Sample records for oxide nox emissions

  1. Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Presents...

  2. Satellite constraints of nitrogen oxide (NOx) emissions from India based on OMI observations and WRFChem simulations

    E-Print Network [OSTI]

    Haak, Hein

    , and economic growth in India and attracted the attention of researchers and policy makers [Garg et al., 2001Satellite constraints of nitrogen oxide (NOx) emissions from India based on OMI observations emission inventory for India for 2005 using an inverse technique and iterative procedure. We used OMI

  3. Three-Dimensional Composite Nanostructures for Lean NOx Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Three-Dimensional Composite Nanostructures for Lean NOx Emission Control Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control...

  4. Three-Dimensional Composite Nanostructures for Lean NOx Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Ultra-efficient, Robust and Well-defined Nano-Array based Monolithic...

  5. Retrofit Diesel Emissions Control System Providing 50% NOxControl...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Emissions Control System Providing 50% NOxControl Retrofit Diesel Emissions Control System Providing 50% NOxControl 2005 Diesel Engine Emissions Reduction (DEER) Conference...

  6. Virtual Oxygen Sensor for Innovative NOx and PM Emission Control...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virtual Oxygen Sensor for Innovative NOx and PM Emission Control Technologies Virtual Oxygen Sensor for Innovative NOx and PM Emission Control Technologies A virtual O2 sensor for...

  7. Effects of Biodiesel on NOx Emissions

    SciTech Connect (OSTI)

    McCormick, R.

    2005-06-01T23:59:59.000Z

    A presentation about the effects of biodiesel on nitrogen oxide emissions presented at the ARB Biodiesel Workshop June 8, 2005.

  8. Two-Stage Plasma-Catalysis for Diesel NOx Emission Control. ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    producing nitrogen. Citation: Hoard J, and RG Tonkyn.2003."Two-Stage Plasma-Catalysis for Diesel NOx Emission Control."Journal of Advanced Oxidation Technologies 6(2):158-165....

  9. Three-Dimensional Composite Nanostructures for Lean NOx Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emission Control Catalysts Three-Dimensional Composite Nanostructures for Lean NOx Emission Control Ultra-efficient, Robust and Well-defined Nano-Array based Monolithic Catalysts...

  10. Innovative clean coal technology: 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Final report, Phases 1 - 3B

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    This report presents the results of a U.S. Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The project was conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The technologies demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NOx burner. The primary objective of the demonstration at Hammond Unit 4 was to determine the long-term effects of commercially available wall-fired low NOx combustion technologies on NOx emissions and boiler performance. Short-term tests of each technology were also performed to provide engineering information about emissions and performance trends. A target of achieving fifty percent NOx reduction using combustion modifications was established for the project. Short-term and long-term baseline testing was conducted in an {open_quotes}as-found{close_quotes} condition from November 1989 through March 1990. Following retrofit of the AOFA system during a four-week outage in spring 1990, the AOFA configuration was tested from August 1990 through March 1991. The FWEC CF/SF low NOx burners were then installed during a seven-week outage starting on March 8, 1991 and continuing to May 5, 1991. Following optimization of the LNBs and ancillary combustion equipment by FWEC personnel, LNB testing commenced during July 1991 and continued until January 1992. Testing in the LNB+AOFA configuration was completed during August 1993. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NOx burners and advanced overfire systems.

  11. Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NOx Emissions Control: Reformer-Assisted vs. Plasma-Facilitated Lean NOx Catalysis Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma-Facilitated Lean NOx Catalysis...

  12. Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2002deeraardahl.pdf More Documents & Publications Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma-Facilitated Lean NOx Catalysis Selective reduction of NOx in...

  13. Effect of Thermal Aging on NO oxidation and NOx storage in a...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal Aging on NO oxidation and NOx storage in a Fully-Formulated Lean NOx Trap Effect of Thermal Aging on NO oxidation and NOx storage in a Fully-Formulated Lean NOx Trap...

  14. Novel Application of Air Separation Membranes Reduces NOx Emissions...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    permeation of gases using an air separation membrane. Can be retrofitted to existing engines Significantly reduces NOx emissions (as much as 70%) with just a 2% nitrogen...

  15. LOW NOx EMISSIONS IN A FUEL FLEXIBLE GAS TURBINE

    SciTech Connect (OSTI)

    Raymond Drnevich; James Meagher; Vasilis Papavassiliou; Troy Raybold; Peter Stuttaford; Leonard Switzer; Lee Rosen

    2004-08-01T23:59:59.000Z

    In alignment with Vision 21 goals, a study is presented here on the technical and economic potential for developing a gas turbine combustor that is capable of generating less that 2 ppm NOx emissions, firing on either coal synthesis gas or natural gas, and being implemented on new and existing systems. The proposed solution involves controlling the quantity of H2 contained in the fuel. The presence of H2 leads to increased flame stability such that the combustor can be operated at lower temperatures and produce less thermal NOx. Coal gas composition would be modified using a water gas shift converter, and natural gas units would implement a catalytic partial oxidation (CPOX) reactor to convert part of the natural gas feed to a syngas before fed back into the combustor. While both systems demonstrated technical merit, the economics involved in implementing such a system are marginal at best. Therefore, Praxair has decided not to pursue the technology any further at this time.

  16. Three-Dimensional Composite Nanostructures for Lean NOx Emission Control

    SciTech Connect (OSTI)

    Gao, Pu-Xian

    2013-07-31T23:59:59.000Z

    This final report to the Department of Energy (DOE) and National Energy Technology Laboratory (NETL) for DE-EE0000210 covers the period from October 1, 2009 to July 31, 2013. Under this project, DOE awarded UConn about $1,248,242 to conduct the research and development on a new class of 3D composite nanostructure based catalysts for lean NOx emission control. Much of the material presented here has already been submitted to DOE/NETL in quarterly technical reports. In this project, through a scalable solution process, we have successfully fabricated a new class of catalytic reactors, i.e., the composite nanostructure array (nano-array) based catalytic converters. These nanocatalysts, distinct from traditional powder washcoat based catalytic converters, directly integrate monolithic substrates together with nanostructures with well-defined size and shape during the scalable hydrothermal process. The new monolithic nanocatalysts are demonstrated to be able to save raw materials including Pt-group metals and support metal oxides by an order of magnitude, while perform well at various oxidation (e.g., CO oxidation and NO oxidation) and reduction reactions (H{sub 2} reduction of NOx) involved in the lean NOx emissions. The size, shape and arrangement of the composite nanostructures within the monolithic substrates are found to be the key in enabling the drastically reduced materials usage while maintaining the good catalytic reactivity in the enabled devices. The further understanding of the reaction kinetics associated with the unique mass transport and surface chemistry behind is needed for further optimizing the design and fabrication of good nanostructure array based catalytic converters. On the other hand, the high temperature stability, hydrothermal aging stability, as well as S-poisoning resistance have been investigated in this project on the nanocatalysts, which revealed promising results toward good chemical and mechanical robustness, as well as S-poisoning resistance. Further investigation is needed for unraveling the understanding, design and selection principles of this new class of nanostructure based monolithic catalysts.

  17. Passive Catalytic Approach to Low Temperature NOx Emission Abatement

    Broader source: Energy.gov (indexed) [DOE]

    ISF 2.8 during FTP-75 are too high for current state of the art NOx AT to meet T2B2 emission levels * Reduction in engine out NOx emissions from 2 gmi to 0.4 gmi allows for...

  18. Electrochemical NOx Sensor for Monitoring Diesel Emissions

    SciTech Connect (OSTI)

    Woo, L Y; Glass, R S

    2008-11-14T23:59:59.000Z

    Increasingly stringent emissions regulations will require the development of advanced gas sensors for a variety of applications. For example, compact, inexpensive sensors are needed for detection of regulated pollutants, including hydrocarbons (HCs), CO, and NO{sub x}, in automotive exhaust. Of particular importance will be a sensor for NO{sub x} to ensure the proper operation of the catalyst system in the next generation of diesel (CIDI) automobiles. Because many emerging applications, particularly monitoring of automotive exhaust, involve operation in harsh, high-temperature environments, robust ceramic-oxide-based electrochemical sensors are a promising technology. Sensors using yttria-stabilized zirconia (YSZ) as an oxygen-ion-conducting electrolyte have been widely reported for both amperometric and potentiometric modes of operation. These include the well-known exhaust gas oxygen (EGO) sensor. More recently, ac impedance-based (i.e., impedance-metric) sensing techniques using YSZ have been reported for sensing water vapor, hydrocarbons, CO, and NO{sub x}. Typically small-amplitude alternating signal is applied, and the sensor response is measured at a specified frequency. Most impedance-metric techniques have used the modulus (or magnitude) at low frequencies (< 1 Hz) as the sensing signal and attribute the measured response to interfacial phenomena. Work by our group has also investigated using phase angle as the sensing signal at somewhat higher frequencies (10 Hz). The higher frequency measurements would potentially allow for reduced sampling times during sensor operation. Another potential advantage of impedance-metric NO{sub x} sensing is the similarity in response to NO and NO{sub 2} (i.e., total-NO{sub x} sensing). Potentiometric NO{sub x} sensors typically show higher sensitivity to NO2 than NO, and responses that are opposite in sign. However, NO is more stable than NO{sub 2} at temperatures > 600 C, and thermodynamic calculations predict {approx}90% NO, balance NO{sub 2}. Since automotive exhaust sensors will probably be required to operate at temperatures > 600 C, NO is the dominant component in thermodynamic equilibrium and the target NOx species. Also, the use of upstream catalysts could further promote the conversion of NO{sub x} species to NO. Therefore, the focus of current work is to investigate the response to NO. Nevertheless, minimizing the sensitivity to a variety of competing species is important in order to obtain the accuracy necessary for achieving the emission limits. Mitigating the effect of interfering gases (e.g., O{sub 2}, water vapor, HCs, etc.) is an area of current study. For impedance metric NO{sub x} sensors, our previous work has demonstrated that the cross-sensitivity to O{sub 2} may be accounted for by comparing measurements at multiple frequencies. Other strategies for compensation are also being explored, including calibration using data from existing sensors located nearby. Our current work has made significant advances in terms of developing prototype sensors more suitable for commercialization. Also, dynamometer testing has provided real-world sensor performance data that will be useful in approaching potential suppliers to whom we can transfer the technology for commercialization. The advances are a direct result of understanding the sensing mechanisms responsible for impedance-based NO{sub x} sensing and the effect of materials choice and sensor design/geometry.

  19. Quantification of Variability and Uncertainty in Hourly NOx Emissions from Coal-Fired Power Plants

    E-Print Network [OSTI]

    Frey, H. Christopher

    to quantify variability and uncertainty for NOx emissions from coal-fired power plants. Data for hourly NOx Uncertainty, Variability, Emission Factors, Coal-Fired Power Plants, NOx emissions, Regression Models for different source categories, NOx emissions from coal-fired power plants are analyzed in this #12;2 paper

  20. Retrofit Diesel Emissions Control System Providing 50% NOxControl

    Broader source: Energy.gov (indexed) [DOE]

    Retrofit Diesel Emissions Control System Providing 50% NOx Control D. Yee, B. Adair, A. Boleda, B. Berry, T. Caron, J. Cizeron, T. Kinney, K. Lundberg and R. Dalla Betta Catalytica...

  1. Air Pollution Control Regulations: No. 41- Nox Budget Trading Program (Rhode Island)

    Broader source: Energy.gov [DOE]

    These regulations establish a budget trading program for nitrogen oxide emissions, setting NOx budget units for generators and an NOx Allowance Tracking System to account for emissions. These...

  2. ULTRA LOW NOx INTEGRATED SYSTEM FOR NOx EMISSION CONTROL FROM COAL-FIRED BOILERS

    SciTech Connect (OSTI)

    Galen H. Richards; Charles Q. Maney; Richard W. Borio; Robert D. Lewis

    2002-12-30T23:59:59.000Z

    ALSTOM Power Inc.'s Power Plant Laboratories, working in concert with ALSTOM Power's Performance Projects Group, has teamed with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient NOx control technologies for retrofit to pulverized coal fired utility boilers. The objective of this project was to develop retrofit NOx control technology to achieve less than 0.15 lb/MMBtu NOx (for bituminous coals) and 0.10 lb/MMBtu NOx (for subbituminous coals) from existing pulverized coal fired utility boilers at a cost which is at least 25% less than SCR technology. Efficient control of NOx is seen as an important, enabling step in keeping coal as a viable part of the national energy mix in this century, and beyond. Presently 57% of U.S. electrical generation is coal based, and the Energy Information Agency projects that coal will maintain a lead in U.S. power generation over all other fuel sources for decades (EIA 1998 Energy Forecast). Yet, coal-based power is being strongly challenged by society's ever-increasing desire for an improved environment and the resultant improvement in health and safety. The needs of the electric-utility industry are to improve environmental performance, while simultaneously improving overall plant economics. This means that emissions control technology is needed with very low capital and operating costs. This project has responded to the industry's need for low NOx emissions by evaluating ideas that can be adapted to present pulverized coal fired systems, be they conventional or low NOx firing systems. The TFS 2000{trademark} firing system has been the ALSTOM Power Inc. commercial offering producing the lowest NOx emission levels. In this project, the TFS 2000{trademark} firing system served as a basis for comparison to other low NOx systems evaluated and was the foundation upon which refinements were made to further improve NOx emissions and related combustion performance. Three coals were evaluated during the bench-scale and large pilot-scale testing tasks. The three coals ranged from a very reactive Powder River Basin coal (PRB) to a moderately reactive Midwestern bituminous coal (HVB) to a less reactive medium volatile Eastern bituminous coal (MVB). Bench-scale testing was comprised of standard ASTM properties evaluation, plus more detailed characterization of fuel properties through drop tube furnace testing and thermogravimetric analysis.

  3. Sulfur oxide adsorbents and emissions control

    DOE Patents [OSTI]

    Li, Liyu (Richland, WA); King, David L. (Richland, WA)

    2006-12-26T23:59:59.000Z

    High capacity sulfur oxide absorbents utilizing manganese-based octahedral molecular sieve (Mn--OMS) materials are disclosed. An emissions reduction system for a combustion exhaust includes a scrubber 24 containing these high capacity sulfur oxide absorbents located upstream from a NOX filter 26 or particulate trap.

  4. Asian emissions of CO and NOx: Constraints from aircraft and Chinese station data

    E-Print Network [OSTI]

    Palmer, Paul

    Asian emissions of CO and NOx: Constraints from aircraft and Chinese station data Yuxuan X. Wang to constrain estimates of Asian emissions of CO and NOx. A priori emissions are based on a detailed bottom emissions of CO and NOx, respectively, distributed heterogeneously, with the largest adjustments required

  5. Climate impact of aviation NOx? emissions : radiative forcing, temperature, and temporal heterogeneity

    E-Print Network [OSTI]

    Wong, Lawrence Man Kit

    2014-01-01T23:59:59.000Z

    Aviation NOx emissions are byproducts of combustion in the presence of molecular nitrogen. In the upper troposphere, NOx emissions result in the formation of O? but also reduce the lifetime of CH4 , causing an indirect ...

  6. Modeling The NOx Emissions In A Low NOx Burner While Fired With Pulverized Coal And Dairy Biomass Blends 

    E-Print Network [OSTI]

    Uggini, Hari

    2012-07-16T23:59:59.000Z

    by themselves already require cleanup technology; newer regulations will require development of new and economical technologies. Using a blend of traditional fuels & biomass is a promising technology to reduce NOX emissions. Experiments conducted previously...

  7. A Cost-Effectiveness Analysis of Alternative Ozone Control Strategies: Flexible Nitrogen Oxide (NOx) Abatement

    E-Print Network [OSTI]

    and Policy at the Massachusetts Institute of Technology June 2009 ©2009 Massachusetts Institute of Technology differentiated regulation for NOx emissions. Such a flexible NOx regulation policy, so-called "smart trading

  8. NOx Emission Reduction by Oscillating combustion

    SciTech Connect (OSTI)

    Institute of Gas Technology

    2004-01-30T23:59:59.000Z

    High-temperature, natural gas-fired furnaces, especially those fired with preheated air, produce large quantities of NO{sub x} per ton of material processed. Regulations on emissions from industrial furnaces are becoming increasingly more stringent. In addition, competition is forcing operators to make their furnaces more productive and/or efficient. Switching from preheated air to industrial oxygen can increase efficiency and reduce NO{sub x}, but oxygen is significantly more costly than air and may not be compatible with the material being heated. What was needed, and what was developed during this project, is a technology that reduces NO{sub x} emissions while increasing furnace efficiency for both air- and oxy-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace. Heat transfer from the flame to the load increases due to the more luminous fuel-rich zones, a longer overall flame length, and the breakup of the thermal boundary layer. The increased heat transfer shortens heat up times, thereby increasing furnace productivity, and reduces the heat going up the stack, thereby increasing efficiency. The fuel-rich and fuel-lean zones also produce substantially less NO{sub x} than firing at a constant excess air level. The longer flames and higher heat transfer rate reduces overall peak flame temperature and thus reduces additional NO{sub x} formation from the eventual mixing of the zones and burnout of combustibles from the rich zones. This project involved the development of hardware to implement oscillating combustion on an industrial scale, the laboratory testing of oscillating combustion on various types of industrial burners, and the field testing of oscillating combustion on several types of industrial furnace. Before laboratory testing began, a market study was conducted, based on the attributes of oscillating combustion and on the results of an earlier project at GTI and Air Liquide, to determine which applications for oscillating combustion would show the greatest probability for technical success and greatest probability for market acceptability. The market study indicated that furnaces in the steel, glass, and metal melting industries would perform well in both categories. These findings guided the selection of burners for laboratory testing and, with the results of the laboratory testing, guided the selection of field test sites.

  9. NOx Emission Reduction by Oscillating Combustion

    SciTech Connect (OSTI)

    John C. Wagner

    2004-03-31T23:59:59.000Z

    High-temperature, natural gas-fired furnaces, especially those fired with preheated air, produce large quantities of NO{sub x} per ton of material processed. Regulations on emissions from industrial furnaces are becoming increasingly more stringent. In addition, competition is forcing operators to make their furnaces more productive and/or efficient. Switching from preheated air to industrial oxygen can increase efficiency and reduce NO{sub x}, but oxygen is significantly more costly than air and may not be compatible with the material being heated. What was needed, and what was developed during this project, is a technology that reduces NO{sub x} emissions while increasing furnace efficiency for both air- and oxy-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace. Heat transfer from the flame to the load increases due to the more luminous fuel-rich zones, a longer overall flame length, and the breakup of the thermal boundary layer. The increased heat transfer shortens heat up times, thereby increasing furnace productivity, and reduces the heat going up the stack, thereby increasing efficiency. The fuel-rich and fuel-lean zones also produce substantially less NO{sub x} than firing at a constant excess air level. The longer flames and higher heat transfer rate reduces overall peak flame temperature and thus reduces additional NO{sub x} formation from the eventual mixing of the zones and burnout of combustibles from the rich zones. This project involved the development of hardware to implement oscillating combustion on an industrial scale, the laboratory testing of oscillating combustion on various types of industrial burners, and the field testing of oscillating combustion on several types of industrial furnace. Before laboratory testing began, a market study was conducted, based on the attributes of oscillating combustion and on the results of an earlier project at GTI and Air Liquide, to determine which applications for oscillating combustion would show the greatest probability for technical success and greatest probability for market acceptability. The market study indicated that furnaces in the steel, glass, and metal melting industries would perform well in both categories. These findings guided the selection of burners for laboratory testing and, with the results of the laboratory testing, guided the selection of field test sites.

  10. Flexible CHP System with Low NOx, CO and VOC Emissions - Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sheet, 2014 Flexible CHP System with Low NOx, CO and VOC Emissions - Fact Sheet, 2014 The Gas Technology Institute, in collaboration with Cannon Boiler Works, Integrated CHP...

  11. Desulfurization Effects on a Light-Duty Diesel Vehicle NOx Adsorber Exhaust Emission Control System

    SciTech Connect (OSTI)

    Tatur, M.; Tomazic, D.; Tyrer, H.; Thornton, M.; Kubsh, J.

    2006-05-01T23:59:59.000Z

    Analyzes the effects on gaseous emissions, before and after desulfurization, on a light-duty diesel vehicle with a NOx adsorber catalyst.

  12. Vortex combustor for low NOX emissions when burning lean premixed high hydrogen content fuel

    DOE Patents [OSTI]

    Steele, Robert C; Edmonds, Ryan G; Williams, Joseph T; Baldwin, Stephen P

    2012-11-20T23:59:59.000Z

    A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.

  13. Vortex combustor for low NOx emissions when burning lean premixed high hydrogen content fuel

    DOE Patents [OSTI]

    Steele, Robert C. (Woodinville, WA); Edmonds, Ryan G. (Renton, WA); Williams, Joseph T. (Kirkland, WA); Baldwin, Stephen P. (Winchester, MA)

    2009-10-20T23:59:59.000Z

    A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.

  14. Metal/metal oxide doped oxide catalysts having high deNOx selectivity for lean NOx exhaust aftertreatment systems

    DOE Patents [OSTI]

    Park, Paul W.

    2004-03-16T23:59:59.000Z

    A lean NOx catalyst and method of preparing the same is disclosed. The lean NOx catalyst includes a ceramic substrate, an oxide support material, preferably .gamma.-alumina, deposited on the substrate and a metal promoter or dopant introduced into the oxide support material. The metal promoters or dopants are selected from the group consisting of indium, gallium, tin, silver, germanium, gold, nickel, cobalt, copper, iron, manganese, molybdenum, chromium, cerium, vanadium, oxides thereof, and combinations thereof. The .gamma.-alumina preferably has a pore volume of from about 0.5 to about 2.0 cc/g; a surface area of between about 80 to 350 m.sup.2 /g; an average pore size diameter of between about 3 to 30 nm; and an impurity level of less than or equal to 0.2 weight percent. In a preferred embodiment the .gamma.-alumina is prepared by a sol-gel method, with the metal doping of the .gamma.-alumina preferably accomplished using an incipient wetness impregnation technique.

  15. Reduction of NOx Emissions in Alamo Area Council of Government Projects

    E-Print Network [OSTI]

    Haberl, J. S.; Zhu, Y.; Im, P.

    2004-01-01T23:59:59.000Z

    This reports summarizes the electricity, natural gas and NOx emissions reductions from retrofit measures reported as part of the AACOG emissions reduction effort. The electricity and natural gas savings were collected by the Brooks Energy...

  16. Reducing NOx in Fired Heaters and Boilers 

    E-Print Network [OSTI]

    Garg, A.

    2000-01-01T23:59:59.000Z

    -6, 2000 Reducing NOx in Fired Heaters Air Pollution Control and Boilers Keeping the environment clean Presented by Ashutosh Garg Furnace Improvements Low cost solutions for fired heaters Trace compounds ? Nitric oxides ? Carbon monoxide ? Sulfur... million BTU ? These levels can be achieved by Ultra Low NOx burners or FGR in boilers. ? Primary products of combustion ? Carbon dioxide ? Water vapors ? Oxygen ? Nitrogen ? Trace compounds NOx emissions ? NOx or Oxides of Nitrogen have...

  17. Nitrogen Isotopic Composition of Coal-Fired Power Plant NOx: Influence of Emission Controls and Implications for Global Emission

    E-Print Network [OSTI]

    Elliott, Emily M.

    Nitrogen Isotopic Composition of Coal-Fired Power Plant NOx: Influence of Emission Controls from coal-fired power plants in the U.S. at typical operating conditions with and without the presence this, a novel method for collection and isotopic analysis of coal-fired stack NOx emission samples

  18. NOx EMISSIONS PRODUCED WITH COMBUSTION OF POWDER RIVER BASIN COAL IN A UTILITY BOILER

    SciTech Connect (OSTI)

    John S. Nordin; Norman W. Merriam

    1997-04-01T23:59:59.000Z

    The objective of this report is to estimate the NOx emissions produced when Powder River Basin (PRB) coal is combusted in a utility boiler. The Clean Air Act regulations specify NOx limits of 0.45 lb/mm Btu (Phase I) and 0.40 lb/mm Btu (Phase II) for tangentially fired boilers, and 0.50 lb/mm 13tu (Phase II) and 0.46 lb/mm Btu (Phase II) for dry-bottom wall-fired boilers. The Clean Air Act regulations also specify other limits for other boiler types. Compliance for Phase I has been in effect since January 1, 1996. Compliance for Phase II goes into effect on January 1, 2000. Emission limits are expressed as equivalent NO{sub 2} even though NO (and sometimes N{sub 2}O) is the NOx species emitted during combustion. Regulatory agencies usually set even lower NOx emission limits in ozone nonattainment areas. In preparing this report, Western Research Institute (WRI) used published test results from utilities burning various coals, including PRB coal, using state-of-the art control technology for minimizing NOx emissions. Many utilities can meet Clean Air Act NOx emission limits using a combination of tight combustion control and low-NOx burners and by keeping furnaces clean (i.e., no slag buildup). In meeting these limits, some utilities also report problems such as increased carbon in their fly ash and excessive furnace tube corrosion. This report discusses utility experience. The theory of NOx emission formation during coal combustion as related to coal structure and how the coal is combusted is also discussed. From this understanding, projections are made for NOx emissions when processed PRB coal is combusted in a test similar to that done with other coals. As will be shown, there are a lot of conditions for achieving low NOx emissions, such as tight combustion control and frequent waterlancing of the furnace to avoid buildup of deposits.

  19. Effect of B20 and Low Aromatic Diesel on Transit Bus NOx Emissions Over Driving Cycles with a Range of Kinetic Intensity

    SciTech Connect (OSTI)

    Lammert, M. P.; McCormick, R. L.; Sindler, P.; Williams, A.

    2012-10-01T23:59:59.000Z

    Oxides of nitrogen (NOx) emissions for transit buses for up to five different fuels and three standard transit duty cycles were compared to establish whether there is a real-world biodiesel NOx increase for transit bus duty cycles and engine calibrations. Six buses representing the majority of the current national transit fleet and including hybrid and selective catalyst reduction systems were tested on a heavy-duty chassis dynamometer with certification diesel, certification B20 blend, low aromatic (California Air Resources Board) diesel, low aromatic B20 blend, and B100 fuels over the Manhattan, Orange County and UDDS test cycles. Engine emissions certification level had the dominant effect on NOx; kinetic intensity was the secondary driving factor. The biodiesel effect on NOx emissions was not statistically significant for most buses and duty cycles for blends with certification diesel, except for a 2008 model year bus. CARB fuel had many more instances of a statistically significant effect of reducing NOx. SCR systems proved effective at reducing NOx to near the detection limit on all duty cycles and fuels, including B100. While offering a fuel economy benefit, a hybrid system significantly increased NOx emissions over a same year bus with a conventional drivetrain and the same engine.

  20. Method of preparing doped oxide catalysts for lean NOx exhaust

    DOE Patents [OSTI]

    Park, Paul W.

    2004-03-09T23:59:59.000Z

    The lean NOx catalyst includes a substrate, an oxide support material, preferably .gamma.-alumina deposited on the substrate and a metal or metal oxide promoter or dopant introduced into the oxide support material. The metal promoters or dopants are selected from the group consisting of indium, gallium, tin, silver, germanium, gold, nickel, cobalt, copper, iron, manganese, molybdenum, chromium cerium, and vanadium, and oxides thereof, and any combinations thereof. The .gamma.-alumina preferably has a pore volume of from about 0.5 to about 2.0 cc/g; a surface area of between 80 and 350 m.sup.2 /g; an average pore size diameter of between about 3 to 30 nm; and an impurity level of less than or equal to about 0.2 weight percent. In a preferred embodiment the .gamma.-alumina is prepared by a sol-gel method, with the metal doping of the .gamma.-alumina preferably accomplished using an incipient wetness impregnation technique.

  1. Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-duty Engine in Conjunction with Ultra Low Sulfur Fuel (Presentation)

    SciTech Connect (OSTI)

    Thornton, M.; Tatur, M.; Tomazic, D.; Weber, P.; Webb, C.

    2005-08-25T23:59:59.000Z

    Discusses the full useful life exhaust emission performance of a NOx (nitrogen oxides) adsorber and diesel particle filter equipped light-duty and medium-duty engine using ultra low sulfur diesel fuel.

  2. EA-1472: Commercial Demonstration fo the Low Nox Burner/Separated Over-Fire Air (LNB/SOFA) Integration System Emission Reduction Technology, Holcolm Station, Sunflower Electric Power Corporation Finnety County, Kansas

    Broader source: Energy.gov [DOE]

    The DOE has prepared an Environmental Assessment (EA), to analyze the potential impacts of the commercial application of the Low-NOx Burner/Separated Over-Fire Air (LNB/SOFA) integration system to achieve nitrogen oxide (NOx) emissions reduction at Sunflower’s Holcomb Unit No. 1 (Holcomb Station), located near Garden City, in Finney County, Kansas. The Holcomb Station would be modified in three distinct phases to demonstrate the synergistic effect of layering NOx control technologies.

  3. Robust Nitrogen Oxide/Ammonia Sensors for Vehicle On-board Emissions...

    Broader source: Energy.gov (indexed) [DOE]

    2014: Robust Nitrogen oxideAmmonia Sensors for Vehicle on-board Emissions Control CumminsORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines...

  4. tive emissions from EVs (e.g., power plant NOx) and GPVs (tailpipe and

    E-Print Network [OSTI]

    Denver, University of

    tive emissions from EVs (e.g., power plant NOx) and GPVs (tailpipe and associated NO.,. emissions automobiles. A much stronger response was found from changes in GPVVOC emissions. ROMNET 2.2 results also inroad from us- ing EVs is to reduce VOC emissions Smith comments that ozone is a daytime phenomenon

  5. NOx adsorber and method of regenerating same

    DOE Patents [OSTI]

    Endicott, Dennis L. (Peoria, IL); Verkiel, Maarten (Metamora, IL); Driscoll, James J. (Dunlap, IL)

    2007-01-30T23:59:59.000Z

    New technologies, such as NOx adsorber catalytic converters, are being used to meet increasingly stringent regulations on undesirable emissions, including NOx emissions. NOx adsorbers must be periodically regenerated, which requires an increased fuel consumption. The present disclosure includes a method of regenerating a NOx adsorber within a NOx adsorber catalytic converter. At least one sensor positioned downstream from the NOx adsorber senses, in the downstream exhaust, at least one of NOx, nitrous oxide and ammonia concentrations a plurality of times during a regeneration phase. The sensor is in communication with an electronic control module that includes a regeneration monitoring algorithm operable to end the regeneration phase when a time rate of change of the at least one of NOx, nitrous oxide and ammonia concentrations is after an expected plateau region begins.

  6. Proceedings: 2000 NOx Controls Workshop

    SciTech Connect (OSTI)

    None

    2001-04-01T23:59:59.000Z

    The 2000 EPRI workshop on nitrogen oxide (NOx) controls for utility boilers provided a medium for member utilities to augment their knowledge of recent operating experience and developments on NOx control technologies. The event focused on improving methods of compliance with emission regulations mandated by the Clean Air Act Amendments (CAAA) of 1990 without jeopardizing efficiency and plant performance.

  7. Estimation of Annual Reductions of NOx Emissions in ERCOT for the HB3693 Electricity Savings Goals 

    E-Print Network [OSTI]

    Diem, Art; Mulholland, Denise; Yarbrough, James; Baltazar, Juan Carlos; Im, Piljae; Haberl, Jeff

    2008-01-01T23:59:59.000Z

    avoided emission rate is approximately 0.51 pounds (lb) of NOx reduced per MWh of electricity savings. While House Bill 3693 is an Act related to energy and does not target emissions levels, the energy efficiency improvements would achieve air pollution...

  8. Global inventory of nitrogen oxide emissions constrained by space-based observations of NO2 columns

    E-Print Network [OSTI]

    Chance, Kelly

    Global inventory of nitrogen oxide emissions constrained by space-based observations of NO2 columns NO + NO2), and combine these with a priori information from a bottom- up emission inventory (with error and a factor of 2 over remote regions. We derive a top-down NOx emission inventory from the GOME data by using

  9. NOx emission characteristics of counterflow syngas diffusion flames with airstream dilution

    E-Print Network [OSTI]

    Aggarwal, Suresh K.

    NOx emission characteristics of counterflow syngas diffusion flames with airstream dilution Daniel Abstract Syngas is produced through a gasification process using variety of fossil fuels, including coal. Due to its wide flexibility in fuel sources and superior pollutants characteristics, the syngas

  10. Background information for RACT determination of NOx emissions from Maryland power plants. Part 1. Boilers. Technical report

    SciTech Connect (OSTI)

    Borkowicz, R.J.

    1993-10-01T23:59:59.000Z

    The purpose of the report is to provide an evaluation of potential NOx control technologies for utility boilers in the State of Maryland. The boilers discussed are owned and operated by Baltimore Gas Electric Company (BG E), Potomac Electric Power Company (PEPCO), Delmarva Power and Light (DP L), and Allegheny Power. The paper focuses on available technologies, costs, achievable NOx reductions, unique characteristics of specific units, and strategies for achieving low NOx emissions.

  11. Current-biased potentiometric NOx sensor for vehicle emissions

    DOE Patents [OSTI]

    Martin, Louis Peter (Castro Valley, CA); Pham, Ai Quoc (San Jose, CA)

    2006-12-26T23:59:59.000Z

    A nitrogen oxide sensor system for measuring the amount of nitrogen oxide in a gas. A first electrode is exposed to the gas. An electrolyte is positioned in contact with the first electrode. A second electrode is positioned in contact with the electrolyte. A means for applying a fixed current between the first electrode and the second electrode and monitoring the voltage required to maintain the fixed current provides a measurement of the amount of nitrogen oxide in the gas.

  12. Three-Dimensional Composite Nanostructures for Lean NOx Emission...

    Broader source: Energy.gov (indexed) [DOE]

    20 Composite nanowire array catalysts NO oxidation Sequential deposition: 68%, medium space velocity; Co-deposition: 45%, medium space velocity; both peak at 375...

  13. The Control of NOx Emissions from Combustion and Incinerators

    E-Print Network [OSTI]

    Heap, M. P.; Chen, S. L.; Seeker, W. R.; Pershing, D. W.

    control technologies such as staged combustion and flue gas recirculation may not be applicable to waste incinerators since these control methods tend to increase emissions of potentially toxic organics. This paper summarizes the results of a study...THE CONTROL OF NO x EMISSIONS FROM COMBUSTORS AND INCINERATORS M. P. HEAP, S. L. CHEN, W. R. SEEKER, AND D. W. PERSHING Energy and Environmental Research Corporation 18 Mason, Irvine, California 92718 ABSTRACT The effectiveness...

  14. Calculation of Integrated Nox Emissions Reductions from Energy Efficiency Renewable Energy (EE/RE) Programs across State Agencies in Texas

    E-Print Network [OSTI]

    Hberl, J.; Yazdani, B.; Baltazar, J. C.; Kim, H.; Mukhopadhyay, J.; Zilbershtein, G.; Ellis, S.; Parker, P.

    2013-01-01T23:59:59.000Z

    This paper presents an update of the integrated NOx emissions reductions calculations developed by the Energy Systems Laboratory (ESL) for the State of Texas to satisfy the reporting requirements for Senate Bill 5 of the Texas State Legislature...

  15. Calculation of Integrated Nox Emissions Reductions from Energy Efficiency Renewable Energy (EE/RE) Programs across State Agencies in Texas 

    E-Print Network [OSTI]

    Hberl, J.; Yazdani, B.; Baltazar, J. C.; Kim, H.; Mukhopadhyay, J.; Zilbershtein, G.; Ellis, S.; Parker, P.

    2013-01-01T23:59:59.000Z

    counties through 2011 were obtained from the SECO. The integrated savings also include MWh and NOx emissions savings from the currently installed green power generation (wind) capacity in west Texas for 2001 through 2011. Projections through 2012... was assumed for PUC programs, SECO, and SEER 13 entries. Figure 1 shows the overall information flow that was used to calculate the NOx emissions savings from the annual and OSD electricity savings (MWh) from all programs. For the Laboratory?s single...

  16. Method for reducing CO2, CO, NOX, and SOx emissions

    DOE Patents [OSTI]

    Lee, James Weifu (Oak Ridge, TN); Li, Rongfu (Zhejiang, CH)

    2002-01-01T23:59:59.000Z

    Industrial combustion facilities are integrated with greenhouse gas-solidifying fertilizer production reactions so that CO.sub.2, CO, NO.sub.x, and SO.sub.x emissions can be converted prior to emission into carbonate-containing fertilizers, mainly NH.sub.4 HCO.sub.3 and/or (NH.sub.2).sub.2 CO, plus a small fraction of NH.sub.4 NO.sub.3 and (NH.sub.4).sub.2 SO.sub.4. The invention enhances sequestration of CO.sub.2 into soil and the earth subsurface, reduces N0.sub.3.sup.- contamination of surface and groundwater, and stimulates photosynthetic fixation of CO.sub.2 from the atmosphere. The method for converting CO.sub.2, CO, NO.sub.x, and SO.sub.x emissions into fertilizers includes the step of collecting these materials from the emissions of industrial combustion facilities such as fossil fuel-powered energy sources and transporting the emissions to a reactor. In the reactor, the CO.sub.2, CO, N.sub.2, SO.sub.x, and/or NO.sub.x are converted into carbonate-containing fertilizers using H.sub.2, CH.sub.4, or NH.sub.3. The carbonate-containing fertilizers are then applied to soil and green plants to (1) sequester inorganic carbon into soil and subsoil earth layers by enhanced carbonation of groundwater and the earth minerals, (2) reduce the environmental problem of NO.sub.3.sup.- runoff by substituting for ammonium nitrate fertilizer, and (3) stimulate photosynthetic fixation of CO.sub.2 from the atmosphere by the fertilization effect of the carbonate-containing fertilizers.

  17. UTILIZING WATER EMULSIFICATION TO REDUCE NOX AND PARTICULATE EMISSIONS ASSOCIATED WITH BIODIESEL

    SciTech Connect (OSTI)

    Kass, Michael D [ORNL; Lewis Sr, Samuel Arthur [ORNL; Lee, Doh-Won [ORNL; Huff, Shean P [ORNL; Storey, John Morse [ORNL; Swartz, Matthew M [ORNL; Wagner, Robert M [ORNL

    2009-01-01T23:59:59.000Z

    A key barrier limiting extended utilization of biodiesel is higher NOx emissions compared to petrodiesel fuels. The reason for this effect is unclear, but various researchers have attributed this phenomena to the higher liquid bulk modulus associated with biodiesel and the additional heat released during the breaking of C-C double bonds in the methyl ester groups. In this study water was incorporated into neat biodiesel (B100) as an emulsion in an attempt to lower NOx and particulate matter (PM) emissions. A biodiesel emulsion containing 10wt% water was formulated and evaluated against an ultra-low sulfur petroleum diesel (ULSD) and neat biodiesel (B100) in a light-duty diesel engine operated at 1500RPM and at loads of 68Nm (50ft-lbs) and 102Nm (75ft-lbs). The influence of exhaust gas recirculation (EGR) was also examined. The incorporation of water was found to significantly lower the NOx emissions of B100, while maintaining fuel efficiency when operating at 0 and 27% EGR. The soot fraction of the particulates (as determined using an opacity meter) was much lower for the B100 and B100-water emulsion compared ULSD. In contrast, total PM mass (for the three fuel types) was unchanged for the 0% EGR condition but was significantly lower for the B100 and B100-emulsion during the 27% EGR condition compared to the ULSD fuel. Analysis of the emissions and heat release data indicate that water enhances air-fuel premixing to maintain fuel economy and lower soot formation. The exhaust chemistry of the biodiesel base fuels (B100 and water-emulsified B100) was found to be unique in that they contained measurable levels of methyl alkenoates, which were not found for the ULSD. These compounds were formed by the partial cracking of the methyl ester groups during combustion.

  18. Biodiesel and Pollutant Emissions (Presentation)

    SciTech Connect (OSTI)

    McCormick, R.; Williams, A.; Ireland, J.; Hayes, B.

    2006-09-28T23:59:59.000Z

    Presents the results from three methods of testing--engine, chassis, and PEM--for testing nitrogen oxide (NOx) emissions from B20.

  19. Closed loop engine control for regulating NOx emissions, using a two-dimensional fuel-air curve

    DOE Patents [OSTI]

    Bourn, Gary D.; Smith, Jack A.; Gingrich, Jess W.

    2007-01-30T23:59:59.000Z

    An engine control strategy that ensures that NOx emissions from the engine will be maintained at an acceptable level. The control strategy is based on a two-dimensional fuel-air curve, in which air manifold pressure (AMP) is a function of fuel header pressure and engine speed. The control strategy provides for closed loop NOx adjustment to a base AMP value derived from the fuel-air curve.

  20. NOx uptake on alkaline earth oxides (BaO, MgO, CaO and SrO) supported...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    uptake on alkaline earth oxides (BaO, MgO, CaO and SrO) supported on ?-Al2O3. NOx uptake on alkaline earth oxides (BaO, MgO, CaO and SrO) supported on ?-Al2O3....

  1. Evaluation of Corona Reactors of Several Geometries for a Plasma Assisted Nitrogen Oxide Emission Reduction Device

    SciTech Connect (OSTI)

    Herling, Darrell R.; Smith, Monty R.; Hemingway, Mark D.; Goulette, David; Silvis, Thomas W.

    2000-08-09T23:59:59.000Z

    Proposed vehicle emissions regulations for the near future have prompted automotive manufactures and component suppliers to focus heavily on developing more efficient exhaust aftertreatment devices to lower emissions from spark and compression ignition engines. One of the primary pollutants from lean-burn engines, especially from diesels, are oxides of nitrogen (NOx). Current three-way catalytic converters will not have adequate performance to meet future emission reduction requirements. Therefore, there is a need for researchers and engineers to develop efficient exhaust aftertreatment devices that will reduce NOx emissions from lean-burn engines. These devices must have very high conversion of NOx gases, be unaffected by exhaust-gas impurity such as sulfur, and have minimal impact on vehicle operations and fuel economy. An effective technology for NOx control that is currently receiving a lot of attention is a non-thermal plasma system. This system is comprised of a two-stage corona generation device (plasma reactor) and reduction catalyst that reduces nitric oxide and nitrogen dioxide emissions to nitrogen.

  2. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Public design report (preliminary and final)

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    This Public Design Report presents the design criteria of a DOE Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of NO{sub x} emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 (500 MW) near Rome, Georgia. The technologies being demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NO{sub x} burner. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NO{sub x} burners, advanced overfire systems, and digital control system.

  3. Modeling The NOx Emissions In A Low NOx Burner While Fired With Pulverized Coal And Dairy Biomass Blends

    E-Print Network [OSTI]

    Uggini, Hari

    2012-07-16T23:59:59.000Z

    Hydrogen Cyanide HHV Higher Heating Value LNB Low NOx Burner PRB Powder River Basin TAMU Texas A&M University CABEL Coal And Biomass Energy Laboratory ER Equivalence Ratio VM Volatile Matter FC Fixed Carbon OFA Over Fired Air (tertiary air... ......................................... 33 5.1 Numerical model algorithm ..................................................................... 47 5.2 Pure PRB NO vs. overall ER ................................................................... 49 5.3 Oxygen concentration along...

  4. Nitrogen Oxide Emission Statements (Ohio)

    Broader source: Energy.gov [DOE]

    This chapter of the law establishes that the Ohio Environmental Protection Agency requires any facility that emits 25 tons or more of NOx and/or 25 tons or more of VOC during the calendar year and...

  5. Method for control of NOx emission from combustors using fuel dilution

    DOE Patents [OSTI]

    Schefer, Robert W. (Alamo, CA); Keller, Jay O (Oakland, CA)

    2007-01-16T23:59:59.000Z

    A method of controlling NOx emission from combustors. The method involves the controlled addition of a diluent such as nitrogen or water vapor, to a base fuel to reduce the flame temperature, thereby reducing NOx production. At the same time, a gas capable of enhancing flame stability and improving low temperature combustion characteristics, such as hydrogen, is added to the fuel mixture. The base fuel can be natural gas for use in industrial and power generation gas turbines and other burners. However, the method described herein is equally applicable to other common fuels such as coal gas, biomass-derived fuels and other common hydrocarbon fuels. The unique combustion characteristics associated with the use of hydrogen, particularly faster flame speed, higher reaction rates, and increased resistance to fluid-mechanical strain, alter the burner combustion characteristics sufficiently to allow operation at the desired lower temperature conditions resulting from diluent addition, without the onset of unstable combustion that can arise at lower combustor operating temperatures.

  6. Increase in NOx Emissions from Indian Thermal Power Plants during 1996-2010: Unit-Based Inventories and Multisatellite Observations

    E-Print Network [OSTI]

    Jacob, Daniel J.

    and Multisatellite Observations Zifeng Lu* and David G. Streets Decision and Information Sciences Division, Argonne National Laboratory, Argonne, Illinois, United States *S Supporting Information ABSTRACT: Driven by rapid economic development and growing electricity demand, NOx emissions (E) from the power sector in India have

  7. Implications of Near-Term Coal Power Plant Retirement for SO2 and NOX and Life Cycle GHG Emissions

    E-Print Network [OSTI]

    Jaramillo, Paulina

    Implications of Near-Term Coal Power Plant Retirement for SO2 and NOX and Life Cycle GHG Emissions for electricity generation, by comparing systems that consist of individual natural gas and coal power plants when coal power plants are retired. These models estimate the order in which existing power plants

  8. Plant-Wide NOx Reduction Strategies 

    E-Print Network [OSTI]

    Baukal, C.; Waibel, D.; Webster, T.

    2006-01-01T23:59:59.000Z

    (adapted from ref. 1). Technology Approximate Reduction (%) Approximate Emissions (lb/MMBtu) Standard Burners Base Case 0.14 Low-NOx Burners (LNB) 60% 0.06 Ultra-Low-NOx- Burners (ULNB) 80 – 95% 0.007 – 0.03 Flue Gas Recirculation 55% 0..., and oxidizer switching. Fuel switching is simply replacing a more polluting fuel with a less polluting fuel. For example, fuel oils generally contain some organically-bound nitrogen that produces fuel NOx. Natural gas does not normally contain any...

  9. Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission...

    Broader source: Energy.gov (indexed) [DOE]

    > Flexible tailoring capability ZnOABO 3 : No Chemical Interaction ZnO core + Shell Hollow Shell Sn Potential Multifunctional Nanocatalysts 4 1) Selective adsorptionstorage...

  10. Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311,OfficialProducts |Catalysis of FuelLoan Portfolio |

  11. Observation of green emission from Ce3+ doped gadolinium oxide...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    green emission from Ce3+ doped gadolinium oxide nanoparticles. Observation of green emission from Ce3+ doped gadolinium oxide nanoparticles. Abstract: Green emission at around 500...

  12. SURFACE OXIDATION OF DIESEL PARTICULATE MATTER IN PRESENCE OF O3 +NOX: NEW TD/GC/MS ANALYSIS METHOD

    E-Print Network [OSTI]

    Holmén, Britt A.

