Sample records for oxide fuel cell

  1. Solid oxide fuel cell generator

    DOE Patents [OSTI]

    Di Croce, A. Michael (Murrysville, PA); Draper, Robert (Churchill Boro, PA)

    1993-11-02T23:59:59.000Z

    A solid oxide fuel cell generator has a plenum containing at least two rows of spaced apart, annular, axially elongated fuel cells. An electrical conductor extending between adjacent rows of fuel cells connects the fuel cells of one row in parallel with each other and in series with the fuel cells of the adjacent row.

  2. Solid oxide fuel cell generator

    DOE Patents [OSTI]

    Di Croce, A.M.; Draper, R.

    1993-11-02T23:59:59.000Z

    A solid oxide fuel cell generator has a plenum containing at least two rows of spaced apart, annular, axially elongated fuel cells. An electrical conductor extending between adjacent rows of fuel cells connects the fuel cells of one row in parallel with each other and in series with the fuel cells of the adjacent row. 5 figures.

  3. Solid oxide fuel cell generator

    DOE Patents [OSTI]

    Draper, R.; George, R.A.; Shockling, L.A.

    1993-04-06T23:59:59.000Z

    A solid oxide fuel cell generator has a pair of spaced apart tubesheets in a housing. At least two intermediate barrier walls are between the tubesheets and define a generator chamber between two intermediate buffer chambers. An array of fuel cells have tubes with open ends engaging the tubesheets. Tubular, axially elongated electrochemical cells are supported on the tubes in the generator chamber. Fuel gas and oxidant gas are preheated in the intermediate chambers by the gases flowing on the other side of the tubes. Gas leakage around the tubes through the tubesheets is permitted. The buffer chambers reentrain the leaked fuel gas for reintroduction to the generator chamber.

  4. Solid oxide fuel cell generator

    DOE Patents [OSTI]

    Draper, Robert (Churchill Boro, PA); George, Raymond A. (Pittsburgh, PA); Shockling, Larry A. (Plum Borough, PA)

    1993-01-01T23:59:59.000Z

    A solid oxide fuel cell generator has a pair of spaced apart tubesheets in a housing. At least two intermediate barrier walls are between the tubesheets and define a generator chamber between two intermediate buffer chambers. An array of fuel cells have tubes with open ends engaging the tubesheets. Tubular, axially elongated electrochemical cells are supported on the tubes in the generator chamber. Fuel gas and oxidant gas are preheated in the intermediate chambers by the gases flowing on the other side of the tubes. Gas leakage around the tubes through the tubesheets is permitted. The buffer chambers reentrain the leaked fuel gas for reintroduction to the generator chamber.

  5. Solid Oxide Fuel Cell Manufacturing Overview

    E-Print Network [OSTI]

    Solid Oxide Fuel Cell Manufacturing Overview Hydrogen and Fuel Cell Technologies Manufacturing R Reserved. 3 The Solid Oxide Fuel Cell Electrochemistry #12;Copyright © 2011 Versa Power Systems. All Rights

  6. NETL: Solid Oxide Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and water concerns associated with fossil fuel based electric power generation. The NETL Fuel Cell Program maintains a portfolio of RD&D projects that address the technical issues...

  7. Modeling of solid oxide fuel cells

    E-Print Network [OSTI]

    Lee, Won Yong, S.M. Massachusetts Institute of Technology

    2006-01-01T23:59:59.000Z

    A comprehensive membrane-electrode assembly (MEA) model of Solid Oxide Fuel Cell (SOFC)s is developed to investigate the effect of various design and operating conditions on the cell performance and to examine the underlying ...

  8. Mathematical modeling of solid oxide fuel cells using hydrocarbon fuels

    E-Print Network [OSTI]

    Lee, Won Yong, Ph. D. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    Solid oxide fuel cells (SOFCs) are high efficiency conversion devices that use hydrogen or light hydrocarbon (HC) fuels in stationary applications to produce quiet and clean power. While successful, HC-fueled SOFCs face ...

  9. Interfacial material for solid oxide fuel cell

    DOE Patents [OSTI]

    Baozhen, Li (Essex Junction, VT); Ruka, Roswell J. (Pittsburgh, PA); Singhal, Subhash C. (Murrysville, PA)

    1999-01-01T23:59:59.000Z

    Solid oxide fuel cells having improved low-temperature operation are disclosed. In one embodiment, an interfacial layer of terbia-stabilized zirconia is located between the air electrode and electrolyte of the solid oxide fuel cell. The interfacial layer provides a barrier which controls interaction between the air electrode and electrolyte. The interfacial layer also reduces polarization loss through the reduction of the air electrode/electrolyte interfacial electrical resistance. In another embodiment, the solid oxide fuel cell comprises a scandia-stabilized zirconia electrolyte having high electrical conductivity. The scandia-stabilized zirconia electrolyte may be provided as a very thin layer in order to reduce resistance. The scandia-stabilized electrolyte is preferably used in combination with the terbia-stabilized interfacial layer. The solid oxide fuel cells are operable over wider temperature ranges and wider temperature gradients in comparison with conventional fuel cells.

  10. Solid oxide fuel cell with monolithic core

    DOE Patents [OSTI]

    McPheeters, C.C.; Mrazek, F.C.

    1988-08-02T23:59:59.000Z

    A solid oxide fuel cell in which fuel and oxidant gases undergo an electrochemical reaction to produce an electrical output includes a monolithic core comprised of a corrugated conductive sheet disposed between upper and lower generally flat sheets. The corrugated sheet includes a plurality of spaced, parallel, elongated slots which form a series of closed, linear, first upper and second lower gas flow channels with the upper and lower sheets within which a fuel gas and an oxidant gas respectively flow. Facing ends of the fuel cell are generally V-shaped and provide for fuel and oxidant gas inlet and outlet flow, respectively, and include inlet and outlet gas flow channels which are continuous with the aforementioned upper fuel gas and lower oxidant gas flow channels. The upper and lower flat sheets and the intermediate corrugated sheet are preferably comprised of ceramic materials and are securely coupled together such as by assembly in the green state and sintering together during firing at high temperatures. A potential difference across the fuel cell, or across a stacked array of similar fuel cells, is generated when an oxidant gas such as air and a fuel such as hydrogen gas is directed through the fuel cell at high temperatures, e.g., between 700 C and 1,100 C. 8 figs.

  11. Solid oxide fuel cell with monolithic core

    DOE Patents [OSTI]

    McPheeters, Charles C. (Plainfield, IL); Mrazek, Franklin C. (Hickory Hills, IL)

    1988-01-01T23:59:59.000Z

    A solid oxide fuel cell in which fuel and oxidant gases undergo an electrochemical reaction to produce an electrical output includes a monolithic core comprised of a corrugated conductive sheet disposed between upper and lower generally flat sheets. The corrugated sheet includes a plurality of spaced, parallel, elongated slots which form a series of closed, linear, first upper and second lower gas flow channels with the upper and lower sheets within which a fuel gas and an oxidant gas respectively flow. Facing ends of the fuel cell are generally V-shaped and provide for fuel and oxidant gas inlet and outlet flow, respectively, and include inlet and outlet gas flow channels which are continuous with the aforementioned upper fuel gas and lower oxidant gas flow channels. The upper and lower flat sheets and the intermediate corrugated sheet are preferably comprised of ceramic materials and are securely coupled together such as by assembly in the green state and sintering together during firing at high temperatures. A potential difference across the fuel cell, or across a stacked array of similar fuel cells, is generated when an oxidant gas such as air and a fuel such as hydrogen gas is directed through the fuel cell at high temperatures, e.g., between 700.degree. C. and 1100.degree. C.

