between two carboxyl groups and the steric nature in the vicinity of the zinc atom might be important factors for the copolymerization catalysis.

Katsurao, Takumi

1994-01-01T23:59:59.000Z

96

Phototrophic Fe(II) Oxidation Promotes Organic Carbon Acquisition  

E-Print Network (OSTI)

Anoxygenic phototrophic Fe(II) oxidation is usually considered to be a lithoautotrophic metabolism that contributes to primary production in Fe-based ecosystems. In this study, we employed Rhodobacter capsulatus SB1003 as a model organism to test the hypothesis that phototrophic Fe(II) oxidation can be coupled to organic carbon acquisition. R. capsulatus SB1003 oxidized Fe(II) under anoxic conditions in a light-dependent manner, but it failed to grow lithoautotrophically on soluble Fe(II). When the strain was provided with Fe(II)-citrate, however, growth was observed that was dependent upon microbially catalyzed Fe(II) oxidation, resulting in the formation of Fe(III)-citrate. Subsequent photochemical breakdown of Fe(III)-citrate yielded acetoacetic acid that supported growth in the light but not the dark. The deletion of genes (RRC00247 and RRC00248) that encode homologs of atoA and atoD, required for acetoacetic acid utilization, severely impaired the ability of R. capsulatus SB1003 to grow on Fe(II)-citrate. The growth yield achieved by R. capsulatus SB1003 in the presence of citrate cannot be explained by lithoautotrophic growth on Fe(II) enabled by indirect effects of the ligand [such as altering the thermodynamics of Fe(II) oxidation or preventing cell encrustation]. Together, these results demonstrate that R. capsulatus SB1003 grows photoheterotrophically on Fe(II)-citrate. Nitrilotriacetic acid also supported light-dependent growth on Fe(II), suggesting that Fe(II) oxidation may be a general mechanism whereby some Fe(II)-oxidizing bacteria mine otherwise inaccessible organic carbon sources.

Rhodobacter Capsulatus Sb; Nicky C. Caiazza; Douglas P. Lies; Dianne K. Newman

2006-01-01T23:59:59.000Z

97

REDUCTION OF NITRIC OXIDE BY CARBON MONOXIDE OVER A SILICA SUPPORTED PLATINUM CATALYST: INFRARED AND KINETIC STUDIES  

E-Print Network (OSTI)

System. • B. Procedures. Catalyst Preparation Infrared DiskPreparation. Catalyst Characterization. PreliminaryReduction by CO Over a Pt Catalyst," M.S. thesis, Department

Lorimer, D.H.

2011-01-01T23:59:59.000Z

98

Program on Technology Innovation: Monitoring Carbon Monoxide and Nitric Oxide in Combustion Gases with Laser Absorption Sensors  

Science Conference Proceedings (OSTI)

Two important considerations for monitoring CO/O2 and NO/NH3 in the flue gas of coal-fired boilers include (1) optimization of the air/fuel distribution to individual burners, thereby enabling lower excess oxygen operation, reduced NOx emissions, and improved unit heat rate, and (2) optimization of NH3/NOx distribution at the inlet of a selective catalytic reduction (SCR) reactor, thereby enabling increased NOx reduction performance while maintaining ammonia slip targets. Lower NOx emissions can be achie...

2011-04-12T23:59:59.000Z

99

Production of hydrogen. [metals oxidation/carbon reduction process; and cyyclic electrolytic; carbon reduction  

SciTech Connect

Hydrogen is produced in a cyclic metals oxidation/carbon reduction process. In particular, elemental iron or cobalt is oxidized in an aqueous solution of an alkali metal hydroxide with the simultaneous generation of hydrogen. The iron or cobalt oxidation products of the reaction are thereafter reduced to elemental iron or cobalt by contact with a carbonaceous reducing agent at elevated temperatures and the reduced material recycled for reoxidation. In an alternate operation, hydrogen is produced in a cyclic electrolytic/carbon reduction process wherein elemental iron or cobalt is electrolytically converted to corresponding oxidation products with the simultaneous generation of hydrogen. The electrolytic cell used in this process comprises a cathode, a magnetic anode that is adapted to attract and retain iron and/or cobalt particles and an aqueous electrolyte. In the electrolytic cell, hydrogen is produced at the cathode and metal particles contained on the magnetic electrode are oxidized to a non-ferromagnetic specie, such as ferrous hydroxide. The nonferromagnetic species are recovered from the electrolytic cell and thereafter reconverted to particulate elemental iron and/or cobalt by treating the material with a carbonaceous reductant at an elevated temperature.

Batzold, J.S.; Pan, Y.

1980-05-13T23:59:59.000Z

100

Nitrogen and carbon oxides chemistry in the HRS retorting process  

Science Conference Proceedings (OSTI)

The HRS Oil Shale Retort process consists of a pyrolysis section which converts kerogen of the shale to liquid and gaseous products, and a combustion section which burns residual carbon on the shale to heat the process. Average gas concentrations of selected gas phase species were determined from data measured at several placed on the combustion system of the Lawrence Livermore National Laboratory Hot-Recycled-Solids Retort Pilot Plant for representative rich and lean shale runs. The data was measured on-line and in real time by on-line meters (CO{sub 2}, CO, O{sub 2}), mass spectrometry (CO{sub 2}, O{sub 2}, H{sub 2}O, NO, CH{sub 4}, SO{sub 2}, N{sub 2} and Ar), and Fourier transform infrared spectroscopy (CO{sub 2}, CO, H{sub 2}O, NO, N{sub 2}O, NO{sub 2}, CH{sub 4}, SO{sub 2}, NH{sub 3}, and HCN). For both the rich and leans shale runs, the Lift-Pipe Combustor (LFT) exhibited gas concentrations (sampled at the exit of the LFT) indicative of incomplete combustion and oxidation; the Delayed-Fall Combustor (DFC) exhibited gas concentrations (sampled at the annulus and the exit of the DFC) indicative of much more complete combustion and oxidation. The Fluidized-Bed Combustor exhibited gas concentrations which were controlled to a large extent by the injection atmosphere of the FBC. High levels of nitrogen oxides and low levels of CO were detected when full air injection was used, while high levels of CO and low levels of nitrogen-oxides were detected with partial N{sub 2} injection. Sequential sampling limitations and nitrogen balances are also discussed.

Reynolds, J.G.

1993-11-12T23:59:59.000Z

Note: This page contains sample records for the topic "oxides carbon monoxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Carbon dioxide capture process with regenerable sorbents  

DOE Patents (OSTI)

A process to remove carbon dioxide from a gas stream using a cross-flow, or a moving-bed reactor. In the reactor the gas contacts an active material that is an alkali-metal compound, such as an alkali-metal carbonate, alkali-metal oxide, or alkali-metal hydroxide; or in the alternative, an alkaline-earth metal compound, such as an alkaline-earth metal carbonate, alkaline-earth metal oxide, or alkaline-earth metal hydroxide. The active material can be used by itself or supported on a substrate of carbon, alumina, silica, titania or aluminosilicate. When the active material is an alkali-metal compound, the carbon-dioxide reacts with the metal compound to generate bicarbonate. When the active material is an alkaline-earth metal, the carbon dioxide reacts with the metal compound to generate carbonate. Spent sorbent containing the bicarbonate or carbonate is moved to a second reactor where it is heated or treated with a reducing agent such as, natural gas, methane, carbon monoxide hydrogen, or a synthesis gas comprising of a combination of carbon monoxide and hydrogen. The heat or reducing agent releases carbon dioxide gas and regenerates the active material for use as the sorbent material in the first reactor. New sorbent may be added to the regenerated sorbent prior to subsequent passes in the carbon dioxide removal reactor.

Pennline, Henry W. (Bethel Park, PA); Hoffman, James S. (Library, PA)

2002-05-14T23:59:59.000Z

102

A Mathematical Model of OxideCarbon Composite Electrode for Supercapacitors  

E-Print Network (OSTI)

A Mathematical Model of OxideÃ?Carbon Composite Electrode for Supercapacitors Hansung Kim for the general application of supercapacitors consisting of an oxide/carbon composite electrode. The model takes. Supercapacitors can be divided into two categories: electric double-layer capacitors and pseudocapacitors

Popov, Branko N.

103

Oil shale oxidation at subretorting temperatures  

SciTech Connect

Green River oil shale was air oxidized at subretorting temperatures. Off gases consisting of nitrogen, oxygen, carbon monoxide, carbon dioxide, and water were monitored and quantitatively determined. A mathematical model of the oxidation reactions based on a shrinking core model has been developed. This model incorporates the chemical reaction of oxygen and the organic material in the oil shale as well as the diffusivity of the oxygen into the shale particle. Diffusivity appears to be rate limiting for the oxidation. Arrhenius type equations, which include a term for oil shale grade, have been derived for both the chemical reaction and the diffusivity.

Jacobson, I.A. Jr.

1980-06-01T23:59:59.000Z

104

Standard Test Method for Thermal Oxidative Resistance of Carbon Fibers  

E-Print Network (OSTI)

1.1 This test method covers the apparatus and procedure for the determination of the weight loss of carbon fibers, exposed to ambient hot air, as a means of characterizing their oxidative resistance. 1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units which are provided for information only and are not considered standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard information, see Section 8.

American Society for Testing and Materials. Philadelphia

1982-01-01T23:59:59.000Z

105

NATURAL GAS VARIABILITY IN CALIFORNIA: ENVIRONMENTAL IMPACTS AND DEVICE PERFORMANCE EXPERIMENTAL EVALUATION OF POLLUTANT EMISSIONS FROM RESIDENTIAL APPLIANCES  

E-Print Network (OSTI)

factors for carbon monoxide, nitrogen oxides,  nitrogen dioxide, factors were determined for carbon monoxide, nitrogen oxides, nitrogen dioxide, 

Singer, Brett C.

2010-01-01T23:59:59.000Z

106

Quantitative X-ray microanalysis of submicron carbide formation in chromium (III) oxide rich scale  

SciTech Connect

This paper discusses the chemical microanalysis techniques adapted to identify the precipitates that form on the surface of, or within, the oxide scale of a Fe-22Cr ferritic steel during exposure to a carbon-monoxide rich environment at 750C for 800 hours. Examination of oxidized test coupons revealed the presence of a fiber like structure at the surface, shown in figure 1. Other studies have reported that these structures are carbon precipitates.

Collins, W.K.; Ziomek-Moroz, M.; Holcomb, G.R.; Danielson, P.; Hunt, A.H

2007-08-01T23:59:59.000Z

107

Synthesis Gas Production from Partial Oxidation of Methane with Air in AC Electric Gas Discharge  

E-Print Network (OSTI)

depending on the ratio of hydrogen to carbon monoxide. Most synthesis gas is produced by the steam reform reaction. Industrially, steam reforming is performed over a Ni/ Al2O3 catalyst.9 The typical problemSynthesis Gas Production from Partial Oxidation of Methane with Air in AC Electric Gas Discharge K

Mallinson, Richard

108

Metal oxide coating of carbon supports for supercapacitor applications.  

DOE Green Energy (OSTI)

The global market for wireless sensor networks in 2010 will be valued close to $10 B, or 200 M units. TPL, Inc. is a small Albuquerque based business that has positioned itself to be a leader in providing uninterruptible power supplies in this growing market with projected revenues expected to exceed $26 M in 5 years. This project focused on improving TPL, Inc.'s patent-pending EnerPak{trademark} device which converts small amounts of energy from the environment (e.g., vibrations, light or temperature differences) into electrical energy that can be used to charge small energy storage devices. A critical component of the EnerPak{trademark} is the supercapacitor that handles high power delivery for wireless communications; however, optimization and miniaturization of this critical component is required. This proposal aimed to produce prototype microsupercapacitors through the integration of novel materials and fabrication processes developed at New Mexico Technology Research Collaborative (NMTRC) member institutions. In particular, we focused on developing novel ruthenium oxide nanomaterials and placed them into carbon supports to significantly increase the energy density of the supercapacitor. These improvements were expected to reduce maintenance costs and expand the utility of the TPL, Inc.'s device, enabling New Mexico to become the leader in the growing global wireless power supply market. By dominating this niche, new customers were expected to be attracted to TPL, Inc. yielding new technical opportunities and increased job opportunities for New Mexico.

Boyle, Timothy J.; Tribby, Louis, J (University of New Mexico, Albuquerque, NM); Lakeman, Charles D. E. (TPL, Inc., Albuquerque, NM); Han, Sang M. (University of New Mexico, Albuquerque, NM); Lambert, Timothy N.; Fleig, Patrick F. (TPL, Inc., Albuquerque, NM)

2008-07-01T23:59:59.000Z

109

Application of an all-solid-state diode-laser-based sensor for carbon monoxide detection by optical absorption in the 4.4 ? 4.8 µm spectral region  

E-Print Network (OSTI)

An all-solid-state continuous-wave (cw) laser system for mid-infrared absorption measurements of the carbon monoxide (CO) molecule has been developed and demonstrated. The single-mode, tunable output of an external-cavity diode laser (ECDL) is difference-frequency mixed (DFM) with the output of a 550-mW diode-pumped cw Nd:YAG laser in a periodically-poled lithium niobate (PPLN) crystal to produce tunable cw radiation in the mid-infrared. The wavelength of the 860-nm ECDL can be coarse tuned between 860.78 to 872.82 nm allowing the sensor to be operated in the 4.4 ? 4.8 µm region. Results from single-pass mid-IR direct absorption experiments for CO concentration measurements are discussed. CO measurements were performed in CO/CO2/N2 mixtures in a room temperature gas cell that allowed the evaluation of the sensor operation and data reduction procedures. Field testing was performed at two locations: in the exhaust of a well-stirred reactor (WSR) at Wright-Patterson Air Force Base and the exhaust of a gas turbine at Honeywell Engines and Systems. Field tests demonstrated the feasibility of the sensor for operation in harsh combustion environments but much improvement in the sensor design and operation was required. Experiments in near-adiabatic hydrogen/air CO2-doped flames were performed featuring two-line thermometry in the 4.8 µm spectral region. The sensor concentration measurement uncertainty was estimated at 2% for gas cell testing. CO concentration measurements agreed within 15% of conventional extractive sampling at WSR, and for the flame experiments the repeatability of the peak absorption gives a system uncertainty of 10%. The noise equivalent CO detection limit for these experiments was estimated at 2 ppm per meter, for combustion gas at 1000 K assuming a SNR ratio of 1.

Rodolfo, Barron Jimenez

2004-12-01T23:59:59.000Z

110

A Study on Carbon-Nanotube Local Oxidation Lithography Using an Atomic Force Microscope  

Science Conference Proceedings (OSTI)

In this paper, nanoscale anodic oxidation lithography using an atomic force microscope (AFM) is systematically studied on carbon nanotubes (CNTs). Trends between the produced feature size and the corresponding process parameters, such as applied voltage, ...

K. Kumar; O. Sul; S. Strauf; D. S. Choi; F. Fisher; M. G. Prasad; E. Yang

2011-07-01T23:59:59.000Z

111

Method of removing nitrogen monoxide from a nitrogen monoxide-containing gas using a water-soluble iron ion-dithiocarbamate, xanthate or thioxanthate  

DOE Patents (OSTI)

The present invention relates to a method of removing of nitrogen monoxide from a nitrogen monoxide-containing gas which method comprises contacting a nitrogen oxide-containing gas with an aqueous solution of water soluble organic compound-iron ion chelate complex. The NO absorption efficiency of ferrous urea-dithiocarbamate and ferrous diethanolamine-xanthate as a function of time, oxygen content and solution ph is presented. 3 figs., 1 tab.

Liu, D. Kwok-Keung; Chang, Shih-Ger

1987-08-25T23:59:59.000Z

112

Oxygen Pathways and Carbon Dioxide Utilization in Methane Partial Oxidation in Ambient Temperature  

E-Print Network (OSTI)

- ronmental impact. Present technology uses steam reforming to produce synthesis gas which is converted into enhance- ment of the carbon balance of methane conversion by reforming with CO2 in order to "recycleOxygen Pathways and Carbon Dioxide Utilization in Methane Partial Oxidation in Ambient Temperature

Mallinson, Richard

113

Formaldehyde yields from methanol electrochemical oxidation on carbon-supported platinum catalysts  

Science Conference Proceedings (OSTI)

The formation of formaldehyde during methanol electrochemical oxidation on supported Pt and Pt-Ru catalysts was investigated. While on solid platinum electrodes, the formaldehyde yields from methanol oxidation are near 30% at low potentials; the yields fall below 2% for methanol electrochemical oxidation on carbon-supported catalysts in Nafion. The lower formaldehyde yields, which result from more complete methanol oxidation, are believed to arise from the ability of partial oxidation products to be transported to an array of active catalyst sites dispersed within the three-dimensional network of the Nafion film.

Childers, C.L.; Huang, H.; Korzeniewski, C. [Texas Tech Univ., Lubbock, TX (United States). Dept. of Chemistry and Biochemistry

1999-02-02T23:59:59.000Z

114

Carbon contamination and oxidation of Au surfaces under extreme ultraviolet radiation: An x-ray photoelectron spectroscopy study  

E-Print Network (OSTI)

Carbon contamination and oxidation of Au surfaces under extreme ultraviolet radiation: An x 2012) Extreme ultraviolet (EUV) radiation-induced carbon contamination and oxidation of Au surfaces modification during EUV exposure. XPS analysis showed that total carbon contamination (C 1s peak

Harilal, S. S.

115

Carbon nanotube-induced preparation of vanadium oxide nanorods: Application as a catalyst for the partial oxidation of n-butane  

SciTech Connect

A vanadium oxide-carbon nanotube composite was prepared by solution-based hydrolysis of NH{sub 4}VO{sub 3} in the presence of carbon nanotubes. The carbon nanotubes induce the nucleation of the 1D vanadium oxide nanostructures, with the nuclei growing into long freestanding nanorods. The vanadium oxide nanorods with the lengths up to 20 {mu}m and the widths of 5-15 nm exhibit a well-ordered crystalline structure. Catalytic tests show that the composite with nanostructured vanadium oxide is active for the partial oxidation of n-butane to maleic anhydride at 300 deg. C.

Chen Xiaowei [Department of Inorganic Chemistry, Fritz-Haber-Institute of MPG, Faradayweg 4-6, D-14195 Berlin (Germany); Zhu Zhenping [Department of Inorganic Chemistry, Fritz-Haber-Institute of MPG, Faradayweg 4-6, D-14195 Berlin (Germany); Haevecker, Michael [Department of Inorganic Chemistry, Fritz-Haber-Institute of MPG, Faradayweg 4-6, D-14195 Berlin (Germany); Su Dangsheng [Department of Inorganic Chemistry, Fritz-Haber-Institute of MPG, Faradayweg 4-6, D-14195 Berlin (Germany)]. E-mail: dangsheng@fhi-berlin.mpg.de; Schloegl, Robert [Department of Inorganic Chemistry, Fritz-Haber-Institute of MPG, Faradayweg 4-6, D-14195 Berlin (Germany)

2007-02-15T23:59:59.000Z

116

Carbon Monoxide Sensor - Energy Innovation Portal  

Electricity Transmission; Energy Analysis; ... the sensor ensures reproducibility and reduces the need for calibration of every sensor coming off the ...

117

Predicting Smoke and Carbon Monoxide Detector Response ...  

Science Conference Proceedings (OSTI)

... room with floor dimensions of 3.15 m by 3.02 m. A sand burner was ... The detector was isolated from the CO environment by placing a tight fitting can ...

2003-08-28T23:59:59.000Z

118

Standard Reference Materials Carbon Monoxide Absorption ...  

Science Conference Proceedings (OSTI)

... Use With a Broadband Source: A broadband source in the 1560 nm to 1595 nm region such as a light emitting diode, white light, or amplified ...

2011-08-04T23:59:59.000Z

119

Prototype Generators Emit Much Less Carbon Monoxide ...  

Science Conference Proceedings (OSTI)

... Portable electric generators retrofitted with off-the-shelf hardware by ... Technology (NIST) for the US Consumer Product Safety Commission (CPSC). ...

2013-04-17T23:59:59.000Z

120

Recent trends in the microwave-assisted synthesis of metal oxide nanoparticles supported on carbon nanotubes and their applications  

Science Conference Proceedings (OSTI)

The study of coating carbon nanotubes with metal/oxides nanoparticles is now becoming a promising and challenging area of research. To optimize the use of carbon nanotubes in various applications, it is necessary to attach functional groups or other ...

Sarah C. Motshekga; Sreejarani K. Pillai; Suprakas Sinha Ray; Kalala Jalama; Rui. W. M. Krause

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxides carbon monoxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Graphene Oxide as an Electrophile for Carbon Nucleophiles  

E-Print Network (OSTI)

The covalent, surface functionalization of graphene oxide with the malononitrile anion has been demonstrated. Once installed, these surface-bound “molecular lynchpins” can be chemically modified to increase the solubility ...

Swager, Timothy Manning

122

Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol  

SciTech Connect

A detailed understanding of the sources, transformations, and fates of organic species in the environment is crucial because of the central roles that organics play in human health, biogeochemical cycles, and Earth's climate. However, such an understanding is hindered by the immense chemical complexity of environmental mixtures of organics; for example, atmospheric organic aerosol consists of at least thousands of individual compounds, all of which likely evolve chemically over their atmospheric lifetimes. Here we demonstrate the utility of describing organic aerosol (and other complex organic mixtures) in terms of average carbon oxidation state (OSC), a quantity that always increases with oxidation, and is readily measured using state-of-the-art analytical techniques. Field and laboratory measurements of OSC , using several such techniques, constrain the chemical properties of the organics and demonstrate that the formation and evolution of organic aerosol involves simultaneous changes to both carbon oxidation state and carbon number (nC).

Massachusetts Institute of Technology; Kroll, Jesse H.; Donahue, Neil M.; Jimenez, Jose L.; Kessler, Sean H.; Canagaratna, Manjula R.; Wilson, Kevin R.; Altieri, Katye E.; Mazzoleni, Lynn R.; Wozniak, Andrew S.; Bluhm, Hendrik; Mysak, Erin R.; Smith, Jared D.; Kolb, Charles E.; Worsnop, Douglas R.

2010-11-05T23:59:59.000Z

123

Multi-stage, isothermal CO preferential oxidation reactor  

DOE Patents (OSTI)

A multi-stage, isothermal, carbon monoxide preferential oxidation (PrOx) reactor comprising a plurality of serially arranged, catalyzed heat exchangers, each separated from the next by a mixing chamber for homogenizing the gases exiting one heat exchanger and entering the next. In a preferred embodiment, at least some of the air used in the PrOx reaction is injected directly into the mixing chamber between the catalyzed heat exchangers.

Skala, Glenn William (Churchville, NY); Brundage, Mark A. (Pittsford, NY); Borup, Rodney Lynn (East Rochester, NY); Pettit, William Henry (Rochester, NY); Stukey, Kevin (W. Henrietta, NY); Hart-Predmore, David James (Rochester, NY); Fairchok, Joel (Alexander, NY)

2000-01-01T23:59:59.000Z

124

A study on oxidized glassy carbon sheets for bipolar supercapacitor electrodes  

Science Conference Proceedings (OSTI)

Electrochemical Double Layer Capacitors (EDLC) for high energy and power density applications, based on glassy carbon (GC) electrodes, are being developed in this laboratory. In the context of this project, GC sheets were oxidized and investigated with Small Angle X-ray Scattering (SAXS), Electrochemical Impedance Spectroscopy (EIS) and Nitrogen Gas Adsorption (BET). During oxidation on active film with open pores is built on the surface of the GC. Upon oxidation, the internal volumetric surface area of the active film decreases, whereas the volumetric electrochemical double layer capacitance increases. The authors show that this effect is correlated with the opening, the growth and the coalescence of the pores.

Braun, A.; Baertsch, M.; Geiger, F. [and others

2000-07-01T23:59:59.000Z

125

Oxidation of carbon fiber surfaces for use as reinforcement in high-temperature cementitious material systems  

DOE Patents (OSTI)

The interfacial bond characteristics between carbon fiber and a cement matrix, in high temperature fiber-reinforced cementitious composite systems, can be improved by the oxidative treatment of the fiber surfaces. Compositions and the process for producing the compositions are disclosed.

Sugama, Toshifumi (Mastic Beach, NY)

1990-01-01T23:59:59.000Z

126

Oxidation of carbon fiber surfaces for use as reinforcement in high-temperature cementitious material systems  

DOE Patents (OSTI)

The interfacial bond characteristics between carbon fiber and a cement matrix, in high temperature fiber-reinforced cementitious composite systems, can be improved by the oxidative treatment of the fiber surfaces. Compositions and the process for producing the compositions are disclosed. 2 figs.

Sugama, Toshifumi.

1990-05-22T23:59:59.000Z

127

Simultaneous removal of nitrogen oxides and sulfur oxides from combustion gases  

DOE Patents (OSTI)

A process for the simultaneous removal of sulfur oxides and nitrogen oxides from power plant stack gases comprising contacting the stack gases with a supported iron oxide catalyst/absorbent in the presence of sufficient reducing agent selected from the group consisting of carbon monoxide, hydrogen, and mixtures thereof, to provide a net reducing atmosphere in the SO.sub.x /NO.sub.x removal zone. The sulfur oxides are removed by absorption substantially as iron sulfide, and nitrogen oxides are removed by catalytic reduction to nitrogen and ammonia. The spent iron oxide catalyst/absorbent is regenerated by oxidation and is recycled to the contacting zone. Sulfur dioxide is also produced during regeneration and can be utilized in the production of sulfuric acid and/or sulfur.

Clay, David T. (Longview, WA); Lynn, Scott (Walnut Creek, CA)

1976-10-19T23:59:59.000Z

128

A Semi-Empirical Two Step Carbon Corrosion Reaction Model in PEM Fuel Cells  

SciTech Connect

The cathode CL of a polymer electrolyte membrane fuel cell (PEMFC) was exposed to high potentials, 1.0 to 1.4 V versus a reversible hydrogen electrode (RHE), that are typically encountered during start up/shut down operation. While both platinum dissolution and carbon corrosion occurred, the carbon corrosion effects were isolated and modeled. The presented model separates the carbon corrosion process into two reaction steps; (1) oxidation of the carbon surface to carbon-oxygen groups, and (2) further corrosion of the oxidized surface to carbon dioxide/monoxide. To oxidize and corrode the cathode catalyst carbon support, the CL was subjected to an accelerated stress test cycled the potential from 0.6 VRHE to an upper potential limit (UPL) ranging from 0.9 to 1.4 VRHE at varying dwell times. The reaction rate constants and specific capacitances of carbon and platinum were fitted by evaluating the double layer capacitance (Cdl) trends. Carbon surface oxidation increased the Cdl due to increased specific capacitance for carbon surfaces with carbon-oxygen groups, while the second corrosion reaction decreased the Cdl due to loss of the overall carbon surface area. The first oxidation step differed between carbon types, while both reaction rate constants were found to have a dependency on UPL, temperature, and gas relative humidity.

Young, Alan; Colbow, Vesna; Harvey, David; Rogers, Erin; Wessel, Silvia

2013-01-01T23:59:59.000Z

129

Electro-catalytic oxidation device for removing carbon from a fuel reformate  

SciTech Connect

An electro-catalytic oxidation device (ECOD) for the removal of contaminates, preferably carbonaceous materials, from an influent comprising an ECOD anode, an ECOD cathode, and an ECOD electrolyte. The ECOD anode is at a temperature whereby the contaminate collects on the surface of the ECOD anode as a buildup. The ECOD anode is electrically connected to the ECOD cathode, which consumes the buildup producing electricity and carbon dioxide. The ECOD anode is porous and chemically active to the electro-catalytic oxidation of the contaminate. The ECOD cathode is exposed to oxygen, and made of a material which promotes the electro-chemical reduction of oxygen to oxidized ions. The ECOD electrolyte is non-permeable to gas, electrically insulating and a conductor to oxidized. The ECOD anode is connected to the fuel reformer and the fuel cell. The ECOD electrolyte is between and in ionic contact with the ECOD anode and the ECOD cathode.

Liu, Di-Jia (Naperville, IL)

2010-02-23T23:59:59.000Z

130

MINIMIZING NET CARBON DIOXIDE EMISSIONS BY OXIDATIVE CO-PYROLYSIS OF COAL/BIOMASS BLENDS  

DOE Green Energy (OSTI)

Solid fuels vary significantly with respect to the amount of CO{sub 2} directly produced per unit heating value. Elemental carbon is notably worse than other solid fuels in this regard, and since carbon (char) is an intermediate product of the combustion of almost all solid fuels, there is an opportunity to reduce specific CO{sub 2} emissions by reconfiguring processes to avoid char combustion wholly or in part. The primary goal of this one-year Innovative Concepts project is to make a fundamental thermodynamic assessment of three modes of solid fuel use: (1) combustion, (2) carbonization, and (3) oxidative pyrolysis, for a wide range of coal and alternative solid fuels. This period a large set of thermodynamic calculations were carried out to assess the potential of the three processes. The results show that the net carbon dioxide emissions and the relative ranking of the different processes depends greatly on the particular baseline fossil fuel being displaced by the new technology. As an example, in a baseline natural gas environment, it is thermodynamically more advantageous to carbonize biomass than to combust it, and even more advantageous to oxidatively pyrolyze the biomass.

Robert Hurt; Todd Lang

2001-06-25T23:59:59.000Z

131

Carbon Dioxide and Hydrogen Sulfide Emission Factors Applicable to Wastewater Wet Wells.  

E-Print Network (OSTI)

??Transport of wastewater in sewer networks causes potential problems associated with gases which include ammonia, carbon dioxide, carbon monoxide, hydrogen sulfide and methane, in regard… (more)

Mudragaddam, Madhuri

2010-01-01T23:59:59.000Z

132

Soil–Atmosphere Exchange of Nitrous Oxide, Nitric Oxide, Methane, and Carbon Dioxide in Logged and Undisturbed Forest in the Tapajos National Forest, Brazil  

Science Conference Proceedings (OSTI)

Selective logging is an extensive land use in the Brazilian Amazon region. The soil–atmosphere fluxes of nitrous oxide (N2O), nitric oxide (NO), methane (CH4), and carbon dioxide (CO2) are studied on two soil types (clay Oxisol and sandy loam ...

Michael Keller; Ruth Varner; Jadson D. Dias; Hudson Silva; Patrick Crill; Raimundo Cosme de Oliveira Jr.; Gregory P. Asner

2005-11-01T23:59:59.000Z

133

A Ni-Fe Layered Double Hydroxide-Carbon Nanotube Complex for Water Oxidation  

E-Print Network (OSTI)

Highly active, durable and cost-effective electrocatalysts for water oxidation to evolve oxygen gas hold a key to a range of renewable energy solutions including water splitting and rechargeable metal-air batteries. Here, we report the synthesis of ultrathin nickel iron layered double hydroxide nanoplates on mildly oxidized multi-walled carbon nanotubes. Incorporation of Fe into the nickel hydroxide induced the formation of NiFe-layered double hydroxide. The nanoplates were covalently attached to a network of nanotubes, affording excellent electrical wiring to the nanoplates. The ultra-thin Ni-Fe layered double hydroxide nanoplates/carbon nanotube complex was found to exhibit unusually high electro-catalytic activity and stability for oxygen evolution and outperformed commercial precious metal Ir catalysts.

Gong, Ming; Wang, Hailiang; Liang, Yongye; Wu, Justin Zachary; Zhou, Jigang; Wang, Jian; Regier, Tom; Wei, Fei; Dai, Hongjie

2013-01-01T23:59:59.000Z

134

Promotion of Water-mediated Carbon Removal by Nanostructured Barium Oxide/nickel Interfaces  

DOE Green Energy (OSTI)

The existing Ni-yttria-stabilized zirconia anodes in solid oxide fuel cells (SOFCs) perform poorly in carbon-containing fuels because of coking and deactivation at desired operating temperatures. Here we report a new anode with nanostructured barium oxide/nickel (BaO/Ni) interfaces for low-cost SOFCs, demonstrating high power density and stability in C{sub 3}H{sub 8}, CO and gasified carbon fuels at 750 C. Synchrotron-based X-ray analyses and microscopy reveal that nanosized BaO islands grow on the Ni surface, creating numerous nanostructured BaO/Ni interfaces that readily adsorb water and facilitate water-mediated carbon removal reactions. Density functional theory calculations predict that the dissociated OH from H2O on BaO reacts with C on Ni near the BaO/Ni interface to produce CO and H species, which are then electrochemically oxidized at the triple-phase boundaries of the anode. This anode offers potential for ushering in a new generation of SOFCs for efficient, low-emission conversion of readily available fuels to electricity.

L Yang; Y Choi; W Qin; H Chen; K Blinn; M Liu; P Liu; J Bai; T Tyson; M Liu

2011-12-31T23:59:59.000Z

135

CARBON DIOXIDE UPTAKE STUDIES IN ALGAE GROWN IN WATER AND DEUTERIUM OXIDE  

SciTech Connect

A procedure is described for studying carbon dioxide uptake in algae using C/sup 14/-labeled sodium bicarbonate as the source of carbon dioxide, Actively dividing, water grown and deuterium oxide adapted, Scenedesmus obliquus and Chlorella vulgaris were employed in the studies. Uptake comparisons were made over pH range 6 to 9 using appropriate buffer systems. Uptake was fairly constant in the range pH 6 to 8 for both the aqueous and deuterated algae. Above pH 8 uptake dropped markedly. In general, the deuterated algae showed between 1O and 30% lower uptake than ordinary algae. Greater chlorophyll content is associated with higher carbon dioxide uptake. (auth)

Blake, M.I.; Kaganove, A.S.; Katz, J.J.

1962-04-01T23:59:59.000Z

136

Oxidation Resistance of Low Carbon Stainless Steel for Applications in Solid Oxide Fuel Cells  

SciTech Connect

Alloys protected from corrosion by Cr2O3 (chromia) are recognized as potential replacements for LaCrO3–based ceramic materials currently used as bipolar separators (interconnects) in solid oxide fuel cells (SOFC). Stainless steels gain their corrosion resistance from the formation of chromia, when exposed to oxygen at elevated temperatures. Materials for interconnect applications must form uniform conductive oxide scales at 600–800o C while simultaneously exposed to air on the cathode side and mixtures of H2 - H2O, and, possibly, CHx and CO - CO2 on the anode side. In addition, they must possess good physical, mechanical, and thermal properties. Type 316L stainless steel was selected for the baseline study and development of an understanding of corrosion processes in complex gas environments. This paper discusses the oxidation resistance of 316L stainless steel exposed to dual SOFC environment for ~100 hours at ~900oK. The dual environment consisted of dry air on the cathode side of the specimen and a mixture of H2 and 3% H2O on the anode side. Post - corrosion surface evaluation involved the use of optical and scanning electron microscopy and x-ray diffraction analyses.