    SURFACE OXIDATION OF DIESEL PARTICULATE MATTER IN PRESENCE OF O3 +NOX: NEW TD/GC/MS ANALYSIS METHOD+08 2.6e+08 2.8e+08 3e+08 Time--> Abundance TIC: 0914S4.D INTRODUCTION Diesel exhaust is one into the atmosphere diesel particles can be transformed through physical and chemical processes resulting

  13. Analysis of Strategies for Reducing Multiple Emissions from Electric Power Plants: SO2, Nox, CO2

    Reports and Publications (EIA)

    2001-01-01T23:59:59.000Z

    This report responds to a request received from Senator David McIntosh on June 29, 2000 to analyze the impacts on energy consumers and producers of coordinated strategies to reduce emissions of sulfur dioxide, nitrogen oxides, and carbon dioxide at U.S. power plants.

  14. Evaluation of Partial Oxidation Reformer Emissions

    SciTech Connect (OSTI)

    Unnasch, Stefan; Fable, Scott; Waterland, Larry

    2006-01-06T23:59:59.000Z

    In this study, a gasoline fuel processor and an ethanol fuel processor were operated under conditions simulating both startup and normal operation. Emissions were measured before and after the AGB in order to quantify the effectiveness of the burner catalyst in controlling emissions. The emissions sampling system includes CEM for O2, CO2, CO, NOx, and THC. Also, integrated gas samples are collected in evacuated canisters for hydrocarbon speciation analysis via GC. This analysis yields the concentrations of the hydrocarbon species required for the California NMOG calculation. The PM concentration in the anode burner exhaust was measured through the placement of a filter in the exhaust stream. The emissions from vehicles with fully developed on board reformer systems were estimated.

  15. Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 3: SOx/NOx/Hg Removal for Low Sulfur Coal

    SciTech Connect (OSTI)

    Monica Zanfir; Rahul Solunke; Minish Shah

    2012-06-01T23:59:59.000Z

    The goal of this project was to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxycombustion technology. The objective of Task 3 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning low sulfur coal in oxy-combustion power plants. The goal of the program was to conduct an experimental investigation and to develop a novel process for simultaneously removal of SOx and NOx from power plants that would operate on low sulfur coal without the need for wet-FGD & SCRs. A novel purification process operating at high pressures and ambient temperatures was developed. Activated carbonâ??s catalytic and adsorbent capabilities are used to oxidize the sulfur and nitrous oxides to SO{sub 3} and NO{sub 2} species, which are adsorbed on the activated carbon and removed from the gas phase. Activated carbon is regenerated by water wash followed by drying. The development effort commenced with the screening of commercially available activated carbon materials for their capability to remove SO{sub 2}. A bench-unit operating in batch mode was constructed to conduct an experimental investigation of simultaneous SOx and NOx removal from a simulated oxyfuel flue gas mixture. Optimal operating conditions and the capacity of the activated carbon to remove the contaminants were identified. The process was able to achieve simultaneous SOx and NOx removal in a single step. The removal efficiencies were >99.9% for SOx and >98% for NOx. In the longevity tests performed on a batch unit, the retention capacity could be maintained at high level over 20 cycles. This process was able to effectively remove up to 4000 ppm SOx from the simulated feeds corresponding to oxyfuel flue gas from high sulfur coal plants. A dual bed continuous unit with five times the capacity of the batch unit was constructed to test continuous operation and longevity. Full-automation was implemented to enable continuous operation (24/7) with minimum operator supervision. Continuous run was carried out for 40 days. Very high SOx (>99.9%) and NOx (98%) removal efficiencies were also achieved in a continuous unit. However, the retention capacity of carbon beds for SOx and NOx was decreased from ~20 hours to ~10 hours over a 40 day period of operation, which was in contrast to the results obtained in a batch unit. These contradictory results indicate the need for optimization of adsorption-regeneration cycle to maintain long term activity of activated carbon material at a higher level and thus minimize the capital cost of the system. In summary, the activated carbon process exceeded performance targets for SOx and NOx removal efficiencies and it was found to be suitable for power plants burning both low and high sulfur coals. More efforts are needed to optimize the system performance.

  16. Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions...

    Broader source: Energy.gov (indexed) [DOE]

    Lean NOx Catalysis l Chemistry l Reducing Agent Effects l Collaboration with LEP CRADA l Aging Studies Plasma Initiation - + Electron Avalanche e - e - e - e - e - e - e -...

  17. Reduction of Nitrogen Oxide Emissions for lean Burn Engine Technology

    SciTech Connect (OSTI)

    McGill, R.N.

    1998-08-04T23:59:59.000Z

    Lean-burn engines offer the potential for significant fuel economy improvements in cars and trucks, perhaps the next great breakthrough in automotive technology that will enable greater savings in imported petroleum. The development of lean-burn engines, however, has been an elusive goal among automakers because of the emissions challenges associated with lead-burn engine technology. Presently, cars operate with sophisticated emissions control systems that require the engine's air-fuel ratio to be carefully controlled around the stoichiometric point (chemically correct mixture). Catalysts in these systems are called "three-way" catalysts because they can reduce hydrocarbon, carbon monoxide, and nitrogen oxide emissions simultaneously, but only because of the tight control of the air-fuel ratio. The purpose of this cooperative effort is to develop advanced catalyst systems, materials, and necessary engine control algorithms for reducing NOX emissions in oxygen-rich automotive exhaust (as with lean-burn engine technology) to meet current and near-future mandated Clean Air Act standards. These developments will represent a breakthrough in both emission control technology and automobile efficiency. The total project is a joint effort among five national laboratories, together with US CAR. The role of Lockheed-Martin Energy Systems in the total project is two fold: characterization of catalyst performance through laboratory evaluations from bench-scale flow reactor tests to engine laboratory tests of full-scale prototype catalysts, and microstructural characterization of catalyst material before and after test stand and/or engine testing.

  18. Selective catalytic reduction system and process for treating NOx emissions using a palladium and rhodium or ruthenium catalyst

    SciTech Connect (OSTI)

    Sobolevskiy, Anatoly (Orlando, FL); Rossin, Joseph A. (Columbus, OH); Knapke, Michael J. (Columbus, OH)

    2011-07-12T23:59:59.000Z

    A process for the catalytic reduction of nitrogen oxides (NOx) in a gas stream (29) in the presence of H.sub.2 is provided. The process comprises contacting the gas stream with a catalyst system (38) comprising zirconia-silica washcoat particles (41), a pre-sulfated zirconia binder (44), and a catalyst combination (40) comprising palladium and at least one of rhodium, ruthenium, or a mixture of ruthenium and rhodium.

  19. Energy Savings and NOx Emissions Reduction Potential from the 2012 Federal Legislation to Phase Out Incandescent Lamps in Texas

    E-Print Network [OSTI]

    Liu, Zi; Baltazar, Juan Carlos; Haberl, Jeff; Soman, Rohit

    296042501.6 100% Page 9 Table 5: Annual NOX Emissions A r ea Co u n t y A meri ca n E lec t r ic P o w er - W es t ( E RCO T ) /P CA NO x Redu ctio n s ( lbs) A u stin E n er g y /P CA NO x Redu ctio n s ( lbs) Brow n sv ille P u b... ort h E a s t T e x a s A re a Page 10 Table 6: Ozone Production Period NOx Emissions A r ea Co u n t y A meri ca n E lec t r ic P o w er - W es t ( E RCO T ) /P CA NO x Redu ctio n s ( lbs) A u stin E n er g y /P CA NO x Redu...

  20. The effect of hydrogen addition on flammability limit and NOx emission in ultra-lean counterflow

    E-Print Network [OSTI]

    GĂĽlder, Ă?mer L.

    . They indicated that the addition of hydrogen to natural gas or methane resulted in an increase in NOx for most increases, and then decreases with the increase in the fraction of hydrogen. Overall, hydrogen enrichment rights reserved. Keywords: Hydrogen enrichment; NOx; Extinction limit; Ultra-lean premixed flame. 1

  1. Calculation of NOx Emission Reduction from Implementation of the 2000 IECC/IRC Conservation Code in Texas

    E-Print Network [OSTI]

    Turner, W. D.; Yazdani, B.; Im, P.; Verdict, M.; Bryant, J.; Fitzpatrick, T.; Haberl, J. S.; Culp, C.

    2003-01-01T23:59:59.000Z

    for Texas ARI (2002). Average furnace efficiencies and domestic water heater efficiencies were assumed to meet the Federal Standards of 80% and 76%, respectively. The 2001 IECC code- 10.... Division (East and West Texas): From NAHB survey data. 17. AFUE (%),SEER and Water Heater Efficiency for 1999 standard and IECC 2000 house are 80%, 11 and 76%, respectively. Table 1: 2002 NOx emissions reductions from implementation of the 2000 IECC...

  2. A cost-effectiveness analysis of alternative ozone control strategies : flexible nitrogen oxide (NOx) abatement from power plants in the eastern United States

    E-Print Network [OSTI]

    Sun, Lin, S.M. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    Ozone formation is a complex, non-linear process that depends on the atmospheric concentrations of its precursors, nitrogen oxide (NOx) and Volatile Organic Compounds (VOC), as well as on temperature and the available ...

  3. Effects of Diesel Exhaust Emissions on Soot Oxidation and DPF...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Exhaust Emissions on Soot Oxidation and DPF Regeneration Effects of Diesel Exhaust Emissions on Soot Oxidation and DPF Regeneration DPF regeneration experiments verified the...

  4. Procedure to Calculate NOx Reductions Using the Emissions & Generation Resource Integrated Database (E-Grid) Spreadsheet

    E-Print Network [OSTI]

    Haberl, J. S.; Im, P.; Culp, C.; Yazdani, B.; Fitzpatrick, T.; Verdict, M.; Turner, W. D.

    2003-01-01T23:59:59.000Z

    and Renewable Energy projects (EE/RE) implemented in each Power Control Area (PCA) in the ERCOT region E-GRID is a comprehensive database of environmental attributes of electric power systems. E-GRID is based on available plant-specific data for all U... in Figure 9 that three counties (i.e., Ward, McLennan, and Mitchell) rise significantly in NOx reductions during peak days when compared to annual NOx reductions (Figure 5). Table 1. EPA's EGRID table: County-wide NOx Reductions in pounds per MWh for EE/RE...

  5. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Fourth quarterly technical progress report, [October--December, 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31T23:59:59.000Z

    This quarterly report discusses the technical progress of a U. S. Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NOx combustion technologies on NOx emissions and boiler performance. A target of achieving fifty percent NOx reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NOx control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NOx concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NOx reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. During this quarter, tests of the LNCFS Level III system were conducted to determine the effect that fuel fineness has on NOx emissions and unburned carbon levels. Results showed that changing the fineness of the fuel has almost no effect on NOx emissions; however, unburned carbon levels can be reduced significantly by increasing fuel fineness.

  6. Selective reduction of NOx in oxygen rich environments with plasma...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalysis for Heavy-Duty Diesel Emissions Control Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma-Facilitated Lean NOx Catalysis Dynamometer Evaluation of...

  7. An Experimental Investigation of the Origin of Increased NOx...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NOx Emissions When Fueling a Heavy-Duty Compression-Ignition Engine with Soy Biodiesel An Experimental Investigation of the Origin of Increased NOx Emissions When Fueling...

  8. Calculation of NOx Emissions Reductions From Energy Efficient Residential Building Construction in Texas

    E-Print Network [OSTI]

    Haberl, J. S.; Culp, C.; Gilman, D.; Yazdani, B.; Fitzpatrick, T.; Muns, S.

    2006-05-23T23:59:59.000Z

    . These areas face severe sanctions if attainment is not reached by 2007. This paper provides an overview of the procedures that have been developed and used to calculate the electricity savings and NOx reductions from code-compliant residential construction...

  9. Investigation on Nitric Oxide and Soot of Biodiesel and Conventional Diesel using a Medium Duty Diesel Engine 

    E-Print Network [OSTI]

    Song, Hoseok

    2012-07-16T23:59:59.000Z

    Biodiesel has been suggested as an alternative fuel to the petroleum diesel fuel. It beneficially reduces regulated emission gases, but increases NOx (nitric oxide and nitrogen dioxide) Thus, the increase in NOx is the barrier for potential growth...

  10. Investigation on Nitric Oxide and Soot of Biodiesel and Conventional Diesel using a Medium Duty Diesel Engine

    E-Print Network [OSTI]

    Song, Hoseok

    2012-07-16T23:59:59.000Z

    Biodiesel has been suggested as an alternative fuel to the petroleum diesel fuel. It beneficially reduces regulated emission gases, but increases NOx (nitric oxide and nitrogen dioxide) Thus, the increase in NOx is the barrier for potential growth...

  11. Nitrogen oxides emission trends in Monthly emission estimates of nitrogen oxides from space provide

    E-Print Network [OSTI]

    Haak, Hein

    Chapter 5 Nitrogen oxides emission trends in East Asia Abstract Monthly emission estimates present first results of a new emission estimation algorithm, specifically designed to use daily satellite observations of column concentrations for fast updates of emission estimates of short-lived atmospheric

  12. NOx, FINE PARTICLE AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    SciTech Connect (OSTI)

    Jost O.L. Wendt

    2003-01-31T23:59:59.000Z

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and coal. The objective is to determine the relationship between (1) fraction sludge in the sludge/coal mixture, and (2) combustion conditions on (a) NOx concentrations in the exhaust, (b) the size segregated fine and ultra-fine particle composition in the exhaust, and (c) the partitioning of toxic metals between vapor and condenses phases, within the process. The proposed study will be conducted in concert with an existing ongoing research on toxic metal partitioning mechanisms for very well characterized pulverized coals alone. Both high NOx and low NOx combustion conditions will be investigated (unstaged and staged combustion). Tradeoffs between CO{sub 2} control, NO{sub x} control, and inorganic fine particle and toxic metal emissions will be determined. Previous research results have demonstrated that the inhalation of coal/MSS ash particles cause an increase in lung permeability than coal ash particles alone. Elemental analysis of the coal/MSS ash particles showed that Zn was more abundant in these ash particles than the ash particles of coal ash alone.

  13. NOx, FINE PARTICLE AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    SciTech Connect (OSTI)

    Jost O.L. Wendt

    2002-08-15T23:59:59.000Z

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and coal. The objective is to determine the relationship between (1) fraction sludge in the sludge/coal mixture, and (2) combustion conditions on (a) NOx concentrations in the exhaust, (b) the size segregated fine and ultra-fine particle composition in the exhaust, and (c) the partitioning of toxic metals between vapor and condenses phases, within the process. The proposed study will be conducted in concert with an existing ongoing research on toxic metal partitioning mechanisms for very well characterized pulverized coals alone. Both high NOx and low NOx combustion conditions will be investigated (unstaged and staged combustion). Tradeoffs between CO2 control, NOx control, and inorganic fine particle and toxic metal emissions will be determined. Previous research has yielded data on trace metal partitioning for MSS by itself, with natural gas assist, for coal plus MSS combustion together, and for coal alone. We have re-evaluated the inhalation health effects of ash aerosol from combustion of MSS both by itself and also together with coal. We have concluded that ash from the co-combustion of MSS and coal is very much worse from an inhalation health point of view, than ash from either MSS by itself or coal by itself. The reason is that ZnO is not the ''bad actor'' as had been suspected before, but the culprit is, rather, sulfated Zn. The MSS supplies the Zn and the coal supplies the sulfur, and so it is the combination of coal and MSS that makes that process environmentally bad. If MSS is to be burned, it should be burned without coal, in the absence of sulfur.

  14. Implementing a time- and location-differentiated cap-and-trade program : flexible nitrogen oxide abatement from power plants in the eastern United States

    E-Print Network [OSTI]

    Martin, Katherine C

    2007-01-01T23:59:59.000Z

    Studies suggest that timing and location of emissions can change the amount of ozone formed from a given amount of nitrogen oxide (NOx) by a factor of five (Mauzerall et al. 2005). Yet existing NOx cap-and-trade programs ...

  15. Simulating the Impact of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions of Particulates and NOx

    SciTech Connect (OSTI)

    Gao, Zhiming [ORNL; Daw, C Stuart [ORNL; Wagner, Robert M [ORNL; Edwards, Kevin Dean [ORNL; Smith, David E [ORNL

    2013-01-01T23:59:59.000Z

    We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models implemented in Matlab/Simulink to simulate the effect of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated engine is capable of both conventional diesel combustion (CDC) and premixed charge compression ignition (PCCI) over real transient driving cycles. Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results demonstrate that, in the simulated conventional vehicle, PCCI can significantly reduce fuel consumption and emissions by reducing the need for LNT and DPF regeneration. However, the opportunity for PCCI operation in the simulated HEV is limited because the engine typically experiences higher loads and multiple stop-start transients that are outside the allowable PCCI operating range. Thus developing ways of extending the PCCI operating range combined with improved control strategies for engine and emissions control management will be especially important for realizing the potential benefits of PCCI in HEVs.

  16. Procedure to Calculate NOx Reductions Using the Emissions & Generation Resource Integrated Database (E-Grid) Spreadsheet 

    E-Print Network [OSTI]

    Haberl, J. S.; Im, P.; Culp, C.; Yazdani, B.; Fitzpatrick, T.; Verdict, M.; Turner, W. D.

    2003-01-01T23:59:59.000Z

    and Generation Resource Integrated Database (E-GRID) is presented. This procedure is proposed for calculating county-wide NOx reductions in pounds per MWh for Energy Efficiency and Renewable Energy projects (EE/RE) implemented in each Power Control Area (PCA...

  17. Effectiveness of Diesel Oxidation Catalyst in Reducing HC and CO Emissions from Reactivity Controlled Compression Ignition

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y [ORNL; Curran, Scott [ORNL; Parks, II, James E [ORNL; Wagner, Robert M [ORNL

    2013-01-01T23:59:59.000Z

    Reactivity Controlled Compression Ignition (RCCI) has been shown to allow for diesel-like or better brake thermal efficiency with significant reductions in nitrogen oxide (NOX) particulate matter (PM) emissions. Hydrocarbon (HC) and carbon monoxide (CO) emission levels, on the other hand, are similar to those of port fuel injected gasoline engines. The higher HC and CO emissions combined with the lower exhaust temperatures with RCCI operation present a challenge for current exhaust aftertreatments. The reduction of HC and CO emissions in a lean environment is typically achieved with an oxidation catalyst. In this work, several diesel oxidation catalysts (DOC) with different precious metal loadings were evaluated for effectiveness to control HC and CO emissions from RCCI combustion in a light-duty multi-cylinder engine operating on gasoline and diesel fuels. Each catalyst was evaluated in a steady-state engine operation with temperatures ranging from 160 to 260 C. A shift to a higher light-off temperature was observed during the RCCI operation. In addition to the steady-state experiments, the performances of the DOCs were evaluated during multi-mode engine operation by switching from diesel-like combustion at higher exhaust temperature and low HC/CO emissions to RCCI combustion at lower temperature and higher HC/CO emissions. High CO and HC emissions from RCCI generated an exotherm keeping the catalyst above the light-off temperature.

  18. JV Task 117 - Impact of Lignite Properties on Powerspan's NOx Oxidation System

    SciTech Connect (OSTI)

    Scott Tolbert; Steven Benson

    2008-02-29T23:59:59.000Z

    Powerspan's multipollutant control process called electrocatalytic oxidation (ECO) technology is designed to simultaneously remove SO{sub 2}, NO{sub x}, PM{sub 2.5}, acid gases (such as hydrogen fluoride [HF], hydrochloric acid [HCl], and sulfur trioxide [SO{sub 3}]), Hg, and other metals from the flue gas of coal-fired power plants. The core of this technology is a dielectric barrier discharge reactor composed of cylindrical quartz electrodes residing in metal tubes. Electrical discharge through the flue gas, passing between the electrode and the tube, produces reactive O and OH radicals. The O and OH radicals react with flue gas components to oxidize NO to NO{sub 2} and HNO{sub 3} and a small portion of the SO{sub 2} to SO{sub 3} and H{sub 2}SO{sub 4}. The oxidized compounds are subsequently removed in a downstream scrubber and wet electrostatic precipitator. A challenging characteristic of selected North Dakota lignites is their high sodium content. During high-sodium lignite combustion and gas cooling, the sodium vaporizes and condenses to produce sodium- and sulfur-rich aerosols. Based on past work, it was hypothesized that the sodium aerosols would deposit on and react with the silica electrodes and react with the silica electrodes, resulting in the formation of sodium silicate. The deposit and reacted surface layer would then electrically alter the electrode, thus impacting its dielectric properties and NO{sub x} conversion capability. The purpose of this project was to determine the impact of lignite-derived flue gas containing sodium aerosols on Powerspan's dielectric barrier discharge (DBD) reactor with specific focus on the interaction with the quartz electrodes. Partners in the project were Minnkota Power Cooperative; Basin Electric Power Cooperative; Montana Dakota Utilities Co.; Minnesota Power; the North Dakota Industrial Commission, the Lignite Energy Council, and the Lignite Research Council; the Energy & Environmental Research Center (EERC); and the U.S. Department of Energy. An electrocatalytic oxidation (ECO) reactor slipstream system was designed by Powerspan and the EERC. The slipstream system was installed by the EERC at Minnkota Power Cooperative's Milton R. Young Station Unit 1 downstream of the electrostatic precipitator where the flue gas temperature ranged from 300 to 350 F. The system was commissioned on July 3, 2007, operated for 107 days, and then winterized upon completion of the testing campaign. Operational performance of the system was monitored, and data were archived for postprocessing. A pair of electrodes were extracted and replaced on a biweekly basis. Each pair of electrodes was shipped to Powerspan to determine NO conversion efficiency in Powerspan's laboratory reactor. Tested electrodes were then shipped to the EERC for scanning electron microscopy (SEM) and x-ray microanalysis. Measurement of NO{sub x} conversion online in operating the slipstream system was not possible because the nitric and sulfuric acid production by the DBD reactor results in conditioning corrosion challenges in the sample extraction system and NO measurement technologies. The operational observations, performance results, and lab testing showed that the system was adversely affected by accumulation of the aerosol materials on the electrode. NO{sub x} conversion by ash-covered electrodes was significantly reduced; however, with electrodes that were rinsed with water, the NOx conversion efficiency recovered to nearly that of a new electrode. In addition, the visual appearance of the electrode after washing did not show evidence of a cloudy reacted surface but appeared similar to an unexposed electrode. Examination of the electrodes using SEM x-ray microanalysis showed significant elemental sodium, sulfur, calcium, potassium, and silica in the ash coating the electrodes. There was no evidence of the reaction of the sodium with the silica electrodes to produce sodium silicate layers. All SEM images showed a clearly marked boundary between the ash and the silica. Sodium and sulfur are the main culprits in the

  19. Control of NOx by combustion process modifications

    E-Print Network [OSTI]

    Ber?, J. M.

    1981-01-01T23:59:59.000Z

    A theoretical and experimental study was carried out to determine lower bounds of NOx emission from staged combustion of a 0.7%N #6 fuel oil. Thermodynamic and chemical kinetic calculations have shown minimum NOx emissions ...

  20. An Analysis of PM and NOx Train Emissions in the Alameda Corridor, CA

    E-Print Network [OSTI]

    Sangkapichai, Mana; Saphores, Jean-Daniel M; Ritchie, Stephen G.; You, Soyoung Iris; Lee, Gunwoo

    2008-01-01T23:59:59.000Z

    to trains (the modeling of truck emissions is addressed in aas well as emissions from drayage trucks, cargo handlingPM emissions from other sources such as drayage trucks that

  1. Impacts of reducing shipboard NOx? and SOx? emissions on vessel performance

    E-Print Network [OSTI]

    Caputo, Ronald J., Jr. (Ronald Joseph)

    2010-01-01T23:59:59.000Z

    The international maritime community has been experiencing tremendous pressures from environmental organizations to reduce the emissions footprint of their vessels. In the last decade, air emissions, including nitrogen ...

  2. Nox control for high nitric oxide concentration flows through combustion-driven reduction

    DOE Patents [OSTI]

    Yeh, James T. (Bethel Park, PA); Ekmann, James M. (Bethel Park, PA); Pennline, Henry W. (Bethel Park, PA); Drummond, Charles J. (Churchill, PA)

    1989-01-01T23:59:59.000Z

    An improved method for removing nitrogen oxides from concentrated waste gas streams, in which nitrogen oxides are ignited with a carbonaceous material in the presence of substoichiometric quantities of a primary oxidant, such as air. Additionally, reductants may be ignited along with the nitrogen oxides, carbonaceous material and primary oxidant to achieve greater reduction of nitrogen oxides. A scrubber and regeneration system may also be included to generate a concentrated stream of nitrogen oxides from flue gases for reduction using this method.

  3. Development of Remove Sensing Instrumentation for NOx and PM Emissions from

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S HBatteries with WideNOx Reductionof

  4. Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma-Facilitated

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TO THEHudsonTargeting EPALean NOx Catalysis |

  5. DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN COFIRING BIOMASS WITH COAL

    SciTech Connect (OSTI)

    Larry G. Felix; P. Vann Bush; Stephen Niksa

    2001-01-24T23:59:59.000Z

    This is the first Quarterly Technical Report for DOE Cooperative Agreement No. DE-FC26-00NT40895. A statement of the project objectives is included in the Introduction of this report. The project goals and detailed plans were presented in two project kickoff meetings; one at NETL in Pittsburgh and one in Birmingham, AL at Southern Research Institute. Progress has been made in developing a modeling approach to synthesize the reaction time and temperature distributions that will be produced by computational fluid dynamic models of the pilot-scale combustion furnace and the char burnout and chemical reaction kinetics that will predict NOx emissions and unburned carbon levels in the furnace exhaust. Preparations are under way for the initial pilot-scale combustion experiments.

  6. Using hydroponic biomass to regulate NOx emissions in long range space travel

    SciTech Connect (OSTI)

    Xu, X.H.; Shi, Y.; Chang, S.G.; Fisher, J.; Pisharody, S.; Moran, M.; Wignarajah, K.

    2002-02-01T23:59:59.000Z

    The incineration of wastes is one of the most promising reclamation technologies being developed for life support in long range space travel. However, incineration in a closed environment will build up hazardous NOx if not regulated. A technology that can remove NOx under microgravity conditions without the need of expendables is required. Activated carbon prepared from inedible wheat straw and sweet potato stalk that were grown under hydroponic conditions has been demonstrated to be able to adsorb NO and reduce it to N{sub 2}. The high mineral content in the activated carbon prepared from hydroponic biomass prohibits high surface area production and results in inferior NO adsorption capacity. The removal of mineral from the carbon circumvents the aforementioned negative effect. The optimal production conditions to obtain maximum yield and surface area for the activated carbon have been determined. A parametric study on the NO removal efficiency by the activated carbon has been done. The presence of oxygen in flue gas is essential for effective adsorption of NO by the activated carbon. On the contrary, water vapor inhibits the adsorption efficiency of NO. The NO adsorption capacity and the duration before it exceeds the Space Maximum Allowable Concentration were determined. After the adsorption of NO, the activated carbon can be regenerated for reuse by heating the carbon bed under anaerobic conditions to above 500 C, when the adsorbed NO is reduced to N{sub 2}. The regenerated activated carbon exhibits improved NO adsorption efficiency. However, regeneration had burned off a small percentage of the activated carbon.

  7. Non-Reacting Flow Characteristics and Emissions Reduction on Blends of Coal and Dairy Biomass in 30 kW_(t) Low NO_(x) Down-Fired Furnace 

    E-Print Network [OSTI]

    Tiyawongsakul, Tiyawut

    2014-08-07T23:59:59.000Z

    , coal-fired power plants that do not want to invest in new technologies could buy NOx credits from other plants. NOx price for emissions trading was about $15.89 per short ton in 2011 although it was as high as $776.04 per short ton in 2007 (U.S. EIA...

  8. What Do Emissions Markets Deliver and to Whom? Evidence from Southern California's NOx Trading

    E-Print Network [OSTI]

    Fowlie, Meredith

    "command and control"(CAC) approaches involving prescriptive emissions limits or pollution control. In the United States, the Clean Air Act Amendments (CAAAs) of 1990 initiated a monumental shift away from CAC

  9. Development of a combustion technology for ultra-low emission (< 5 ppm nox) industrial burner

    E-Print Network [OSTI]

    Littlejohn, D.; Majeski, A.J.; Cheng, R.K.; Castaldini, C.

    2002-01-01T23:59:59.000Z

    Investigation of an Ultra-Low NO x Premixed CombustionInvestigation of an Ultra-Low NO x Premixed Combustioncombustion concept to achieve ultra-low emissions (NO x ? 2

  10. NOVEL DATA ANALYSIS TECHNIQUE TO EVALUATE FIELD NOx AND CO2 CONTINUOUS EMISSION DATA, BASED ON THE EVALUATION OF: (1) AN OFF-ROAD DIESEL COMPACTOR RUNNING ON THREE FUEL TYPES AND (2) TWO COMPACTORS RUNNING ON DIESEL FUEL

    E-Print Network [OSTI]

    Guerra, Sergio

    2012-12-31T23:59:59.000Z

    In spite of being few in number, off-road vehicles have a significant contribution to air pollutants such as NOx and CO2. Engine dynamometer test cycles have been developed in an effort to better characterize the emissions ...

  11. An optimization study on the control of NOx and particulate emissions from diesel engines

    SciTech Connect (OSTI)

    Larsen, C.; Oey, F.; Levendis, Y.A. [Northeastern Univ., Boston, MA (United States)

    1996-09-01T23:59:59.000Z

    This is an optimization study on the use of filtered exhaust gas recirculation (EGR) to reduce the NO emissions of diesel engines. Control of the particulate emissions and provisions for filtered EGR were achieved by an Aerodynamically Regenerated Trap (ART) with collection efficiencies in the order of 99%. The amount of EGR was regulated to provide for substantial NO reduction, without unacceptably decreasing the thermal efficiency of the engine or increasing the CO emissions. EGR regulation was accomplished by monitoring the injection pump setting which was correlated to the fuel flow rate, the speed of the engine, the amount of EGR flow, and the ambient air temperature. Through these parameters, the mixture strength expressed as the equivalence ratio {phi} was calculated and related to the power output of the engine. Thus, a map of engine performance parameters was generated and related to measured NO and CO emissions. A series of road tests showed that EGR most effectively reduces NO emissions at high {phi}`s (by a factor of two at 20% EGR) which, however, is accompanied by an increase in CO emissions by a factor of two, and a penalty in fuel economy by 8%. Benefits and losses can be optimized by automatically varying the level of EGR, using feedback from the aforementioned engine parameters. An algorithm was developed to govern the electrically controlled EGR valve and tests showed that the NO levels decreased by 30%, while the CO increased by 30%, showing no penalty in fuel economy. The resulting specific NO and CO emissions were well within the current US EPA standards.

  12. Interpreting Remote Sensing NOx Measurements

    E-Print Network [OSTI]

    Denver, University of

    Interpreting Remote Sensing NOx Measurements Robert Slott, Consultant, Donald Stedman and Saj tailpipe emissions (HC, CO, NOx) are changing with time hUse remote sensing hMeasurements in at least 4 of the year at each location hUniform QC/QA and data reporting Paper # 2001-01-3640 #12;Remote Sensing

  13. Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 2: SOx/Nox/Hg Removal for High Sulfur Coal

    SciTech Connect (OSTI)

    Nick Degenstein; Minish Shah; Doughlas Louie

    2012-05-01T23:59:59.000Z

    The goal of this project is to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxy-combustion technology. The objective of Task 2 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning high sulfur coal in oxy-combustion power plants. The goal of the program was not only to investigate a new method of flue gas purification but also to produce useful acid byproduct streams as an alternative to using a traditional FGD and SCR for flue gas processing. During the project two main constraints were identified that limit the ability of the process to achieve project goals. 1) Due to boiler island corrosion issues >60% of the sulfur must be removed in the boiler island with the use of an FGD. 2) A suitable method could not be found to remove NOx from the concentrated sulfuric acid product, which limits sale-ability of the acid, as well as the NOx removal efficiency of the process. Given the complexity and safety issues inherent in the cycle it is concluded that the acid product would not be directly saleable and, in this case, other flue gas purification schemes are better suited for SOx/NOx/Hg control when burning high sulfur coal, e.g. this project's Task 3 process or a traditional FGD and SCR.

  14. Application of satellite observations for timely updates to global anthropogenic NOx emission inventories

    E-Print Network [OSTI]

    Chance, Kelly

    inventories L. N. Lamsal,1 R. V. Martin,1,2 A. Padmanabhan,1 A. van Donkelaar,1 Q. Zhang,3 C. E. Sioris,4 K to hindcast and forecast the inventories. We evaluate our approach by comparing bottomup and hindcast emissions for 2003. The two inventories agree within 6.0% globally and within 8.9% at the regional scale

  15. Air Pollution Control Regulations: No.27- Control of Nitrogen Oxide Emissions (Rhode Island)

    Broader source: Energy.gov [DOE]

    These regulations apply to stationary sources with the potential to emit 50 tons of nitrogen oxides (NOx) per year from all pollutant-emitting equipment or activities. The regulations describe...

  16. Plant-Wide NOx Reduction Strategies

    E-Print Network [OSTI]

    Baukal, C.; Waibel, D.; Webster, T.

    2006-01-01T23:59:59.000Z

    and the public's awareness increased, industry began looking for new strategies to curb NOx emissions. The strategies for reducing NOx are discussed next. Table 1 shows a summary of common NOx control technologies [1]. Table 1 NOx reduction technologies... for NOx Control, in Industrial Combustion Technologies, ed. by M.A. Lukasiewicz, American Society of Metals, Warren, PA, pp. 345-350, 1986. 7. A. Garg, Trimming NOx, Chem Eng., Vol. 99, No. 11, pp. 122-124, 1992. 8. C.E. Baukal, Industrial Combustion...

  17. NOx Emissions Reduction from Continuous Commissioning(R) Measures for the Dallas-Fort Worth International Airport

    E-Print Network [OSTI]

    Yazdani, B.; Haberl, J. S.; Baltazar-Cervantes, J. C.

    Total NOx Reductions (lbs/day) Total NOx Reductions (Tons/day) TOT EQ ELECTRICITY (MWh) (Electricity and Chilled water) 4,761 7,278.7 3.6393 24.2 36.7 0.0184 HOT WATER (MCF) 8,358 1,170.2 0.5851 41.0 5.7 0.0029 Total 8,448.9 4.2244 42.5 0....0212 NOTES: 1) Assuming 7% for T&D losses and a Discount factor of 25%. Corresponding factors to integrated savings presented to the TCEQ. 2) A factor of 0.140 lb of NOx/MCF of Natural Gas (Controlled - Low NOx burners 140 A...

  18. DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN CO-FIRING BIOMASS WITH COAL

    SciTech Connect (OSTI)

    Larry G. Felix; P. Vann Bush; Stephen Niksa

    2003-04-30T23:59:59.000Z

    In full-scale boilers, the effect of biomass cofiring on NO{sub x} and unburned carbon (UBC) emissions has been found to be site-specific. Few sets of field data are comparable and no consistent database of information exists upon which cofiring fuel choice or injection system design can be based to assure that NOX emissions will be minimized and UBC be reduced. This report presents the results of a comprehensive project that generated an extensive set of pilot-scale test data that were used to validate a new predictive model for the cofiring of biomass and coal. All testing was performed at the 3.6 MMBtu/hr (1.75 MW{sub t}) Southern Company Services/Southern Research Institute Combustion Research Facility where a variety of burner configurations, coals, biomasses, and biomass injection schemes were utilized to generate a database of consistent, scalable, experimental results (422 separate test conditions). This database was then used to validate a new model for predicting NO{sub x} and UBC emissions from the cofiring of biomass and coal. This model is based on an Advanced Post-Processing (APP) technique that generates an equivalent network of idealized reactor elements from a conventional CFD simulation. The APP reactor network is a computational environment that allows for the incorporation of all relevant chemical reaction mechanisms and provides a new tool to quantify NOx and UBC emissions for any cofired combination of coal and biomass.

  19. Energy Efficiency/ Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP), Preliminary Report: Intergrated Nox Emissions Savings from EE/RE Programs Statewide 

    E-Print Network [OSTI]

    Haberl, J.; Yazdani, B.; Lewis, C.; Liu, Z.; Baltazar, J. C.; Mukhopadhyay, J..; Degelman, L.; McKelvey, K.; Clardige, D.; Ellis, S.; Kim, H.; Zilbershtein. G.

    2012-01-01T23:59:59.000Z

    , the integrated total electricity savings from all programs are: ? Annual electricity savings is 13,354,918 MWh/year (3,723 tons-NOx/year) and ? OSD electricity savings is 36,079 MWh/day, which would be a 1,503 MW average hourly load reduction during the OSD... period (9.89 tons-NOx/day). By 2013, the integrated total electricity savings from all programs are: ? Annual electricity savings will be 15,391,293 MWh/year (4,296 tons-NOx/year) and ? OSD electricity savings will be 41,691 MWh/day, which would be a...

  20. Energy Efficiency/ Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP) Preliminary Report: Integrated Nox Emissions Savings from EE/RE Programs Statewide 

    E-Print Network [OSTI]

    Haberl, J.; Yazdani, B.; Zilbershtein, G.; Baltazar, J. C.; Mukhopadhyay, J.; Clardige, D.; Parker, P.; Ellis, S.; Kim, H.

    2013-01-01T23:59:59.000Z

    for this purpose. In 2012, the integrated total electricity savings from all programs are: ? Annual electricity savings is 16,413,917 MWh/year (4,609 tons-NOx/year) and ? OSD electricity savings is 44,366 MWh/day, which would be a 1,849 MW average hourly... load reduction during the OSD period (12.35 tons-NOx/day). By 2013, the integrated total electricity savings from all programs are: ? Annual electricity savings will be 17,661,268 MWh/year (4,959 tons-NOx/year) and ? OSD electricity savings...

  1. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP) Preliminary Report: Integrated NOx Emissions Savings from EE/RE Programs Statewide 

    E-Print Network [OSTI]

    Haberl, J.; Culp, C.; Yazdani, B.; Gilman, D.; Baltazar, J. C.; Lewis, C.; McKelvey, K.; Mukhopadhyay, J.; Degelman, L.; Liu, Z.

    2010-01-01T23:59:59.000Z

    specially prepared for this purpose. In 2009, the cumulative total annual electricity savings from all programs is 25,585,081 MWh/year (15,327 tons-NOx/year). The total cumulative OSD electricity savings from all programs is 70,442 MWh/day, which would... be a 2,935 MW average hourly load reduction during the OSD period (40.72 tons-NOx/day). By 2013, the total cumulative annual electricity savings from will be 31,979,929 MWh/year (19,314 tons-NOx/year). The total cumulative OSD electricity savings...

  2. Sulfur dioxide and nitrogen oxides emissions from U.S. pulp and paper mills, 1980-2005

    SciTech Connect (OSTI)

    John E. Pinkerton [National Council of the Paper Industry for Air and Stream Improvement Inc., Research Triangle Park, NC (United States). Air Quality Program

    2007-08-15T23:59:59.000Z

    Estimates of total SO{sub 2} and NOx emissions from U.S. pulp and paper mills were developed from industry-wide surveys conducted at 5-yr intervals from 1980 to 2005. The following conclusions were drawn from these estimates: (1) Total SO{sub 2} emissions from pulp and paper mills were 340,000 t in 2005. Since 1980, SO{sub 2} emissions have decreased steadily. The decline over the 25-yr period was over 60%. Paper production increased by 50% over the same period. (2) Boilers burning coal and oil are the primary source of SO{sub 2} emissions, with minor contributions from black liquor combustion in kraft recovery furnaces and the burning of noncondensable gases in boilers at kraft pulp mills. Factors contributing to the decline in boiler SO{sub 2} emissions include large reductions in residual oil use, recent decreases in coal use, declines in the average sulfur content of residual oil and coal being burned, and increasing use of flue gas desulfurization systems.(3) NOx emissions from pulp and paper mills were 230,000 t in 2005. NOx emissions were fairly constant through 1995, but then declined by 12% in 2000 and an additional 17% between 2000 and 2005. (4) In 2005, boilers accounted for two-thirds of the NOx emissions, and kraft mill sources approximately 30%. Boiler NOx emissions exhibited very little change through 1995, but decreased by one third in the next 10 yr. The lower emissions resulted from declines in fossil fuel use, a reduction in the EPA emission factors for natural gas combustion in boilers without NOx controls, and more widespread use of combustion modifications and add-on NOx control technologies, particularly on coal-fired boilers subject to EPA's NOx SIP call. Total NOx emissions from kraft mill sources changed little over the 25-yr period. 7 refs., 4 figs., 3 tabs.

  3. Implications of near-term coal power plant retirement for SO2 and NOX, and life cycle GHG emissions

    E-Print Network [OSTI]

    Jaramillo, Paulina

    prices of electricity production Plant type Unit Price Nuclear ($/MWh) 16.51 Wind ($/MWh) 201 Hydro Top SO2 100 430 95 440 100 430 Top NOX 105 350 100 380 105 345 Small, inefficient 125 410 125 405 125) Manitoba Hydro Manitoba Hydro Undertaking # 57 http://www.pub.gov.mb.ca/exhibits/mh-83.pdf. (5) Sotkiewicz

  4. What Do Emissions Markets Deliver and to Whom? Evidence from Southern California’s NOx Trading Program

    E-Print Network [OSTI]

    Fowlie, Meredith; Holland, Stephen P.; Mansur, Erin T

    2009-01-01T23:59:59.000Z

    Justice Critique of Emissions Trading. ” Ecology Lawgions: The case of the emission trading programme RECLAIM inTietenberg, Tom H. 2006. Emissions Trading Principles and

  5. Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines

    SciTech Connect (OSTI)

    Nigel N. Clark

    2006-12-31T23:59:59.000Z

    Nitric oxide (NO) and nitrogen dioxide (NO2) generated by internal combustion (IC) engines are implicated in adverse environmental and health effects. Even though lean-burn natural gas engines have traditionally emitted lower oxides of nitrogen (NOx) emissions compared to their diesel counterparts, natural gas engines are being further challenged to reduce NOx emissions to 0.1 g/bhp-hr. The Selective NOx Recirculation (SNR) approach for NOx reduction involves cooling the engine exhaust gas and then adsorbing the NOx from the exhaust stream, followed by the periodic desorption of NOx. By sending the desorbed NOx back into the intake and through the engine, a percentage of the NOx can be decomposed during the combustion process. SNR technology has the support of the Department of Energy (DOE), under the Advanced Reciprocating Engine Systems (ARES) program to reduce NOx emissions to under 0.1 g/bhp-hr from stationary natural gas engines by 2010. The NO decomposition phenomenon was studied using two Cummins L10G natural gas fueled spark-ignited (SI) engines in three experimental campaigns. It was observed that the air/fuel ratio ({lambda}), injected NO quantity, added exhaust gas recirculation (EGR) percentage, and engine operating points affected NOx decomposition rates within the engine. Chemical kinetic model predictions using the software package CHEMKIN were performed to relate the experimental data with established rate and equilibrium models. The model was used to predict NO decomposition during lean-burn, stoichiometric burn, and slightly rich-burn cases with added EGR. NOx decomposition rates were estimated from the model to be from 35 to 42% for the lean-burn cases and from 50 to 70% for the rich-burn cases. The modeling results provided an insight as to how to maximize NOx decomposition rates for the experimental engine. Results from this experiment along with chemical kinetic modeling solutions prompted the investigation of rich-burn operating conditions, with added EGR to prevent preignition. It was observed that the relative air/fuel ratio, injected NO quantity, added EGR fraction, and engine operating points affected the NO decomposition rates. While operating under these modified conditions, the highest NO decomposition rate of 92% was observed. In-cylinder pressure data gathered during the experiments showed minimum deviation from peak pressure as a result of NO injections into the engine. A NOx adsorption system, from Sorbent Technologies, Inc., was integrated with the Cummins engine, comprised a NOx adsorbent chamber, heat exchanger, demister, and a hot air blower. Data were gathered to show the possibility of NOx adsorption from the engine exhaust, and desorption of NOx from the sorbent material. In order to quantify the NOx adsorption/desorption characteristics of the sorbent material, a benchtop adsorption system was constructed. The temperature of this apparatus was controlled while data were gathered on the characteristics of the sorbent material for development of a system model. A simplified linear driving force model was developed to predict NOx adsorption into the sorbent material as cooled exhaust passed over fresh sorbent material. A mass heat transfer analysis was conducted to analyze the possibility of using hot exhaust gas for the desorption process. It was found in the adsorption studies, and through literature review, that NO adsorption was poor when the carrier gas was nitrogen, but that NO in the presence of oxygen was adsorbed at levels exceeding 1% by mass of the sorbent. From the three experimental campaigns, chemical kinetic modeling analysis, and the scaled benchtop NOx adsorption system, an overall SNR system model was developed. An economic analysis was completed, and showed that the system was impractical in cost for small engines, but that economies of scale favored the technology.

  6. Catalytic Combustion for Ultra-Low NOx Hydrogen Turbines

    SciTech Connect (OSTI)

    Etemad, Shahrokh; Baird, Benjamin; Alavandi, Sandeep

    2011-06-30T23:59:59.000Z

    Precision Combustion, Inc., (PCI) in close collaboration with Solar Turbines, Incorporated, has developed and demonstrated a combustion system for hydrogen fueled turbines that reduces NOx to low single digit level while maintaining or improving current levels of efficiency and eliminating emissions of carbon dioxide. Full scale Rich Catalytic Hydrogen (RCH1) injector was developed and successfully tested at Solar Turbines, Incorporated high pressure test facility demonstrating low single digit NOx emissions for hydrogen fuel in the range of 2200F-2750F. This development work was based on initial subscale development for faster turnaround and reduced cost. Subscale testing provided promising results for 42% and 52% H2 with NOx emissions of less than 2 ppm with improved flame stability. In addition, catalytic reactor element testing for substrate oxidation, thermal cyclic injector testing to simulate start-stop operation in a gas turbine environment, and steady state 15 atm. operation testing were performed successfully. The testing demonstrated stable and robust catalytic element component life for gas turbine conditions. The benefit of the catalytic hydrogen combustor technology includes capability of delivering near-zero NOx without costly post-combustion controls and without requirement for added sulfur control. In addition, reduced acoustics increase gas turbine component life. These advantages advances Department of Energy (DOE’s) objectives for achievement of low single digit NOx emissions, improvement in efficiency vs. postcombustion controls, fuel flexibility, a significant net reduction in Integrated Gasification Combined Cycle (IGCC) system net capital and operating costs, and a route to commercialization across the power generation field from micro turbines to industrial and utility turbines.

  7. Reactive based NOx sensor

    E-Print Network [OSTI]

    Vassiliou, Christophoros Christou

    2006-01-01T23:59:59.000Z

    Diesel engines exhibit better fuel economy and emit fewer greenhouse gases than gasoline engines. Modern diesel technology has virtually eliminated carbon monoxide and particulate emissions. Sulfur oxide emissions have ...

  8. CSEM WP 113 Using Environmental Emissions Permit Prices to Raise

    E-Print Network [OSTI]

    California at Berkeley. University of

    CSEM WP 113 Using Environmental Emissions Permit Prices to Raise Electricity Prices: Evidence from Emissions Permit Prices to Raise Electricity Prices: Evidence from the California Electricity Market analyzes the extent to which the conditions in the emissions permit market for oxides of nitrogen (NOx

  9. Using market-based dispatching with environmental price signals to reduce emissions and water use at power plants in the Texas grid

    E-Print Network [OSTI]

    Alhajeri, Nawaf S.

    The possibility of using electricity dispatching strategies to achieve a 50% nitrogen oxide (NOx) emission reduction from electricity generating units was examined using the grid of the Electricity Reliability Council of ...