  12. Interconnection of bundled solid oxide fuel cells

    DOE Patents [OSTI]

    Brown, Michael; Bessette, II, Norman F; Litka, Anthony F; Schmidt, Douglas S

    2014-01-14T23:59:59.000Z

    A system and method for electrically interconnecting a plurality of fuel cells to provide dense packing of the fuel cells. Each one of the plurality of fuel cells has a plurality of discrete electrical connection points along an outer surface. Electrical connections are made directly between the discrete electrical connection points of adjacent fuel cells so that the fuel cells can be packed more densely. Fuel cells have at least one outer electrode and at least one discrete interconnection to an inner electrode, wherein the outer electrode is one of a cathode and and anode and wherein the inner electrode is the other of the cathode and the anode. In tubular solid oxide fuel cells the discrete electrical connection points are spaced along the length of the fuel cell.

  13. Interactions of nickel/zirconia solid oxide fuel cell anodes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactions of nickelzirconia solid oxide fuel cell anodes with coal gas containing arsenic. Interactions of nickelzirconia solid oxide fuel cell anodes with coal gas containing...

  14. Advanced Materials for Reversible Solid Oxide Fuel Cell (RSOFC...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Reversible Solid Oxide Fuel Cell (RSOFC), Dual Mode Operation with Low Degradation Advanced Materials for Reversible Solid Oxide Fuel Cell (RSOFC), Dual Mode Operation with Low...

  15. Performance of solid oxide fuel cells operated with coal syngas...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Performance of solid oxide fuel cells operated with coal syngas provided directly from a gasification process. Performance of solid oxide fuel cells operated with coal syngas...

  16. Solid oxide MEMS-based fuel cells

    DOE Patents [OSTI]

    Jankowksi, Alan F.; Morse, Jeffrey D.

    2007-03-13T23:59:59.000Z

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  17. Generator configuration for solid oxide fuel cells

    DOE Patents [OSTI]

    Reichner, Philip (Plum Boro, PA)

    1989-01-01T23:59:59.000Z

    Disclosed are improvements in a solid oxide fuel cell generator 1 having a multiplicity of electrically connected solid oxide fuel cells 2, where a fuel gas is passed over one side of said cells and an oxygen-containing gas is passed over the other side of said cells resulting in the generation of heat and electricity. The improvements comprise arranging the cells in the configuration of a circle, a spiral, or folded rows within a cylindrical generator, and modifying the flow rate, oxygen concentration, and/or temperature of the oxygen-containing gases that flow to those cells that are at the periphery of the generator relative to those cells that are at the center of the generator. In these ways, a more uniform temperature is obtained throughout the generator.

  18. Sintered electrode for solid oxide fuel cells

    DOE Patents [OSTI]

    Ruka, Roswell J. (Pittsburgh, PA); Warner, Kathryn A. (Bryan, TX)

    1999-01-01T23:59:59.000Z

    A solid oxide fuel cell fuel electrode is produced by a sintering process. An underlayer is applied to the electrolyte of a solid oxide fuel cell in the form of a slurry, which is then dried. An overlayer is applied to the underlayer and then dried. The dried underlayer and overlayer are then sintered to form a fuel electrode. Both the underlayer and the overlayer comprise a combination of electrode metal such as nickel, and stabilized zirconia such as yttria-stabilized zirconia, with the overlayer comprising a greater percentage of electrode metal. The use of more stabilized zirconia in the underlayer provides good adhesion to the electrolyte of the fuel cell, while the use of more electrode metal in the overlayer provides good electrical conductivity. The sintered fuel electrode is less expensive to produce compared with conventional electrodes made by electrochemical vapor deposition processes. The sintered electrodes exhibit favorable performance characteristics, including good porosity, adhesion, electrical conductivity and freedom from degradation.

  19. Low Temperature Constrained Sintering of Cerium Gadolinium Oxide Films for Solid Oxide Fuel Cell Applications

    E-Print Network [OSTI]

    Nicholas, Jason.D.

    2007-01-01T23:59:59.000Z

    Temperature Solid Oxide Fuel Cells, In: S.C. Singhal and M.Tubular Solid Oxide Fuel Cell Technology, U.S. Department ofOxide Films for Solid Oxide Fuel Cell Applications by Jason

  20. NETL: Solid Oxide Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLoveReferenceAgenda Workshop AgendaGraphic of aEnergyResearchSolid

  1. Solid Oxide Fuel Cells FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9MorganYouof EnergyVehicles andFAQs

  2. Tubular solid oxide fuel cell current collector

    DOE Patents [OSTI]

    Bischoff, Brian L. (Knoxville, TN); Sutton, Theodore G. (Kingston, TN); Armstrong, Timothy R. (Clinton, TN)

    2010-07-20T23:59:59.000Z

    An internal current collector for use inside a tubular solid oxide fuel cell (TSOFC) electrode comprises a tubular coil spring disposed concentrically within a TSOFC electrode and in firm uniform tangential electrical contact with the electrode inner surface. The current collector maximizes the contact area between the current collector and the electrode. The current collector is made of a metal that is electrically conductive and able to survive under the operational conditions of the fuel cell, i.e., the cathode in air, and the anode in fuel such as hydrogen, CO, CO.sub.2, H.sub.2O or H.sub.2S.

  3. Metal-supported solid oxide fuel cells

    SciTech Connect (OSTI)

    Villarreal, I.; Jacobson, C.; Leming, A.; Matus, Y.; Visco, S.; De Jonghe, L.

    2003-01-07T23:59:59.000Z

    Low cost, colloidal deposition methods have been utilized to produce novel solid oxide fuel cell structures on metal alloy support electrodes. YSZ films were deposited on iron-chrome supports on top of a thin Ni/YSZ catalytic layer, and sintered at 1350 degrees C, in a reducing atmosphere. Dense, 20??m YSZ electrolyte films were obtained on highly porous stainless steel substrates.

  4. Sandia National Laboratories: solid-oxide fuel cell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    oxide fuel cell More Efficient Fuel Cells under Development by Engineers On July 10, 2014, in Center for Infrastructure Research and Innovation (CIRI), Energy, Energy Storage,...

  5. A New Instrument For Characterizing Solid Oxide Fuel Cell Catalysts

    E-Print Network [OSTI]

    RESEARCH HIGHLIGHTS A New Instrument For Characterizing Solid Oxide Fuel Cell Catalysts From fuels to renewable energy sources. Solid oxide fuel cells (SOFCs) have enormous potential in this area A New Instrument For Characterizing Solid Oxide Fuel Cell Catalysts Rob Usiskin In partnership

  6. FUEL TRANSFORMER SOLID OXIDE FUEL CELL

    SciTech Connect (OSTI)

    Norman Bessette; Douglas S. Schmidt; Jolyon Rawson; Lars Allfather; Anthony Litka

    2005-03-24T23:59:59.000Z

    The following report documents the technical approach and conclusions made by Acumentrics Corporation during latest budget period toward the development of a low cost 10kW tubular SOFC power system. The present program, guided under direction from the National Energy Technology Laboratory of the US DOE, is a nine-year cost shared Cooperative Agreement totaling close to $74M funded both by the US DOE as well as Acumentrics Corporation and its partners. The latest budget period ran from July of 2004 through January 2004. Work was focused on cell technology enhancements as well as BOP and power electronics improvements and overall system design. Significant progress was made in increasing cell power enhancements as well as decreasing material cost in a drive to meet the SECA cost targets. The following report documents these accomplishments in detail as well as the lay out plans for further progress in next budget period.