Ziomek-Moroz, Margaret; Covino, Bernard S., Jr.; Holcomb, Gordon R.; Cramer, Stephen D.; Bullard, Sophie J.; Matthes, Steven A.; Dunning, John S.; Alman, David E.; Singh, P. (PNNL)

2003-10-01T23:59:59.000Z

137

Three Dimensional CFD Model of a Planar Solid Oxide Electrolysis Cell for Co-Electrolysis of Steam and Carbon-Dioxide  

SciTech Connect

A three-dimensional computational fluid dynamics (CFD) model has been created to model high temperature co-electrolysis of steam and carbon dioxide in a planar solid oxide electrolyzer (SOE). A research program is under way at the Idaho National Laboratory (INL) to simultaneously address the research and scale-up issues associated with the implementation of planar solid-oxide electrolysis cell technology for syn-gas production from CO2 and steam. Various runs have been performed under different run conditions to help assess the performance of the SOE. An experimental study is also being performed at the INL to assess the SOE. Model results provide detailed profiles of temperature, Nernst potential, operating potential, anode-side gas composition, cathode-side gas composition, current density and syn-gas production over a range of stack operating conditions. Typical results of current density versus cell potential, cell current versus H2 and CO production, temperature, and voltage potential are all presented within this paper. Plots of mole fraction of CO2, CO, H2, H2O, O2, are presented. Currently there is strong interest in the large-scale production of syn-gas from CO2 and steam to be reformed into a usable transportation fuel. This process takes the carbon-neutral approach where the amount of CO2 in the atmosphere does not increase. Consequently, there is a high level of interest in production of syn-gas from CO2 and steam electrolysis. Worldwide, the demand for light hydrocarbon fuels like gasoline and diesel oil is increasing. To satisfy this demand, oil companies have begun to utilize oil deposits of lower hydrogen. In the mean time, with the price of oil currently over $70 / barrel, synthetically-derived hydrocarbon fuels (synfuels) have become economical. Synfuels are typically produced from syngas – hydrogen (H2) and carbon monoxide (CO) -- using the Fischer-Tropsch process, discovered by Germany before World War II. South Africa has used synfuels to power a significant number of their buses, trucks, and taxicabs. The Idaho National Laboratory (INL), in conjunction with Ceramatec Inc. (Salt Lake City, USA) has been researching for several years the use of solid-oxide fuel cell technology to electrolyze steam for large-scale nuclear-powered hydrogen production. Now, an experimental research project is underway at the INL to investigate the feasibility of producing syngas by simultaneously electrolyzing at high-temperature steam and carbon dioxide (CO2) using solid oxide fuel cell technology. High-temperature nuclear reactors have the potential for substantially increasing the efficiency of syn-gas production from CO2 and water, with no consumption of fossil fuels, and no production of greenhouse gases. Thermal CO2-splitting and water splitting for syn-gas production can be accomplished via high-temperature electrolysis or thermochemical processes, using high-temperature nuclear process heat. In order to achieve competitive efficiencies, both processes require high-temperature operation (~850°C). High-temperature electrolytic CO2 and water splitting supported by nuclear process heat and electricity has the potential to produce syn-gas with an overall system efficiency near those of the thermochemical processes. Specifically, a high-temperature advanced nuclear reactor coupled with a high-efficiency high-temperature electrolyzer could achieve a competitive thermal-to-syn-gas conversion efficiency of 45 to

G. Hawkes; J. O' Brien; C. Stoots; S. Herring; R. Jones

2006-11-01T23:59:59.000Z

138

Reduction of iron-oxide-carbon composites: part III. Shrinkage of composite pellets during reduction  

Science Conference Proceedings (OSTI)

This article involves the evaluation of the volume change of iron-oxide-carbon composite pellets and its implications on reduction kinetics under conditions prevalent in a rotary hearth furnace (RHF) that were simulated in the laboratory. The pellets, in general, were found to shrink considerably during the reduction due to the loss of carbon and oxygen from the system, sintering of the iron-oxide, and formation of a molten slag phase at localized regions inside the pellets due to the presence of binder and coal/wood-charcoal ash at the reduction temperatures. One of the shortcomings of the RHF ironmaking process has been the inability to use multiple layers of composite pellets because of the impediment in heat transport to the lower layers of a multilayer bed. However, pellet shrinkage was found to have a strong effect on the reduction kinetics by virtue of enhancing the external heat transport to the lower layers. The volume change of the different kinds of composite pellets was studied as a function of reduction temperature and time. The estimation of the change in the amount of external heat transport with varying pellet sizes for a particular layer of a multilayer bed was obtained by conducting heat-transfer tests using inert low-carbon steel spheres. It was found that if the pellets of the top layer of the bed shrink by 30 pct, the external heat transfer to the second layer increases by nearly 6 times.

Halder, S.; Fruehan, R.J. [Praxair Inc., Tonawanda, NY (United States). Praxair Technological Center

2008-12-15T23:59:59.000Z

139

Electrocatalysts for Alcohol Oxidation in Fuel Cells - Energy ...  

Platinum is an excellent catalyst and electrocatalyst. It is also expensive and vulnerable to poisoning by carbon monoxide in the reaction ...

140

Nano-sized Lithium Manganese Oxide Dispersed on Carbon Nanotubes for Energy Storage Applications  

Science Conference Proceedings (OSTI)

Nano-sized lithium manganese oxide (LMO) dispersed on carbon nanotubes (CNT) has been synthesized successfully via a microwave-assisted hydrothermal reaction at 200 C for 30 min using MnO{sub 2}-coated CNT and an aqueous LiOH solution. The initial specific capacity is 99.4 mAh/g at a 1.6 C-rate, and is maintained at 99.1 mAh/g even at a 16 C-rate. The initial specific capacity is also maintained up to the 50th cycle to give 97% capacity retention. The LMO/CNT nanocomposite shows excellent power performance and good structural reversibility as an electrode material in energy storage systems, such as lithium-ion batteries and electrochemical capacitors. This synthetic strategy opens a new avenue for the effective and facile synthesis of lithium transition metal oxide/CNT nanocomposite.

Bak, S.B.

2009-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxides carbon monoxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

NATURAL GAS VARIABILITY IN CALIFORNIA: ENVIRONMENTAL IMPACTS AND DEVICE PERFORMANCE EXPERIMENTAL EVALUATION OF POLLUTANT EMISSIONS FROM RESIDENTIAL APPLIANCES  

E-Print Network (OSTI)

emission factors for carbon monoxide, nitrogen oxides,  nitrogen dioxide, emission factors were determined for carbon monoxide, nitrogen oxides, nitrogen dioxide, 

Singer, Brett C.

2010-01-01T23:59:59.000Z

142

Ethanol oxidation on metal oxide-supported platinum catalysts  

SciTech Connect

Ethanol is a renewable fuel that can be used as an additive to gasoline (or its substitute) with the advantage of octane enhancement and reduced carbon monoxide exhaust emissions. However, on Ethanol is a renewable fuel that can be used as an additive to gasoline (or its substitute) with the advantage of octane enhancement and reduced carbon monoxide exhaust emissions. However, on the standard three-way catalysts, the conversion of unburned ethanol is low because both ethanol and some of its partially oxidized derivatives are highly resistant to oxidation. A combination of first-principles density-functional theory (DFT) based calculations and in-situ diffuse reflectance infrared spectroscopy (DRIFTS) analysis was applied to uncover some of the fundamental phenomena associated with ethanol oxidation on Pt containing catalysts. In particular, the objective was to analyze the role of the oxide (i.e., ?-Al2O3 or SiO2) substrate on the ethanol oxidation activity. The results showed that Pt nanoparticles trap and accumulate oxygen at their surface and perimeter sites and play the role of “stoves” that burn ethanol molecules and their partially oxidized derivatives to the “final” products. The ?-Al2O3 surfaces provided higher mobility of the fragments of ethanol molecules than the SiO2 surface and hence increased the supply rate of these objects to the Pt particles. This will in turn produce a higher conversion rate of unburned ethanol.and some of its partially oxidized derivatives are highly resistant to oxidation. A combination of first-principles density-functional theory (DFT) based calculations and in-situ diffuse reflectance infrared spectroscopy (DRIFTS) analysis was applied to uncover some of the fundamental phenomena associated with ethanol oxidation on Pt containing catalysts. In particular, the objective was to analyze the role of the oxide (i.e., ?-Al2O3 or SiO2) substrate on the ethanol oxidation activity. The results showed that Pt nanoparticles trap and accumulate oxygen at their surface and perimeter sites and play the role of “stoves” that burn ethanol molecules and their partially oxidized derivatives to the “final” products. The ?-Al2O3 surfaces provided higher mobility of the fragments of ethanol molecules than the SiO2 surface and hence increased the supply rate of these objects to the Pt particles. This will in turn produce a higher conversion rate of unburned ethanol.

L. M. Petkovic 090468; Sergey N. Rashkeev; D. M. Ginosar

2009-09-01T23:59:59.000Z

143

MODELING AND DESIGN FOR A DIRECT CARBON FUEL CELL WITH ENTRAINED FUEL AND OXIDIZER  

DOE Green Energy (OSTI)

The novel molten carbonate fuel cell design described in this report uses porous bed electrodes. Molten carbonate, with carbon fuel particles and oxidizer entrained, is circulated through the electrodes. Carbon may be reacted directly, without gasification, in a molten carbonate fuel cell. The cathode reaction is 2CO{sub 2} + O{sub 2} 4e{sup -} {yields} 2CO{sub 3}{sup =}, while the anode reaction can be either C + 2CO{sub 3}{sup =} {yields} 3CO{sub 2} + 4e{sup -} or 2C + CO{sub 3}{sup =} {yields} 3CO + 2e{sup -}. The direct carbon fuel cell has an advantage over fuel cells using coal-derived synthesis gas in that it provides better overall efficiency and reduces equipment requirements. Also, the liquid electrolyte provides a means for transporting the solid carbon. The porous bed cell makes use of this carbon transport ability of the molten salt electrolyte. A one-dimensional model has been developed for predicting the performance of this cell. For the cathode, dependent variables are superficial O{sub 2} and CO{sub 2} fluxes in the gas phase, superficial O{sub 2} and CO{sub 2} fluxes in the liquid phase, superficial current density through the electrolyte, and electrolyte potential. The variables are related by correlations, from the literature, for gas-liquid mass transfer, liquid-solid mass transfer, cathode current density, electrode overpotential, and resistivity of a liquid with entrained gas. For the anode, dependent variables are superficial CO{sub 2} flux in the gas phase, superficial CO{sub 2} flux in the liquid phase, superficial C flux, superficial current density through the electrolyte, and electrolyte potential. The same types of correlations relate the variables as in the cathode, with the addition of a correlation for resistivity of a fluidized bed. CO production is not considered, and axial dispersion is neglected. The model shows behavior typical of porous bed electrodes used in electrochemical processes. Efficiency is comparable to that of membrane electrode fuel cells. Effective bed depths are on the order of 1-5 centimeter, giving power/volume lower than for membrane electrode cells. The porous bed design, however, uses less expensive materials and is more resistant to fouling by coal impurities. The model will be used in the second phase of the project to design a laboratory-scale prototype cell. The prototype cell will demonstrate the concept and provide experimental data for improving the model.

Alan A. Kornhauser; Ritesh Agarwal

2005-04-01T23:59:59.000Z

144

Influences of Organic Carbon Supply Rate on Uranium Bioreduction in Initially Oxidizing, Contaminated Sediment  

SciTech Connect

Remediation of uranium (U) contaminated sediments through in-situ stimulation of bioreduction to insoluble UO{sub 2} is a potential treatment strategy under active investigation. Previously, we found that newly reduced U(IV) can be reoxidized under reducing conditions sustained by a continuous supply of organic carbon (OC) because of residual reactive Fe(III) and enhanced U(VI) solubility through complexation with carbonate generated through OC oxidation. That finding motivated this investigation directed at identifying a range of OC supply rates that is optimal for establishing U bioreduction and immobilization in initially oxidizing sediments. The effects of OC supply rate, from 0 to 580 mmol OC (kg sediment){sup -1} year{sup -1}, and OC form (lactate and acetate) on U bioreduction were tested in flow-through columns containing U-contaminated sediments. An intermediate supply rate on the order of 150 mmol OC (kg sediment){sup -1} year{sup -1} was determined to be most effective at immobilizing U. At lower OC supply rates, U bioreduction was not achieved, and U(VI) solubility was enhanced by complexation with carbonate (from OC oxidation). At the highest OC supply rate, resulting highly carbonate-enriched solutions also supported elevated levels of U(VI), even though strongly reducing conditions were established. Lactate and acetate were found to have very similar geochemical impacts on effluent U concentrations (and other measured chemical species), when compared at equivalent OC supply rates. While the catalysts of U(VI) reduction to U(IV) are presumably bacteria, the composition of the bacterial community, the Fe reducing community, and the sulfate reducing community had no direct relationship with effluent U concentrations. The OC supply rate has competing effects of driving reduction of U(VI) to low solubility U(IV) solids, as well as causing formation of highly soluble U(VI)-carbonato complexes. These offsetting influences will require careful control of OC supply rates in order to optimize bioreduction-based U stabilization.

Tokunaga, Tetsu K.; Wan, Jiamin; Kim, Yongman; Daly, Rebecca A.; Brodie, Eoin L.; Hazen, Terry C.; Herman, Don; Firestone, Mary K.

2008-06-10T23:59:59.000Z

145

Final Report: The Impact of Carbonate on Surface Protonation, Electron Transfer and Crystallization Reactions in Iron Oxide Nanoparticles and Colloids  

SciTech Connect

This project addresses key issues of importance in the geochemical behavior of iron oxides and in the geochemical cycling of carbon and iron. For Fe, we are specifically studying the influence of carbonate on electron transfer reactions, solid phase transformations, and the binding of carbonate to reactive sites on the edges of particles. The emphasis on carbonate arises because it is widely present in the natural environment, is known to bind strongly to oxide surfaces, is reactive on the time scales of interest, and has a speciation driven by acid-base reactions. The geochemical behavior of carbonate strongly influences global climate change and CO{sub 2} sequestration technologies. Our goal is to answer key questions with regards to specific site binding, electron transfer reactions, and crystallization reactions of iron oxides that impact both the geochemical cycling of iron and CO{sub 2} species. Our work is focused on the molecular level description of carbonate chemistry in solution including the prediction of isotope fractionation factors. We have also done work on critical atmospheric species.

Dixon, David Adams [The University of Alabama

2013-07-02T23:59:59.000Z

146

Periodic alignment of Si quantum dots on hafnium oxide coated single wall carbon nanotubes  

SciTech Connect

We demonstrate a bottom up approach for the aligned epitaxial growth of Si quantum dots (QDs) on one-dimensional (1D) hafnium oxide (HfO{sub 2}) ridges created by the growth of HfO{sub 2} thin film on single wall carbon nanotubes. This growth process creates a high strain 1D ridge on the HfO{sub 2} film, which favors the formation of Si seeds over the surrounding flat HfO{sub 2} area. Periodic alignment of Si QDs on the 1D HfO{sub 2} ridge was observed, which can be controlled by varying different growth conditions, such as growth temperature, growth time, and disilane flow rate.

Olmedo, Mario; Martinez-Morales, Alfredo A.; Ozkan, Mihrimah; Liu Jianlin [Department of Electrical Engineering, University of California, Riverside, California 92521 (United States); Liu Gang; Lau, C.N. [Department of Physics and Astronomy, University of California, Riverside, California 92521 (United States); Yengel, Emre; Ozkan, Cengiz S. [Department of Mechanical Engineering, University of California, Riverside, California 92521 (United States)

2009-03-23T23:59:59.000Z

147

Pre-Combustion Carbon Capture Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pre-Combustion Carbon Capture Research Pre-Combustion Carbon Capture Research Pre-Combustion Carbon Capture Research Pre-combustion capture refers to removing CO2 from fossil fuels before combustion is completed. For example, in gasification processes a feedstock (such as coal) is partially oxidized in steam and oxygen/air under high temperature and pressure to form synthesis gas. This synthesis gas, or syngas, is a mixture of hydrogen, carbon monoxide, CO2, and smaller amounts of other gaseous components, such as methane. The syngas can then undergo the water-gas shift reaction to convert CO and water (H2O) to H2 and CO2, producing a H2 and CO2-rich gas mixture. The concentration of CO2 in this mixture can range from 15-50%. The CO2 can then be captured and separated, transported, and ultimately sequestered, and the H2-rich fuel combusted.

148

Effects of aging and oxidation of palladized iron embedded in activated carbon on the dechlorination of 2-chlorobiphenyl  

Science Conference Proceedings (OSTI)

Reactive activated carbon (RAC) impregnated with palladized iron has been developed to effectively treat polychlorinated biphenyls (PCBs) in the environment by coupling adsorption and dechlorination of PCBs. In this study, we addressed the dechlorination reactivity and capacity of RAC toward aqueous 2-chlorobiphenyl (2-ClBP), and its aging and longevity under various oxidizing environments. RAC containing 14.4% Fe and 0.68% Pd used in this study could adsorb 122.6 mg 2-ClBP/g RAC, and dechlorinate 56.5 mg 2-ClBP/g RAC which corresponds to 12% (yield) of its estimated dechlorination capacity. Due to Fe0 oxidation to form oxide passivating layers, Fe{sub 2}O{sub 3}/Fe{sub 3}O{sub 4} (oxide-water interface) and FeOOH/FeO (oxide-metal interface), RAC reactivity decreased progressively over aging under N{sub 2} tab.

Hyeok Choi; Souhail R. Al-Abed; Shirish Agarwal [U.S. Environmental Protection Agency, Cincinnati, OH (United States). National Risk Management Research Laboratory

2009-06-15T23:59:59.000Z

149

Carbon Steel and Magnesium Oxide Dissolution for H-Canyon Process Applications  

DOE Green Energy (OSTI)

H Area Operations is planning to process plutonium-contaminated uranium metal scrap in its efforts to de-inventory excess nuclear materials. The Savannah River Technology Center (SRTC) performed flowsheet development to support the decision to process the scrap in H-Canyon using 2M nitric acid (HNO3) / 0.025M potassium fluoride (KF) and 2 g/L boron. The scrap will be charged to the H-Canyon dissolver via a stainless steel charging bundle with a carbon steel end cap that must dissolve in an appropriate time frame. Experimental work was performed with a range of potential materials to be used to fabricate the bundle end cap. Testing was conducted with samples of metal plate, wire, cans, rods, and rivets to assess their dissolution characteristics in 2M HNO3/ 0.025M KF and 2 g/L boron. Experiments also measured the amount of hydrogen gas generated during carbon steel dissolution using the above dissolver solution. Each material type and its associated dissolution characteristic relate to specific bundle end cap designs being considered. Supplemental studies were conducted to evaluate the behavior and effect of magnesium oxide (MgO) sand on dissolution of uranium metal in 2M HNO3/ 0.025M KF and 2 g/L boron. The potential exists for a small quantity of MgO to be introduced into the dissolution flowsheet due to the use of MgO sand to extinguish uranium metal fires.

PIERCE, RA

2004-04-12T23:59:59.000Z

150

Transparent and Conductive Carbon Nanotube Multilayer Thin Films Suitable as an Indium Tin Oxide Replacement  

E-Print Network (OSTI)

Transparent electrodes made from metal oxides suffer from poor flexibility and durability. Highly transparent and electrically conductive thin films based on carbon nanotubes (CNTs) were assembled as a potential indium tin oxide (ITO) replacement using layer-by-layer (LbL) assembly. The ultimate objective of this dissertation work is to produce CNT-based assemblies with sheet resistance below 100 Omega/sq and visible light transmission greater than 85 percent. The alternate deposition of positively charged poly(diallyldimethylammonium chloride) [PDDA] and CNTs stabilized with negatively charged deoxycholate (DOC) exhibit linear film growth and thin film properties can be precisely tuned. Ellipsometry, quartz crystal microbalance, and UV-vis were used to measure the growth of these films as a function of PDDA-CNT bilayers deposited, while TEM, SEM, and AFM were used to visualize the nanostructure of these films. Following a literature review describing potential ITO substitutes and LbL technology, the influence of CNT type on optoelectronic performance of LbL assemblies is described. Three different types of nanotubes were investigated: (1) multiwalled carbon nanotubes (MWNTs), (2) few-walled carbon nanotubes (FWNT), and (3) purified single-walled carbon nanotubes (SWNTs). SWNTs produced the most transparent (>85 percent visible light transmittance) and electrically conductive (148 S/cm, 1.62 kOmega/sq) 20-bilayer films with a 41.6 nm thickness, while MWNT-based films are much thicker and more opaque. A 20-bilayer PDDA/(MWNT DOC) film is approximately 103 nm thick, with a conductivity of 36 S/cm and a transmittance of 30 percent. In an effort to improve both transparency and electrical conductivity, heat and acid treatments were studied. Heating films to 300 degree C reduced sheet resistance to 701 Omega/sq (618 S/cm conductivity, 38.4 nm thickness), with no change in transparency, owing to the removal of insulating component in the film. Despite improving conductivity, heating is not compatible with most plastic substrates, so acid doping was investigated as an alternate means to enhance properties. Exposing SWNT-based assemblies to HNO3 vapor reduced sheet resistance of a 10 BL film to 227 Omega/sq. Replacing SWNTs with double walled carbon nanotubes (DWNTs) provided further reduction in sheet resistance due to the greater metallic of DWNT. A 5 BL DWNT film exhibited the lowest 104 Omega/sq sheet resistance (4200 S/cm conductivity, 22.9 nm thickness) with 84 percent transmittance after nitric acid treatment. DWNT-based assemblies maintained their low sheet resistance after repeated bending and also showed electrochemical stability relative to ITO. This work demonstrates the excellent optoelectronic performance, mechanical flexibility, and electrochemical stability of CNT-based assemblies, which are potentially useful as flexible transparent electrodes for a variety of flexible electronics.

Park, Yong Tae

2011-05-01T23:59:59.000Z

151

Solar Thermo-Chemical Splitting of Carbon Dioxide by Metal Oxide ...  

Science Conference Proceedings (OSTI)

Presentation Title, Solar Thermo-Chemical Splitting of Carbon Dioxide by Metal ... which can split carbon dioxide as well as water molecules by abstracting ...

152

Effects of partial oxidation of PMAN carbon on their performance as anodes in 1M LiPF{sub 6}/EC-DMC solutions  

DOE Green Energy (OSTI)

A study was undertaken to examine the effects of partial oxidation on the electrochemical performance of carbons derived from poly(methylacrylonitrile) (PMAN)-divinylbenzene (DVB) co-polymers. Mild oxidation was examined as a possible technique to increase the reversible capacity, improve cycleability, and reduce the amount of irreversible capacity associated with the formation of the passivation layer during the first reduction. Oxidizing conditions involved treatment of the PMAN carbon prepared at 700 C with dry CO{sub 2} or with steam at 600 C for one hour. The effects on the performance in 1M LiPF{sub 6}/ethylene carbonate (EC)-dimethyl carbonate (DMC) solutions were evaluated by galvanostatic cycling tests, complex-impedance spectroscopy, and, to a more limited extent, cyclic voltammetry. Partial oxidation of PMAN carbon showed little or no overall beneficial effects in performance relative to the control.

Guidotti, R.A. [Sandia National Labs., Albuquerque, NM (United States). Battery Development Dept.

1996-12-31T23:59:59.000Z

153

Autothermal Partial Oxidation of Ethanol and Alcohols  

Autothermal Reforming of Ethanol and Alcohols into Syngas Ethanol and alcohols can be converted into syngas using a robust autothermal reforming process. Syngas is a mixture of carbon monoxide and hydrogen that can be used to synthesize other ...

154

Electrodeposited Manganese Oxides on Three-Dimensional Carbon Nanotube Substrate: Supercapacitive Behaviour in Aqueous and Organic Electrolytes  

Science Conference Proceedings (OSTI)

Thin amorphous manganese oxide layers with a thickness of 3-5nm are electrodeposited on a carbon nanotube (CNT) film substrate that has a three-dimensional nanoporous structure (denoted asMnO2/CNT electrode). For the purpose of comparison, manganese oxide films are also electrodeposited on a flat Pt-coated Si wafer substrate (denoted as MnO2 film electrode). The pseudocapacitive properties of the MnO2 film and MnO2/CNT electrodes are examined in both aqueous electrolyte (1.0M KCl) and nonaqueousorganic electrolyte (1.0M LiClO4 in propylene carbonate). While both types of electrode showpseudocapacitive behaviour in the aqueous electrolyte, only the MnO2/CNT electrode does so in the organic electrolyte, due to its high oxide/electrolyte interfacial area and improved electron conduction through the CNT substrate. Compared with the MnO2 film electrode, the MnO2/CNT electrode shows a much higher specific capacitance and better high-rate capability, regardless of the electrolyte used.Use of the organic electrolyte results in a ?6 times higher specific energy compared with that obtained with the aqueous electrolyte, while maintaining a similar specific power. The construction of a threedimensional nanoporous network structure consisting of a thin oxide layer on a CNT film substrate at the nm scale and the use of an organic electrolyte are promising approaches to improving the specific energyof supercapacitors.

Nam,K.W.; Yang,X.

2009-03-01T23:59:59.000Z

155

BSA 01-07: Carbon Monoxide Tolerant Fuel Cell Electrocatalyst  

This fuel cell anode includes an electrocatalyst that has a conductive support material, ... Brookhaven National Laboratory conducts research in the ...

156

Stimulation of aortic and carotid chemoreceptors during carbon monoxide inhalation  

SciTech Connect

The decrease in local tissue PO/sub 2/ that occurs with carboxyhemoglobinemia was thought to be responsible for the 2 to 5 times greater chemoreceptor impulse frequency in cats with 18 to 40% COHb.

Mills, E.; Edwards, M.W. Jr.

1968-01-01T23:59:59.000Z

157

Carbon Monoxide Formation in Fires by High-Temperature ...  

Science Conference Proceedings (OSTI)

... experiments. Page 7. FORMATION BY ANAEROBIC WOOD PYROLYSIS 1461 . ... 1990. Milne, T,, in Biomass Gasification. ...

1996-08-14T23:59:59.000Z

158

Methanol Decomposition over Palladium Particles Supported on Silica: Role of Particle Size and Co-Feeding Carbon Dioxide on the Catalytic Properties  

Science Conference Proceedings (OSTI)

Monodisperse palladium particles of six distinct and controlled sizes between 4-16 nm were synthesized in a one-pot polyol process by varying the molar ratios of the two palladium precursors used, which contained palladium in different oxidation states. This difference permitted size control by regulation of the nucleation rate because low oxidation state metals ions nucleate quickly relative to high oxidation state ions. After immobilization of the Pd particles on silica by mild sonication, the catalysts were characterized by X-ray absorption spectroscopy and applied toward catalytic methanol decomposition. This reaction was determined as structure sensitive with the intrinsic activity (turnover frequency) increasing with increasing particle size. Moreover, observed catalytic deactivation was linked to product (carbon monoxide) poisoning. Co-feeding carbon dioxide caused the activity and the amount of deactivation to decrease substantially. A reaction mechanism based on the formation of the {pi}-bond between carbon and oxygen as the rate-limiting step is in agreement with antipathetic structure sensitivity and product poisoning by carbon monoxide.

Hokenek, Selma; Kuhn, John N. (USF)

2012-10-23T23:59:59.000Z

159

Population based exposure assessment methodology for carbon monoxide: Development of a Carbon Monoxide Passive Sampler and Occupational Dosimeter  

E-Print Network (OSTI)

hydrocarbons (toluene), alkanes (butane, methane, heptane),tube/GC (NIOSH 1 5 0 0 ) a Butane 300ppm Charcoal tube/GC (O toluene toluene + C O butane butane + C O methane methane

Apte, Michael G.

2010-01-01T23:59:59.000Z

160

Pd modified Au on carbon as an effective and durable catalyst for the direct oxidation of HMF to FDCA  

Science Conference Proceedings (OSTI)

We show that the modification of a gold/carbon catalyst with Pt or Pd produces stable and recyclable catalysts for the selective oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA). This finding is a significant advance over current conversion technology because of the technological importance of FDCA. Indeed, FDCA has been identified as one of twelve potential building blocks for the production of value added chemicals derived from biosources.1 FDCA is a potential replacement source of terephthalic acid, the monomer presently used for the production of polyethylene terephthalate (PET) and derived from hydrocarbon sources.2

Villa, Alberto [Universita di Milano, Italy; Schiavoni, Marco [University of Milan and INFN, Milano, Italy; Campisi, Sebastiano [University of Milan and INFN, Milano, Italy; Veith, Gabriel M [ORNL; Prati, Laura [Universita di Milano, Italy

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxides carbon monoxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

CCQM Activities in the Gas Analysis Working Group  

Science Conference Proceedings (OSTI)

... past two years included measurement of ammonia, hexane, propane, mercaptans, ozone, oxygen, carbon monoxide, carbon dioxide, nitric oxide ...

2012-11-16T23:59:59.000Z

162

Control of carbon balance in a silicon smelting furnace  

DOE Patents (OSTI)

The present invention is a process for the carbothermic reduction of silicon dioxide to form elemental silicon. Carbon balance of the process is assessed by measuring the amount of carbon monoxide evolved in offgas exiting the furnace. A ratio of the amount of carbon monoxide evolved and the amount of silicon dioxide added to the furnace is determined. Based on this ratio, the carbon balance of the furnace can be determined and carbon feed can be adjusted to maintain the furnace in carbon balance.

Dosaj, V.D.; Haines, C.M.; May, J.B.; Oleson, J.D.

1992-12-29T23:59:59.000Z

163

Carbon Nanotube Nanocomposites, Methods of Making Carbon ...  

This technology describes methods to fabricate supercapacitors using aligned carbon nanotubes that are decorated with metal oxide or nitride ...

164

Studies on activated carbon capacitor materials loaded with different amounts of ruthenium oxide  

E-Print Network (OSTI)

speci®c capacitance [4]. However, the cost of ruthenium and its compounds limits its wide spread usage in electric/hybrid vehicles and consumer electronics. Substitutes for Ru oxides do not show compar- able 100 F/g, much lower than 720 F/g reported for amorphous RuO2. Wilde et al. [9] synthesized SrRuO3

Popov, Branko N.

165

Method for producing carbon nanotubes  

DOE Patents (OSTI)

Method for producing carbon nanotubes. Carbon nanotubes were prepared using a low power, atmospheric pressure, microwave-generated plasma torch system. After generating carbon monoxide microwave plasma, a flow of carbon monoxide was directed first through a bed of metal particles/glass beads and then along the outer surface of a ceramic tube located in the plasma. As a flow of argon was introduced into the plasma through the ceramic tube, ropes of entangled carbon nanotubes, attached to the surface of the tube, were produced. Of these, longer ropes formed on the surface portion of the tube located in the center of the plasma. Transmission electron micrographs of individual nanotubes revealed that many were single-walled.

Phillips, Jonathan (Santa Fe, NM); Perry, William L. (Jemez Springs, NM); Chen, Chun-Ku (Albuquerque, NM)

2006-02-14T23:59:59.000Z

166

CO oxidation on substituted copper chromite spinel oxide catalysts  

Science Conference Proceedings (OSTI)

Oxidation of carbon monoxide was studied on Mg- and Al-substituted CuCr[sub 2]O[sub 4] spinel catalyst at atmospheric pressure and temperatures between 373 and 723 K. The activity of CuCr[sub 2]O[sub 4] decreased even for small replacements of either Cu by Mg or Cr by Al and none of the substituted oxides was as active as CuCr[sub 2]O[sub 4]. In Cu[sub 1[minus]x]Mg[sub x]Cr[sub 2]O[sub 4] catalysts, the activity systematically decreased with increasing x, except for 0.4 < x < 0.6. The decrease in activity is due to a decrease in the active Cu[sup 2+] ions of the catalyst. The increase in activity on increasing x from 0.4 to 0.6 is attributed to the crystallographic phase change, i.e., tetragonal to cubic, in the catalyst. This was also found in the CuCr[sub 2[minus]x]Al[sub x]O[sub 4] catalysts. The decrease in the catalytic activity on substitution of Cr by Al, even when the total copper content is not altered, is due to the reduction of some of the active Cu[sup 2+] ions to Cu[sup 1+] ions. 10 refs., 9 figs., 2 tabs.

Murthy, K.S.R.C. (Indian Telephone Industries, Ltd., Banglore (India)); Ghose, J. (Indian Institute of Technology, Kharagpur (India))

1994-05-01T23:59:59.000Z

167

Studies of Scale Formation and Kinetics of Crofer 22 APU and Haynes 230 in Carbon Oxide-Containing Environment for SOFC Applications  

DOE Green Energy (OSTI)

Significant progress in reducing the operating temperature of SOFCs below 800oC may allow the use of chromia-forming metallic interconnects at a substantial cost savings. Hydrogen is the main fuel for all types of fuel cells except direct methanol fuel cells. Hydrogen can be generated from fossil fuels, including coal, natural gas, diesel, gasoline, other hydrocarbons, and oxygenates (e.g., methanol, ethanol, butanol, etc.). Carbon oxides present in the hydrogen fuel can cause significant performance problems due to carbon formation (coking). Also, literature data indicate that in CO/CO2 gaseous environments, metallic materials that gain their corrosion resistance due to formation of Cr2O3, could form stable chromium carbides. The chromium carbide formation causes depletion of chromium in these alloys. If the carbides oxidize, they form non-protective scales. Considering a potential detrimental effect of carbon oxides on iron- and nickel-base alloy stability, determining corrosion performance of metallic interconnect candidates in carbon oxide-containing environments at SOFC operating temperatures is a must. In this research, the corrosion behavior of Crofer 22 APU and Haynes 230 was studied in a CO-rich atmosphere at 750°C. Chemical composition of the gaseous environment at the outlet was determined using gas chromatography (GC). After 800 h of exposure to the gaseous environment the surfaces of the corroded samples were studied by scanning electron microscopy (SEM) equipped with microanalytical capabilities. X-ray diffraction (XRD) analysis was also used in this study.

Ziomek-Moroz, M.; Covino, B.S., Jr.; Holcomb, G.R.; Bullard, S.J.; Penner, L.R.