  10. Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CumminsORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines Vehicle Technologies Office Merit Review 2014: Cummins-ORNLFEERC Emissions CRADA:...

  11. Durability Evaluation of an Integrated Diesel NOx Adsorber A...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Desulfurization Fuel Filter Development of NOx Adsorber System for Dodge Ram 2007 Heavy duty Pickup Truck Update on Diesel Exhaust Emission Control Technology and Regulations...

  12. Effect of reductive treatments on Pt behavior and NOx storage...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    represent a promising approach to meet increasingly stringent NOx emission regulations on diesel and other lean-burn engines. Pt material properties, including dispersion and...

  13. Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology...

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Technologies Office Merit Review 2014: Cummins-ORNLFEERC Emissions CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines CumminsORNL-FEERC...

  14. aluminosilicates nox reduction: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the CompuNOx system focus on a controls approach to minimize emissions without exposing steam generation plants to an unbearable financial burden. With minimal system changes we...

  15. Lean NOx Reduction with Dual Layer LNT/SCR Catalysts

    Broader source: Energy.gov (indexed) [DOE]

    emerging 2 NSRSCR Technology Goal: Reduce PGM & minimize fuel penalty in meeting NOx emission targets (adapted from Gandhi et al., US Patent, 2007) 3 Fundamental Issues for Dual...

  16. Abatement of Air Pollution: The Clean Air Interstate Rule (CAIR) Nitrogen Oxides (Nox) Ozone Season Trading Program (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations may apply to fossil-fuel fired emission units, and describe nitrogen emission allocations that owners of such units must meet. The regulations also contain provisions for...

  17. On-farm Assessment of Nitrogen Fertilizer application to corn on Nitrous Oxide Emissions

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    mitigation of greenhouse gas emissions by agriculture. Nutr.1998. Nitrous oxide emission in three years as affected by2008. Soil-surface gas emissions. p.851-861. In: M.R. Carter

  18. Lean NOx Trap Catalysis for Lean Natural Gas Engine Applications

    SciTech Connect (OSTI)

    Parks, II, James E [ORNL; Storey, John Morse [ORNL; Theiss, Timothy J [ORNL; Ponnusamy, Senthil [ORNL; Ferguson, Harley Douglas [ORNL; Williams, Aaron M [ORNL; Tassitano, James B [ORNL

    2007-09-01T23:59:59.000Z

    Distributed energy is an approach for meeting energy needs that has several advantages. Distributed energy improves energy security during natural disasters or terrorist actions, improves transmission grid reliability by reducing grid load, and enhances power quality through voltage support and reactive power. In addition, distributed energy can be efficient since transmission losses are minimized. One prime mover for distributed energy is the natural gas reciprocating engine generator set. Natural gas reciprocating engines are flexible and scalable solutions for many distributed energy needs. The engines can be run continuously or occasionally as peak demand requires, and their operation and maintenance is straightforward. Furthermore, system efficiencies can be maximized when natural gas reciprocating engines are combined with thermal energy recovery for cooling, heating, and power applications. Expansion of natural gas reciprocating engines for distributed energy is dependent on several factors, but two prominent factors are efficiency and emissions. Efficiencies must be high enough to enable low operating costs, and emissions must be low enough to permit significant operation hours, especially in non-attainment areas where emissions are stringently regulated. To address these issues the U.S. Department of Energy and the California Energy Commission launched research and development programs called Advanced Reciprocating Engine Systems (ARES) and Advanced Reciprocating Internal Combustion Engines (ARICE), respectively. Fuel efficiency and low emissions are two primary goals of these programs. The work presented here was funded by the ARES program and, thus, addresses the ARES 2010 goals of 50% thermal efficiency (fuel efficiency) and <0.1 g/bhp-hr emissions of oxides of nitrogen (NOx). A summary of the goals for the ARES program is given in Table 1-1. ARICE 2007 goals are 45% thermal efficiency and <0.015 g/bhp-hr NOx. Several approaches for improving the efficiency and emissions of natural gas reciprocating engines are being pursued. Approaches include: stoichiometric engine operation with exhaust gas recirculation and three-way catalysis, advanced combustion modes such as homogeneous charge compression ignition, and extension of the lean combustion limit with advanced ignition concepts and/or hydrogen mixing. The research presented here addresses the technical approach of combining efficient lean spark-ignited natural gas combustion with low emissions obtained from a lean NOx trap catalyst aftertreatment system. This approach can be applied to current lean engine technology or advanced lean engines that may result from related efforts in lean limit extension. Furthermore, the lean NOx trap technology has synergy with hydrogen-assisted lean limit extension since hydrogen is produced from natural gas during the lean NOx trap catalyst system process. The approach is also applicable to other lean engines such as diesel engines, natural gas turbines, and lean gasoline engines; other research activities have focused on those applications. Some commercialization of the technology has occurred for automotive applications (both diesel and lean gasoline engine vehicles) and natural gas turbines for stationary power. The research here specifically addresses barriers to commercialization of the technology for large lean natural gas reciprocating engines for stationary power. The report presented here is a comprehensive collection of research conducted by Oak Ridge National Laboratory (ORNL) on lean NOx trap catalysis for lean natural gas reciprocating engines. The research was performed in the Department of Energy's ARES program from 2003 to 2007 and covers several aspects of the technology. All studies were conducted at ORNL on a Cummins C8.3G+ natural gas engine chosen based on industry input to simulate large lean natural gas engines. Specific technical areas addressed by the research include: NOx reduction efficiency, partial oxidation and reforming chemistry, and the effects of sulfur poisons on the partial oxidation

  19. Methodology to Calculate NOx Emissions Reductions from the Implementation of the 2000 IECC/IRC Conservation Code in Texas

    E-Print Network [OSTI]

    Haberl, J. S.; Im, P.; Culp, C.

    2004-01-01T23:59:59.000Z

    severe sanctions if attainment is not reached by 2007. Four additional areas in the state are also approaching national ozone limits (i.e., affected areas). In 2001, the Texas State Legislature formulated and passed the Texas Emissions Reduction Plan...

  20. Adaptive PI control of NOx? emissions in a Urea Selective Catalytic Reduction System using system identification models

    E-Print Network [OSTI]

    Ong, Chun Yang

    2009-01-01T23:59:59.000Z

    The Urea SCR System has shown great potential for implementation on diesel vehicles wanting to meet the upcoming emission regulations by the EPA. The objective of this thesis is to develop an adaptive controller that is ...

  1. NOx Adsorber (Lean NOx Trap) Fundamentals (Agreement #10049 ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Lean NOx Trap) Fundamentals (Agreement 10049 - PNNL Project 47120) NOx Adsorber (Lean NOx Trap) Fundamentals (Agreement 10049 - PNNL Project 47120) Presentation from the U.S....

  2. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01T23:59:59.000Z

    Biodiesel Blends on NOx Emissions. SAE Technical Paper 2008,Energy Laboratory Diesel Emissions Control - Sulfur Effectsbetween NOx, Particulate Emission, and Fuel Consumption of a

  3. Exhaust emission control and diagnostics

    DOE Patents [OSTI]

    Mazur, Christopher John; Upadhyay, Devesh

    2006-11-14T23:59:59.000Z

    A diesel engine emission control system uses an upstream oxidation catalyst and a downstream SCR catalyst to reduce NOx in a lean exhaust gas environment. The engine and upstream oxidation catalyst are configured to provide approximately a 1:1 ratio of NO to NO2 entering the downstream catalyst. In this way, the downstream catalyst is insensitive to sulfur contamination, and also has improved overall catalyst NOx conversion efficiency. Degradation of the system is determined when the ratio provided is no longer near the desired 1:1 ratio. This condition is detected using measurements of engine operating conditions such as from a NOx sensor located downstream of the catalysts. Finally, control action to adjust an injected amount of reductant in the exhaust gas based on the actual NO to NO2 ratio upstream of the SCR catalyst and downstream of the oxidation catalyst.

  4. NH3 generation over commercial Three-Way Catalysts and Lean-NOx...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Emissions Control for Lean Gasoline Engines Emissions Control for Lean Gasoline Engines Spatiotemporal Distribution of NOx Storage: a Factor Controlling NH3 and...

  5. Influence of combustion parameters on NOx production in an industrial boiler

    E-Print Network [OSTI]

    Aldajani, Mansour A.

    Influence of combustion parameters on NOx production in an industrial boiler M.A. Habib a,*, M; accepted 14 April 2007 Available online 24 June 2007 Abstract NOx formation during the combustion process occurs mainly through the oxidation of nitrogen in the combustion air (thermal NOx) and through oxidation

  6. A Numerical Investigation into the Anomalous Slight NOx Increase when Burning Biodiesel: A New (Old) Theory

    SciTech Connect (OSTI)

    Ban-Weiss, G A; Chen, J Y; Buchholz, B A; Dibble, R W

    2007-01-30T23:59:59.000Z

    Biodiesel is a notable alternative to petroleum derived diesel fuel because it comes from natural domestic sources and thus reduces dependence on diminishing petroleum fuel from foreign sources, it likely lowers lifecycle greenhouse gas emissions, and it lowers an engine's emission of most pollutants as compared to petroleum derived diesel. However, the use of biodiesel often slightly increases a diesel engine's emission of smog forming nitrogen oxides (NO{sub x}) relative to petroleum diesel. In this paper, previously proposed theories for this slight NOx increase are reviewed, including theories based on biodiesel's cetane number, which leads to differing amounts of charge preheating, and theories based on the fuel's bulk modulus, which affects injection timing. This paper proposes an additional theory for the slight NO{sub x} increase of biodiesel. Biodiesel typically contains more double bonded molecules than petroleum derived diesel. These double bonded molecules have a slightly higher adiabatic flame temperature, which leads to the increase in NOx production for biodiesel. Our theory was verified using numerical simulations to show a NOx increase, due to the double bonded molecules, that is consistent with observation. Further, the details of these numerical simulations show that NOx is predominantly due to the Zeldovich mechanism.

  7. MODELING THE EMISSIONS OF NITROUS OXIDE (N20) AND METHANE (CH 4) FROM THE

    E-Print Network [OSTI]

    MODELING THE EMISSIONS OF NITROUS OXIDE (N20) AND METHANE (CH 4) FROM THE TERRESTRIAL BIOSPHERE;2 #12;MODELING THE EMISSIONS OF NITROUS OXIDE (N 20) AND METHANE (CH 4) FROM THE TERRESTRIAL BIOSPHERE cli- mate has on natural emissions of N2 0 and CH4 from the terrestrial biosphere to the atmosphere

  8. 8th i-CIPEC8th International Conference/Exhibition on Combustion, Incineration/Pyrolysis, Emission and Climate Change

    E-Print Network [OSTI]

    Shepard, Kenneth

    Anaerobic Digestion and Biogas ·Emission Control Advanced Emission Control for NOx, SOx, HCL, VOCs et al

  9. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01T23:59:59.000Z

    Second Generation Biofuels on NOx Emissions for Clean DieselSecond Generation Biofuels on NOx Emissions for CARB DieselSecond Generation Biofuels on NOx Emissions for Clean Diesel

  10. How sensitive is tropospheric oxidation to anthropogenic emissions? Oliver Wild1

    E-Print Network [OSTI]

    Palmer, Paul

    How sensitive is tropospheric oxidation to anthropogenic emissions? Oliver Wild1 and Paul I. Palmer regime. Citation: Wild, O., and P. I. Palmer (2008), How sensitive is tropospheric oxidation

  11. NOx, FINE PARTICLE AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    SciTech Connect (OSTI)

    Jost O.L. Wendt

    2001-05-04T23:59:59.000Z

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and coal. The objective is to determine the relationship between (1) fraction sludge in the sludge/coal mixture, and (2) combustion conditions on (a) NO{sub x} concentrations in the exhaust, (b) the size segregated fine and ultra-fine particle composition in the exhaust, and (c) the partitioning of toxic metals between vapor and condenses phases, within the process. To this end we shall use an existing 17kW downflow laboratory combustor, available with coal and sludge feed capabilities. The proposed study will be conducted in concert with an existing ongoing research on toxic metal partitioning mechanisms for very well characterized pulverized coals alone. Both high NO{sub x} and low NO{sub x} combustion conditions will be investigated (unstaged and staged combustion). The proposed work uses existing analytical and experimental facilities and draws on 20 years of research on NO{sub x} and fine particles that has been funded by DOE in this laboratory. Four barrels of dried sewage sludge are currently in the laboratory. Insofar as possible pertinent mechanisms will be elucidated. Tradeoffs between CO{sub 2} control, NO{sub x} control, and inorganic fine particle and toxic metal emissions will be determined.

  12. Zero Emission Power Plants Using Solid Oxide Fuel Cells and Oxygen Transport Membranes

    SciTech Connect (OSTI)

    Shockling, Larry A.; Huang, Keqin; Gilboy, Thomas E. (Siemens Westinghouse Power Corporation); Christie, G. Maxwell; Raybold, Troy M. (Praxair, Inc.)

    2001-11-06T23:59:59.000Z

    Siemens Westinghouse Power Corp. (SWPC) is engaged in the development of Solid Oxide Fuel Cell stationary power systems. SWPC has combined DOE Developmental funds with commercial customer funding to establish a record of successful SOFC field demonstration power systems of increasing size. SWPC will soon deploy the first unit of a newly developed 250 kWe Combined Heat Power System. It will generate electrical power at greater than 45% electrical efficiency. The SWPC SOFC power systems are equipped to operate on lower number hydrocarbon fuels such as pipeline natural gas, which is desulfurized within the SOFC power system. Because the system operates with a relatively high electrical efficiency, the CO2 emissions, {approx}1.0 lb CO2/ kW-hr, are low. Within the SOFC module the desulfurized fuel is utilized electrochemically and oxidized below the temperature for NOx generation. Therefore the NOx and SOx emissions for the SOFC power generation system are near negligible. The byproducts of the power generation from hydrocarbon fuels that are released into the environment are CO2 and water vapor. This forward looking DOE sponsored Vision 21 program is supporting the development of methods to capture and sequester the CO2, resulting in a Zero Emission power generation system. To accomplish this, SWPC is developing a SOFC module design, to be demonstrated in operating hardware, that will maintain separation of the fuel cell anode gas, consisting of H2, CO, H2O and CO2, from the vitiated air. That anode gas, the depleted fuel stream, containing less than 18% (H2 + CO), will be directed to an Oxygen Transport Membrane (OTM) Afterburner that is being developed by Praxair, Inc.. The OTM is supplied air and the depleted fuel. The OTM will selectively transport oxygen across the membrane to oxidize the remaining H2 and CO. The water vapor is then condensed from the totally 1.5.DOC oxidized fuel stream exiting the afterburner, leaving only the CO2 in gaseous form. That CO2 can then be compressed and sequestered, resulting in a Zero Emission power generation system operating on hydrocarbon fuel that adds only water vapor to the environment. Praxair has been developing oxygen separation systems based on dense walled, mixed electronic, oxygen ion conducting ceramics for a number of years. The oxygen separation membranes find applications in syngas production, high purity oxygen production and gas purification. In the SOFC afterburner application the chemical potential difference between the high temperature SOFC depleted fuel gas and the supplied air provides the driving force for oxygen transport. This permeated oxygen subsequently combusts the residual fuel in the SOFC exhaust. A number of experiments have been carried out in which simulated SOFC depleted fuel gas compositions and air have been supplied to either side of single OTM tubes in laboratory-scale reactors. The ceramic tubes are sealed into high temperature metallic housings which precludes mixing of the simulated SOFC depleted fuel and air streams. In early tests, although complete oxidation of the residual CO and H2 in the simulated SOFC depleted fuel was achieved, membrane performance degraded over time. The source of degradation was found to be contaminants in the simulated SOFC depleted fuel stream. Following removal of the contaminants, stable membrane performance has subsequently been demonstrated. In an ongoing test, the dried afterburner exhaust composition has been found to be stable at 99.2% CO2, 0.4% N2 and 0.6%O2 after 350 hours online. Discussion of these results is presented. A test of a longer, commercial demonstration size tube was performed in the SWPC test facility. A similar contamination of the simulated SOFC depleted fuel stream occurred and the performance degraded over time. A second test is being prepared. Siemens Westinghouse and Praxair are collaborating on the preliminary design of an OTM equipped Afterburner demonstration unit. The intent is to test the afterburner in conjunction with a reduced size SOFC test module that has the anode gas separati

  13. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect (OSTI)

    David R. Thompson; Lawrence E. Bool; Jack C. Chen

    2004-04-01T23:59:59.000Z

    Conventional wisdom says adding oxygen to a combustion system enhances product throughput, system efficiency, and, unless special care is taken, increases NOx emissions. This increase in NOx emissions is typically due to elevated flame temperatures associated with oxygen use leading to added thermal NOx formation. Innovative low flame temperature oxy-fuel burner designs have been developed and commercialized to minimize both thermal and fuel NOx formation for gas and oil fired industrial furnaces. To be effective these systems require close to 100% oxy-fuel combustion and the cost of oxygen is paid for by fuel savings and other benefits. For applications to coal-fired utility boilers at the current cost of oxygen, however, it is not economically feasible to use 100% oxygen for NOx control. In spite of this conventional wisdom, Praxair and its team members, in partnership with the US Department of Energy National Energy Technology Laboratory, have developed a novel way to use oxygen to reduce NOx emissions without resorting to complete oxy-fuel conversion. In this concept oxygen is added to the combustion process to enhance operation of a low NOx combustion system. Only a small fraction of combustion air is replaced with oxygen in the process. By selectively adding oxygen to a low NOx combustion system it is possible to reduce NOx emissions from nitrogen-containing fuels, including pulverized coal, while improving combustion characteristics such as unburned carbon. A combination of experimental work and modeling was used to define how well oxygen enhanced combustion could reduce NOx emissions. The results of this work suggest that small amounts of oxygen replacement can reduce the NOx emissions as compared to the air-alone system. NOx emissions significantly below 0.15 lbs/MMBtu were measured. Oxygen addition was also shown to reduce carbon in ash. Comparison of the costs of using oxygen for NOx control against competing technologies, such as SCR, show that this concept offers substantial savings over SCR and is an economically attractive alternative to purchasing NOx credits or installing other conventional technologies. In conjunction with the development of oxygen based low NOx technology, Praxair also worked on developing the economically enhancing oxygen transport membrane (OTM) technology which is ideally suited for integration with combustion systems to achieve further significant cost reductions and efficiency improvements. This OTM oxygen production technology is based on ceramic mixed conductor membranes that operate at high temperatures and can be operated in a pressure driven mode to separate oxygen with infinite selectivity and high flux. An OTM material was selected and characterized. OTM elements were successfully fabricated. A single tube OTM reactor was designed and assembled. Testing of dense OTM elements was conducted with promising oxygen flux results of 100% of target flux. However, based on current natural gas prices and stand-alone air separation processes, ceramic membranes do not offer an economic advantage for this application. Under a different DOE-NETL Cooperative Agreement, Praxair is continuing to develop oxygen transport membranes for the Advanced Boiler where the economics appear more attractive.

  14. Reducing the contribution of the power sector to ground-level ozone pollution : an assessment of time-differentiated pricing of nitrogen oxide emissions

    E-Print Network [OSTI]

    Craig, Michael T. (Michael Timothy)

    2014-01-01T23:59:59.000Z

    Nitrogen oxide (NOx) is a prevalent air pollutant across the United States and a requisite precursor for tropospheric (ground-level) ozone formation. Both pollutants significantly impact human health and welfare, so National ...

  15. 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO sub x ) emissions from coal-fired boilers

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    ABB CE's Low NOx Bulk Furnace Staging (LNBFS) System and Low NOx Concentric Firing System (LNCFS) are demonstrated in stepwise fashion. These systems incorporate the concept of advanced overfire air (AOFA), clustered coal nozzles, and offset air. A complete description of the installed technologies is provided in the following section. The primary objective of the Plant Lansing Smith demonstration is to determine the long-term effects of commercially available tangentially-fired low NOx combustion technologies on NOx emissions and boiler performance. Short-term tests of each technology are also being performed to provide engineering information about emissions and performance trends. A target of achieving fifty percent NOx reduction using combustion modifications has been established for the project.

  16. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01T23:59:59.000Z

    of Biodiesel and Second Generation Biofuels on NOx Emissionsof Biodiesel and Second Generation Biofuels on NOx EmissionsBiodiesel and Second Generation Biofuels on NO x Emissions

  17. Development of Diesel Exhaust Aftertreatment System for Tier II Emissions

    SciTech Connect (OSTI)

    Yu, R. C.; Cole, A. S., Stroia, B. J.; Huang, S. C. (Cummins, Inc.); Howden, Kenneth C.; Chalk, Steven (U.S. Dept. of Energy)

    2002-06-01T23:59:59.000Z

    Due to their excellent fuel efficiency, reliability, and durability, compression ignition direct injection (CIDI) engines have been used extensively to power almost all highway trucks, urban buses, off-road vehicles, marine carriers, and industrial equipment. CIDI engines burn 35 to 50% less fuel than gasoline engines of comparable size, and they emit far less greenhouse gases (Carbon Dioxides), which have been implicated in global warming. Although the emissions of CIDI engines have been reduced significantly over the last decade, there remains concern with the Nitrogen Oxides (NOX) and Particulate Matter (PM) emission levels. In 2000, the US EPA proposed very stringent emissions standards to be introduced in 2007 along with low sulfur (< 15ppm) diesel fuel. The California Air Resource Board (CARB) has also established the principle that future diesel fueled vehicles should meet the same emissions standards as gasoline fueled vehicles and the EPA followed suit with its Tier II emissions regulations. Meeting the Tier II standards requires NOX and PM emissions to be reduced dramatically. Achieving such low emissions while minimizing fuel economy penalty cannot be done through engine development and fuel reformulation alone, and requires application of NOX and PM aftertreatment control devices. A joint effort was made between Cummins Inc. and the Department of Energy to develop the generic aftertreatment subsystem technologies applicable for Light-Duty Vehicle (LDV) and Light-Duty Truck (LDT) engines. This paper provides an update on the progress of this joint development program. Three NOX reduction technologies including plasmaassisted catalytic NOX reduction (PACR), active lean NOX catalyst (LNC), and adsorber catalyst (AC) technology using intermittent rich conditions for NOX reduction were investigated in parallel in an attempt to select the best NOX control approach for light-duty aftertreatment subsystem integration and development. Investigations included system design and analysis, critical lab/engine experiments, and ranking then selection of NOX control technologies against reliability, up-front cost, fuel economy, service interval/serviceability, and size/weight. The results of the investigations indicate that the best NOX control approach for LDV and LDT applications is a NOX adsorber system. A greater than 83% NOX reduction efficiency is required to achieve 0.07g/mile NOX Tier II vehicle-out emissions. Both active lean NOX and PACR technology are currently not capable of achieving the high conversion efficiency required for Tier II, Bin 5 emissions standards. In this paper, the NOX technology assessment and selection is first reviewed and discussed. Development of the selected NOX technology (NOX adsorber) and PM control are then discussed in more detail. Discussion includes exhaust sulfur management, further adsorber formulation development, reductant screening, diesel particulate filter development & active regeneration, and preliminary test results on the selected integrated SOX trap, NOX adsorber, and diesel particulate filter system over an FTP-75 emissions cycle, and its impact on fuel economy. Finally, the direction of future work for continued advanced aftertreatment technology development is discussed. (SAE Paper SAE-2002-01-1867 © 2002 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)

  18. NOx reduction by electron beam-produced nitrogen atom injection

    DOE Patents [OSTI]

    Penetrante, Bernardino M. (San Ramon, CA)

    2002-01-01T23:59:59.000Z

    Deactivated atomic nitrogen generated by an electron beam from a gas stream containing more than 99% N.sub.2 is injected at low temperatures into an engine exhaust to reduce NOx emissions. High NOx reduction efficiency is achieved with compact electron beam devices without use of a catalyst.

  19. Implications of changing natural gas prices in the United States electricity sector for SO2, NOX and life cycle GHG emissions: Supplementary Information

    E-Print Network [OSTI]

    Jaramillo, Paulina

    % Figure S2. Relationship between regional and U.S. average electricity sector delivered natural gas prices1 Implications of changing natural gas prices in the United States electricity sector for SO2, NOX Griffin, H Scott Matthews Table S1. Base case fuel prices and marginal prices of electricity production

  20. Low NOx combustion

    DOE Patents [OSTI]

    Kobayashi, Hisashi (Putnam Valley, NY); Bool, III, Lawrence E. (Aurora, NY)

    2008-10-21T23:59:59.000Z

    Combustion of hydrocarbon liquids and solids is achieved with less formation of NOx by feeding a small amount of oxygen into the fuel stream.

  1. Low NOx combustion

    SciTech Connect (OSTI)

    Kobayashi; Hisashi (Putnam Valley, NY), Bool, III; Lawrence E. (Aurora, NY)

    2007-06-05T23:59:59.000Z

    Combustion of hydrocarbon liquids and solids is achieved with less formation of NOx by feeding a small amount of oxygen into the fuel stream.

  2. NOx Sensor Development

    Broader source: Energy.gov (indexed) [DOE]

    and advanced testing facilities. - EmiSense LLC: licensed LLNL NOx technology and CRADA partners for continued development. Relevance - If 33% of U.S. drivers switched to...

  3. DEVELOPMENT OF A NOVEL RADIATIVELY/CONDUCTIVELY STABILIZED BURNER FOR SIGNIFICANT REDUCTION OF NOx EMISSIONS AND FOR ADVANCING THE MODELING AND UNDERSTANDING OF PULVERIZED COAL COMBUSTION AND EMISSIONS

    SciTech Connect (OSTI)

    Noam Lior; Stuart W. Churchill

    2003-10-01T23:59:59.000Z

    The primary objective of the proposed study was the study and analysis of, and design recommendations for, a novel radiatively-conductively stabilized combustion (RCSC) process for pulverized coal, which, based on our prior studies with both fluid fuels and pulverized coal, holds a high promise to reduce NO{sub x} production significantly. We have primarily engaged in continuing and improving our process modeling and analysis, obtained a large amount of quantitative information about the effects of the major parameters on NO{sub x} production, conducted an extensive exergy analysis of the process, evaluated the practicalities of employing the Radiatively-Conductively Stabilized Combustor (RCSC) to large power and heat plants, and improved the experimental facility. Prior experimental work has proven the feasibility of the combustor, but slagging during coal combustion was observed and should be dealt with. The primary outcomes and conclusions from the study are: (1) we developed a model and computer program that represents the pulverized coal combustion in the RCSC, (2) the model predicts that NO{sub x} emissions can be reduced by a number of methods, detailed in the report. (3) the exergy analysis points out at least a couple of possible ways to improve the exergetic efficiency in this combustor: increasing the effectiveness of thermal feedback, and adjusting the combustor mixture exit location, (4) because of the low coal flow rates necessitated in this study to obtain complete combustion in the burner, the size of a burner operating under the considered conditions would have to be up to an order of magnitude, larger than comparable commercial burners, but different flow configurations of the RCSC can yield higher feed rates and smaller dimensions, and should be investigated. Related to this contract, eleven papers were published in journals and conference proceedings, and ten invited presentations were given at university and research institutions, as well as at the Gordon Conference on Modern Development in Thermodynamics. The results obtained are very encouraging for the development of the RCSC as a commercial burner for significant reduction of NO{sub x} emissions, and highly warrants further study and development.

  4. NOx Adsorber (Lean NOx Trap) Fundamentals (Agreement #10049 ...

    Broader source: Energy.gov (indexed) [DOE]

    technology operation. - Chemical mechanisms of NOx adsorption, desorption, and reduction for inclusion in CLEERS models - emphasis this year: effect of CO 2 and H 2 O on NOx...

  5. Full Useful Life (120,000 miles) Exhaust Emission Performance...

    Broader source: Energy.gov (indexed) [DOE]

    NOx adsorber desulfation) - Periodic unregulated emissions measurement with 15-ppm S refinery product - NOx adsorber desulfation performed on time based schedule Project divided...

  6. Enhanced Combustion Low NOx Pulverized Coal Burner

    SciTech Connect (OSTI)

    Ray Chamberland; Aku Raino; David Towle

    2006-09-30T23:59:59.000Z

    For more than two decades, ALSTOM Power Inc. (ALSTOM) has developed a range of low cost, in-furnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes ALSTOM's internally developed TFS 2000 firing system, and various enhancements to it developed in concert with the U.S. Department of Energy (DOE). As of 2004, more than 200 units representing approximately 75,000 MWe of domestic coal fired capacity have been retrofit with ALSTOM low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coals to 0.10 lb/MMBtu for subbituminous coals, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing (retrofit) boiler equipment. If enacted, proposed Clear Skies legislation will, by 2008, require an average, effective, domestic NOx emissions rate of 0.16 lb/MMBtu, which number will be reduced to 0.13 lb/MMBtu by 2018. Such levels represent a 60% and 67% reduction, respectively, from the effective 2000 level of 0.40 lb/MMBtu. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. In light of these needs, ALSTOM, in cooperation with the DOE, is developing an enhanced combustion, low NOx pulverized coal burner which, when integrated with ALSTOM's state-of-the-art, globally air staged low NOx firing systems, will provide a means to achieve less than 0.15 lb/MMBtu NOx at less than 3/4 the cost of an SCR with low to no impact on balance of plant issues when firing a high volatile bituminous coal. Such coals can be more economic to fire than subbituminous or Powder River Basin (PRB) coals, but are more problematic from a NOx control standpoint as existing firing system technologies do not provide a means to meet current or anticipated regulations absent the use of an SCR. The DOE/ALSTOM program performed large pilot scale combustion testing in ALSTOM's Industrial Scale Burner Facility (ISBF) at its U.S. Power Plant Laboratories facility in Windsor, Connecticut. During this work, the near-field combustion environment was optimized to maximize NOx reduction while minimizing the impact on unburned carbon in ash, slagging and fouling, corrosion, and flame stability/turn-down under globally reducing conditions. Initially, ALSTOM utilized computational fluid dynamic modeling to evaluate a series of burner and/or near field stoichiometry controls in order to screen promising design concepts in advance of the large pilot scale testing. The third and final test, to be executed, will utilize several variants of the best nozzle tip configuration and compare performance with 3 different coals. The fuels to be tested will cover a wide range of coals commonly fired at US utilities. The completion of this work will provide sufficient data to allow ALSTOM to design, construct, and demonstrate a commercial version of an enhanced combustion low NOx pulverized coal burner. A preliminary cost/performance analysis of the developed enhanced combustion low NOx burner applied to ALSTOM's state-of-the-art TFS 2000 firing system was performed to show that the burner enhancements is a cost effective means to reduce NOx.

  7. Influence of reduced carbon emissions and oxidation on the distribution of atmospheric CO2: Implications for inversion analyses

    E-Print Network [OSTI]

    Krakauer, Nir Y.

    Influence of reduced carbon emissions and oxidation on the distribution of atmospheric CO2 carbon emission and oxidation processes in deriving inversion estimates of CO2 surface fluxes. Citation carbon emissions and oxidation on the distribution of atmospheric CO2: Implications for inversion

  8. A Methodology for Calculating Integrated Nox Emissions Reduction from Energy Efficiency and Renewable Energy (EE/RE) Programs Across State Agencies in Texas

    E-Print Network [OSTI]

    Gilman, D.; Yazdani, B.; Haberl, J. S.; Liu, Z.; Mukhopadhyay, J.; Culp, C.; Kim, S.; Baltazar-Cervantes, J. C.; Im, P.

    S D INTEGRATED NOx SAVINGS: Commercial Savings and Projections • Commercial: new construction in office, assembly, education, retail, food, lodging and warehouse construction as defined by Dodge building type, using energy savings from the PNNL... Office (SECO), 2007, available at: http://www.seco.cpa.state.tx.us/ USDOE 2005. Analysis of Texas Code Adoption Analysis: Lighting Requirement, Pacific Northwest National Laboratory (PNNL), U.S.D.O.E., Washington, D.C. 9 Table 1: Final...

  9. Experimental and numerical analysis of isothermal turbulent flows in interacting low NOx burners in coal-fired furnaces 

    E-Print Network [OSTI]

    Cvoro, Valentina

    Coal firing power stations represent the second largest source of global NOx emissions. The current practice of predicting likely exit NOx levels from multi-burner furnaces on the basis of single burner test rig data has been proven inadequate...

  10. Nitrogen Isotopes as Indicators of NOx Source Contributions to

    E-Print Network [OSTI]

    Elliott, Emily M.

    of NOx are dominated by fossilfuelcombustion(63%)frombothstationary(e.g.,power plant electricity andassociatedatmosphericdepositionofnitrate(NO3 - )pose threats to global ecosystems and human health (2, 3). Contemporary global emissions

  11. Enhanced Combustion Low NOx Pulverized Coal Burner

    SciTech Connect (OSTI)

    David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

    2007-06-30T23:59:59.000Z

    For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for economic evaluation and commercial application. During the project performance period, Alstom performed computational fluid dynamics (CFD) modeling and large pilot scale combustion testing in its Industrial Scale Burner Facility (ISBF) at its U.S. Power Plant Laboratories facility in Windsor, Connecticut in support of these objectives. The NOx reduction approach was to optimize near-field combustion to ensure that minimum NOx emissions are achieved with minimal impact on unburned carbon in ash, slagging and fouling, corrosion, and flame stability/turn-down. Several iterations of CFD and combustion testing on a Midwest coal led to an optimized design, which was extensively combustion tested on a range of coals. The data from these tests were then used to validate system costs and benefits versus SCR. Three coals were evaluated during the bench-scale and large pilot-scale testing tasks. The three coals ranged from a very reactive subbituminous coal to a moderately reactive Western bituminous coal to a much less reactive Midwest bituminous coal. Bench-scale testing was comprised of standard ASTM properties evaluation, plus more detailed characterization of fuel properties through drop tube furnace testing and thermogravimetric analysis. Bench-scale characterization of the three test coals showed that both NOx emissions and combustion performance are a strong function of coal properties. The more reactive coals evolved more of their fuel bound nitrogen in the substoichiometric main burner zone than less reactive coal, resulting in the potential for lower NOx emissions. From a combustion point of view, the more reactive coals also showed lower carbon in ash and CO values than the less reactive coal at any given main burner zone stoichiometry. According to bench-scale results, the subbituminous coal was found to be the most amenable to both low NOx, and acceptably low combustibles in the flue gas, in an air staged low NOx system. The Midwest bituminous coal, by contrast, was predicted to be the most challenging of the three coals, with the Western bituminous coal predicted to beh

  12. Nitrogen oxides emission control through reburning with biomass in coal-fired power plants 

    E-Print Network [OSTI]

    Arumugam, Senthilvasan

    2005-02-17T23:59:59.000Z

    Oxides of nitrogen from coal-fired power stations are considered to be major pollutants, and there is increasing concern for regulating air quality and offsetting the emissions generated from the use of energy. Reburning ...

  13. Process Modeling of Global Soil Nitrous Oxide Emissions

    E-Print Network [OSTI]

    Saikawa, E.

    2011-09-01T23:59:59.000Z

    Nitrous oxide is an important greenhouse gas and is a major ozone-depleting substance. To understand and

  14. Tier 2 Useful Life (120,000 miles) Exhaust Emission Results for a NOx Adsorber and Diesel Particle Filter Equipped Light-Duty Diesel Vehicle

    SciTech Connect (OSTI)

    Tatur, M.; Tomazic, D.; Thornton, M.; Orban, J.; Slone, E.

    2006-05-01T23:59:59.000Z

    Investigates the emission control system performance and system desulfurization effects on regulated and unregulated emissions in a light-duty diesel engine.

  15. Kudzu (Pueraria montana) invasion doubles emissions of nitric oxide and increases ozone pollution

    E-Print Network [OSTI]

    Mickley, Loretta J.

    Kudzu (Pueraria montana) invasion doubles emissions of nitric oxide and increases ozone pollution) The nitrogen-fixing legume kudzu (Pueraria montana) is a wide- spread invasive plant in the southeastern United the effects of kudzu invasions on soils and trace N gas emissions at three sites in Madison County, Georgia

  16. NOx reduction through combustion optimization at PEPCO`s Potomac River Station

    SciTech Connect (OSTI)

    Cramer, D.S.; Williams, S.E.; Watkins, J.T. [Potomac Electric Power Company, Upper Marlboro, MD (United States)] [and others

    1995-06-01T23:59:59.000Z

    This paper describes the work done under EPRI Project RP 3383 at Potomac River Station to reduce NOx emissions by adjusting boiler controls. it details the method followed by PEPCO and Lehigh engineers to achieve a 35% reduction in average NOx emissions over a one-month extended test. Parameters that had the largest effect on NOx are discussed. A description of instruments installed to better monitor and control combustion is included.

  17. Investigation of Mixed Oxide Catalysts for NO Oxidation

    SciTech Connect (OSTI)

    Szanyi, Janos; Karim, Ayman M.; Pederson, Larry R.; Kwak, Ja Hun; Mei, Donghai; Tran, Diana N.; Herling, Darrell R.; Muntean, George G.; Peden, Charles HF; Howden, Ken; Qi, Gongshin; Li, Wei

    2014-12-09T23:59:59.000Z

    The oxidation of engine-generated NO to NO2 is an important step in the reduction of NOx in lean engine exhaust because NO2 is required for the performance of the LNT technology [2], and it enhances the activities of ammonia selective catalytic reduction (SCR) catalysts [1]. In particular, for SCR catalysts an NO:NO2 ratio of 1:1 is most effective for NOx reduction, whereas for LNT catalysts, NO must be oxidized to NO2 before adsorption on the storage components. However, NO2 typically constitutes less than 10% of NOx in lean exhaust, so catalytic oxidation of NO is essential. Platinum has been found to be especially active for NO oxidation, and is widely used in DOC and LNT catalysts. However, because of the high cost and poor thermal durability of Pt-based catalysts, there is substantial interest in the development of alternatives. The objective of this project, in collaboration with partner General Motors, is to develop mixed metal oxide catalysts for NO oxidation, enabling lower precious metal usage in emission control systems. [1] M. Koebel, G. Madia, and M. Elsener, Catalysis Today 73, 239 (2002). [2] C. H. Kim, G. S. Qi, K. Dahlberg, and W. Li, Science 327, 1624 (2010).

  18. CLEERS Activities: Diesel Soot Filter Characterization & NOx...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Activities: Diesel Soot Filter Characterization & NOx Control Fundamentals CLEERS Activities: Diesel Soot Filter Characterization & NOx Control Fundamentals 2009 DOE Hydrogen...

  19. Persistent sensitivity of Asian aerosol to emissions of nitrogen oxides

    E-Print Network [OSTI]

    Kharol, S. K.

    We use a chemical transport model and its adjoint to examine the sensitivity of secondary inorganic aerosol formation to emissions of precursor trace gases from Asia. Sensitivity simulations indicate that secondary inorganic ...

  20. Aeroderivative Gas Turbines Can Meet Stringent NOx Control Requirements

    E-Print Network [OSTI]

    Keller, S. C.; Studniarz, J. J.

    AERODERIVATIVE GAS TURBINES CAN MEET STRINGENT NOx CONTROL REQUIREMENTS S. C. Keller, Manager Cogeneration Sales & Market Development General Electric Company Marine & Industrial Engines Cincinnati, Ohio ABSTRACT Gas Turbines operating... in the United States are required to meet federally mandated emission standards. This article will discuss how General Electric's 1M industrial aeroderivative gas turbines are meeting NOx requirements as low as 25 parts per ~tllion usi-ng steam injection...

  1. HYDROGEN GENERATION FROM PLASMATRON REFORMERS: A PROMISING TECHNOLOGY FOR NOX ADSORBER REGENERATION AND OTHER AUTOMOTIVE APPLICATIONS

    SciTech Connect (OSTI)

    Bromberg, L.; Crane, S; Rabinovich, A.; Kong, Y; Cohn, D; Heywood, J; Alexeev, N.; Samokhin, A.

    2003-08-24T23:59:59.000Z

    Plasmatron reformers are being developed at MIT and ArvinMeritor [1]. In these reformers a special low power electrical discharge is used to promote partial oxidation conversion of hydrocarbon fuels into hydrogen and CO. The partial oxidation reaction of this very fuel rich mixture is difficult to initiate. The plasmatron provides continuous enhanced volume initiation. To minimize electrode erosion and electrical power requirements, a low current, high voltage discharge with wide area electrodes is used. The reformers operate at or slightly above atmospheric pressure. Plasmatron reformers provide the advantages of rapid startup and transient response; efficient conversion of the fuel to hydrogen rich gas; compact size; relaxation or elimination of reformer catalyst requirements; and capability to process difficult to reform fuels, such as diesel and bio-oils. These advantages facilitate use of onboard hydrogen-generation technology for diesel exhaust after-treatment. Plasma-enhanced reformer technology can provide substantial conversion even without the use of a catalyst. Recent progress includes a substantial decrease in electrical power consumption (to about 200 W), increased flow rate (above 1 g/s of diesel fuel corresponding to approximately 40 kW of chemical energy), soot suppression and improvements in other operational features.. Plasmatron reformer technology has been evaluated for regeneration of NOx adsorber after-treatment systems. At ArvinMeritor tests were performed on a dual-leg NOx adsorber system using a Cummins 8.3L diesel engine both in a test cell and on a vehicle. A NOx adsorber system was tested using the plasmatron reformer as a regenerator and without the reformer i.e., with straight diesel fuel based regeneration as the baseline case. The plasmatron reformer was shown to improve NOx regeneration significantly compared to the baseline diesel case. The net result of these initial tests was a significant decrease in fuel penalty, roughly 50% at moderate adsorber temperatures. This fuel penalty improvement is accompanied by a dramatic drop in slipped hydrocarbon emissions, which decreased by 90% or more. Significant advantages are demonstrated across a wide range of engine conditions and temperatures. The study also indicated the potential to regenerate NOx adsorbers at low temperatures where diesel fuel based regeneration is not effective, such as those typical of idle conditions. Two vehicles, a bus and a light duty truck, have been equipped for plasmatron reformer NOx adsorber regeneration tests.

  2. Advanced Petroleum-Based Fuels - Diesel Emissions Project (APBF-DEC): 2,000-Hour Performance of a NOx Adsorber Catalyst and Diesel Particle Filter System for a Medium-Duty, Pick-Up Diesel Engine Platform; Final Report

    SciTech Connect (OSTI)

    Not Available

    2007-03-01T23:59:59.000Z

    Presents the results of a 2,000-hour test of an emissions control system consisting of a nitrogen oxides adsorber catalyst in combination with a diesel particle filter, advanced fuels, and advanced engine controls in an SUV/pick-up truck vehicle platform.

  3. Regional-Scale Assessment of Nitrous Oxide Emissions within the US Corn Belt: The Impact of Precipitation and Agricultural Drainage on Indirect Emissions

    E-Print Network [OSTI]

    Minnesota, University of

    Regional-Scale Assessment of Nitrous Oxide Emissions within the US Corn Belt: The Impact of Precipitation and Agricultural Drainage on Indirect Emissions Tim Griffis1, Xuhui Lee2, John Baker3, Peter, but mitigation strategies have been limited by the large uncertainties in both direct and indirect emission

  4. 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report second quarter, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-12-31T23:59:59.000Z

    ABB CE`s Low NOx Bulk Furnace Staging (LNBFS) System and Low NOx Concentric Firing System (LNCFS) are demonstrated in stepwise fashion. These systems incorporate the concept of advanced overfire air (AOFA), clustered coal nozzles, and offset air. A complete description of the installed technologies is provided in the following section. The primary objective of the Plant Lansing Smith demonstration is to determine the long-term effects of commercially available tangentially-fired low NOx combustion technologies on NOx emissions and boiler performance. Short-term tests of each technology are also being performed to provide engineering information about emissions and performance trends. A target of achieving fifty percent NOx reduction using combustion modifications has been established for the project.

  5. ESTIMATING METHANE EMISSION AND OXIDATION FROM TWO TEMPORARY

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    layer waste gas composition were measured on two French MBT plants with aerobic pre-treatment process using old municipal solid waste material (Huber-Humer & al, 2007, 2008). Another result of these studies amount of fugitive methane emissions for landfills without waste pre-treatment (Tarimini & al, 2003

  6. CARBON SEQUESTRATION IN ARABLE SOILS IS LIKELY TO INCREASE NITROUS OXIDE EMISSIONS, OFFSETTING

    E-Print Network [OSTI]

    CARBON SEQUESTRATION IN ARABLE SOILS IS LIKELY TO INCREASE NITROUS OXIDE EMISSIONS, OFFSETTING in strategies for climate protection. 1. Introduction Carbon sequestration has been highlighted recently concentration of carbon dioxide (CO2) in the atmo- sphere include sequestering carbon (C) in soils

  7. EMISSIONS OF NITROUS OXIDE AND METHANE FROM CONVENTIONAL AND ALTERNATIVE FUEL MOTOR VEHICLES

    E-Print Network [OSTI]

    Kammen, Daniel M.

    EMISSIONS OF NITROUS OXIDE AND METHANE FROM CONVENTIONAL AND ALTERNATIVE FUEL MOTOR VEHICLES fuel passenger cars, light-duty trucks, and heavy-duty vehicles. 1. Introduction The use of energy/electric hybrid and fuel cell/electric hybrid drivetrain technologies offers the potential for significant

  8. Achieving New Source Performance Standards (NSPS) Emission Standards Through Integration of Low-NOx Burners with an Optimization Plan for Boiler Combustion

    SciTech Connect (OSTI)

    Wayne Penrod

    2006-12-31T23:59:59.000Z

    The objective of this project was to demonstrate the use of an Integrated Combustion Optimization System to achieve NO{sub X} emission levels in the range of 0.15 to 0.22 lb/MMBtu while simultaneously enabling increased power output. The project plan consisted of the integration of low-NO{sub X} burners and advanced overfire air technology with various process measurement and control devices on the Holcomb Station Unit 1 boiler. The plan included the use of sophisticated neural networks or other artificial intelligence technologies and complex software to optimize several operating parameters, including NO{sub X} emissions, boiler efficiency, and CO emissions. The program was set up in three phases. In Phase I, the boiler was equipped with sensors that can be used to monitor furnace conditions and coal flow to permit improvements in boiler operation. In Phase II, the boiler was equipped with burner modifications designed to reduce NO{sub X} emissions and automated coal flow dampers to permit on-line fuel balancing. In Phase III, the boiler was to be equipped with an overfire air system to permit deep reductions in NO{sub X} emissions. Integration of the overfire air system with the improvements made in Phases I and II would permit optimization of boiler performance, output, and emissions. This report summarizes the overall results from Phases I and II of the project. A significant amount of data was collected from the combustion sensors, coal flow monitoring equipment, and other existing boiler instrumentation to monitor performance of the burner modifications and the coal flow balancing equipment.

  9. Methane Oxidation to Methanol without CO2 Emission: Catalysis by Atomic Negative Ions

    E-Print Network [OSTI]

    Tesfamichael, Aron; Felfli, Zineb; Msezane, Alfred Z

    2014-01-01T23:59:59.000Z

    The catalytic activities of the atomic Y-, Ru-, At-, In-, Pd-, Ag-, Pt-, and Os- ions have been investigated theoretically using the atomic Au- ion as the benchmark for the selective partial oxidation of methane to methanol without CO2 emission. Dispersion-corrected density-functional theory has been used for the investigation. From the energy barrier calculations and the thermodynamics of the reactions, we conclude that the catalytic effect of the atomic Ag-, At-, Ru-, and Os- ions is higher than that of the atomic Au- ion catalysis of CH4 conversion to methanol. By controlling the temperature around 290K (Os-), 300K (Ag-), 310K (At-), 320K (Ru-) and 325K (Au-) methane can be completely oxidized to methanol without the emission of CO2. We conclude by recommending the investigation of the catalytic activities of combinations of the above negative ions for significant enhancement of the selective partial oxidation of methane to methanol.