  7. Fuel Transformer Solid Oxide Fuel Cell

    SciTech Connect (OSTI)

    Norman Bessette; Douglas S. Schmidt; Jolyon Rawson; Lars Allfather; Anthony Litka

    2005-08-01T23:59:59.000Z

    The following report documents the technical approach and conclusions made by Acumentrics Corporation during latest budget period toward the development of a low cost 10kW tubular SOFC power system. The present program, guided under direction from the National Energy Technology Laboratory of the US DOE, is a nine-year cost shared Cooperative Agreement totaling close to $74M funded both by the US DOE as well as Acumentrics Corporation and its partners. The latest budget period ran from January of 2005 through June 2005. Work focused on cell technology enhancements as well as BOP and power electronics improvements and overall system design. Significant progress was made in increasing cell power enhancements as well as decreasing material cost in a drive to meet the SECA cost targets. The following report documents these accomplishments in detail as well as the layout plans for further progress in next budget period.

  8. Sintered electrode for solid oxide fuel cells

    DOE Patents [OSTI]

    Ruka, R.J.; Warner, K.A.

    1999-06-01T23:59:59.000Z

    A solid oxide fuel cell fuel electrode is produced by a sintering process. An underlayer is applied to the electrolyte of a solid oxide fuel cell in the form of a slurry, which is then dried. An overlayer is applied to the underlayer and then dried. The dried underlayer and overlayer are then sintered to form a fuel electrode. Both the underlayer and the overlayer comprise a combination of electrode metal such as nickel, and stabilized zirconia such as yttria-stabilized zirconia, with the overlayer comprising a greater percentage of electrode metal. The use of more stabilized zirconia in the underlayer provides good adhesion to the electrolyte of the fuel cell, while the use of more electrode metal in the overlayer provides good electrical conductivity. The sintered fuel electrode is less expensive to produce compared with conventional electrodes made by electrochemical vapor deposition processes. The sintered electrodes exhibit favorable performance characteristics, including good porosity, adhesion, electrical conductivity and freedom from degradation. 4 figs.

  9. May 19-21, 2003 Ris International Energy Conference No 1 Solid Oxide Fuel CellsSolid Oxide Fuel Cells

    E-Print Network [OSTI]

    May 19-21, 2003 Risø International Energy Conference No 1 Solid Oxide Fuel CellsSolid Oxide Fuel #12;May 19-21, 2003 Risø International Energy Conference No 3 IntroductionIntroduction · "Fuel cells few moving parts" · "Solid oxide technology may prove to be the most reliable of fuel cell power

  10. Solid Oxide Fuel Cell and Power System Development at PNNL

    Broader source: Energy.gov (indexed) [DOE]

    Solid Oxide Fuel Cell and Power Solid Oxide Fuel Cell and Power S t D l t t PNNL S t D l t t PNNL System Development at PNNL System Development at PNNL Larry Chick Energy Materials...

  11. Solid oxide fuel cell having monolithic core

    DOE Patents [OSTI]

    Ackerman, J.P.; Young, J.E.

    1983-10-12T23:59:59.000Z

    A solid oxide fuel cell is described for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween. The electrolyte walls are arranged and backfolded between adjacent interconnect walls operable to define a plurality of core passageways alternately arranged where the inside faces thereof have only the anode material or only the cathode material exposed. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageway; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte and interconnect materials is of the order of 0.002 to 0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002 to 0.05 cm thick.

  12. Solid oxide fuel cell process and apparatus

    DOE Patents [OSTI]

    Cooper, Matthew Ellis (Morgantown, WV); Bayless, David J. (Athens, OH); Trembly, Jason P. (Durham, NC)

    2011-11-15T23:59:59.000Z

    Conveying gas containing sulfur through a sulfur tolerant planar solid oxide fuel cell (PSOFC) stack for sulfur scrubbing, followed by conveying the gas through a non-sulfur tolerant PSOFC stack. The sulfur tolerant PSOFC stack utilizes anode materials, such as LSV, that selectively convert H.sub.2S present in the fuel stream to other non-poisoning sulfur compounds. The remaining balance of gases remaining in the completely or near H.sub.2S-free exhaust fuel stream is then used as the fuel for the conventional PSOFC stack that is downstream of the sulfur-tolerant PSOFC. A broad range of fuels such as gasified coal, natural gas and reformed hydrocarbons are used to produce electricity.

  13. Solid Oxide Fuel Cell: Perspective of Dynamic Modeling and Control

    E-Print Network [OSTI]

    Huang, Biao

    Solid Oxide Fuel Cell: Perspective of Dynamic Modeling and Control Biao Huang Yutong Qi Monjur: This paper presents a review of state-of-the-art solid oxide fuel cells (SOFC), from perspective of dynamic. Keywords: Solid Oxide Fuel Cell, Control Relevant Model, Model Predictive Control 1. INTRODUCTION Today

  14. COMPUTATIONAL FLUID DYNAMICS MODELING OF SOLID OXIDE FUEL CELLS

    E-Print Network [OSTI]

    COMPUTATIONAL FLUID DYNAMICS MODELING OF SOLID OXIDE FUEL CELLS Ugur Pasaogullari and Chao-dimensional model has been developed to simulate solid oxide fuel cells (SOFC). The model fully couples current density operation. INTRODUCTION Solid oxide fuel cells (SOFC) are among possible candidates

  15. Review article Components manufacturing for solid oxide fuel cells

    E-Print Network [OSTI]

    Gleixner, Stacy

    of solid oxide fuel cell (SOFC) components is given and the fabrication techniques of ceramic components Elsevier Science B.V. All rights reserved. Keywords: Solid oxide fuel cell (SOFC); Components manufacturingReview article Components manufacturing for solid oxide fuel cells F. Tietz *, H.-P. Buchkremer, D

  16. Molybdenum Dioxide As A Solid Oxide Fuel Cell Anodic Catalyst

    E-Print Network [OSTI]

    Collins, Gary S.

    Molybdenum Dioxide As A Solid Oxide Fuel Cell Anodic Catalyst Jay Thunstrom, Su Ha, Oscar Flores are being developed. One of the most auspicious and the topic presented here is the solid oxide fuel cell hydrocarbons and have great resistance to poisoning. Solid Oxide Fuel Cell Operation Three stages exist

  17. Solid Oxide Fuel Cell Auxiliary Power Unit

    SciTech Connect (OSTI)

    J. Weber

    2001-12-12T23:59:59.000Z

    Solid Oxide Fuel Cell (SOFC) is an attractive, efficient, clean source of power for transportation, military, and stationary applications. Delphi has pioneered its application as an auxiliary Power Unit (APU) for transportation. Delphi is also interested in marketing this technology for stationary applications. Its key advantages are high efficiency and compatibility with gasoline, natural gas and diesel fuel. It's consistent with mechanizations that support the trend to low emissions. Delphi is committed to working with customers and partners to bring this novel technology to market.

  18. Effect of Coal Gas Contaminants on Solid Oxide Fuel Cell Operation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal Gas Contaminants on Solid Oxide Fuel Cell Operation. Effect of Coal Gas Contaminants on Solid Oxide Fuel Cell Operation. Abstract: The operation of solid oxide fuel cells...