2006-01-01T23:59:59.000Z

168

Modeling global atmospheric CO2 with improved emission inventories and CO2 production from the oxidation of other carbon species  

Science Conference Proceedings (OSTI)

The use of global three-dimensional (3-D) models with satellite observations of CO2 in inverse modeling studies is an area of growing importance for understanding Earth s carbon cycle. Here we use the GEOS-Chem model (version 8-02-01) CO2 mode with multiple modifications in order to assess their impact on CO2 forward simulations. Modifications include CO2 surface emissions from shipping (0.19 PgC yr 1), 3-D spatially-distributed emissions from aviation (0.16 PgC yr 1), and 3-D chemical production of CO2 (1.05 PgC yr 1). Although CO2 chemical production from the oxidation of CO, CH4 and other carbon gases is recognized as an important contribution to global CO2, it is typically accounted for by conversion from its precursors at the surface rather than in the free troposphere. We base our model 3-D spatial distribution of CO2 chemical production on monthly-averaged loss rates of CO (a key precursor and intermediate in the oxidation of organic carbon) and apply an associated surface correction for inventories that have counted emissions of CO2 precursors as CO2. We also explore the benefit of assimilating satellite observations of CO into GEOS-Chem to obtain an observation-based estimate of the CO2 chemical source. The CO assimilation corrects for an underestimate of atmospheric CO abundances in the model, resulting in increases of as much as 24% in the chemical source during May June 2006, and increasing the global annual estimate of CO2 chemical production from 1.05 to 1.18 Pg C. Comparisons of model CO2 with measurements are carried out in order to investigate the spatial and temporal distributions that result when these new sources are added. Inclusion of CO2 emissions from shipping and aviation are shown to increase the global CO2 latitudinal gradient by just over 0.10 ppm (3%), while the inclusion of CO2 chemical production (and the surface correction) is shown to decrease the latitudinal gradient by about 0.40 ppm (10%) with a complex spatial structure generally resulting in decreased CO2 over land and increased CO2 over the oceans. Since these CO2 emissions are omitted or misrepresented in most inverse modeling work to date, their implementation in forward simulations should lead to improved inverse modeling estimates of terrestrial biospheric fluxes.

Nassar, Ray [University of Toronto; Jones, DBA [University of Toronto; Suntharalingam, P [University of East Anglia, Norwich, United Kingdom; Chen, j. [University of Toronto; Andres, Robert Joseph [ORNL; Wecht, K. J. [Harvard University; Yantosca, R. M. [Harvard University; Kulawik, SS [Jet Propulsion Laboratory, Pasadena, CA; Bowman, K [Jet Propulsion Laboratory, Pasadena, CA; Worden, JR [Jet Propulsion Laboratory, Pasadena, CA; Machida, T [National Institute for Environmental Studies, Japan; Matsueda, H [Meteorological Research Institute, Japan

2010-01-01T23:59:59.000Z

169

Ultraviolet photoelectron spectroscopy of molybdenum and molybdenum monoxide anions  

E-Print Network (OSTI)

of Utah, Salt Lake City, Utah 84112 Received 30 May 1995; accepted 23 October 1995 The 351 nm photoelectron spectra of Mo and MoO have been measured. The electron affinity of atomic molybdenum is 0.748 2 e- denum monoxide illustrates these difficulties especially well, since the molybdenum atomic ground state

Lineberger, W. Carl

170

INDOOR AIR QUALITY AND ENERGY EFFICIENT VENTILATION RATES AT A NEW YORK CITY ELEMENTARY SCHOOL  

E-Print Network (OSTI)

inorganic pollutants: carbon dioxide, carbon monoxide,odor perception, carbon dioxide, carbon monoxide, sulfurkeywords; pollution, carbon dioxide, carbon monoxide, energy

Young, Rodger A.

2013-01-01T23:59:59.000Z

171

The potential application of fuel cell cogeneration systems in petroleum refineries. [Phosphoric acid, molten carbonate and solid oxide fuel cells  

Science Conference Proceedings (OSTI)

The market potential for fuel cell cogeneration systems within the petroleum refinery industry is evaluated. Phosphoric acid (PAFC), molten carbonate (MCFC), and solid oxide (SOFC) fuel cells were considered. Conventional competitive systems now available including purchased power plus boiler-generated steam, gas turbine combined cycle, and a relatively new coke fluidized bed-boiler were characterized. Refineries use large quantities of steam at pressures ranging from about 15 to 650 psig. PAFCs can only meet a limited number of steam requirements because of their relatively low operating temperature. The high temperature MCFC and SOFC are technically much more attractive for this application. However, current estimates of their capital costs are too large to make the technologies competitive. The capital costs of MCFCs and SOFCs would have to decrease approx.50% from their present estimated $1300/kWe. If costs could be decreased to give a 10% energy cost advantage to fuel cells, the industry projects that fuel cells might supply about 300 MWe by the year 2000, and modules in the 5- to 20-MWe size would be of interest. The market opportunities in refineries are varied - the industry is large, each plant is unique, thermal energy consumption is large, and both domestic and international competitiveness is intense. 10 refs., 26 figs., 17 tabs.

Altseimer, J.H.; Roach, F.; Anderson, J.M.; Krupka, M.C.

1987-08-01T23:59:59.000Z

172

Plasmachemical Synthesis of Carbon Suboxide  

E-Print Network (OSTI)

A nonthermal carbon monoxide plasma is known to produce a solid deposition which is thought to be a polymer of carbon suboxide (C3O2); however there are very few investigations of this deposition in the literature. This thesis contains an analysis of the theoretical thermodynamics and kinetics of carbon suboxide formation as well as experimental results. The theoretical analysis suggests that carbon suboxide may be an equilibrium product even at ambient conditions but favors lower temperatures; furthermore if solid carbon is considered to be kinetically limited, and therefore not a product, then carbon suboxide is more likely to be a product under these pseudo-equilibrium conditions. Experimentally, solid films were produced in a dielectric barrier discharge (DBD) containing pure carbon monoxide. Optical emission spectroscopy was used to analyze the plasma and models of the emission spectra were created to determine the plasma temperatures. Deposition rates were determined to be on the order of 0.2 mg/min at a power of about 10W; it is expected however that these conditions are not optimized. The overall kinetics of carbon suboxide was analyzed and optimal conditions for operation can be estimated. Characterization of the solid depositions were carried out using Solid State Nuclear Magnetic Resonance (NMR), Fourier Transform Infrared Spectroscopy (FTIR), Electrospray Ionization Mass Spectroscopy (ESI-MS), and Matrix-assisted Laser Desorption Ionization Mass Spectroscopy (MALDI-MS). The characteristics of the film are very comparable to hydrolyzed carbon suboxide polymer suggesting that carbon suboxide polymer were in fact created in the carbon monoxide plasma at atmospheric conditions.

Geiger, Robert

2013-05-01T23:59:59.000Z

173

Ultra-stable Gold Nanocatalysts - Energy Innovation Portal  

Reducing nitric oxide by hydrogen, propane, or carbon monoxide; Propylene epoxidation, PROX reaction, fuel cell applications, and hydrogenation of unsaturated ...

174

Optical 'Frequency Comb' Can Detect the Breath of Disease  

Science Conference Proceedings (OSTI)

... However, if we simultaneously monitor nitric oxide, carbon monoxide, hydro-peroxide, nitrites, nitrates, pentane, and ethane, all important ...

2010-12-17T23:59:59.000Z

175

Ternary Electrocatalysts for Oxidizing Ethanol to Carbon Dioxide: Making Ir Capable of Splitting C-C bond  

Science Conference Proceedings (OSTI)

Splitting the C-C bond is the main obstacle to electroxidation of ethanol (EOR) to CO2. We recently demonstrated that the ternary PtRhSnO2 electrocatalyst can accomplish that reaction at room temperature with Rh having a unique capability to split the C-C bond. In this article we report the finding that Ir can be induced to split the C-C bond as a component of the ternary catalyst. We synthesized, characterized and compared the properties of several ternary electrocatalysts. Carbon-supported nanoparticle (NP) electrocatalysts comprising a SnO2 NP core decorated with multi-metallic nanoislands (MM = PtIr, PtRh, IrRh, PtIrRh) were prepared using a seeded growth approach. An array of characterization techniques were employed to establish the composition and architecture of the synthesized MM /SnO2 NPs, while electrochemical and in situ infrared reflection absorption spectroscopy studies elucidated trends in activity and the nature of the reaction intermediates and products. Both EOR reactivity and selectivity towards CO2 formation of several of these MM /SnO2/C electrocatalysts are significantly higher compared to conventional Pt/C and Pt/SnO2/C catalysts. We demonstrate that the PtIr/SnO2/C catalyst with high Ir content shows outstanding catalytic property with the most negative EOR onset potential and reasonably good selectivity towards ethanol complete oxidation to CO2. PtRh/SnO2/C catalysts with a moderate Rh content exhibit the highest EOR selectivity, as deduced from infrared studies.

Li, Meng [Brookhaven National Laboratory (BNL); Cullen, David A [ORNL; Sasaki, Kotaro [Brookhaven National Laboratory (BNL); Marinkovic, N. [University of Delaware; More, Karren Leslie [ORNL; Adzic, Radoslav R. [Brookhaven National Laboratory (BNL)

2013-01-01T23:59:59.000Z

176

Electrocatalytic reduction of carbon dioxide to carbon monoxide by rhenium and manganese polypyridyl catalysts  

E-Print Network (OSTI)

are on the decline of the peak oil production curve, and thedue to the impending peak in oil production and the threatoil production curves for those countries that have passed peak

Smieja, Jonathan Mark

2012-01-01T23:59:59.000Z

177

Electrocatalytic reduction of carbon dioxide to carbon monoxide by rhenium and manganese polypyridyl catalysts  

E-Print Network (OSTI)

fuels but also shows that total energy usage has increasedfuels, but also shows that total energy usage has increased

Smieja, Jonathan Mark

2012-01-01T23:59:59.000Z

178

Hydroxyl, water, ammonia, carbon monoxide and neutral carbon towards the Sgr A complex  

E-Print Network (OSTI)

We observed OH, H$_2$O, HN$_3$, C$^{18}$O, and C$_I$ towards the +50 km/s cloud (M-0.02-0.07), the CND and the +20 km/s (M-0.13-0.08) cloud in the Sgr A complex with the VLA, Odin and SEST. Strong OH absorption, H$_2$O emission and absorption lines were seen at all three positions. Strong C$^{18}$O emissions were seen towards the +50 and +20 km/s clouds. The CND is rich in H$_2$O and OH, and these abundances are considerably higher than in the surrounding clouds, indicating that shocks, star formation and clump collisions prevail in those objects. A comparison with the literature reveals that it is likely that PDR chemistry including grain surface reactions, and perhaps also the influences of shocks has led to the observed abundances of the observed molecular species studied here. In the redward high-velocity line wings of both the +50 and +20 km/s clouds and the CND, the very high H$_2$O abundances are suggested to be caused by the combined action of shock desorption from icy grain mantles and high-temperatu...

Karlsson, Roland; Hjalmarson, Åke; Winnberg, Anders; Fathi, Kambiz; Frisk, Urban; Olberg, Michael

2013-01-01T23:59:59.000Z

179

A Sensor System Based on Semi-Conductor Metal Oxide Technology for In Situ Detection of Coal Fired Combustion Gases  

SciTech Connect

Sensor Research and Development Corporation (SRD) proposed a two-phase program to develop a robust, autonomous prototype analyzer for in situ, real-time detection, identification, and measurement of coal-fired combustion gases and perform field-testing at an approved power generation facility. SRD developed and selected sensor materials showing selective responses to carbon monoxide, carbon dioxide, nitric oxide, nitrogen dioxide, ammonia, sulfur dioxide and hydrogen chloride. Sensor support electronics were also developed to enable prototype to function in elevated temperatures without any issues. Field-testing at DOE approved facility showed the ability of the prototype to detect and estimate the concentration of combustion by-products accurately with relatively low false-alarm rates at very fast sampling intervals.

Brent Marquis

2007-05-31T23:59:59.000Z

180

Cobalt carbonyl catalyzed olefin hydroformylation in supercritical carbon dioxide  

DOE Patents (OSTI)

A method of olefin hydroformylation is provided wherein an olefin reacts with a carbonyl catalyst and with reaction gases such as hydrogen and carbon monoxide in the presence of a supercritical reaction solvent, such as carbon dioxide. The invention provides higher yields of n-isomer product without the gas-liquid mixing rate limitation seen in conventional Oxo processes using liquid media.

Rathke, Jerome W. (Lockport, IL); Klingler, Robert J. (Westmount, IL)

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxides carbon monoxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Cobalt carbonyl catalyzed olefin hydroformylation in supercritical carbon dioxide  

DOE Patents (OSTI)

A method of olefin hydroformylation is provided wherein an olefin reacts with a carbonyl catalyst and with reaction gases such as hydrogen and carbon monoxide in the presence of a supercritical reaction solvent, such as carbon dioxide. The invention provides higher yields of n-isomer product without the gas-liquid mixing rate limitation seen in conventional Oxo processes using liquid media.

Rathke, J.W.; Klingler, R.J.

1992-12-31T23:59:59.000Z

182

Cobalt carbonyl catalyzed olefin hydroformylation in supercritical carbon dioxide  

DOE Patents (OSTI)

A method of olefin hydroformylation is provided wherein an olefin reacts with a carbonyl catalyst and with reaction gases such as hydrogen and carbon monoxide in the presence of a supercritical reaction solvent, such as carbon dioxide. The invention provides higher yields of n-isomer product without the gas-liquid mixing rate limitation seen in conventional Oxo processes using liquid media.

Rathke, J.W.; Klingler, R.J.

1993-03-30T23:59:59.000Z

183

OXIDATION OF DRY HYDROCARBONS AT HIGH-POWER DENSITY ANODES  

DOE Green Energy (OSTI)

This work builds upon discoveries by the University of Pennsylvania and others pertaining to the oxidation of dry hydrocarbon fuels in high temperature solid oxide fuel cells. The work reported here was restricted primarily to dry methane and confirms that YSZ-based cells, having ceria in the anode as a catalyst and copper in the anode as a current collector, can operate on dry methane for extended periods. Thirty-three lab-scale cells of various designs were fabricated and operated under a variety of conditions. The longest-lived cell gave stable performance on dry methane at 800 C for over 305 hours. Only slight carbon deposition was noted at the completion of the test. A corresponding nickel/YSZ-based anode would have lasted for less than an hour under these test conditions (which included open circuit potential measurements) before carbon fouling essentially destroyed the cell. The best performing cell achieved 112 mW/cm{sub 2} on dry methane at 800 C. Several problems were encountered with carbon fouling and declining open circuit voltages in many of the test cells after switching from operation on hydrogen to dry methane. Although not rigorously confirmed by experimentation, the results suggested that air infiltration through less than perfect perimeter seals or pinholes in the electrolytes, or both gave rise to conditions that caused the carbon fouling and OCV decline. Small amounts of air reacting with methane in a partial oxidation reaction could produce carbon monoxide that, in turn, would deposit the carbon. If this mechanism is confirmed, it implies that near perfect hardware is required for extended operation. Some evidence was also found for the formation of electrical shorts, probably from carbon deposits bridging the electrolyte. Work with odorized methane and with methane containing 100-ppm hydrogen sulfide confirmed that copper is stable at 800 C in dry hydrocarbon fuels in the presence of sulfur. In a number of cases, but not exclusively, the performance life on dry methane with sulfur compounds was much longer than with dry methane alone. The effect of sulfur compounds in these cases appeared to correlate with inhibition of carbon deposition. Mixed results were obtained for the effect of the sulfur compounds on power density. Progress also was made in understanding the mechanisms involved in direct utilization of dry natural gas. Evidence was developed for three possible mechanisms for dry methane utilization in addition to the usually cited mechanism--direct oxidation of methane by oxygen anions. Further work is required at a fundamental level before the knowledge gained here can be translated into higher levels of performance.

K.Krist; O. Spaldon-Stewart; R. Remick

2004-03-01T23:59:59.000Z

184

Literature information applicable to the reaction of uranium oxides with chlorine to prepare uranium tetrachloride  

Science Conference Proceedings (OSTI)

The reaction of uranium oxides and chlorine to prepare anhydrous uranium tetrachloride (UCl{sub 4}) are important to more economical preparation of uranium metal. The most practical reactions require carbon or carbon monoxide (CO) to give CO or carbon dioxide (CO{sub 2}) as waste gases. The chemistry of U-O-Cl compounds is very complex with valances of 3, 4, 5, and 6 and with stable oxychlorides. Literature was reviewed to collect thermochemical data, phase equilibrium information, and results of experimental studies. Calculations using thermodynamic data can identify the probable reactions, but the results are uncertain. All the U-O-Cl compounds have large free energies of formation and the calculations give uncertain small differences of large numbers. The phase diagram for UCl{sub 4}-UO{sub 2} shows a reaction to form uranium oxychloride (UOCl{sub 2}) that has a good solubility in molten UCl{sub 4}. This appears more favorable to good rates of reaction than reaction of solids and gases. There is limited information on U-O-Cl salt properties. Information on the preparation of titanium, zirconium, silicon, and thorium tetrachlorides (TiCl{sub 4}, ZrCl{sub 4}, SiCl{sub 4}, ThCl{sub 4}) by reaction of oxides with chlorine (Cl{sub 2}) and carbon has application to the preparation of UCl{sub 4}.

Haas, P.A.

1992-02-01T23:59:59.000Z

185

Atomic and electronic structures of oxides on III-V semiconductors :  

E-Print Network (OSTI)

STM imaging. Subsequently, indium oxide is deposited byIndium Monoxide (In 2 O) Once the surface structure of InAs(001)-(4×2) was characterized, the gate oxidesIndium I t Tunneling Current LDOS Local Density of States LEED Low Energy Electron Diffraction MBE Molecular Beam Epitaxy MOSFET Metal-Oxide

Shen, Jian

2010-01-01T23:59:59.000Z

186

Solid oxide fuel cell generator with removable modular fuel cell stack configurations  

DOE Patents (OSTI)

A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack.

Gillett, James E. (Greensburg, PA); Dederer, Jeffrey T. (Valencia, PA); Zafred, Paolo R. (Pittsburgh, PA); Collie, Jeffrey C. (Pittsburgh, PA)

1998-01-01T23:59:59.000Z

187

Solid oxide fuel cell generator with removable modular fuel cell stack configurations  

DOE Patents (OSTI)

A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack. 8 figs.

Gillett, J.E.; Dederer, J.T.; Zafred, P.R.; Collie, J.C.

1998-04-21T23:59:59.000Z

188

A tight-binding potential for atomistic simulations of carbon interacting with transition metals: Application to the Ni-C system  

E-Print Network (OSTI)

, such as steam reforming of methane and methanation of carbon monoxide.2 Another more recent example catalytic reactions in relation with the air pollution problem. Sur- face reactions of methane on nickel

Paris-Sud XI, Université de

189

Carbon emissions and sequestration in forests: Case studies from seven developing countries  

SciTech Connect

Deforestation in Brazilian Amazonia in 1990 was releasing approximately 281--282 X 10{sup 6} metric tons (MT) of carbon on conversion to a landscape of agriculture, productive pasture, degraded pasture, secondary forest and regenerated forest in the proportions corresponding to the equilibrium condition implied by current land-use patterns. Emissions are expressed as committed carbon,'' or the carbon released over a period of years as the carbon stock in each hectare deforested approaches a new equilibrium in the landscape that replaces the original forest. To the extent that deforestation rates have remained constant, current releases from the areas deforested in previous years will be equal to the future releases from the areas being cleared now. Considering the quantities of carbon dioxide, carbon monoxide, methane, nitrous oxide, NO{sub x} and non-methane hydrocarbons released raises the impact by 22--37%. The relative impact on the greenhouse effect of each gas is based on the Intergovernmental Panel on Climate Change (IPCC) calculations over a 20-year time period (including indirect effects). The six gases considered have a combined global warming impact equivalent to 343 to 386 million MT of C0{sub 2}-equivalent carbon, depending on assumptions regarding the release of methane and other gases from the various sources such as burning and termites. These emissions represent 7--8 times the 50 million MT annual carbon release from Brazil's use of fossil fuels, but bring little benefit to the country. Stopping deforestation in Brazil would prevent as much greenhouse emission as tripling the fuel efficiency of all the automobiles in the world. The relatively cheap measures needed to contain deforestation, together with the many complementary benefits of doing so, make this the first priority for funds intended to slow global warming.

Makundi, W.; Sathaye, J. (eds.) (Lawrence Berkeley Lab., CA (United States)); Fearnside, P.M. (Instituto Nacional de Pesquisas da Amazonia (INPA), Manaus, AM (Brazil). Departmento de Ecologia)

1992-08-01T23:59:59.000Z

190

The influence of Fe catalysts on the release of nitrogen oxides during the gasification of nitrogen doped carbon-13 material  

E-Print Network (OSTI)

855 The influence of Fe catalysts on the release of nitrogen oxides during the gasification. (Received 12 June 19%; accepted in revised form 4 April 1997) Key Words - A. Char, B. gasification, the rapid devol- atilisation of the coal is accompanied by the ignition/gasification of the volatiles

Thomas, Mark

191

Carbon Ionic Conductors for use in Novel Carbon-Ion Fuel Cells  

DOE Green Energy (OSTI)

Carbon-consuming fuel cells have many potential advantages, including increased efficiency and reduced pollution in power generation from coal. A large amount of work has already been done on coal fuel cells that utilize yttria-stabilized zirconium carbide as an oxygen-ion superionic membrane material. But high-temperature fuel cells utilizing yttria-stabilized zirconium require partial combustion of coal to carbon monoxide before final oxidation to carbon dioxide occurs via utilization of the oxygen- ion zirconia membrane. A carbon-ion superionic membrane material would enable an entirely new class of carbon fuel cell to be developed, one that would use coal directly as the fuel source, without any intervening combustion process. However, a superionic membrane material for carbon ions has not yet been found. Because no partial combustion of coal would be required, a carbon-ion superionic conductor would allow the direct conversion of coal to electricity and pure CO{sub 2} without the formation of gaseous pollutants. The objective of this research was to investigate ionic lanthanide carbides, which have an unusually high carbon-bond ionicity as potential superionic carbide-ion conductors. A first step in this process is the stabilization of these carbides in the cubic structure, and this stabilization has been achieved via the preparation of pseudobinary lanthanide carbides. The diffusion rates of carbon have been measured in these carbides as stabilized to preserve the high temperature cubic structure down to room temperature. To prepare these new compounds and measure these diffusion rates, a novel, oxide-based preparation method and a new C{sup 13}/C{sup 12} diffusion technique have been developed. The carbon diffusion rates in La{sup 0.5}Er{sup 0.5}C{sub 2}, Ce{sup 0.5}Er{sup 0.5}C{sub 2}, and La{sup 0.5}Y{sup 0.5}C{sub 2}, and Ce{sup 0.5}Tm0.5C{sub 2} modified by the addition of 5 wt %Be{sub 2}C, have been determined at temperatures from 850 C to 1150 C. The resulting diffusion constants as measured were all less than 10{sup -11} cm{sup 2}/sec, and therefore these compounds are not superionic. However, there remain a large number of potentially superionic pseudobinary lanthanide compounds and a number of alternate ionic carbides which might act as dopants to produce vacancies on the carbon-ion sublattice and thereby increase carbon-ion diffusion rates. The discovery of a superionic carbon conductor would usher in a truly revolutionary new coal technology, and could dramatically improve the way in which we generate electricity from coal. The work completed to date is a promising first step towards this end.

Franklin H. Cocks; W. Neal Simmons; Paul A. Klenk

2005-11-01T23:59:59.000Z

192

NIST and Partners Identify Tiny Gold Clusters as Top-Notch ...  

Science Conference Proceedings (OSTI)

... to catalyze a wide variety of chemical reactions, including the oxidation of poisonous carbon monoxide (CO) into harmless carbon dioxide at room ...

2012-10-17T23:59:59.000Z

193

Global Warming and Greenhouse Gases  

Science Conference Proceedings (OSTI)

... NIST is producing new suites of primary gas standards for carbon dioxide, methane, carbon monoxide, and nitrous oxide in air at atmospheric levels ...

2013-09-20T23:59:59.000Z

194

SYNGAS PRODUCTION SYSTEMS - Energy Innovation Portal  

Syngas components hydrogen and carbon monoxide may be formed by the decomposition of carbon dioxide and water or steam by a solid-oxide electrolysis cell to form ...

195

Analysis of Strategies for Reducing Multiple Emissions from Electric Power Plants: Sulfur Dioxide, Nitrogen Oxides, Carbon Dioxide, and Mercury and a Renewable Portfolio Standard  

Gasoline and Diesel Fuel Update (EIA)

3 3 ERRATA Analysis of Strategies for Reducing Multiple Emissions from Electric Power Plants: Sulfur Dioxide, Nitrogen Oxides, Carbon Dioxide, and Mercury and a Renewable Portfolio Standard July 2001 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This Service Report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should be attributed to the Contacts This report was prepared by the Office of Integrated Analysis and Forecasting, Energy Information Adminis- tration. General questions concerning the report may be directed to Mary J. Hutzler (202/586-2222, mhutzler @eia.doe.gov), Director of the Office of Integrated Analysis and Forecasting, Scott B. Sitzer (202/586-2308,

196

Method for hot pressing beryllium oxide articles  

DOE Patents (OSTI)

The hot pressing of beryllium oxide powder into high density compacts with little or no density gradients is achieved by employing a homogeneous blend of beryllium oxide powder with a lithium oxide sintering agent. The lithium oxide sintering agent is uniformly dispersed throughout the beryllium oxide powder by mixing lithium hydroxide in an aqueous solution with beryllium oxide powder. The lithium hydroxide is converted in situ to lithium carbonate by contacting or flooding the beryllium oxide - lithium hydroxide blend with a stream of carbon dioxide. The lithium carbonate is converted to lithium oxide while remaining fixed to the beryllium oxide particles during the hot pressing step to assure uniform density throughout the compact.

Ballard, A.H.; Godfrey, T.G. Jr.; Mowery, E.H.

1986-10-10T23:59:59.000Z

197

Formation of rare earth carbonates using supercritical carbon dioxide  

DOE Patents (OSTI)

The invention relates to a process for the rapid, high yield conversion of select rare earth oxides or hydroxides, to their corresponding carbonates by contact with supercritical carbon dioxide.

Fernando, Quintus (Tucson, AZ); Yanagihara, Naohisa (Zacopan, MX); Dyke, James T. (Santa Fe, NM); Vemulapalli, Krishna (Tuscon, AZ)

1991-09-03T23:59:59.000Z

198

Preparation and Microstructure of Carbon/Carbon Composites ...  

Science Conference Proceedings (OSTI)

Symposium, C. Advanced High-Temperature Structural Materials ... Carbon fiber felts were firstly densified by carbon using chemical vapor infiltration to ... Character Distribution on Oxidation Resistance of ZG30Cr20Ni10 Heat Resistant Steel.

199

Effectiveness of Diesel Oxidation Catalyst in Reducing HC and CO Emissions from Reactivity Controlled Compression Ignition  

SciTech Connect

Reactivity Controlled Compression Ignition (RCCI) has been shown to allow for diesel-like or better brake thermal efficiency with significant reductions in nitrogen oxide (NOX) particulate matter (PM) emissions. Hydrocarbon (HC) and carbon monoxide (CO) emission levels, on the other hand, are similar to those of port fuel injected gasoline engines. The higher HC and CO emissions combined with the lower exhaust temperatures with RCCI operation present a challenge for current exhaust aftertreatments. The reduction of HC and CO emissions in a lean environment is typically achieved with an oxidation catalyst. In this work, several diesel oxidation catalysts (DOC) with different precious metal loadings were evaluated for effectiveness to control HC and CO emissions from RCCI combustion in a light-duty multi-cylinder engine operating on gasoline and diesel fuels. Each catalyst was evaluated in a steady-state engine operation with temperatures ranging from 160 to 260 C. A shift to a higher light-off temperature was observed during the RCCI operation. In addition to the steady-state experiments, the performances of the DOCs were evaluated during multi-mode engine operation by switching from diesel-like combustion at higher exhaust temperature and low HC/CO emissions to RCCI combustion at lower temperature and higher HC/CO emissions. High CO and HC emissions from RCCI generated an exotherm keeping the catalyst above the light-off temperature.

Prikhodko, Vitaly Y [ORNL; Curran, Scott [ORNL; Parks, II, James E [ORNL; Wagner, Robert M [ORNL

2013-01-01T23:59:59.000Z

200

Assessment of durability of carbon/epoxy composite materials after exposure to elevated temperatures and immersion in seawater for navy vessel applications  

E-Print Network (OSTI)

effectiveness of carbon fiber polymer–matrix compositeby using activated carbon fibers. Carbon, 2002. 40: p. 445-Oxidative resistance of carbon fibers and their composites.

Hong, SoonKook

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxides carbon monoxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Reduction of iron-oxide-carbon composites: part II. Rates of reduction of composite pellets in a rotary hearth furnace simulator  

SciTech Connect

A new ironmaking concept is being proposed that involves the combination of a rotary hearth furnace (RHF) with an iron-bath smelter. The RHF makes use of iron-oxide-carbon composite pellets as the charge material and the final product is direct-reduced iron (DRI) in the solid or molten state. This part of the research includes the development of a reactor that simulated the heat transfer in an RHF. The external heat-transport and high heating rates were simulated by means of infrared (IR) emitting lamps. The reaction rates were measured by analyzing the off-gas and computing both the amount of CO and CO{sub 2} generated and the degree of reduction. The reduction times were found to be comparable to the residence times observed in industrial RHFs. Both artificial ferric oxide (PAH) and naturally occurring hematite and taconite ores were used as the sources of iron oxide. Coal char and devolatilized wood charcoal were the reductants. Wood charcoal appeared to be a faster reductant than coal char. However, in the PAH-containing pellets, the reverse was found to be true because of heat-transfer limitations. For the same type of reductant, hematite-containing pellets were observed to reduce faster than taconite-containing pellets because of the development of internal porosity due to cracking and fissure formation during the Fe2O{sub 3}-to-Fe3O{sub 4} transition. This is, however, absent during the reduction of taconite, which is primarily Fe3O{sub 4}. The PAH-wood-charcoal pellets were found to undergo a significant amount of swelling at low-temperature conditions, which impeded the external heat transport to the lower layers. If the average degree of reduction targeted in an RHF is reduced from 95 to approximately 70 pct by coupling the RHF with a bath smelter, the productivity of the RHF can be enhanced 1.5 to 2 times. The use of a two- or three-layer bed was found to be superior to that of a single layer, for higher productivities.

Halder, S.; Fruehan, R.J. [Praxair Inc., Tonawanda, NY (United States). Praxair Technological Center

2008-12-15T23:59:59.000Z

202

Basic Engineering Research for D and D of R Reactor Storage Pond Sludge: Electrokinetics, Carbon Dioxide Extraction, and Supercritical Water Oxidation  

Science Conference Proceedings (OSTI)

Large quantities of mixed low level waste (MLLW) that fall under the Toxic Substances Control Act (TSCA) exist and will continue to be generated during D and D operations at DOE sites across the country. The standard process for destruction of MLLW is incineration, which has an uncertain future. The extraction and destruction of PCBs from MLLW was the subject of this research Supercritical Fluid Extraction (SFE) with carbon dioxide with 5% ethanol as cosolvent and Supercritical Waster Oxidation (SCWO) were the processes studied in depth. The solid matrix for experimental extraction studies was Toxi-dry, a commonly used absorbent made from plant material. PCB surrogates were 1.2,4-trichlorobenzene (TCB) and 2-chlorobiphenyl (2CBP). Extraction pressures of 2,000 and 4,000 psi and temperatures of 40 and 80 C were studied. Higher extraction efficiencies were observed with cosolvent and at high temperature, but pressure little effect. SCWO treatment of the treatment of the PCB surrogates resulted in their destruction below detection limits.

Michael A. Matthews; David A. Bruce,; Thomas A. Davis; Mark C. Thies; John W. Weidner; Ralph E. White

2002-04-01T23:59:59.000Z

203

INFRARED ABSORPTION SPECTROSCOPY OF CARBON MONOXIDE ON NICKEL FILMS: A LOW TEMPERATURE THERMAL DETECTION TECHNIQUE  

E-Print Network (OSTI)

requirements are a low heat capacity sample and a smallwith hundreds of times the heat capacity of the nickel filmsOnly very thin,low heat capacity samples can be used. A tiny

Bailey, Robert Brian

2011-01-01T23:59:59.000Z

204

Detection of carbon monoxide (CO) as a furnace byproduct using a rotating mask spectrometer.  

Science Conference Proceedings (OSTI)

Sandia National Laboratories, in partnership with the Consumer Product Safety Commission (CPSC), has developed an optical-based sensor for the detection of CO in appliances such as residential furnaces. The device is correlation radiometer based on detection of the difference signal between the transmission spectrum of the sample multiplied by two alternating synthetic spectra (called Eigen spectra). These Eigen spectra are derived from a priori knowledge of the interferents present in the exhaust stream. They may be determined empirically for simple spectra, or using a singular value decomposition algorithm for more complex spectra. Data is presented on the details of the design of the instrument and Eigen spectra along with results from detection of CO in background N{sub 2}, and CO in N{sub 2} with large quantities of interferent CO{sub 2}. Results indicate that using the Eigen spectra technique, CO can be measured at levels well below acceptable limits in the presence of strongly interfering species. In addition, a conceptual design is presented for reducing the complexity and cost of the instrument to a level compatible with consumer products.

Sinclair, Michael B.; Flemming, Jeb Hunter; Blair, Raymond (Honeywell Federal Manufacturing & Technologies, Albuqueruque, NM); Pfeifer, Kent Bryant

2006-02-01T23:59:59.000Z

205

Carbon Monoxide Urban Emission Monitoring: A Ground-Based FTIR Case Study  

Science Conference Proceedings (OSTI)

The characterization and the precise measurements of atmospheric pollutant’s concentration are essential to improve the understanding and modeling of urban air pollution processes. The QualAir platform at the Université Pierre et Marie Curie (UPMC)...