  10. TITLE: Emissions of Nitrous Oxide from Three Different Turfgrass Species and from Perennial Ryegrass under Different Irrigation Regimes

    E-Print Network [OSTI]

    80 TITLE: Emissions of Nitrous Oxide from Three Different Turfgrass Species and from Perennial). effects of irrigation on N2 O emissions from perennial ryegrass AUTHOR: Jason Lewis and Dale Bremer and frequencies, and irrigated with different amounts of water, all of which may affect N2 O emissions

  11. Inverse modeling of emissions for local photo-oxidant pollution : Testing a new methodology with kriging constraints

    E-Print Network [OSTI]

    Menut, Laurent

    Inverse modeling of emissions for local photo-oxidant pollution : Testing a new methodology. Abstract For chemistry-transport models operating at regional scales, surface emissions are the input data a methodology to optimize surface emissions at local scale i.e. to compute correction factors for the available

  12. NOx emissions retrofit at Reliant Energy, W.A. Parish Generating Station, Unit 7: Achieving 0.15 lb/MBtu

    SciTech Connect (OSTI)

    Gessner, T.M.; Hoh, R.H.; Ray, B.; Dorazio, T.; Jennings, P.; Sikorski, K.

    1999-07-01T23:59:59.000Z

    The current Clean Air Act (CAA), Title 1 regulations require States to develop implementation plans (SIPs) which address NO{sub x} emissions as part of the ozone non-attainment requirements. The EPA has recommended NO{sub x} limits of 0.15 lb/MBtu for utility boilers. In this paper, Reliant Energy and ABB C-E Services, Inc. will discuss a project where 0.15 lb NO{sub x}/MBtu can be achieved with the TFS 2000{trademark} R firing system and highly reactive Powder River Basin (PRB) fuels. Reliant Energy will retrofit their W.A. Parish Unit 7 with this system in the first quarter of 1999. This is part of Reliant Energy's drive to lower NO{sub x} emissions and meet future air quality requirements at the W.Q. Parish station.

  13. A Methodology For Calculating Integrated NOx Emissions Reductions from Energy Efficiency and Renewable Energy (EE/RE) Programs Across State Agencies in Texas

    E-Print Network [OSTI]

    Haberl, J. S.; Liu, Z.; Baltazar, J. C.; Mukopadhyay. J; Marshall, K.; Gilman, D.; Culp, C.; Yazdani, B.; Montgomery, C.; McKelvy, K.; Reid, V.

    2010-01-01T23:59:59.000Z

    . Analysis of Texas Code Adoption Analysis: Lighting Requirment, Pacific Northwest National Laboratory (PNNL), U.S.D.O.E., Washington, D.C. Bryant, J., Degelman, L., Turner, D. 2004. ?Energy Efficiency/Renewable Energy Impact in the Texas Emissions... of Texas Code Adoption Analysis: Lighting Requirment, Pacific Northwest National Laboratory (PNNL), U.S.D.O.E., Washington, D.C. ESL-IC-10-10-58 Proceedings of the Tenth International Conference for Enhanced Building Operations, Kuwait, October 26...

  14. NOx Abatement Research and Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Work * Identify factors limiting NOx conversion during low temperature operation with CO and hydrocarbon (HC) reductants - Goal is to improve the effectiveness and efficiency of...

  15. Vehicle Technologies Office Merit Review 2015: Cummins-ORNL\\FEERC Emissions CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines, Self-Diagnosing SmartCatalyst Systems

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about NOx control ...

  16. Measurement and Characterization of NOx Adsorber Regeneration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NOx Adsorber Regeneration and Desulfation Measurement and Characterization of NOx Adsorber Regeneration and Desulfation 2003 DEER Conference Presentation: Oak Ridge National...

  17. Time and location differentiated NOX control in competitive electricity markets using cap-and-trade mechanisms

    E-Print Network [OSTI]

    Martin, Katherine C.

    2007-01-01T23:59:59.000Z

    Due to variations in weather and atmospheric chemistry, the timing and location of nitrogen oxide (NOX) reductions determine their effectiveness in reducing ground-level ozone, which adversely impacts human health. Electric ...

  18. Climate Co-benefits of Tighter SO2 and NOx Regulations in China

    E-Print Network [OSTI]

    Nam, Kyung-Min

    2012-10-01T23:59:59.000Z

    Air pollution has been recognized as a significant problem in China. In its Twelfth Five Year Plan (FYP), China proposes to reduce SO2 and NOx emissions significantly, and here we investigate the cost of achieving those ...

  19. Demonstration of a Low-NOx Heavy-Duty Natural Gas Engine

    SciTech Connect (OSTI)

    Not Available

    2004-02-01T23:59:59.000Z

    Results of a Next Generation Natural Gas Vehicle engine research project: A Caterpillar C-12 natural gas engine with Clean Air Power Dual-Fuel technology and exhaust gas recirculation demonstrated low NOx and PM emissions.

  20. Development of METHANE de-NOX Reburn Process for Wood Waste and Biomass Fired Stoker Boilers - Final Report - METHANE de-NOX Reburn Technology Manual

    SciTech Connect (OSTI)

    J. Rabovitser; B. Bryan; S. Wohadlo; S. Nester; J. Vaught; M. Tartan (Gas Technology Institute); R. Glickert (ESA Environmental Solutions)

    2007-12-31T23:59:59.000Z

    The overall objective of this project was to demonstrate the effectiveness of the METHANE de-NOX® (MdN) Reburn process in the Forest Products Industry (FPI) to provide more efficient use of wood and sludge waste (biosolids) combustion for both energy generation and emissions reduction (specifically from nitrogen oxides (NOx)) and to promote the transfer of the technology to the wide range of wood waste-fired stoker boilers populating the FPI. This document, MdN Reburn Commercial Technology Manual, was prepared to be a resource to promote technology transfer and commercialization activities of MdN in the industry and to assist potential users understand its application and installation requirements. The Manual includes a compilation of MdN commercial design data from four different stoker boiler designs that were baseline tested as part of the development effort. Design information in the Manual include boiler CFD model studies, process design protocols, engineering data sheets and commercial installation drawings. Each design package is unique and implemented in a manner to meet specific mill requirements.

  1. Leadership in Low NOx/ Lochinvar Corporation

    E-Print Network [OSTI]

    Sheko, D.; Boston, S.; Moore, J.

    , Texas Nashville, Tennessee On April 19, 2000, the Texas Natural Resource Conservation Commission adopted statewide NOx emission limits for all natural gas-fired water heaters, boilers and process heaters with input rates of 2 million Btu/hr or less... for the purposes of generating efficient boilers, and process heaters having a BTU rating of up and environmentally friendly hot water production. to 2,000,000 BTU/hour within the state of Texas. Some readers of this paper may already be aware It's not everyday...

  2. Cold-Start Emissions Control in Hybrid Vehicles Equipped with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Control in Hybrid Vehicles Equipped with a Passive Adsorber for Hydrocarbons and NOx Cold-Start Emissions Control in Hybrid Vehicles Equipped with a Passive Adsorber for...

  3. Analytical Framework to Evaluate Emission Control Systems for Marine Engines

    E-Print Network [OSTI]

    Jayaram, Varalakshmi

    2010-01-01T23:59:59.000Z

    Ignition Engine Fueled with Biodiesel Blends. Society ofRegulated emissions from biodiesel fuels from on/ off-roadEffects of Methyl Ester Biodiesel Blends on NOx Emissions.

  4. Performance of Johnson Matthey EGRT? Emission Control System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Performance of Johnson Matthey EGRT Emission Control System for NOx and PM Emission Reduction in Retrofit Applications Part 1 2002 DEER Conference Presentation: Johnson Matthey...

  5. Performance of Johnson Matthey EGRT? Emission Control System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Performance of Johnson Matthey EGRT Emission Control System for NOx and PM Emission Reduction in Retrofit Applications Part 2 2002 DEER Conference Presentation: Johnson Matthey...

  6. DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN CO-FIRING BIOMASS WITH COAL

    SciTech Connect (OSTI)

    Larry G. Felix; P. Vann Bush

    2002-07-01T23:59:59.000Z

    This is the seventh Quarterly Technical Report for DOE Cooperative Agreement No. DE-FC26-00NT40895. A statement of the project objectives is included in the Introduction of this report. Two additional biomass co-firing test burns were conducted during this quarter. In the first test (Test 12), up to 20% by weight dry hardwood sawdust and switchgrass was comilled with Galatia coal and injected through the single-register burner. Liquid ammonia was intermittently added to the primary air stream to increase fuel-bound nitrogen and simulate cofiring with chicken litter. Galatia coal is a medium-sulfur ({approx} 1.2% S), high chlorine ({approx}0.5%) Illinois Basin coal. In the second test (Test 13), up to 20% by weight dry hardwood sawdust and switchgrass was comilled with Jim Walters No.7 mine coal and injected through the single-register burner. Jim Walters No.7 coal is a low-volatility, low-sulfur ({approx} 0.7% S) Eastern bituminous coal. The results of these tests are presented in this quarterly report. Progress has continued to be made in implementing a modeling approach to combine reaction times and temperature distributions from computational fluid dynamic models of the pilot-scale combustion furnace with char burnout and chemical reaction kinetics to predict NO{sub x} emissions and unburned carbon levels in the furnace exhaust. The Configurable Fireside Simulator has been delivered from REI, Inc. and is being tested with exiting CFD solutions. Preparations are under way for a final pilot-scale combustion experiment using the single-register burner fired with comilled mixtures of Jim Walters No.7 low-volatility bituminous coal and switchgrass. Because of the delayed delivery of the Configurable Fireside Simulator, it is planned to ask for a no-cost time extension for the project until the end of this calendar year. Finally, a paper describing this project that included preliminary results from the first four cofiring tests was presented at the 12th European Conference and Technology Exhibition on Biomass for Energy, Industry and Climate Protection in Amsterdam, The Netherlands, in June, 2002.

  7. Exhaust-gas recirculation for retrofit NOx control on natural gas engines. Topical report, January-April 1988

    SciTech Connect (OSTI)

    Urban, C.M.

    1989-01-01T23:59:59.000Z

    Data on exhaust-gas recirculation obtained from Tenneco Gas Transportation Company were reviewed and analyzed, and a basic EGR system design and cost estimate were developed. EGR can provide practical NOx reductions of up to 50% in 2-cycle natural gas engines. The amount of NO reduction achievable is dependent on the initial baseline NOx emissions of the engine. On the basis of NOx reduction per unit of costs, EGR was found to be more cost effective than selective catalytic reduction. EGR is considered to provide a practical retrofit NOx control method in applications where the level of NOx control achievable with EGR meet regulatory requirements. One specific application is emissions offset to enable installation of additional engine horsepower. Also, EGR could become the primary NOx control method for any regulation in which costs are a major consideration.

  8. Characterizing the In-Use Emissions Performance of Novel PM and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the In-Use Emissions Performance of Novel PM and NOx Control Technologies on Diesel Construction Equipment Characterizing the In-Use Emissions Performance of Novel PM and NOx...

  9. Clean coal technology: selective catalytic reduction (SCR) technology for the control of nitrogen oxide emissions from coal-fired boilers

    SciTech Connect (OSTI)

    NONE

    2005-05-01T23:59:59.000Z

    The report discusses a project carried out under the US Clean Coal Technology (CCT) Demonstration Program which demonstrated selective catalytic reduction (SCR) technology for the control of NOx emissions from high-sulphur coal-fired boilers under typical boilers conditions in the United States. The project was conducted by Southern Company Services, Inc., who served as a co-funder and as the host at Gulf Power Company's Plant Crist. The SCR process consists of injecting ammonia (NH{sub 3}) into boiler flue gas and passing the flue gas through a catalyst bed where the Nox and NH{sub 3} react to form nitrogen and water vapor. The results of the CCTDP project confirmed the applicability of SCR for US coal-fired power plants. In part as a result of the success of this project, a significant number of commercial SCR units have been installed and are operating successfully in the United States. By 2007, the total installed SCR capacity on US coal-fired units will number about 200, representing about 100,000 MWe of electric generating capacity. This report summarizes the status of SCR technology. 21 refs., 3 figs., 2 tabs., 10 photos.

  10. Ultra-Low NOx Advanced Vortex Combustor

    SciTech Connect (OSTI)

    Edmonds, R.G. (Ramgen Power Systems, Inc., Bellevue, WA); Steele, R.C. (Ramgen Power Systems, Inc., Bellevue, WA); Williams, J.T. (Ramgen Power Systems, Inc., Bellevue, WA); Straub, D.L.; Casleton, K.H.; Bining, Avtar (California Energy Commission, Sacramento, CA)

    2006-05-01T23:59:59.000Z

    An ultra lean-premixed Advanced Vortex Combustor (AVC) has been developed and tested. The natural gas fueled AVC was tested at the U.S. Department of Energy’s National Energy Technology Laboratory (USDOE NETL) test facility in Morgantown (WV). All testing was performed at elevated pressures and inlet temperatures and at lean fuel-air ratios representative of industrial gas turbines. The improved AVC design exhibited simultaneous NOx/CO/UHC emissions of 4/4/0 ppmv (all emissions are at 15% O2 dry). The design also achieved less than 3 ppmv NOx with combustion efficiencies in excess of 99.5%. The design demonstrated tremendous acoustic dynamic stability over a wide range of operating conditions which potentially makes this approach significantly more attractive than other lean premixed combustion approaches. In addition, a pressure drop of 1.75% was measured which is significantly lower than conventional gas turbine combustors. Potentially, this lower pressure drop characteristic of the AVC concept translates into overall gas turbine cycle efficiency improvements of up to one full percentage point. The relatively high velocities and low pressure drops achievable with this technology make the AVC approach an attractive alternative for syngas fuel applications.

  11. ULTRA-LOW NOX ADVANCED VORTEX COMBUSTOR

    SciTech Connect (OSTI)

    Ryan G. Edmonds; Robert C. Steele; Joseph T. Williams; Douglas L. Straub; Kent H. Casleton; Avtar Bining

    2006-05-01T23:59:59.000Z

    An ultra lean-premixed Advanced Vortex Combustor (AVC) has been developed and tested. The natural gas fueled AVC was tested at the U.S. Department of Energy’s National Energy Technology Laboratory (USDOE NETL) test facility in Morgantown (WV). All testing was performed at elevated pressures and inlet temperatures and at lean fuel-air ratios representative of industrial gas turbines. The improved AVC design exhibited simultaneous NOx/CO/UHC emissions of 4/4/0 ppmv (all emissions are at 15% O2 dry). The design also achieved less than 3 ppmv NOx with combustion efficiencies in excess of 99.5%. The design demonstrated tremendous acoustic dynamic stability over a wide range of operating conditions which potentially makes this approach significantly more attractive than other lean premixed combustion approaches. In addition, a pressure drop of 1.75% was measured which is significantly lower than conventional gas turbine combustors. Potentially, this lower pressure drop characteristic of the AVC concept translates into overall gas turbine cycle efficiency improvements of up to one full percentage point. The relatively high velocities and low pressure drops achievable with this technology make the AVC approach an attractive alternative for syngas fuel applications.

  12. Effects of Canola Biodiesel on a DI Diesel Engine Performance and Emissions

    E-Print Network [OSTI]

    Murari Mohon Roy; Majed Alawi; Wilson Wang

    Abstract- A direct injection (DI) diesel engine is tested with different biodiesel-diesel blends, such as B0 (neat diesel), B5 (i.e., 5 vol. % biodiesel and 95 vol. % diesel), B10 (10 vol. % biodiesel), B20 (20 vol. % biodiesel), B50 (50 vol. % biodiesel), and B100 (neat biodiesel) for performance and emissions under different load conditions. Engine performance is examined by measuring brake specific fuel consumption (bsfc) and fuel conversion efficiency (? f). The emission of carbon monoxide (CO), hydrocarbon (HC), nitric oxide (NO), nitrogen dioxide (NO 2), nitrogen oxides (NOx), carbon dioxide (CO 2) and others are measured. Biodiesel shows a significant CO and HC reduction compared to diesel under low load operation; under high load operation, however, CO with biodiesel is increased a little and HC emissions are very similar to that with diesel. On the other hand, under low load operation, NOx emission with biodiesel is significantly increased than diesel; however, under high load operation, there is almost no change in NOx emissions with biodiesel and diesel. Index Term- Canola biodiesel, diesel engine, engine performance, exhaust emissions.

  13. MINIMIZING NET CO2 EMISSIONS BY OXIDATIVE CO-PYROLYSIS OF COAL / BIOMASS BLENDS

    SciTech Connect (OSTI)

    Todd Lang; Robert Hurt

    2001-12-23T23:59:59.000Z

    This study presents a set of thermodynamic calculations on the optimal mode of solid fuel utilization considering a wide range of fuel types and processing technologies. The technologies include stand-alone combustion, biomass/coal cofiring, oxidative pyrolysis, and straight carbonization with no energy recovery but with elemental carbon storage. The results show that the thermodynamically optimal way to process solid fuels depends strongly on the specific fuels and technologies available, the local demand for heat or for electricity, and the local baseline energy-production method. Burning renewable fuels reduces anthropogenic CO{sub 2} emissions as widely recognized. In certain cases, however, other processing methods are equally or more effective, including the simple carbonization or oxidative pyrolysis of biomass fuels.

  14. Development of ADECS to Meet 2010 Emission Levels: Optimization...

    Broader source: Energy.gov (indexed) [DOE]

    Development of ADECS to Meet 2010 Emission Levels: Optimization of NOx, NH3 and Fuel Consumption Using High and Low Engine-Out NOx Calibrations Development of ADECS to Meet 2010...

  15. The integration of low NOx control technologies at the Southern Energy, Inc. Birchwood Power Facility

    SciTech Connect (OSTI)

    Lauber, J.A. [Southern Energy, Inc. (United States); Cohen, M.B.; Donais, R.E. [ABB Combustion Engineering, Inc. (United States)

    1997-12-31T23:59:59.000Z

    The Southern Energy, Inc. (SEI) Birchwood Power Facility, a cogeneration unit, represents the first application worldwide of the TFS 2000{trademark} firing system and selective catalytic reduction (SCR). The installation of these state-of-the-art NOx control technologies was necessary to meet strict Commonwealth of Virginia environmental regulations requiring a 0.10 lbs/10{sup 6} Btu (0.043 g/MJ) NOx emission rate based upon a 30-day rolling average. The plant successfully completed all performance and emission testing on September 24, 1996. Commercial operation began November 14, 1996. Stack NOx emission rates are consistently maintained below 0.10 lbs/10{sup 6} Btu. The paper describes the integration of both in-furnace and post-combustion NOx control technologies into the overall boiler design. Operational data depicting boiler outlet NOx, stack NOx and loss on ignition (LOI) are presented across the design load range from 32% to 100% boiler output. The description, arrangement, design parameters and operation of the NOx control equipment are discussed. Novel design features include a split economizer, an air heater suitable for ammonia applications, Dynamic{trademark} classifiers, and a multi-zone secondary air flow control system utilized for the TFS 2000{trademark} firing system.

  16. Measurement and Characterization of Lean NOx Adsorber Regeneration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lean NOx Adsorber Regeneration and Desulfation and Controlling NOx from Multi-mode Measurement and Characterization of Lean NOx Adsorber Regeneration and Desulfation and...

  17. A methodology to evaluate energy savings and NOx emissions reductions from the adoption of the 2000 International Energy Conservation Code (IECC) to new residences in non-attainment and affected counties in Texas

    E-Print Network [OSTI]

    Im, Piljae

    2004-09-30T23:59:59.000Z

    ) as the state energy code. Since September 1, 2001, the 2000 IECC has been required for newly constructed single and multifamily houses in Texas. Therefore, this study develops and applies portions of a methodology to calculate the energy savings and NOx...

  18. Electrochemical NOx Sensor for Monitoring Diesel Emissions

    Broader source: Energy.gov (indexed) [DOE]

    advanced prototype built on an alumina substrate, provided by Ford, with an integrated heating element * Substrate packaged by U.S. automotive supplier into a commercial sensor...

  19. Electrochemical NOx Sensor for Monitoring Diesel Emissions

    Broader source: Energy.gov (indexed) [DOE]

    oil consumption by about 1.5 million barrels per day. * Advantages of diesel technology: - Provides exceptional fuel economy - Completely compatible with biodiesel...

  20. ZERO EMISSION POWER PLANTS USING SOLID OXIDE FUEL CELLS AND OXYGEN TRANSPORT MEMBRANES

    SciTech Connect (OSTI)

    G. Maxwell Christie; Troy M. Raybold

    2003-06-10T23:59:59.000Z

    Over 16,700 hours of operational experience was gained for the Oxygen Transport Membrane (OTM) elements of the proposed SOFC/OTM zero-emission power generation concept. It was repeatedly demonstrated that OTMs with no additional oxidation catalysts were able to completely oxidize the remaining depleted fuel in a simulated SOFC anode exhaust at an O{sub 2} flux that met initial targets. In such cases, neither residual CO nor H{sub 2} were detected to the limits of the gas chromatograph (<10 ppm). Dried OTM afterburner exhaust streams contained up to 99.5% CO{sub 2}. Oxygen flux through modified OTMs was double or even triple that of the standard OTMs used for the majority of testing purposes. Both the standard and modified membranes in laboratory-scale and demonstration-sized formats exhibited stable performance over extended periods (2300 to 3500 hours or 3 to 5 months). Reactor contaminants, were determined to negatively impact OTM performance stability. A method of preventing OTM performance degradation was developed and proven to be effective. Information concerning OTM and seal reliability over extended periods and through various chemical and thermal shocks and cycles was also obtained. These findings were used to develop several conceptual designs for pilot (10 kWe) and commercial-scale (250 kWe) SOFC/OTM zero emission power generation systems.

  1. Fundamental Study of the Oxidation Characteristics and Pollutant Emissions of Model Biodiesel Fuels

    SciTech Connect (OSTI)

    Feng, Q.; Wang, Y. L.; Egolfopoulos, Fokion N.; Tsotsis, T. T.

    2010-01-01T23:59:59.000Z

    In this study, the oxidation characteristics of biodiesel fuels are investigated with the goal of contributing toward the fundamental understanding of their combustion characteristics and evaluating the effect of using these alternative fuels on engine performance as well as on the environment. The focus of the study is on pure fatty acid methyl-esters (FAME,) that can serve as surrogate compounds for real biodiesels. The experiments are conducted in the stagnation-flow configuration, which allows for the systematic evaluation of fundamental combustion and emission characteristics. In this paper, the focus is primarily on the pollutant emission characteristics of two C{sub 4} FAMEs, namely, methyl-butanoate and methyl-crotonate, whose behavior is compared with that of n-butane and n-pentane. To provide insight into the mechanisms of pollutant formation for these fuels, the experimental data are compared with computed results using a model with consistent C{sub 1}?C{sub 4} oxidation and NO{sub x} formation kinetics.

  2. The effects of cycle-to-cycle variations on nitric oxide (NO) emissions for a spark-ignition engine: Numerical results 

    E-Print Network [OSTI]

    Villarroel, Milivoy

    2004-11-15T23:59:59.000Z

    The objectives of this study were to 1) determine the effects of cycle-to-cycle variations (ccv) on nitric oxide (NO) emissions, and 2) determine if the consideration of ccv affects the average NO emission as compared to ...

  3. Reducing nitrogen oxides emissions from the combustion of LCV gas staged firing

    E-Print Network [OSTI]

    Finch, Stanley Frank

    1986-01-01T23:59:59.000Z

    by fluidized bed gasification at temperatures below the 1090 K (1500 F) ash fusion temperatur es. Subsequent burning of the LCV gas r esulted in the same type of severe slagging, fouling, and cor r osion pr oblems as wer e encounter ed dur ing combustion... concentrations during fuel rich combustion, can also fix N2 to give CN and HCN (Fenimore, 1971), thus contributing to the amount of fixed nitrogen available for the fuel NOx path. NOx formed by this path, suggested by Fenimore (1971), is known as "prompt...

  4. Economics of pollution trading for SO{sub 2} and NOx

    SciTech Connect (OSTI)

    Dallas Burtraw; David A. Evans; Alan Krupnick; Karen Palmer; Russell Toth

    2005-03-15T23:59:59.000Z

    For years economists have urged policymakers to use market-based approaches such as cap-and-trade programs or emission taxes to control pollution. The sulphur dioxide (SO{sub 2}) allowance market created by Title IV of the 1990 US Clean Air Act Amendments represents the first real test of the wisdom of economists' advice. Subsequent urban and regional applications of NOx emission allowance trading took shape in the 1990s in the United States, culminating in a second large experiment in emission trading in the eastern United States that began in 2003. This paper provides an overview of the economic rationale for emission trading and a description of the major US programs for SO{sub 2} and nitrogen oxides. These programs are evaluated along measures of performance including cost savings, environmental integrity, and incentives for technological innovation. The authors offer lessons for the design of future programs including, most importantly, those reducing carbon dioxide. 128 refs., 1 fig., 1 tab.

  5. Emissivity of Candidate Materials for VHTR Applicationbs: Role of Oxidation and Surface Modification Treatments

    SciTech Connect (OSTI)

    Sridharan, Kumar; Allen, Todd; Anderson, Mark; Cao, Guoping; Kulcinski, Gerald

    2011-07-25T23:59:59.000Z

    The Generation IV (GEN IV) Nuclear Energy Systems Initiative was instituted by the Department of Energy (DOE) with the goal of researching and developing technologies and materials necessary for various types of future reactors. These GEN IV reactors will employ advanced fuel cycles, passive safety systems, and other innovative systems, leading to significant differences between these future reactors and current water-cooled reactors. The leading candidate for the Next Generation Nuclear Plant (NGNP) to be built at Idaho National Lab (INL) in the United States is the Very High Temperature Reactor (VHTR). Due to the high operating temperatures of the VHTR, the Reactor Pressure Vessel (RPV) will partially rely on heat transfer by radiation for cooling. Heat expulsion by radiation will become all the more important during high temperature excursions during off-normal accident scenarios. Radiant power is dictated by emissivity, a material property. The NGNP Materials Research and Development Program Plan [1] has identified emissivity and the effects of high temperature oxide formation on emissivity as an area of research towards the development of the VHTR.

  6. NOx reduction with the use of feedlot biomass as a reburn fuel

    E-Print Network [OSTI]

    Goughnour, Paul Gordon

    2009-05-15T23:59:59.000Z

    ash because the residence time for char burnout is reduced. [16] 9 Another relatively new NOx reduction technique, that only recently became feasible, uses oxygen and re-circulated exhaust gas as the oxidizer in the combustion zone. Enough exhaust... gas is re-circulated to achieve a near 20% oxygen level prior to combustion. This concentration of oxygen is required to maintain the temperature at an acceptable level. This type of combustion scheme has been reported to reduce NOx levels by 75...

  7. NOx Control for Utility Boiler OTR Compliance

    SciTech Connect (OSTI)

    Hamid Farzan

    2003-12-31T23:59:59.000Z

    Under sponsorship of the Department of Energy's National Energy Technology Laboratory (NETL), the Babcock and Wilcox Company (B and W), and Fuel Tech teamed together to investigate an integrated solution for NO{sub x} control. The system is comprised of B and W's DRB-4Z{trademark} ultra low-NO{sub x} pulverized coal (PC) burner technology and Fuel Tech's NOxOUT{reg_sign}, a urea-based selective non-catalytic reduction (SNCR) technology. Development of the low-NO{sub x} burner technology has been a focus in B and W's combustion program. The DRB-4Z{trademark} burner is B and W's newest low-NO{sub x} burner capable of achieving very low NO{sub x}. The burner is designed to reduce NO{sub x} by controlled mixing of the fuel and air. Based on data from several 500 to 600 MWe boilers firing PRB coal, NOx emissions levels of 0.15 to 0.20 lb/ 106 Btu have been achieved from the DRB-4Z{trademark} burners in combination with overfire air ports. Although NOx emissions from the DRB-4Z{trademark} burner are nearing the Ozone Transport Rule (OTR) level of 0.15 lb NO{sub x}/106 Btu, the utility boiler owners can still benefit from the addition of an SNCR and/or SCR system in order to comply with the stringent NO{sub x} emission levels facing them. Large-scale testing is planned in B and W's 100-million Btu/hr Clean Environment Development Facility (CEDF) that simulates the conditions of large coal-fired utility boilers. The objective of the project is to achieve a NO{sub x} level below 0.15 lb/106 Btu (with ammonia slip of less than 5 ppm) in the CEDF using PRB coal and B and W's DRB-4Z{trademark} low-NO{sub x} pulverized coal (PC) burner in combination with dual zone overfire air ports and Fuel Tech's NO{sub x}OUT{reg_sign}. During this period B and W prepared and submitted the project management plan and hazardous substance plan to DOE. The negotiation of a subcontract for Fuel Tech has been started.

  8. Emissions Reduction Impact of Renewables 

    E-Print Network [OSTI]

    Haberl, J. S.; Yazdani, B.; Culp, C.

    2012-01-01T23:59:59.000Z

    Systems Laboratory ? 2012 p. 9 Energy Systems Laboratory ? 2012 p. 10 Energy Systems Laboratory ? 2012 WIND PROJECTS IN TEXAS Completed, Announced, and Retired Wind Projects in Texas, as of December 2011 p. 11 Energy Systems Laboratory ? 2012... Laboratory ? 2012 p. 24 Energy Systems Laboratory ? 2012 p. 25 Energy Systems Laboratory ? 2012 NOx REDUCTIONS FROM WIND POWER New 2010 Annual eGrid for NOx Emissions West Zone North Zone Houston Zone South Zone Unit: lbs of NOx/MWh Unit: lbs...

  9. Air Quality Responses to Changes in Black Carbon and Nitrogen Oxide Emissions

    E-Print Network [OSTI]

    Millstein, Dev

    2009-01-01T23:59:59.000Z

    2005). Particulate emissions from construction activities.M. S. , (2000b). In-use emissions from heavy- duty dieseland nitrogen dioxide emissions from gasoline- and diesel-

  10. Evaluation of BOC'S Lotox Process for the Oxidation of Elemental Mercury in Flue Gas from a Coal-Fired Boiler

    SciTech Connect (OSTI)

    Khalid Omar

    2008-04-30T23:59:59.000Z

    Linde's Low Temperature Oxidation (LoTOx{trademark}) process has been demonstrated successfully to remove more than 90% of the NOx emitted from coal-fired boilers. Preliminary findings have shown that the LoTOx{trademark} process can be as effective for mercury emissions control as well. In the LoTOx{trademark} system, ozone is injected into a reaction duct, where NO and NO{sub 2} in the flue gas are selectively oxidized at relatively low temperatures and converted to higher nitrogen oxides, which are highly water soluble. Elemental mercury in the flue gas also reacts with ozone to form oxidized mercury, which unlike elemental mercury is water-soluble. Nitrogen oxides and oxidized mercury in the reaction duct and residual ozone, if any, are effectively removed in a wet scrubber. Thus, LoTOx{trademark} appears to be a viable technology for multi-pollutant emission control. To prove the feasibility of mercury oxidation with ozone in support of marketing LoTOx{trademark} for multi-pollutant emission control, Linde has performed a series of bench-scale tests with simulated flue gas streams. However, in order to enable Linde to evaluate the performance of the process with a flue gas stream that is more representative of a coal-fired boiler; one of Linde's bench-scale LoTOx{trademark} units was installed at WRI's combustion test facility (CTF), where a slipstream of flue gas from the CTF was treated. The degree of mercury and NOx oxidation taking place in the LoTOx{trademark} unit was quantified as a function of ozone injection rates, reactor temperatures, residence time, and ranks of coals. The overall conclusions from these tests are: (1) over 80% reduction in elemental mercury and over 90% reduction of NOx can be achieved with an O{sub 3}/NO{sub X} molar ratio of less than two, (2) in most of the cases, a lower reactor temperature is preferred over a higher temperature due to ozone dissociation, however, the combination of both low residence time and high temperature proved to be effective in the oxidation of both NOx and elemental mercury, and (3) higher residence time, lower temperature, and higher molar ratio of O{sub 3}/NOx contributed to the highest elemental mercury and NOx reductions.

  11. Heavy-duty diesel vehicle Nox? aftertreatment in 2010 : the infrastructure and compliance challenges of urea-SCR

    E-Print Network [OSTI]

    Bodek, Kristian M

    2008-01-01T23:59:59.000Z

    Increasingly stringent heavy-duty vehicle emission regulations are prompting the use of PM and NOx aftertreatment systems in the US, the EU and Japan. In the US, the EPA Highway Diesel Rule, which will be fully implemented ...

  12. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect (OSTI)

    David R. Thompson; Lawrence E. Bool; Jack C. Chen

    2001-04-01T23:59:59.000Z

    This quarterly technical progress report will summarize work accomplished for the Program through the fourth quarter January-March 2001 in the following task areas: Task 1 - Oxygen Enhanced Combustion, Task 2 - Oxygen Transport Membranes and Task 4 - Program Management. This report will also recap the results of the past year. The program is proceeding in accordance with the objectives for the first year. OTM material characterization was completed. 100% of commercial target flux was demonstrated with OTM disks. The design and assembly of Praxair's single tube high-pressure test facility was completed. The production of oxygen with a purity of better than 99.5% was demonstrated. Coal combustion testing was conducted at the University of Arizona. Modest oxygen enhancement resulted in NOx emissions reduction. The injector for oxygen enhanced coal based reburning was conducted at Praxair. Combustion modeling with Keystone boiler was completed. Pilot-scale combustion test furnace simulations continued this quarter.

  13. NOx Sensor Development

    SciTech Connect (OSTI)

    Woo, L Y; Glass, R S

    2009-10-27T23:59:59.000Z

    The objectives of this report are: (1) Develop an inexpensive, rapid-response, high-sensitivity and selective electrochemical sensor for oxides of nitrogen (NO{sub x}) for compression-ignition, direct-injection (CIDI) exhaust gas monitoring; (2) Explore and characterize novel, effective sensing methodologies based on impedance measurements; (3) Explore designs and manufacturing methods that could be compatible with mass fabrication; and (4) Collaborate with industry in order to (ultimately) transfer the technology to a supplier for commercialization.

  14. Neutron Emission Characteristics of Two Mixed-Oxide Fuels: Simulations and Initial Experiments

    SciTech Connect (OSTI)

    D. L. Chichester; S. A. Pozzi; J. L. Dolan; M. Flaska; J. T. Johnson; E. H. Seabury; E. M. Gantz

    2009-07-01T23:59:59.000Z

    Simulations and experiments have been carried out to investigate the neutron emission characteristics of two mixed-oxide (MOX) fuels at Idaho National Laboratory (INL). These activities are part of a project studying advanced instrumentation techniques in support of the U.S. Department of Energy's Fuel Cycle Research and Development program and it's Materials Protection, Accounting, and Control for Transmutation (MPACT) campaign. This analysis used the MCNP-PoliMi Monte Carlo simulation tool to determine the relative strength and energy spectra of the different neutron source terms within these fuels, and then used this data to simulate the detection and measurement of these emissions using an array of liquid scintillator neutron spectrometers. These calculations accounted for neutrons generated from the spontaneous fission of the actinides in the MOX fuel as well as neutrons created via (alpha,n) reactions with oxygen in the MOX fuel. The analysis was carried out to allow for characterization of both neutron energy as well as neutron coincidences between multiple detectors. Coincidences between prompt gamma rays and neutrons were also analyzed. Experiments were performed at INL with the same materials used in the simulations to benchmark and begin validation tests of the simulations. Data was collected in these experiments using an array of four liquid scintillators and a high-speed waveform digitizer. Advanced digital pulse-shape discrimination algorithms were developed and used to collect this data. Results of the simulation and modeling studies are presented together with preliminary results from the experimental campaign.

  15. Ultra Low NOx Catalytic Combustion for IGCC Power Plants

    SciTech Connect (OSTI)

    Shahrokh Etemad; Benjamin Baird; Sandeep Alavandi; William Pfefferle

    2008-03-31T23:59:59.000Z

    In order to meet DOE's goals of developing low-emissions coal-based power systems, PCI has further developed and adapted it's Rich-Catalytic Lean-burn (RCL{reg_sign}) catalytic reactor to a combustion system operating on syngas as a fuel. The technology offers ultra-low emissions without the cost of exhaust after-treatment, with high efficiency (avoidance of after-treatment losses and reduced diluent requirements), and with catalytically stabilized combustion which extends the lower Btu limit for syngas operation. Tests were performed in PCI's sub-scale high-pressure (10 atm) test rig, using a two-stage (catalytic then gas-phase) combustion process for syngas fuel. In this process, the first stage consists of a fuel-rich mixture reacting on a catalyst with final and excess combustion air used to cool the catalyst. The second stage is a gas-phase combustor, where the air used for cooling the catalyst mixes with the catalytic reactor effluent to provide for final gas-phase burnout and dilution to fuel-lean combustion products. During testing, operating with a simulated Tampa Electric's Polk Power Station syngas, the NOx emissions program goal of less than 0.03 lbs/MMBtu (6 ppm at 15% O{sub 2}) was met. NOx emissions were generally near 0.01 lbs/MMBtu (2 ppm at 15% O{sub 2}) (PCI's target) over a range on engine firing temperatures. In addition, low emissions were shown for alternative fuels including high hydrogen content refinery fuel gas and low BTU content Blast Furnace Gas (BFG). For the refinery fuel gas increased resistance to combustor flashback was achieved through preferential consumption of hydrogen in the catalytic bed. In the case of BFG, stable combustion for fuels as low as 88 BTU/ft{sup 3} was established and maintained without the need for using co-firing. This was achieved based on the upstream catalytic reaction delivering a hotter (and thus more reactive) product to the flame zone. The PCI catalytic reactor was also shown to be active in ammonia reduction in fuel allowing potential reductions in the burner NOx production. These reductions of NOx emissions and expanded alternative fuel capability make the rich catalytic combustor uniquely situated to provide reductions in capital costs through elimination of requirements for SCR, operating costs through reduction in need for NOx abating dilution, SCR operating costs, and need for co-firing fuels allowing use of lower value but more available fuels, and efficiency of an engine through reduction in dilution flows.

  16. Acoustic emission analysis on tensile failure of steam-side oxide scales formed on T22 alloy superheater tubes

    SciTech Connect (OSTI)

    Huang, Jun-Lin; Zhou, Ke-Yi, E-mail: boiler@seu.edu.cn; Xu, Jian-Qun [Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, Jiangsu Province (China); Wang, Xin-Meng; Tu, Yi-You [School of Materials Science and Engineering, Southeast University, Nanjing 210096, Jiangsu Province (China)

    2014-07-28T23:59:59.000Z

    Failure of steam-side oxide scales on boiler tubes can seriously influence the safety of coal-fired power plants. Uniaxial tensile tests employing acoustic emission (AE) monitoring were performed, in this work, to investigate the failure behavior of steam-side oxide scales on T22 alloy boiler superheater tubes. The characteristic frequency spectra of the captured AE signals were obtained by performing fast Fourier transform. Three distinct peak frequency bands, 100-170, 175-250, and 280-390 kHz, encountered in different testing stages were identified in the frequency spectra, which were confirmed to, respectively, correspond to substrate plastic deformation, oxide vertical cracking, and oxide spalling with the aid of scanning electronic microscopy observations, and can thus be used for distinguishing different oxide failure mechanisms. Finally, the critical cracking strain of the oxide scale and the interfacial shear strength of the oxide/substrate interface were estimated, which are the critical parameters urgently desired for modeling the failure behavior of steam-side oxide scales on boiler tubes of coal-fired power plants.

  17. Diesel Exhaust Emissions Control for Light-Duty Vehicles

    SciTech Connect (OSTI)

    Mital, R.; Li, J.; Huang, S. C.; Stroia, B. J.; Yu, R. C. (Cummins, Inc.); Anderson, J.A. (Argonne National Laboratory); Howden, Kenneth C. (U.S. Department of Energy)

    2003-03-01T23:59:59.000Z

    The objective of this paper is to present the results of diesel exhaust aftertreatment testing and analysis done under the FreedomCAR program. Nitrogen Oxides (NOx) adsorber technology was selected based on a previous investigation of various NOx aftertreatment technologies including non-thermal plasma, NOx adsorber and active lean NOx. Particulate Matter (PM) emissions were addressed by developing a catalyzed particulate filter. After various iterations of the catalyst formulation, the aftertreatment components were integrated and optimized for a light duty vehicle application. This compact exhaust aftertreatment system is dual leg and consists of a sulfur trap, NOx adsorbers, and catalyzed particulate filters (CPF). During regeneration, supplementary ARCO ECD low-sulfur diesel fuel is injected upstream of the adsorber and CPF in the exhaust. Steady state and transient emission test results with and without the exhaust aftertreatment system (EAS) are presented. Results of soot filter regeneration by injecting low-sulfur diesel fuel and slip of unregulated emissions, such as NH3, are discussed. Effects of adsorber size and bypass strategy on NOx conversion efficiency and fuel economy penalty are also presented in this paper. The results indicate that if the supplementary fuel injection is optimized, NH3 slip is negligible. During the FTP cycle, injection of low sulfur diesel fuel can create temperature exotherms high enough to regenerate a loaded CPF. With the optimized NOx adsorber regeneration strategies the fuel injection penalty can be reduced by 40 to 50%. Results for various other issues like low temperature light off, reductant optimization, exhaust sulfur management, system integration and design trade-off, are also presented and discussed in this paper. (SAE Paper SAE-2003-01-0041 © 2003 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)

  18. Air Quality Responses to Changes in Black Carbon and Nitrogen Oxide Emissions

    E-Print Network [OSTI]

    Millstein, Dev

    2009-01-01T23:59:59.000Z

    Heavy-Duty Diesel Truck Emissions. Environ. Sci. Technol. ,for heavy-duty diesel truck emissions. J. Air Waste Manage.on-road diesel truck emissions, large weekend reductions in

  19. SELECTIVE REDUCTION OF NOX IN OXYGEN RICH ENVIRONMENTS WITH PLASMA-ASSISTED CATALYSIS: CATALYST DEVELOPMENT AND MECHANISTIC STUDIES

    SciTech Connect (OSTI)

    Peden, C; Barlow, S; Hoard, J; Kwak, J; *Balmer-Millar, M; *Panov, A; Schmieg, S; Szanyi, J; Tonkyn, R

    2003-08-24T23:59:59.000Z

    The control of NOx (NO and NO2) emissions from so-called ''lean-burn'' vehicle engines remains a challenge. In recent years, there have been a number of reports that show that a plasma device combined with a catalyst can reduce as high as 90% or more of NOx in simulated diesel and other ''lean-burn'' exhaust. In the case of propylene containing simulated diesel exhaust, the beneficial role of a plasma treatment is now thought to be due to oxidation of NO to NO2, and the formation of partially oxidized hydrocarbons that are more active for the catalytic reduction of NO2 than propylene. Thus, the overall system can be most usefully described as hydrocarbon selective catalytic reduction (SCR) enhanced by 'reforming' the exhaust with a non-thermal plasma (NTP) device. For plasma-enhanced catalysis, both zeolite- and alumina-based materials have shown high activity, albeit in somewhat different temperature ranges, when preceded by an NTP reactor. This paper will briefly describe our research efforts aimed at optimizing the catalyst materials for NTP-catalysis devices based, in part, on our continuing studies of the NTP- and catalytic-reaction mechanisms. Various alkali- and alkaline earth-cation-exchanged Y zeolites have been prepared, their material properties characterized, and they have been tested as catalytic materials for NOx reduction in laboratory NTP-catalysis reactors. Interestingly, NO2 formed in the plasma and not subsequently removed over these catalysts, will back-convert to NO, albeit to varying extents depending upon the nature of the cation. Besides this comparative reactivity, we will also discuss selected synthesis strategies for enhancing the performance of these zeolite-based catalyst materials. A particularly important result from our mechanistic studies is the observation that aldehydes, formed during the plasma treatment of simulated diesel exhaust, are the important species for the reduction of NOx to N2. Indeed, acetaldehyde has been found to be especially effective in the thermal reduction of both NO and NO2 over Ba- and Na-Y zeolite catalysts.

  20. American Institute of Aeronautics and Astronautics Ultra Low Emissions Combustor

    E-Print Network [OSTI]

    Seitzman, Jerry M.

    1 American Institute of Aeronautics and Astronautics T Ultra Low Emissions Combustor with Non-premixed modes of combustion with ultra low NOx emissions. The combustor consists of a tube with open and closed low temperatures with ultra low NOx emission in the 1 ppm range and below. It is also shown

  1. THE DEVELOPMENT AND ON-ROAD PERFORMANCE AND DURABILITY OF THE FOUR-WAY EMISSION CONTROL SCRT{trademark} SYSTEM

    SciTech Connect (OSTI)

    Cooper, BJ; McDonald, AC; Walker, AP; Sanchez, M

    2003-08-24T23:59:59.000Z

    legislation worldwide necessitates the development of pollution control systems capable of enabling engines to meet the incoming legislative requirements. It is clear that to maximize the benefit to the environment, as well as to meet the very stringent future standards (especially the US 2010 limits), systems capable of high simultaneous conversions of all four major pollutants, carbon monoxide (CO), hydrocarbons (HC), oxides of nitrogen (NOx) and Particulate Matter (PM), are required. Very high conversions of CO, HC and PM are achieved using catalyst-based Diesel Particulate Filter (DPF) systems, such as the Continuously Regenerating Technology, CRT{reg_sign}, system. High NOx conversions can be obtained using Selective Catalytic Reduction (SCR) systems, in which ammonia (generated from urea) is used to selectively reduce the NOx. This paper summarizes the key steps in the development of the four-way SCRT system, which comprises the CRT system followed by an SCR system. Engine bench results obtained during the development of this system are presented and discussed. However, the key to real-world emissions benefit is the actual on-road performance of such systems. It is well established that the CRT system provides very high and durable conversions of CO, HC and PM, so the focus of this current work was to demonstrate the NOx conversion capability and durability of the SCRT system. The SCRT unit was installed on a long-haul truck powered by a 15 litre Cummins engine. On-road NOx emissions performance was measured using NOx sensors located upstream and downstream of the SCRT unit. Over an 850 km evaluation route, the average on-road NOx conversion obtained was up to 82%, even when the urea injection quantity was set to give a maximum NOx conversion of around 85%. The durability of the system has also been assessed. Over the course of 150,000 km, no reduction in the NOx conversion efficiency of the system was observed. The results presented in this paper demonstrate that the SCRT system provides very high on-road NOx conversion, and that the system has excellent durability within real-world applications.

  2. NOx Reduction through Efficiency Gain

    E-Print Network [OSTI]

    Benz, R.; Thompson, R.; Staedter, M.

    2007-01-01T23:59:59.000Z

    Approach, Fifth Edition, McGraw-Hill, June 2005 Kuo, K. K., Principles of Combustion 2 nd Edition, Wiley, January 2005 Erickson, K. T., Plant-Wide Process Control, 1 st Edition, Wiley, April 2005 ESL-IE-07-05-42 Proceedings... putting financial stress on steam generation plants to adhere to environmental regulations we provide an incentive to do so. The simplicity and elegance of the CompuNOx system minimizes system changes. Control related changes consist...