  19. Solid oxide fuel cell having monolithic core

    DOE Patents [OSTI]

    Ackerman, John P. (Downers Grove, IL); Young, John E. (Woodridge, IL)

    1984-01-01T23:59:59.000Z

    A solid oxide fuel cell for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween, and each interconnect wall consists of thin layers of the cathode and anode materials sandwiching a thin layer of interconnect material therebetween. The electrolyte walls are arranged and backfolded between adjacent interconnect walls operable to define a plurality of core passageways alternately arranged where the inside faces thereof have only the anode material or only the cathode material exposed. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageway; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte and interconnect materials is of the order of 0.002-0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002-0.05 cm thick.

  20. Solid Oxide Fuel Cells Operating on Alternative and Renewable Fuels

    SciTech Connect (OSTI)

    Wang, Xiaoxing; Quan, Wenying; Xiao, Jing; Peduzzi, Emanuela; Fujii, Mamoru; Sun, Funxia; Shalaby, Cigdem; Li, Yan; Xie, Chao; Ma, Xiaoliang; Johnson, David; Lee, Jeong; Fedkin, Mark; LaBarbera, Mark; Das, Debanjan; Thompson, David; Lvov, Serguei; Song, Chunshan

    2014-09-30T23:59:59.000Z

    This DOE project at the Pennsylvania State University (Penn State) initially involved Siemens Energy, Inc. to (1) develop new fuel processing approaches for using selected alternative and renewable fuels – anaerobic digester gas (ADG) and commercial diesel fuel (with 15 ppm sulfur) – in solid oxide fuel cell (SOFC) power generation systems; and (2) conduct integrated fuel processor – SOFC system tests to evaluate the performance of the fuel processors and overall systems. Siemens Energy Inc. was to provide SOFC system to Penn State for testing. The Siemens work was carried out at Siemens Energy Inc. in Pittsburgh, PA. The unexpected restructuring in Siemens organization, however, led to the elimination of the Siemens Stationary Fuel Cell Division within the company. Unfortunately, this led to the Siemens subcontract with Penn State ending on September 23rd, 2010. SOFC system was never delivered to Penn State. With the assistance of NETL project manager, the Penn State team has since developed a collaborative research with Delphi as the new subcontractor and this work involved the testing of a stack of planar solid oxide fuel cells from Delphi.

  1. Open end protection for solid oxide fuel cells

    DOE Patents [OSTI]

    Zafred, Paolo R. (Murrysville, PA); Dederer, Jeffrey T. (Valencia, PA); Tomlins, Gregory W. (Pittsburgh, PA); Toms, James M. (Irwin, PA); Folser, George R. (Lower Burrell, PA); Schmidt, Douglas S. (Pittsburgh, PA); Singh, Prabhakar (Export, PA); Hager, Charles A. (Zelienople, PA)

    2001-01-01T23:59:59.000Z

    A solid oxide fuel cell (40) having a closed end (44) and an open end (42) operates in a fuel cell generator (10) where the fuel cell open end (42) of each fuel cell contains a sleeve (60, 64) fitted over the open end (42), where the sleeve (60, 64) extends beyond the open end (42) of the fuel cell (40) to prevent degradation of the interior air electrode of the fuel cell by fuel gas during operation of the generator (10).

  2. Solid Oxide Fuel Cell Development at Topsoe Fuel Cell A/S and Ris National Laboratory

    E-Print Network [OSTI]

    Solid Oxide Fuel Cell Development at Topsoe Fuel Cell A/S and Risø National Laboratory N. Hagenb a Topsoe Fuel Cell A/S, Nymøllevej 55, DK-2800 Lyngby, Denmark b Risø National Laboratory, DTU, DK-4000 Roskilde, Denmark ABSTRACT Topsoe Fuel Cell A/S (TOFC) and Risø National Laboratory (Risø

  3. Solid oxide fuel cell generator with removable modular fuel cell stack configurations

    DOE Patents [OSTI]

    Gillett, J.E.; Dederer, J.T.; Zafred, P.R.; Collie, J.C.

    1998-04-21T23:59:59.000Z

    A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack. 8 figs.

  4. Solid oxide fuel cell generator with removable modular fuel cell stack configurations

    DOE Patents [OSTI]

    Gillett, James E. (Greensburg, PA); Dederer, Jeffrey T. (Valencia, PA); Zafred, Paolo R. (Pittsburgh, PA); Collie, Jeffrey C. (Pittsburgh, PA)

    1998-01-01T23:59:59.000Z

    A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack.

  5. Solid Oxide Fuel Cell Systems PVL Line

    SciTech Connect (OSTI)

    Susan Shearer - Stark State College; Gregory Rush - Rolls-Royce Fuel Cell Systems

    2012-05-01T23:59:59.000Z

    In July 2010, Stark State College (SSC), received Grant DE-EE0003229 from the U.S. Department of Energy (DOE), Golden Field Office, for the development of the electrical and control systems, and mechanical commissioning of a unique 20kW scale high-pressure, high temperature, natural gas fueled Stack Block Test System (SBTS). SSC worked closely with subcontractor, Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) over a 13 month period to successfully complete the project activities. This system will be utilized by RRFCS for pre-commercial technology development and training of SSC student interns. In the longer term, when RRFCS is producing commercial products, SSC will utilize the equipment for workforce training. In addition to DOE Hydrogen, Fuel Cells, and Infrastructure Technologies program funding, RRFCS internal funds, funds from the state of Ohio, and funding from the DOE Solid State Energy Conversion Alliance (SECA) program have been utilized to design, develop and commission this equipment. Construction of the SBTS (mechanical components) was performed under a Grant from the State of Ohio through Ohio's Third Frontier program (Grant TECH 08-053). This Ohio program supported development of a system that uses natural gas as a fuel. Funding was provided under the Department of Energy (DOE) Solid-state Energy Conversion Alliance (SECA) program for modifications required to test on coal synthesis gas. The subject DOE program provided funding for the electrical build, control system development and mechanical commissioning. Performance testing, which includes electrical commissioning, was subsequently performed under the DOE SECA program. Rolls-Royce Fuel Cell Systems is developing a megawatt-scale solid oxide fuel cell (SOFC) stationary power generation system. This system, based on RRFCS proprietary technology, is fueled with natural gas, and operates at elevated pressure. A critical success factor for development of the full scale system is the capability to test fuel cell components at a scale and under conditions that can be accurately extrapolated to full system performance. This requires specially designed equipment that replicates the pressure (up to 6.5 bara), temperature (about 910 C), anode and cathode gas compositions, flows and power generation density of the full scale design. The SBTS fuel cell anode gas is produced through the reaction of pipeline natural gas with a mixture of steam, CO2, and O2 in a catalytic partial oxidation (CPOX) reactor. Production of the fuel cell anode gas in this manner provides the capability to test a fuel cell with varying anode gas compositions ranging from traditional reformed natural gas to a coal-syngas surrogate fuel. Stark State College and RRFCS have a history of collaboration. This is based upon SSCAs commitment to provide students with skills for advanced energy industries, and RRFCS need for a workforce that is skilled in high temperature fuel cell development and testing. A key to this approach is the access of students to unique SOFC test and evaluation equipment. This equipment is designed and developed by RRFCS, with the participation of SSC interns. In the near-term, the equipment will be used by RRFCS for technology development. When this stage is completed, and RRFCS has moved to commercial products, SSC will utilize this equipment for workforce training. The RRFCS fuel cell design is based upon a unique ceramic substrate architecture in which a porous, flat substrate (tube) provides the support structure for a network of solid oxide fuel cells that are electrically connected in series. These tubes are grouped into a {approx}350-tube repeat configuration, called a stack/block. Stack/block testing, performed at system conditions, provides data that can be confidently scaled to full scale performance. This is the basis for the specially designed and developed test equipment that is required for advancing and accelerating the RRFCS SOFC power system development program. All contract DE-EE0003229 objectives were achieved and deliverables completed during the peri

  6. Solid oxide fuel cell matrix and modules

    DOE Patents [OSTI]

    Riley, B.