Y. Té; E. Dieudonné; P. Jeseck; F. Hase; J. Hadji-Lazaro; C. Clerbaux; F. Ravetta; S. Payan; I. Pépin; D. Hurtmans; J. Pelon; C. Camy-Peyret

2012-07-01T23:59:59.000Z

206

Validation Study of the MOPITT Retrieval Algorithm: Carbon Monoxide Retrieval from IMG Observations during WINCE  

Science Conference Proceedings (OSTI)

The Measurement of Pollution in the Troposphere (MOPITT) instrument is an eight-channel gas correlation radiometer selected for the Earth Observing System (EOS) Terra spacecraft launched in December 1999. Algorithms for the retrieval of ...

Jinxue Wang; John C. Gille; Henry E. Revercomb; Von P. Walden

2000-10-01T23:59:59.000Z

207

Hazardous Off-Gassing of Carbon Monoxide and Oxygen Depletion during Ocean Transportation of  

E-Print Network (OSTI)

which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. doi:10.1093/annhyg/men013

Wood Pellets; Urban Svedberg; Jerker Samuelsson; Staffan Melin

2008-01-01T23:59:59.000Z

208

Continuous Measurement of Carbon Monoxide Improves Combustion Efficiency of CO Boilers  

E-Print Network (OSTI)

The paper describes the application of in-situ flue gas CO measurement in the operation of CO Boilers and details the steps needed to optimize combustion efficiency.

Gilmour, W. A.; Pregler, D. N.; Branham, R. L.; Prichard, J. J.

1981-01-01T23:59:59.000Z

209

Technology development for iron Fischer-Tropsch catalysis. [Pretreatment of catalyst in carbon monoxide  

DOE Green Energy (OSTI)

The present study shows that activation of a high surface area Fe{sub 2}O{sub 3} catalyst in CO in a (CSTR), continuously stirred tank reactor using tetralin as solvent results in an activated that is three times of material that is activated in H{sub 2} or directly in the syngas.

Not Available

1991-01-01T23:59:59.000Z

210

Effect of fresh green waste and green waste compost on mineral nitrogen, nitrous oxide and carbon dioxide from a Vertisol  

Science Conference Proceedings (OSTI)

Incorporation of organic waste amendments to a horticultural soil, prior to expected risk periods, could immobilise mineral N, ultimately reducing nitrogen (N) losses as nitrous oxide (N{sub 2}O) and leaching. Two organic waste amendments were selected, a fresh green waste (FGW) and green waste compost (GWC) as they had suitable biochemical attributes to initiate N immobilisation into the microbial biomass and organic N forms. These characteristics include a high C:N ratio (FGW 44:1, GWC 35:1), low total N (14%). Both products were applied at 3 t C/ha to a high N (plus N fertiliser) or low N (no fertiliser addition) Vertisol soil in PVC columns. Cumulative N{sub 2}O production over the 28 day incubation from the control soil was 1.5 mg/N{sub 2}O/m{sup 2}, and 11 mg/N{sub 2}O/m{sup 2} from the control + N. The N{sub 2}O emission decreased with GWC addition (P < 0.05) for the high N soil, reducing cumulative N{sub 2}O emissions by 38% by the conclusion of the incubation. Analysis of mineral N concentrations at 7, 14 and 28 days identified that both FGW and GWC induced microbial immobilisation of N in the first 7 days of incubation regardless of whether the soil environment was initially high or low in N; with the FGW immobilising up to 30% of available N. It is likely that the reduced mineral N due to N immobilisation led to a reduced substrate for N{sub 2}O production during the first week of the trial, when soil N{sub 2}O emissions peaked. An additional finding was that FGW + N did not decrease cumulative N{sub 2}O emissions compared to the control + N, potentially due to the fact that it stimulated microbial respiration resulting in anaerobic micro sites in the soil and ultimately N{sub 2}O production via denitrification. Therefore, both materials could be used as post harvest amendments in horticulture to minimise N loss through nitrate-N leaching in the risk periods between crop rotations. The mature GWC has potential to reduce N{sub 2}O, an important greenhouse gas.

Vaughan, Sarah M., E-mail: s.vaughan@uq.edu.au [School of Land, Crop and Food Sciences, University of Queensland, St. Lucia, QLD 4072 (Australia); Dalal, Ram C. [School of Land, Crop and Food Sciences, University of Queensland, St. Lucia, QLD 4072 (Australia); Department of Environment and Resource Management, 80 Meiers Rd., Indooroopilly, QLD 4068 (Australia); Harper, Stephen M. [Department of Employment, Economic Development and Innovation, Warrego Highway, Gatton, QLD 4343 (Australia); Menzies, Neal W. [School of Land, Crop and Food Sciences, University of Queensland, St. Lucia, QLD 4072 (Australia)

2011-08-15T23:59:59.000Z

211

Carbon emissions and sequestration in forests: Case studies from seven developing countries. Volume 2, Greenhouse gas emissions from deforestration in the Brazilian Amazon  

SciTech Connect

Deforestation in Brazilian Amazonia in 1990 was releasing approximately 281--282 X 10{sup 6} metric tons (MT) of carbon on conversion to a landscape of agriculture, productive pasture, degraded pasture, secondary forest and regenerated forest in the proportions corresponding to the equilibrium condition implied by current land-use patterns. Emissions are expressed as ``committed carbon,`` or the carbon released over a period of years as the carbon stock in each hectare deforested approaches a new equilibrium in the landscape that replaces the original forest. To the extent that deforestation rates have remained constant, current releases from the areas deforested in previous years will be equal to the future releases from the areas being cleared now. Considering the quantities of carbon dioxide, carbon monoxide, methane, nitrous oxide, NO{sub x} and non-methane hydrocarbons released raises the impact by 22--37%. The relative impact on the greenhouse effect of each gas is based on the Intergovernmental Panel on Climate Change (IPCC) calculations over a 20-year time period (including indirect effects). The six gases considered have a combined global warming impact equivalent to 343 to 386 million MT of C0{sub 2}-equivalent carbon, depending on assumptions regarding the release of methane and other gases from the various sources such as burning and termites. These emissions represent 7--8 times the 50 million MT annual carbon release from Brazil`s use of fossil fuels, but bring little benefit to the country. Stopping deforestation in Brazil would prevent as much greenhouse emission as tripling the fuel efficiency of all the automobiles in the world. The relatively cheap measures needed to contain deforestation, together with the many complementary benefits of doing so, make this the first priority for funds intended to slow global warming.

Makundi, W.; Sathaye, J. [eds.] [Lawrence Berkeley Lab., CA (United States); Fearnside, P.M. [Instituto Nacional de Pesquisas da Amazonia (INPA), Manaus, AM (Brazil). Departmento de Ecologia

1992-08-01T23:59:59.000Z

212

Carbon-Sulfur Nanocomposite Cathode Materials for Lithium-Sulfur ...  

Science Conference Proceedings (OSTI)

To solve these problems, we use novel carbon nanostructures, such as graphene , graphene oxides, and porous carbon nanofibers as matrices to fabricate ...

213

Electrocatalyst for Alcohol Oxidation at Fuel Cell Anodes - Energy ...  

Ethanol and other alcohols are nearly ideal reactants for fuel cells. Unfortunately they are difficult to oxidize, requiring breaking of carbon-carbon bonds. This ...

214

Apparatus and Method for Oxidation and Stabilization of ...  

... more cost-effective method of oxidizing and stabilizing thermoplastic materials than is currently used in conventional carbon fiber ... The production of carbon ...

215

THE EFFECTS OF ENERGY-EFFICIENT VENTILATION RATES ON INDOOR AIR QUALITY AT AN OHIO ELEMENTARY SCHOOL  

E-Print Network (OSTI)

inorganic pollutants: carbon dioxides carbon monoxides ozonetotal aldehydes, carbon dioxide, carbon monoxide, sulfurquality standards. Carbon dioxide concentrations increased

Berk, J.V.

2013-01-01T23:59:59.000Z

216

Carbon Dioxide Hydrate Process for Gas Separation from a Shifted Synthesis Gas Stream  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestration and Sequestration and Gasification Technologies Carbon DioxiDe HyDrate ProCess for Gas seParation from a sHifteD syntHesis Gas stream Background One approach to de-carbonizing coal is to gasify it to form fuel gas consisting predominately of carbon monoxide and hydrogen. This fuel gas is sent to a shift conversion reactor where carbon monoxide reacts with steam to produce carbon dioxide (CO 2 ) and hydrogen. After scrubbing the CO 2 from the fuel, a stream of almost pure hydrogen stream remains, which can be burned in a gas turbine or used to power a fuel cell with essentially zero emissions. However, for this approach to be practical, it will require an economical means of separating CO 2 from mixed gas streams. Since viable options for sequestration or reuse of CO

217

Analysis of black carbon and carbon monoxide observed over the Indian Ocean: Implications for emissions and photochemistry  

E-Print Network (OSTI)

, the inventories use year-2000 energy forecasts (off a 1995 base) from the RAINS-Asia (regional air pollution running under optimal conditions; in- use engines operating in developing countries may eject more OC; published 4 September 2002. [1] Air from South Asia carries heavy loadings of organic and light

Dickerson, Russell R.

218

Testing of a Catalytic Partial Oxidation Diesel Reformer with a Solid Oxide Fuel Cell System  

DOE Green Energy (OSTI)

Rural Alaska currently uses diesel generator sets to produce much of its power. The high energy content of diesel (i.e. ~140,000 BTU per gallon) makes it the fuel of choice because this reduces the volume of fuel that must be transported, stored, and consumed in generating the power. There is an existing investment in infrastructure for the distribution and use of diesel fuel. Problems do exist, however, in that diesel generators are not very efficient in their use of diesel, maintenance levels can be rather high as systems age, and the environmental issues related to present diesel generators are of concern. The Arctic Energy Technology Development Laboratory at the University of Alaska -- Fairbanks is sponsoring a project to address the issues mentioned above. The project takes two successful systems, a diesel reformer and a tubular solid oxide fuel cell unit, and jointly tests those systems with the objective of producing a for-purpose diesel fueled solid oxide fuel cell system that can be deployed in rural Alaska. The reformer will convert the diesel to a mixture of carbon monoxide and hydrogen that can be used as a fuel by the fuel cell. The high temperature nature of the solid oxide fuel cell (SOFC is capable of using this mixture to generate electricity and provide usable heat with higher efficiency and lower emissions. The high temperature nature of the SOFC is more compatible with the arctic climate than are low temperature technologies such as the proton exchange membrane fuel cells. This paper will look at the interaction of a SOFC system that is designed to internally reform methane and a catalytic partial oxidation (CPOX) diesel reformer. The diesel reformer produces a reformate that is approximately 140 BTU per scf (after removal of much of the reformate water) as compared to a methane based reformate that is over twice that value in BTU content. The project also considers the effect of altitude since the test location will be at 4800 feet with the consequential drop in oxygen content and necessary increases in flow rates.

Lyman Frost; Bob Carrington; Rodger McKain; Dennis Witmer

2005-03-01T23:59:59.000Z

219

NETL: Gasifipedia  

NLE Websites -- All DOE Office Websites (Extended Search)

like platinum, iron, or nickel, also have catalytic activity. Metal catalysts are used in automobile catalytic converters to reform carbon monoxide (CO) and nitric oxide, for...

220

Gas turbine combustion modeling for a Parametric Emissions Monitoring System.  

E-Print Network (OSTI)

??Oxides of nitrogen (NOx), carbon monoxide (CO) and other combustion by-products of gas turbines have long been identified as harmful atmospheric pollutants to the environment… (more)

Honegger, Ueli

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxides carbon monoxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Reinforced Carbon Nanotubes.  

DOE Patents (OSTI)

The present invention relates generally to reinforced carbon nanotubes, and more particularly to reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

Ren, Zhifen (Newton, MA); Wen, Jian Guo (Newton, MA); Lao, Jing Y. (Chestnut Hill, MA); Li, Wenzhi (Brookline, MA)

2005-06-28T23:59:59.000Z

222

High temperature electrolysis for syngas production  

DOE Patents (OSTI)

Syngas components hydrogen and carbon monoxide may be formed by the decomposition of carbon dioxide and water or steam by a solid-oxide electrolysis cell to form carbon monoxide and hydrogen, a portion of which may be reacted with carbon dioxide to form carbon monoxide. One or more of the components for the process, such as steam, energy, or electricity, may be provided using a nuclear power source.

Stoots, Carl M. (Idaho Falls, ID); O' Brien, James E. (Idaho Falls, ID); Herring, James Stephen (Idaho Falls, ID); Lessing, Paul A. (Idaho Falls, ID); Hawkes, Grant L. (Sugar City, ID); Hartvigsen, Joseph J. (Kaysville, UT)

2011-05-31T23:59:59.000Z

223

Biomass Burning and the Production of Greenhouse Gases  

Science Conference Proceedings (OSTI)

Biomass burning is a source of greenhouse gases, carbon dioxide, methane, and nitrous oxide. In addition, biomass burning is a source of chemically active gases, including carbon monoxide, nonmethane hydrocarbons, and nitric oxide. These gases, along ...

Levine J. S.

1994-01-01T23:59:59.000Z

224

The carbon footprint analysis of wastewater treatment plants and nitrous oxide emissions from full-scale biological nitrogen removal processes in Spain  

E-Print Network (OSTI)

This thesis presents a general model for the carbon footprint analysis of advanced wastewater treatment plants (WWTPs) with biological nitrogen removal processes, using a life cycle assessment (LCA) approach. Literature ...

Xu, Xin, S.M. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

225

Combined Theoretical and Experimental Investigation and Design of H2S Tolerant Anode for Solid Oxide Fuel Cells  

DOE Green Energy (OSTI)

A solid oxide fuel cell (SOFC) is a high temperature fuel cell and it normally operates in the range of 850 to 1000 C. Coal syngas has been considered for use in SOFC systems to produce electric power, due to its high temperature and high hydrogen and carbon monoxide content. However, coal syngas also has contaminants like carbon dioxide (CO{sub 2}) and hydrogen sulfide (H{sub 2}S). Among these contaminants, H{sub 2}S is detrimental to electrode material in SOFC. Commonly used anode material in SOFC system is nickel-yttria stabilized zirconia (Ni-YSZ). The presence of H{sub 2}S in the hydrogen stream will damage the Ni anode and hinder the performance of SOFC. In the present study, an attempt was made to understand the mechanism of anode (Ni-YSZ) deterioration by H{sub 2}S. The study used computation methods such as quantum chemistry calculations and molecular dynamics to predict the model for anode destruction by H{sub 2}S. This was done using binding energies to predict the thermodynamics and Raman spectroscopy to predict molecular vibrations and surface interactions. On the experimental side, a test stand has been built with the ability to analyze button cells at high temperature under syngas conditions.

Gerardine G. Botte; Damilola Daramola; Madhivanan Muthuvel

2009-01-07T23:59:59.000Z

226

Method for hot pressing beryllium oxide articles  

DOE Patents (OSTI)

The hot pressing of beryllium oxide powder into high density compacts with little or no density gradients is achieved by employing a homogeneous blend of beryllium oxide powder with a lithium oxide sintering agent. The lithium oxide sintering agent is uniformly dispersed throughout the beryllium oxide powder by mixing lithium hydroxide in an aqueous solution with beryllium oxide powder. The lithium hydroxide is converted in situ to lithium carbonate by contacting or flooding the beryllium oxide-lithium hydroxide blend with a stream of carbon dioxide. The lithium carbonate is converted to lithium oxide while remaining fixed to the beryllium oxide particles during the hot pressing step to assure uniform density throughout the compact.

Ballard, Ambrose H. (Oak Ridge, TN); Godfrey, Jr., Thomas G. (Oak Ridge, TN); Mowery, Erb H. (Clinton, TN)

1988-01-01T23:59:59.000Z

227

CARBON FLUX TO THE ATMOSPHERE FROM LAND-USE CHANGES: 1850 TO...  

NLE Websites -- All DOE Office Websites (Extended Search)

C: REGIONAL CARBON-CHANGE COEFFICIENTS The following listing provides the regional values and coefficients associated with oxidation and recovery of carbon in vegetation, soils,...

228

Quantification of substitutional carbon loss from Si0.998C0.002 due to silicon self-interstitial injection during oxidation  

E-Print Network (OSTI)

of crystalline silicon. The Si1 xCx layer was grown at 550 °C and 10 Torr using 50 sccm of a disilane mixture 10% disilane in hydrogen and 20 sccm of methylsilane 1% methylsilane in hydrogen as the silicon and carbon

229

Heat removal from high temperature tubular solid oxide fuel cells utilizing product gas from coal gasifiers.  

DOE Green Energy (OSTI)

In this work we describe the results of a computer study used to investigate the practicality of several heat exchanger configurations that could be used to extract heat from tubular solid oxide fuel cells (SOFCs) . Two SOFC feed gas compositions were used in this study. They represent product gases from two different coal gasifier designs from the Zero Emission Coal study at Los Alamos National Laboratory . Both plant designs rely on the efficient use of the heat produced by the SOFCs . Both feed streams are relatively rich in hydrogen with a very small hydrocarbon content . One feed stream has a significant carbon monoxide content with a bit less hydrogen . Since neither stream has a significant hydrocarbon content, the common use of the endothermic reforming reaction to reduce the process heat is not possible for these feed streams . The process, the method, the computer code, and the results are presented as well as a discussion of the pros and cons of each configuration for each process .

Parkinson, W. J. (William Jerry),

2003-01-01T23:59:59.000Z

230

Quantification of Black Carbon and Other Pollutant Emissions from a  

NLE Websites -- All DOE Office Websites (Extended Search)

Quantification of Black Carbon and Other Pollutant Emissions from a Quantification of Black Carbon and Other Pollutant Emissions from a Traditional and an Improved Cookstove Title Quantification of Black Carbon and Other Pollutant Emissions from a Traditional and an Improved Cookstove Publication Type Report LBNL Report Number LBNL-6062E Year of Publication 2010 Authors Kirchstetter, Thomas W., Chelsea Preble, Odelle L. Hadley, and Ashok J. Gadgil Keywords aethalometer, Berkeley Darfur Stove, black carbon, carbon monoxide, climate change, DustTrak, global warming, improved cookstoves, indoor air quality, LBNL Stove Testing Facility, particulate matter, photoacoustic absorption spectrometer, pollutant emission factor, three-stone fire Abstract Traditional methods of cooking in developing regions of the world emit pollutants that

231

The Role of Transport Phenomena in the Direct Oxidation of Solid Fuels.  

E-Print Network (OSTI)

?? Direct carbon fuel cells have shown promise for stationary power generation by utilizing the direct oxidation of a solid carbon fuel source at the… (more)

Banas, Charles J

2012-01-01T23:59:59.000Z

232

Operation of a solid oxide fuel cell on biodiesel with a partial oxidation reformer  

Science Conference Proceedings (OSTI)

The National Energy Technology Laboratory’s Office of Research & Development (NETL/ORD) has successfully demonstrated the operation of a solid oxide fuel cell (SOFC) using reformed biodiesel. The biodiesel for the project was produced and characterized by West Virginia State University (WVSU). This project had two main aspects: 1) demonstrate a catalyst formulation on monolith for biodiesel fuel reforming; and 2) establish SOFC stack test stand capabilities. Both aspects have been completed successfully. For the first aspect, in–house patented catalyst specifications were developed, fabricated and tested. Parametric reforming studies of biofuels provided data on fuel composition, catalyst degradation, syngas composition, and operating parameters required for successful reforming and integration with the SOFC test stand. For the second aspect, a stack test fixture (STF) for standardized testing, developed by Pacific Northwest National Laboratory (PNNL) and Lawrence Berkeley National Laboratory (LBNL) for the Solid Energy Conversion Alliance (SECA) Program, was engineered and constructed at NETL. To facilitate the demonstration of the STF, NETL employed H.C. Starck Ceramics GmbH & Co. (Germany) anode supported solid oxide cells. In addition, anode supported cells, SS441 end plates, and cell frames were transferred from PNNL to NETL. The stack assembly and conditioning procedures, including stack welding and sealing, contact paste application, binder burn-out, seal-setting, hot standby, and other stack assembly and conditioning methods were transferred to NETL. In the future, fuel cell stacks provided by SECA or other developers could be tested at the STF to validate SOFC performance on various fuels. The STF operated on hydrogen for over 1000 hrs before switching over to reformed biodiesel for 100 hrs of operation. Combining these first two aspects led to demonstrating the biodiesel syngas in the STF. A reformer was built and used to convert 0.5 ml/min of biodiesel into mostly hydrogen and carbon monoxide (syngas.) The syngas was fed to the STF and fuel cell stack. The results presented in this experimental report document one of the first times a SOFC has been operated on syngas from reformed biodiesel.

Siefert, N, Shekhawat, D.; Gemmen, R.; Berry, D.

2010-01-01T23:59:59.000Z

233

Alkaline Pressure Oxidation of Pyrite in the Presence of Silica – Characterization of the Passivating Film.  

E-Print Network (OSTI)

??Alkaline pressure oxidation, particularly in the presence of trona as additive, can be used to oxidize high carbonate refractory gold ores as it prevents the… (more)

Dani, Anirudha

2013-01-01T23:59:59.000Z

234

The combustion chemistry of a fuel tracer: Measured flame speeds and ignition delays and a detailed chemical kinetic model for the oxidation of acetone  

SciTech Connect

Acetone ignition delay and stretch-free laminar flame speed measurements have been carried out and a kinetic model has been developed to simulate these and literature data for acetone and for ketene, which was found to be an important intermediate in its oxidation. The mechanism has been based on one originally devised for dimethyl ether and modified through validation of the hydrogen, carbon monoxide and methane sub-mechanisms. Acetone oxidation in argon was studied behind reflected shock waves in the temperature range 1340-1930 K, at 1 atm and at equivalence ratios of 0.5, 1 and 2; it is also shown that the addition of up to 15% acetone to a stoichiometric n-heptane mixture has no effect on the measured ignition delay times. Flame speeds at 298 K and 1 atm of pure acetone in air were measured in a spherical bomb; a maximum flame speed of {proportional_to}35 cm s{sup -1} at {phi}=1.15 is indicated. (author)

Pichon, S.; Black, G.; Simmie, J.M.; Curran, H.J. [Combustion Chemistry Centre, National University of Ireland, Galway (Ireland); Chaumeix, N.; Yahyaoui, M. [Institut de Combustion Aerothermique Reactivite et Environnement, CNRS, Orleans (France); Donohue, R. [Information Technology, National University of Ireland, Galway (Ireland)

2009-02-15T23:59:59.000Z

235

Temperature Sensitivity of Black Carbon Decomposition and  

E-Print Network (OSTI)

Temperature Sensitivity of Black Carbon Decomposition and Oxidation B I N H T H A N H N G U Y E N to physical protection, chemical recalcitrance influences SOC decomposition rates. Black carbon (BC isotope geochemistry and nanomorphology of soil black carbon: Black chernozemic soils in central Europe

Lehmann, Johannes

236

Pyrolytic carbon-coated nuclear fuel  

DOE Patents (OSTI)

An improved nuclear fuel kernel having at least one pyrolytic carbon coating and a silicon carbon layer is provided in which extensive interaction of fission product lanthanides with the silicon carbon layer is avoided by providing sufficient UO.sub.2 to maintain the lanthanides as oxides during in-reactor use of said fuel.

Lindemer, Terrence B. (Oak Ridge, TN); Long, Jr., Ernest L. (Oak Ridge, TN); Beatty, Ronald L. (Wurlingen, CH)

1978-01-01T23:59:59.000Z

237

Oxidative Degradation of Monoethanolamine  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxidative Degradation of Monoethanolamine Oxidative Degradation of Monoethanolamine Susan Chi Gary T. Rochelle* (gtr@che.utexas.edu, 512-471-7230) The University of Texas at Austin Department of Chemical Engineering Austin, Texas 78712 Prepared for presentation at the First National Conference on Carbon Sequestration, Washington, DC, May 14-17, 2001 Abstract Oxidative degradation of monoethanolamine (MEA) was studied under typical absorber condition of 55°C. The rate of evolution of NH 3 , which was indicative of the overall rate of degradation, was measured continuously in a batch system sparged with air. Dissolved iron from 0.0001 mM to 1 mM yields oxidation rates from 0.37 to 2 mM/hr in MEA solutions loaded with 0.4 mole CO 2 / mole MEA. Ethylenediaminetetraacetic acid (EDTA) and N,N-bis(2- hydroxyethyl)glycine effectively decrease the rate of oxidation in the presence of iron by 40 to

238

Comparative study of the reactions of metal oxides and carbonates with H{sub 2}S and SO{sub 2}. Final technical report, September 1990--February 1994  

Science Conference Proceedings (OSTI)

The primary objective of this project had been the investigation of the effects of pore structure on the capacity of porous metal oxides for removal of gaseous pollutants from flue gases of power plants (SO{sub 2}) and hot coal gas (primarily H{sub 2}S). Porous calcines obtained from natural precursors (limestones and dolomites) and sorbents based on zinc oxide were used as model systems in our experimental studies, which included reactivity evolution experiments and pore structure characterization using a variety of methods. The key idea behind this project was to appropriately exploit the differences of the sulfidation and sulfation reactions (for instance, different molar volumes of solid products) to elucidate the dependence of the sorptive capacity of a porous sorbent on its physical microstructure. In order to be able to proceed faster and more productively on the analysis of the above defined problem, it was decided to employ in our studies solids whose reaction with SO{sub 2} (limestone calcines) or H{sub 2}S (sorbents based on zinc oxide) had been investigated in detail in past studies by our research group. Reactivity vs time or conversion vs time studies were conducted using thermogravimetry and fixed-bed and fluidized-bed reactors. The pore structure of partially reacted samples collected at selected time instants or conversion levels was analyzed by gas adsorption and mercury porosimetry. For better characterization of the pore structure of the solid samples, we also carried out intraparticle diffusivity measurements by the peak-broadening (chromatographic) method, using a system developed for this purpose in our laboratory. In the context of this part of the project, we also conducted a detailed theoretical investigation of the measurement of effective diffusivities in porous solids using the diffusion-cell method.

Sotirchos, S.V.

1994-03-01T23:59:59.000Z

239

Composite catalysts supported on modified carbon substrates and methods of making the same  

DOE Patents (OSTI)

A method of producing a composite carbon catalyst is generally disclosed. The method includes oxidizing a carbon precursor (e.g., carbon black). Optionally, nitrogen functional groups can be added to the oxidized carbon precursor. Then, the oxidized carbon precursor is refluxed with a non-platinum transitional metal precursor in a solution. Finally, the solution is pyrolyzed at a temperature of at least about 500.degree. C.

Popov, Branko N. (Columbia, SC); Subramanian, Nalini (Kennesaw, GA); Colon-Mercado, Hector R. (Columbia, SC)

2009-11-17T23:59:59.000Z

240

CARBON-CARBON COMPOSITE ALLCOMP Carbon-Carbon Composite  

E-Print Network (OSTI)

strength 4340 steel, carbon-carbon composite, and Carbon-Silicon Carbide composite were tested to examine-C composite containing continuous PAN T300 fibers · SWB: Chopped Fiber Composite containing SWB fibers Crush

Rollins, Andrew M.

Note: This page contains sample records for the topic "oxides carbon monoxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Polyacrylonitrile-based electrospun carbon paper for electrode applications  

E-Print Network (OSTI)

Polyacrylonitrile (PAN)-based carbon paper with fiber diameters of 200–300 nm was developed through hot-pressing, pre-oxidation, and carbonization of electrospun fiber mats. Changes in morphology, crystallinity, and surface ...

Yang, Ying

242

CARBON TETRACHLORIDE  

E-Print Network (OSTI)

This fact sheet answers the most frequently asked health questions (FAQs) about carbon tetrachloride.

unknown authors

2005-01-01T23:59:59.000Z

243

DWPF COAL-CARBON WASTE ACCEPTANCE CRITERIA LIMIT EVALUATION BASED ON EXPERIMENTAL WORK (TANK 48 IMPACT STUDY)  

DOE Green Energy (OSTI)

This report summarizes the results of both experimental and modeling studies performed using Sludge Batch 10 (SB10) simulants and FBSR product from Tank 48 simulant testing in order to develop higher levels of coal-carbon that can be managed by DWPF. Once the Fluidized Bed Steam Reforming (FBSR) process starts up for treatment of Tank 48 legacy waste, the FBSR product stream will contribute higher levels of coal-carbon in the sludge batch for processing at DWPF. Coal-carbon is added into the FBSR process as a reductant and some of it will be present in the FBSR product as unreacted coal. The FBSR product will be slurried in water, transferred to Tank Farm and will be combined with sludge and washed to produce the sludge batch that DWPF will process. The FBSR product is high in both water soluble sodium carbonate and unreacted coal-carbon. Most of the sodium carbonate is removed during washing but all of the coal-carbon will remain and become part of the DWPF sludge batch. A paper study was performed earlier to assess the impact of FBSR coal-carbon on the DWPF Chemical Processing Cell (CPC) operation and melter off-gas flammability by combining it with SB10-SB13. The results of the paper study are documented in Ref. 7 and the key findings included that SB10 would be the most difficult batch to process with the FBSR coal present and up to 5,000 mg/kg of coal-carbon could be fed to the melter without exceeding the off-gas flammability safety basis limits. In the present study, a bench-scale demonstration of the DWPF CPC processing was performed using SB10 simulants spiked with varying amounts of coal, and the resulting seven CPC products were fed to the DWPF melter cold cap and off-gas dynamics models to determine the maximum coal that can be processed through the melter without exceeding the off-gas flammability safety basis limits. Based on the results of these experimental and modeling studies, the presence of coal-carbon in the sludge feed to DWPF is found to have both positive (+) and negative (-) impact as summarized below: (-) Coal-carbon is a melter reductant. If excess coal-carbon is present, the resulting melter feed may be too reducing, potentially shortening the melter life. During this study, the Reduction/Oxidation Potential (REDOX) of the melter could be controlled by varying the ratio of nitric and formic acid. (-) The addition of coal-carbon increases the amount of nitric acid added and decreases the amount of formic acid added to control melter REDOX. This means that the CPC with the FBSR product is much more oxidizing than current CPC processing. In this study, adequate formic acid was present in all experiments to reduce mercury and manganese, two of the main goals of CPC processing. (-) Coal-carbon will be oxidized to carbon dioxide or carbon monoxide in the melter. The addition of coal-carbon to the FBSR product will lead to approximately 55% higher offgas production from formate, nitrate and carbon due to the decomposition of the carbon at the maximum levels in this testing. Higher offgas production could lead to higher cold cap coverage or melter foaming which could decrease melt rate. No testing was performed to evaluate the impact of the higher melter offgas flow. (+) The hydrogen production is greatly reduced in testing with coal as less formic acid is added in CPC processing. In the high acid run without coal, the peak hydrogen generation was 15 times higher than in the high acid run with added coal-carbon. (+) Coal-carbon is a less problematic reducing agent than formic acid, since the content of both carbon and hydrogen are important in evaluating the flammability of the melter offgas. Processing with coal-carbon decreases the amount of formic acid added in the CPC, leading to a lower flammability risk in processing with coal-carbon compared to the current DWPF flowsheet. (+) The seven SB10 formulations which were tested during the bench-scale CPC demonstration were all determined to be within the off-gas flammability safety basis limits during the 9X/5X off-gas surge for normal bubbled melter

Lambert, D.; Choi, A.

2010-10-15T23:59:59.000Z

244

DWPF COAL-CARBON WASTE ACCEPTANCE CRITERIA LIMIT EVALUATION BASED ON EXPERIMENTAL WORK (TANK 48 IMPACT STUDY)  

Science Conference Proceedings (OSTI)

This report summarizes the results of both experimental and modeling studies performed using Sludge Batch 10 (SB10) simulants and FBSR product from Tank 48 simulant testing in order to develop higher levels of coal-carbon that can be managed by DWPF. Once the Fluidized Bed Steam Reforming (FBSR) process starts up for treatment of Tank 48 legacy waste, the FBSR product stream will contribute higher levels of coal-carbon in the sludge batch for processing at DWPF. Coal-carbon is added into the FBSR process as a reductant and some of it will be present in the FBSR product as unreacted coal. The FBSR product will be slurried in water, transferred to Tank Farm and will be combined with sludge and washed to produce the sludge batch that DWPF will process. The FBSR product is high in both water soluble sodium carbonate and unreacted coal-carbon. Most of the sodium carbonate is removed during washing but all of the coal-carbon will remain and become part of the DWPF sludge batch. A paper study was performed earlier to assess the impact of FBSR coal-carbon on the DWPF Chemical Processing Cell (CPC) operation and melter off-gas flammability by combining it with SB10-SB13. The results of the paper study are documented in Ref. 7 and the key findings included that SB10 would be the most difficult batch to process with the FBSR coal present and up to 5,000 mg/kg of coal-carbon could be fed to the melter without exceeding the off-gas flammability safety basis limits. In the present study, a bench-scale demonstration of the DWPF CPC processing was performed using SB10 simulants spiked with varying amounts of coal, and the resulting seven CPC products were fed to the DWPF melter cold cap and off-gas dynamics models to determine the maximum coal that can be processed through the melter without exceeding the off-gas flammability safety basis limits. Based on the results of these experimental and modeling studies, the presence of coal-carbon in the sludge feed to DWPF is found to have both positive (+) and negative (-) impact as summarized below: (-) Coal-carbon is a melter reductant. If excess coal-carbon is present, the resulting melter feed may be too reducing, potentially shortening the melter life. During this study, the Reduction/Oxidation Potential (REDOX) of the melter could be controlled by varying the ratio of nitric and formic acid. (-) The addition of coal-carbon increases the amount of nitric acid added and decreases the amount of formic acid added to control melter REDOX. This means that the CPC with the FBSR product is much more oxidizing than current CPC processing. In this study, adequate formic acid was present in all experiments to reduce mercury and manganese, two of the main goals of CPC processing. (-) Coal-carbon will be oxidized to carbon dioxide or carbon monoxide in the melter. The addition of coal-carbon to the FBSR product will lead to approximately 55% higher offgas production from formate, nitrate and carbon due to the decomposition of the carbon at the maximum levels in this testing. Higher offgas production could lead to higher cold cap coverage or melter foaming which could decrease melt rate. No testing was performed to evaluate the impact of the higher melter offgas flow. (+) The hydrogen production is greatly reduced in testing with coal as less formic acid is added in CPC processing. In the high acid run without coal, the peak hydrogen generation was 15 times higher than in the high acid run with added coal-carbon. (+) Coal-carbon is a less problematic reducing agent than formic acid, since the content of both carbon and hydrogen are important in evaluating the flammability of the melter offgas. Processing with coal-carbon decreases the amount of formic acid added in the CPC, leading to a lower flammability risk in processing with coal-carbon compared to the current DWPF flowsheet. (+) The seven SB10 formulations which were tested during the bench-scale CPC demonstration were all determined to be within the off-gas flammability safety basis limits during the 9X/5X off-gas surge for normal bubbled melter

Lambert, D.; Choi, A.