  3. Current emission trends for nitrogen oxides, sulfur dioxide, and volatile organic compounds by month and state: Methodology and results

    SciTech Connect (OSTI)

    Kohout, E.J.; Miller, D.J.; Nieves, L.A.; Rothman, D.S.; Saricks, C.L.; Stodolsky, F.; Hanson, D.A.

    1990-08-01T23:59:59.000Z

    This report presents estimates of monthly sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), and nonmethane voltatile organic compound (VOC) emissions by sector, region, and state in the contiguous United States for the years 1975 through 1988. This work has been funded as part of the National Acid Precipitation Assessment Program`s Emissions and Controls Task Group by the US Department of Energy (DOE) Office of Fossil Energy (FE). The DOE project officer is Edward C. Trexler, DOE/FE Office of Planning and Environment.

  4. Current emission trends for nitrogen oxides, sulfur dioxide, and volatile organic compounds by month and state: Methodology and results

    SciTech Connect (OSTI)

    Kohout, E.J.; Miller, D.J.; Nieves, L.A.; Rothman, D.S.; Saricks, C.L.; Stodolsky, F.; Hanson, D.A.

    1990-08-01T23:59:59.000Z

    This report presents estimates of monthly sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), and nonmethane voltatile organic compound (VOC) emissions by sector, region, and state in the contiguous United States for the years 1975 through 1988. This work has been funded as part of the National Acid Precipitation Assessment Program's Emissions and Controls Task Group by the US Department of Energy (DOE) Office of Fossil Energy (FE). The DOE project officer is Edward C. Trexler, DOE/FE Office of Planning and Environment.

  5. Does the location of aircraft nitrogen oxide emissions affect their climate impact?

    E-Print Network [OSTI]

    approximately balancing the IRF associated with aviation CO2 emissions (28 mWm�2 yr (TgNO2)�1 ). The overall climate impact of global aviation is often represented by a simple multiplier for CO2 emissions­3% of global anthropogenic CO2 emissions [Lee et al., 2009], yet these emissions fall outside the remit

  6. NOx reduction in gas turbine combustors

    E-Print Network [OSTI]

    Sung, Nak Won

    1976-01-01T23:59:59.000Z

    NOx REDUCTION IN GAS TURBINE COMBUSTORS A Thesis by Nak Won Sung Submitted to the Graduate College of Texas A&M University in partial fullfillment of the requirement for the degree of MASTER OF SCIENCE August 1976 Major Subject: Mechanical... Engineering NOx REDUCTION IN GAS TURBINE COMBUSTORS A Thesis by Nak Won Sung Approved as to style and content by: (Chairman of Committe (Head of Department) (Member) August 1976 "40308 (Member) 1 1. 1 ABSTRACT NOx Reduction in Gas Turbine...

  7. Small, Inexpensive Combined NOx Sensor and O2 Sensor

    SciTech Connect (OSTI)

    W. N. Lawless; C. F. Clark, Jr.

    2008-09-08T23:59:59.000Z

    It has been successfully demonstrated in this program that a zirconia multilayer structure with rhodium-based porous electrodes performs well as an amperometric NOx sensor. The sensitivity of the sensor bodies operating at 650 to 700 C is large, with demonstrated current outputs of 14 mA at 500 ppm NOx from sensors with 30 layers. The sensor bodies are small (4.5 x 4.2 x 3.1 mm), rugged, and inexpensive. It is projected the sensor bodies will cost $5 - $10 in production. This program has built on another successful development program for an oxygen sensor based on the same principles and sponsored by DOE. This oxygen sensor is not sensitive to NOx. A significant technical hurdle has been identified and solved. It was found that the 100% Rh electrodes oxidize rapidly at the preferred operating temperatures of 650 - 700 C, and this oxidation is accompanied by a volume change which delaminates the sensors. The problem was solved by using alloys of Rh and Pt. It was found that a 10%/90% Rh/Pt alloy dropped the oxidation rate of the electrodes by orders of magnitude without degrading the NOx sensitivity of the sensors, allowing long-term stable operation at the preferred operating temperatures. Degradation in the sensor output caused by temperature cycling was identified as a change in resistance at the junction between the sensor body and the external leads attached to the sensor body. The degradation was eliminated by providing strong mechanical anchors for the wire and processing the junctions to obtain good electrical bonds. The NOx sensors also detect oxygen and therefore the fully-packaged sensor needs to be enclosed with an oxygen sensor in a small, heated zirconia chamber exposed to test gas through a diffusion plug which limits the flow of gas from the outside. Oxygen is pumped from the interior of the chamber to lower the oxygen content and the combination of measurements from the NOx and oxygen sensors yields the NOx content of the gas. Two types of electronic control units were designed and built. One control unit provides independent constant voltages to the NOx and oxygen sensors and reads the current from them (that is, detects the amount of test gas present). The second controller holds the fully-assembled sensor at the desired operating temperature and controllably pumps excess oxygen from the test chamber. While the development of the sensor body was a complete success, the development of the packaging was only partially successful. All of the basic principles were demonstrated, but the packaging was too complex to optimize the operation within the resources of the program. Thus, no fully-assembled sensors were sent to outside labs for testing of cross-sensitivities, response times, etc. Near the end of the program, Sensata Technologies of Attleboro, MA tested the sensor bodies and confirmed the CeramPhysics measurements as indicated in the following attached letter. Sensata was in the process of designing their own packaging for the sensor and performing cross-sensitivity tests when they stopped all sensor development work due to the automotive industry downturn. Recently Ceramatec Inc. of Salt Lake City has expressed an interest in testing the sensor, and other licensing opportunities are being pursued.

  8. Plasma Assisted Catalysis System for NOx Reduction

    Broader source: Energy.gov (indexed) [DOE]

    2 NOXTECH NOXTECH PLASMA ASSISTED CATALYSIS SYSTEM FOR NOx REDUCTION BY NOXTECH With the Support & Cooperation of DOE Noxtech, Inc. *Delaware Corporation registered to do business...

  9. Evaluation of Gas Reburning & Low NOx Burners on a Wall Fired Boiler Performance and Economics Report Gas Reburning-Low NOx Burner System Cherokee Station Unit 3 Public Service Company of Colorado

    SciTech Connect (OSTI)

    None

    1998-07-01T23:59:59.000Z

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NOX reduction (70%) could be achieved. Sponsors of the project included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was performed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado Bituminous, low-sulfur coal. It had a baseline NOX emission level of 0.73 lb/106 Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50%. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NOX in the flue gas by staged fuel combustion. This technology involves the introduction of natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NOX emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 18Y0. The performance goal of 70% reduction was met on many test runs, but at a higher reburn gas heat input. S02 emissions, based on coal replacement, were reduced by 18Y0. The performance goal of 70% reduction was met on many test runs, but at a higher reburn gas heat input. S02 emissions, based on coal replacement, were reduced by 18Y0. Toward the end of the program, a Second Generation gas injection system was installed. Higher injector gas pressures were used that eliminated the need for flue gas recirculation as used in the first generation design. The Second Generation GR resulted in similar NOX reduction performance as that for the First Generation. With an improvement in the LNB performance in combination with the new gas injection system , the reburn gas could be reduced to 12.5% of the total boiler heat input to achieve al 64?40 reduction in NO, emissions. In addition, the OFA injectors were modified to provide for better mixing to lower CO emissions.

  10. Controlling emissions from a black liquor fluidized bed evaporator (Copeland reactor) using a regenerative thermal oxidizer and a prefilter

    SciTech Connect (OSTI)

    Grzanka, R.

    1997-12-31T23:59:59.000Z

    This paper reports on an intriguing pilot project developed to control air emissions from a pulp mill. Testing is complete, and the results show favorable emissions reductions. Stone Container Corporation, REECO, NCASI, the Ohio DEP, and the US EPA, have all worked together and approved the installation of control equipment, for VOC and HAP emissions under Presumptive MACT, setting the standard for the Copeland Reactor process in a semi chem pulp mill. The equipment, once operational, will reduce VOC and CO emissions by greater than 90%. This installation will be done at one seventh the cost of the significant process modifications required to accomplish the same emission reduction. In addition, increased process operating efficiency will be achieved with the use of an energy recovery system. The process is a black liquor fluidized bed boiler, which is used to generate sodium carbonate from the black liquor. The vapor emissions were high in VOCs, CO and particulate. After much study and testing, a wet electrostatic precipitator was chosen as the filter system for particulate control, followed by a regenerative thermal oxidizer for VOC and HAP control, finally an air-to-air heat exchanger is being used to preheat the combustion air entering the process.

  11. Implications of Low Particulate Matter Emissions on System Fuel Efficiency for High Efficiency Clean Combustion

    SciTech Connect (OSTI)

    Parks, II, James E [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL

    2009-01-01T23:59:59.000Z

    Advanced diesel combustion regimes such as High Efficiency Clean Combustion (HECC) offer the benefits of reduced engine out NOX and particulate matter (PM) emissions. Lower PM emissions during advanced combustion reduce the demand on diesel particulate filters (DPFs) and can, thereby, reduce the fuel penalty associated with DPF regeneration. In this study, a SiC DPF was loaded and regenerated on a 1.7-liter 4-cylinder diesel engine operated in conventional and advanced combustion modes at different speed and load conditions. A diesel oxidation catalyst (DOC) and a lean NOX trap (LNT) were also installed in the exhaust stream. Five steady-state speed and load conditions were weighted to estimate Federal Test Procedure (FTP) fuel efficiency. The DPF was loaded using lean-rich cycling with frequencies that resulted in similar levels of NOX emissions downstream of the LNT. The pressure drop across the DPF was measured at a standard point (1500 rpm, 5.0 bar) before and after loading, and a P rise rate was determined for comparison between conventional and advanced combustion modes. Higher PM emissions in conventional combustion resulted in a higher rate of backpressure rise across the DPF at all of the load points leading to more frequent DPF regenerations and higher fuel penalty. The fuel penalty during conventional combustion was 4.2% compared with 3.1% for a mixture of conventional and advanced modes.

  12. Congressionally Directed Project for Passive NOx Removal Catalysts Research

    SciTech Connect (OSTI)

    Schneider, William

    2014-08-29T23:59:59.000Z

    The Recipient proposes to produce new scientific and technical knowledge and tools to enable the discovery and deployment of highly effective materials for the selective catalytic reduction (SCR) of nitrogen oxides (NOx) from lean combustion exhaust. A second goal is to demonstrate a closely coupled experimental and computational approach to heterogeneous catalysis research. These goals will be met through the completion of four primary technical objectives: First, an in-depth kinetic analysis will be performed on two prominent classes of NOx SCR catalysts, Fe- and Cu-exchanged beta and ZSM-5 zeolites, over a wide range of catalyst formulation and under identical, high conversion conditions as a function of gas phase composition. Second, the nanoscale structure and adsorption chemistry of these high temperature (HT) and low temperature (LT) catalysts will be determined using in situ and operando spectroscopy under the same reaction conditions. Third, first-principles molecular simulations will be used to model the metal-zeolite active sites, their adsorption chemistry, and key steps in catalytic function. Fourth, this information will be integrated into chemically detailed mechanistic and kinetic descriptions and models of the operation of these well- defined NOx SCR catalysts under practically relevant reaction conditions. The new knowledge and models that derive from this work will be published in the scientific literature.

  13. Power Generating Stationary Engines Nox Control: A Closed Loop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generating Stationary Engines Nox Control: A Closed Loop Control Technology Power Generating Stationary Engines Nox Control: A Closed Loop Control Technology Poster presented at...

  14. Measurement and Characterization of Lean NOx Adsorber Regeneration...

    Broader source: Energy.gov (indexed) [DOE]

    parks.pdf More Documents & Publications Synergies of High-Efficiency Clean Combustion and Lean NOx Trap Catalysts Measurement and Characterization of Lean NOx Adsorber Regeneration...

  15. Deactivation mechanisms of NOx storage materials arising from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    mechanisms of NOx storage materials arising from thermal aging and sulfur poisoning Deactivation mechanisms of NOx storage materials arising from thermal aging and sulfur poisoning...

  16. NOx Abatement Research and Development CRADA with Navistar Incorporate...

    Broader source: Energy.gov (indexed) [DOE]

    NOx Abatement Research and Development CRADA with Navistar Incorporated NOx Abatement Research and Development CRADA with Navistar Incorporated 2009 DOE Hydrogen Program and...

  17. Functionality of Commercial NOx Storage-Reduction Catalysts and...

    Broader source: Energy.gov (indexed) [DOE]

    Catalysis Research: Fundamental SulfationDesulfation Studies of Lean NOx Traps CumminsORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines...

  18. 8, 49114947, 2008 NOx-induced ozone

    E-Print Network [OSTI]

    Boyer, Edmond

    ACPD 8, 4911­4947, 2008 NOx-induced ozone loss processes B. Vogel et al. Title Page Abstract Chemistry and Physics Discussions Model simulations of stratospheric ozone loss caused by enhanced on behalf of the European Geosciences Union. 4911 #12;ACPD 8, 4911­4947, 2008 NOx-induced ozone loss

  19. Minimize NOx using only combustion control

    SciTech Connect (OSTI)

    Penterson, C.A.; Hules, K.R. [Riley Power Inc. (United States)

    2005-10-01T23:59:59.000Z

    The retrofit of a 600 MW opposed wall-fired utility boiler with low-NOx, dual air zone burners and overfire air cut the Wyoming PRB coal burner's NOx output by nearly half. The key to the project's success from the design stage through final testing and boiler tuning was CFD modeling. 7 figs., 2 tabs.

  20. Abdel-Aziz, A. and H.C. Frey, "Quantification of Hourly Variability in Hourly Activity and NOx Emissions for Baseload Coal-Fired Power Plants," Proceedings, Annual Meeting of the Air & Waste Management Association, Pittsburgh, PA, June 2003

    E-Print Network [OSTI]

    Frey, H. Christopher

    Emissions for Baseload Coal- Fired Power Plants," Proceedings, Annual Meeting of the Air & Waste Management for Baseload Coal Fired Power Plants Paper No. 69572 Amr Abdel-Aziz and H. Christopher Frey Department of Civil emission factors from coal-fired power plants vary over time due to variation in coal composition fed

  1. Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO sub x ) emissions from high-sulfur coal-fired boilers

    SciTech Connect (OSTI)

    Not Available

    1991-08-01T23:59:59.000Z

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor, Although SCR is widely practiced in Japan and Europe, there are numerous technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuel performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal.

  2. High ozone concentrations on hot days: The role of electric power demand and NOx1 , Linda Hembeck1

    E-Print Network [OSTI]

    Dickerson, Russell R.

    of tropospheric17 ozone, leading to concerns that global warming may exacerbate smog episodes. This18 widely1 High ozone concentrations on hot days: The role of electric power demand and NOx1 emissions2 3 Park,10 MD 20742, U.S.11 12 Key words: power plant emissions, ozone production efficiency, climate

  3. Evaluating Exhaust Emission Performance of Urban Buses Using...

    Broader source: Energy.gov (indexed) [DOE]

    Aug 28 - Sept 2, Coronado, California, USA VTT PROCESSES Kimmo Erkkil 20 CITY BUS EMISSION EVALUATION RESULTS NOx and CO2 emissions over the Braunschweig city bus -cycle 0...

  4. Can Future Emissions Limits be Met with a Hybrid EGR System Alone...

    Broader source: Energy.gov (indexed) [DOE]

    out NOx emissions through highest possible EGR rates Fuel consumption through reduced turbo charger pumping work While providing Highest flexibility for the engine's combustion...

  5. Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels

    SciTech Connect (OSTI)

    Peterson, Eric; Krejci, Michael; Mathieu, Olivier; Vissotski, Andrew; Ravi, Sankat; Plichta, Drew; Sikes, Travis; Levacque, Anthony; Camou, Alejandro; Aul, Christopher

    2013-09-30T23:59:59.000Z

    This final report documents the technical results of the 3-year project entitled, “Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels,” funded under the NETL of DOE. The research was conducted under six main tasks: 1) program management and planning; 2) turbulent flame speed measurements of syngas mixtures; 3) laminar flame speed measurements with diluents; 4) NOx mechanism validation experiments; 5) fundamental NOx kinetics; and 6) the effect of impurities on NOx kinetics. Experiments were performed using primary constant-volume vessels for laminar and turbulent flame speeds and shock tubes for ignition delay times and species concentrations. In addition to the existing shock- tube and flame speed facilities, a new capability in measuring turbulent flame speeds was developed under this grant. Other highlights include an improved NOx kinetics mechanism; a database on syngas blends for real fuel mixtures with and without impurities; an improved hydrogen sulfide mechanism; an improved ammonia kintics mechanism; laminar flame speed data at high pressures with water addition; and the development of an inexpensive absorption spectroscopy diagnostic for shock-tube measurements of OH time histories. The Project Results for this work can be divided into 13 major sections, which form the basis of this report. These 13 topics are divided into the five areas: 1) laminar flame speeds; 2) Nitrogen Oxide and Ammonia chemical kinetics; 3) syngas impurities chemical kinetics; 4) turbulent flame speeds; and 5) OH absorption measurements for chemical kinetics.

  6. Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines

    SciTech Connect (OSTI)

    Nigel Clark; Gregory Thompson; Richard Atkinson; Richard Turton; Chamila Tissera; Emre Tatli; Andy Zimmerman

    2005-12-28T23:59:59.000Z

    Selective NOx Recirculation (SNR) involves cooling the engine exhaust gas and then adsorbing the oxides of nitrogen (NOx) from the exhaust stream, followed by the periodic desorption of NOx. By returning the desorbed, concentrated NOx into the engine intake and through the combustion chamber, a percentage of the NOx is decomposed during the combustion process. An initial study of NOx decomposition during lean-burn combustion was concluded in 2004 using a 1993 Cummins L10G 240hp natural gas engine. It was observed that the air/fuel ratio, injected NO (nitric oxide) quantity and engine operating points affected NOx decomposition rates of the engine. Chemical kinetic modeling results were also used to determine optimum NOx decomposition operating points and were published in the 2004 annual report. A NOx decomposition rate of 27% was measured from this engine under lean-burn conditions while the software model predicted between 35-42% NOx decomposition for similar conditions. A later technology 1998 Cummins L10G 280hp natural gas engine was procured with the assistance of Cummins Inc. to replace the previous engine used for 2005 experimental research. The new engine was equipped with an electronic fuel management system with closed-loop control that provided a more stable air/fuel ratio control and improved the repeatability of the tests. The engine was instrumented with an in-cylinder pressure measurement system and electronic controls, and was adapted to operate over a range of air/fuel ratios. The engine was connected to a newly commissioned 300hp alternating current (AC) motoring dynamometer. The second experimental campaign was performed to acquire both stoichiometric and slightly rich (0.97 lambda ratio) burn NOx decomposition rates. Effects of engine load and speed on decomposition were quantified, but Exhaust Gas Recirculation (EGR) was not varied independently. Decomposition rates of up to 92% were demonstrated. Following recommendations at the 2004 ARES peer review meeting at Argonne National Laboratories, in-cylinder pressure was measured to calculate engine indicated mean effective pressure (IMEP) changes due to NOx injections and EGR variations, and to observe conditions in the cylinder. The third experimental campaign gathered NOx decomposition data at 800, 1200 and 1800 rpm. EGR was added via an external loop, with EGR ranging from zero to the point of misfire. The air/fuel ratio was set at both stoichiometric and slightly rich conditions, and NOx decomposition rates were calculated for each set of runs. Modifications were made to the engine exhaust manifold to record individual exhaust temperatures. The three experimental campaigns have provided the data needed for a comprehensive model of NOx decomposition during the combustion process, and data have confirmed that there was no significant impact of injected NO on in-cylinder pressure. The NOx adsorption system provided by Sorbent Technologies Corp. (Twinsburg, OH), comprised a NOx adsorber, heat exchanger and a demister. These components were connected to the engine, and data were gathered to show both the adsorption of NOx from the engine, and desorption of NOx from the carbon-based sorbent material back into the engine intake, using a heated air stream. In order to quantify the NOx adsorption/desorption characteristics of the sorbent material, a bench top adsorption system was constructed and instrumented with thermocouples and the system output was fed into a NOx analyzer. The temperature of this apparatus was controlled while gathering data on the characteristics of the sorbent material. These data were required for development of a system model. Preliminary data were gathered in 2005, and will continue in early 2006. To assess the economic benefits of the proposed SNR technology the WVU research team has been joined in the last quarter by Dr Richard Turton (WVU-Chemical Engineering), who is modeling, sizing and costing the major components. The tasks will address modeling and preliminary design of the heat exchanger, demister and NOx sorbent chamber s

  7. Evaluating the Effects of Organic Amendment Applications on Nitrous Oxide Emissions From Salt-Affected Soils

    E-Print Network [OSTI]

    Pulla Reddy Gari, Namratha

    2013-01-01T23:59:59.000Z

    Effect of Soil Properties on Carbon Dioxide and Nitrous110 Effect of Soil Properties on Carbon Dioxide and Nitrousproperties have been well studied, their effects on greenhouse gas emissions such as carbon dioxide (

  8. Air Quality Responses to Changes in Black Carbon and Nitrogen Oxide Emissions

    E-Print Network [OSTI]

    Millstein, Dev

    2009-01-01T23:59:59.000Z

    fuel inputs from the EIA survey and emission factors shownFuel tax receipts and EIA survey data are reconciled withuse reported by the EIA survey. To make a weekday modeling

  9. SOx-NOx-Rox Box{trademark} flue gas clean-up demonstration. Final report

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    Babcock and Wilcox`s (B and W) SOx-NOx-Rox Box{trademark} process effectively removes SOx, NOx and particulate (Rox) from flue gas generated from coal-fired boilers in a single unit operation, a high temperature baghouse. The SNRB technology utilizes dry sorbent injection upstream of the baghouse for removal of SOx and ammonia injection upstream of a zeolitic selective catalytic reduction (SCR) catalyst incorporated in the baghouse to reduce NOx emissions. Because the SOx and NOx removal processes require operation at elevated gas temperatures (800--900 F) for high removal efficiency, high-temperature fabric filter bags are used in the baghouse. The SNRB technology evolved from the bench and laboratory pilot scale to be successfully demonstrated at the 5-MWe field scale. This report represents the completion of Milestone M14 as specified in the Work Plan. B and W tested the SNRB pollution control system at a 5-MWe demonstration facility at Ohio Edison`s R.E. Burger Plant located near Shadyside, Ohio. The design and operation were influenced by the results from laboratory pilot testing at B and W`s Alliance Research Center. The intent was to demonstrate the commercial feasibility of the SNRB process. The SNRB facility treated a 30,000 ACFM flue gas slipstream from Boiler No. 8. Operation of the facility began in May 1992 and was completed in May 1993. About 2,300 hours of high-temperature operation were achieved. The main emissions control performance goals of: greater than 70% SO{sub 2} removal using a calcium-based sorbent; greater than 90% NOx removal with minimal ammonia slip; and particulate emissions in compliance with the New Source Performance Standards (NSPS) of 0.03 lb/million Btu were exceeded simultaneously in the demonstration program when the facility was operated at optimal conditions. Testing also showed significant reductions in emissions of some hazardous air pollutants.

  10. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect (OSTI)

    Mike Bockelie; Marc Cremer; Kevin Davis; Martin Denison; Adel Sarofim; Connie Senior; Hong-Shig Shim; Dave Swenson; Bob Hurt; Eric Suuberg; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker

    2006-06-30T23:59:59.000Z

    This is the Final Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project was to develop cost-effective analysis tools and techniques for demonstrating and evaluating low-NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) provided co-funding for this program. This project included research on: (1) In furnace NOx control; (2) Impacts of combustion modifications on boiler operation; (3) Selective Catalytic Reduction (SCR) catalyst testing and (4) Ammonia adsorption/removal on fly ash. Important accomplishments were achieved in all aspects of the project. Rich Reagent Injection (RRI), an in-furnace NOx reduction strategy based on injecting urea or anhydrous ammonia into fuel rich regions in the lower furnace, was evaluated for cyclone-barrel and PC fired utility boilers. Field tests successfully demonstrated the ability of the RRI process to significantly reduce NOx emissions from a staged cyclone-fired furnace operating with overfire air. The field tests also verified the accuracy of the Computational Fluid Dynamic (CFD) modeling used to develop the RRI design and highlighted the importance of using CFD modeling to properly locate and configure the reagent injectors within the furnace. Low NOx firing conditions can adversely impact boiler operation due to increased waterwall wastage (corrosion) and increased soot production. A corrosion monitoring system that uses electrochemical noise (ECN) corrosion probes to monitor, on a real-time basis, high temperature corrosion events within the boiler was evaluated. Field tests were successfully conducted at two plants. The Ohio Coal Development Office provided financial assistance to perform the field tests. To investigate soot behavior, an advanced model to predict soot production and destruction was implemented into an existing reacting CFD modeling tool. Comparisons between experimental data collected in a pilot scale furnace and soot behavior predicted by the CFD model showed good agreement. Field and laboratory tests were performed for SCR catalysts used for coal and biomass co-firing applications. Fundamental laboratory studies were performed to better understand mechanisms involved with catalyst deactivation. Field tests with a slip stream reactor were used to create catalyst exposed to boiler flue gas for firing coal and for co-firing coal and biomass. The field data suggests the mechanisms leading to catalyst deactivation are, in order of importance, channel plugging, surface fouling, pore plugging and poisoning. Investigations were performed to better understand the mechanisms involved with catalyst regeneration through mechanical or chemical methods. A computer model was developed to predict NOx reduction across the catalyst in a SCR. Experiments were performed to investigate the fundamentals of ammonia/fly ash interactions with relevance to the operation of advanced NOx control technologies such as selective catalytic reduction. Measurements were performed for ammonia adsorption isotherms on commercial fly ash samples subjected to a variety of treatments and on the chemistry of dry and semi-dry ammonia removal processes. This work resulted in the first fundamental ammonia isotherms on carbon-containing fly ash samples. This work confirms industrial reports that aqueous solution chemistry takes place upon the introduction of even very small amounts of water, while the ash remains in a semi-dry state.

  11. Measurement and Characterization of Unregulated Emissions from...

    Broader source: Energy.gov (indexed) [DOE]

    FTP Emissions for Stoich DISI E0 E10 E20 Lean DISI Platform: Euro V BMW, 2.0L, non-turbo * FTP - urban cycle CO, CO 2 ,HC, NOx, PM mass, PM number Aldehydes and...

  12. Relative ozone forming potential of methanol-fueled vehicle emissions and gasoline-fueled vehicle emissions in outdoor smog chambers. Interim report, 1991-1992

    SciTech Connect (OSTI)

    Jeffries, H.E.; Sexton, K.G.

    1993-02-01T23:59:59.000Z

    The experimental program compares the relative NO oxidation and O3 forming capabilities of surrogate VOC mixtures that are representative of urban air, emissions from vehicles using methanol fuels, and emissions from vehicles using industry-average gasoline. The experiments used a dual side-by-side outdoor chamber with initial NOx of 330 ppb and hydrocarbon-to-NOx ratios 4.5, 6, and 9:1. The urban VOC mixture was based upon ambient air analyses conducted by EPA for 6-9 AM in 41 cities over the period 1984-1988. The automotive VOC mixtures were based upon exhaust, evaporative, and running loss measurements made in the Auto/Oil Air Quality Improvement Research Program and upon the application of EPA's MOBILE4 emissions model applied in a model scenario in Dallas/Fort Worth in the year 2005. Each of the VOC mixtures had about 55 individual species in which about 45 species were surrogates for the remaining measured carbon. In addition to testing the relative reactivity of each VOC mixture against the other mixtures, the majority of the experiments used mixtures in which 50% of the carbon was from the urban mix and 50% of the carbon was from industry-average gasoline vehicle emissions or 50% of the carbon was from the methanol-fueled vehicle emissions. Some experiments were also conducted with higher fractions of formaldehyde (HCHO) in either the urban mix or in the methanol mix.

  13. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    SciTech Connect (OSTI)

    Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Eddings; Larry Baxter

    2001-10-10T23:59:59.000Z

    This is the fifth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing cofunding for this program. This program contains multiple tasks and good progress is being made on all fronts. Field tests for NOx reduction in a cyclone fired utility boiler due to using Rich Reagent Injection (RRI) have been started. CFD modeling studies have been started to evaluate the use of RRI for NOx reduction in a corner fired utility boiler using pulverized coal. Field tests of a corrosion monitor to measure waterwall wastage in a utility boiler have been completed. Computational studies to evaluate a soot model within a boiler simulation program are continuing. Research to evaluate SCR catalyst performance has started. A literature survey was completed. Experiments have been outlined and two flow reactor systems have been designed and are under construction. Commercial catalyst vendors have been contacted about supplying catalyst samples. Several sets of new experiments have been performed to investigate ammonia removal processes and mechanisms for fly ash. Work has focused on a promising class of processes in which ammonia is destroyed by strong oxidizing agents at ambient temperature during semi-dry processing (the use of moisture amounts less than 5 wt-%). Both ozone and an ozone/peroxide combination have been used to treat both basic and acidic ammonia-laden ashes.

  14. METHANE de-NOX FOR UTILITY PC BOILERS

    SciTech Connect (OSTI)

    Joseph Rabovitser; Bruce Bryan; Serguei Nester; Stan Wohadlo

    2002-01-31T23:59:59.000Z

    The project seeks to develop and validate a new pulverized coal combustion system to reduce utility PC boiler NOx emissions to 0.15 lb per million Btu or less without post-combustion flue gas cleaning. Work during previous reporting periods completed the design, installation, shakedown and initial PRB coal testing of a 3-million Btu/h pilot system at BBP's Pilot-Scale Combustion Facility (PSCF) in Worcester, MA. Based on these results, modifications to the gas-fired preheat combustor and PC burner were defined, along with a modified testing plan and schedule. A revised subcontract was executed with BBP to reflect changes in the pilot testing program. Modeling activities were continued to develop and verify revised design approaches for both the Preheat gas combustor and PC burner. Reactivation of the pilot test system was then begun with BBP personnel. During the previous reporting period, reactivation of the pilot test system was completed with the modified Preheat gas combustor. Following shakedown of the modified gas combustor alone, a series of successful tests of the new combustor with PRB coal using the original PC burner were completed. NOx at the furnace exit was reduced significantly with the modified gas combustor, to as low as 150 ppm with only 36 ppm CO (both corrected to 3% O2). Concurrent with testing, GTI and BBP collaborated on development of two modified designs for the PC burner optimized to fire preheated char and pyrolysis products from the Preheat gas combustor. During the current reporting period, one of the two modified PC burner designs was fabricated and installed in the pilot test facility. Testing of the modified pilot system (modified gas combustor and modified PC burner) during the quarter included 38 tests with PRB coal. NOx reduction was significantly improved to levels as low as 60-100 ppmv with CO in the range of 35-112 ppmv without any furnace air staging.

  15. Diesel Emission Control -- Sulfur Effects (DECSE) Program; Phase I Interim Data Report No. 4: Diesel Particulate Filters -- Final Report

    SciTech Connect (OSTI)

    DOE; ORNL; NREL; EMA; MECA

    2000-01-15T23:59:59.000Z

    The Diesel Emission Control-Sulfur Effects (DECSE) is a joint government/industry program to determine the impact of diesel fuel sulfur levels on emission control systems whose use could lower emissions of nitrogen oxides (NOx) and particulate matter (PM) from on-highway trucks in the 2002--2004 model years. Phase 1 of the program was developed with the following objectives in mind: (1) evaluate the effects of varying the level of sulfur content in the fuel on the emission reduction performance of four emission control technologies; and (2) measure and compare the effects of up to 250 hours of aging on selected devices for multiple levels of fuel sulfur content. This is the fourth and final report for the DPF test program and covers the effect of diesel sulfur level on: a catalyzed diesel particulate filter (CDPF), and a continuously regenerating diesel particulate filter (CR-DPF).

  16. NOx Reduction through Efficiency Gain 

    E-Print Network [OSTI]

    Benz, R.; Thompson, R.; Staedter, M.

    2007-01-01T23:59:59.000Z

    with a novel control design to deliver a comprehensive boiler controls retrofit that provides reductions in emissions as well as substantial cost savings. Combining mechanical engineering expertise with substantial experience in control engineering...

  17. Influence of solid fuel on the carbon-monoxide and nitrogen-oxide emissions on sintering

    SciTech Connect (OSTI)

    M.F. Vitushchenko; N.L. Tatarkin; A.I. Kuznetsov; A.E. Vilkov [AO Mittal Steel Temirtau, Temirtau (Kazakhstan)

    2007-07-01T23:59:59.000Z

    Laboratory and industrial research now underway at the sintering plant of AO Mittal Steel Temirtau is focusing on the preparation of fuel of optimal granulometric composition, the replacement of coke fines, and the adaptation of fuel-input technology so as to reduce fuel consumption and toxic emissions without loss of sinter quality.

  18. 6, 57735796, 2006 Vehicular emissions

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    be partly responsible for lower CO2 and higher CO and NO emission factors. Also, a fast reduction the emission (in g/km) of key and non-regulated pollutants, such as CO2, CO, NO, SO2, NH3, HCHO, NMHC, dur-10 of pollutants, even from a super ultra-low emission vehicle (SULEV). The emissions of HC's, NOx, CO20 and CO2

  19. Enhancement in light emission and electrical efficiencies of a silicon nanocrystal light-emitting diode by indium tin oxide nanowires

    SciTech Connect (OSTI)

    Huh, Chul, E-mail: chuh@etri.re.kr; Kim, Bong Kyu; Ahn, Chang-Geun; Kim, Sang-Hyeob [IT Convergence Technology Research Laboratory, Electronics and Telecommunications Research Institute, Daejeon 305-350 (Korea, Republic of); Choi, Chel-Jong [Department of BIN Fusion Technology, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2014-07-21T23:59:59.000Z

    We report an enhancement in light emission and electrical efficiencies of a Si nanocrystal (NC) light-emitting diode (LED) by employing indium tin oxide (ITO) nanowires (NWs). The formed ITO NWs (diameter?

  20. Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology...

    Energy Savers [EERE]

    CumminsORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines CumminsORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel...

  1. Characterization of NOx Species in Dehydrated and Hydrated Na...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NOx Species in Dehydrated and Hydrated Na- and Ba-Y, FAU Zeolites Formed in NO Adsorption. Characterization of NOx Species in Dehydrated and Hydrated Na- and Ba-Y, FAU Zeolites...

  2. Model NOx storage systems: Storage capacity and thermal aging...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Model NOx storage systems: Storage capacity and thermal aging of BaOtheta- Al2O3NiAl(100). Model NOx storage systems: Storage capacity and thermal aging of BaOtheta- Al2O3...

  3. Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air 2005 Diesel Engine...

  4. Linker-Induced Anomalous Emission of Organic-Molecule Conjugated Metal-Oxide Nanoparticles

    SciTech Connect (OSTI)

    Turkowski, Volodymyr; Babu, Suresh; Le, Duy; Kumar, Amit; Haldar, Manas K.; Wagh, Anil V.; Hu, Zhongjian; Karakoti, Ajay S.; Gesquiere, Andre J.; Law, Benedict; Mallik, Sanku; Rahman, Talat S.; Leuenberger, Michael N.; Seal, Sudipta

    2012-06-26T23:59:59.000Z

    Semiconductor nanoparticles conjugated with organic- and dye-molecules to yield high efficiency visible photoluminescence (PL) hold great potential for many future technological applications. We show that folic acid (FA)-conjugated to nanosize TiO2 and CeO2 particles demonstrates a dramatic increase of photoemission intensity at wavelengths between 500 and 700 nm when derivatized using aminopropyl trimethoxysilane (APTMS) as spacer-linker molecules between the metal oxide and FA. Using density-functional theory (DFT) and time-dependent DFT calculations we demonstrate that the strong increase of the PL can be explained by electronic transitions between the titania surface oxygen vacancy (OV) states and the low-energy excited states of the FA/APTMS molecule anchored onto the surface oxygen bridge sites in close proximity to the OVs. We suggest this scenario to be a universal feature for a wide class of metal oxide nanoparticles, including nanoceria, possessing a similar band gap (3 eV) and with a large surface-vacancy-related density of electronic states. We demonstrate that the molecule-nanoparticle linker can play a crucial role in tuning the electronic and optical properties of nanosystems by bringing optically active parts of the molecule and of the surface close to each other.

  5. Modeling of NOx formation in circular laminar jet flames

    E-Print Network [OSTI]

    Siwatch, Vivek

    2007-04-25T23:59:59.000Z

    -premixed isolated circular laminar jet flame. The jet consists of the fuel rich inner region and the O2 rich outer region. The model estimates both thermal NOx and prompt NOx assuming single step kinetics for NOx formation and a thin flame model. Further the amount...

  6. Task 3.15 -- Impacts of low-NOx combustion on fly ash and slagging. Semi-annual report, July 1--December 31, 1996

    SciTech Connect (OSTI)

    Zygarlicke, C.J.; McCollor, D.P.

    1997-08-01T23:59:59.000Z

    With the advent of the Clean Air Act Amendments of 1990, the coal-fired power industry began a more accelerated move toward using low-NOx burner (LNB) technologies to reduce NOx emissions. Most LNBs incorporate less oxygen with the coal initially, creating a cooler and somewhat substoichiometric initial combustion zone, with additional oxygen added further on in the combustion process to complete char combustion. Another method used to achieve lower NOx emissions is to fire the coal substoichiometrically and add additional air through overfire air ports. Both of these methods create certain impacts on fireside performance that are different from conventional high-excess-air firing arrangements. Some of the impacts that have been noticed by the utility industry are higher levels of unburned carbon in the fly ash and bottom ash, increased boiler tube corrosion, higher particulate loadings on control devices, and changes in slagging in the main furnace. Work on the fundamental mechanisms of entrained ash and ash deposit formation during low-NOx combustion has been sparse. This project by the Energy and Environmental Research Center (EERC) focuses on the issues of entrained ash formation and slagging for low-NOx combustion systems in general. Time-resolved combustion tests under conventional and low-NOx conditions have been conducted to note particle-size formation and slagging deposition. The results from this work are yielding an increased understanding of the mechanisms of ash formation during low-NOx combustion along with methods for enhancing heat transfer and fly ash collectability. Specific objectives of this research project include (1) determining whether initial char and ash generated under low-NOx conditions have greater tendencies for slagging than conventionally generated ash and (2) determining the differences, if any, between particle size and composition for entrained ash generated under low-NOx and conventional combustion conditions.

  7. Optimal Deployment Plan of Emission Reduction Technologies for TxDOT's Construction Equipment 

    E-Print Network [OSTI]

    Bari, Muhammad Ehsanul

    2010-10-12T23:59:59.000Z

    ................................................ 13 Emission Reduction Options .......................................................... 15 Exhaust Gas Aftertreatment Technologies for Emissions Reductions... Page Figure 15 Total NOx Reduction at the First Stage at Different Budget Amounts (Case 2A) ........................................................................... 66 Figure 16 Total NOx Reduction at the First and Second Stage...

  8. Selective Catalytic Reduction of Oxides of Nitrogen with Ethanol/Gasoline Blends over a Silver/Alumina Catalyst on Lean Gasoline Engine

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y [ORNL; Pihl, Josh A [ORNL; Toops, Todd J [ORNL; Thomas, John F [ORNL; Parks, II, James E [ORNL; West, Brian H [ORNL

    2015-01-01T23:59:59.000Z

    Ethanol is a very effective reductant of nitrogen oxides (NOX) over silver/alumina (Ag/Al2O3) catalysts in lean exhaust environment. With the widespread availability of ethanol/gasoline-blended fuel in the USA, lean gasoline engines equipped with an Ag/Al2O3 catalyst have the potential to deliver higher fuel economy than stoichiometric gasoline engines and to increase biofuel utilization while meeting exhaust emissions regulations. In this work a pre-commercial 2 wt% Ag/Al2O3 catalyst was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine for the selective catalytic reduction (SCR) of NOX with ethanol/gasoline blends. The ethanol/gasoline blends were delivered via in-pipe injection upstream of the Ag/Al2O3 catalyst with the engine operating under lean conditions. A number of engine conditions were chosen to provide a range of temperatures and space velocities for the catalyst performance evaluations. High NOX conversions were achieved with ethanol/gasoline blends containing at least 50% ethanol; however, higher C1/N ratio was needed to achieve greater than 90% NOX conversion, which also resulted in significant HC slip. Temperature and HC dosing were important in controlling selectivity to NH3 and N2O. At high temperatures, NH3 and N2O yields increased with increased HC dosing. At low temperatures, NH3 yield was very low, however, N2O levels became significant. The ability to generate NH3 under lean conditions has potential for application of a dual SCR approach (HC SCR + NH3 SCR) to reduce fuel consumption needed for NOX reduction and/or increased NOX conversion, which is discussed in this work.

  9. HIGH EFFICIENCY, LOW EMISSIONS, SOLID OXIDE FUEL CELL SYSTEMS FOR MULTIPLE APPLICATIONS

    SciTech Connect (OSTI)

    Sara Ward; Michael A. Petrik

    2004-07-28T23:59:59.000Z

    Technology Management Inc. (TMI), teamed with the Ohio Office of Energy Efficiency and Renewable Energy, has engineered, constructed, and demonstrated a stationary, low power, multi-module solid oxide fuel cell (SOFC) prototype system operating on propane and natural gas. Under Phase I, TMI successfully operated two systems in parallel, in conjunction with a single DC-AC inverter and battery bus, and produced net AC electricity. Phase II testing expanded to include alternative and renewable fuels typically available in rural regions of Ohio. The commercial system is expected to have ultra-low pollution, high efficiency, and low noise. The TMI SOFC uses a solid ceramic electrolyte operating at high temperature (800-1000 C) which electrochemically converts gaseous fuels (hydrogen or mixed gases) and oxygen into electricity. The TMI system design oxidizes fuel primarily via electrochemical reactions and uses no burners (which pollute and consume fuel)--resulting in extremely clean exhaust. The use of proprietary sulfur tolerant materials developed by TMI allows system operation without additional fuel pre-processing or sulfur removal. Further, the combination of high operating temperatures and solid state operation increases the potential for higher reliability and efficiencies compared to other types of fuel cells. Applications for the TMI SOFC system cover a wide range of transportation, building, industrial, and military market sectors. A generic technology, fuel cells have the potential to be embodied into multiple products specific to Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) program areas including: Fuel Cells and Microturbines, School Buildings, Transportation, and Bioenergy. This program focused on low power stationary applications using a multi-module system operating on a range of common fuels. By producing clean electricity more efficiently (thus using less fuel), fuel cells have the triple effect of cleaning up the environment, reducing the amount of fuel consumed and, for energy intensive manufacturers, boosting their profits (by reducing energy expenses). Compared to conventional power generation technologies such as internal combustion engines, gas turbines, and coal plants, fuel cells are extremely clean and more efficient, particularly at smaller scales.

  10. Non-thermal plasma based technologies for the after-treatment of automotive exhaust particulates and marine diesel exhaust NOx

    SciTech Connect (OSTI)

    McAdams, R; Beech, P; Gillespie, R; Guy, C; Jones,S; Liddell, T; Morgan, R; Shawcross, J; Weeks, D; Hughes, D; Oesterle, J; Eberspdcher,

    2003-08-24T23:59:59.000Z

    The trend in environmental legislation is such that primary engine modifications will not be sufficient to meet all future emissions requirements and exhaust aftertreatment technologies will need to be employed. One potential solution that is well placed to meet those requirements is non-thermal plasma technology. This paper will describe our work with some of our partners in the development of a plasma based diesel particulate filter (DPF) and plasma assisted catalytic reduction (PACR) for NOx removal. This paper describes the development of non-thermal plasma technology for the aftertreatment of particulates from a passenger car engine and NOx from a marine diesel exhaust application.

  11. State Air Emission Regulations That Affect Electric Power Producers (Update) (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01T23:59:59.000Z

    Several states have recently enacted air emission regulations that will affect the electricity generation sector. The regulations govern emissions of NOx, SO2, CO2, and mercury from power plants.

  12. Energy Efficiency/ Renewable Energy Impact in The Texas Emissions Reduction Plan (TERP): Volume I- Summary Report 

    E-Print Network [OSTI]

    Haberl, J.; Yazdani, B.; Lewis, C.; Liu, Z.; Baltazar, J. C.; Mukhopadhyay, J..; Degelman, L.; McKelvey, K.; Clardige, D.; Ellis, S.; Kim, H.; Zilbershtein. G.; Gilman, D.

    2012-01-01T23:59:59.000Z

    this sixth annual report, Energy Efficiency/Renewable Energy (EE/RE) Impact in the Texas Emissions Reduction Plan (Preliminary Report) to the Texas Commission on Environmental Quality. In this preliminary report, the NOx emissions savings from the energy...

  13. Energy Efficiency/ Renewable Energy Impact in The Texas Emissions Reduction Plan (TERP): Volume I- Summary Report

    E-Print Network [OSTI]

    Haberl, J.; Yazdani, B.; Lewis, C.; Liu, Z.; Baltazar, J. C.; Mukhopadhyay, J..; Degelman, L.; McKelvey, K.; Clardige, D.; Ellis, S.; Kim, H.; Zilbershtein. G.; Gilman, D.

    2012-01-01T23:59:59.000Z

    this sixth annual report, Energy Efficiency/Renewable Energy (EE/RE) Impact in the Texas Emissions Reduction Plan (Preliminary Report) to the Texas Commission on Environmental Quality. In this preliminary report, the NOx emissions savings from the energy...

  14. Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980-2010 period

    SciTech Connect (OSTI)

    Granier, Claire; Bessagnet, Bertrand; Bond, Tami C.; D'Angiola, Ariela; Denier van der Gon, Hugo; Frost, G. J.; Heil, Angelika; Kaiser, Johannes W.; Kinne, Stefan; Klimont, Z.; Kloster, Jean; Lamarque, J.-F.; Liousse, Catherine; Masui, Toshihiko; Meleux, Frederik; Mieville, Aude; Ohara, Toshimasa; Raut, Jean-Christophe; Riahi, Keywan; Schultz, Martin; Smith, Steven J.; Thomson, Allison M.; van Aardenne, John; van der Werf, Guido R.; Van Vuuren, Detlef

    2011-08-08T23:59:59.000Z

    Several different inventories of global and regional anthropogenic and biomass burning emissions are assessed for the 1980-2010 period. The species considered in this study are carbon monoxide, nitrogen oxides, sulfur dioxide and black carbon. The inventories considered include the ACCMIP historical emissions developed in support of the simulations for the IPCC AR5 assessment. Emissions for 2005 and 2010 from the Representative Concentration Pathways (RCPs) are also included. Large discrepancies between the global and regional emissions are identified, which shows that there is still no consensus on the best estimates for surface emissions of atmospheric compounds. At the global scale, anthropogenic emissions of CO, NOx and SO2 show the best agreement in most years. The agreement is low for BC emissions, particularly in the period prior to 2000. The best consensus is for NOx emissions for all periods and all regions, except for China where emissions in 1980 and 1990 need to be better defined. Emissions of CO need a better quantification in the USA for all periods; in Central Europe, the evolution of emissions during the past two decades needs to be better determined. The agreement between the different SO2 emissions datasets is rather good for the USA, but better quantification is needed elsewhere, particularly for Central Europe and China. The comparisons performed in this study show that the use of RCP8.5 for the extension of the ACCMIP inventory beyond 2000 is reasonable, until more global or regional estimates become available. Concerning biomass burning emissions, most inventories agree within 50-80%, depending on the year and season. The large differences are due to differences in the estimates of burned areas from the different available products, as well as in the amount of biomass burnt.