    1988-04-22T23:59:59.000Z

    Porous refractory ceramic blocks arranged in an abutting, stacked configuration and forming a three dimensional array provide a support structure and coupling means for a plurality of solid oxide fuel cells (SOFCs). The stack of ceramic blocks is self-supporting, with a plurality of such stacked arrays forming a matrix enclosed in an insulating refractory brick structure having an outer steel layer. The necessary connections for air, fuel, burnt gas, and anode and cathode connections are provided through the brick and steel outer shell. The ceramic blocks are so designed with respect to the strings of modules that by simple and logical design the strings could be replaced by hot reloading if one should fail. The hot reloading concept has not been included in any previous designs. 11 figs.

  7. Intermediate Temperature Solid Oxide Fuel Cell Development

    SciTech Connect (OSTI)

    S. Elangovan; Scott Barnett; Sossina Haile

    2008-06-30T23:59:59.000Z

    Solid oxide fuel cells (SOFCs) are high efficiency energy conversion devices. Present materials set, using yttria stabilized zirconia (YSZ) electrolyte, limit the cell operating temperatures to 800 C or higher. It has become increasingly evident however that lowering the operating temperature would provide a more expeditious route to commercialization. The advantages of intermediate temperature (600 to 800 C) operation are related to both economic and materials issues. Lower operating temperature allows the use of low cost materials for the balance of plant and limits degradation arising from materials interactions. When the SOFC operating temperature is in the range of 600 to 700 C, it is also possible to partially reform hydrocarbon fuels within the stack providing additional system cost savings by reducing the air preheat heat-exchanger and blower size. The promise of Sr and Mg doped lanthanum gallate (LSGM) electrolyte materials, based on their high ionic conductivity and oxygen transference number at the intermediate temperature is well recognized. The focus of the present project was two-fold: (a) Identify a cell fabrication technique to achieve the benefits of lanthanum gallate material, and (b) Investigate alternative cathode materials that demonstrate low cathode polarization losses at the intermediate temperature. A porous matrix supported, thin film cell configuration was fabricated. The electrode material precursor was infiltrated into the porous matrix and the counter electrode was screen printed. Both anode and cathode infiltration produced high performance cells. Comparison of the two approaches showed that an infiltrated cathode cells may have advantages in high fuel utilization operations. Two new cathode materials were evaluated. Northwestern University investigated LSGM-ceria composite cathode while Caltech evaluated Ba-Sr-Co-Fe (BSCF) based pervoskite cathode. Both cathode materials showed lower polarization losses at temperatures as low as 600 C than conventional manganite or cobaltite cathodes.

  8. High power density solid oxide fuel cells

    SciTech Connect (OSTI)

    Pham, Ai Quoc; Glass, Robert S.

    2004-10-12T23:59:59.000Z

    A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O (LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.

  9. Nanoengineered Thin Films for Solid Oxide Fuel Cells

    E-Print Network [OSTI]

    Su, Qing

    2013-11-21T23:59:59.000Z

    Solid oxide fuel cells (SOFCs) are very attractive as energy generation devices because of their high energy efficiency, flexible fuel selections and clean energy conversion. To avoid cell cracking and formation of non-conducting compounds...

  10. Nanoengineered Thin Films for Solid Oxide Fuel Cells 

    E-Print Network [OSTI]

    Su, Qing

    2013-11-21T23:59:59.000Z

    Solid oxide fuel cells (SOFCs) are very attractive as energy generation devices because of their high energy efficiency, flexible fuel selections and clean energy conversion. To avoid cell cracking and formation of non-conducting compounds...

  11. Solid oxide fuel cell matrix and modules

    DOE Patents [OSTI]

    Riley, Brian (Willimantic, CT)

    1990-01-01T23:59:59.000Z

    Porous refractory ceramic blocks arranged in an abutting, stacked configuration and forming a three dimensional array provide a support structure and coupling means for a plurality of solid oxide fuel cells (SOFCs). Each of the blocks includes a square center channel which forms a vertical shaft when the blocks are arranged in a stacked array. Positioned within the channel is a SOFC unit cell such that a plurality of such SOFC units disposed within a vertical shaft form a string of SOFC units coupled in series. A first pair of facing inner walls of each of the blocks each include an interconnecting channel hole cut horizontally and vertically into the block walls to form gas exit channels. A second pair of facing lateral walls of each block further include a pair of inner half circular grooves which form sleeves to accommodate anode fuel and cathode air tubes. The stack of ceramic blocks is self-supporting, with a plurality of such stacked arrays forming a matrix enclosed in an insulating refractory brick structure having an outer steel layer. The necessary connections for air, fuel, burnt gas, and anode and cathode connections are provided through the brick and steel outer shell. The ceramic blocks are so designed with respect to the strings of modules that by simple and logical design the strings could be replaced by hot reloading if one should fail. The hot reloading concept has not been included in any previous designs.

  12. Integrating Multiple Solid Oxide Fuel Cell Modules* Burak Ozpineci1

    E-Print Network [OSTI]

    Tolbert, Leon M.

    Integrating Multiple Solid Oxide Fuel Cell Modules* Burak Ozpineci1 burak@ieee.org Zhong Du2 zdu1 of Energy's Solid-State Energy Conversion Alliance (SECA) program [3] is targeting solid oxide fuel cell Laboratory P.O. Box 880 Morgantown, WV 26507-0880 Abstract-According to SECA program guidelines, solid oxide

  13. Nanostructured Solid Oxide Fuel Cell Electrodes

    SciTech Connect (OSTI)

    Sholklapper, Tal Zvi

    2007-12-15T23:59:59.000Z

    The ability of Solid Oxide Fuel Cells (SOFC) to directly and efficiently convert the chemical energy in hydrocarbon fuels to electricity places the technology in a unique and exciting position to play a significant role in the clean energy revolution. In order to make SOFC technology cost competitive with existing technologies, the operating temperatures have been decreased to the range where costly ceramic components may be substituted with inexpensive metal components within the cell and stack design. However, a number of issues have arisen due to this decrease in temperature: decreased electrolyte ionic conductivity, cathode reaction rate limitations, and a decrease in anode contaminant tolerance. While the decrease in electrolyte ionic conductivities has been countered by decreasing the electrolyte thickness, the electrode limitations have remained a more difficult problem. Nanostructuring SOFC electrodes addresses the major electrode issues. The infiltration method used in this dissertation to produce nanostructure SOFC electrodes creates a connected network of nanoparticles; since the method allows for the incorporation of the nanoparticles after electrode backbone formation, previously incompatible advanced electrocatalysts can be infiltrated providing electronic conductivity and electrocatalysis within well-formed electrolyte backbones. Furthermore, the method is used to significantly enhance the conventional electrode design by adding secondary electrocatalysts. Performance enhancement and improved anode contamination tolerance are demonstrated in each of the electrodes. Additionally, cell processing and the infiltration method developed in conjunction with this dissertation are reviewed.

  14. Solid Oxide Fuel Cells Victoria A. Liem and Jeongmin Ahn

    E-Print Network [OSTI]

    Collins, Gary S.