2010-10-15T23:59:59.000Z

245

SYNTHESIS OF OXYGENATED PRODUCTS FROM CARBON MONOXIDE AND HYDROGEN OVER SILICA- AND ALUMINA-SUPPORTED RUTHENIUM CATALYSTS  

E-Print Network (OSTI)

Formation Over a 1.01; Ru/A1 o Catalyst at 498K H/CO P (atm)a silica-supported Ru catalyst Fig. 2 Effect of feed flowan alumina-supported Ru catalyst Fig. 3 Effect of reaction

Kellner, C.Stephen

2013-01-01T23:59:59.000Z

246

Seasonal variation of carbon monoxide in northern Japan: Fourier transform IR measurements and source-labeled model calculations  

E-Print Network (OSTI)

the Siberian high and Aleutian low dominated over northernthe Siberian high and Aleutian low resulted in higher

2006-01-01T23:59:59.000Z

247

The effect of carbon monoxide on the colour stability and quality of yellowfin tuna (Thunnus Albacares) muscle.  

E-Print Network (OSTI)

??ENGLISH ABSTRACT: Processors face the problem of extending the shelf-life of yellowfin tuna, while still maintaining the desirable bright red colour. Methods which have commonly… (more)

Neethling, Nikki E.

2013-01-01T23:59:59.000Z

248

SYNTHESIS OF OXYGENATED PRODUCTS FROM CARBON MONOXIDE AND HYDROGEN OVER SILICA- AND ALUMINA-SUPPORTED RUTHENIUM CATALYSTS  

E-Print Network (OSTI)

R. B. , "The Fischer-Tropsch and Related Syntheses", Wiley,with hydrocarbons during Fischer-Tropsch synthesis over iron

Kellner, C.Stephen

2013-01-01T23:59:59.000Z

249

Seasonal variation of carbon monoxide in northern Japan: Fourier transform IR measurements and source-labeled model calculations  

E-Print Network (OSTI)

emissions in this study. Fossil fuel and biofuel emissionsdirect emissions by 20% (fossil fuel) and 10% (biofuel andNMVOC) emissions from fossil fuels [Piccot et al. , 1992

2006-01-01T23:59:59.000Z

250

SYNTHESIS OF OXYGENATED PRODUCTS FROM CARBON MONOXIDE AND HYDROGEN OVER SILICA- AND ALUMINA-SUPPORTED RUTHENIUM CATALYSTS  

E-Print Network (OSTI)

is consistent with the projection discussed above. Theis consistent with the projection given recently by Wilson (

Kellner, C.Stephen

2013-01-01T23:59:59.000Z

251

Thirdhand Tobacco Smoke: Emerging Evidence and Arguments for a Multidisciplinary Research Agenda  

E-Print Network (OSTI)

influence of ammonia and carbon dioxide on the sorption of aInfluence of ammonia and carbon dioxide on the sorption of acarbon monoxide, formaldehyde, hydrogen cyanide, nicotine, nitrogen oxides, polycyclic aromatic hydrocarbons (PAHs), sulfur dioxide

Matt, Georg E.

2013-01-01T23:59:59.000Z

252

NETL: Carbon Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Sequestration Partnerships Regional Carbon Sequestration Partnership (RCSP) Programmatic Points of Contact Carbon Storage Program Infrastructure Coordinator Carbon Storage...

253

Process for the conversion of carbonaceous feedstocks to particulate carbon and methanol  

DOE Patents (OSTI)

A process for the production of a pollutant-free particulate carbon (i.e., a substantially ash-, sulfur- and nitrogen-free carbon) from carbonaceous feedstocks. The basic process involves de-oxygenating one of the gas streams formed in a cyclic hydropyrolysis-methane pyrolysis process in order to improve conversion of the initial carbonaceous feedstock. De-oxygenation is effected by catalytically converting carbon monoxide, carbon dioxide, and hydrogen contained in one of the pyrolysis gas streams, preferably the latter, to a methanol co-product. There are thus produced two products whose use is known per se, viz., a substantially pollutant-free particulate carbon black and methanol. These products may be admixed in the form of a liquid slurry of carbon black in methanol.

Steinberg, Meyer (Melville, NY); Grohse, Edward W. (Port Jefferson, NY)

1995-01-01T23:59:59.000Z

254

Process for the conversion of carbonaceous feedstocks to particulate carbon and methanol  

DOE Patents (OSTI)

A process is described for the production of a pollutant-free particulate carbon (i.e., a substantially ash-, sulfur- and nitrogen-free carbon) from carbonaceous feedstocks. The basic process involves de-oxygenating one of the gas streams formed in a cyclic hydropyrolysis-methane pyrolysis process in order to improve conversion of the initial carbonaceous feedstock. De-oxygenation is effected by catalytically converting carbon monoxide, carbon dioxide, and hydrogen contained in one of the pyrolysis gas streams, preferably the latter, to a methanol co-product. There are thus produced two products whose use is known per se, viz., a substantially pollutant-free particulate carbon black and methanol. These products may be admixed in the form of a liquid slurry of carbon black in methanol. 3 figs.

Steinberg, M.; Grohse, E.W.

1995-06-27T23:59:59.000Z

255

ENERGY CONSERVATION: POLICY ISSUES AND END-USE SCENARIOS OF SAVINGS POTENTIAL PT.2  

E-Print Network (OSTI)

to Elec (RDSF) MSW to Elec (Oil) Source Separation *Million~----------- MSW to Elec (Oil) Source Separation(2) *D.C.Oil Bituminous (Incineration) Coal Particulates Sulphur Oxide Carbon Monoxide Hydrocarbon Nitrogen Oxide Source:

Authors, Various

2011-01-01T23:59:59.000Z

256

Mercury Oxidation and Capture over SCR Catalysts in Simulated ...  

Science Conference Proceedings (OSTI)

The SCR catalysts were tested for oxidation and capture of elemental mercury ... EBSD Analysis of Complex Microstructures of CSP? Processed Low Carbon ...

257

Plasma gasification of coal in different oxidants  

Science Conference Proceedings (OSTI)

Oxidant selection is the highest priority for advanced coal gasification-process development. This paper presents comparative analysis of the Powder River Basin bituminous-coal gasification processes for entrained-flow plasma gasifier. Several oxidants, which might be employed for perspective commercial applications, have been chosen, including air, steam/carbon-dioxide blend, carbon dioxide, steam, steam/air, steam/oxygen, and oxygen. Synthesis gas composition, carbon gasification degree, specific power consumptions, and power efficiency for these processes were determined. The influence of the selected oxidant composition on the gasification-process main characteristics have been investigated.

Matveev, I.B.; Messerle, V.E.; Ustimenko, A.B. [Applied Plasma Technology, Mclean, VA (USA)

2008-12-15T23:59:59.000Z

258

Final Report, "Molecular Design of Hydrocarbon Oxidation Catalytic Processes"  

SciTech Connect

The main goal of this project had been to use model systems to correlate selectivities in partial oxidation catalysis with the presence of specific sites on the surface of the catalyst. Extensive work was performed this year on characterizing oxygen-treated nickel surfaces by chemical means. Specifically, the surface chemistry of ammonia coadsorbed with atomic oxygen on Ni(110) single-crystal surfaces was studied by temperature-programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS). It was determined that at intermediate oxygen coverages direct ammonia adsorption on nickel sites is suppressed, but a new high-temperature reaction regime is generated at 400 K where NHx surface fragments are rehydrogenated concurrently with the production of water and molecular hydrogen. The extensive isotope scrambling and hydrogen transfer seen from nitrogen- to oxygen-containing surface intermediates, and the optimum yields seen for this 400 K state at intermediate oxygen coverages, strongly suggest the direct interaction of the adsorbed ammonia with oxygen atoms at the end of the –Ni–O- rows that form upon reconstruction of the surface. Hydrogen transfer between ammonia and oxygen appears to take place directly via hydrogen bonding, and to be reversible but biased towards water formation. An equilibrium is reached between the produced water and the reacting surface oxygen and hydrogen. The strong influence of the OH surface groups on the thermal chemistry of the adsorbed ammonia was interpreted in terms of the adsorbing geometry of the OH groups on the surface, and of hydrogen bonding between adsorbed OH and NH3 species. In terms of alcohol reactivity, the adsorption of 2-iodoethanol, a precursor for the preparation of 2-hydroxyethyl and oxametallacycle surface species, was found to lead to two configurations involving either just the iodine atom or both iodine and hydroxyl ends of the molecule. A complex chemical behavior starts around 140 K with the production of small amounts of ethylene and water, most likely via the concerted decomposition or disproportionation of the adsorbed molecular species. The bulk of the 2-iodoethanol decomposes at about 150 K via an initial carbon-iodine scission to form –O(H)CH2CH2– (~80%) and 2-hydroxyethyl (~20%) intermediates. Two competing reactions are involved with the subsequent conversion of the 2-hydroxyethyl species around 160 K, a reductive elimination with surface hydrogen to yield ethanol, and a ?-H elimination to surface vinyl alcohol. The –O(H)CH2CH2–, on the other hand, dehydrogenates to a –OCH2CH2– oxametallacycle species about the same temperature. Both 2-hydroxyethyl and oxametallacycle species tautomerize to acetaldehyde, around 210 K and above 250 K, respectively, and some of that acetaldehyde desorbs while the rest decomposes to hydrogen and carbon monoxide. We contend that a better understanding of the surface chemistry of oxygen-containing surfaces can lead to better selectivities in catalysis. This is arguably the most important issue in the field of catalysis in the near future, and one that impacts several technologies of interest to DOE such as the manufacturing of speciality chemicals and the control and removal of pollutants. Additional work was performed on the characterization of the chemistry of methyl and methylene adsorbed species on oxygen-treated nickel surfaces. Complex chemistry was observed involving not only hydrogenation and dehydrogenation steps, but also C-C couplings and methylene insertions to produce heavier hydrocarbons, and oxygen insertion reactions that yield oxygenates. Finally, a dual titration technique employing xenon and a chemically sensitive probe was developed to identify minority catalytic sites on oxide surfaces. In the case of oxygen-treated Ni(110) single crystals, it was found that both hydrogen transfer with adsorbed water or ammonia and certain hydrocarbon hydrogenation reactions take place at the end of the –Ni–O rows that form in this system. Carbon and nitrogen oxides, on the other hand, display no pre

Professor Francisco Zaera

2007-08-09T23:59:59.000Z

259

Investigation of the Local Structure of Graphene Oxide  

Science Conference Proceedings (OSTI)

A study of the local structure of graphene oxide is presented. Graphene oxide is understood to be partially oxidized graphene. Absorption peaks corresponding to interlayer states suggest the presence of pristine graphitic nanoislands in graphene oxide. Site-projected partial density of states of carbon atoms bonded to oxygen atoms suggests that the broadening of the peak due to interlayer states in the carbon K-edge spectrum of graphene oxide is predominantly due to formation of epoxide linkages. Density functional theory suggests that multilayers of graphene oxide are linked by peroxide-like linkages.

S Saxena; T Tyson; E Negusse

2011-12-31T23:59:59.000Z

260

Carbonate thermochemical cycle for the production of hydrogen  

DOE Patents (OSTI)

The present invention is directed to a thermochemical method for the production of hydrogen from water. The method includes reacting a multi-valent metal oxide, water and a carbonate to produce an alkali metal-multi-valent metal oxide compound, carbon dioxide, and hydrogen.

Collins, Jack L (Knoxville, TN); Dole, Leslie R (Knoxville, TN); Ferrada, Juan J (Knoxville, TN); Forsberg, Charles W (Oak Ridge, TN); Haire, Marvin J (Oak Ridge, TN); Hunt, Rodney D (Oak Ridge, TN); Lewis Jr., Benjamin E (Knoxville, TN); Wymer, Raymond G (Oak Ridge, TN)

2010-02-23T23:59:59.000Z

Note: This page contains sample records for the topic "oxides carbon monoxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Methanol partial oxidation reformer  

DOE Patents (OSTI)

A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

Ahmed, S.; Kumar, R.; Krumpelt, M.

1999-08-24T23:59:59.000Z

262

Methanol partial oxidation reformer  

DOE Patents (OSTI)

A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

Ahmed, S.; Kumar, R.; Krumpelt, M.

1999-08-17T23:59:59.000Z

263

Carbon Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Cycle Carbon Cycle Latest Global Carbon Budget Estimates Including CDIAC Estimates Terrestrial Carbon Management Data Sets and Analyses Carbon Dioxide Emissions from Fossil-Fuel Consumption and Cement Manufacture, (2011) Annual Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (2012) Monthly Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (2012) Annual Fossil-Fuel CO2 Emissions: Global Stable Carbon Isotopic Signature (2012) Monthly Fossil-Fuel CO2 Emissions: Isomass (δ 13C) of Emissions Gridded by One Degree Latitude by One Degree Longitude (2012) AmeriFlux - Terrestrial Carbon Dioxide, Water Vapor, and Energy Balance Measurements Estimates of Monthly CO2 Emissions and Associated 13C/12C Values

264

Carbon Isotopes  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Trace Gases » Carbon Isotopes Atmospheric Trace Gases » Carbon Isotopes Carbon Isotopes Gateway Pages to Isotopes Data Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and Carbon-13 in Methane 800,000 Deuterium Record and Shorter Records of Various Isotopic Species from Ice Cores Carbon-13 13C in CO Measurements from Niwot Ridge, Colorado and Montana de Oro, California (Tyler) 13C in CO2 NOAA/CMDL Flask Network (White and Vaughn) CSIRO GASLAB Flask Network (Allison, Francey, and Krummel) CSIRO in situ measurements at Cape Grim, Tasmania (Francey and Allison) Scripps Institution of Oceanography (Keeling et al.) 13C in CH4 NOAA/CMDL Flask Network (Miller and White) Northern & Southern Hemisphere Sites (Quay and Stutsman) Northern & Southern Hemisphere Sites (Stevens)

265

Fundamental studies of the mechanism of catalytic reactions with catalysts effective in the gasification of carbon solids and the oxidative coupling of methane. Quarterly report, April 1, 1992--June 30, 1992  

DOE Green Energy (OSTI)

Work continued on the catalytic conversion of methane to produce C{sub 2}, C{sub 3},and C{sub 4} hydrocarbons. Progress is reported on the catalytic effects of Lithium Oxide and Magnesium Oxide catalysts.

Heinemann, H.; Somorjai, G.A.; Perry, D.L.

1992-06-01T23:59:59.000Z

266

Integration of carbonate fuel cells with advanced coal gasification systems  

DOE Green Energy (OSTI)

Carbonate fuel cells have attributes which make them ideally suited to operate on coal-derived fuel gas; they can convert the methane, hydrogen, and carbon monoxide present in coal derived fuel gas directly to electricity, are not subject to thermodynamic cycle limits as are heat engines, and operate at temperatures compatible with coal gasifiers. Some new opportunities for improved efficiency have been identified in integrated coal gasification/carbonate fuel cells which take advantage of low temperature catalytic coal gasification producing a methane-rich fuel gas, and the internal methane reforming capabilities of Energy Research Corporation's carbonate fuel cells. By selecting the appropriate operating conditions and catalyst in the gasifier, methane formation is maximized to improve gasification efficiency and to take advantage of the heat management aspects of the internal reforming carbonate fuel cell. These advanced integrated gasification/carbonate fuel cell systems are projected to have better efficiencies than gasification/carbonate fuel cell systems employing conventional gasification, and also competing non-fuel cell systems. These improved efficiencies would be accompanied by a corresponding reduction in impact on the environment as well.

Steinfeld, G. (Energy Research Corp., Danbury, CT (United States)); Meyers, S.J. (Fluor Daniel, Inc., Irvine, CA (United States)); Hauserman, W.B. (North Dakota Univ., Grand Forks, ND (United States). Energy and Environmental Research Center)

1992-01-01T23:59:59.000Z

267

Integration of carbonate fuel cells with advanced coal gasification systems  

DOE Green Energy (OSTI)

Carbonate fuel cells have attributes which make them ideally suited to operate on coal-derived fuel gas; they can convert the methane, hydrogen, and carbon monoxide present in coal derived fuel gas directly to electricity, are not subject to thermodynamic cycle limits as are heat engines, and operate at temperatures compatible with coal gasifiers. Some new opportunities for improved efficiency have been identified in integrated coal gasification/carbonate fuel cells which take advantage of low temperature catalytic coal gasification producing a methane-rich fuel gas, and the internal methane reforming capabilities of Energy Research Corporation`s carbonate fuel cells. By selecting the appropriate operating conditions and catalyst in the gasifier, methane formation is maximized to improve gasification efficiency and to take advantage of the heat management aspects of the internal reforming carbonate fuel cell. These advanced integrated gasification/carbonate fuel cell systems are projected to have better efficiencies than gasification/carbonate fuel cell systems employing conventional gasification, and also competing non-fuel cell systems. These improved efficiencies would be accompanied by a corresponding reduction in impact on the environment as well.

Steinfeld, G. [Energy Research Corp., Danbury, CT (United States); Meyers, S.J. [Fluor Daniel, Inc., Irvine, CA (United States); Hauserman, W.B. [North Dakota Univ., Grand Forks, ND (United States). Energy and Environmental Research Center

1992-12-01T23:59:59.000Z

268

Coal Ash Carbon Removal Technologies  

Science Conference Proceedings (OSTI)

Market resistance to the use of ash containing elevated levels of carbon and/or ammonia has become a major concern for coal-fired facilities in recent years as a result of increased use of nitrogen oxide (NOx) reduction environmental control technologies. EPRI initiated this state of practice assessment to help power producers evaluate alternatives for ash beneficiation.

2001-11-01T23:59:59.000Z

269

Multifunctional Oxides  

Science Conference Proceedings (OSTI)

3) Electric, ferroelectric, magnetic and photonic properties of oxides 4) Theoretical modeling of epitaxial growth, interfaces and microstructures 5) Composition ...

270

Destruction of organic wastes with molten oxidizers  

DOE Patents (OSTI)

A process for destruction of biologically hazardous organic chemical wastes by using liquefied strongly oxidizing inorganic salts, such as the alkali metal nitrates, at high temperatures and atmospheric pressure, to yield inorganic salts, carbon dioxide, and water. The oxidizing salts are regenerated and recycled.

Bradshaw, R.W.; Holmes, J.T.; Tyner, C.E.

1990-12-31T23:59:59.000Z

271

Destruction of organic wastes with molten oxidizers  

DOE Patents (OSTI)

A process for destruction of biologically hazardous organic chemical wastes by using liquefied strongly oxidizing inorganic salts, such as the alkali metal nitrates, at high temperatures and atmospheric pressure, to yield inorganic salts, carbon dioxide, and water. The oxidizing salts are regenerated and recycled.

Bradshaw, R.W.; Holmes, J.T.; Tyner, C.E.

1990-01-01T23:59:59.000Z

272

Carbon dioxide sequestration in cement kiln dust through mineral carbonation  

Science Conference Proceedings (OSTI)

Carbon sequestration through the formation of carbonates is a potential means to reduce CO{sub 2} emissions. Alkaline industrial solid wastes typically have high mass fractions of reactive oxides that may not require preprocessing, making them an attractive source material for mineral carbonation. The degree of mineral carbonation achievable in cement kiln dust (CKD) under ambient temperatures and pressures was examined through a series of batch and column experiments. The overall extent and potential mechanisms and rate behavior of the carbonation process were assessed through a complementary set of analytical and empirical methods, including mass change, thermal analysis, and X-ray diffraction. The carbonation reactions were carried out primarily through the reaction of CO{sub 2} with Ca(OH){sub 2}, and CaCO{sub 3} was observed as the predominant carbonation product. A sequestration extent of over 60% was observed within 8 h of reaction without any modifications to the waste. Sequestration appears to follow unreacted core model theory where reaction kinetics are controlled by a first-order rate constant at early times; however, as carbonation progresses, the kinetics of the reaction are attenuated by the extent of the reaction due to diffusion control, with the extent of conversion never reaching completion. 35 refs., 3 figs., 1 tab.

Deborah N. Huntzinger; John S. Gierke; S. Komar Kawatra; Timothy C. Eisele; Lawrence L. Sutter [University of Michigan, Ann Arbor, MI (United States). Department of Civil and Environmental Engineering

2009-03-15T23:59:59.000Z

273

Method for making carbon super capacitor electrode materials  

DOE Patents (OSTI)

A method for making near-net-shape, monolithic carbon electrodes for energy storage devices. The method includes the controlled pyrolysis and activation of a pressed shape of methyl cellulose powder with pyrolysis being carried out in two stages; pre-oxidation, preferably in air at a temperature between 200.degree.-250.degree. C., followed by carbonization under an inert atmosphere. An activation step to adjust the surface area of the carbon shape to a value desirable for the application being considered, including heating the carbon shape in an oxidizing atmosphere to a temperature of at least 300.degree. C., follows carbonization.

Firsich, David W. (Dayton, OH); Ingersoll, David (Albuquerque, NM); Delnick, Frank M. (Dexter, MI)

1998-01-01T23:59:59.000Z

274

Method for making carbon super capacitor electrode materials  

DOE Patents (OSTI)

A method is described for making near-net-shape, monolithic carbon electrodes for energy storage devices. The method includes the controlled pyrolysis and activation of a pressed shape of methyl cellulose powder with pyrolysis being carried out in two stages; pre-oxidation, preferably in air at a temperature between 200--250 C, followed by carbonization under an inert atmosphere. An activation step to adjust the surface area of the carbon shape to a value desirable for the application being considered, including heating the carbon shape in an oxidizing atmosphere to a temperature of at least 300 C, follows carbonization. 1 fig.

Firsich, D.W.; Ingersoll, D.; Delnick, F.M.

1998-07-07T23:59:59.000Z

275

Carbon Nanotubes  

Science Conference Proceedings (OSTI)

Carbon Nanotubes. Sponsored by: TMS Electronic, Magnetic and Photonic Materials Division Date and Time: Sunday, February 13, 2005 ~ 8:30 am-5:00 pm

276

Carbon Nanomaterials  

Science Conference Proceedings (OSTI)

Mar 12, 2012 ... The graphene film was spin-coated using carbon nanotubes to form the cathode of the field emission device. A phosphor coated graphene-PET ...

277

NETL: Carbon Storage - Carbon Sequestration Leadership Forum  

NLE Websites -- All DOE Office Websites (Extended Search)

CSLF Carbon Storage Carbon Sequestration Leadership Forum CSLF Logo The Carbon Sequestration Leadership Forum (CSLF) is a voluntary climate initiative of industrially developed and...

278

CARBON7510.pdf  

NLE Websites -- All DOE Office Websites (Extended Search)

Author's personal copy Author's personal copy NMR a critical tool to study the production of carbon fiber from lignin Marcus Foston a , Grady A. Nunnery b , Xianzhi Meng a , Qining Sun a , Frederick S. Baker b , Arthur Ragauskas a, * a BioEnergy Science Center, School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, 500 10th St., Atlanta, GA 30332, United States b Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6087, United States A R T I C L E I N F O Article history: Received 7 April 2012 Accepted 6 September 2012 Available online 14 September 2012 A B S T R A C T The structural changes occurring to hardwood Alcell TM lignin as a result of fiber devolatiliza- tion/extrusion, oxidative thermo-stabilization and carbonization are investigated in this study by solid-state and solution nuclear magnetic resonance

279

Method for making carbon films  

DOE Patents (OSTI)

A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area ([approx equal]1000 m[sup 2] /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160 C for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750 C in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750--850 C for between 1--6 hours. 2 figs.

Tan, M.X.

1999-07-29T23:59:59.000Z

280

Method for making carbon films  

DOE Patents (OSTI)

A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area (.apprxeq.1000 m.sup.2 /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160.degree. C. for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750.degree. C. in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750-850.degree. C. for between 1-6 hours.

Tan, Ming X. (Livermore, CA)

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxides carbon monoxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Nucleating effect of carbon nanoparticles and their influence on the thermal and chemical stability of polypropylene  

Science Conference Proceedings (OSTI)

The effect of carbon nanofibers (CNFs) and carbon nanotubes (CNTs) on the thermal and chemical stability of polypropylene (PP) when subjected to oxidation in a strong acid medium was studied. The effect of CNFs and CNTs on the crystalline morphology ...

F. Avalos-Belmontes, L. F. Ramos-deValle, E. Ramírez-Vargas, S. Sánchez-Valdes, J. Méndez-Nonel, R. Zitzumbo-Guzmán

2012-01-01T23:59:59.000Z

282

Internal energy and parameters of the order-disorder phase transition in titanium monoxide TiO{sub y}  

Science Conference Proceedings (OSTI)

Quantum-mechanical ab initio calculations are used to simulate the free energy functions for titanium monoxide TiO{sub y}. The effect of the long-range order of the Ti{sub 5}O{sub 5} type superstructure on the internal energy of the compound is studied by the supercell method. The dependences of the configuration entropy and free energy on the long-range order parameter are determined. It is found that the order-disorder phase transition in titanium monoxide must occur in accordance with the mechanism of the first-order phase transition with a critical value of the long-range order parameter of 0.971. The calculated parameters of the phase transition are compared with the experimental data and the results obtained using the model of point charges and by calculating the Madelung energy. It is concluded that the short-range order and the phonon entropy must be taken into account in calculating the equilibrium phase diagrams for strongly nonstoichiometric compounds.

Kostenko, M. G.; Rempel, A. A., E-mail: rempel@ihim.uran.ru [Russian Academy of Sciences, Institute of Solid-State Chemistry, Ural Branch (Russian Federation); Lukoyanov, A. V. [Ural Federal University (Russian Federation)

2013-06-15T23:59:59.000Z

283

The Carbon Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Cycle Print E-mail U.S. Carbon Cycle Science Program U.S. Carbon Cycle Science Program The U.S. Carbon Cycle Science Program, in consultation with the Carbon Cycle...

284

Carbon Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

David a. Lang David a. Lang Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4881 david.lang@netl.doe.gov andrew chizmeshya Arizona State University Center for Solid State Science Tempe, AZ 85287-1704 480-965-6072 chizmesh@asu.edu A Novel ApproAch to MiNerAl cArboNAtioN: eNhANciNg cArboNAtioN While AvoidiNg MiNerAl pretreAtMeNt process cost Background Carbonation of the widely occurring minerals of the olivine group, such as forsterite (Mg 2 SiO 4 ), is a potential large-scale sequestration process that converts CO 2 into the environmentally benign mineral magnesite (MgCO 3 ). Because the process is exothermic, it inherently offers low-cost potential. Enhancing carbonation reactivity is the key to economic viability. Previous

285

Hydrous oxide activated charcoal  

SciTech Connect

This patent describes a process for preparing of an ion exchanger, comprising: treating an ionically inert activated charcoal porous support with an aqueous solution of metal oxychloride selected from the group consisting of zirconium and titanium oxychlorides so as to impregnate the pores of the support with the solution; separating the treated support from excess metal oxychloride solution; converting the metal oxychloride to a hydrous metal oxide precipitate in the pores of the support at a pH above 8 and above the pH whereat the hydrous metal oxide and activated charcoal support have opposite zeta potentials and sufficient to hydrolyze the metal oxychloride. It also describes a process for preparing an ion exchanger comprising: treating granulated activated charcoal with a concentrated solution of a metal oxychloride from the group consisting of zirconium and titanium oxychlorides, degassing the mixture; and treating the resultant mixture with a base selected from the group consisting of ammonium hydroxide and alkali metal hydroxides so as to precipitate the oxychloride within the pores of the activated carbon granules as hydrous metal oxide at a pH above 8 and above the pH whereat the hydrous metal oxide and activated charcoal have opposite zeta potentials.

Weller, J.P.

1987-09-08T23:59:59.000Z

286

Traffic-related air pollution exposures and changes in heart rate variability in Mexico City: A panel study  

E-Print Network (OSTI)

related pollutants including PM 2.5 , carbon dioxide (COparticles; CO 2 : Carbon dioxide; CO: Carbon monoxide; HF:2 ), carbon monoxide (CO), nitrogen dioxide (NO 2 ),

2013-01-01T23:59:59.000Z

287

UNDERSTANDING CURE INHIBITION IN CARBON FIBER REINFORCED VINYL ESTER RESIN COMPOSITES.  

E-Print Network (OSTI)

??The effect of neat and oxidized carbon fiber reinforcements on vinyl ester resin free radical polymerization was investigated. First, the free radical polymerization of neat… (more)

Tweed-Kent, Sean

2008-01-01T23:59:59.000Z

288

Reactive based NOx sensor  

E-Print Network (OSTI)

Diesel engines exhibit better fuel economy and emit fewer greenhouse gases than gasoline engines. Modern diesel technology has virtually eliminated carbon monoxide and particulate emissions. Sulfur oxide emissions have ...

Vassiliou, Christophoros Christou

2006-01-01T23:59:59.000Z

289

Dr. Oktay Demircan Post Doctoral Fellow,  

E-Print Network (OSTI)

such as hydrogen, carbon monoxide (CO), n- butane, coal syngas, and logistic fuels in Solid Oxide Fuel Cells (SOFCs conversion. Examine coal syngas impurities on SOFCs performance. Application of nanoparticles on anode

290

Stability of Iridium Anode in Molten Oxide Electrolysis for Ironmaking: Influence of Slag Basicity  

E-Print Network (OSTI)

Molten oxide electrolysis (MOE) is a carbon-neutral, electrochemical technique to decompose metal oxide directly into liquid metal and oxygen gas upon use of an inert anode. What sets MOE apart from other technologies is ...

Kim, Hojong

291

Electrolysis of Molten Iron Oxide with an Iridium Anode: The Role of Electrolyte Basicity  

E-Print Network (OSTI)

Molten oxide electrolysis (MOE) is a carbon-free, electrochemical technique to decompose a metal oxide directly into liquid metal and oxygen gas. From an environmental perspective what makes MOE attractive is its ability ...

Kim, Hojong

292

Cathode-preparation method for molten-carbonate fuel cell  

DOE Green Energy (OSTI)

A method of preparing a porous cathode structure for use in a molten carbonate fuel cell begins by providing a porous integral plaque of sintered nickel oxide particles. The nickel oxide plaque can be obtained by oxidizing a sintered plaque of nickel metal or by compacting and sintering finely divided nickel oxide particles to the desired pore structure. The porous sintered nickel oxide plaque is contacted with a lithium salt for a sufficient time to lithiate the nickel oxide structure and thus enhance its electronic conductivity. The lithiation can be carried out either within an operating fuel cell or prior to assembling the plaque as a cathode within the fuel cell.

Smith, J.L.; Sim, J.W.; Kucera, E.H.

1982-01-28T23:59:59.000Z

293

Fundamental studies of the mechanism of catalytic reactions with catalysts effective in the gasification of carbon solids and the oxidative coupling of methane. Quarterly report, October 1, 1994--December 31, 1994  

SciTech Connect

This report describes research on the oxidative coupling of methane and catalysts involved in coal gasification. Topics include methane pyrolysis and catalysts, and magnetic properties of the coal gasification catalyst Ca-Ni-K-O system.

Iglesia, E.; Perry, D.L.; Heinemann, H.

1994-12-01T23:59:59.000Z

294

Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon...  

NLE Websites -- All DOE Office Websites (Extended Search)

Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and Carbon-13 in Methane Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and...

295

Carbon supercapacitors  

SciTech Connect

Carbon supercapacitors are represented as distributed RC networks with transmission line equivalent circuits. At low charge/discharge rates and low frequencies these networks approximate a simple series R{sub ESR}C circuit. The energy efficiency of the supercapacitor is limited by the voltage drop across the ESR. The pore structure of the carbon electrode defines the electrochemically active surface area which in turn establishes the volume specific capacitance of the carbon material. To date, the highest volume specific capacitance reported for a supercapacitor electrode is 220F/cm{sup 3} in aqueous H{sub 2}SO{sub 4} (10) and {approximately}60 F/cm{sup 3} in nonaqueous electrolyte (8).

Delnick, F.M.

1993-11-01T23:59:59.000Z

296

Carbon particles  

DOE Patents (OSTI)

A method and apparatus whereby small carbon particles are made by pyrolysis of a mixture of acetylene carried in argon. The mixture is injected through a nozzle into a heated tube. A small amount of air is added to the mixture. In order to prevent carbon build-up at the nozzle, the nozzle tip is externally cooled. The tube is also elongated sufficiently to assure efficient pyrolysis at the desired flow rates. A key feature of the method is that the acetylene and argon, for example, are premixed in a dilute ratio, and such mixture is injected while cool to minimize the agglomeration of the particles, which produces carbon particles with desired optical properties for use as a solar radiant heat absorber.

Hunt, Arlon J. (Oakland, CA)

1984-01-01T23:59:59.000Z

297

Carbon microtubes  

DOE Patents (OSTI)

A carbon microtube comprising a hollow, substantially tubular structure having a porous wall, wherein the microtube has a diameter of from about 10 .mu.m to about 150 .mu.m, and a density of less than 20 mg/cm.sup.3. Also described is a carbon microtube, having a diameter of at least 10 .mu.m and comprising a hollow, substantially tubular structure having a porous wall, wherein the porous wall comprises a plurality of voids, said voids substantially parallel to the length of the microtube, and defined by an inner surface, an outer surface, and a shared surface separating two adjacent voids.

Peng, Huisheng (Shanghai, CN); Zhu, Yuntian Theodore (Cary, NC); Peterson, Dean E. (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM)

2011-06-14T23:59:59.000Z

298

PRODUCTION OF URANIUM METAL BY CARBON REDUCTION  

DOE Patents (OSTI)

The preparation of uranium metal by the carbon reduction of an oxide of uranium is described. In a preferred embodiment of the invention a charge composed of carbon and uranium oxide is heated to a solid mass after which it is further heated under vacuum to a temperature of about 2000 deg C to produce a fused uranium metal. Slowly ccoling the fused mass produces a dendritic structure of uranium carbide in uranium metal. Reacting the solidified charge with deionized water hydrolyzes the uranium carbide to finely divide uranium dioxide which can be separated from the coarser uranium metal by ordinary filtration methods.

Holden, R.B.; Powers, R.M.; Blaber, O.J.