  15. Application of Non-Thermal Plasma Assisted Catalyst Technology for Diesel Engine Emission Reduction

    SciTech Connect (OSTI)

    Herling, Darrell R.; Smith, Monty R.; Baskaran, Suresh; Kupe, J.

    2000-12-31T23:59:59.000Z

    This paper presents an overview of a non-thermal plasma assisted catalyst system as applied to a small displacement diesel powered vehicle. In addition to effectively reducing NOx emissions, it has been found that a non-thermal plasma can also destroy a portion of the particulate matter (PM) that is emitted from diesel engines. Delphi Automotive Systems in conjunction with Pacific Northwest National Laboratories has been developing such an exhaust aftertreatment system to reduce emissions form diesel vehicles. The results of testing and system evaluation will be discussed in general, and the effectiveness on reducing oxides of nitrogen and particulate matter emissions from diesel vehicles. Published in Future Engines-SP1559, SAW, Warrendale, PA

  16. Engineering development of advanced coal-fired low emission boil systems. Quarterly technical progress report, October 1993--December 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    The first test run of the Toroidal Vortex Combustor (TVC) was completed on December 6. Riley was unable to witness or set up independent sampling equipment for NO{sub x} and precursor measurement for this run. A second run which we witnessed, but did not sample, was completed December 17. This was conducted almost entirely near SR = 1.0 while Textron investigated temperature-load relationships to address concerns from Run 1. A third run was completed over the December holiday break on Dorchester coal to address concerns Textron had about the Illinois test coal. All subsequent tests will use the Illinois coal. Boiler, firing system design. Elevation drawings were developed for dry wall-fired, conventional U-fired slagging, and TVC fired slagging units. We are investigating the feasibility of modifying a conventional U-fired design for low-NOx operation as an alternative to the TVC. The approach taken to I date for NOx reduction in existing U-fired units is to retrofit with delayed-mixing burners with staging air at various places, similar to the approach with dry fired units. The concept of staged fuel addition or reburning for the U-fired system is being examined as a potential combustion NOx control approach. This concept has high potential due to the high temperature and long residence time available in the stagger. Some field trials with coke oven gas reburn produced very low NOx results. Modeling of this concept was identified as a priority task. The model development will include matching field data for air staging on slagging units to the predictions. Emissions control. Selection of an SO2 control process continues to be a high priority task. Sargent & Lundy completed a cost comparison of several regenerable processes, most of which have NOx control potential as well: Active coke, NOXSO, copper oxide, SNOX, ammonia (for SO only, ammonium sulfate byproduct), and a limestone scrubber for comparison.

  17. Full Useful Life (120,000 miles) Exhaust Emission Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-Duty Engine in Conjunction with...

  18. Design of Integrated Laboratory and Heavy-Duty Emissions Testing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Emission Reductions Bench-Top Engine System for Fast Screening of Alternative Fuels and Fuel Additives Combining Biodiesel and EGR for Low-Temperature NOx and PM Reductions...

  19. The development of Comprehensive Community NOx Emissions Reduction Toolkit (CCNERT)

    E-Print Network [OSTI]

    Sung, Yong Hoon

    2004-11-15T23:59:59.000Z

    from the Texas Comptroller of Public Accounts Database ........................ 75 Figure 4-14: Procedure for Cross-Checking the Industrial Sector?s Energy Use Estimation with the Actual Energy Use..................................................................................................................... 152 Figure 5-12: The Commercial Sector?s Energy Use.................................................................... 155 Figure 5-13: Comparison of Baseline Model with Actual Consumption in the Commercial Sector...

  20. Controlling Emissions of SOx and NOx from power plants

    E-Print Network [OSTI]

    Toohey, Darin W.

    efficiency of 98 - 99% removal of SO2 compared to 88 - 90% in the 1980's #12;Limestone Scrubbing Chem CaCO3 + 2 SO2 + H2O Ca+2 + 2 HSO3 - + CO2 CaCO3 + 2 HSO3 - + Ca+2 2 CaSO3 + CO2 + H2O CaCO3 + SO2 CaSO3 chamber is called the effluent hold tank (EHT) where more CaCO3 is added in order to precipitate the CaSO3

  1. Passive Catalytic Approach to Low Temperature NOx Emission Abatement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    cycle deer11henry.pdf More Documents & Publications Advanced Technology Light Duty Diesel Aftertreatment System Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel...

  2. Retrofit Diesel Emissions Control System Providing 50% NOxControl |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingof EnhancedRestructuringNinth Single-ShellDepartment

  3. Novel Application of Air Separation Membranes Reduces Engine NOx Emissions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register / Vol. 77, No. 23807 1- Energy

  4. Passive Catalytic Approach to Low Temperature NOx Emission Abatement |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1 Termoelectrica U.SPRESSHeavy-dutyDepartment of Energy

  5. Virtual Oxygen Sensor for Innovative NOx and PM Emission Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02Report | DepartmentTRUVictor DerPlant's

  6. Three-Dimensional Composite Nanostructures for Lean NOx Emission Control |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|Industrial Sector,Department Third ReportMost SignificantDepartment

  7. Three-Dimensional Composite Nanostructures for Lean NOx Emission Control |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|Industrial Sector,Department Third ReportMost

  8. Three-Dimensional Composite Nanostructures for Lean NOx Emission Control |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|Industrial Sector,Department Third ReportMostDepartment of

  9. Effect of Biodiesel Blends on NOx Emissions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board Contributionsreduction systemParticulate Filters |Biodiesel

  10. Electrochemical NOx Sensor for Monitoring Diesel Emissions | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory BoardNucleateElectrochemical Hydrogen Compression

  11. Electrochemical NOx Sensors for Monitoring Diesel Emissions | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory BoardNucleateElectrochemical Hydrogen CompressionEnergy Sensors

  12. Electrochemical NOxSensor for Monitoring Diesel Emissions | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory BoardNucleateElectrochemical Hydrogen CompressionEnergy

  13. New Houston NOx Rules: Implications and Solutions

    E-Print Network [OSTI]

    Cascone, R.

    Capex $MM NOx Reduction Tons/yr Net Cost NPV10 $MM Case 1 4 50 3.6 a. Defer 1 year 4.2 loss due to delay 0.6 b. Defer 2 years 5.4 loss due to delay 1.7 c. Defer 3 years 8.5 loss due to delay 4.8 Case 2 35 750 31.8 a. Defer 1 year 42...

  14. NOx sensor development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many Devils Wash, Shiprock,Departmentsensor development NOx sensor

  15. Greenhouse gas emissions in biogas production systems

    E-Print Network [OSTI]

    Dittert, Klaus; Senbayram, Mehmet; Wienforth, Babette; Kage, Henning; Muehling, Karl H

    2009-01-01T23:59:59.000Z

    Cameron KC. Nitrous oxide emissions from two dairy pastureand land use on N 2 O emissions from an imperfectly drainedoptions for N 2 O emissions from differently managed

  16. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO sub x ) emissions from coal-fired boilers

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The primary objective of the project is to investigate the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NOx emissions and boiler performance on Unit 2 at Gulf Power Company's Plant Lansing Smith located near Lynn Haven, Florida. The project will characterize emissions and performance of a tangentially-fired boiler operating in the following configurations: Baseline as-found'' configuration: Phase 1; retrofitted low NO{sub x} concentric firing system (LNCFS) Level 2 and simulated low NO{sub x} bulk furnace staging (LNBFS): Phase 2; retrofitted low NO{sub x} concentric firing system (LNCFS) Level 3, Phase 3a and simulated LNCFS Level 1, Phase 3b.

  17. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Phase 1, Baseline tests

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The primary objective of the project is to investigate the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NOx emissions and boiler performance on Unit 2 at Gulf Power Company`s Plant Lansing Smith located near Lynn Haven, Florida. The project will characterize emissions and performance of a tangentially-fired boiler operating in the following configurations: Baseline ``as-found`` configuration: Phase 1; retrofitted low NO{sub x} concentric firing system (LNCFS) Level 2 and simulated low NO{sub x} bulk furnace staging (LNBFS): Phase 2; retrofitted low NO{sub x} concentric firing system (LNCFS) Level 3, Phase 3a and simulated LNCFS Level 1, Phase 3b.

  18. NOx Adsorbers for Heavy Duty Truck Engines - Testing and Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adsorbers for Heavy Duty Truck Engines - Testing and Simulation NOx Adsorbers for Heavy Duty Truck Engines - Testing and Simulation This report provides the results of an...

  19. H2-Assisted NOx Traps: Test Cell Results Vehicle Installations

    Broader source: Energy.gov (indexed) [DOE]

    Sam Crane August 28, 2003 H 2 -Assisted NOx Traps: Test Cell Results Vehicle Installations 2 Project Objectives * Determine Advantages of H 2 Assisted NO x Trap Regeneration *...

  20. Enhanced High and Low Temperature Performance of NOx Reduction...

    Energy Savers [EERE]

    High and Low Temperature Performance of NOx Reduction Materials 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

  1. Enhanced High Temperature Performance of NOx Storage/Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Annual Merit Review and Peer Evaluation ace026peden2011o.pdf More Documents & Publications Enhanced High Temperature Performance of NOx StorageReduction (NSR) Materials...

  2. Enhanced High Temperature Performance of NOx Storage/Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting ace026peden2012o.pdf More Documents & Publications Enhanced High Temperature Performance of NOx StorageReduction (NSR) Materials Enhanced High and Low...

  3. Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction

    Broader source: Energy.gov (indexed) [DOE]

    Dynamometer Evaluation of Plasma- Catalyst for Diesel NOx Reduction February 20, 2003 CRADA Protected Document and Data 2 Introduction * Engine dynamometer evaluation of...

  4. Spatiotemporal Distribution of NOx Storage: a Factor Controlling...

    Broader source: Energy.gov (indexed) [DOE]

    LNT & SCR CLEERS Coordination & Joint Development of Benchmark Kinetics for LNT & SCR CumminsORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines...

  5. Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Plasma-Catalyst for Diesel NOx Reduction 2003 DEER Conference Presentation: Ford Motor Company 2003deerhoard.pdf More Documents & Publications Plasma Assisted Catalysis...

  6. Development on simultaneous reduction system of NOx and PM from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    system of NOx and PM from a diesel engine 2003 DEER Converence Presentation: Toyota Motor Corporation 2003deerwatanabe.pdf More Documents & Publications An Improvement of...

  7. Simulating Study of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions Control

    SciTech Connect (OSTI)

    Gao, Zhiming [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Wagner, Robert M [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models to simulate the impact of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty (LD) diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results indicate that utilizing PCCI combustion significantly reduces fuel consumption and tailpipe emissions for the conventional diesel-powered vehicle with NOx and particulate emissions controls. These benefits result from a favorable engine speed-load distribution over the cycle combined with a corresponding reduction in the need to regenerate the LNT and DPF. However, the current PCCI technology appears to offer less potential benefit for diesel HEVs equipped with similar emissions controls. This is because PCCI can only be activated over a relatively small part of the drive cycle. Thus we conclude that future utilization of PCCI in diesel HEVs will require significant extension of the available speed-load range for PCCI and revision of current HEV engine management strategies before significant benefits can be realized.

  8. Oxidation State Optimization for Maximum Efficiency of NOx Adsorber

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartmentOutreachDepartment ofProgram49, the Owens Corning

  9. Fuel Consumption and NOx Trade-offs on a Port-Fuel-Injected SI...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consumption and NOx Trade-offs on a Port-Fuel-Injected SI Gasoline Engine Equipped with a Lean-NOx Trap Fuel Consumption and NOx Trade-offs on a Port-Fuel-Injected SI Gasoline...

  10. Combining Low-Temperature Combustion with Lean-NOx Trap Yields...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Temperature Combustion with Lean-NOx Trap Yields Progress Toward Targets of Efficient NOx Control for Diesels Combining Low-Temperature Combustion with Lean-NOx Trap Yields...

  11. NOx Uptake Mechanism on Pt/BaO/Al2O3 Catalysts. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Al2O3 Catalysts. NOx Uptake Mechanism on PtBaOAl2O3 Catalysts. Abstract: The NOx adsorption mechanism on PtBaOAl2O3 catalysts was investigated by performing NOx storage...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Air Pollution Control Regulations: No. 41- Nox Budget Trading Program (Rhode Island) These regulations establish a budget trading program for nitrogen oxide emissions, setting NOx...

  13. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    SciTech Connect (OSTI)

    Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Suuberg; Eric Eddings; Larry Baxter

    2002-01-31T23:59:59.000Z

    This is the sixth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. Preliminary results from laboratory and field tests of a corrosion probe to predict waterwall wastage indicate good agreement between the electrochemical noise corrosion rates predicted by the probe and corrosion rates measured by a surface profilometer. Four commercial manufacturers agreed to provide catalyst samples to the program. BYU has prepared two V/Ti oxide catalysts (custom, powder form) containing commercially relevant concentrations of V oxide and one containing a W oxide promoter. Two pieces of experimental apparatus being built at BYU to carry out laboratory-scale investigations of SCR catalyst deactivation are nearly completed. A decision was made to carry out the testing at full-scale power plants using a slipstream of gas instead of at the University of Utah pilot-scale coal combustor as originally planned. Design of the multi-catalyst slipstream reactor was completed during this quarter. One utility has expressed interest in hosting a long-term test at one of their plants that co-fire wood with coal. Tests to study ammonia adsorption onto fly ash have clearly established that the only routes that can play a role in binding significant amounts of ammonia to the ash surface, under practical ammonia slip conditions, are those that must involve co-adsorbates.

  14. Synergies of High-Efficiency Clean Combustion and Lean NOx Trap...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Synergies of High-Efficiency Clean Combustion and Lean NOx Trap Catalysts Synergies of High-Efficiency Clean Combustion and Lean NOx Trap Catalysts investigation of potential...

  15. Durability of NOx Absorbers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E TDrew Bittner About Us DrewDualLight-Duty2of NOx

  16. Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Quarterly report No. 4, April--June 1991

    SciTech Connect (OSTI)

    Not Available

    1991-08-01T23:59:59.000Z

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor, Although SCR is widely practiced in Japan and Europe, there are numerous technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuel performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal.

  17. Reduced Turbine Emissions Using Hydrogen-Enriched Fuels

    E-Print Network [OSTI]

    ·Aids in the attainment of energy independence from foreign sources ­ Low-heating and medium emissions Source: Analysis of Strategies for Reducing Multiple Emissions from Power Plants: Sulfur Dioxide Systems At ultra lean conditions a tradeoff exists between NOx and CO emissions · Lean Premixed Combustion

  18. Two-stage Catalytic Reduction of NOx with Hydrocarbons

    SciTech Connect (OSTI)

    Umit S. Ozkan; Erik M. Holmgreen; Matthew M. Yung; Jonathan Halter; Joel Hiltner

    2005-12-21T23:59:59.000Z

    A two-stage system for the catalytic reduction of NO from lean-burn natural gas reciprocating engine exhaust is investigated. Each of the two stages uses a distinct catalyst. The first stage is oxidation of NO to NO{sub 2} and the second stage is reduction of NO{sub 2} to N{sub 2} with a hydrocarbon. The central idea is that since NO{sub 2} is a more easily reduced species than NO, it should be better able to compete with oxygen for the combustion reaction of hydrocarbon, which is a challenge in lean conditions. Early work focused on demonstrating that the N{sub 2} yield obtained when NO{sub 2} was reduced was greater than when NO was reduced. NO{sub 2} reduction catalysts were designed and silver supported on alumina (Ag/Al{sub 2}O{sub 3}) was found to be quite active, able to achieve 95% N{sub 2} yield in 10% O{sub 2} using propane as the reducing agent. The design of a catalyst for NO oxidation was also investigated, and a Co/TiO{sub 2} catalyst prepared by sol-gel was shown to have high activity for the reaction, able to reach equilibrium conversion of 80% at 300 C at GHSV of 50,000h{sup -1}. After it was shown that NO{sub 2} could be more easily reduced to N{sub 2} than NO, the focus shifted on developing a catalyst that could use methane as the reducing agent. The Ag/Al{sub 2}O{sub 3} catalyst was tested and found to be inactive for NOx reduction with methane. Through iterative catalyst design, a palladium-based catalyst on a sulfated-zirconia support (Pd/SZ) was synthesized and shown to be able to selectively reduce NO{sub 2} in lean conditions using methane. Development of catalysts for the oxidation reaction also continued and higher activity, as well as stability in 10% water, was observed on a Co/ZrO{sub 2} catalyst, which reached equilibrium conversion of 94% at 250 C at the same GHSV. The Co/ZrO{sub 2} catalyst was also found to be extremely active for oxidation of CO, ethane, and propane, which could potential eliminate the need for any separate oxidation catalyst. At every stage, catalyst synthesis was guided by the insights gained through detailed characterization of the catalysts using many surface and bulk analysis techniques such as X-ray diffraction, X-ray photoelectron spectroscopy, Temperature-programmed Reduction, Temperature programmed Desorption, and Diffuse Reflectance InfraRed Fourier Transform Spectroscopy as well as steady state reaction experiments. Once active catalysts for each stage had been developed, a physical mixture of the two catalysts was tested for the reduction of NO with methane in lean conditions. These experiments using a mixture of the catalysts produced N2 yields as high as 90%. In the presence of 10% water, the catalyst mixture produced 75% N{sub 2} yield, without any optimization. The dual catalyst system developed has the potential to be implemented in lean-burn natural gas engines for reducing NOx in lean exhaust as well as eliminating CO and unburned hydrocarbons without any fuel penalty or any system modifications. If funding continues, future work will focus on improving the hydrothermal stability of the system to bring the technology closer to application.

  19. Spatial variability of nitrous oxide and methane emissions from an MBT landfill in operation: Strong N{sub 2}O hotspots at the working face

    SciTech Connect (OSTI)

    Harborth, Peter, E-mail: p.harborth@tu-bs.de [Department of Waste and Resource Management, Leichtweiß-Institute for Hydraulic Engineering and Water Resources, Technische Universität Braunschweig, Braunschweig (Germany); Fuß, Roland [Institute of Climate-Smart Agriculture, Johann Heinrich von Thünen Institute, Braunschweig (Germany); Münnich, Kai [Department of Waste and Resource Management, Leichtweiß-Institute for Hydraulic Engineering and Water Resources, Technische Universität Braunschweig, Braunschweig (Germany); Flessa, Heinz [Institute of Climate-Smart Agriculture, Johann Heinrich von Thünen Institute, Braunschweig (Germany); Fricke, Klaus [Department of Waste and Resource Management, Leichtweiß-Institute for Hydraulic Engineering and Water Resources, Technische Universität Braunschweig, Braunschweig (Germany)

    2013-10-15T23:59:59.000Z

    Highlights: ? First measurements of N{sub 2}O and CH{sub 4} emissions from an MBT landfill. ? High N{sub 2}O emissions from recently deposited material. ? N{sub 2}O emissions associated with aeration and the occurrence of nitrite and nitrate. ? Strong negative correlation between CH{sub 4} and N{sub 2}O production activity. - Abstract: Mechanical biological treatment (MBT) is an effective technique, which removes organic carbon from municipal solid waste (MSW) prior to deposition. Thereby, methane (CH{sub 4}) production in the landfill is strongly mitigated. However, direct measurements of greenhouse gas emissions from full-scale MBT landfills have not been conducted so far. Thus, CH{sub 4} and nitrous oxide (N{sub 2}O) emissions from a German MBT landfill in operation as well as their concentrations in the landfill gas (LFG) were measured. High N{sub 2}O emissions of 20–200 g CO{sub 2} eq. m{sup ?2} h{sup ?1} magnitude (up to 428 mg N m{sup ?2} h{sup ?1}) were observed within 20 m of the working face. CH{sub 4} emissions were highest at the landfill zone located at a distance of 30–40 m from the working face, where they reached about 10 g CO{sub 2} eq. m{sup ?2} h{sup ?1}. The MBT material in this area has been deposited several weeks earlier. Maximum LFG concentration for N{sub 2}O was 24.000 ppmv in material below the emission hotspot. At a depth of 50 cm from the landfill surface a strong negative correlation between N{sub 2}O and CH{sub 4} concentrations was observed. From this and from the distribution pattern of extractable ammonium, nitrite, and nitrate it has been concluded that strong N{sub 2}O production is associated with nitrification activity and the occurrence of nitrite and nitrate, which is initiated by oxygen input during waste deposition. Therefore, CH{sub 4} mitigation measures, which often employ aeration, could result in a net increase of GHG emissions due to increased N{sub 2}O emissions, especially at MBT landfills.

  20. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect (OSTI)

    David R. Thompson; Lawrence E. Bool; Jack C. Chen

    2003-04-01T23:59:59.000Z

    This quarterly technical progress report will summarize work accomplished for the Program through the twelfth quarter, January-March 2003, in the following task areas: Task 1--Oxygen Enhanced Combustion, Task 2--Oxygen Transport Membranes, Task 3--Economic Evaluation and Task 4--Program Management. The program is proceeding in accordance with the objectives for the third year. Pilot scale experiments conducted at the University of Utah explored both the effectiveness of oxygen addition and the best way to add oxygen with a scaled version of Riley Power's newest low NOx burner design. CFD modeling was done to compare the REI's modeling results for James River Unit 3 with the NOx and LOI results obtained during the demonstration program at that facility. Investigation of an alternative method of fabrication of PSO1d elements was conducted. OTM process development work has concluded with the completion of a long-term test of a PSO1d element Economic evaluation has confirmed the advantage of oxygen-enhanced combustion. Proposals have been submitted for two additional beta test sites. Commercial proposals have been submitted. Economic analysis of a beta site test performance was conducted.

  1. Analysis Of Exhaust Emission Of Internal Combustion Engine Using Biodiesel Blend

    E-Print Network [OSTI]

    Suvendu Mohanty; Dr. Om Prakash; Reasearch Scholar

    Abstract-The main purpose of this research is to study the effect of various blends of an environmental friendly alternative fuel such as biodiesel on the performance of diesel engine. In the Present investigation experimental work has been carried out to analyze the performance and exhaust emission characteristics of a single cylinder internal combustion engine fuelled with biodiesel blend at the different load. In this experiment the biodiesel which is use as a waste cooking oil (WCO) biodiesel.To investigation of the emission characteristics of the engine loads, which is supplied from the alternator. The experiment was carried out different load i.e. (NO LOAD, 100W 200W, 500W, 1000W, 1500W, 2000W, 2500W & 3000Watt) at engine speed 1500 rpm/min. A test was applied in which an engine was fuel with diesel and seven different blends of diesel. Biodiesel (B5, B10, B20, B40, B60, B80, B100) made from waste cooking oil and the results were analyzed.The emission of were measured carbon monoxide (CO), hydrocarbon carbon(HC), Oxides of nitrogen (NOX) and oxygen ().The experimental results will be compared with biodiesel blends and diesel. The biodiesel results of (WCO) in lower emission of hydro carbon (HC) and (CO) and increase emission of (NO2). This study showed that the results of exhaust emission of biodiesel blends were lower than the diesel fuel. Keyword- Biodiesel (WCO), diesel engine, gas analyzer, Exhaust emission. I.

  2. Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model

    SciTech Connect (OSTI)

    Greenblatt, Jeffery B.

    2013-10-10T23:59:59.000Z

    A California Greenhouse Gas Inventory Spreadsheet (GHGIS) model was developed to explore the impact of combinations of state policies on state greenhouse gas (GHG) and regional criteria pollutant emissions. The model included representations of all GHG- emitting sectors of the California economy (including those outside the energy sector, such as high global warming potential gases, waste treatment, agriculture and forestry) in varying degrees of detail, and was carefully calibrated using available data and projections from multiple state agencies and other sources. Starting from basic drivers such as population, numbers of households, gross state product, numbers of vehicles, etc., the model calculated energy demands by type (various types of liquid and gaseous hydrocarbon fuels, electricity and hydrogen), and finally calculated emissions of GHGs and three criteria pollutants: reactive organic gases (ROG), nitrogen oxides (NOx), and fine (2.5 ?m) particulate matter (PM2.5). Calculations were generally statewide, but in some sectors, criteria pollutants were also calculated for two regional air basins: the South Coast Air Basin (SCAB) and the San Joaquin Valley (SJV). Three scenarios were developed that attempt to model: (1) all committed policies, (2) additional, uncommitted policy targets and (3) potential technology and market futures. Each scenario received extensive input from state energy planning agencies, in particular the California Air Resources Board. Results indicate that all three scenarios are able to meet the 2020 statewide GHG targets, and by 2030, statewide GHG emissions range from between 208 and 396 MtCO2/yr. However, none of the scenarios are able to meet the 2050 GHG target of 85 MtCO2/yr, with emissions ranging from 188 to 444 MtCO2/yr, so additional policies will need to be developed for California to meet this stringent future target. A full sensitivity study of major scenario assumptions was also performed. In terms of criteria pollutants, targets were less well-defined, but while all three scenarios were able to make significant reductions in ROG, NOx and PM2.5 both statewide and in the two regional air basins, they may nonetheless fall short of what will be required by future federal standards. Specifically, in Scenario 1, regional NOx emissions are approximately three times the estimated targets for both 2023 and 2032, and in Scenarios 2 and 3, NOx emissions are approximately twice the estimated targets. Further work is required in this area, including detailed regional air quality modeling, in order to determine likely pathways for attaining these stringent targets.

  3. Agricultural Bio-Fueled Generation of Electricity and Development of Durable and Efficent NOx Reduction

    SciTech Connect (OSTI)

    Boyd, Rodney

    2007-08-08T23:59:59.000Z

    The objective of this project was to define the scope and cost of a technology research and development program that will demonstrate the feasibility of using an off-the-shelf, unmodified, large bore diesel powered generator in a grid-connected application, utilizing various blends of BioDiesel as fuel. Furthermore, the objective of project was to develop an emissions control device that uses a catalytic process and BioDiesel (without the presence of Ammonia or Urea)to reduce NOx and other pollutants present in a reciprocating engine exhaust stream with the goal of redefining the highest emission reduction efficiencies possible for a diesel reciprocating generator. Process: Caterpillar Power Generation adapted an off-the-shelf Diesel Generator to run on BioDiesel and various Petroleum Diesel/BioDiesel blends. EmeraChem developed and installed an exhaust gas cleanup system to reduce NOx, SOx, volatile organics, and particulates. The system design and function was optimized for emissions reduction with results in the 90-95% range;

  4. DEVELOPMENT AND DEMONSTRATION OF AN ULTRA LOW NOx COMBUSTOR FOR GAS TURBINES

    SciTech Connect (OSTI)

    NEIL K. MCDOUGALD

    2005-04-30T23:59:59.000Z

    Alzeta Corporation has developed surface-stabilized fuel injectors for use with lean premixed combustors which provide extended turndown and ultra-low NOX emission performance. These injectors use a patented technique to form interacting radiant and blue-flame zones immediately above a selectively-perforated porous metal surface. This allows stable operation at low reaction temperatures. This technology is being commercialized under the product name nanoSTAR. Initial tests demonstrated low NOX emissions but, were limited by flashback failure of the injectors. The weld seams required to form cylindrical injectors from flat sheet material were identified as the cause of the failures. The approach for this project was to first develop new fabrication methods to produce injectors without weld seams, verify similar emissions performance to the original flat sheet material and then develop products for microturbines and small gas turbines along parallel development paths. A 37 month project was completed to develop and test a surface stabilized combustion system for gas turbine applications. New fabrication techniques developed removed a technological barrier to the success of the product by elimination of conductive weld seams from the injector surface. The injectors demonstrated ultra low emissions in rig tests conducted under gas turbine operating conditions. The ability for injectors to share a common combustion chamber allowing for deployment in annular combustion liner was also demonstrated. Some further development is required to resolve integration issues related to specific engine constraints, but the nanoSTAR technology has clearly demonstrated its low emissions potential. The overall project conclusions can be summarized: (1) A wet-laid casting method successfully eliminated weld seams from the injector surface without degrading performance. (2) Gas turbine cycle analysis identified several injector designs and control schemes to start and load engines using nanoSTAR technology. A mechanically simple single zone injector can be used in Solar Turbine's Taurus 60 engine. (3) Rig testing of single monolithic injectors demonstrated sub 3 ppmv NOX and sub 10 ppmv CO and UHC emissions (all corrected to 15% O2) at Taurus 60 full-load pressure and combustion air inlet temperature. (4) Testing of two nanoSTAR injectors in Solar Turbine's sector rig demonstrated the ability for injectors to survive when fired in close proximity at Taurus 60 full load pressure and combustion air inlet temperature. (5) Sector rig tests demonstrated emissions performance and range of operability consistent with single injector rig tests. Alzeta has committed to the commercialization of nanoSTAR injectors and has sufficient production capability to conclude development and meet initial demand.

  5. American Institute of Aeronautics and Astronautics A Modular State-Vector based Modeling Architecture for

    E-Print Network [OSTI]

    de Weck, Olivier L.

    . de Weck Massachusetts Institute of Technology, Cambridge, MA, 02139 Diesel emission regulations HCReg = Hydrocarbon (HC) emissions regulation limit COReg = Carbon Monoxide (CO) emissions regulation limit NOxRegs = Oxides of Nitrogen (NOx) emissions regulation limit PMReg = Particulate Matter (PM

  6. METHANE de-NOX for Utility PC Boilers

    SciTech Connect (OSTI)

    Bruce Bryan; Serguei Nester; Joseph Rabovitser; Stan Wohadlo

    2005-09-30T23:59:59.000Z

    The overall project objective is the development and validation of an innovative combustion system, based on a novel coal preheating concept prior to combustion, that can reduce NO{sub x} emissions to 0.15 lb/million Btu or less on utility pulverized coal (PC) boilers. This NO{sub x} reduction should be achieved without loss of boiler efficiency or operating stability, and at more than 25% lower levelized cost than state-of-the-art SCR technology. A further objective is to ready technology for full-scale commercial deployment to meet the market demand for NO{sub x} reduction technologies. Over half of the electric power generated in the U.S. is produced by coal combustion, and more than 80% of these units utilize PC combustion technology. Conventional measures for NOx reduction in PC combustion processes rely on combustion and post-combustion modifications. A variety of combustion-based NO{sub x} reduction technologies are in use today, including low-NO{sub x} burners (LNBs), flue gas recirculation (FGR), air staging, and natural gas or other fuel reburning. Selective non-catalytic reduction (SNCR) and selective catalytic reduction (SCR) are post-combustion techniques. NO{sub x} reduction effectiveness from these technologies ranges from 30 to 60% and up to 90-93% for SCR. Typically, older wall-fired PC burner units produce NO{sub x} emissions in the range of 0.8-1.6 lb/million Btu. Low-NO{sub x} burner systems, using combinations of fuel staging within the burner and air staging by introduction of overfire air in the boiler, can reduce NO{sub x} emissions by 50-60%. This approach alone is not sufficient to meet the desired 0.15 lb/million Btu NO{sub x} standard with a range of coals and boiler loads. Furthermore, the heavy reliance on overfire air can lead to increased slagging and corrosion in furnaces, particularly with higher-sulfur coals, when LNBs are operated at sub-stoichiometric conditions to reduce fuel-derived NOx in the flame. Therefore, it is desirable to minimize the need for overfire air by maximizing NO{sub x} reduction in the burner. The proposed combustion concept aims to greatly reduce NO{sub x} emissions by incorporating a novel modification to conventional or low-NO{sub x} PC burners using gas-fired coal preheating to destroy NO{sub x} precursors and prevent NO{sub x} formation. A concentrated PC stream enters the burner, where flue gas from natural gas combustion is used to heat the PC up to about 1500 F prior to coal combustion. Secondary fuel consumption for preheating is estimated to be 3 to 5% of the boiler heat input. This thermal pretreatment releases coal volatiles, including fuel-bound nitrogen compounds into oxygen-deficient atmosphere, which converts the coal-derived nitrogen compounds to molecular N{sub 2} rather than NO. Design, installation, shakedown, and testing on Powder River Basin (PRB) coal at a 3-million Btu/h pilot system at RPI's (Riley Power, Inc.) pilot-scale combustion facility (PSCF) in Worcester, MA demonstrated that the PC PREHEAT process has a significant effect on final O{sub x} formation in the coal burner. Modifications to both the pilot system gas-fired combustor and the PC burner led to NO{sub x} reduction with PRB coal to levels below 0.15 lb/million Btu with CO in the range of 35-112 ppmv without any furnace air staging.

  7. Simulated fuel economy and emissions performance during city and interstate driving for a heavy-duty hybrid truck

    SciTech Connect (OSTI)

    Daw, C Stuart [ORNL; Gao, Zhiming [ORNL; Smith, David E [ORNL; LaClair, Tim J [ORNL; Pihl, Josh A [ORNL; Edwards, Kevin Dean [ORNL

    2013-01-01T23:59:59.000Z

    We compare simulated fuel economy and emissions for both conventional and hybrid class 8 heavy-duty diesel trucks operating over multiple urban and highway driving cycles. Both light and heavy freight loads were considered, and all simulations included full aftertreatment for NOx and particulate emissions controls. The aftertreatment components included a diesel oxidation catalyst (DOC), urea-selective catalytic NOx reduction (SCR), and a catalyzed diesel particulate filter (DPF). Our simulated hybrid powertrain was configured with a pre-transmission parallel drive, with a single electric motor between the clutch and gearbox. A conventional HD truck with equivalent diesel engine and aftertreatment was also simulated for comparison. Our results indicate that hybridization can significantly increase HD fuel economy and improve emissions control in city driving. However, there is less potential hybridization benefit for HD highway driving. A major factor behind the reduced hybridization benefit for highway driving is that there are fewer opportunities to utilize regenerative breaking. Our aftertreatment simulations indicate that opportunities for passive DPF regeneration are much greater for both hybrid and conventional trucks during highway driving due to higher sustained exhaust temperatures. When passive DPF regeneration is extensively utilized, the fuel penalty for particulate control is virtually eliminated, except for the 0.4%-0.9% fuel penalty associated with the slightly higher exhaust backpressure.

  8. Impact of realistic hourly emissions profiles on air pollutants concentrations modelled with CHIMERE

    E-Print Network [OSTI]

    Menut, Laurent

    Impact of realistic hourly emissions profiles on air pollutants concentrations modelled Keywords: Atmospheric composition European air quality Anthropogenic emissions a b s t r a c t Regional inputs data like anthropogenic surface emissions of NOx, VOCs and particulate matter. These emissions

  9. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect (OSTI)

    David R. Thompson; Lawrence E. Bool; Jack C. Chen

    2003-08-01T23:59:59.000Z

    This quarterly technical progress report will summarize work accomplished for the Program through the thirteenth quarter, April-June 2003, in the following task areas: Task 1--Oxygen Enhanced Combustion, Task 3--Economic Evaluation and Task 4--Program Management. The program is proceeding in accordance with project objectives. REI's model was modified to evaluate mixing issues in the upper furnace of a staged unit. Analysis of the results, and their potential application to this unit is ongoing. Economic evaluation continues to confirm the advantage of oxygen-enhanced combustion. A contract for a commercial demonstration has been signed with the Northeast Generation Services Company to supply oxygen and license the oxygen enhanced low NOx combustor technology for use at the 147-megawatt coal fired Mt. Tom Station in Holyoke, MA. Commercial proposals have been submitted. Economic analysis of a beta site test performance was conducted.

  10. Quantification of Energy and Emissions Saved in Energy Efficiency/ Renewable Energy (EE/RE) Programs in Texas

    E-Print Network [OSTI]

    Haberl, J. S.; Baltazar, J. C.; Mao, C.

    2012-01-01T23:59:59.000Z

    /PCA) PUC-SB5 (MWh/PCA) Wind-ERCOT (MWh/PCA) SECO (MWh/PCA) SEER13-Single Family (MWh/County) SEER13- Multifamily (MWh/County) INTEGRATED NOx SAVINGS: Process Flow Diagram of the NOx Emissions Reduction Calcs. p. 85 Energy Systems Laboratory © 2011... Laboratory © 2011 • Texas Emission Reduction Plan (TERP) – Emissions reductions in Texas counties – Energy efficiency codes support and training LEGISLATURE DIRECTED RESEARCH p. 13 Energy Systems Laboratory © 2011 Legislation passed to reduce energy...

  11. Global Assessment of Hydrogen Technologies - Task 2 Report Comparison of Performance and Emissions from Near-Term Hydrogen Fueled Light Duty Vehicles

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Ng, Henry K.; Waller, Thomas

    2007-12-01T23:59:59.000Z

    An investigation was conducted on the emissions and efficiency from hydrogen blended compressed natural gas (CNG) in light duty vehicles. The different blends used in this investigation were 0%, 15%, 30%, 50%, 80%, 95%, and ~100% hydrogen, the remainder being compressed natural gas. The blends were tested using a Ford F-150 and a Chevrolet Silverado truck supplied by Arizona Public Services. Tests on emissions were performed using four different driving condition tests. Previous investigation by Don Karner and James Frankfort on a similar Ford F-150 using a 30% hydrogen blend showed that there was substantial reduction when compared to gasoline in carbon monoxide (CO), nitrogen oxide (NOx), and carbon dioxide (CO2) emissions while the reduction in hydrocarbon (HC) emissions was minimal. This investigation was performed using different blends of CNG and hydrogen to evaluate the emissions reducing capabilities associated with the use of the different fuel blends. The results were then tested statistically to confirm or reject the hypotheses on the emission reduction capabilities. Statistically analysis was performed on the test results to determine whether hydrogen concentration in the HCNG had any effect on the emissions and the fuel efficiency. It was found that emissions from hydrogen blended compressed natural gas were a function of driving condition employed. Emissions were found to be dependent on the concentration of hydrogen in the compressed natural gas fuel blend.

  12. Electro Catalytic Oxidation (ECO) Operation

    SciTech Connect (OSTI)

    Morgan Jones

    2011-03-31T23:59:59.000Z

    The power industry in the United States is faced with meeting many new regulations to reduce a number of air pollutants including sulfur dioxide, nitrogen oxides, fine particulate matter, and mercury. With over 1,000 power plants in the US, this is a daunting task. In some cases, traditional pollution control technologies such as wet scrubbers and SCRs are not feasible. Powerspan's Electro-Catalytic Oxidation, or ECO{reg_sign} process combines four pollution control devices into a single integrated system that can be installed after a power plant's particulate control device. Besides achieving major reductions in emissions of sulfur dioxide (SO{sub 2}), nitrogen oxides (NOx), fine particulate matter (PM2.5) and mercury (Hg), ECO produces a highly marketable fertilizer, which can help offset the operating costs of the process system. Powerspan has been operating a 50-MW ECO commercial demonstration unit (CDU) at FirstEnergy Corp.'s R.E. Burger Plant near Shadyside, Ohio, since February 2004. In addition to the CDU, a test loop has been constructed beside the CDU to demonstrate higher NOx removal rates and test various scrubber packing types and wet ESP configurations. Furthermore, Powerspan has developed the ECO{reg_sign}{sub 2} technology, a regenerative process that uses a proprietary solvent to capture CO{sub 2} from flue gas. The CO{sub 2} capture takes place after the capture of NOx, SO{sub 2}, mercury, and fine particulate matter. Once the CO{sub 2} is captured, the proprietary solution is regenerated to release CO{sub 2} in a form that is ready for geological storage or beneficial use. Pilot scale testing of ECO{sub 2} began in early 2009 at FirstEnergy's Burger Plant. The ECO{sub 2} pilot unit is designed to process a 1-MW flue gas stream and produce 20 tons of CO{sub 2} per day, achieving a 90% CO{sub 2} capture rate. The ECO{sub 2} pilot program provided the opportunity to confirm process design and cost estimates, and prepare for large scale capture and sequestration projects. The objectives of this project were to prove at a commercial scale that ECO is capable of extended operations over a range of conditions, that it meets the reliability requirements of a typical utility, and that the fertilizer co-product can be consistently generated, providing ECO with an economic advantage over conventional technologies currently available. Further objectives of the project were to show that the ECO system provides flue gas that meets the inlet standards necessary for ECO{sub 2} to operate, and that the outlet CO{sub 2} and other constituents produced by the ECO{sub 2} pilot can meet Kinder-Morgan pipeline standards for purposes of sequestration. All project objectives are consistent with DOE's Pollution Control Innovations for Power Plants program goals.

  13. Synergy between Pollution and Carbon Emissions Control: Comparing China and the U.S.

    E-Print Network [OSTI]

    Nam, Kyung-Min

    We estimate the potential synergy between pollution and climate control in the U.S. and China, summarizing the results as emissions cross-elasticities of control. We set a range of NOx and SO2 targets, and record the ...

  14. Reductions in ozone concentrations due to controls on variability in industrial flare emissions in Houston, Texas

    E-Print Network [OSTI]

    Nam, Junsang

    2007-01-01T23:59:59.000Z

    High concentrations of ozone in the Houston/Galveston area are associated with industrial plumes of highly reactive hydrocarbons, mixed with NOx. The emissions leading to these plumes can have significant temporal variability, ...

  15. Refinery Furnaces Retrofit with Gas Turbines Achieve Both Energy Savings and Emission Reductions 

    E-Print Network [OSTI]

    Giacobbe, F.; Iaquaniello, G.; Minet, R. G.; Pietrogrande, P.

    1985-01-01T23:59:59.000Z

    Integrating gas turbines with refinery furnaces can be a cost effective means of reducing NOx emissions while also generating electricity at an attractive heat rate. Design considerations and system costs are presented....

  16. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01T23:59:59.000Z

    Effects of Methyl Ester Biodiesel Blends on NOx Emissions.Increase When Burning Biodiesel; A New (Old) Theory. FuelE. ; Natarajan, M. Effects of Biodiesel Fuels Upon Criteria

  17. Lean NOx Trap Regeneration Selectivity Towards N2O -- Similarities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regeneration Selectivity Towards N2O -- Similarities and Differences Between H2, CO and C3H6 Reductants Lean NOx Trap Regeneration Selectivity Towards N2O -- Similarities and...

  18. Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y [ORNL; Curran, Scott [ORNL; Barone, Teresa L [ORNL; Lewis Sr, Samuel Arthur [ORNL; Storey, John Morse [ORNL; Cho, Kukwon [ORNL; Wagner, Robert M [ORNL; Parks, II, James E [ORNL

    2010-01-01T23:59:59.000Z

    Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOx) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity- controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection system to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline to diesel fuel that gave the highest engine efficiency and lowest emissions. Engine-out emissions for aldehydes, ketones and PM were compared with emissions from conventional diesel combustion. Sampling and analysis was carried out following micro-tunnel dilution of the exhaust. Particle geometric mean diameter, number-size distribution, and total number concentration were measured by a scanning mobility particle sizer (SMPS). For the particle mass measurements, samples were collected on Teflon-coated quartz-fiber filters and analyzed gravimetrically. Gaseous aldehydes and ketones were sampled using dinitrophenylhydrazine-coated solid phase extraction cartridges and the extracts were analyzed by liquid chromatography/mass spectrometry (LC/MS). In addition, emissions after a diesel oxidation catalyst (DOC) were also measured to investigate the destruction of CO, HC and formaldehydes by the catalyst.

  19. Further improvement of conventional diesel NOx aftertreatment...

    Broader source: Energy.gov (indexed) [DOE]

    FEV GmbHOct 5 th 2011 DEER 2 Outline Introduction: Status of T2B5 LNT passenger car applications Improvement potential of engine out emissions Improvement...

  20. Comparison Study of SPEA2+, SPEA2, and NSGA-II in Diesel Engine Emissions and Fuel Economy Problem

    E-Print Network [OSTI]

    Coello, Carlos A. Coello

    Comparison Study of SPEA2+, SPEA2, and NSGA-II in Diesel Engine Emissions and Fuel Economy Problem@mail.doshisha.ac.jp Abstract- Recently, the technology that can control NOx and Soot values of diesel engines by changing between fuel economy and NOx values. Therefore, the diesel engines that can change their characteristics

  1. Growth and field-emission property of tungsten oxide nanotip arrays Jun Zhou, Li Gong, Shao Zhi Deng,a

    E-Print Network [OSTI]

    Wang, Zhong L.

    and Engineering, SunYat-Sen (Zhongshan) University, Guangzhou, 510275, China Rusen Yang and Zhong Lin Wangb School in the threshold field.14­16 Tungsten oxide is a very important semiconductor. It has been found to be of great- tion deposition process. The experimental setup consists of a vacuum chamber 300 mm 400 mm , two copper

  2. Emission projections for the U.S. Environmental Protection Agency Section 812 Second Prospective Clean Air Act cost/benefit analysis

    SciTech Connect (OSTI)

    James H. Wilson, Jr.; Maureen A. Mullen; Andrew D. Bollman (and others) [E.H. Pechan & Associates, Inc., Springfield, VA (United States)

    2008-05-15T23:59:59.000Z

    This paper describes the analysis, methods, and results of the recently completed emission projections. There are several unique features of this analysis. One is the use of consistent economic assumptions from the Department of Energy's Annual Energy Outlook 2005 (AEO 2005) projections as the basis for estimating 2010 and 2020 emissions for all sectors. Another is the analysis of the different emissions paths for both with and without CAAA scenarios. Other features of this analysis include being the first EPA analysis that uses the 2002 National Emission Inventory files as the basis for making 48-state emission projections, incorporating control factor files from the Regional Planning Organizations (RPOs) that had completed emission projections at the time the analysis was performed, and modeling the emission benefits of the expected adoption of measures to meet the 8-hr ozone National Ambient Air Quality Standards (NAAQS), the Clean Air Visibility Rule, and the PM2.5 NAAQS. This analysis shows that the 1990 CAAA have produced significant reductions in criteria pollutant emissions since 1990 and that these emission reductions are expected to continue through 2020. CAAA provisions have reduced volatile organic compound (VOC) emissions by approximately 7 million t/yr by 2000, and are estimated to produce associated VOC emission reductions of 16.7 million t by 2020. Total oxides of nitrogen (NOx) emission reductions attributable to the CAAA are 5, 12, and 17 million t in 2000, 2010, and 2020, respectively. Sulfur dioxide (SO{sub 2}) emission benefits during the study period are dominated by electricity-generating unit (EGU) SO{sub 2} emission reductions. These EGU emission benefits go from 7.5 million t reduced in 2000 to 15 million t reduced in 2020. 16 refs., 6 figs., 13 tabs.

  3. Modeling of selective catalytic reduction (SCR) of nitric oxide with ammonia using four modern catalysts

    E-Print Network [OSTI]

    Sharma, Giriraj

    2005-11-01T23:59:59.000Z

    values of the SCR process parameters, namely temperature, inlet oxygen concentration and inlet ammonia concentration. The NOx emission, its formation and control methods are discussed briefly and then the fundamentals of the SCR process are described...