    Solid Oxide Fuel Cells Victoria A. Liem and Jeongmin Ahn Introduction to Multiscale Engineering technology has become important and vital to further advancement in energy production. Solid oxide fuel cells (SOFCs) are of great interest because of their ability to generate energy using different fuel sources

  15. In situ reduction and oxidation of nickel from solid oxide fuel cells in a Titan ETEM

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    In situ reduction and oxidation of nickel from solid oxide fuel cells in a Titan ETEM A. Faes1, Denmark antonin.faes@epfl.ch Keywords: In situ ETEM, nickel oxide, reduction, RedOx, SOFC Solid Oxide Fuel. C. Singhal, K. Kendall, High Temperature Solid Oxide Fuel Cell - Fundamentals, Design

  16. Connections for solid oxide fuel cells

    DOE Patents [OSTI]

    Collie, Jeffrey C. (Pittsburgh, PA)

    1999-01-01T23:59:59.000Z

    A connection for fuel cell assemblies is disclosed. The connection includes compliant members connected to individual fuel cells and a rigid member connected to the compliant members. Adjacent bundles or modules of fuel cells are connected together by mechanically joining their rigid members. The compliant/rigid connection permits construction of generator fuel cell stacks from basic modular groups of cells of any desired size. The connections can be made prior to installation of the fuel cells in a generator, thereby eliminating the need for in-situ completion of the connections. In addition to allowing pre-fabrication, the compliant/rigid connections also simplify removal and replacement of sections of a generator fuel cell stack.

  17. Tubular screen electrical connection support for solid oxide fuel cells

    DOE Patents [OSTI]

    Tomlins, Gregory W. (Pittsburgh, PA); Jaszcar, Michael P. (Murrysville, PA)

    2002-01-01T23:59:59.000Z

    A solid oxide fuel assembly is made of fuel cells (16, 16', 18, 24, 24', 26), each having an outer interconnection layer (36) and an outer electrode (28), which are disposed next to each other with rolled, porous, hollow, electrically conducting metal mesh conductors (20, 20') between the fuel cells, connecting the fuel cells at least in series along columns (15, 15') and where there are no metal felt connections between any fuel cells.

  18. Solid Oxide Fuel Cells | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9MorganYouof EnergyVehicles andFAQsSolid Oxide Fuel

  19. NETL: Solid Oxide Fuel Cells Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gif Directorate1, Issue 23 NETL ScientistFeedSolid Oxide Fuel

  20. 2015 Solid Oxide Fuel Cells Project Portfolio

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, 2014Energy, Office2015 Solid Oxide Fuel

  1. Solid Oxide Fuel Cell Manufacturing Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmallConfidential,2Cycleof Energy (SOFC)Solid Oxide

  2. Mechanical Engineering Manufacturing Solid Oxide Fuel Cells for Improved Electro-

    E-Print Network [OSTI]

    Lin, Xi

    for the commercialization of solid oxide fuel cells (SOFCs) are its high manufacturing and material costs expressed in termsUday Pal Mechanical Engineering Manufacturing Solid Oxide Fuel Cells for Improved Electro- chemical of the SOFC system cost per unit power ($/kW). In this work, anode-supported planar SOFCs were fabricated

  3. Proceedings of the Lucerne Fuel Cell Forum 2006 European Solid Oxide Fuel Cell Forum, 3-7 July 2006

    E-Print Network [OSTI]

    Yildiz, Bilge

    Uncertainties in our understanding of the oxygen reduction mechanism (ORR) at solid oxide fuel cell (SOFCProceedings of the Lucerne Fuel Cell Forum 2006 7th European Solid Oxide Fuel Cell Forum, 3-7 July studies have shown that cathodic or anodic dc polarization of the solid oxide fuel cell oxygen electrodes

  4. Solid oxide fuel cell operable over wide temperature range

    DOE Patents [OSTI]

    Baozhen, Li (Essex Junction, VT); Ruka, Roswell J. (Pittsburgh, PA); Singhal, Subhash C. (Murrysville, PA)

    2001-01-01T23:59:59.000Z

    Solid oxide fuel cells having improved low-temperature operation are disclosed. In one embodiment, an interfacial layer of terbia-stabilized zirconia is located between the air electrode and electrolyte of the solid oxide fuel cell. The interfacial layer provides a barrier which controls interaction between the air electrode and electrolyte. The interfacial layer also reduces polarization loss through the reduction of the air electrode/electrolyte interfacial electrical resistance. In another embodiment, the solid oxide fuel cell comprises a scandia-stabilized zirconia electrolyte having high electrical conductivity. The scandia-stabilized zirconia electrolyte may be provided as a very thin layer in order to reduce resistance. The scandia-stabilized electrolyte is preferably used in combination with the terbia-stabilized interfacial layer. The solid oxide fuel cells are operable over wider temperature ranges and wider temperature gradients in comparison with conventional fuel cells.

  5. Stack configurations for tubular solid oxide fuel cells

    DOE Patents [OSTI]

    Armstrong, Timothy R. (Clinton, TN); Trammell, Michael P. (Clinton, TN); Marasco, Joseph A. (Kingston, TN)

    2010-08-31T23:59:59.000Z

    A fuel cell unit includes an array of solid oxide fuel cell tubes having porous metallic exterior surfaces, interior fuel cell layers, and interior surfaces, each of the tubes having at least one open end; and, at least one header in operable communication with the array of solid oxide fuel cell tubes for directing a first reactive gas into contact with the porous metallic exterior surfaces and for directing a second reactive gas into contact with the interior surfaces, the header further including at least one busbar disposed in electrical contact with at least one surface selected from the group consisting of the porous metallic exterior surfaces and the interior surfaces.

  6. Yttria-stabilized zirconia solid oxide electrolyte fuel cells--- monolithic solid oxide fuel cells

    SciTech Connect (OSTI)

    Not Available

    1990-10-01T23:59:59.000Z

    The monolithic solid oxide fuel cell (MSOFC) is currently under development for a variety of applications including coal-based power generation. The MSOFC is a design concept that places the thin components of a solid oxide fuel cell in lightweight, compact, corrugated structure, and so achieves high efficiency and excellent performance simultaneously with high power density. The MSOFC can be integrated with coal gasification plants and is expected to have high overall efficiency in the conversion of the chemical energy of coal to electrical energy. This report describes work aimed at (1) assessing manufacturing costs for the MSOFC and system costs for a coal-based plant; (2) modifying electrodes and electrode/electrolyte interfaces to improve the electrochemical performance of the MSOFC; and (3) testing the performance of the MSOFC on hydrogen and simulated coal gas. Manufacturing costs for both the coflow and crossflow MSOFC's were assessed based on the fabrication flow charts developed by direct scaleup of tape calendering and other laboratory processes. Integrated coal-based MSOFC systems were investigated to determine capital costs and costs of electricity. Design criteria were established for a coal-fueled 200-Mw power plant. Four plant arrangements were evaluated, and plant performance was analyzed. Interfacial modification involved modification of electrodes and electrode/electrolyte interfaces to improve the MSOFC electrochemical performance. Work in the cathode and cathode/electrolyte interface was concentrated on modification of electrode porosity, electrode morphology, electrode material, and interfacial bonding. Modifications of the anode and anode/electrolyte interface included the use of additives and improvement of nickel distribution. Single cells have been tested for their electrochemical performance. Performance data were typically obtained with humidified H{sub 2} or simulated coal gas and air or oxygen. 68 figs., 29 tabs.