1959-09-22T23:59:59.000Z

299

Low-Temperature Fluorination of Soft-Templated Mesoporous Carbons for a High-Power Lithium/Carbon Fluoride Battery  

Science Conference Proceedings (OSTI)

Soft-templated mesoporous carbons and activated mesoporous carbons were fluorinated using elemental fluorine between room temperature and 235 C. The mesoporous carbons were prepared via self-assembly synthesis of phloroglucinol formaldehyde as a carbon precursor in the presence of triblock ethylene oxide propylene oxide ethylene oxide copolymer BASF Pluronic F127 as the template. The F/C ratios ranged from 0.15 to 0.75 according to gravimetric, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy analysis. Materials have mesopore diameters up to 11 nm and specific surface areas as high as 850 m2 g 1 after fluorination as calculated from nitrogen adsorption isotherms at 196 C. Furthermore, the materials exhibit higher discharge potentials and energy and power densities as well as faster reaction kinetics under high current densities than commercial carbon fluorides with similar fluorine contents when tested as cathodes for Li/CFx batteries.

Fulvio, Pasquale F [ORNL; Dai, Sheng [ORNL; Guo, Bingkun [ORNL; Mahurin, Shannon Mark [ORNL; Mayes, Richard T [ORNL; Sun, Xiao-Guang [ORNL; Veith, Gabriel M [ORNL; Brown, Suree [ORNL; Adcock, Jamie [University of Tennessee, Knoxville (UTK)

2011-01-01T23:59:59.000Z

300

Fundamental studies of the mechanism of catalytic reactions with catalysts effective in the gasification of carbon solids and the oxidative coupling of methane. Quarterly report, October 1--December 31, 1993  

SciTech Connect

This report covers the time period from October 1 through December 31, 1993. A description of tasks for fiscal year 1994 is included in this report. Highlights and progress of work performed during this quarter is reported in (a) catalytic steam gasification of coals and cokes; (b) oxidative coupling of methane; and (c) synthesis and characterization of catalysts. Attached to this report is a copy of a manuscript submitted to Proceeding of Fuels Technology Contractors Meeting {open_quotes}Steady-State and Transient Catalytic Oxidation and Coupling of Methane{close_quotes} by Heinemann, Iglesia, and Perry.

Heinemann, H.; Iglesia, E.; Perry, D.L.

1993-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxides carbon monoxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Methods for producing reinforced carbon nanotubes  

DOE Patents (OSTI)

Methods for producing reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials are disclosed. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

Ren, Zhifen (Newton, MA); Wen, Jian Guo (Newton, MA); Lao, Jing Y. (Chestnut Hill, MA); Li, Wenzhi (Brookline, MA)

2008-10-28T23:59:59.000Z

302

Carbon | Open Energy Information  

Open Energy Info (EERE)

Carbon Sector Retrieved from "http:en.openei.orgwindex.php?titleCarbon&oldid271960" Categories: Articles with outstanding TODO tasks...

303

Kinetics of beneficiated fly ash by carbon burnout  

Science Conference Proceedings (OSTI)

The presence of carbon in fly ash requires an increase in the dosage of the air-entraining admixture for concrete mix, and may cause the admixture to lose efficiency. Specifying authorities for the concrete producers have set maximum allowable levels of residual carbon. These levels are the so called Loss On Ignition (LOI). The concrete producers` day-to-day purchasing decisions sets the LOI at 4%. The objective of the project is to investigate the kinetics of oxidation of residual carbon present in coal fly ash as a possible first step toward producing low-carbon fly ash from high-carbon, low quality fly ash.

Okoh, J.M.; Dodoo, J.N.D.; Diaz, A. [Univ. of Maryland Eastern Shore, Princess Anne, MD (United States). Dept. of Natural Sciences; Ferguson, W.; Udinskey, J.R. Jr.; Christiana, G.A. [Delmarva Power, Wilmington, DE (United States)

1997-12-31T23:59:59.000Z

304

Carbon Additionality: Discussion Paper  

E-Print Network (OSTI)

Carbon Additionality: A review Discussion Paper Gregory Valatin November 2009 Forest Research. Voluntary Carbon Standards American Carbon Registry Forest Carbon Project Standard (ACRFCPS) 27 CarbonFix Standard (CFS) 28 Climate, Community and Biodiversity Standard (CCBS) 28 Forest Carbon Standard (FCS) 28

305

Graphite Oxidation Thermodynamics/Reactions  

Science Conference Proceedings (OSTI)

The vulnerability of graphite-matrix spent nuclear fuel to oxidation by the ambient atmosphere if the fuel canister is breached was evaluated. Thermochemical and kinetic data over the anticipated range of storage temperatures (200 to 400 C) were used to calculate the times required for a total carbon mass loss of 1 mgcm-2 from a fuel specimen. At 200 C, the time required to produce even this small loss is large, 900,000 yr. However, at 400 C the time required is only 1.9 yr. The rate of oxidation at 200 C is negligible, and the rate even at 400 C is so small as to be of no practical consequence. Therefore, oxidation of the spent nuclear fuel upon a loss of canister integrity is not anticipated to be a concern based upon the results of this study.

Propp, W.A.

1998-09-01T23:59:59.000Z

306

Non-oxidative conversion of methane with continuous hydorgen removal  

SciTech Connect

The objective is to overcome the restrictions of non-oxidative methane pyrolysis and oxidative coupling of methane by transferring hydrogen across a selective inorganic membrane between methane and air streams, without simultaneous transport of hydrocarbon reactants or products. This will make the overall reaction system exothermic, remove the thermodynamic barrier to high conversion, and eliminate the formation of carbon oxides. Our approach is to couple C-H bond activation and hydrogen removal by passage of hydrogen atoms through a dense ceramic membrane. In our membrane reactor, catalytic methane pyrolysis produces C2+ hydrogen carbons and aromatics on the one side of the membrane and hydrogen is removed through an oxide film and combusted with air on the opposite side. This process leads to a net reaction with the stoichiometry and thermodynamic properties of oxidative coupling, but without contact between the carbon atoms and oxygen species.

Borry, R.W. III [California Univ., Berkeley, CA (United States). Dept. of Chemical Engineering; Iglesia, E. [California Univ., Berkeley, CA (United States). Lawrence Berkeley Lab.

1997-12-31T23:59:59.000Z

307

Chemical oxidizers treat wastewater  

SciTech Connect

Based on the inherent benefits of these original oxidation systems, a second generation of advanced oxidation processes (AOPs) has emerged. These processes combine key features of the first generation technologies with more sophisticated advances in UV technology, such as the new pulsed plasma xenon flash lamp that emits high-energy, high-intensity UV light. Second generation systems can be equipped with a transmittance controller to prevent lamp fouling or scaling. The coupling of the first generation's technology with the new UV sources provides the rapid destruction of chlorinated and nonchlorinated hydrocarbons and humic acids from contaminated water. It also is effective in the treatment of organic laden gases from soil vapor extraction systems. AOPs may promote the oxidation (and subsequent removal) of heavy metals in water, though few data are available to verify the claim. The success of AOPs, including ozonation with UV light, hydrogen peroxide with UV light and advanced photolysis, is linked with their creation of hydroxyl-free radicals (OH[center dot]) that are effective in eliminating contaminants such as formaldehyde, chlorinated hydrocarbons and chlorinated solvents. Hydroxyl free-radicals are consumed in microsecond reactions and exhibit little substrate selectivity with the exception of halogenated alkanes such as chloroform. They can act as chain carriers. Given their power, hydroxyl free-radicals react with virtually all organic solutes more quickly (especially in water) than any other oxidants, except fluorine. There are projects that have found the combination of some AOPs to be the most efficient organic destruction techniques for the job. For example, one project successfully remediated groundwater contaminated with gasoline and Number 2 diesel through successive treatments of ozone and hydrogen peroxide with ultraviolet light, followed by granular activated carbon. 5 refs., 2 tabs.

Stephenson, F.A. (Dames Moore, Phoenix, AZ (United States))

1992-12-01T23:59:59.000Z

308

Carbon Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-4966 jose.figueroa@netl.doe.gov Kevin o'Brien Principal Investigator SRI International Materials Research Laboratory 333 Ravenswood Avenue Menlo Park, AK 94025 650-859-3528 kevin.obrien@sri.com Fabrication and Scale-Up oF polybenzimidazole - baSed membrane SyStem For pre - combUStion captUre oF carbon dioxide Background In order to effectively sequester carbon dioxide (CO 2 ) from a gasification plant, there must be an economically viable method for removing the CO 2 from other gases. While CO 2 separation technologies currently exist, their effectiveness is limited. Amine-based separation technologies work only at low temperatures, while pressure-swing absorption and cryogenic distillation consume significantly

309

Carbon Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

andrea Mcnemar andrea Mcnemar National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-2024 andrea.mcnemar@netl.doe.gov Gregory J. Elbring Principal Investigator Sandia National Laboratory P.O. Box 5800 Albuquerque, NM 87185 505-844-4904 gjelbri@sandia.gov GeoloGic SequeStration of carbon DioxiDe in a DepleteD oil reServoir: a comprehenSive moDelinG anD Site monitorinG project Background The use of carbon dioxide (CO 2 ) to enhance oil recovery (EOR) is a familiar and frequently used technique in the United States. The oil and gas industry has significant experience with well drilling and injecting CO 2 into oil-bearing formations to enhance production. While using similar techniques as in oil production, this sequestration field

310

Fundamental studies of the mechanism of catalytic reactions with catalysts effective in the gasification of carbon solids and the oxidative coupling of methane. Quarterly report, July 1, 1994--September 30, 1994  

SciTech Connect

Research continued on the study of catalysts and membrane materials involved in the oxidative coupling of methane and coal gasification processes. Membranes studied and fabricated included Sr-Zr-Y-O, Sr-Zr-Y, and Sr-Ce-Y-O systems.

Iglesia, E.; Perry, D.L.; Heinemann, H.

1994-09-01T23:59:59.000Z

311

Gasification behavior of carbon residue in bed solids of black liquor gasifier  

SciTech Connect

Steam gasification of carbon residue in bed solids of a low-temperature black liquor gasifier was studied using a thermogravimetric system at 3 bar. Complete gasification of the carbon residue, which remained unreactive at 600 C, was achieved in about 10 min as the temperature increased to 800 C. The rate of gasification and its temperature dependence were evaluated from the non-isothermal experiment results. Effects of particle size and adding H{sub 2} and CO to the gasification agent were also studied. The rate of steam gasification could be taken as zero order in carbon until 80% of carbon was gasified, and for the rest of the gasification process the rate appeared to be first order in carbon. The maximum rate of carbon conversion was around 0.003/s and the activation energy was estimated to be in the range of 230-300 kJ/mol. The particle size did not show significant effect on the rate of gasification. Hydrogen and carbon monoxide appeared to retard the onset of the gasification process. (author)

Preto, Fernando; Zhang, Xiaojie (Frank); Wang, Jinsheng [CANMET Energy Technology Centre, Natural Resources (Canada)

2008-07-15T23:59:59.000Z

312

Incorporation of catalytic dehydrogenation into Fischer-Tropsch synthesis to lower carbon dioxide emissions  

DOE Patents (OSTI)

A method for producing liquid fuels includes the steps of gasifying a starting material selected from a group consisting of coal, biomass, carbon nanotubes and mixtures thereof to produce a syngas, subjecting that syngas to Fischer-Tropsch synthesis (FTS) to produce a hyrdrocarbon product stream, separating that hydrocarbon product stream into C1-C4 hydrocarbons and C5+ hydrocarbons to be used as liquid fuels and subjecting the C1-C4 hydrocarbons to catalytic dehydrogenation (CDH) to produce hydrogen and carbon nanotubes. The hydrogen produced by CDH is recycled to be mixed with the syngas incident to the FTS reactor in order to raise the hydrogen to carbon monoxide ratio of the syngas to values of 2 or higher, which is required to produce liquid hydrocarbon fuels. This is accomplished with little or no production of carbon dioxide, a greenhouse gas. The carbon is captured in the form of a potentially valuable by-product, multi-walled carbon nanotubes (MWNT), while huge emissions of carbon dioxide are avoided and very large quantities of water employed for the water-gas shift in traditional FTS systems are saved.

Huffman, Gerald P

2012-09-18T23:59:59.000Z

313

KINETICS OF FLY ASH BENEFICIATION BY CARBON BURNOUT  

SciTech Connect

Surface area analyses performed on fly ash samples reveal that the surface area is controlled by carbon content. The higher surface areas found in large particles are due to the presence of highly porous carbonaceous particles. Adsorption-desorption isotherms and t-plots of fly ash samples indicate that fly ash is porous. BJH Adsorption/Desorption pore size analysis reveal that pore diameters are independent of sieve size. They appear to be dependent only on the nature of the material which confers porosity. Based on the results of Brown and Dykstra (41) it is reasonable to assume that calculations of reaction rates at temperatures above 550 C were confounded by weight losses from processes other than carbon oxidation and, therefore, are not useful in determination of the temperature dependence of carbon oxidation in fly ash. The results of the present study indicate that temperatures below 550 C should be used for future studies in order to satisfactorily assess the temperature dependence of carbon oxidation in fly ash. Furthermore, it is also advisable that percent carbon determinations be performed on fly ash samples after the oxidation reactions to determine whether all carbon present in fly ash is oxidized. This will ensure that reaction rates are representative of the complete oxidation of carbon. An inverse relationship was determined between reaction rates and oxygen concentration for this study. As discussed, this may be due to volatilization of volatiles from fly ash and ease of transport of products away from the reaction sites by the action of the vacuum applied to the samples. A more accurate determination of oxygen dependence of carbon oxidation can be accomplished by the use of specialty gases containing different concentrations of oxygen which could eliminate the need to apply vacuum to the samples.

Dr. Joseph N.D. Dodoo; Dr. Joseph M. Okoh

2000-11-01T23:59:59.000Z

314

Nanostructuring of Microporous Carbons with Carbon Nanotubes for ...  

Science Conference Proceedings (OSTI)

Presentation Title, Nanostructuring of Microporous Carbons with Carbon Nanotubes for Efficient Carbon Dioxide Capture. Author(s), Stephen C. Hawkins,  ...

315

New iron catalyst for preparation of polymethylene from synthesis gas  

DOE Patents (OSTI)

This invention relates to a process for synthesizing hydrocarbons; more particularly, the invention relates to a process for synthesizing long-chain hydrocarbons known as polymethylene from carbon monoxide and hydrogen or from carbon monoxide and water or mixtures thereof in the presence of a catalyst comprising iron and platinum or palladium or mixtures thereof which may be supported on a solid material, preferably an inorganic refractory oxide. This process may be used to convert a carbon monoxide containing gas to a product which could substitute for high density polyethylene.

Sapienza, R.S.; Slegeir, W.A.

1988-03-31T23:59:59.000Z

316

Iron catalyst for preparation of polymethylene from synthesis gas and method for producing the catalyst  

DOE Patents (OSTI)

This invention relates to a process for synthesizing hydrocarbons; more particularly, the invention relates to a process for synthesizing long-chain hydrocarbons known as polymethylene from carbon monoxide and hydrogen or from carbon monoxide and water or mixtures thereof in the presence of a catalyst comprising iron and platinum or palladium or mixtures thereof which may be supported on a solid material, preferably an inorganic refractory oxide. This process may be used to convert a carbon monoxide containing gas to a product which could substitute for high density polyethylene.

Sapienza, R.S.; Slegeir, W.A.

1990-05-15T23:59:59.000Z

317

Novel Anode Materials For Solid Oxide Fuel Cells Dissertation committee  

E-Print Network (OSTI)

and fabrication of alternative anodes for direct methane oxidation in SOFC". Publisher: Twente University Press, P cells (SOFC). The principles and materials employed for SOFC are described. Emphasis is on the anode (PAFC), · the molten carbonate fuel cell (MCFC), · the solid oxide fuel cell (SOFC). Each type of fuel

Verweij, Henk

318

Process for removal of sulfur oxides from waste gases  

Science Conference Proceedings (OSTI)

A process for removing sulfur oxides from waste gas is provided. The gas is contacted with a sorbent selected from sodium bicarbonate, trona and activated sodium carbonate and, utilizing an alkaline liquor containing borate ion so as to reduce flow rates and loss of alkalinity, the spent sorbent is regenerated with an alkaline earth metal oxide or hydroxide.

Lowell, P.S.; Phillips, J.L.

1983-05-24T23:59:59.000Z

319

Fundamental studies of the mechanism of catalytic reactions with catalysts effective in the gasification of carbon solids and the oxidative coupling of methane. Quarterly report, 1 January--31 March 1994  

DOE Green Energy (OSTI)

This report describes work in progress on three tasks: (1) Catalytic steam gasification of coals and cokes; (2) Oxidative coupling of methane; and (3) Synthesis and characterization of catalysts. Since Task 1 is complete, a final report has been written. This report describes membrane reactors, cyclic methane conversion reactors, theoretical descriptions of reaction-separation schemes, and time-space relationships in cyclic and membrane reactors, all subtasks of Task 2. Initial studies under Task 3 are briefly described.

Iglesia, E.; Heinemann, H.; Perry, D.L. [Lawrence Berkeley Lab., CA (United States). Center for Advanced Materials

1994-03-01T23:59:59.000Z

320

Fundamental studies of the mechanism of catalytic reactions with catalysts effective in the gasification of carbon solids and the oxidative coupling of methane. Quarterly report, January 1, 1995--March 31, 1995  

DOE Green Energy (OSTI)

The synthesis of ethane and ethylene from methane and oxygen will be carried out in novel hydrogen transport inorganic membranes and in cyclic reactors in order to prevent undesirable secondary reactions of C{sub 2} molecules to CO and CO{sub 2}. Neither inorganic membrane reactors nor cyclic tubular reactors are presently used in commercial processes. Their application to catalytic reactions represents a novel application of engineering and solid-state chemistry concepts to catalytic reactions. Our approach combines high temperature membrane and cyclic experimental reactors, synthesis and characterization of thin membrane films and of high surface area catalysts, and detailed models of complex gas phase and surface reactions involved in oxidative coupling. We anticipate that this approach will lead to novel reactors for carrying our kinetic-controlled sequential reactions, such as the oxidative coupling of methane. Careful spectrographic and wet chemical analyses of fresh and silent catalysts have shown considerable differences which have permitted conclusions as to the source of deactivation. Our activities in the first quarter FYI 995 have focused on the synthesis, structural characterization, and catalytic evaluation of membrane films, disks, and reactors. We have also continued to exploit reaction-transport models to predict the performance of membrane, cyclic, and recycle reactors in the oxidative coupling of methane.

Iglesia, E.; Perry, D.L.; Heinemann, H.

1995-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxides carbon monoxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Carbon Steels  

Science Conference Proceedings (OSTI)

Table 1   Corrosion rates of carbon steel at various locations...Vancouver Island, BC, Canada Rural marine 13 0.5 Detroit, MI Industrial 14.5 0.57 Fort Amidor Pier, CZ Marine 14.5 0.57 Morenci, MI Urban 19.5 0.77 Potter County, PA Rural 20 0.8 Waterbury, CT Industrial 22.8 0.89 State College, PA Rural 23 0.9 Montreal, QC, Canada Urban 23 0.9 Durham, NH Rural 28 1.1...

322

Aerosol organic carbon to black carbon ratios: Analysis of published...  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosol organic carbon to black carbon ratios: Analysis of published data and implications for climate forcing Title Aerosol organic carbon to black carbon ratios: Analysis of...

323

Spectroelectrochemical study of the role played by carbon functionality in fuel cell electrodes  

Science Conference Proceedings (OSTI)

X-ray absorption spectroscopy was used to identify specific types of nitrogen and sulfur-based carbon functionality present in the carbon black supports of fuel cell anodes and cathodes. The effects of these functional groups on the electrocatalytic performance of small platinum particles, dispersed on the carbon, during methanol oxidation and oxygen reduction were assessed. Electrodes functionalized with nitrogen had enhanced catalytic activities toward oxygen reduction and methanol oxidation relative to untreated electrodes. Although electrodes with sulfur functionality had higher oxygen reduction activities than untreated carbons, the activity of these electrodes toward methanol oxidation was found to be lower than electrodes manufactured from untreated carbon. It was found that carbon supports functionalized with both nitrogen and sulfur initiated the formation of Pt particles smaller in size than those observed on untreated carbon supports.

Roy, S.C.; Harding, A.W.; Russell, A.E.; Thomas, K.M. [Univ. of Newcastle, Newcastle-upon-Tyne (United Kingdom)

1997-07-01T23:59:59.000Z

324

Solid oxide electrochemical reactor science.  

DOE Green Energy (OSTI)

Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful information to their continued development. This LDRD involved a collaboration between Sandia and the Colorado School of Mines (CSM) ins solid-oxide electrochemical reactors targeted at solid oxide electrolyzer cells (SOEC), which are the reverse of solid-oxide fuel cells (SOFC). SOECs complement Sandia's efforts in thermochemical production of alternative fuels. An SOEC technology would co-electrolyze carbon dioxide (CO{sub 2}) with steam at temperatures around 800 C to form synthesis gas (H{sub 2} and CO), which forms the building blocks for a petrochemical substitutes that can be used to power vehicles or in distributed energy platforms. The effort described here concentrates on research concerning catalytic chemistry, charge-transfer chemistry, and optimal cell-architecture. technical scope included computational modeling, materials development, and experimental evaluation. The project engaged the Colorado Fuel Cell Center at CSM through the support of a graduate student (Connor Moyer) at CSM and his advisors (Profs. Robert Kee and Neal Sullivan) in collaboration with Sandia.

Sullivan, Neal P. (Colorado School of Mines, Golden, CO); Stechel, Ellen Beth; Moyer, Connor J. (Colorado School of Mines, Golden, CO); Ambrosini, Andrea; Key, Robert J. (Colorado School of Mines, Golden, CO)

2010-09-01T23:59:59.000Z

325

Single Membrane Reactor Configuration for Separation of Hydrogen, Carbon Dioxide and Hydrogen Sulfide  

DOE Green Energy (OSTI)

The objective of the project was to develop a novel complementary membrane reactor process that can consolidate two or more downstream unit operations of a coal gasification system into a single module for production of a pure stream of hydrogen and a pure stream of carbon dioxide. The overall goals were to achieve higher hydrogen production efficiencies, lower capital costs and a smaller overall footprint than what could be achieved by utilizing separate components for each required unit process/operation in conventional coal-to-hydrogen systems. Specifically, this project was to develop a novel membrane reactor process that combines hydrogen sulfide removal, hydrogen separation, carbon dioxide separation and water-gas shift reaction into a single membrane configuration. The carbon monoxide conversion of the water-gas-shift reaction from the coal-derived syngas stream is enhanced by the complementary use of two membranes within a single reactor to separate hydrogen and carbon dioxide. Consequently, hydrogen production efficiency is increased. The single membrane reactor configuration produces a pure H{sub 2} product and a pure CO{sub 2} permeate stream that is ready for sequestration. This project focused on developing a new class of CO{sub 2}-selective membranes for this new process concept. Several approaches to make CO{sub 2}-selective membranes for high-temperature applications have been tested. Membrane disks using the technique of powder pressing and high temperature sintering were successfully fabricated. The powders were either metal oxide or metal carbonate materials. Experiments on CO{sub 2} permeation testing were also performed in the temperature range of 790 to 940 C for the metal carbonate membrane disks. However, no CO{sub 2} permeation rate could be measured, probably due to very slow CO{sub 2} diffusion in the solid state carbonates. To improve the permeation of CO{sub 2}, one approach is to make membranes containing liquid or molten carbonates. Several different types of dual-phase membranes were fabricated and tested for their CO{sub 2} permeation in reducing conditions without the presence of oxygen. Although the flux was quite low, on the order of 0.01-0.001 cc STP/cm{sup 2}/min, the selectivity of CO{sub 2}/He was almost infinite at temperatures of about 800 C. A different type of dual-phase membrane prepared by Arizona State University (ASU) was also tested at GTI for CO{sub 2} permeation. The measured CO{sub 2} fluxes were 0.015 and 0.02 cc STP/cm{sup 2}/min at 750 and 830 C, respectively. These fluxes were higher than the previous flux obtained ({approx}0.01 cc STP/cm{sup 2}/min) using the dual-phase membranes prepared by GTI. Further development in membrane development should be conducted to improve the CO{sub 2} flux. ASU has also focused on high temperature permeation/separation experiments to confirm the carbon dioxide separation capabilities of the dual-phase membranes with La{sup 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (LSCF6482) supports infiltrated with a Li/Na/K molten carbonate mixture (42.5/32.5/25.0 mole %). The permeation experiments indicated that the addition of O{sub 2} does improve the permeance of CO{sub 2} through the membrane. A simplified membrane reactor model was developed to evaluate the performance of the process. However, the simplified model did not allow the estimation of membrane transport area, an important parameter for evaluating the feasibility of the proposed membrane reactor technology. As a result, an improved model was developed. Results of the improved membrane reactor model show that the membrane shift reaction has promise as a means to simplify the production of a clean stream of hydrogen and a clean stream of carbon dioxide. The focus of additional development work should address the large area required for the CO{sub 2} membrane as identified in the modeling calculations. Also, a more detailed process flow diagram should be developed that includes integration of cooling and preheating feed streams as well as particulate removal so that stea

Micheal Roberts; Robert Zabransky; Shain Doong; Jerry Lin

2008-05-31T23:59:59.000Z

326

Fundamental studies of the mechanism of catalytic reactions with catalysts effective in the gasification of carbon solids and the oxidative coupling of methane. Quarterly report, April 1, 1994--June 30, 1994  

DOE Green Energy (OSTI)

Catalytic gasification work has been completed and no other work is planned in the general area of catalytic gasification of coals and chars has operated without a post-doctoral fellow because of budget limitations during the first two quarters of FY1994. Dr. S. Sundararajan joined the group in April 1994 and will be assigned to the project throughout the remaining of the fiscal year. Results published by Hamakawa, et al. in The Journal of the Electrochemical Society have confirmed the concept of methane coupling via a membrane reactor. These findings confirm our previous conclusion that thinner membranes and increased surface activity for C-H bond activation at low temperatures are required in order to reach commercially attractive rates of reaction. The initial analysis of a theoretical model comparing the membrane and cyclic processes has been completed. The results indicate that perovskite membranes on the order of 50 microns will be needed for the membrane operation to be superior to a cyclic one. Two techniques, laser ablation and spin-coating/sol-gel chemistry are being tried to prepare the thin membranes described above. Studies of the magnetochemical properties of the calcium-nickel-potassium oxide powdered catalysts have been concluded and a manuscript describing the work has been completed. Synchrotron x-ray fluorescence microprobe data for calcium-nickel-potassium films have been analyzed and an abstract of the results has been submitted for presentation at the Fall Meeting of the Materials Research Society. Initial films of strontium-zirconium oxide, using yttria-stabilized zirconia as a buffer layer, have been fabricated using pulsed laser deposition. X-ray diffraction data have been obtained for several of the strontium-zirconium-yttrium oxide films.

Iglesia, E.; Perry, D.L.; Heinemann, H.

1994-06-01T23:59:59.000Z

327

carbon footprinting | OpenEI  

Open Energy Info (EERE)

footprinting footprinting Dataset Summary Description Emissions from energy use in buildings are usually estimated on an annual basis using annual average multipliers. Using annual numbers provides a reasonable estimation of emissions, but it provides no indication of the temporal nature of the emissions. Therefore, there is no way of understanding the impact on emissions from load shifting and peak shaving technologies such as thermal energy storage, on-site renewable energy, and demand control. Source NREL Date Released April 11th, 2011 (3 years ago) Date Updated April 11th, 2011 (3 years ago) Keywords buildings carbon dioxide emissions carbon footprinting CO2 commercial buildings electricity emission factors ERCOT hourly emission factors interconnect nitrogen oxides NOx

328

Carbon nanotubes grown on bulk materials and methods for fabrication  

DOE Patents (OSTI)

Disclosed are structures formed as bulk support media having carbon nanotubes formed therewith. The bulk support media may comprise fibers or particles and the fibers or particles may be formed from such materials as quartz, carbon, or activated carbon. Metal catalyst species are formed adjacent the surfaces of the bulk support material, and carbon nanotubes are grown adjacent the surfaces of the metal catalyst species. Methods employ metal salt solutions that may comprise iron salts such as iron chloride, aluminum salts such as aluminum chloride, or nickel salts such as nickel chloride. Carbon nanotubes may be separated from the carbon-based bulk support media and the metal catalyst species by using concentrated acids to oxidize the carbon-based bulk support media and the metal catalyst species.

Menchhofer, Paul A. (Clinton, TN); Montgomery, Frederick C. (Oak Ridge, TN); Baker, Frederick S. (Oak Ridge, TN)

2011-11-08T23:59:59.000Z

329

Biomass burning and the production of greenhouse gases, in Climate Biosphere Interaction: Biogenic Emissions and the Environmental Effects of Climate Change, edited by  

E-Print Network (OSTI)

Biomass burning is a source of greenhouse gases, carbon dioxide, methane, and nitrous oxide. In addition, biomass burning is a source of chemically active gases, including carbon monoxide, nonmethane hydrocarbons, and nitric oxide. These gases, along with methane, lead to the chemical production of tropospheric ozone (another greenhouse gas) as well as control the concentration of the

Joel S. Levine

1994-01-01T23:59:59.000Z

330

Carbon Sequestration Project Portfolio  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Technologies > Carbon Storage > Reference Shelf > Project Portfolio Home > Technologies > Carbon Storage > Reference Shelf > Project Portfolio Carbon Storage 2011 Carbon Storage Project Portfolio Table of Contents CARBON STORAGE OVERVIEW Carbon Storage Program Contacts [PDF-26KB] Carbon Storage Projects National Map [PDF-169KB] State Projects Summary Table [PDF-39KB] Carbon Storage Program Structure [PDF-181KB] Selected Carbon Sequestration Program Papers and Publications The U.S. Department of Energy's R&D Program to Reduce Greenhouse Gas Emissions Through Beneficial Uses of Carbon Dioxide (2011) [PDF-3.3MB] Greenhouse Gas Science and Technology Carbon Capture and Sequestration: The U.S. Department of Energy's R&D Efforts to Characterize Opportunities for Deep Geologic Storage of Carbon Dioxide in Offshore Resources (2011) [PDF-445KB]

331

Photophysics of carbon nanotubes  

E-Print Network (OSTI)

This thesis reviews the recent advances made in optical studies of single-wall carbon nanotubes. Studying the electronic and vibrational properties of carbon nanotubes, we find that carbon nanotubes less than 1 nm in ...

Samsonidze, Georgii G

2007-01-01T23:59:59.000Z

332

Carbon Dioxide (CO2)  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide (CO2) Carbon Dioxide (CO2) Gateway Pages to Carbon Dioxide Data Modern records and ice core records back 2000 years 800,000 year records from ice cores Other...

333

Corona method and apparatus for altering carbon containing compounds  

DOE Patents (OSTI)

The present invention is a method and apparatus for altering a carbon containing compound in an aqueous mixture. According to a first aspect of the present invention, it has been discovered that for an aqueous mixture having a carbon containing compound with an ozone reaction rate less than the ozone reaction rate of pentachlorophenol, use of corona discharge in a low or non-oxidizing atmosphere increases the rate of destruction of the carbon containing compound compared to corona discharge an oxidizing atmosphere. For an aqueous mixture containing pentachlorphenol, there was essentially no difference in destruction between atmospheres. According to a second aspect of the present invention, it has been further discovered that an aqueous mixture having a carbon containing compound in the presence of a catalyst and oxygen resulted in an increased destruction rate of the carbon containing compound compared to no catalyst.

Sharma, Amit K. (Richland, WA); Camaioni, Donald M. (Richland, WA); Josephson, Gary B. (Richland, WA)

1999-01-01T23:59:59.000Z

334

Corona Method And Apparatus For Altering Carbon Containing Compounds  

DOE Patents (OSTI)

The present invention is a method and apparatus for altering a carbon-containing compound in an aqueous mixture. According to a first aspect of the present invention, it has been discovered that for an aqueous mixture having a carbon containing compound with an ozone reaction rate less than the ozone reaction rate of pentachlorophenol, use of corona discharge in a low or non-oxidizing atmosphere increases the rate of destruction of the carbon containing compound compared to corona discharge an oxidizing atmosphere. For an aqueous mixture containing pentachlorphenol, there was essentially no difference in destruction between atmospheres. According to a second aspect of the present invention, it has been further discovered that an aqueous mixture having a carbon-containing compound in the presence of a catalyst and oxygen resulted in an increased destruction rate of the carbon containing compound compared to no catalyst.

Sharma, Amit K. (Plainsboro, NJ); Camaioni, Donald M. (Richland, WA); Josephson; Gary B. (Richland, WA)

2004-05-04T23:59:59.000Z

335

Catalytic steam gasification of carbon  

DOE Green Energy (OSTI)

Unsupported carbide powders with high specific surface area, namely {alpha}-WC (35 m{sup 2}/g, hexagonal), {beta}-WC{sub 0.61} (100 m{sup 2}/g, cubic face centered) and {beta}-WC{sub 0.5} (15 m{sup 2}/g, hexagonal) have been prepared. The key element in this preparation is the successful removal of surface polymeric carbon by careful gasification to methane by means of dihydrogen. These tungsten carbide powders have been used in catalytic reactions of oxidation of H{sub 2} and hydrogenolysis of alkanes, such as butane, hexane, and neopentane.

Boudart, M.

1990-12-31T23:59:59.000Z

336

Fabrication and characterization of flower-like zinc oxide for dye-sensitized solar cell photoanode  

Science Conference Proceedings (OSTI)

Zinc oxide porous film consists of nanoparticles which assemble forming flake-like particle is synthesised through pyrolitic of chemical bath deposition product. Zinc oxide film consists of nanoparticle around 20 nm with surface area of 58.6 m2/gram ... Keywords: chemical bath depostition, dye sensitized soalr cell, nanoparticle, porous film, zinc carbonate hydroxide, zinc oxide

H. Abdullah; N. P. Ariyanto; B. Yuliarto; S. Junaidi; Yap Chi Chin; Muhamad Yahaya; S. Shaari

2010-02-01T23:59:59.000Z

337

Investigation of dispersed iron alloy catalysts in the carbon monoxide-hydrogen synthesis reaction. Progress report, August 1, 1980-July 31, 1981  

DOE Green Energy (OSTI)

The past year has seen completion of two major tasks in the research program: (1) a detailed study of the characterization of particle size in supported ..cap alpha..-Fe/sub 2/O/sub 3/ and related characterizations of the reduced metal with silica gel support; (2) a reaction study of a series of silica supported Fe-Ni, Fe-Co, Fe-Cu, Fe-K and the corresponding pure metals. Synthesis activity and selectivity were particular objectives of this work, and a particular correlation of the conversion dependence of selectivity and water-gas shift activity was observed. We feel this to be an important finding: the catalysts which are good water-gas shift catalysts are the ones which are inhibited during the synthesis. A mechanism of product inhibition by water formation has been proposed to explain the conversion dependence of selectivity.