  4. Pilot-Scale Demonstration of ALTA for NOx Control in Pulverized Coal-Fired Boilers

    SciTech Connect (OSTI)

    Andrew Fry; Devin Davis; Marc Cremer; Bradley Adams

    2008-04-30T23:59:59.000Z

    This report describes computational fluid dynamics (CFD) modeling and pilot-scale testing conducted to demonstrate the ability of the Advanced Layered Technology Approach (ALTA) to reduce NO{sub x} emissions in a pulverized coal (PC) boiler. Testing specifically focused on characterizing NO{sub x} behavior with deep burner staging combined with Rich Reagent Injection (RRI). Tests were performed in a 4 MBtu/hr pilot-scale furnace at the University of Utah. Reaction Engineering International (REI) led the project team which included the University of Utah and Combustion Components Associates (CCA). Deep burner staging and RRI, combined with selective non-catalytic reduction (SNCR), make up the Advanced Layered Technology Approach (ALTA) for NO{sub x} reduction. The application of ALTA in a PC environment requires homogenization and rapid reaction of post-burner combustion gases and has not been successfully demonstrated in the past. Operation of the existing low-NO{sub x} burner and design and operation of an application specific ALTA burner was guided by CFD modeling conducted by REI. Parametric pilot-scale testing proved the chemistry of RRI in a PC environment with a NOx reduction of 79% at long residence times and high baseline NOx rate. At representative particle residence times, typical operation of the dual-register low-NO{sub x} burner provided an environment that was unsuitable for NO{sub x} reduction by RRI, showing no NOx reduction. With RRI, the ALTA burner was able to produce NO{sub x} emissions 20% lower than the low-NO{sub x} burner, 76 ppmv vs. 94 ppmv, at a burner stoichiometric ratio (BSR) of 0.7 and a normalized stoichiometric ratio (NSR) of 2.0. CFD modeling was used to investigate the application of RRI for NO{sub x} control on a 180 MW{sub e} wall-fired, PC boiler. A NO{sub x} reduction of 37% from baseline (normal operation) was predicted using ALTA burners with RRI to produce a NO{sub x} emission rate of 0.185 lb/MBtu at the horizontal nose of the boiler. When combined with SNCR, a NO{sub x} emission rate of 0.12-0.14 lb/MBtu can be expected when implementing a full ALTA system on this unit. Cost effectiveness of the full ALTA system was estimated at $2,152/ton NO{sub x} removed; this was less than 75% of the cost estimated for an SCR system on a unit of this size.

  5. Lean NOx Catalysis Research and Development

    Broader source: Energy.gov (indexed) [DOE]

    temperature range, poorly selective (N 2 O) Zeolites (ex. Cu-ZSM-5) active, selective hydro-thermally unstable Metal oxides (ex. AgAl 2 O 3 ) highly selective, stable,...

  6. Inorganic aerosols responses to emission changes in Yangtze River Delta, China

    SciTech Connect (OSTI)

    Dong, Xinyi; Li, Juan; Fu, Joshua S.; Gao, Yang; Huang, Kan; Zhuang, Guoshun

    2014-05-15T23:59:59.000Z

    China announced the Chinese National Ambient Air Quality standards (CH-NAAQS) on Feb. 29th, 2012, and PM2.5 is for the very first time included in the standards as a criteria pollutant. In order to probe into PM2.5 pollution over Yangtze River Delta, which is one of the major urban clusters hosting more than 80 million people in China, the integrated MM5/CMAQ modeling system is applied for a full year simulation to examine the PM2.5 concentration and seasonality, and also the inorganic aerosols responses to precursor emission changes. Both simulation and observation demonstrated that, inorganic aerosols have substantial contributions to PM2.5 over YRD, ranging from 37.1% in November to 52.8% in May. Nocturnal production of nitrate (NO3-) through heterogeneous hydrolysis of N2O5 was found significantly contribute to high NO3-concentration throughout the year. We also found that in winter NO3- was even increased under nitrogen oxides (NOx) emission reduction due to higher production of N2O5 from the excessive ozone (O3) introduced by attenuated titration, which further lead to increase of ammonium (NH4+) and sulfate (SO42-), while other seasons showed decrease response of NO3-. Sensitivity responses of NO3- under anthropogenic VOC emission reduction was examined and demonstrated that in urban areas over YRD, NO3- formation was actually VOC sensitive due to the O3-involved nighttime chemistry of N2O5, while a reduction of NOx emission may have counter-intuitive effect by increasing concentrations of inorganic aerosols.

  7. Regional NO2 emission inversion through four-dimensional variational approach using

    E-Print Network [OSTI]

    Sandu, Adrian

    Regional NO2 emission inversion through four-dimensional variational approach using SCIAMACHY CHartographY) satellite observa- tions. In this paper, the NOx emission scaling factors applied over 2001 Na- tional Emissions Inventory(NEI) are estimated through a four-dimensional variational (4D-Var) approach

  8. Inverse modeling of surface emissions for local pollution: A new methodology applied to academic test cases

    E-Print Network [OSTI]

    Menut, Laurent

    Inverse modeling of surface emissions for local pollution: A new methodology applied to academic; (2) LISA Creteil France Needs: Optimize surface emissions using daily recorded ozone and NOX by PRIMEQUAL2, program of the french ministry of environment Firstguess emissions inventory for the Paris

  9. The Effects of Hydrocarbons on NOx Reduction over Fe-based SCR...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrocarbons on NOx Reduction over Fe-based SCR Catalyst The Effects of Hydrocarbons on NOx Reduction over Fe-based SCR Catalyst Study of effects of hydrocarbons on ammonia storage...

  10. Safe and compact ammonia storage/delivery systems for SCR-DeNOX...

    Energy Savers [EERE]

    Safe and compact ammonia storagedelivery systems for SCR-DeNOX in automotive units Safe and compact ammonia storagedelivery systems for SCR-DeNOX in automotive units Presentation...

  11. Combining Biodiesel and EGR for Low-Temperature NOx and PM Reductions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biodiesel and EGR for Low-Temperature NOx and PM Reductions Combining Biodiesel and EGR for Low-Temperature NOx and PM Reductions Poster presentation at the 2007 Diesel...

  12. Development of a Stand-Alone Urea-SCR System for NOx Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Stand-Alone Urea-SCR System for NOx Reduction in Marine Diesel Engines Development of a Stand-Alone Urea-SCR System for NOx Reduction in Marine Diesel Engines Stand-alone urea...

  13. Effect of Engine-Out NOx Control Strategies on PM Size Distribution...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine-Out NOx Control Strategies on PM Size Distribution in Heavy-Duty Diesel Engines Developed for 2010 Effect of Engine-Out NOx Control Strategies on PM Size Distribution in...

  14. Industry-Utility Collaborative Efforts to Address Environmental Concerns- Dispatching for Localized NOx Reduction

    E-Print Network [OSTI]

    Hamilton, D. E.; Helmick, R. W.; Lambert, W. J.

    these objectives. The approach involves dispatching NOx-producing equipment (e.g., boilers and gas turbines) to achieve minimum NOx production during ozone alert periods and purchasing supplemental power under a special tariff to replace any loss in self...

  15. Thermal Durability of Cu-CHA NH3-SCR Catalysts for Diesel NOx...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Durability of Cu-CHA NH3-SCR Catalysts for Diesel NOx Reduction. Thermal Durability of Cu-CHA NH3-SCR Catalysts for Diesel NOx Reduction. Abstract: Multiple catalytic functions...

  16. Water-induced morphology changes in BaO/?-Al2O3 NOx storage...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    materials. Water-induced morphology changes in BaO?-Al2O3 NOx storage materials. Abstract: Exposure of NO2-saturated BaO?-Al2O3 NOx storage materials to H2O vapour...

  17. Reduction of NOx by plasma-assisted methods , F. Leipold1

    E-Print Network [OSTI]

    acid rain and ozone production when it is released into the air. Reduction of NOx in the exhaust gas

  18. Method of removing nitrogen oxides from exhaust gas mixtures

    SciTech Connect (OSTI)

    Batha, H.D.; Mason, J.H.; Thompson, S.R.

    1980-03-04T23:59:59.000Z

    A method of removing nitrogen oxides (NOX) from exhaust gas mixtures is described. The removal of NOX from exhaust gas mixtures is accomplished by exposing the exhaust gas mixture, in a manner that does not substantially impede the gas flow, to a ceramic material containing from about 75% to about 95% by weight silicon carbide and from about 0.3% to about 10.0% silica. A reduction of at least 85% of NOX from the mixture is to be expected and reductions up to 95 to 100% are attainable. Ceramic mixtures containing silicon nitride in amounts between about 10% and about 30% are found to reduce the amount of NOX in exhaust gases at temperatures as low as 200* C.

  19. Characteristics of Pt-K/MgAl2O4 lean NOx trap catalysts. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pt-KMgAl2O4 lean NOx trap catalysts. Characteristics of Pt-KMgAl2O4 lean NOx trap catalysts. Abstract: We report the various characteristics of Pt-KMgAl2O4 lean NOx trap (LNT)...

  20. Small, Inexpensive Combined NOx and O2 Sensor

    SciTech Connect (OSTI)

    W. Lawless; C. Clark

    2008-09-01T23:59:59.000Z

    It has been successfully demonstrated in this program that a zirconia multilayer structure with rhodium-based porous electrodes performs well as an amperometric NO{sub x} sensor. The sensitivity of the sensor bodies operating at 650 to 700 C is large, with demonstrated current outputs of 14 mA at 500 ppm NO{sub x} from sensors with 30 layers. The sensor bodies are small (4.5 x 4.2 x 3.1 mm), rugged, and inexpensive. It is projected the sensor bodies will cost $5-$10 in production. This program has built on another successful development program for an oxygen sensor based on the same principles and sponsored by DOE. This oxygen sensor is not sensitive to NO{sub x}. A significant technical hurdle has been identified and solved. It was found that the 100% Rh electrodes oxidize rapidly at the preferred operating temperatures of 650-700 C, and this oxidation is accompanied by a volume change which delaminates the sensors. The problem was solved by using alloys of Rh and Pt. It was found that a 10%/90% Rh/Pt alloy dropped the oxidation rate of the electrodes by orders of magnitude without degrading the NO{sub x} sensitivity of the sensors, allowing long-term stable operation at the preferred operating temperatures. Degradation in the sensor output caused by temperature cycling was identified as a change in resistance at the junction between the sensor body and the external leads attached to the sensor body. The degradation was eliminated by providing strong mechanical anchors for the wire and processing the junctions to obtain good electrical bonds. The NO{sub x} sensors also detect oxygen and therefore the fully-packaged sensor needs to be enclosed with an oxygen sensor in a small, heated zirconia chamber exposed to test gas through a diffusion plug which limits the flow of gas from the outside. Oxygen is pumped from the interior of the chamber to lower the oxygen content and the combination of measurements from the NO{sub x} and oxygen sensors yields the NO{sub x} content of the gas. Two types of electronic control units were designed and built. One control unit provides independent constant voltages to the NOx and oxygen sensors and reads the current from them (that is, detects the amount of test gas present). The second controller holds the fully-assembled sensor at the desired operating temperature and controllably pumps excess oxygen from the test chamber. While the development of the sensor body was a complete success, the development of the packaging was only partially successful. All of the basic principles were demonstrated, but the packaging was too complex to optimize the operation within the resources of the program. Thus, no fully-assembled sensors were sent to outside labs for testing of cross-sensitivities, response times, etc. Near the end of the program, Sensata Technologies of Attleboro, MA tested the sensor bodies and confirmed the CeramPhysics measurements as indicated in the following attached letter. Sensata was in the process of designing their own packaging for the sensor and performing cross-sensitivity tests when they stopped all sensor development work due to the automotive industry downturn. Recently Ceramatec Inc. of Salt Lake City has expressed an interest in testing the sensor, and other licensing opportunities are being pursued.

  1. EIA - Greenhouse Gas Emissions - Nitrous Oxide Emissions

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877 951,322 1,381,127byForms What'sAnnual23.

  2. NOx, SOx & CO{sub 2} mitigation using blended coals

    SciTech Connect (OSTI)

    Labbe, D.

    2009-11-15T23:59:59.000Z

    Estimates of potential CO{sub 2} reduction achievable through the use of a mixture of bituminous and subbituminous (PRB) coals, whilst attaining NOx and SOx compliance are presented. The optimization considerations to provide satisfactory furnace, boiler and unit performance with blended coal supplies to make such operation feasible are discussed. 6 refs., 7 figs., 1 tab.

  3. Elementary Steps and Site Requirements for NOx Adsorption and Oxidation on Metal and Oxide Surfaces

    E-Print Network [OSTI]

    Weiss, Brian M.

    2010-01-01T23:59:59.000Z

    s -1 in flowing dry air (Praxair, extra dry, 1 cm 3 s -1 g -heated in flowing dry air (Praxair, extra dry, 1 cm 3 s -1to 723 K in flowing dry air (Praxair, extra dry, 1 cm 3 s -1

  4. Alumina catalysts for reduction of NOx from methanol fueled diesel engine

    SciTech Connect (OSTI)

    Yamamoto, Toshiro; Noda, Akira; Sakamoto, Takashi; Sato, Yoshio [Ministry of Transport of Japan, Kumamoto (Japan)

    1996-09-01T23:59:59.000Z

    NOx selective reducing catalysts are expected to be used for lean-burn gasoline engines and diesel engines as an effective NOx reduction measure. The authors are interested in the combination of methanol, as a reducing agent, and alumina catalyst, and have considered the NOx reduction method using effectively much unburned methanol. In this report, in order to investigate the effect of NOx reduction by the alumina catalyst, the experiment was carried out by feeding the actual exhaust gas from the methanol engine into the alumina catalyst. As a result, it was confirmed that, without addition of any other reducing agents into the exhaust gas, the alumina catalyst has activity to reduce NOx.

  5. Simultaneous Removal of Particulates and NOx Using Catalyst Impregnated Fibrous Ceramic Filters

    SciTech Connect (OSTI)

    Choi, J.I.; Mun, S.H.; Kim, S.T.; Hong, M.S.; Lee, J.C.

    2002-09-19T23:59:59.000Z

    The research is focused on the development and commercialization of high efficiency, cost effective air pollution control system, which can replace in part air pollution control devices currently in use. In many industrial processes, hot exhaust gases are cooled down to recover heat and to remove air pollutants in exhaust gases. Conventional air pollution control devices such as bag filters, E.P. and adsorption towers withstand operating temperatures up to 300 C. Also, reheating is sometimes necessary to meet temperature windows for S.C.R. Since Oxidation reactions of acid gases such as SO{sub 2}, and HCl with lime are enhanced at high temperatures, catalyst impregnated ceramic filters can be candidate for efficient and cost effective air pollution control devices. As shown on Fig. 1., catalytic ceramic filters remove particulates on exterior surface of filters and acid gases are oxidized to salts reacting with limes injected in upstream ducts. Oxidation reactions are enhanced in the cake formed on exterior of filters. Finally, injected reducing gas such as NH{sub 3} react with NOx to form N{sub 2} and H{sub 2}O interior of filters in particulate-free environment. Operation and maintenance technology is similar to conventional bag filters except that systems are exposed to relatively high temperatures ranging 300-500 C.

  6. The NOx system in nuclear waste. 1997 annual progress report

    SciTech Connect (OSTI)

    Meisel, D. [Argonne National Lab., IL (US). Chemistry Div.; Camaioni, D.; Orlando, T. [Pacific Northwest National Lab., Richland, WA (US)

    1997-01-01T23:59:59.000Z

    'The authors highlight their results from the title project. The project is a coordinated effort of the three Co-PIs to assist the Safety Programs at the Hanford and other DOE Environmental Management Sites. The authors present in the report their observations and interactively discuss their implications for safety concerns. They focus on three issues: (1) Reducing radicals in the NOx system The authors show that the only reducing radical that lasts longer than a few ns in typical waste solutions, and is capable of generating hydrogen, is NO{sub 3}{sup 2-}. The authors measured the lifetime of this species across the whole pH range (3 {le} pH {le} 14) and found it to be shorter than -15 \\265s, before it dissociates to give the strongly oxidizing NO, radicals. They found that it reacts with many proton donors (H{sup +}, phosphate, borate, NH{prime}, amines) in a reaction that is not merely an acid-base equilibrium reaction but is probably a dissociative proton transfer. They estimate the redox potential from theoretical considerations and obtain an experimental verification. They conclude that it is highly unlikely, although thermodynamically possible, that this radi-cal will generate hydrogen in waste solutions. (2) Aging of organic chelators and their degradation products by NO, Methodologies to study the degradation of organic substrates (including the important waste components, formate and oxalate) to CO;, or carbonate, by NO, were developed. This radical dimerizes and disproportionates to nitrate and nitrite. Therefore, mineraliza-tion of the organic substrates competes with the disproportionation of NO,. Among the organic substrates, formate and oxalate are also mineralized but because they are of low fuel value their mineralization is not very helpful, yet it consumes NO,. (3) Interfacial processes in aqueous suspensions Yields of charge transfer from solid silica particles to water and other liquids were meas-ured. If the particles are small enough, essentially all of the charge that is originally depos-ited in the solid escapes into the liquid. This implies that the solid/liquid interface does not provide a significant barrier to the transfer of charges into the solution when the particles are very small (I 20 nm). Electrons may reach the liquid and generate hydrogen, for example. On the other hand, the same mechanism may also provide a pathway for oxidative aging of organics by holes even when the organic is dissolved in the liquid or adsorbed on the solid surface. The authors have started to study reactions of NO,. Methodology and instrumentation to measure reactions of relevant organic radicals with NO, and with its parent NO, were developed. Because of low extinction coefficients, conductivity will be the method of choice.'

  7. Nox reduction system utilizing pulsed hydrocarbon injection

    DOE Patents [OSTI]

    Brusasco, Raymond M. (Livermore, CA); Penetrante, Bernardino M. (San Ramon, CA); Vogtlin, George E. (Fremont, CA); Merritt, Bernard T. (Livermore, CA)

    2001-01-01T23:59:59.000Z

    Hydrocarbon co-reductants, such as diesel fuel, are added by pulsed injection to internal combustion engine exhaust to reduce exhaust NO.sub.x to N.sub.2 in the presence of a catalyst. Exhaust NO.sub.x reduction of at least 50% in the emissions is achieved with the addition of less than 5% fuel as a source of the hydrocarbon co-reductants. By means of pulsing the hydrocarbon flow, the amount of pulsed hydrocarbon vapor (itself a pollutant) can be minimized relative to the amount of NO.sub.x species removed.

  8. Simulation of Nitrogen Emissions in a Low Swirl Burner J. B. Bell, M. S. Day, X. Gao, M. J. Lijewski

    E-Print Network [OSTI]

    Bell, John B.

    Simulation of Nitrogen Emissions in a Low Swirl Burner J. B. Bell, M. S. Day, X. Gao, M. J nitrogen emissions. The simulation shows how the cellular burn- ing structures characteristic of lean premixed hydrogen combustion lead to enhancements in the NOx emissions from these flames. Analysis

  9. Using Local and Regional Air Quality Modeling and Source Apportionment Tools to Evaluate Vehicles and Biogenic Emission Factors

    E-Print Network [OSTI]

    Kota, Sri H

    2014-07-25T23:59:59.000Z

    and inventories of CO, NO_(x) and VOCs from on-road vehicles estimated by vehicle emission factor models and biogenic emissions of isoprene estimated by a popular biogenic emission model are evaluated using local and regional scale air quality modeling and source...

  10. Development of a Low NOx Medium sized Industrial Gas Turbine Operating on Hydrogen-Rich Renewable and Opportunity Fuels

    SciTech Connect (OSTI)

    Srinivasan, Ram

    2013-07-31T23:59:59.000Z

    This report presents the accomplishments at the completion of the DOE sponsored project (Contract # DE-FC26-09NT05873) undertaken by Solar Turbines Incorporated. The objective of this 54-month project was to develop a low NOx combustion system for a medium sized industrial gas turbine engine operating on Hydrogen-rich renewable and opportunity Fuels. The work in this project was focused on development of a combustion system sized for 15MW Titan 130 gas turbine engine based on design analysis and rig test results. Although detailed engine evaluation of the complete system is required prior to commercial application, those tasks were beyond the scope of this DOE sponsored project. The project tasks were organized in three stages, Stages 2 through 4. In Stage 2 of this project, Solar Turbines Incorporated characterized the low emission capability of current Titan 130 SoLoNOx fuel injector while operating on a matrix of fuel blends with varying Hydrogen concentration. The mapping in this phase was performed on a fuel injector designed for natural gas operation. Favorable test results were obtained in this phase on emissions and operability. However, the resulting fuel supply pressure needed to operate the engine with the lower Wobbe Index opportunity fuels would require additional gas compression, resulting in parasitic load and reduced thermal efficiency. In Stage 3, Solar characterized the pressure loss in the fuel injector and developed modifications to the fuel injection system through detailed network analysis. In this modification, only the fuel delivery flowpath was modified and the air-side of the injector and the premixing passages were not altered. The modified injector was fabricated and tested and verified to produce similar operability and emissions as the Stage 2 results. In parallel, Solar also fabricated a dual fuel capable injector with the same air-side flowpath to improve commercialization potential. This injector was also test verified to produce 15-ppm NOx capability on high Hydrogen fuels. In Stage 4, Solar fabricated a complete set of injectors and a combustor liner to test the system capability in a full-scale atmospheric rig. Extensive high-pressure single injector rig test results show that 15-ppm NOx guarantee is achievable from 50% to 100% Load with fuel blends containing up to 65% Hydrogen. Because of safety limitations in Solar Test Facility, the atmospheric rig tests were limited to methane-based fuel blends. Further work to validate the durability and installed engine capability would require long-term engine field test.

  11. Statewide Air Emissions Calculations From Wind and Other Renewables Summary Report Draft, a Report to the TCEQ for the Period Sept. 2005 - August 2006 

    E-Print Network [OSTI]

    Haberl, J. S.; Culp, C.; Yazdani, B.; Subbarao, K.; Verdict, M.; Liu, Z.; Baltazar-Cervantes, J. C.; Gilman, D.; Fitzpatrick, T.; Turner, W. D.

    2006-10-25T23:59:59.000Z

    This executive summary provides summaries of the key areas of accomplishment this year, including: • development of stakeholder’s meetings; • reporting of NOx emissions reductions from renewable energy generation in the 2005 report to the TCEQ...

  12. Using Environmental Emissions Permit Prices to Raise Electricity Prices: Evidence from the California Electricity Market

    E-Print Network [OSTI]

    Kolstad, Jonathan; Wolak, Frank

    2003-01-01T23:59:59.000Z

    Environmental Emissions Permit Prices to Raise ElectricityEnvironmental Emissions Permit Prices to Raise Electricitythe conditions in the emissions permit market for oxides of

  13. Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems

    SciTech Connect (OSTI)

    Harold, Michael; Crocker, Mark; Balakotaiah, Vemuri; Luss, Dan; Choi, Jae-Soon; Dearth, Mark; McCabe, Bob; Theis, Joe

    2013-09-30T23:59:59.000Z

    Oxides of nitrogen in the form of nitric oxide (NO) and nitrogen dioxide (NO{sub 2}) commonly referred to as NO{sub x}, is one of the two chemical precursors that lead to ground-level ozone, a ubiquitous air pollutant in urban areas. A major source of NO{sub x} is generated by equipment and vehicles powered by diesel engines, which have a combustion exhaust that contains NO{sub x} in the presence of excess O{sub 2}. Catalytic abatement measures that are effective for gasoline-fueled engines such as the precious metal containing three-way catalytic converter (TWC) cannot be used to treat O2-laden exhaust containing NO{sub x}. Two catalytic technologies that have emerged as effective for NO{sub x} abatement are NO{sub x} storage and reduction (NSR) and selective catalytic reduction (SCR). NSR is similar to TWC but requires much larger quantities of expensive precious metals and sophisticated periodic switching operation, while SCR requires an on-board source of ammonia which serves as the chemical reductant of the NO{sub x}. The fact that NSR produces ammonia as a byproduct while SCR requires ammonia to work has led to interest in combining the two together to avoid the need for the cumbersome ammonia generation system. In this project a comprehensive study was carried out of the fundamental aspects and application feasibility of combined NSR/SCR. The project team, which included university, industry, and national lab researchers, investigated the kinetics and mechanistic features of the underlying chemistry in the lean NOx trap (LNT) wherein NSR was carried out, with particular focus on identifying the operating conditions such as temperature and catalytic properties which lead to the production of ammonia in the LNT. The performance features of SCR on both model and commercial catalysts focused on the synergy between the LNT and SCR converters in terms of utilizing the upstream-generated ammonia and alternative reductants such as propylene, representing the hydrocarbon component of diesel exhaust. First-principle models of the LNT and SCR converters, which utilized the mechanistic-based kinetics and realistic treatments of the flow and transport processes, in combination with bench-scale reactor experiments helped to identify the best designs for combining the NSR and SCR catalysts over a range of operating conditions encountered in practice. This included catalysts having multiple zones and layers and additives with the focus on determining the minimal precious metal component needed to meet emission abatement targets over a wide range of operating conditions. The findings from this study provide diesel vehicle and catalyst companies valuable information to develop more cost effective diesel emissions catalysts which helps to expand the use of more fuel efficient diesel power. The fundamental modeling and experimental tools and findings from this project can be applied to catalyst technologies used in the energy and chemical industries. Finally, the project also led to training of several doctoral students who were placed in research jobs in industry and academia.

  14. NOx Control for Utility Boiler OTR Compliance

    SciTech Connect (OSTI)

    Hamid Farzan; Jennifer L. Sivy

    2005-07-30T23:59:59.000Z

    Babcock & Wilcox Power Generation Group (B&W) and Fuel Tech, Inc. (Fuel Tech) teamed to evaluate an integrated solution for NO{sub x} control comprised of B&W's DRB-4Z{reg_sign} low-NO{sub x} pulverized coal (PC) burner technology and Fuel Tech's NO{sub x}OUT{reg_sign}, a selective non-catalytic reduction (SNCR) technology, capable of meeting a target emission limit of 0.15 lb NO{sub x}/10{sup 6} Btu. In a previous project sponsored by the U.S. Department of Energy (DOE), promising results were obtained with this technology from large-scale testing in B&W's 100-million Btu/hr Clean Environment Development Facility (CEDF) which simulates the conditions of large coal-fired utility boilers. Under the most challenging boiler temperatures at full load conditions, NO{sub x} emissions of 0.19 lb/10{sup 6} Btu were achieved firing Powder River Basin coal while controlling ammonia slip to less than 5 ppm. At a 40 million Btu/hr firing rate, NO{sub x} emissions were as low as 0.09 lb/10{sup 6} Btu. Improved performance with this system was proposed for this new program with injection at full load via a convective pass multiple nozzle lance (MNL) in front of the superheater tubes or in the convective tube bank. Convective pass lances represent the current state-of-the-art in SNCR and needed to be evaluated in order to assess the full potential of the combined technologies. The objective of the program was to achieve a NO{sub x} level below 0.15 lb/10{sup 6} Btu (with ammonia slip of less than 5 ppm) in the CEDF using PRB coal and B&W's DRB-4Z{reg_sign} low-NO{sub x} pulverized coal (PC) burner in combination with dual zone overfire air ports and Fuel Tech's NO{sub x}OUT{reg_sign} System. Commercial installations of B&W's low-NO{sub x} burner, in combination with overfire air ports using PRB coal, have demonstrated a NO{sub x} level of 0.15 to 0.2 lb/10{sup 6} Btu under staged combustion conditions. The proposed goal of the combustion system (no SNCR) for this project is a NO{sub x} level at 0.15 lb/10{sup 6} Btu. The NO{sub x} reduction goal for SNCR is 25% from the low-NO{sub x} combustion emission levels. Therefore, overall NO{sub x} emissions would approach a level of 0.11 lb/10{sup 6} Btu in commercial installation. The goals of the program were met. At 100% load, using the MNL for very low baseline NO{sub x} (0.094 to 0.162 lb/10{sup 6} Btu depending on burner stoichiometry), an approximately 25% NO{sub x} reduction was achieved (0.071 to 0.124 lb/10{sup 6} Btu) while maintaining NH{sub 3} slip less than 6.4 ppm. At 60% load, using MNL or only wall-injectors for very low baseline NO{sub x} levels, more than 30% NO{sub x} reduction was achieved. Although site specific economic evaluation is required for each unit, our economic evaluation of DRB-4Z{reg_sign} burner and SNCR for a 500 MW{sub e} plant firing PRB shows that the least cost strategy is low-NO{sub x} burner and OFA at a cost of $210 to $525 per ton of NO{sub x} removed. Installation of SNCR allows the utilities to sell more NO{sub x} credit and it becomes economical when NO{sub x} credit cost is more than $5,275 per ton of NO{sub x}.

  15. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect (OSTI)

    Lawrence E. Bool; Jack C. Chen; David R. Thompson

    2000-07-01T23:59:59.000Z

    Increased environmental regulations will require utility boilers to reduce NO{sub x} emissions to less than 0.15lb/MMBtu in the near term. Conventional technologies such as Selective Catalytic Reduction (SCR) and Selective Non-Catalytic Reduction (SNCR) are unable to achieve these lowered emission levels without substantially higher costs and major operating problems. Oxygen enhanced combustion is a novel technology that allows utilities to meet the NO{sub x} emission requirements without the operational problems that occur with SCR and SNCR. Furthermore, oxygen enhanced combustion can achieve these NO{sub x} limits at costs lower than conventional technologies. The objective of this program is to demonstrate the use of oxygen enhanced combustion as a technical and economical method of meeting the EPA State Implementation Plan for NO{sub x} reduction to less than 0.15lb/MMBtu for a wide range of boilers and coal. The oxygen enhanced coal combustion program (Task 1) focused this quarter on the specific objective of exploration of the impact of oxygen enrichment on NO{sub x} formation utilizing small-scale combustors for parametric testing. Research efforts toward understanding any limitations to the applicability of the technology to different burners and fuels such as different types of coal are underway. The objective of the oxygen transport membrane (OTM) materials development program (Task 2.1) is to ascertain a suitable material composition that can be fabricated into dense tubes capable of producing the target oxygen flux under the operating conditions. This requires that the material have sufficient oxygen permeation resulting from high oxygen ion conductivity, high electronic conductivity and high oxygen surface exchange rate. The OTM element development program (Task 2.2) objective is to develop, fabricate and characterize OTM elements for laboratory and pilot reactors utilizing quality control parameters to ensure reproducibility and superior performance. A specific goal is to achieve a material that will sinter to desired density without compromising other variables such as reaction to binder systems or phase purity. Oxygen-enhanced combustion requires a facility which is capable of supplying high purity oxygen (>99.5%) at low costs. This goal can be achieved through the thermal integration of high temperature air separation with ceramic OTM. The objective of the OTM process development program (Task 2.3) is to demonstrate successfully the program objectives on a lab-scale single OTM tube reactor under process conditions comparable to those of an optimum large-scale oxygen facility. This quarterly technical progress report will summarize work accomplished for the Program through the first quarter April--June 2000 in the following task areas: Task 1 Oxygen Enhanced Coal Combustion; Task 2 Oxygen Transport Membranes; and Task 4 Program Management.

  16. Fuel Economy and Emissions of a Vehicle Equipped with an Aftermarket Flexible-Fuel Conversion Kit

    SciTech Connect (OSTI)

    Thomas, John F [ORNL; Huff, Shean P [ORNL; West, Brian H [ORNL

    2012-04-01T23:59:59.000Z

    The U.S. Environmental Protection Agency (EPA) grants Certificates of Conformity for alternative fuel conversion systems and also offers other forms of premarket registration of conversion kits for use in vehicles more than two model years old. Use of alternative fuels such as ethanol, natural gas, and propane are encouraged by the Energy Policy Act of 1992. Several original equipment manufacturers (OEMs) produce emissions-certified vehicles capable of using alternative fuels, and several alternative fuel conversion system manufacturers produce EPA-approved conversion systems for a variety of alternative fuels and vehicle types. To date, only one manufacturer (Flex Fuel U.S.) has received EPA certifications for ethanol fuel (E85) conversion kits. This report details an independent evaluation of a vehicle with a legal installation of a Flex Fuel U.S. conversion kit. A 2006 Dodge Charger was baseline tested with ethanol-free certification gasoline (E0) and E20 (gasoline with 20 vol % ethanol), converted to flex-fuel operation via installation of a Flex Box Smart Kit from Flex Fuel U.S., and retested with E0, E20, E50, and E81. Test cycles included the Federal Test Procedure (FTP or city cycle), the highway fuel economy test (HFET), and the US06 test (aggressive driving test). Averaged test results show that the vehicle was emissions compliant on E0 in the OEM condition (before conversion) and compliant on all test fuels after conversion. Average nitrogen oxide (NOx) emissions exceeded the Tier 2/Bin 5 intermediate life NO{sub X} standard with E20 fuel in the OEM condition due to two of three test results exceeding this standard [note that E20 is not a legal fuel for non-flexible-fuel vehicles (non-FFVs)]. In addition, one E0 test result before conversion and one E20 test result after conversion exceeded the NOX standard, although the average result in these two cases was below the standard. Emissions of ethanol and acetaldehyde increased with increasing ethanol, while nonmethane organic gas and CO emissions remained relatively unchanged for all fuels and cycles. Higher fraction ethanol blends appeared to decrease NO{sub X} emissions on the FTP and HFET (after conversion). As expected, fuel economy (miles per gallon) decreased with increasing ethanol content in all cases.

  17. The Effect of Ozone Stomatal Conductance on Isoprene Emissions above a Northern Hardwood Forest

    E-Print Network [OSTI]

    Collins, Gary S.

    The Effect of Ozone Stomatal Conductance on Isoprene Emissions above a Northern Hardwood Forest also acts as an antioxidant within a plant, reacting and neutralizing ozone and peroxides, though , and reacts photochemically in the presence of NOx to produce tropospheric ozone. The Model of Emissions

  18. Anthropogenic emissions of nonmethane hydrocarbons in the northeastern United States: Measured seasonal variations from

    E-Print Network [OSTI]

    Cohen, Ronald C.

    influenced by sources not associated with fuel combustion. Changes in the observed correlations of CO2 and CO relative to acetylene are consistent with published changes in the estimated emissions of CO2 and CO over these emissions in the United States. Hydrocarbon, NOx and CO sources include fuel combustion in both mobile

  19. Catalysis of Reduction and Oxidation Reactions for Application in Gas Particle Filters

    SciTech Connect (OSTI)

    Udron, L.; Turek, T.

    2002-09-19T23:59:59.000Z

    The present study is a first part of an investigation addressing the simultaneous occurrence of oxidation and reduction reactions in catalytic filters. It has the objectives (a) to assess the state of knowledge regarding suitable (types of) catalysts for reduction and oxidation, (b) to collect and analyze published information about reaction rates of both NOx reduction and VOC oxidation, and (c) to adjust a lab-scale screening method to the requirements of an activity test with various oxidation/reduction catalysts.

  20. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    SciTech Connect (OSTI)

    Michael J. Bockelie

    2000-10-31T23:59:59.000Z

    This report summarizes the research that has been performed by Reaction Engineering International (REI) during the last three months on demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The focus of our efforts during the last six months have been on: (1) Field Tests for RRI at the Conectiv BL England Station Unit No.1, a 130 MW cyclone fired boiler; (2) Extending our Computational Fluid Dynamics (CFD) based NOx model to accommodate the chemistry for Rich Reagent Injection (RRI) in cyclone fired boilers; (3) Applying the NOx model to evaluate RRI systems integrated into a boiler with Over Fired Air (OFA) and Selective Non-Catalytic Reduction (SNCR); (4) Field Tests of the REI Corrosion Probe at the Conectiv BL England Station Unit No.1; (5) Commence engineering study of ammonia adsorption mechanisms for Fly Ash; (6) Presentation of current program accomplishments and plans for future work to DoE staff members at NETL-FE (Pittsburgh); and (7) Presentation of preliminary field test results for RRI to EPRI CNCIG.

  1. Thermal Durability of Cu-CHA NH3-SCR Catalysts for Diesel NOx Reduction

    SciTech Connect (OSTI)

    Schmieg, Steven J.; Oh, Se H.; Kim, Chang H.; Brown, David B.; Lee, Jong H.; Peden, Charles HF; Kim, Do Heui

    2012-04-30T23:59:59.000Z

    Multiple catalytic functions (NOx conversion, NO and NH3 oxidation, NH3 storage) of a commercial Cu-zeolite urea/NH3-SCR catalyst were assessed in a laboratory fixed-bed flow reactor system after differing degrees of hydrothermal aging. Catalysts were characterized by using x-ray diffraction (XRD), 27Al solid state nuclear magnetic resonance (NMR) and transmission electron microscopy (TEM) / energy dispersive X-ray (EDX) spectroscopy to develop an understanding of the degradation mechanisms during catalyst aging. The catalytic reaction measurements of laboratory-aged catalysts were performed, which allows us to obtain a universal curve for predicting the degree of catalyst performance deterioration as a function of time at each aging temperature. Results show that as the aging temperature becomes higher, the zeolite structure collapses in a shorter period of time after an induction period. The decrease in SCR performance was explained by zeolite structure destruction and/or Cu agglomeration, as detected by XRD/27Al NMR and by TEM/EDX, respectively. Destruction of the zeolite structure and agglomeration of the active phase also results in a decrease in the NO/NH3 oxidation activity and the NH3 storage capacity of the catalyst. Selected laboratory aging conditions (16 h at 800oC) compare well with a 135,000 mile vehicle-aged catalyst for both performance and characterization criteria.

  2. INFLUENCE OF EGR COMPOUNDS ON THE OXIDATION OF AN HCCI-DIESEL SURROGATE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    INFLUENCE OF EGR COMPOUNDS ON THE OXIDATION OF AN HCCI-DIESEL SURROGATE J.M. ANDERLOHR*1,3 , A oxides (NOx), while the principle of CI assures a high efficiency close to that of a diesel engine comprehensively assessed [4]. A n-heptane/toluene mixture was used as a diesel surrogate with n-heptane having

  3. Estimated monthly emissions of sulfur dioxide, oxides of nitrogen, and volatile organic compounds for the 48 contiguous states, 1985-1986: Volume 2, Sectoral emissions by month for states

    SciTech Connect (OSTI)

    Kohout, E.J.; Knudson, D.A.; Saricks, C.L.; Miller, D.J.

    1987-11-01T23:59:59.000Z

    A listing by source of sulfur dioxide, nitrogen oxides and volatile organic compounds emitted in 48 states of the US is provided. (CBS)

  4. Method for Determining Performance of Sulfur Oxide Adsorbents...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Method for Determining Performance of Sulfur Oxide Adsorbents for Diesel Emission Control Using Online Measurement of SO2 and Method for Determining Performance of Sulfur Oxide...

  5. Statewide Air Emissions Calculations from Wind and Other Renewable

    E-Print Network [OSTI]

    Haberl, Jeff; Baltazar, Juan Carlos; Bahman, Yazdani; Claridge, David; Mao, Chunliu; Sandeep, Kota

    -7 show the measured annual and OSP NOx emissions reductions from wind power in each county of Texas in 2011. Figure 1-4: Estimated 2008 Annual NOx Reductions from Wind Power in Texas Map Page July 2013 Energy Systems Laboratory... to obtain input from public/private stakeholders, and develop and use a methodology to annually report the energy savings from wind and other renewables. This report summarizes the work performed by the ESL on this project from September 2012 to July 2013...

  6. Greenidge multi-pollutant project achieves emissions reduction goals

    SciTech Connect (OSTI)

    NONE

    2008-07-01T23:59:59.000Z

    Performance testing at the Greenridge Multi-Pollutant Project has met or exceeded project goals, indicating that deep emission reduciton sin small, difficult-to-retrofit power plants can be achieved. The technology fitted at the 107 MWe AES Greenridge Unit 4 includes a hybrid selective non-catalytic reduction/selective catalytic reduction system for NOx control (NOxOUT CASCADE) and a Turbosorp circulating fluidized bed dry scrubber system for SO{sub 2}, mercury, SO{sub 3} HC and Hf control. 2 figs.

  7. High Efficiency, Ultra-Low Emission, Integrated Process Heater System

    SciTech Connect (OSTI)

    Mason, Howard; Boral, Anindya; Chhotray, San; Martin, Matthew

    2006-06-19T23:59:59.000Z

    The team of TIAX LLC, ExxonMobil Research and Engineering Company, and Callidus Technologies, LLC conducted a six-year program to develop an ultra-low emission process heater burner and an advanced high efficiency heater design. This project addresses the critical need of process heater operators for reliable, economical emission reduction technologies to comply with stringent emission regulations, and for heater design alternatives that reduce process heater energy requirements without significant cost increase. The key project targets were NOx emissions of 10 ppm (@ 3% O2), and a heater thermal efficiency of 95 percent. The ultra low NOx burner was developed through a series of pilot-scale and field tests combined with computational fluid dynamic modeling to arrive at simultaneous low emissions and suitable flame shape and stability. Pilot scale tests were run at TIAX, at the 2 MMBtu/hr scale, and at Callidus at 8 MMBtu/hr. The full scale burner was installed on a 14 burner atmospheric pipestill furnace at an ExxonMobil refinery. A variety of burner configurations, gas tips and flame stabilizers were tested to determine the lowest emissions with acceptable flame shape and stability. The resulting NOx emissions were 22 ppm on average. Starting in 2001, Callidus commercialized the original ultra low NOx burner and made subsequent design improvements in a series of commercial burners evolving from the original concept and/or development. Emissions in the field with the ultra low-NOx burner over a broad spectrum of heater applications have varied from 5 ppm to 30 ppm depending on heater geometry, heater service, fuel and firing capacity. To date, 1550 of the original burners, and 2500 of subsequent generation burners have been sold by Callidus. The advanced heater design was developed by parametric evaluations of a variety of furnace and combustion air preheater configurations and technologies for enhancing convective and radiative heat transfer. The design evolution relied heavily on computational fluid dynamic predictions of design alternatives. The final design features modular separate radiant cells, each with one and two-side fired vertical tubes. The convection section configuration is vertical tube banks enclosed in the radiant channels. Commercial modular plate air preheaters are used. The predicted performance for the integrated advanced heater and Callidus burner is 95 percent efficiency with 9 ppm NOx emissions firing natural gas, and 12 ppm firing refinery gas. The total erected cost is less than a conventional heater with combustion air preheat.

  8. Use of Simulation To Optimize NOx Abatement by Absorption and Selective Catalytic Reduction

    E-Print Network [OSTI]

    Liu, Y. A.

    portion of the tower and 2 spray-scrubber sections in the bottom. The NOx-laden fumes enter the bottom

  9. Reduction of NOx in Synthetic Diesel Exhaust via Two-Step Plasma...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Citation: Tonkyn RG, SE Barlow, and J Hoard.2003."Reduction of NOx in Synthetic Diesel Exhaust via Two-Step Plasma-Catalysis Treatment."Applied Catalysis. B,...

  10. A Fast Start-up On-Board Fuel Reformer for NOx Adsorber Regeneration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Processor for Rapid and Efficient Regeneration of Single Leg NOx Adsorber Systems Hydrogen generation from plasmatron reformers and use for diesel exhaust aftertreatment...

  11. Stabilized chromium oxide film

    DOE Patents [OSTI]

    Garwin, Edward L. (Los Altos, CA); Nyaiesh, Ali R. (Palo Alto, CA)

    1988-01-01T23:59:59.000Z

    Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150.ANG. are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

  12. Stabilized chromium oxide film

    DOE Patents [OSTI]

    Nyaiesh, A.R.; Garwin, E.L.

    1986-08-04T23:59:59.000Z

    Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150A are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

  13. Air emissions inventory for the Idaho National Engineering Laboratory -- 1995 emissions report

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    This report presents the 1995 update of the Air Emission Inventory for the Idaho National Engineering Laboratory (INEL). The INEL Air Emission Inventory documents sources and emissions of non-radionuclide pollutants from operations at the INEL. The report describes the emission inventory process and all of the sources at the INEL, and provides non-radionuclide emissions estimates for stationary sources. The air contaminants reported include nitrogen oxides, sulfur oxides, carbon monoxide, volatile organic compounds, particulates, and hazardous air pollutants (HAPs).

  14. Simultaneous measurements of driveability and emissions at cool ambient temperatures

    SciTech Connect (OSTI)

    Jorgensen, S.W.; Benson, J.D.

    1994-10-01T23:59:59.000Z

    Simultaneous measurements of cold-start/warm-up driveability and tailpipe emissions on a chassis dynamometer were made at 5{degree}C using four late-model vehicles. Two fuels were used: a low driveability index (DI) fuel containing 11% MTBE and 29% aromatics, and a high DI fuel with no MTBE and 43% aromatics. Tailpipe hydrocarbon emissions and total weighted driveability demerits (TWDs) both correlated with the fuel used; both increased significantly when high-DI/no-MTBE fuel was used. A strong linear relation exists between TWDs and simultaneously measured tailpipe hydrocarbon emissions. CO and NOx emissions did not correlate with fuel composition. 10 refs., 10 figs., 4 tabs.

  15. SOx/NOx sorbent and process of use

    DOE Patents [OSTI]

    Ziebarth, M.S.; Hager, M.J.; Beeckman, J.W.; Plecha, S.

    1993-01-19T23:59:59.000Z

    An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 600 C. is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and dripped to form the stabilizing spheroidal alumina particles. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths.

  16. SOX/NOX sorbent and process of use

    DOE Patents [OSTI]

    Ziebarth, M.S.; Hager, M.J.; Beeckman, J.W.; Plecha, S.

    1995-05-09T23:59:59.000Z

    An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 600 C is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and dripped to form the stabilized spheroidal alumina particles. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths. 3 figs.

  17. Group effects on fuel NOx emissisons from coal

    E-Print Network [OSTI]

    Vadakkath, Anand Anakkara

    1991-01-01T23:59:59.000Z

    . 18 N to NO Conversion vs G Number via Volatiles . 55 56 19 N to NO Conversion vs G Number by Burn-out. . . 20 N to NO Conversion vs G Number by All Methods . 57 21 N to NO Conversion vs G number for Two Coal Diameters 60 Figure Page 22 N... Ratio of GC Rate to ISOC Rate versus G Number (Annamalai) 17 8 Group Combustion Model for a. Spherical Coal Cloud 20 9 Flow-chart for the Program 32 10 Experimental Set-up . 11 Water Cooled Collection System . 40 12 Connections for NOx Analyzer . 42...

  18. Lean NOx Catalysis Research and Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofs o u t h e a s t e rtheNOx

  19. COST-EFFECTIVE CONTROL OF NOx WITH INTEGRATED ULTRA LOW-NOx BURNERS AND SNCR

    SciTech Connect (OSTI)

    Hamid Farzan

    2001-07-01T23:59:59.000Z

    Coal-fired electric utilities are facing a serious challenge with regards to curbing their NO{sub x} emissions. At issue are the NO{sub x} contributions to the acid rain, ground level ozone, and particulate matter formation. Substantial NO{sub x} control requirements could be imposed under the proposed Ozone Transport Rule, National Ambient Air Quality Standards, and New Source Performance Standards. McDermott Technology, Inc. (MTI), Babcock and Wilcox (B and W), and Fuel Tech are teaming to provide an integrated solution for NO{sub x} control. The system will be comprised of an ultra low-NO{sub x} pulverized coal (PC) burner technology plus a urea-based, selective non-catalytic reduction (SNCR) system. This system will be capable of meeting a target emission limit of 0.15 lb NO{sub x}/10{sup 6} Btu and target ammonia (NH3) slip level targeted below 5 ppmV for commercial units. Our approach combines the best available combustion and post-combustion NO{sub x} control technologies. More specifically, B and W's DRB-4Z TM ultra low-NO{sub x} PC burner technology will be combined with Fuel Tech's NO{sub x}OUT (SNCR) and NO{sub x}OUT Cascade (SNCR/SCR hybrid) systems and jointly evaluated and optimized in a state-of-the-art test facility at MTI. Although the NO{sub x}OUT Cascade (SNCR/SCR hybrid) system will not be tested directly in this program, its potential application for situations that require greater NO{sub x} reductions will be inferred from other measurements (i.e., SNCR NO{sub x} removal efficiency plus projected NO{sub x} reduction by the catalyst based on controlled ammonia slip). Our analysis shows that the integrated ultra low-NO{sub x} burner and SNCR system has the lowest cost when the burner emissions are 0.25 lb NO{sub x}/10{sup 6} Btu or less. At burner NO{sub x} emission level of 0.20 lb NO{sub x}/10{sup 6} Btu, the levelized cost per ton of NO{sub x} removed is 52% lower than the SCR cost.