  7. Nanostructured thin films for solid oxide fuel cells 

    E-Print Network [OSTI]

    Yoon, Jongsik

    2009-05-15T23:59:59.000Z

    The goals of this work were to synthesize high performance perovskite based thin film solid oxide fuel cell (TF-SOFC) cathodes by pulsed laser deposition (PLD), to study the structural, electrical and electrochemical properties of these cathodes...

  8. FY 2014 Solid Oxide Fuel Cell Project Selections

    Broader source: Energy.gov [DOE]

    In FY 2014, nine research projects focused on advancing the reliability, robustness, and endurance of solid oxide fuel cells (SOFC) have been selected for funding by Office of Fossil Energy’s...

  9. Advanced Materials for Reversible Solid Oxide Fuel Cell (RSOFC), Dual Mode Operation with Low

    E-Print Network [OSTI]

    Advanced Materials for Reversible Solid Oxide Fuel Cell (RSOFC), Dual Mode Operation with Low, Director Product Development & Federal Programs #12;Project Background f Reversible Solid Oxide Fuel Cells

  10. Performance of hybrid quad generation system consisting of solid oxide fuel cell system and

    E-Print Network [OSTI]

    Liso, Vincenzo

    Performance of hybrid quad generation system consisting of solid oxide fuel cell system. Keywords: Energy system modeling, Solid oxide fuel cell, Absorption heat pump. 1. Introduction 1

  11. Solid Oxide Fuel Cell and PowerSolid Oxide Fuel Cell and Power S t D l t t PNNLS t D l t t PNNLSystem Development at PNNLSystem Development at PNNL

    E-Print Network [OSTI]

    Solid Oxide Fuel Cell and PowerSolid Oxide Fuel Cell and Power S t D l t t PNNLS t D l;Solid Oxide Fuel Cell CharacteristicsSolid Oxide Fuel Cell Characteristics High temperature (~700 ­ 800

  12. Fuel cell power supply with oxidant and fuel gas switching

    DOE Patents [OSTI]

    McElroy, James F. (Hamilton, MA); Chludzinski, Paul J. (Swampscott, MA); Dantowitz, Philip (Peabody, MA)

    1987-01-01T23:59:59.000Z

    This invention relates to a fuel cell vehicular power plant. Fuel for the fuel stack is supplied by a hydrocarbon (methanol) catalytic cracking reactor and CO shift reactor. A water electrolysis subsystem is associated with the stack. During low power operation part of the fuel cell power is used to electrolyze water with hydrogen and oxygen electrolysis products being stored in pressure vessels. During peak power intervals, viz, during acceleration or start-up, pure oxygen and pure hydrogen from the pressure vessel are supplied as the reaction gases to the cathodes and anodes in place of air and methanol reformate. This allows the fuel cell stack to be sized for normal low power/air operation but with a peak power capacity several times greater than that for normal operation.

  13. Fuel cell power supply with oxidant and fuel gas switching

    DOE Patents [OSTI]

    McElroy, J.F.; Chludzinski, P.J.; Dantowitz, P.

    1987-04-14T23:59:59.000Z

    This invention relates to a fuel cell vehicular power plant. Fuel for the fuel stack is supplied by a hydrocarbon (methanol) catalytic cracking reactor and CO shift reactor. A water electrolysis subsystem is associated with the stack. During low power operation part of the fuel cell power is used to electrolyze water with hydrogen and oxygen electrolysis products being stored in pressure vessels. During peak power intervals, viz, during acceleration or start-up, pure oxygen and pure hydrogen from the pressure vessel are supplied as the reaction gases to the cathodes and anodes in place of air and methanol reformate. This allows the fuel cell stack to be sized for normal low power/air operation but with a peak power capacity several times greater than that for normal operation. 2 figs.

  14. Method of fabricating a monolithic solid oxide fuel cell

    DOE Patents [OSTI]

    Minh, N.Q.; Horne, C.R.

    1994-03-01T23:59:59.000Z

    In a two-step densifying process of making a monolithic solid oxide fuel cell, a limited number of anode-electrolyte-cathode cells separated by an interconnect layer are formed and partially densified. Subsequently, the partially densified cells are stacked and further densified to form a monolithic array. 10 figures.

  15. Method of fabricating a monolithic solid oxide fuel cell

    DOE Patents [OSTI]

    Minh, Nguyen Q. (Fountain Valley, CA); Horne, Craig R. (Redondo Beach, CA)

    1994-01-01T23:59:59.000Z

    In a two-step densifying process of making a monolithic solid oxide fuel cell, a limited number of anode-electrolyte-cathode cells separated by an interconnect layer are formed and partially densified. Subsequently, the partially densified cells are stacked and further densified to form a monolithic array.

  16. OXIDATION OF FUELS IN THE COOL FLAME REGIME FOR COMBUSTION AND REFORMING FOR FUEL CELLS.

    SciTech Connect (OSTI)

    NAIDJA,A.; KRISHNA,C.R.; BUTCHER,T.; MAHAJAN,D.

    2002-08-01T23:59:59.000Z

    THE REVIEW INTEGRATES RECENT INVESTIGATIONS ON AUTO OXIDATION OF FUEL OILS AND THEIR REFORMING INTO HYDROGEN RICH GAS THAT COULD SERVE AS A FEED FOR FUEL CELLS AND COMBUSTION SYSTEMS.

  17. Solid-oxide fuel cell electrolyte

    DOE Patents [OSTI]

    Bloom, Ira D. (Bolingbrook, IL); Hash, Mark C. (Joliet, IL); Krumpelt, Michael (Naperville, IL)

    1993-01-01T23:59:59.000Z

    A solid-oxide electrolyte operable at between 600.degree. C. and 800.degree. C. and a method of producing the solid-oxide electrolyte are provided. The solid-oxide electrolyte comprises a combination of a compound having weak metal-oxygen interactions with a compound having stronger metal-oxygen interactions whereby the resulting combination has both strong and weak metal-oxygen interaction properties.

  18. Solid Oxide Fuel Cell Development at Topsoe Fuel Cell A/S and Ris N. Christiansen1

    E-Print Network [OSTI]

    1 Solid Oxide Fuel Cell Development at Topsoe Fuel Cell A/S and Risø N. Christiansen1 , J. Hansen2 , H. Holm-Larsen1 , S. Linderoth3 , P. Larsen3 , P. Hendriksen3 , M. Mogensen3 1 Topsøe Fuel Cell A Background Topsoe Fuel Cell A/S (TOFC) and Risø National Laboratory (Risø) are jointly carrying out

  19. LG Solid Oxide Fuel Cell (SOFC) Model Development

    SciTech Connect (OSTI)

    Haberman, Ben; Martinez-Baca, Carlos; Rush, Greg

    2013-03-31T23:59:59.000Z

    This report presents a summary of the work performed by LG Fuel Cell Systems Inc. during the project LG Solid Oxide Fuel Cell (SOFC) Model Development (DOE Award Number: DE-FE0000773) which commenced on October 1, 2009 and was completed on March 31, 2013. The aim of this project is for LG Fuel Cell Systems Inc. (formerly known as Rolls-Royce Fuel Cell Systems (US) Inc.) (?LGFCS?) to develop a multi-physics solid oxide fuel cell (SOFC) computer code (MPC) for performance calculations of the LGFCS fuel cell structure to support fuel cell product design and development. A summary of the initial stages of the project is provided which describes the MPC requirements that were developed and the selection of a candidate code, STAR-CCM+ (CD-adapco). This is followed by a detailed description of the subsequent work program including code enhancement and model verification and validation activities. Details of the code enhancements that were implemented to facilitate MPC SOFC simulations are provided along with a description of the models that were built using the MPC and validated against experimental data. The modeling work described in this report represents a level of calculation detail that has not been previously available within LGFCS.