Butt, J.B.; Schwartz, L.H.

1981-04-01T23:59:59.000Z

338

Membrane technologies for hydrogen and carbon monoxide recovery from residual gas streams. Tecnologías de membranas para la recuperación de hidrógeno y monóxido de carbono de gases residuales.  

E-Print Network (OSTI)

??This PhD thesis work is aimed to the separation and recovery of valuable gases from industrial residual gas streams by means of membrane technology. In… (more)

David, Oana Cristina

2012-01-01T23:59:59.000Z

339

Membrane technologies for hydrogen and carbon monoxide recovery from residual gas streams. Tecnologías de membranas para la recuperación de hidrógeno y monóxido de carbono de gases residuales.  

E-Print Network (OSTI)

??Esta tesis doctoral está enfocada hacia la separación y recuperación de hidrogeno y monóxido de carbono de efluentes gaseosos residuales procedentes de procesos industriales de… (more)

David, Oana Cristina

2012-01-01T23:59:59.000Z

340

Carbon Film Electrodes For Super Capacitor Applications  

DOE Patents (OSTI)

A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area (.apprxeq.1000 m.sup.2 /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160.degree. C. for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750.degree. C. in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750-850.degree. C. for between 1-6 hours.

Tan, Ming X. (Livermore, CA)

1999-07-20T23:59:59.000Z

Note: This page contains sample records for the topic "oxides carbon monoxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Method of making carbon-carbon composites  

DOE Patents (OSTI)

A process for making 2D and 3D carbon-carbon composites having a combined high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizible woven cloth are infiltrated with carbon material to form green composites. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnant step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3100.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. C. to 1300.degree. C. at a reduced. pressure.

Engle, Glen B. (16716 Martincoit Rd., Poway, CA 92064)

1993-01-01T23:59:59.000Z

342

Carbon-based Fuel Cell  

DOE Green Energy (OSTI)

The direct use of coal in the solid oxide fuel cell to generate electricity is an innovative concept for power generation. The C-fuel cell (carbon-based fuel cell) could offer significant advantages: (1) minimization of NOx emissions due to its operating temperature range of 700-1000 C, (2) high overall efficiency because of the direct conversion of coal to CO{sub 2}, and (3) the production of a nearly pure CO{sub 2} exhaust stream for the direct CO{sub 2} sequestration. The objective of this project is to determine the technical feasibility of using a highly active anode catalyst in a solid oxide fuel for the direct electrochemical oxidation of coal to produce electricity. Results of this study showed that the electric power generation from Ohio No 5 coal (Lower Kittanning) Seam, Mahoning County, is higher than those of coal gas and pure methane on a solid oxide fuel cell assembly with a promoted metal anode catalyst at 950 C. Further study is needed to test the long term activity, selectivity, and stability of anode catalysts.

Steven S. C. Chuang

2005-08-31T23:59:59.000Z

343

DOE Carbon Sequestration Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Sequestration Program Charles E. Schmidt Carbon Sequestration Product Manager National Energy Technology Laboratory David J. Beecy Director, Office of Environmental Systems...

344

Electronic structure of graphene oxide and reduced graphene oxide monolayers  

SciTech Connect

Graphene oxide (GO) monolayers obtained by Langmuir Blodgett route and suitably treated to obtain reduced graphene oxide (RGO) monolayers were studied by photoelectron spectroscopy. Upon reduction of GO to form RGO C1s x-ray photoelectron spectra showed increase in graphitic carbon content, while ultraviolet photoelectron spectra showed increase in intensity corresponding to C2p-{pi} electrons ({approx}3.5 eV). X-ray excited Auger transitions C(KVV) and plasmon energy loss of C1s photoelectrons have been analyzed to elucidate the valence band structure. The effective number of ({pi}+{sigma}) electrons as obtained from energy loss spectra was found to increase by {approx}28% on reduction of GO.

Sutar, D. S. [Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076 (India); Central Surface Analytical Facility, Indian Institute of Technology Bombay, Mumbai 400076 (India); Singh, Gulbagh; Divakar Botcha, V. [Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076 (India)

2012-09-03T23:59:59.000Z

345

Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production  

E-Print Network (OSTI)

#12;Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward

Narasayya, Vivek

346

Carbon Code Requirements for voluntary carbon sequestration projects  

E-Print Network (OSTI)

Woodland Carbon Code Requirements for voluntary carbon sequestration projects ® Version 1.2 July of group schemes 8 2.6 Monitoring 9 2.7 Carbon statements and reporting 9 2.8 Woodland Carbon Code trademark 10 3. Carbon sequestration 11 3.1 Units of carbon calculation 11 3.2 Carbon baseline 11 3.3 Carbon

347

Carbon Code Requirements for voluntary carbon sequestration projects  

E-Print Network (OSTI)

Woodland Carbon Code Requirements for voluntary carbon sequestration projects ® Version 1.1 July.6 Monitoring 8 2.7 Carbon statements and reporting 8 2.8 Woodland Carbon Code trademark 9 3. Carbon sequestration 10 3.1 Units of carbon calculation 10 3.2 Carbon baseline 10 3.3 Carbon leakage 11 3.4 Project

348

Selection and preparation of activated carbon for fuel gas storage  

DOE Green Energy (OSTI)

Increasing the surface acidity of active carbons can lead to an increase in capacity for hydrogen adsorption. Increasing the surface basicity can facilitate methane adsorption. The treatment of carbons is most effective when the carbon source material is selected to have a low ash content i.e., below about 3%, and where the ash consists predominantly of alkali metals alkali earth, with only minimal amounts of transition metals and silicon. The carbon is washed in water or acid and then oxidized, e.g. in a stream of oxygen and an inert gas at an elevated temperature.

Schwarz, James A. (Fayetteville, NY); Noh, Joong S. (Syracuse, NY); Agarwal, Rajiv K. (Las Vegas, NV)

1990-10-02T23:59:59.000Z

349

Electrostatic Precipitator Performance Modeling of High Carbon Ash Using EPRI's ESPM  

Science Conference Proceedings (OSTI)

To meet reduced nitrogen oxide (NOX) emission limits, many power producers installed low-NOX combustion systems that raised the level of carbon in the ash. However, carbon can be difficult to collect in an electrostatic precipitator and, consequently, the particulate emissions from many affected units increased. EPRI initiated this study to better understand carbon capture in electrostatic precipitators (ESPs), improve collection of high carbon ashes, and predict the collection of such ashes with its ESP...

2007-03-19T23:59:59.000Z

350

Composite carbon foam electrode  

DOE Patents (OSTI)

Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

1997-01-01T23:59:59.000Z

351

Composite carbon foam electrode  

DOE Patents (OSTI)

Carbon aerogels used as a binder for granulated materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

1997-05-06T23:59:59.000Z

352

Effects of deposition conditions on the properties of pyrolytic carbon deposited in a fluidized bed  

Science Conference Proceedings (OSTI)

The high-density, isotropic pyrolytic carbon layer beneath the silicon carbide (IPyC) plays a key role in the irradiation performance of coated particle fuel. The IPyC layer protects the kernel from reactions with chlorine during deposition of the SiC layer, provides structural support for the SiC layer, and protects the SiC from fission products and carbon monoxide. The process conditions used by the Germans to deposit the IPyC coating produced a highly isotropic, but somewhat permeable IPyC coating. The permeability of the IPyC coating was acceptable for use with the dense German UO{sub 2} kernels, but may not be suitable when coating UCO kernels. The UCO kernels are typically more porous and thus have a larger surface area than UO{sub 2} kernels. The lower density and the higher surface area of UCO kernels could make them more susceptible to attack by HCl gas during the silicon carbide (SiC) coating process, which could result in heavy metal dispersion into the buffer and IPyC coatings and a higher level of as-manufactured SiC defects. The relationship between IPyC deposition conditions, permeability, and anisotropy must be understood and the appropriate combination of anisotropy and permeability for particle fuel containing UCO kernels selected. A reference set of processing conditions have been determined from review of historical information and results of earlier coating experiments employing 350 and 500 {micro}m UO{sub 2} kernels. It was decided that a limited study would be conducted, in which only coating gas fraction (CGF) and temperature would be varied. Coatings would be deposited at different rates and with a range of microstructures. Thickness, density, porosity and anisotropy would be measured and permeability evaluated using a chlorine leach test. The results would be used to select the best IPyC coating conditions for use with the available natural enrichment uranium carbide/uranium oxide (NUCO) kernels. The response plots from the investigation of the deposition of pyrolytic carbon in a fluidized bed graphically depict the relationships between processing parameters and coating properties. The additional figures present optical, scanning electron microscopy, and other images to highlight microstructural details. For the study, only two parameters (factors), coating gas fraction and deposition temperature, were varied. The plots reveal obvious trends and links between factors and responses. The dominant relationships determined by this study for this range of coating conditions are: (1) rate is dependent upon coating gas fraction or in other terms, reactant concentration; (2) density is controlled by deposition temperature; (3) efficiency is influenced by both CGF and temperature; (4) anisotropy is affect by CGF and temperature, however, the relationship is more complex than for other properties; (5) permeability is dependent upon deposition temperature (thus density); and (6) open porosity is affect by CGF thus is influenced by coating rate. The response plots can be used as 'maps' for the deposition process and are thus valuable for selecting coating conditions necessary to produce desired combinations of properties. The information is useful in predicting the effects of changes to processing on properties and is beneficial in optimizing the process and product properties. Although the study was limited to only two parameters, the information provides a foundation from which other aspects of the coating process can be more easily investigated.

Lowden, Richard Andrew [ORNL; Hunn, John D [ORNL; Nunn, Stephen D [ORNL; Kercher, Andrew K [ORNL; Price, Jeffery R [ORNL; Jellison Jr, Gerald Earle [ORNL

2005-09-01T23:59:59.000Z

353

Catalysts for Oxidation of Mercury in Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalysts for Oxidation of Mercury in Flue Gas Catalysts for Oxidation of Mercury in Flue Gas Opportunity The Department of Energy's National Energy Technology Laboratory (NETL) is seeking licensing partners interested in implementing United States Patent Number 7,776,780 entitled "Catalysts for Oxidation of Mercury in Flue Gas." Disclosed in this patent are catalysts for the oxidation of elemental mercury in flue gas. These novel catalysts include iridium (Ir), platinum/iridium (Pt/Ir), and Thief carbons. The catalyst materials will adsorb the oxidizing agents HCl, Cl 2 , and other halogen species in the flue gas stream that are produced when fuel is combusted. These adsorbed oxidizing agents can then react with elemental mercury in the stream, which is difficult to capture, and oxidize it to form Hg (II) species,

354

Extracting metals directly from metal oxides  

DOE Patents (OSTI)

A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones, halogenated .beta.-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process.

Wai, Chien M. (Moscow, ID); Smart, Neil G. (Moscow, ID); Phelps, Cindy (Moscow, ID)

1997-01-01T23:59:59.000Z

355

Extracting metals directly from metal oxides  

DOE Patents (OSTI)

A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of {beta}-diketones, halogenated {beta}-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process. 4 figs.

Wai, C.M.; Smart, N.G.; Phelps, C.

1997-02-25T23:59:59.000Z

356

The Woodland Carbon Code  

E-Print Network (OSTI)

The Woodland Carbon Code While society must continue to make every effort to reduce greenhouse gas a role by removing carbon dioxide from the atmosphere. The potential of woodlands to soak up carbon to help compensate for their carbon emissions. But before investing in such projects, people want to know

357

Mechanomutable Carbon Nanotube Arrays  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2010 TMS Annual Meeting & Exhibition. Symposium , Polymer Nanocomposites. Presentation Title, Mechanomutable Carbon ...

358

Acetylenic carbon allotrope  

DOE Patents (OSTI)

A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein.

Lagow, Richard J. (6204 Shadow Mountain Dr., Austin, TX 78731)

1998-01-01T23:59:59.000Z

359

Acetylenic carbon allotrope  

DOE Patents (OSTI)

A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein. 17 figs.

Lagow, R.J.

1998-02-10T23:59:59.000Z

360

Acetylenic carbon allotrope  

DOE Patents (OSTI)

A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein.

Lagow, Richard J. (6204 Shadow Mountain Dr., Austin, TX 78731)

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxides carbon monoxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Glossary: Energy-Related Carbon Emissions  

U.S. Energy Information Administration (EIA)

Carbon Sequestration: The fixation of atmospheric carbon dioxide in a carbon sink through biological or physical processes. Carbon Sink: ...

362

Regional Carbon Sequestration Partnerships | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation Carbon Capture and Storage Regional Carbon Sequestration Partnerships Regional Carbon Sequestration Partnerships DOE's Regional Carbon Sequestration...

363

Lipid Oxidation Pathways  

Science Conference Proceedings (OSTI)

This book reviews state-of-the-art developments in the understanding of the oxidation of lipids and its connection with the oxidation of other biological molecules such as proteins and starch. Lipid Oxidation Pathways Hardback Books Health - Nutrition -

364

Optical constants of evaporation-deposited silicon monoxide films in the 7.1–800 eV photon energy range  

Science Conference Proceedings (OSTI)

The transmittance of silicon monoxide films prepared by thermal evaporation was measured from 7.1 to 800 eV and used to determine the optical constants of the material. SiO filmsdeposited onto C-coated microgrids in ultrahigh vacuum conditions were measured in situ from 7.1 to 23.1 eV. Grid-supported SiO filmsdeposited in high vacuum conditions were characterized ex situ from 28.5 to 800 eV. At each photon energy

Mónica Fernández-Perea; Manuela Vidal-Dasilva; Juan I. Larruquert; José A. Aznárez; José A. Méndez; Eric Gullikson; Andy Aquila; Regina Soufli

2009-01-01T23:59:59.000Z

365

Carbon activation process for increased surface accessibility in electrochemical capacitors  

DOE Patents (OSTI)

A process for making carbon film or powder suitable for double capacitor electrodes having a capacitance of up to about 300 F/cm.sup.3 is disclosed. This is accomplished by treating in aqueous nitric acid for a period of about 5 to 15 minutes thin carbon films obtained by carbonizing carbon-containing polymeric material having a high degree of molecular directionality, such as polyimide film, then heating the treated carbon film in a non-oxidizing atmosphere at a non-graphitizing temperature of at least 350.degree. C. for about 20 minutes, and repeating alternately the nitric acid step and the heating step from 7 to 10 times. Capacitors made with this carbon may find uses ranging from electronic devices to electric vehicle applications.

Doughty, Daniel H. (Albuquerque, NM); Eisenmann, Erhard T. (Belpre, OH)

2001-01-01T23:59:59.000Z

366

CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM CARBON DIOXIDE SEQUESTRATION  

DOE Green Energy (OSTI)

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds or bioreactors to abate CO{sub 2} emissions from power plants.

V. J. Fabry

2003-10-30T23:59:59.000Z

367

CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION  

DOE Green Energy (OSTI)

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds or bioreactors to abate CO{sub 2} emissions from power plants.

V.J. Fabry

2004-10-30T23:59:59.000Z

368

CALCIUM CARBONATE PRODUCTION BY COCCOLITHAPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION  

SciTech Connect

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

V. J.Fabry

2004-01-30T23:59:59.000Z

369

CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION  

SciTech Connect

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

V.J. Fabry, Ph.D.

2001-12-15T23:59:59.000Z

370

CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION  

SciTech Connect

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

V.J. Fabry, Ph.D.

2003-07-15T23:59:59.000Z

371

CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION  

SciTech Connect

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

V.J. Fabry, Ph.D.

2001-09-10T23:59:59.000Z

372

CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION  

SciTech Connect

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

V.J. Fabry, Ph.D.

2003-04-15T23:59:59.000Z

373

Calcium Carbonate Production by Coccolithophorid Algae in Long Term, Carbon Dioxide Sequestration  

SciTech Connect

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

V.J. Fabry

2005-04-29T23:59:59.000Z

374

CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION  

SciTech Connect

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

V.J. Fabry, Ph.D.

2002-12-15T23:59:59.000Z

375

Calcium Carbonate Production by Coccolithophorid Algae in Long Term, Carbon Dioxide Sequestration  

SciTech Connect

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

V. J. Fabry

2006-06-30T23:59:59.000Z

376

CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION  

SciTech Connect

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

V.J. Fabry, Ph.D.

2002-07-09T23:59:59.000Z

377

CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION  

SciTech Connect

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids ? single-celled, marine algae that are the major global producers of calcium carbonate ? to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

V. J. Fabry

2005-01-24T23:59:59.000Z

378

CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION  

SciTech Connect

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids single-celled, marine algae that are the major global producers of calcium carbonate to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

V.J. Fabry

2001-07-01T23:59:59.000Z

379

CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION  

SciTech Connect

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

V.J. Fabry, Ph.D.

2002-04-05T23:59:59.000Z

380

Electron Microscopy of Carbon Nanotube Composites  

Science Conference Proceedings (OSTI)

Electron Microscopy of Carbon Nanotube Composites. Summary: Carbon nanomaterials such as carbon nanotubes (CNTs ...

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxides carbon monoxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Selective methane oxidation over promoted oxide catalysts  

DOE Green Energy (OSTI)

Objective was to selectively oxidize methane to C{sub 2} hydrocarbons and to oxygenates, in particular formaldehyde and methanol, in high space time yields under relatively mild reaction conditions. Results in this document are reported under the headings: methane oxidation over silica, methane oxidation over Sr/La{sub 2}O{sub 3} catalysts, and oxidative coupling of methane over sulfate-doped Sr/La{sub 2}O{sub 3} catalysts. 24 refs, 10 figs, 4 tabs.

Klier, K.; Herman, R.G.

1993-12-31T23:59:59.000Z

382

Towards large eddy simulations of flame extinction and ...  

Science Conference Proceedings (OSTI)

... products of incomplete combustion (carbon monoxide, unburnt hydro- carbons, hydrogen ... to play a role in the net emission of car- bon monoxide ...

2007-10-03T23:59:59.000Z

383

Fundamentals of Mercury Oxidation in Flue Gas  

SciTech Connect

The objective of this project was to understand the importance of and the contribution of gas-phase and solid-phase coal constituents in the mercury oxidation reactions. The project involved both experimental and modeling efforts. The team was comprised of the University of Utah, Reaction Engineering International, and the University of Connecticut. The objective was to determine the experimental parameters of importance in the homogeneous and heterogeneous oxidation reactions; validate models; and, improve existing models. Parameters studied include HCl, NO{sub x}, and SO{sub 2} concentrations, ash constituents, and temperature. The results suggested that homogeneous mercury oxidation is below 10% which is not consistent with previous data of others and work which was completed early in this research program. Previous data showed oxidation above 10% and up to 100%. However, the previous data are suspect due to apparent oxidation occurring within the sampling system where hypochlorite ion forms in the KCl impinger, which in turn oxidized mercury. Initial tests with entrained iron oxide particles injected into a flame reactor suggest that iron present on fly ash particle surfaces can promote heterogeneous oxidation of mercury in the presence of HCl under entrained flow conditions. Using the data generated above, with homogeneous reactions accounting for less than 10% of the oxidation, comparisons were made to pilot- and full-scale data. The results suggest that heterogeneous reactions, as with the case of iron oxide, and adsorption on solid carbon must be taking place in the full-scale system. Modeling of mercury oxidation using parameters from the literature was conducted to further study the contribution of homogeneous pathways to Hg oxidation in coal combustion systems. Calculations from the literature used rate parameters developed in different studies, in some cases using transition state theory with a range of approaches and basis sets, and in other cases using empirical approaches. To address this, rate constants for the entire 8-step homogeneous Hg oxidation sequence were developed using an internally consistent transition state approach. These rate constants when combined with the appropriate sub-mechanisms produced lower estimates of the overall extent of homogeneous oxidation, further suggesting that heterogeneous pathways play an important role in Hg oxidation in coal-fired systems.

JoAnn Lighty; Geoffrey Silcox; Constance Senior; Joseph Helble; Balaji Krishnakumar

2008-07-31T23:59:59.000Z

384

Michael Heine, SGL Group - The Carbon Company, Carbon Fibers...  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Fibers in Lightweight Systems for Wind Energy and Automotive Applications: Availability and Challenges for the Future Michael Heine, SGL Group - The Carbon Company, Carbon...

385

Carbon Efficiency, Carbon Reduction Potential, and Economic Developmen...  

Open Energy Info (EERE)

Carbon Reduction Potential, and Economic Development in the People's Republic of China Jump to: navigation, search Tool Summary Name: Carbon Efficiency, Carbon Reduction...

386

Carbon Ion Pump for Carbon Dioxide Removal  

coal fired power plants; oil or gas fired power plants; cement production; bio-fuel combustion; Separation of carbon dioxide from other combustion ...

387

Carbon fuel cells with carbon corrosion suppression  

Science Conference Proceedings (OSTI)

An electrochemical cell apparatus that can operate as either a fuel cell or a battery includes a cathode compartment, an anode compartment operatively connected to the cathode compartment, and a carbon fuel cell section connected to the anode compartment and the cathode compartment. An effusion plate is operatively positioned adjacent the anode compartment or the cathode compartment. The effusion plate allows passage of carbon dioxide. Carbon dioxide exhaust channels are operatively positioned in the electrochemical cell to direct the carbon dioxide from the electrochemical cell.

Cooper, John F. (Oakland, CA)

2012-04-10T23:59:59.000Z

388

Carbon Management and Carbon Dioxide Reduction  

Science Conference Proceedings (OSTI)

Cost-Effective Gas Stream Component Analysis Techniques and Strategies for Carbon Capture Systems from Oxy-Fuel Combustion (An Overview).

389

Catalyst systems and uses thereof  

DOE Patents (OSTI)

A method of carbon monoxide (CO) removal comprises providing an oxidation catalyst comprising cobalt supported on an inorganic oxide. The method further comprises feeding a gaseous stream comprising CO, and oxygen (O.sub.2) to the catalyst system, and removing CO from the gaseous stream by oxidizing the CO to carbon dioxide (CO.sub.2) in the presence of the oxidation catalyst at a temperature between about 20 to about 200.degree. C.

Ozkan, Umit S. (Worthington, OH); Holmgreen, Erik M. (Columbus, OH); Yung, Matthew M. (Columbus, OH)

2012-07-24T23:59:59.000Z

390

Flame Synthesis of One-Dimensional Metal Oxide Nanomaterials  

NLE Websites -- All DOE Office Websites (Extended Search)

Synthesis of One-Dimensional Metal Oxide Nanomaterials Synthesis of One-Dimensional Metal Oxide Nanomaterials Alexei V. Saveliev Dept. of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA Robust, scalable, and energy efficient methods of nanomaterial synthesis are needed to meet the demands of current and potential applications. Flames have been successfully applied for the synthesis of metal oxide and ceramic nanopowders largely composed of spherical particles and their aggregates. In recent years, premixed and diffusion flames have been employed for the synthesis of 1-D carbon nanoforms such as carbon fibers and carbon nanotubes. The extension of flame methods to gas phase and solid support synthesis of 1-D inorganic nanoforms is of great interest and significance. This talk presents

391

Catalysts for oxidation of mercury in flue gas  

DOE Patents (OSTI)

Two new classes of catalysts for the removal of heavy metal contaminants, especially mercury (Hg) from effluent gases. Both of these classes of catalysts are excellent absorbers of HCl and Cl.sub.2 present in effluent gases. This adsorption of oxidizing agents aids in the oxidation of heavy metal contaminants. The catalysts remove mercury by oxidizing the Hg into mercury (II) moieties. For one class of catalysts, the active component is selected from the group consisting of iridium (Ir) and iridum-platinum (Ir/Pt) alloys. The Ir and Ir/Pt alloy catalysts are especially corrosion resistant. For the other class of catalyst, the active component is partially combusted coal or "Thief" carbon impregnated with Cl.sub.2. Untreated Thief carbon catalyst can be self-activating in the presence of effluent gas streams. The Thief carbon catalyst is disposable by means of capture from the effluent gas stream in a particulate collection device (PCD).

Granite, Evan J. (Wexford, PA); Pennline, Henry W. (Bethel Park, PA)

2010-08-17T23:59:59.000Z

392

Metallic carbon materials  

DOE Patents (OSTI)

Novel metallic forms of planar carbon are described, as well as methods of designing and making them. Nonhexagonal arrangements of carbon are introduced into a graphite carbon network essentially without destroying the planar structure. Specifically a form of carbon comprising primarily pentagons and heptagons, and having a large density of states at the Fermi level is described. Other arrangements of pentagons and heptagons that include some hexagons, and structures incorporating squares and octagons are additionally disclosed. Reducing the bond angle symmetry associated with a hexagonal arrangement of carbons increases the likelihood that the carbon material will have a metallic electron structure.

Cohen, Marvin Lou (Berkeley, CA); Crespi, Vincent Henry (Darien, IL); Louie, Steven Gwon Sheng (Berkeley, CA); Zettl, Alexander Karlwalter (Kensington, CA)

1999-01-01T23:59:59.000Z

393

Biofilter for removal of nitrogen oxides from contaminated gases under aerobic conditions  

DOE Patents (OSTI)

A biofilter is described for reducing concentrations of gaseous nitrogen oxides in a polluted gas comprises a porous organic filter bed medium disposed in a housing, the filter bed medium including a mixed culture of naturally occurring denitrifying bacteria for converting the nitrogen oxides to nitrogen gas, carbon dioxide, and water. A method is described of reducing concentrations of nitrogen oxides in polluted gas comprises conducting the polluted gas through the biofilter so that the denitrifying bacteria can degrade the nitrogen oxides. A preferred filter medium is wood compost, however composts of other organic materials are functional. Regulation of pH, moisture content, exogenous carbon sources, and temperature are described. 6 figs.

Apel, W.A.

1998-08-18T23:59:59.000Z

394

Biofilter for removal of nitrogen oxides from contaminated gases under aerobic conditions  

DOE Patents (OSTI)

A biofilter for reducing concentrations of gaseous nitrogen oxides in a polluted gas comprises a porous organic filter bed medium disposed in a housing, the filter bed medium including a mixed culture of naturally occurring denitrifying bacteria for converting the nitrogen oxides to nitrogen gas, carbon dioxide, and water. A method of reducing concentrations of nitrogen oxides in polluted gas comprises conducting the polluted gas through the biofilter so that the denitrifying bacteria can degrade the nitrogen oxides. A preferred filter medium is wood compost, however composts of other organic materials are functional. Regulation of pH, moisture content, exogenous carbon sources, and temperature are described.

Apel, William A. (Idaho Falls, ID)

1998-01-01T23:59:59.000Z

395

NETL: Regional Carbon Sequestration Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

RCSP Carbon Storage Regional Carbon Sequestration Partnerships In 2003, the U.S. Department of Energy (DOE) awarded cooperative agreements to seven Regional Carbon Sequestration...

396

Carbon Nanostructure-Based Sensors  

E-Print Network (OSTI)

Control of Single-Walled Carbon Nanotube Functionalization.M. S. Characterizing carbon nanotube samples with resonancewith a Single-Walled Carbon Nanotube Capacitor. Science

Sarkar, Tapan

2012-01-01T23:59:59.000Z

397

Mercury Control with Calcium-Based Sorbents and Oxidizing Agents  

SciTech Connect

This Final Report contains the test descriptions, results, analysis, correlations, theoretical descriptions, and model derivations produced from many different investigations performed on a project funded by the U.S. Department of Energy, to investigate calcium-based sorbents and injection of oxidizing agents for the removal of mercury. Among the technologies were (a) calcium-based sorbents in general, (b) oxidant-additive sorbents developed originally at the EPA, and (c) optimized calcium/carbon synergism for mercury-removal enhancement. In addition, (d) sodium-tetrasulfide injection was found to effectively capture both forms of mercury across baghouses and ESPs, and has since been demonstrated at a slipstream treating PRB coal. It has been shown that sodium-tetrasulfide had little impact on the foam index of PRB flyash, which may indicate that sodium-tetrasulfide injection could be used at power plants without affecting flyash sales. Another technology, (e) coal blending, was shown to be an effective means of increasing mercury removal, by optimizing the concentration of calcium and carbon in the flyash. In addition to the investigation and validation of multiple mercury-control technologies (a through e above), important fundamental mechanism governing mercury kinetics in flue gas were elucidated. For example, it was shown, for the range of chlorine and unburned-carbon (UBC) concentrations in coal-fired utilities, that chlorine has much less effect on mercury oxidation and removal than UBC in the flyash. Unburned carbon enhances mercury oxidation in the flue gas by reacting with HCl to form chlorinated-carbon sites, which then react with elemental mercury to form mercuric chloride, which subsequently desorbs back into the flue gas. Calcium was found to enhance mercury removal by stabilizing the oxidized mercury formed on carbon surfaces. Finally, a model was developed to describe these mercury adsorption, desorption, oxidation, and removal mechanisms, including the synergistic enhancement of mercury removal by calcium.

Thomas K. Gale

2005-07-01T23:59:59.000Z

398

Carbon Capture by a Continuous, Regenerative Ammonia-Based Scrubbing Process  

Science Conference Proceedings (OSTI)

Overview: To develop a knowledge/data base to determine whether an ammonia-based scrubbing process is a viable regenerable-capture technique that can simultaneously remove carbon dioxide, sulfur dioxide, nitric oxides, and trace pollutants from flue gas.

Resnik, K.P.; Yeh, J.T.; Pennline, H.W.

2006-10-01T23:59:59.000Z

399

Engineering carbon nanostructures : development of novel aerogel-nanotube composites and optimization techniques for nanotube growth  

E-Print Network (OSTI)

Carbon aerogels offer several unique advantages which make them ideal for evaluating a metal's ability to catalyze nanotube growth, including in situ carbothermic reduction of oxidized nanoparticles to their catalytic ...

Steiner, Stephen Alan, III

2006-01-01T23:59:59.000Z

400

Method of making carbon-carbon composites  

DOE Patents (OSTI)

A process for making a carbon-carbon composite having a combination of high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizable woven cloth are covered with petroleum or coal tar pitch and pressed at a temperature a few degrees above the softening point of the pitch to form a green laminated composite. The green composite is restrained in a suitable fixture and heated slowly to carbonize the pitch binder. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnation step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3000.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. to 1300.degree. C. at a reduced pressure for approximately one hundred and fifty (150) hours.

Engle, Glen B. (16716 Martincoit Rd., Poway, CA 92064)

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxides carbon monoxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Quantifying Carbon Cycle Feedbacks  

Science Conference Proceedings (OSTI)

Perturbations to the carbon cycle could constitute large feedbacks on future changes in atmospheric CO2 concentration and climate. This paper demonstrates how carbon cycle feedback can be expressed in formally similar ways to climate feedback, ...

J. M. Gregory; C. D. Jones; P. Cadule; P. Friedlingstein

2009-10-01T23:59:59.000Z

402

NETL: Carbon Storage Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Carbon Storage Newsletter PDF-571KB has been posted. 08.27.2013 Publications August 2013 Carbon Storage Newsletter PDF-1.1MB has been posted. 08.15.2013 News Ancient...

403

Carbon nanotube nanoelectrode arrays  

DOE Patents (OSTI)

The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

Ren, Zhifeng (Newton, MA); Lin, Yuehe (Richland, WA); Yantasee, Wassana (Richland, WA); Liu, Guodong (Fargo, ND); Lu, Fang (Burlingame, CA); Tu, Yi (Camarillo, CA)

2008-11-18T23:59:59.000Z

404

Terrestrial Carbon Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Terrestrial Carbon Management Data Sets and Analyses Terrestrial Carbon Management Data Sets and Analyses Carbon Accumulation with Cropland Management Influence of Agricultural Management on Soil Organic Carbon: A Compendium and Assessment of Canadian Studies (VandenBygaart et al., Agriculture and Agri-Food Canada) Soil Carbon Sequestration by Tillage and Crop Rotation: A Global Data Analysis (West and Post, Oak Ridge National Laboratory) Preliminary Estimates of the Potential for Carbon Mitigation in European Soils Through No-Till Farming (Smith et al., University of Aberdeen, United Kingdom) Potential for Carbon Sequestration in European Soils: Preliminary Estimates for Five Scenarios Using Results from Long-Term Experiments (Smith et al., University of Aberdeen, United Kingdom) Carbon Accumulation with Grassland Management

405

Catalytic hydrocarbon reactions over supported metal oxides. Progress report, April 1, 1994--January 31, 1995  

DOE Green Energy (OSTI)

Oxide catalysis plays a central role in hydrocarbon processing and improvements in catalytic activity or selectivity are of great technological importance because these improvements will translate directly into more efficient utilization of hydrocarbon supplies and lower energy consumption in separation processes. An understanding of the relationships between surface structure and catalytic properties is needed to describe and improve oxide catalysts. Our approach has been to prepare supported oxides that have a specific structure and oxidation state and then employ these structures in reaction studies. Our current research program is focused on studying the fundamental relationships between structure and reactivity for two important reactions that are present in many oxide-catalyzed processes, partial oxidation and carbon-carbon bond formation. Oxide catalysis can be a complex process with both metal cation and oxygen anions participating in the chemical reactions. From an energy perspective carbon-carbon bond formation is particularly relevant to CO hydrogenation in isosynthesis. Hydrogenolysis and hydrogenation form the basis for heteroatom removal in fuels processing. Understanding the catalysis of these processes (and others) requires isolating reaction steps in the overall cycle and determining how structure and composition influence the individual reaction steps. Specially designed oxides, such as we use, permit one to study some of the steps in oxidation, carbon-carbon coupling and heteroatom removal catalysis. During the course of our studies we have: (1) developed methods to form and stabilize various Mo and W oxide structures on silica; (2) studied C-H abstraction reactions over the fully oxidized cations; (3) studied C-C bond coupling by methathesis and reductive coupling of aldehydes and ketones over reduced cation structures; and (4) initiated a study of hydrogenation and hydrogenolysis over reduced cation structures.

Ekerdt, J.G.

1995-01-31T23:59:59.000Z

406

Carbon Footprint and Carbon Deficit Analysis of Iron and Steel ...  

Science Conference Proceedings (OSTI)

Symposium, Energy Technologies and Carbon Dioxide Management. Presentation Title ... Study on Capture, Recovery and Utilization of Carbon Dioxide.