  20. A Novel Technology for the Reduction of NOx on Char by Microwaves 

    E-Print Network [OSTI]

    Buenger, C.; Peterson, E.

    1994-01-01T23:59:59.000Z

    of these applications. The technology is directed at NOx reduction but may also address other pollutants like SO2. The technology employees char, a heat treated and devolitilized form of coal, to adsorb NOx from the flue (or waste) gas. Adsorption of greater than 99...

  1. Promotional Effects of H2O Treatment on NOx Storage over Fresh...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aged Pt-BaOAl2O3 Lean NOx Trap Catalysts . Abstract: A simple liquid water treatment applied to fresh and thermally aged Pt(2wt%)-BaO(20wt%)Al2O3 lean NOx trap catalysts at...

  2. Low Carbon Footprint and Ultra Low NOx Boilers through Efficiency Gain 

    E-Print Network [OSTI]

    Benz, R,; Staedter, M.

    2008-01-01T23:59:59.000Z

    Low Carbon Footprint and Ultra Low NOx Boilers through Efficiency Gain Robert Benz Marcel Staedter... Industrial Energy Technology Conference, New Orleans, LA, May 6-9, 2008. M. Staedter, R. Benz / Low Carbon, Ultra Low NOx through Efficiency Gain where y denotes the mole fraction of excess...

  3. APBF-DEC Light-duty NOx Adsorber/DPF Project

    Broader source: Energy.gov (indexed) [DOE]

    Light - Duty NOx AdsorberDPF Project Vehicle Tests - FTP 75 (Conducted at EPA NVFEL in Ann Arbor) NOx (gmi) 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 Test No. 1 2 3 4 5 PM (mgmi)...

  4. Intra-catalyst Reductant Chemistry in Lean NOx Traps: A Study...

    Broader source: Energy.gov (indexed) [DOE]

    Engine DOC LNT Engine Out Bench (SS1) UEGO1 UEGO2 UEGO3 SS2 NOx Sensor 1 NOx Sensor 2 Turbo 14 LNT 12 LNT 34 LNT FTIR GCMS bag (dilute) Air Bench 2 SpaciMS Tailpipe Bench...

  5. GEOPHYSICAL RESEARCH LETTERS, VOL. ???, XXXX, DOI:10.1029/, Application of satellite observations for timely1

    E-Print Network [OSTI]

    Martin, Randall

    for timely1 updates to global anthropogenic NOx emission2 inventories3 L. N. Lamsal, 1 R. V. Martin, 1, 2 A INVENTORIES Anthropogenic emissions of nitrogen oxides (NOx) can change rapidly due4 to economic growth, USA D R A F T February 1, 2011, 1:34pm D R A F T #12;LAMSAL ET AL.: UPDATING NOX EMISSION INVENTORIES

  6. State Regulations on Airborne Emissions: Update Through 2006 (Update) (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01T23:59:59.000Z

    In May 2005, the Environmental Protection Agency published two final rules aimed at reducing emissions from coal-fired power plants. The Clean Air Interstate Rule (CAIR) requires 28 states and the District of Columbia to reduce emissions of SO2 and/or NOx. The Clean Air Mercury Rule (CAMR) requires the states to reduce emissions of mercury from new and existing coal-fired plants.

  7. Development of a Web-based Emissions Reduction Calculator for Solar Thermal and Solar Photovoltaic Installations 

    E-Print Network [OSTI]

    Baltazar-Cervantes, J. C.; Gilman, D.; Haberl, J. S.; Culp, C.

    2005-01-01T23:59:59.000Z

    DEVELOPMENT OF A WEB-BASED EMISSIONS REDUCTION CALCULATOR FOR SOLAR THERMAL AND SOLAR PHOTOVOLTAIC INSTALLATIONS Juan-Carlos Baltazar Research Associate Jeff S. Haberl, Ph.D., P.E. Professor/Associate Director Don R. Gilman, P.E. Senior... the potential emission reductions due to the electricity savings from the application of some of the most common solar thermal and solar photovoltaic systems. The methodology to estimate the potential NOx emission reduction integrates legacy analysis tools...

  8. The effects of cycle-to-cycle variations on nitric oxide (NO) emissions for a spark-ignition engine: Numerical results

    E-Print Network [OSTI]

    Villarroel, Milivoy

    2004-11-15T23:59:59.000Z

    . To carry out the proposed study, an engine simulation model was used. The simulation determines engine performance and NO emissions as functions of engine operating conditions, engine design parameters, and combustion parameters. An automotive, spark...

  9. Controlling NOx to Obtain Offsets or Meet Compliance 

    E-Print Network [OSTI]

    Mincy, J. E.

    1992-01-01T23:59:59.000Z

    Even before the Clean Air Act Amendments of 1990, regulatory authorities monitored and regulated a number of pollutants: lead, carbon monoxide, oxides of sulfur, oxides of nitrogen, ozone and PM-10. The Clean Air Act Amendments increased the focus...

  10. Model Identification for Optimal Diesel Emissions Control

    SciTech Connect (OSTI)

    Stevens, Andrew J.; Sun, Yannan; Song, Xiaobo; Parker, Gordon

    2013-06-20T23:59:59.000Z

    In this paper we develop a model based con- troller for diesel emission reduction using system identification methods. Specifically, our method minimizes the downstream readings from a production NOx sensor while injecting a minimal amount of urea upstream. Based on the linear quadratic estimator we derive the closed form solution to a cost function that accounts for the case some of the system inputs are not controllable. Our cost function can also be tuned to trade-off between input usage and output optimization. Our approach performs better than a production controller in simulation. Our NOx conversion efficiency was 92.7% while the production controller achieved 92.4%. For NH3 conversion, our efficiency was 98.7% compared to 88.5% for the production controller.

  11. FY2011 Progress Report: Agreement 8697 - NOx Sensor Development

    SciTech Connect (OSTI)

    Woo, L Y; Glass, R S

    2011-11-01T23:59:59.000Z

    Objectives are: (1) Develop an inexpensive, rapid-response, high-sensitivity and selective electrochemical sensor for oxides of nitrogen (NO{sub x}) for compression-ignition, direct-injection (CIDI) OBD II systems; (2) Explore and characterize novel, effective sensing methodologies based on impedance measurements and designs and manufacturing methods that are compatible with mass fabrication; and (3) Collaborate with industry in order to (ultimately) transfer the technology to a supplier for commercialization. Approach used is: (1) Use an ionic (O{sup 2-}) conducting ceramic as a solid electrolyte and metal or metal-oxide electrodes; (2) Correlate NO{sub x} concentration with changes in cell impedance; (3) Evaluate sensing mechanisms and aging effects on long-term performance using electrochemical techniques; and (4) Collaborate with Ford Research Center to optimize sensor performance and perform dynamometer and on-vehicle testing. Work in FY2011 focused on using an algorithm developed in FY2010 in a simplified strategy to demonstrate how data from controlled laboratory evaluation could be applied to data from real-world engine testing. The performance of a Au wire prototype sensor was evaluated in the laboratory with controlled gas compositions and in dynamometer testing with diesel exhaust. The laboratory evaluation indicated a nonlinear dependence of the NO{sub x} and O{sub 2} sensitivity with concentration. For both NO{sub x} and O{sub 2}, the prototype sensor had higher sensitivity at concentrations less than {approx}20 ppm and {approx}7%, respectively, compared to lower NO{sub x} and O{sub 2} sensitivity at concentrations greater than {approx}50 ppm and {approx}10.5%, respectively. Results in dynamometer diesel exhaust generally agreed with the laboratory results. Diesel exhaust after-treatment systems will likely require detection levels less than {approx}20 ppm in order to meet emission regulations. The relevant mathematical expressions for sensitivity in different concentration regimes obtained from bench-level laboratory evaluation were used to adjust the sensor signal in dynamometer testing. Both NO{sub x} and O{sub 2} exhibited non-linear responses over the concentration regimes examined (0-100 ppm for NO{sub x} and 4-7% for O{sub 2}). Adjusted sensor signals had better agreement with both a commercial NO{sub x} sensor and FTIR measurements. However, the lack of complete agreement indicated that it was not possible to completely account for the nonlinear sensor behavior in certain concentration regimes. The agreement at lower NO{sub x} levels (less than 20 ppm) was better than at higher levels (50-100 ppm). Other progress in FY2011 included dynamometer testing of sensors with imbedded heaters and protective housings that were mounted directly into the exhaust manifold. Advanced testing protocols were used to evaluate the sensors. These experiments confirmed the potential for sensor robustness and durability. Advanced material processing methods appropriate for mass manufacturing, such as sputtering, are also being evaluated. A major milestone for this past year was the licensing of the LLNL NO{sub x} sensor technology to EmiSense Technologies, LLC. EmiSense has extensive experience and resources for the development of emission control sensors. A CRADA is in development that will allow LLNL to work in partnership with EmiSense to bring the LLNL NO{sub x} sensor technology to commercialization. Ford Motor Company is also a partner in this effort.

  12. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from coal-fired boilers

    SciTech Connect (OSTI)

    Not Available

    1992-11-25T23:59:59.000Z

    This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company's Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO[sub x] combustion technologies on NO[sub x] emissions and boiler performance. A target of achieving fifty percent NO[sub x] reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO[sub x] control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO[sub x] concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO[sub x] reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progress report presents the LNCFS Level I short-term data collected during this quarter. In addition, a comparison of all the long-term emissions data that have been collected to date is included.

  13. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS

    SciTech Connect (OSTI)

    E.G.Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; K.A. Davis; M.P. Heap; T.H. Fletcher; H. Zhang

    2001-06-01T23:59:59.000Z

    An initial testing campaign was carried out during the summer of 2000 to evaluate the impact of multiburner firing on NOx emissions. Extensive data had been collected during the Fall of 1999 and Spring of 2000 using a single pulverized-coal (PC) burner, and this data collection was funded by a separate Department of Energy program, the Combustion 2000 Low Emission Boiler System (LEBS) project under the direction of DB Riley. This single-burner data was thus available for comparison with NOx emissions obtained while firing three burners at the same overall load and operating conditions. A range of operating conditions were explored that were compatible with single-burner data, and thus the emission trends as a function of air staging, burner swirl and other parameters will be described below. In addition, a number of burner-to-burner operational variations were explored that provided interesing insight on their potential impact on NOx emissions. Some of these variations include: running one burner very fuel rich while running the others fuel lean; varying the swirl of a single burner while holding others constant; increasing the firing rate of a single burner while decreasing the others. In general, the results to date indicated that multiburner firing yielded higher NOx emissions than single burner firing at the same fuel rate and excess air. At very fuel rich burner stoichiometries (SR < 0.75), the difference between multiple and single burners became indistinguishable. This result is consistent with previous single-burner data that showed that at very rich stoichiometries the NOx emissions became independent of burner settings such as air distributions, velocities and burner swirl.

  14. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from coal-fired boilers

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO[sub x] burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO[sub x] reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulatecharacteristics and boiler efficiency. Baseline, AOFA, and LNB without AOFA test segments have been completed. Analysis of the 94 days of LNB long-term data collected show the full-load NO[sub x] emission levels to be approximately 0.65 lb/MBtu. Flyash LOI values for the LNB configuration are approximately 8 percent at full-load. Corresponding values for the AOFA configuration are 0.94 lb/MBtu and approximately 10 percent. Abbreviated diagnostic tests for the LNB+AOFA configuration indicate that at 500 MWe, NO[sub x] emissions are approximately 0.55 lb/MBtu with corresponding flyash LOI values of approximately 11 percent. For comparison, the long-term full-load, baseline NO[sub x] emission level was approximately 1.24 lb/MBtu at 5.2 percent LOI. Comprehensive testing of the LNB+AOFA configuration will be performed when the stackparticulate emissions issue is resolved. Testing of a process optimization package on Plant Hammond Unit 4 was performed during this quarter. The software was configured to minimize NO[sub x] emissions using total combustion air flow and advanced overfire air distribution as the controlled parameters. Preliminary results from this testing indicate that this package shows promise in reducing NO[sub x] emissions while maintaining or improving other boiler performance parameters.

  15. Low NOx nozzle tip for a pulverized solid fuel furnace

    DOE Patents [OSTI]

    Donais, Richard E; Hellewell, Todd D; Lewis, Robert D; Richards, Galen H; Towle, David P

    2014-04-22T23:59:59.000Z

    A nozzle tip [100] for a pulverized solid fuel pipe nozzle [200] of a pulverized solid fuel-fired furnace includes: a primary air shroud [120] having an inlet [102] and an outlet [104], wherein the inlet [102] receives a fuel flow [230]; and a flow splitter [180] disposed within the primary air shroud [120], wherein the flow splitter disperses particles in the fuel flow [230] to the outlet [104] to provide a fuel flow jet which reduces NOx in the pulverized solid fuel-fired furnace. In alternative embodiments, the flow splitter [180] may be wedge shaped and extend partially or entirely across the outlet [104]. In another alternative embodiment, flow splitter [180] may be moved forward toward the inlet [102] to create a recessed design.

  16. Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines

    SciTech Connect (OSTI)

    Mark V. Scotto; Mark A. Perna

    2010-05-30T23:59:59.000Z

    Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NOx emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of highflammables content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NOx emissions. The actual NOx reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammables content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NOx reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NOx emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NOx emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

  17. Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand. Part 1. Methodology and Preliminary Results.

    E-Print Network [OSTI]

    Coughlin, Katie

    2013-01-01T23:59:59.000Z

    nox:twh - com - heating - av High Technology Reference CaseTechnology nox:twh - all - all - ref nox:twh - res - heating -Technology nox:twh - all - all - ref nox:twh - res - heating -

  18. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Topical report, LNCFS Levels 1 and 3 test results

    SciTech Connect (OSTI)

    Not Available

    1993-08-17T23:59:59.000Z

    This report presents results from the third phase of an Innovative Clean Coal Technology (ICC-1) project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The purpose of this project was to study the NO{sub x} emissions characteristics of ABB Combustion Engineering`s (ABB CE) Low NO{sub x} Concentric Firing System (LNCFS) Levels I, II, and III. These technologies were installed and tested in a stepwise fashion at Gulf Power Company`s Plant Lansing Smith Unit 2. The objective of this report is to provide the results from Phase III. During that phase, Levels I and III of the ABB C-E Services Low NO{sub x} Concentric Firing System were tested. The LNCFS Level III technology includes separated overfire air, close coupled overfire air, clustered coal nozzles, flame attachment coal nozzle tips, and concentric firing. The LNCFS Level I was simulated by closing the separated overfire air nozzles of the LNCFS Level III system. Based upon long-term data, LNCFS Level HI reduced NO{sub x} emissions by 45 percent at full load. LOI levels with LNCFS Level III increased slightly, however, tests showed that LOI levels with LNCFS Level III were highly dependent upon coal fineness. After correcting for leakage air through the separated overfire air system, the simulated LNCFS Level I reduced NO{sub x} emissions by 37 percent. There was no increase in LOI with LNCFS Level I.

  19. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, first quarter 1992

    SciTech Connect (OSTI)

    Not Available

    1992-05-20T23:59:59.000Z

    This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO{sub x} control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO{sub x} concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progess report presents the LNCFS Level III long-term data collected during this quarter. NO{sub x} emissions for each day of long-term testing are presented. The average NO{sub x} emission during long-term testing was 0.39 lb/MBtu at an average load of 155 MW. The effect of the low NO{sub x} combustion system on other combustion parameters such as carbon monoxide, excess oxygen level, and carbon carryover are also included.

  20. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from coal-fired boilers

    SciTech Connect (OSTI)

    Not Available

    1992-05-20T23:59:59.000Z

    This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company's Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO[sub x] combustion technologies on NO[sub x] emissions and boiler performance. A target of achieving fifty percent NO[sub x] reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO[sub x] control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO[sub x] concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO[sub x] reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progess report presents the LNCFS Level III long-term data collected during this quarter. NO[sub x] emissions for each day of long-term testing are presented. The average NO[sub x] emission during long-term testing was 0.39 lb/MBtu at an average load of 155 MW. The effect of the low NO[sub x] combustion system on other combustion parameters such as carbon monoxide, excess oxygen level, and carbon carryover are also included.

  1. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect (OSTI)

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding; Robert Hurt

    2003-12-31T23:59:59.000Z

    This is the fourteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. Using the initial CFD baseline modeling of the Gavin Station and the plant corrosion maps, six boiler locations for the corrosion probes were identified and access ports have been installed. Preliminary corrosion data obtained appear consistent and believable. In situ, spectroscopic experiments at BYU reported in part last quarter were completed. New reactor tubes have been made for BYU's CCR that allow for testing smaller amounts of catalyst and thus increasing space velocity; monolith catalysts have been cut and a small reactor that can accommodate these pieces for testing is in its final stages of construction. A poisoning study on Ca-poisoned catalysts was begun this quarter. A possible site for a biomass co-firing test of the slipstream reactor was visited this quarter. The slipstream reactor at Rockport required repair and refurbishment, and will be re-started in the next quarter. This report describes the final results of an experimental project at Brown University on the fundamentals of ammonia / fly ash interactions with relevance to the operation of advanced NOx control technologies such as selective catalytic reduction. The Brown task focused on the measurement of ammonia adsorption isotherms on commercial fly ash samples subjected to a variety of treatments and on the chemistry of dry and semi-dry ammonia removal processes.

  2. METHANE de-NOX for Utility PC Boilers

    SciTech Connect (OSTI)

    Bruce Bryan; Joseph Rabovitser Serguei Nester; Stan Wohadlo

    2004-06-30T23:59:59.000Z

    The primary focus for the project during the quarter was shakedown testing of the large-scale coal preheater prototype in the CBTF with non-caking PRB coal. Additional pilot-scale tests were conducted in the PSCF in support of developing a preheating system design suitable for use with caking coals. Thirty-two additional pilot tests were conducted during the quarter with caking coal. These tests further evaluated the use of the air-bleed and indirect air-cooled liner designs to reduce or eliminate combustor plugging with caking coal. The air-bleed configurations tested used air injection holes perpendicular to the liner's longitudinal axis with the number, size and air flow though the air-bleed holes varied to determine the effect on combustor plugging. The indirect cooling configurations tested included a stainless steel liner with spiral fins in the annular space between the liner and the combustor wall, and a silicon carbide liner without fins. Continuous pilot operation was maintained for up to 30 minutes at a coal feed rate of 50 lb/h with the air-bleed liner. The best result achieved was for the stainless steel indirect air-cooled liner with 20 minutes of continuous operation at 126 lb/h of coal followed by an additional 20 minutes at 150 lb/h. The NOx results from these continue to indicate that even greater NOx reduction is possible with caking coal than with the PRB coal tested. The installation of the large-scale prototype coal preheater for PRB testing in the CBTF was completed and shakedown testing with natural gas and PRB coal started during the quarter. Stable operation of the coal system, combustor and burner were achieved at coal feed rates up to 6000 lb/h (50 MMBtu/h).

  3. METHANE DE-NOX FOR UTILITY PC BOILERS

    SciTech Connect (OSTI)

    Bruce Bryan; Joseph Rabovitser; Serguei Nester; Stan Wohadlo

    2004-02-06T23:59:59.000Z

    The primary focus for the project continues to be on developing a PC PREHEAT system design suitable for use with caking coals and readying the 100 MMBtu/h CBTF for testing with noncaking PRB coal. During the current quarter, twenty-two pilot tests were conducted with Central Appalachian (CA) caking coal. The objective for these tests was to achieve continuous operation of the pilot system at its design coal feed rate of 156 lb/h, without plugging or agglomeration in the combustor. One combustor air distribution method tested achieved continuous operation at 110 lb/hr, and inspection of the combustor afterward indicated that this method has potential to solve the caking problem. The NOx results from the pilot caking coal runs indicate that even greater NOx reduction is possible with CA coal than with the PRB coal tested, to levels near 100 ppmv or lower at 4-6% exit oxygen. It was therefore decided to conduct additional pilot tests of the air distribution method to determine how to incorporate this into a workable CA combustor design. Based on current weather and manpower restrictions at the site, this pilot testing is expected to be started in February. The design for the 100 MMBtu/h unit for PRB testing in the CBTF was completed and fabrication and installation started during the quarter. While significant progress has been made in the installation of the unit, weather and combustor fabrication delays are expected to move the start of large-scale testing with PRB coal into February, which will push the project completion date beyond the current 3/30/04 end date. GTI is in the process of developing a revised project schedule and estimated cost to complete.

  4. Diesel Emission Control Technology in Review

    Broader source: Energy.gov (indexed) [DOE]

    Euro 6 for large platforms wo deNOx possible. VW MinNOx, 6-08 Migrating from 1-stage turbo+ HP-EGR to 2-stage turbo+LP-EGR results in higher EGR (reduced NOx) without...

  5. Biomarker Response to Galactic Cosmic Ray-Induced NOx and the Methane Greenhouse Effect in the Atmosphere of an Earthlike Planet Orbiting an M-Dwarf Star

    E-Print Network [OSTI]

    Grenfell, J L; Patzer, B; Rauer, H; Segura, A; Stadelmann, A; Stracke, B; Titz, R; Von Paris, P; Grenfell, John Lee; Griessmeier, Jean-Mathias; Patzer, Beate; Rauer, Heike; Segura, Antigona; Stadelmann, Anja; Stracke, Barbara; Titz, Ruth; Paris, Philip von

    2007-01-01T23:59:59.000Z

    Planets orbiting in the habitable zone (HZ) of M-Dwarf stars are subject to high levels of galactic cosmic rays (GCRs) which produce nitrogen oxides in earthlike atmospheres. We investigate to what extent this NOx may modify biomarker compounds such as ozone (O3) and nitrous oxide (N2O), as well as related compounds such as water (H2O) (essential for life) and methane (CH4) (which has both abiotic and biotic sources) . Our model results suggest that such signals are robust, changing in the M-star world atmospheric column by up to 20% due to the GCR NOx effects compared to an M-star run without GCR effects and can therefore survive at least the effects of galactic cosmic rays. We have not however investigated stellar cosmic rays here. CH4 levels are about 10 times higher than on the Earth related to a lowering in hydroxyl (OH) in response to changes in UV. The increase is less than reported in previous studies. This difference arose partly because we used different biogenic input. For example, we employed 23% ...

  6. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP), Vol. II - Technical Report 

    E-Print Network [OSTI]

    Haberl, J. S.; Culp, C.; Yazdani, B.; Gilman, D.; Fitzpatrick, T.; Muns, S.; Verdict, M.; Ahmed, M.; Liu, Z.; Baltazar-Cervantes, J. C.; Degelman, L. O.; Turner, W. D.

    2006-11-01T23:59:59.000Z

    , the following results were determined for energy-code compliant new residential single- and multi-family construction in non-attainment and affected counties built in 2004: ? The annual savings in 2005 amounted to 348,794 megawatt hours (MWh... would have been 1,799 MWh/day and 1,210 million Btu (MBtu) of natural gas, resulting in peak-OSD NOx emissions reductions of 1.26 tons (2007 eGRID). ? Beginning in 2005, the Laboratory worked with the TCEQ to integrate NOx emissions reductions (i...

  7. Reburning renewable biomass for emissions control and ash deposition effects in power generation

    E-Print Network [OSTI]

    Oh, Hyuk Jin

    2009-05-15T23:59:59.000Z

    Cattle biomass (CB) has been proposed as a renewable, supplementary fuel for co-firing and reburning. Reburning coal with CB has the potential to reduce NOx and Hg emissions from coal fired systems. The present research focuses on three areas...

  8. Estimation of Annual Reductions of NOx Emissions in ERCOT for the HB3693 Electricity Savings Goals

    E-Print Network [OSTI]

    Diem, Art; Mulholland, Denise; Yarbrough, James; Baltazar, Juan Carlos; Im, Piljae; Haberl, Jeff

    .7029 15.1974 Bosque 0.002149 2064.419 0.013185 8986.465 0.000637 68.252 0.000135 20.210 11139.3454 5.5697 Brazoria 0.052595 50518.480 0.001053 717.602 0.000051 5.450 0.000068 10.223 51251.7555 25.6259 Brazos 0.002346 2252.898 0.010872 7409.883 0.000525 56... lla s De n t o n Ta rr an t Ellis Jo h n s o n Tra v is Ba s t r o p Ha ys Be x a r G u ad al up e At a s c o s a B o sque Br a z o s Ca m e ro n Ch er o k e e Ec t o r Fa y e t t e F r ees t o n e G o lia d Hen d e r s o n Hi da l g o Hoo d Ho wa r d...

  9. Calibration and performance of a selective catalytic reduction (SCR) bench rig for NOx? emissions control

    E-Print Network [OSTI]

    Castro Galnares, Sebastián (Castro Galnares Wright Paz)

    2008-01-01T23:59:59.000Z

    A laboratory test rig was designed and built to easily test SCR (Selective Catalytic Reduction) technology. Equipped with three 6 kW heaters, connections for liquid N2 and an assortment of test gases, and a connection with ...

  10. Flexible CHP System with Low NOx, CO, and VOC Emissions - Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington, D.C. on June 1-2, 2011. flexiblechpcygan.pdf More Documents & Publications Heating Ventilation and Air Conditioning Efficiency Greenpower Trap Mufflerl System GNEP...

  11. Using hydroponic biomass to regulate NOx emissions in long range space travel

    E-Print Network [OSTI]

    2002-01-01T23:59:59.000Z

    W.J. ; Markussen, J.M. ; Pennline, H.W. ; Resnik, K.P. Ind.22. Yeh, J.T. ; Ma, W.T. ; Pennline, H.W. ; Haslbeck, J.L. ;

  12. Calculation of Nox Emissions Reductions from Energy Efficient Residential Building Construction in Texas

    E-Print Network [OSTI]

    Haberl, J.; Culp, C.; Gilman, D.; Baltazar-Cervantes, J. C.; Yazdani, B.; Fitzpatrick, T.; Muns, S.; Verdict, M.

    2004-01-01T23:59:59.000Z

    (NAHB 2002). The average 1999 air-conditioner efficiencies (i.e., SEER 11) were obtained from the American Refrigeration Institute (ARI) state-wide sales data for Texas (ARI 2002). Average furnace efficiencies and domestic water heater efficiencies... average daily natural gas use16. This 1:2 ratio is indicating the equal importance of properly accounting for the peak cooling day natural gas use in a residence, which primarily represents the gas use by the domestic water heating and any pilot lights...

  13. Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma...

    Broader source: Energy.gov (indexed) [DOE]

    Acknowledgements K. Rappe, R. Rozmiarek, D. Mendoza - PNNL J. Hoard, C. Peden - LEP NTP CRADA G. Singh, K. Stork, DOE-OFCVT Outline Background Flowsheets Motivation for examination...

  14. Flexible CHP System with Low NOx, CO and VOC Emissions | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOnSTATEMENT8.pdf More DocumentsFlash_2010_-24.pdf

  15. Flexible CHP System with Low NOx, CO, and VOC Emissions - Presentation by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdf Flash2010-60.pdf2 DOE Hydrogen and Fuel Cells Programthe Gas

  16. Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies ProgramOutfitted with SCREnginesFull

  17. Laboratory Product Speciation Studies of the LNT + in situ SCR NOx Emission

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLEDControl Concept | Department of

  18. Performance of Johnson Matthey EGRTÂ’ Emission Control System for NOx and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1 TermoelectricaPaving the pathPeople'sTransientFleet in theofPM

  19. Performance of Johnson Matthey EGRTÂ’ Emission Control System for NOx and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1 TermoelectricaPaving the pathPeople'sTransientFleet in theofPMPM

  20. Characterizing the In-Use Emissions Performance of Novel PM and NOx Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof EnergyAdministration-DesertofSuccess Stories fromSteelsDiesel

  1. Flexible CHP System with Low NOx, CO and VOC Emissions - Fact Sheet, 2014 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdf Flash2006-52.pdf0.pdf Flash2008-50.pdf4.pdf0 Flash2011-40 Issue a New6472Department

  2. Development of ADECS to Meet 2010 Emission Levels: Optimization of NOx, NH3

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I ETechnology | Department

  3. Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of EnergyPlanned Audits andTechnicalPlasma

  4. An Experimental Investigation of the Origin of Increased NOx Emissions When

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NMPerformance | Department ofEnergyAnDepartment

  5. A design strategy applied to sulfur resistant lean NOxĚł automotive catalysts

    E-Print Network [OSTI]

    Tang, Hairong

    2005-01-01T23:59:59.000Z

    Catalyst poisoning due to sulfur compounds derived from fuel sulfur presents a major challenge, intractable thus far, to development of many advanced technologies for automotive catalysts such as the lean NOx, trap. Under ...

  6. APBF-DEC NOx Adsorber/DPF Project: SUV/Pick-Up Platform

    Broader source: Energy.gov (indexed) [DOE]

    Status Principal Investigators: Cynthia Webb Phillip Weber DEER August 25, 2003 APBF-DEC NOx AdsorberDPF Project: SUVPick-Up Platform Program Goals Objectives Light-Duty SUV ...

  7. Excellent Sulfur Resistance of Pt/BaO/CeO2 Lean NOx Trap Catalysts...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and CHF Peden.2008."Excellent Sulfur Resistance of PtBaOCeO2 Lean NOx Trap Catalysts."Applied Catalysis. B, Environmental 84(3-4):545-551. doi:10.1016j.apcatb.2008.05.009...

  8. Diesel NOx-PM Reduction with Fuel Economy Increase by IMET-ŤOBC...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Increase by IMET-OBC-DPF + Hydrated-EGR System for Retrofit of In-Use Trucks Diesel NOx-PM Reduction with Fuel Economy Increase by IMET-OBC-DPF + Hydrated-EGR System...

  9. Consequences of propene and propane on plasma remediation of NOx Rajesh Doraia)

    E-Print Network [OSTI]

    Kushner, Mark

    Consequences of propene and propane on plasma remediation of NOx Rajesh Doraia) Department exhausts with hydrocarbons propane (C3H8) and propene (C3H6) has been investigated. In general

  10. Engine and Reactor Evaluations of HC-SCR for Diesel NOx Reduction

    Broader source: Energy.gov (indexed) [DOE]

    and Reactor Evaluations of HC-SCR for Diesel NOx Reduction Richard Blint, Michael B. Viola and Steven J. Schmieg General Motors R&D Center Warren, MI 48090-9055 DEER 2009 Tuesday,...

  11. Non-thermal plasma-assisted NOx reduction over Na-Y zeolites...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    investigated in the non-thermal plasma assisted NOx reduction reaction using a simulated diesel engine exhaust gas mixture. The acid sites were formed by NH4+ ion exchange and...

  12. Water-induced morphology changes in BaO/?-Al2O3 NOx storage...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    materials: an FTIR, TPD, and time-resolved synchrotron XRD Water-induced morphology changes in BaO?-Al2O3 NOx storage materials: an FTIR, TPD, and time-resolved synchrotron...

  13. Two Catalyst Formulations - One Solution for NOx After-treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    reduction by SCR coated DPF Advanced Technology Light Duty Diesel Aftertreatment System Fuel Reformer, LNT and SCR Aftertreatment System Meeting Emissions Useful Life Requirements...

  14. Cost Analysis of NOx Control Alternatives for Stationary Gas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Combined Heat and Power in the Industrial Sector, January 2000 Review of CHP Technologies, October 1999 Fuel-Flexible, Low-Emissions Catalytic Combustor for Opportunity Fuels...

  15. Status of APBF-DEC NOx Adsorber/DPF Projects

    Broader source: Energy.gov (indexed) [DOE]

    evaluations during aging - Periodic unregulated emissions measurement with 15 ppm S refinery product * Examine other fuel properties 6 OAK RIDGE NATIONAL LABORATORY U. S....

  16. Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology...

    Broader source: Energy.gov (indexed) [DOE]

    Management Team: Ken Howden, Gurpreet Singh, Steve Goguen Cummins-ORNLFEERC Emissions CRADA: NO x Control & Measurement Technology for Heavy-Duty Diesel Engines 2012 DOE Vehicle...

  17. Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology...

    Broader source: Energy.gov (indexed) [DOE]

    Management Team: Gurpreet Singh, Ken Howden, Leo Breton Cummins-ORNLFEERC Emissions CRADA: NO x Control & Measurement Technology for Heavy-Duty Diesel Engines, Self-Diagnosing...

  18. Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology...

    Broader source: Energy.gov (indexed) [DOE]

    Management Team: Ken Howden, Gurpreet Singh, Steve Goguen Cummins-ORNLFEERC Emissions CRADA: NO x Control & Measurement Technology for Heavy-Duty Diesel Engines 2013 DOE Vehicle...

  19. A simulation approach of ozone season emissions to optimize a fossil utility's options

    SciTech Connect (OSTI)

    Weiss, M.D.; Masoniello, R.; DeNavas, J.; Fasca, T.; Jones, M.

    2000-07-01T23:59:59.000Z

    This paper describes PREACT--an approach to choose a mix of pollution control that optimizes economic and environmental alternatives for NOx compliance. The Predictive Real (Time) Emission and Allowance Compliance Tool (PREACT) is a computer program that allows the user to predict key emission parameters and optimize the maximization of net profits while managing emissions compliance. The program allows simulations of various compliance scenarios for NOx emission reductions in order to maintain both State and Federal NOx allocation of allowances on the fossil fired generating units in the Pepco system. The program uses real time data that is interfaced through a Local Area Network system to update forecasts of emissions. It also provides the user with an understanding of the production energy net profits that results from the simulation. The BTU used and fuel quantities are also outputs of the simulation. This paper describes the principle of the tool, which is to learn from past history and modify emissions forecasts considering up-to-date information on a unit profile. NOx emissions, operating options, fuel changes, technology retrofits, and any other opportunities for reducing emissions; considering feedback from real time information are used to modify the forecast. Other factors such as the market price of energy and the production costs of energy will also allow the user to modify the forecast through simulation. The last activity, which requires redefinition, is how to make decisions in real time considering the many opportunities to minimize the incremental cost to maintain emission compliance. The necessary management processes have been installed to maintain the risk management levels that the company wishes to maintain.

  20. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO sub x ) emissions from coal-fired boilers

    SciTech Connect (OSTI)

    Not Available

    1992-02-03T23:59:59.000Z

    This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company's Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an Advanced Overfire Air (AOFA) system followed by Low NO{sub x} Burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

  1. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, third quarter 1991

    SciTech Connect (OSTI)

    Not Available

    1992-02-03T23:59:59.000Z

    This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an Advanced Overfire Air (AOFA) system followed by Low NO{sub x} Burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

  2. aircraft traffic increase: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    about the net global warming effects of nitrogen oxides (NOx) and carbon dioxide (CO2) emissions technology levels, the net result will still be an absolute increase in...

  3. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, second quarter 1992

    SciTech Connect (OSTI)

    Not Available

    1992-11-25T23:59:59.000Z

    This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO{sub x} control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO{sub x} concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progress report presents the LNCFS Level I short-term data collected during this quarter. In addition, a comparison of all the long-term emissions data that have been collected to date is included.

  4. METHANE de-NOX for Utility PC Boilers

    SciTech Connect (OSTI)

    Bruce Bryan; Joseph Rabovitser; Serguei Nester; Stan Wohadlo

    2003-09-30T23:59:59.000Z

    During the current quarter, pilot-scale testing with the modified air nozzle version of the PC burner was completed with PRB coal at the Riley Power Inc. (RPI) test facility. A total of 8 different burner configurations were tested utilizing various burner air nozzle arrangements in place of the burner air channels. It was found that with the arrangements tested, a stable flame could not be maintained at coal feed rates above 100 lb/h. While it is felt that the air nozzle approach can ultimately be used effectively, in the interest of holding to the current project schedule it was decided to proceed with the balance of the project using the air channel design. The pilot-scale PC burner was therefore restored to the air-channel configuration and benchmark testing with PRB coal to confirmed previous operating results. A series of tests was then conducted with PRB and West Virginia caking coal to evaluate modifications to the gas combustor configuration and operation for improved performance with caking coal. Continuous operation was achieved with caking coal up to 50 lb/h vs. the full load target of 150 lb/h. Impingement and deposition of partially devolatilized coal occurred at various points within the combustor when the caking coal feed was increased above 50 lb/h. The 100 MMBtu/h commercial-scale prototype design was continued with coal burner design input from both RPI and VTI. Based on typical burner installation layout considerations, it was decided that the preheat combustor should be oriented horizontally on the axial centerline of the coal burner. Accordingly, the pilot gas combustor was changed to this orientation so that the pilot results with caking coal will be directly applicable to the preferred 100 MMBtu design. Testing with caking coal in the horizontal pilot combustor achieved feed rates up to 126 lb/h, although some deposition and LOI issues remain. Several promising approaches to further improve operation with caking coal were identified. NOx results with caking coal are promising, with NOx as low as 150 ppmv at exit oxygen levels of 4% and higher. The 100 MMBtu/h commercial-scale prototype design is nearing completion. Design of the caking coal version of the unit continues with additional pilot testing in support of this design expected. GTI and RPI are expediting the fabrication of the 100 MMBtu/h PRB unit in order to start testing in early- to mid-December. Inspection and repair of the 100 MMBtu/h Coal Burner Test Facility (CBTF) is nearing completion. As of mid-September, this activity was 95% complete.

  5. Energy Efficiency / Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP), Vol. I – Summary ReportAnnual Report to the Texas Commission on Environmental Quality, Sept. 2003 to Aug. 2004 

    E-Print Network [OSTI]

    Haberl, J. S.; Culp, C.; Yazdani, B.; Gilman, D.; Fitzpatrick, T.; Muns, S.; Verdict, M.; Ahmad, M.; Liu, Z.; Baltazar-Cervantes, J. C.; Bryant, J.; Degelman, L. O.; Turner, W. D.

    2004-01-01T23:59:59.000Z

    -family construction in both non-attainment and affected counties built in 2004: ? The annual savings in 2004 amounted to 233,806 megawatt hours (MWh) of electricity and 667,945 million Btus of natural gas. The resultant annual NOx reductions were 346 tons.... ? On the peak day (August 19, 1999, baseline in the historical air quality model), the savings would have been 1,317 MWh/day and 1,148 million Btus of natural gas, resulting in peak-day NOx emissions reductions of 1.89 tons. ? Cumulative NOx reductions...

  6. EE/RE Impacts on Emission Reductions 

    E-Print Network [OSTI]

    Haberl, J. S.

    2013-01-01T23:59:59.000Z

    2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 WIND PROJECTS IN TEXAS Completed, Announced, and Retired Wind Projects in Texas, as of December 2012 84 Wind Projects Completed 28 Wind Projects Announced 1 Wind... Project Retired 12 Weather Normalization Analysis for Indian M s Annual Ozone Season Day For Non-OSP Model For OSP Model NOx EMISSIONS R DUCTIONS FROM WIND ESL-KT-13-12-02 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec...

  7. Solid State Electrochemical Sensors for Nitrogen Oxide (NOx) Detection in Lean Exhaust Gases

    E-Print Network [OSTI]

    Rheaume, Jonathan Michael

    2010-01-01T23:59:59.000Z

    = Au, Pd, and TiO 2 ) with varying counter electrode", Solid= Au, Pd, and TiO 2 ) with varying counter electrode", Solidelectrodes (dense gold wires) Conductive paste (Au-Pd)

  8. Solid State Electrochemical Sensors for Nitrogen Oxide (NOx) Detection in Lean Exhaust Gases

    E-Print Network [OSTI]

    Rheaume, Jonathan Michael

    2010-01-01T23:59:59.000Z

    Allen, “ Pulse CO Laser Drilling of Green Alumina Ceramic”,Susan D. Allen, “Pulse CO Laser Drilling of Green Alumina

  9. Solid State Electrochemical Sensors for Nitrogen Oxide (NOx) Detection in Lean Exhaust Gases

    E-Print Network [OSTI]

    Rheaume, Jonathan Michael

    2010-01-01T23:59:59.000Z

    W. Ragland, Combustion Engineering, (McGraw Hill: Boston,and Kenneth W. Ragland, Combustion Engineering, McGraw-Hill:

  10. Solid State Electrochemical Sensors for Nitrogen Oxide (NOx) Detection in Lean Exhaust Gases

    E-Print Network [OSTI]

    Rheaume, Jonathan Michael

    2010-01-01T23:59:59.000Z

    at several frequencies. EIS is performed as follows: - Applyand Saruhan performed EIS on NO x sensors with sputtered NiOTransformation (Aging) EIS was performed on LSM sensors on

  11. Solid State Electrochemical Sensors for Nitrogen Oxide (NOx) Detection in Lean Exhaust Gases

    E-Print Network [OSTI]

    Rheaume, Jonathan Michael

    2010-01-01T23:59:59.000Z

    Chou, Steve Dai, Ramesh Koripella, Manny Oliver, Daniel Sadler, PaulChou, Steve Dai, Ramesh Koripella, Manny Oliver, Daniel Sadler, Paul

  12. Investigation on continuous soot oxidation and NOx reduction by SCR coated

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report: I11IG002 InvestigationFuel830, at thePowerDPF |

  13. Effect of Thermal Aging on NO oxidation and NOx storage in a

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board Contributionsreduction systemParticulateWearDepartment

  14. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect (OSTI)

    Mike Bockelie; Kevin Davis; Connie Senior Darren Shino; Dave Swenson; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2004-09-30T23:59:59.000Z

    This is the seventeenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. The SCR slipstream reactor was assembled and installed at Plant Gadsden this quarter. Safety equipment for ammonia had not been installed at the end of the quarter, but will be installed at the beginning of next quarter. The reactor will be started up next quarter. Four ECN corrosion probes were reinstalled at Gavin and collected corrosion data for approximately one month. Two additional probes were installed and removed after about 30 hours for future profilometry analysis. Preliminary analysis of the ECN probes, the KEMA coupons and the CFD modeling results all agree with the ultrasonic tube test measurements gathered by AEP personnel.

  15. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect (OSTI)

    Mike Bockelie; Kevin Davis; Connie Senior; Darren Shino; Dave Swenson; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2004-12-31T23:59:59.000Z

    This is the eighteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. Safety equipment for ammonia for the SCR slipstream reactor at Plant Gadsden was installed. The slipstream reactor was started and operated for about 1400 hours during the last performance period. Laboratory analysis of exposed catalyst and investigations of the sulfation of fresh catalyst continued at BYU. Thicker end-caps for the ECN probes were designed and fabricated to prevent the warpage and failure that occurred at Gavin with the previous design. A refurbished ECN probe was successfully tested at the University of Utah combustion laboratory. Improvements were implemented to the software that controls the flow of cooling air to the ECN probes.

  16. Release of Ammonium and Mercury from NOx Controlled Fly Ash

    SciTech Connect (OSTI)

    Schroeder, K.T.; Cardone, C.R.; Kim, A.G

    2007-07-01T23:59:59.000Z

    One of the goals of the Department of Energy is to increase the reuse of coal utilization byproducts (CUB) to 50% by 2010. This will require both developing new markets and maintaining traditional ones such as the use of fly ash in concrete. However, the addition of pollution control devices can introduce side-effects that affect the marketability of the CUB. Such can be the case when NOx control is achieved using selective catalytic or non-catalytic reduction (SCR or SNCR). Depending on site-specific details, the ammonia slip can cause elevated levels of NH3 in the fly ash. Disposal of ammoniated fly ash can present environmental concerns related to the amount of ammonia that might be released, the amount of water that might become contaminated, and the extent to which metals might be mobilized by the presence of the ammonia. Ammonia retained in fly ash appears to be present as either an ammonium salt or as a chemisorbed species. Mercury in the leachates correlated to neither the amount of leachable ammonium nor to the total amount of Hg in the ash. The strongest correlation was between the decreases in the amount of Hg leached with increased LOI.

  17. Texas Emissions Reductions Program (TERP) Energy Efficiency/Renewable Energy (EE/RE) Update

    E-Print Network [OSTI]

    Haberl, J. S.; Yazdani, B.; Culp, C.

    2012-01-01T23:59:59.000Z

    Systems Laboratory ? 2012 IC3: REGISTRY OF USAGE Sep. 2011 to Date: 18,023 Certificates Total to Date : 38,376 Certificates Top 10 Counties for last 3 years Average SEER Across Counties p. 17 Energy Systems Laboratory ? 2012 p. 18... - By county - By SIP area OSD emissions reductions: - By program - By county - By SIP area INTEGRATED NOx SAVINGS p. 49 Energy Systems Laboratory ? 2012 2011 Integrated Emissions Savings ESL Code...

  18. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP)

    E-Print Network [OSTI]

    Baltazar-Cervantes, J. C.; Haberl, J. S.; Ramirez, E. J.; Champeau, K.

    : solar photovoltaic, solar thermal, hydroelectric, geothermal, and landfill gas-fired power plants. However, information on wind energy farms has been omitted in this report due to the fact that a more complete ESL report on this subject has already...-based Emissions Reduction Calculator. This program is able to calculate weather-normalized NOx emissions estimates for energy efficiency and renewable sources projects, such as solar photovoltaic, solar thermal, and wind. Annual energy savings from renewable...

  19. Investigation Of Synergistic NOx Reduction From Cofiring And Air Staged Combustion Of Coal And Low Ash Dairy Biomass In A 30 Kilowatt Low NOx Furnace

    E-Print Network [OSTI]

    Lawrence, Benjamin Daniel

    2013-08-01T23:59:59.000Z

    to address this concern. DB is evaluated as a cofired fuel with Wyoming Powder River Basin (PRB) sub-bituminous coal in a small-scale 29 kW_(t) low NO_(x) burner (LNB) facility. Fuel properties, of PRB and DB revealed the following: a higher heating value...

  20. Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption of a PHEV School Bus: Preprint

    SciTech Connect (OSTI)

    Barnitt, R.; Gonder, J.

    2011-04-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL) collected and analyzed real-world school bus drive cycle data and selected similar standard drive cycles for testing on a chassis dynamometer. NREL tested a first-generation plug-in hybrid electric vehicle (PHEV) school bus equipped with a 6.4L engine and an Enova PHEV drive system comprising a 25-kW/80 kW (continuous/peak) motor and a 370-volt lithium ion battery pack. A Bluebird 7.2L conventional school bus was also tested. Both vehicles were tested over three different drive cycles to capture a range of driving activity. PHEV fuel savings in charge-depleting (CD) mode ranged from slightly more than 30% to a little over 50%. However, the larger fuel savings lasted over a shorter driving distance, as the fully charged PHEV school bus would initially operate in CD mode for some distance, then in a transitional mode, and finally in a charge-sustaining (CS) mode for continued driving. The test results indicate that a PHEV school bus can achieve significant fuel savings during CD operation relative to a conventional bus. In CS mode, the tested bus showed small fuel savings and somewhat higher nitrogen oxide (NOx) emissions than the baseline comparison bus.