407

Carbon Fibers and Carbon Nanotubes - Programmaster.org  

Science Conference Proceedings (OSTI)

Feb 17, 2010 ... Polymer Nanocomposites: Carbon Fibers and Carbon Nanotubes Sponsored by: The Minerals, Metals and Materials Society Program ...

408

Carbon Dioxide Compression  

Science Conference Proceedings (OSTI)

Page 1. © C opyright 2009 Carbon Dioxide Compression DOE – EPRI – NIST ... Greenhouse gas sequestration Page 5. 5 © C opyright 2009 ...

2013-04-22T23:59:59.000Z

409

Carbon Mitigation Measurements  

Science Conference Proceedings (OSTI)

... sustainable technologies such as CO 2 capture and sequestration (CCS ... property diagnostic tools (under realistic conditions for carbon capture from ...

2012-10-04T23:59:59.000Z

410

Big Sky Carbon Atlas  

DOE Data Explorer (OSTI)

(Acknowledgment to the Big Sky Carbon Sequestration Partnership (BSCSP); see home page at http://www.bigskyco2.org/)

Carbon Sequestration Partnership, Big Sky [BSCSP; ,

411

Electrocatalysts on Carbon Nanoparticles  

Carbon nanostructures offer extremely high surface areas and so are attractive candidates to support dispersed catalysts. These nanostructures, ...

412

Low Carbon Fuel Standards  

E-Print Network (OSTI)

land-use changes. When biofuel production increases, land ison carbon releases. If biofuel production does not result in

Sperling, Dan; Yeh, Sonia

2009-01-01T23:59:59.000Z

413

Catalyst Additives to Enhance Mercury Oxidation and Capture  

SciTech Connect

Catalysis is the key fundamental ingredient to convert elemental mercury in coal-fired power stations into its oxidized forms that are more easily captured by sorbents, ESPs, baghouses, and wet scrubbers, whether the catalyst be unburned carbon (UBC) in the ash or vanadium pentoxide in SCR catalysts. This project has investigated several different types of catalysts that enhance mercury oxidation in several different ways. The stated objective of this project in the Statement of Objectives included testing duct-injection catalysts, catalyst-sorbent hybrids, and coated low-pressure-drop screens. Several different types of catalysts were considered for duct injection, including different forms of iron and carbon. Duct-injection catalysts would have to be inexpensive catalysts, as they would not be recycled. Iron and calcium had been shown to catalyze mercury oxidation in published bench-scale tests. However, as determined from results of an on-going EPRI/EPA project at Southern Research, while iron and calcium did catalyze mercury oxidation, the activity of these catalysts was orders of magnitude below that of carbon and had little impact in the short residence times available for duct-injected catalysts or catalyst-sorbent hybrids. In fact, the only catalyst found to be effective enough for duct injection was carbon, which is also used to capture mercury and remove it from the flue gas. It was discovered that carbon itself is an effective catalyst-sorbent hybrid. Bench-scale carbon-catalyst tests were conducted, to obtain kinetic rates of mercury adsorption (a key step in the catalytic oxidation of mercury by carbon) for different forms of carbon. All carbon types investigated behaved in a similar manner with respect to mercury sorption, including the effect of temperature and chlorine concentration. Activated carbon was more effective at adsorbing mercury than carbon black and unburned carbon (UBC), because their internal surface area of activated carbon was greater. Catalyst coating of low-pressure-drop screens was of particular interest as this project was being developed. However, it was discovered that URS was already heavily involved in the pursuit of this same technology, being funded by DOE, and reporting significant success. Hence, testing of SCR catalysts became a major focus of the project. Three different commercial SCR catalysts were examined for their ability to oxidize mercury in simulated flue-gas. Similar performance was observed from each of the three commercial catalysts, both in terms of mercury oxidation and SO{sub 3} generation. Ammonia injection hindered mercury oxidation at low HCl concentrations (i.e., {approx}2 ppmv), yet had little impact on mercury oxidation at higher HCl concentrations. On the other hand, SO{sub 2} oxidation was significantly reduced by the presence of ammonia at both low and high concentrations of HCl.

Thomas K. Gale

2006-06-30T23:59:59.000Z

414

Photo-oxidation catalysts  

DOE Patents (OSTI)

Photo-oxidation catalysts and methods for cleaning a metal-based catalyst are disclosed. An exemplary catalyst system implementing a photo-oxidation catalyst may comprise a metal-based catalyst, and a photo-oxidation catalyst for cleaning the metal-based catalyst in the presence of light. The exposure to light enables the photo-oxidation catalyst to substantially oxidize absorbed contaminants and reduce accumulation of the contaminants on the metal-based catalyst. Applications are also disclosed.

Pitts, J. Roland (Lakewood, CO); Liu, Ping (Irvine, CA); Smith, R. Davis (Golden, CO)

2009-07-14T23:59:59.000Z

415

Selective methane oxidation over promoted oxide catalysts. Quarterly report, September 1 - November 30, 1995  

DOE Green Energy (OSTI)

The objective of this research is the selective oxidation of methane to C{sub 2}H{sub 4} hydrocarbons and to oxygenates, in particular formaldehyde and methanol. Air, oxygen, or carbon dioxide rather than nitrous oxide, are utilized as the oxidizing gas at high gas hourly space velocity but mild reaction conditions (500-700{degrees}C, 1 atm total pressure). All the investigated processes are catalytic, aiming at minimizing gas phase reactions that are difficult to control. During this quarter, solid state {sup 51}V NMR and double catalyst bed experiments were conducted to demonstrate the unfavorable effect of the presence of bulk crystalline V{sub 2}O{sub 5} in V{sub 2}O{sub 5}-SiO{sub 2} xerogel catalysts on selective oxidation of methane to methanol and formaldehyde. Results are discussed.

Klier, Kamil; Herman, R.G.; Wang, C.B. [USDOE Morgantown Energy Technology Center, WV (United States)

1995-12-31T23:59:59.000Z

416

Oxidation of Mercury in Products of Coal Combustion  

SciTech Connect

Laboratory measurements of mercury oxidation during selective catalytic reduction (SCR) of nitric oxide, simulation of pilot-scale measurements of mercury oxidation and adsorption by unburned carbon and fly ash, and synthesis of new materials for simultaneous oxidation and adsorption of mercury, were performed in support of the development of technology for control of mercury emissions from coal-fired boilers and furnaces. Conversion of gas-phase mercury from the elemental state to water-soluble oxidized form (HgCl{sub 2}) enables removal of mercury during wet flue gas desulfurization. The increase in mercury oxidation in a monolithic V{sub 2}O{sub 5}-WO{sub 3}/TiO{sub 2} SCR catalyst with increasing HCl at low levels of HCl (< 10 ppmv) and decrease in mercury oxidation with increasing NH{sub 3}/NO ratio during SCR were consistent with results of previous work by others. The most significant finding of the present work was the inhibition of mercury oxidation in the presence of CO during SCR of NO at low levels of HCl. In the presence of 2 ppmv HCl, expected in combustion products from some Powder River Basin coals, an increase in CO from 0 to 50 ppmv reduced the extent of mercury oxidation from 24 {+-} 3 to 1 {+-} 4%. Further increase in CO to 100 ppmv completely suppressed mercury oxidation. In the presence of 11-12 ppmv HCl, increasing CO from 0 to {approx}120 ppmv reduced mercury oxidation from {approx}70% to 50%. Conversion of SO{sub 2} to sulfate also decreased with increasing NH{sub 3}/NO ratio, but the effects of HCl and CO in flue gas on SO{sub 2} oxidation were unclear. Oxidation and adsorption of mercury by unburned carbon and fly ash enables mercury removal in a particulate control device. A chemical kinetic mechanism consisting of nine homogeneous and heterogeneous reactions for mercury oxidation and removal was developed to interpret pilot-scale measurements of mercury oxidation and adsorption by unburned carbon and fly ash in experiments at pilot scale, burning bituminous coals (Gale, 2006) and blends of bituminous coals with Powder River Basin coal (Gale, 2005). The removal of mercury by fly ash and unburned carbon in the flue gas from combustion of the bituminous coals and blends was reproduced with satisfactory accuracy by the model. The enhancement of mercury capture in the presence of calcium (Gale, 2005) explained a synergistic effect of blending on mercury removal across the baghouse. The extent of mercury oxidation, on the other hand, was not so well described by the simulation, because of oversensitivity of the oxidation process in the model to the concentration of unburned carbon. Combined catalysts and sorbents for oxidation and removal of mercury from flue gas at low temperature were based on surfactant-templated silicas containing a transition metal and an organic functional group. The presence of both metal ions and organic groups within the pore structure of the materials is expected to impart to them the ability to simultaneously oxidize elemental mercury and adsorb the resulting oxidized mercury. Twelve mesoporous organosilicate catalysts/sorbents were synthesized, with and without metals (manganese, titanium, vanadium) and organic functional groups (aminopropyl, chloropropyl, mercaptopropyl). Measurement of mercury oxidation and adsorption by the candidate materials remains for future work.

Peter Walsh; Giang Tong; Neeles Bhopatkar; Thomas Gale; George Blankenship; Conrad Ingram; Selasi Blavo Tesfamariam Mehreteab; Victor Banjoko; Yohannes Ghirmazion; Heng Ban; April Sibley

2009-09-14T23:59:59.000Z

417

Hydrogen Oxidation and Evolution Reaction Kinetics on Platinum: Acid vs Alkaline Electrolytes  

E-Print Network (OSTI)

The kinetics of the hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER) on polycrystalline platinum [Pt(pc)] and high surface area carbon-supported platinum nanoparticles (Pt/C) were studied in 0.1 M ...

Sheng, Wenchao

418

Alkane oxidation with porphyrins and metal complexes thereof having haloalkyl side chains  

DOE Patents (OSTI)

Transition metal complexes of meso-haloalkylporphyrins, wherein the haloalkyl groups contain 2 to 8 carbon atoms have been found to be highly effective catalysts for oxidation of alkanes and for the decomposition of hydroperoxides.

Wijesekera, Tilak (Glen Mills, PA); Lyons, James E. (Wallingford, PA); Ellis, Jr., Paul E. (Downingtown, PA); Bhinde, Manoj V. (Boothwyn, PA)

1998-01-01T23:59:59.000Z

419

Alkane oxidation with porphyrins and metal complexes thereof having haloalkyl side chains  

DOE Patents (OSTI)

Transition metal complexes of meso-haloalkylporphyrins are disclosed, wherein the haloalkyl groups contain 2 to 8 carbon atoms have been found to be highly effective catalysts for oxidation of alkanes and for the decomposition of hydroperoxides. 7 figs.

Wijesekera, T.; Lyons, J.E.; Ellis, P.E. Jr.; Bhinde, M.V.

1998-06-23T23:59:59.000Z

420

Electrical resistance measurements of highly inhibited SiC coated carbon-carbon laminates  

E-Print Network (OSTI)

The effect of oxidation damage at 900'C of highly inhibited, SiC coated carbon-carbon laminates on shear modulus, mass loss, and electrical resistance are studied. The approach taken enabled the interpretation of the shear modulus and electrical resistance values to the mass loss. In-situ electrical resistance measurements are taken at 900'C and shear modulus measurements are obtained at room temperature prior to and following oxidation. Initial oxidation damage is incurred preferentially along both transverse and longitudinal fiber bundles as well as creating some matrix cracks. Mass loss results revealed that the oxidation reaction is diffusion controlled at this temperature. The shear modulus decreased whereas the electrical resistance increased with increasing exposure time. Electrical resistance calculations based on the experimental results showed that the electrical resistance is a matrix dominated property. The analytical simulations used in conjunction with experimental data provided the relationships between shear modulus, electrical resistance, and mass loss. Examples are given which show the correlation of mass loss to both the electrical resistance and the shear modulus. Analytical predictions from the electrical resistance simulations are shown to predict the shear modulus for different oxidation times within 5% of experimental values.

Parker, Paul Albert

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxides carbon monoxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Multifunctional Oxides: Multifunctional Oxides: Synthesis and ...  

Science Conference Proceedings (OSTI)

Using Ultrafast Optical Spectroscopy to Explore Magneoelectric Coupling in Multiferroic Oxide Heterostructures: Y-M Sheu1; S. Trugman1; L Yan1; C-P Chuu 1; ...

422

Asphalt Oxidation Kinetics and Pavement Oxidation Modeling  

E-Print Network (OSTI)

Most paved roads in the United States are surfaced with asphalt. These asphalt pavements suffer from fatigue cracking and thermal cracking, aggravated by the oxidation and hardening of asphalt. This negative impact of asphalt oxidation on pavement performance has not been considered adequately in pavement design. Part of the reason is that the process of asphalt oxidation in pavement is not well understood. This work focused on understanding the asphalt oxidation kinetics and on developing pavement oxidation model that predicts asphalt oxidation and hardening in pavement under environmental conditions. A number of asphalts were studied in laboratory condition. Based on kinetics data, a fast-rate ? constant-rate asphalt oxidation kinetics model was developed to describe the early nonlinear fast-rate aging period and the later constant-rate period of asphalt oxidation. Furthermore, reaction kinetics parameters for the fast-rate and constant-rate reactions were empirically correlated, leading to a simplified model. And the experimental effort and time to obtain these kinetics parameters were significantly reduced. Furthermore, to investigate the mechanism of asphalt oxidation, two antioxidants were studied on their effectiveness. Asphalt oxidation was not significantly affected. It was found that evaluation of antioxidant effectiveness based on viscosity only is not reliable. The asphalt oxidation kinetics model was incorporated into the pavement oxidation model that predicts asphalt oxidation in pavement. The pavement oxidation model mimics the oxidation process of asphalt in real mixture at pavement temperatures. A new parameter, diffusion depth, defined the oxygen diffusion region in the mastic. A field calibration factor accounted for the factors not considered in the model such as the effect of small aggregate particles on oxygen diffusion. Carbonyl area and viscosity of binders recovered from field cores of three pavements in Texas were measured and were used for model calibration and validation. Results demonstrated that the proposed model estimates carbonyl growth over time in pavement, layer-by-layer, quite well. Finally, this work can be useful for incorporating asphalt oxidation into a pavement design method that can predict pavement performance with time and for making strategic decisions such as optimal time for maintenance treatments.

Jin, Xin

2012-05-01T23:59:59.000Z

423

Ceramic coating system or water oxidation environments  

DOE Patents (OSTI)

A process for water oxidation of combustible materials in which during at least a part of the oxidation corrosive material is present and makes contact with at least a portion of the apparatus over a contact area on the apparatus. At least a portion of the contact surface area comprises titanium dioxide coated onto a titanium metal substrate. Such ceramic composites have been found to be highly resistant to environments encountered in the process of supercritical water oxidation. Such environments typically contain greater than 50 mole percent water, together with oxygen, carbon dioxide, and a wide range of acids, bases, and salts. Pressures are typically about 27.5 to about 1000 bar while temperatures range as high as 700.degree. C. The ceramic composites are also resistant to degradation mechanisms caused by thermal stresses.

Hong, Glenn T. (Tewksbury, MA)

1996-01-01T23:59:59.000Z

424

Oxidation Resistance of Reactive Atoms in Graphene  

SciTech Connect

We have found that reactive elements that are normally oxidized at room temperature are present as individual atoms or clusters on and in graphene. Oxygen is present in these samples but it is only detected in the thicker amorphous carbon layers present in the graphene specimens we have examined. However, we have seen no evidence that oxygen reacts with the impurity atoms and small clusters of these normally reactive elements when they are incorporated in the graphene layers. First principles calculations suggest that the oxidation resistance is due to kinetic effects such as preferential bonding of oxygen to nonincorporated atoms and H passivation. The observed oxidation resistance of reactive atoms in graphene may allow the use of these incorporated metals in catalytic applications. It also opens the possibility of designing and producing electronic, opto-electronic, and magnetic devices based on these normally reactive atoms.

Chisholm, Matthew F [ORNL; Duscher, Gerd [University of Tennessee, Knoxville (UTK); Windl, Wolfgang [Ohio State University

2012-01-01T23:59:59.000Z

425

Formation of Carbon Dwarfs  

E-Print Network (OSTI)

We consider the formation of dwarf carbon stars via accretion from a carbon AGB companion in light of the new 107 object sample of Downes et al. (2004). This sample is now large enough to allow good mass determination via comparison of a composite spectrum to theoretical atmospheric models. Carbon dwarfs of spectral type M are indeed main sequence M dwarfs with enhanced metallicity and carbon abundance. We also calculate the predicted abundance of both M and of F/G carbon dwarfs, and show that the latter should be falsifiable in the near future.

Charles L. Steinhardt; Dimitar D. Sasselov

2005-02-08T23:59:59.000Z

426

Method of produce ultra-low friction carbon films  

DOE Patents (OSTI)

A method and article of manufacture of amorphous diamond-like carbon. The method involves providing a substrate in a chamber, providing a mixture of a carbon containing gas and hydrogen gas with the mixture adjusted such that the atomic molar ratio of carbon to hydrogen is less than 0.3, including all carbon atoms and all hydrogen atoms in the mixture. A plasma is formed of the mixture and the amorphous diamond-like carbon film is deposited on the substrate. To achieve optimum bonding an intervening bonding layer, such as Si or SiO.sub.2, can be formed from SiH.sub.4 with or without oxidation of the layer formed.

Erdemir, Ali (Naperville, IL); Fenske, George R. (Downers Grove, IL); Eryilmaz, Osman Levent (Istanbul, TK); Lee, Richard H. (Lemont, IL)

2003-04-15T23:59:59.000Z

427

Particles of spilled oil-absorbing carbon in contact with water  

Science Conference Proceedings (OSTI)

Hydrogen generator coupled to or integrated with a fuel cell for portable power applications. Hydrogen is produced via thermocatalytic decomposition (cracking, pyrolysis) of hydrocarbon fuels in oxidant-free environment. The apparatus can utilize a variety of hydrocarbon fuels, including natural gas, propane, gasoline, kerosene, diesel fuel, crude oil (including sulfurous fuels). The hydrogen-rich gas produced is free of carbon oxides or other reactive impurities, so it could be directly fed to any type of a fuel cell. The catalysts for hydrogen production in the apparatus are carbon-based or metal-based materials and doped, if necessary, with a sulfur-capturing agent. Additionally disclosed are two novel processes for the production of two types of carbon filaments, and a novel filamentous carbon product. Carbon particles with surface filaments having a hydrophobic property of oil film absorption, compositions of matter containing those particles, and a system for using the carbon particles for cleaning oil spills.

Muradov, Nazim (Melbourne, FL)

2011-03-29T23:59:59.000Z

428

Tracing Fuel Component Carbon in the Emissions from Diesel Engines  

DOE Green Energy (OSTI)

The addition of oxygenates to diesel fuel can reduce particulate emissions, but the underlying chemical pathways for the reductions are not well understood. While measurements of particulate matter (PM), unburned hydrocarbons (HC), and carbon monoxide (CO) are routine, determining the contribution of carbon atoms in the original fuel molecules to the formation of these undesired exhaust emissions has proven difficult. Renewable bio-derived fuels (ethanol or bio-diesel) containing a universal distribution of contemporary carbon are easily traced by accelerator mass spectrometry (AMS). These measurements provide general information about the emissions of bio-derived fuels. Another approach exploits synthetic organic chemistry to place {sup 14}C atoms in a specific bond position in a specific fuel molecule. The highly labeled fuel molecule is then diluted in {sup 14}C-free petroleum-derived stock to make a contemporary petroleum fuel suitable for tracing. The specific {sup 14}C atoms are then traced through the combustion event to determine whether they reside in PM, HC, CO, CO{sub 2}, or other emission products. This knowledge of how specific molecular structures produce certain emissions can be used to refine chemical-kinetic combustion models and to optimize fuel composition to reduce undesired emissions. Due to the high sensitivity of the technique and the lack of appreciable {sup 14}C in fossil fuels, fuels for AMS experiments can be labeled with modern levels of {sup 14}C and still produce a strong signal. Since the fuel is not radioactive, emission tests can be conducted in any conventional engine lab, dynamometer facility, or on the open road.

Buchholz, B A; Mueller, C J; Martin, G C; Cheng, A S E; Dibble, R W; Frantz, B R

2002-10-14T23:59:59.000Z

429

Improved field emission characteristic of carbon nanotubes by an Ag micro-particle intermediation layer  

Science Conference Proceedings (OSTI)

An efficient way to improve field emission characteristic of carbon nanotubes (CNTs) through an Ag micro-particle intermediation layer is presented. In this way, the intermediation layer is deposited on an indium tin oxide glass substrate by electrochemical ... Keywords: Ag micro-particle intermediation layer, Carbon nanotubes, Field emission

Wenhui Lu; Hang Song; Yixin Jin; Haifeng Zhao; Zhiming Li; Hong Jiang; Guoqing Miao

2008-05-01T23:59:59.000Z

430

Novel attributes in scaling issues of carbon nanotube field-effect transistors  

Science Conference Proceedings (OSTI)

For the first time, we present a scaling study of carbon nanotube field-effect transistors (CNTFETs) using a two-dimensional model. We investigate the scaling issues in device performance focusing on transconductance characteristics, output characteristics, ... Keywords: CNTFET, Capacitance model, Carbon nanotube diameter, Gate oxide thickness

Zahra Arefinia; Ali A. Orouji

2009-01-01T23:59:59.000Z

431

Methods and systems for producing syngas  

DOE Patents (OSTI)

Methods and systems are provided for producing syngas utilizing heat from thermochemical conversion of a carbonaceous fuel to support decomposition of at least one of water and carbon dioxide using one or more solid-oxide electrolysis cells. Simultaneous decomposition of carbon dioxide and water or steam by one or more solid-oxide electrolysis cells may be employed to produce hydrogen and carbon monoxide. A portion of oxygen produced from at least one of water and carbon dioxide using one or more solid-oxide electrolysis cells is fed at a controlled flow rate in a gasifier or combustor to oxidize the carbonaceous fuel to control the carbon dioxide to carbon monoxide ratio produced.

Hawkes, Grant L; O& #x27; Brien, James E; Stoots, Carl M; Herring, J. Stephen; McKellar, Michael G; Wood, Richard A; Carrington, Robert A; Boardman, Richard D

2013-02-05T23:59:59.000Z

432

Study of fire retardant behavior of carbon nanotube membranes and carbon nanofiber paper in carbon fiber  

E-Print Network (OSTI)

Study of fire retardant behavior of carbon nanotube membranes and carbon nanofiber paper in carbon Accepted 14 January 2010 Available online 20 January 2010 A B S T R A C T Single-walled carbon nanotube (SWCNT) and multi-walled carbon nanotube (MWCNT) membranes (buckypaper) and carbon nanofiber (CNF) paper

Das, Suman

433

Molecular Basis of Microbial One-Carbon Metabolism 2008 Gordon Research Conference (July 20-25, 2008)  

SciTech Connect

One-carbon (C-1) compounds play a central role in microbial metabolism. C-1 compounds include methane, carbon monoxide, CO2, and methanol as well as coenzyme-bound one-carbon compounds (methyl-B12, CH3-H4folate, etc). Such compounds are of broad global importance because several C-1 compounds (e.g., CH4) are important energy sources, some (e.g., CO2 and CH4) are potent greenhouse gases, and others (e.g., CH2Cl2) are xenobiotics. They are central in pathways of energy metabolism and carbon fixation by microbes and many are of industrial interest. Research on the pathways of one-carbon metabolism has added greatly to our understanding of evolution, structural biology, enzyme mechanisms, gene regulation, ecology, and applied biology. The 2008 meeting will include recent important findings in the following areas: (a) genomics, metagenomics, and proteomic studies that have expanded our understanding of autotrophy and C-1 metabolism and the evolution of these pathways; (b) redox regulation of carbon cycles and the interrelationship between the carbon cycle and other biogeochemical cycles (sulfur, nitrogen, oxygen); (c) novel pathways for carbon assimilation; (d) biotechnology related to C-1 metabolism; (e) novel enzyme mechanisms including channeling of C-1 intermediates during metabolism; and (f) the relationship between metal homeostasis and the global carbon cycle. The conference has a diverse and gender-balanced slate of speakers and session leaders. The wide variety of disciplines brought to the study of C-1 metabolism make the field an excellent one in which to train young researchers.

Stephen W. Ragsdale

2009-08-12T23:59:59.000Z

434

Method of preparing a dimensionally stable electrode for use in a molten carbonate fuel cell  

DOE Patents (OSTI)

A method is disclosed for preparing a dimensionally stable electrode structure, particularly nickel-chromium anodes, for use in a molten carbonate fuel cell stack. A low-chromium to nickel alloy is provided and oxidized in a mildly oxidizing gas of sufficient oxidation potential to oxidize chromium in the alloy structure. Typically, a steam/H/sub 2/ gas mixture in a ratio of about 100/1 and at a temperature below 800/sup 0/C is used as the oxidizing medium. This method permits the use of less than 5 wt % chromium in nickel alloy electrodes while obtaining good resistance to creep in the electrodes of a fuel cell stack.

Swarr, T.E.; Wnuck, W.G.

1986-01-29T23:59:59.000Z

435

Highly Conductive and Porous Activated Reduced Graphene Oxide Films for High-Power Supercapacitors  

E-Print Network (OSTI)

Highly Conductive and Porous Activated Reduced Graphene Oxide Films for High-Power Supercapacitors for a free-standing carbon film reported to date. A two-electrode supercapacitor using these carbon films. KEYWORDS: Graphene, flexible film, chemical activation, supercapacitors Free-standing thin film materials

436

Novel Ash Beneficiation Processes for Managing Unburned Carbon and Ammonia  

Science Conference Proceedings (OSTI)

This report describes new fly ash beneficiation concepts for managing deleterious effects of unburned carbon and ammonia contamination associated with low nitrogen oxides (low-NOx) combustion systems. The report contains technical data, scientific discussion, and a description of ongoing development and scale-up activities.

2002-12-10T23:59:59.000Z

437

Carbon dioxide sensor  

SciTech Connect

The present invention generally relates to carbon dioxide (CO.sub.2) sensors. In one embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor that incorporates lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3). In another embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor has a reduced sensitivity to humidity due to a sensing electrode with a layered structure of lithium carbonate and barium carbonate. In still another embodiment, the present invention relates to a method of producing carbon dioxide (CO.sub.2) sensors having lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3).

Dutta, Prabir K. (Worthington, OH); Lee, Inhee (Columbus, OH); Akbar, Sheikh A. (Hilliard, OH)

2011-11-15T23:59:59.000Z

438

ELECTRON IRRADIATION OF CARBON DISULFIDE-OXYGEN ICES: TOWARD THE FORMATION OF SULFUR-BEARING MOLECULES IN INTERSTELLAR ICES  

Science Conference Proceedings (OSTI)

The formation of sulfur-bearing molecules in interstellar ices was investigated during the irradiation of carbon disulfide (CS{sub 2})-oxygen (O{sub 2}) ices with energetic electrons at 12 K. The irradiation-induced chemical processing of these ices was monitored online and in situ via Fourier transform infrared spectroscopy to probe the newly formed products quantitatively. The sulfur-bearing molecules produced during the irradiation were sulfur dioxide (SO{sub 2}), sulfur trioxide (SO{sub 3}), and carbonyl sulfide (OCS). Formations of carbon dioxide (CO{sub 2}), carbon monoxide (CO), and ozone (O{sub 3}) were observed as well. To fit the temporal evolution of the newly formed products and to elucidate the underlying reaction pathways, kinetic reaction schemes were developed and numerical sets of rate constants were derived. Our studies suggest that carbon disulfide (CS{sub 2}) can be easily transformed to carbonyl sulfide (OCS) via reactions with suprathermal atomic oxygen (O), which can be released from oxygen-containing precursors such as water (H{sub 2}O), carbon dioxide (CO{sub 2}), and/or methanol (CH{sub 3}OH) upon interaction with ionizing radiation. This investigation corroborates that carbonyl sulfide (OCS) and sulfur dioxide (SO{sub 2}) are the dominant sulfur-bearing molecules in interstellar ices.

Maity, Surajit; Kaiser, Ralf I. [Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822 (United States)

2013-08-20T23:59:59.000Z

439

Catalyst Additives to Enhance Mercury Oxidation and Capture  

SciTech Connect

Bench-scale carbon-catalyst tests were conducted in the first quarter of 2004, to obtain kinetic rates of mercury oxidation and sorption for different forms of carbon. The current quarterly report provides a more extensive quantitative analysis of the data obtained from the CRTF experiments on different carbon types and carbocalcium mixtures than was presented in the last quarterly report. The procedure and basis for normalizing mercury removals, so that they could be compared on an equal residence time basis, is described. The chemisorption rate of mercury on carbon was found to be first order in mercury concentration and half order in HCl concentration, for the facility configuration investigated. The applicable temperature range of the kinetic rates obtained is from 300 F to 700 F, and the applicable chlorine concentration range is from 2 ppmv HCl to 250 ppmv HCl. The gas-sorbent contact time of 0.12 seconds used in this work was shown to be representative of gas-dust cake contact times in full-scale baghouses. All carbon types investigated behaved similarly with respect to Hg sorption, including the effect of temperature and chlorine concentration. Activated carbon was more effective at sorbing mercury than carbon black and unburned carbon (UBC), because the internal surface area of activated carbon is greater. The synergistic relationship between Ca and C is also discussed in the report.

Thomas K. Gale

2004-09-30T23:59:59.000Z

440

Published: April 28, 2011 r 2011 American Chemical Society 629 dx.doi.org/10.1021/cs200092c |ACS Catal. 2011, 1, 629635  

E-Print Network (OSTI)

and diesel generate harmful pollutants such as nitrogen oxides (NOx), carbon monoxide (CO), unburned hydrocarbons (HC), particulates, and sulfur oxides (SOx). Liquefied petroleum gas (LPG), an alternative cleaner burning fuel, is gaining ground for use in internal combustion engines.1 Liquefied petroleum gas has

Poeppelmeier, Kenneth R.

Note: This page contains sample records for the topic "oxides carbon monoxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Adsorption Mechanism and Uptake of Methane in Covalent Organic Frameworks: Theory and Experiment  

E-Print Network (OSTI)

pollutants by combustion and evaporation, including nitrogen oxides, sulfur oxide, carbon monoxide-burning characteristics.2 Moreover, the huge reserves of natural gas (NG) (>95% CH4, with some ethane, nitrogen, higher be liquefied at room temperature, increasing the cost of its transportation.3 Attempts to overcome

Yaghi, Omar M.

442

Published: December 12, 2011 r 2011 American Chemical Society 551 dx.doi.org/10.1021/es202392g |Environ. Sci. Technol. 2012, 46, 551558  

E-Print Network (OSTI)

emissions of particulate matter and oxides of nitrogen from heavy-duty diesel trucks. To accelerate fleet.5 years in May of 2010 with significant reductions in carbon monoxide (30%), oxides of nitrogen (48 emissions as a result of new, stoichiometrically combusted, liquefied natural gas powered trucks

Denver, University of

443

Apparatus for photocatalytic destruction of internal combustion engine emissions during cold start  

DOE Patents (OSTI)

A method and apparatus for the destruction of emissions from an internal combustion engine wherein a substrate coated with TiO.sub.2 is exposed to a light source in the exhaust system of an internal combustion engine thereby catalyzing oxidation/reduction reactions between gaseous hydrocarbons, carbon monoxide, nitrogen oxides and oxygen in the exhaust of the internal combustion engine.

Janata, Jiri (Richland, WA); McVay, Gary L. (Richland, WA); Peden, Charles H. (West Richland, WA); Exarhos, Gregory J. (Richland, WA)

1998-01-01T23:59:59.000Z

444

"LIMITS AND CHANCES IN FLUE-GAS CLEANING -INTE RNATIONAL PERSPECTIVE"  

E-Print Network (OSTI)

) and elemental mercury (Hg«» under oxidizing conditions of the off-gases downstream of the refuse incinerator), sulfur dioxide (S02)' nitrogen oxides (NOx), carbon monoxide (CO), PCDDs/PCDFs, cadmium (Cd), mercury (Hg emission regulations. Mercury Control in MWCs The capture of Hg in flue gas cleaning devices depends on the

Columbia University

445

Mercury and Dioxin Control for Municipal Waste Combustors Anthony Licata  

E-Print Network (OSTI)

) and elemental mercury (Hg«» under oxidizing conditions of the off-gases downstream of the refuse incinerator), sulfur dioxide (S02)' nitrogen oxides (NOx), carbon monoxide (CO), PCDDs/PCDFs, cadmium (Cd), mercury (Hg emission regulations. Mercury Control in MWCs The capture of Hg in flue gas cleaning devices depends on the

Columbia University

446

National Waste Processing Conference Proceedings ASME 1994 THE RETROFIT OF THE MWC ROTEB IN  

E-Print Network (OSTI)

) and elemental mercury (Hg«» under oxidizing conditions of the off-gases downstream of the refuse incinerator), sulfur dioxide (S02)' nitrogen oxides (NOx), carbon monoxide (CO), PCDDs/PCDFs, cadmium (Cd), mercury (Hg emission regulations. Mercury Control in MWCs The capture of Hg in flue gas cleaning devices depends on the

Columbia University

447

National Waste Processing Conference Proceedings ASME 1994 ACID GASES, MERCURY,  

E-Print Network (OSTI)

) and elemental mercury (Hg«» under oxidizing conditions of the off-gases downstream of the refuse incinerator), sulfur dioxide (S02)' nitrogen oxides (NOx), carbon monoxide (CO), PCDDs/PCDFs, cadmium (Cd), mercury (Hg emission regulations. Mercury Control in MWCs The capture of Hg in flue gas cleaning devices depends on the

Columbia University

448

Exhaust system having a gold-platinum group metal catalyst  

DOE Patents (OSTI)

A method of providing an exhaust treatment device is disclosed. The method includes applying a catalyst including gold and a platinum group metal to a particulate filter. The concentration of the gold and the platinum group metal is sufficient to enable oxidation of carbon monoxide and nitric oxide.

Ragle, Christie Susan (Havana, IL); Silver, Ronald G. (Peoria, IL); Zemskova, Svetlana Mikhailovna (Edelstein, IL); Eckstein, Colleen J. (Metamora, IL)

2011-12-06T23:59:59.000Z

449

Method for producing electricity from a fuel cell having solid-oxide ionic electrolyte  

DOE Patents (OSTI)

Stabilized quadrivalent cation oxide electrolytes are employed in fuel cells at elevated temperatures with a carbon and/or hydrogen containing fuel anode and an oxygen cathode. The fuel cell is operated at elevated temperatures with conductive metallic coatings as