  20. Dynamic Modeling in Solid-Oxide Fuel Cells Controller Design

    SciTech Connect (OSTI)

    Lu, Ning; Li, Qinghe; Sun, Xin; Khaleel, Mohammad A.

    2007-06-28T23:59:59.000Z

    In this paper, a dynamic model of the solid-oxide fuel cell (SOFC) power unit is developed for the purpose of designing a controller to regulate fuel flow rate, fuel temperature, air flow rate, and air temperature to maintain the SOFC stack temperature, fuel utilization rate, and voltage within operation limits. A lumped model is used to consider the thermal dynamics and the electro-chemial dynamics inside an SOFC power unit. The fluid dynamics at the fuel and air inlets are considered by using the in-flow ramp-rates.

  1. NETL: Solid Oxide Fuel Cells Operating Principles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gif Directorate1, Issue 23 NETL ScientistFeed

  2. Solid oxide fuel cell steam reforming power system

    DOE Patents [OSTI]

    Chick, Lawrence A.; Sprenkle, Vincent L.; Powell, Michael R.; Meinhardt, Kerry D.; Whyatt, Greg A.

    2013-03-12T23:59:59.000Z

    The present invention is a Solid Oxide Fuel Cell Reforming Power System that utilizes adiabatic reforming of reformate within this system. By utilizing adiabatic reforming of reformate within the system the system operates at a significantly higher efficiency than other Solid Oxide Reforming Power Systems that exist in the prior art. This is because energy is not lost while materials are cooled and reheated, instead the device operates at a higher temperature. This allows efficiencies higher than 65%.

  3. Solid-Oxide Fuel Cell Stack System Identification and Control A Systematic Recipe

    E-Print Network [OSTI]

    Sanandaji, Borhan M.

    Solid-Oxide Fuel Cell Stack System Identification and Control A Systematic Recipe Borhan M of Engineering Colorado School of Mines, Golden, CO 80401 USA Solid-Oxide Fuel Cell (MIMO) Systems Are... fuel

  4. Breakout Group 5: Solid Oxide Fuel Cells

    Broader source: Energy.gov (indexed) [DOE]

    choice o Combined heat and power applications maximize SOFC benefit of high grade waste heat o Critical and remote power are good early market applications o Biomass-fueled SOFCs...

  5. Solid Oxide Fuel Cell (SOFC) Technology for Greener Airplanes

    E-Print Network [OSTI]

    Solid Oxide Fuel Cell (SOFC) Technology for Greener Airplanes Larry Chick/Mike Rinker Energy Materials Group Pacific Northwest National Laboratory September 30, 2010 #12;2 2 SOFC Technology Development at PNNL PNNL has been active in SOFC development since 1987. Major participant in SECA Core Technology

  6. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect (OSTI)

    Faress Rahman; Nguyen Minh

    2004-01-04T23:59:59.000Z

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

  7. Electrocatalyst for alcohol oxidation at fuel cell anodes

    DOE Patents [OSTI]

    Adzic, Radoslav (East Setauket, NY); Kowal, Andrzej (Cracow, PL)

    2011-11-02T23:59:59.000Z

    In some embodiments a ternary electrocatalyst is provided. The electrocatalyst can be used in an anode for oxidizing alcohol in a fuel cell. In some embodiments, the ternary electrocatalyst may include a noble metal particle having a surface decorated with clusters of SnO.sub.2 and Rh. The noble metal particles may include platinum, palladium, ruthenium, iridium, gold, and combinations thereof. In some embodiments, the ternary electrocatalyst includes SnO.sub.2 particles having a surface decorated with clusters of a noble metal and Rh. Some ternary electrocatalysts include noble metal particles with clusters of SnO.sub.2 and Rh at their surfaces. In some embodiments the electrocatalyst particle cores are nanoparticles. Some embodiments of the invention provide a fuel cell including an anode incorporating the ternary electrocatalyst. In some aspects a method of using ternary electrocatalysts of Pt, Rh, and SnO.sub.2 to oxidize an alcohol in a fuel cell is described.

  8. Ionic conductors for solid oxide fuel cells

    DOE Patents [OSTI]

    Krumpelt, Michael (Naperville, IL); Bloom, Ira D. (Bolingbrook, IL); Pullockaran, Jose D. (Hanover Park, IL); Myles, Kevin M. (Downers Grove, IL)

    1993-01-01T23:59:59.000Z

    An electrolyte that operates at temperatures ranging from 600.degree. C. to 800.degree. C. is provided. The electrolyte conducts charge ionically as well as electronically. The ionic conductors include molecular framework structures having planes or channels large enough to transport oxides or hydrated protons and having net-positive or net-negative charges. Representative molecular framework structures include substituted aluminum phosphates, orthosilicates, silicoaluminates, cordierites, apatites, sodalites, and hollandites.

  9. Solid oxide fuel cell with single material for electrodes and interconnect

    DOE Patents [OSTI]

    McPheeters, Charles C. (Naperville, IL); Nelson, Paul A. (Wheaton, IL); Dees, Dennis W. (Downers Grove, IL)

    1994-01-01T23:59:59.000Z

    A solid oxide fuel cell having a plurality of individual cells. A solid oxide fuel cell has an anode and a cathode with electrolyte disposed therebetween, and the anode, cathode and interconnect elements are comprised of substantially one material.

  10. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect (OSTI)

    David Deangelis; Rich Depuy; Debashis Dey; Georgia Karvountzi; Nguyen Minh; Max Peter; Faress Rahman; Pavel Sokolov; Deliang Yang

    2004-09-30T23:59:59.000Z

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale up strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.

  11. Five Kilowatt Solid Oxide Fuel Cell/Diesel Reformer

    SciTech Connect (OSTI)

    Dennis Witmer; Thomas Johnson

    2008-12-31T23:59:59.000Z

    Reducing fossil fuel consumption both for energy security and for reduction in global greenhouse emissions has been a major goal of energy research in the US for many years. Fuel cells have been proposed as a technology that can address both these issues--as devices that convert the energy of a fuel directly into electrical energy, they offer low emissions and high efficiencies. These advantages are of particular interest to remote power users, where grid connected power is unavailable, and most electrical power comes from diesel electric generators. Diesel fuel is the fuel of choice because it can be easily transported and stored in quantities large enough to supply energy for small communities for extended periods of time. This projected aimed to demonstrate the operation of a solid oxide fuel cell on diesel fuel, and to measure the resulting efficiency. Results from this project have been somewhat encouraging, with a laboratory breadboard integration of a small scale diesel reformer and a Solid Oxide Fuel Cell demonstrated in the first 18 months of the project. This initial demonstration was conducted at INEEL in the spring of 2005 using a small scale diesel reformer provided by SOFCo and a fuel cell provided by Acumentrics. However, attempts to integrate and automate the available technology have not proved successful as yet. This is due both to the lack of movement on the fuel processing side as well as the rather poor stack lifetimes exhibited by the fuel cells. Commercial product is still unavailable, and precommercial devices are both extremely expensive and require extensive field support.

  12. Fuel electrode containing pre-sintered nickel/zirconia for a solid oxide fuel cell

    DOE Patents [OSTI]

    Ruka, Roswell J. (Pittsburgh, PA); Vora, Shailesh D. (Monroeville, PA)

    2001-01-01T23:59:59.000Z

    A fuel cell structure (2) is provided, having a pre-sintered nickel-zirconia fuel electrode (6) and an air electrode (4), with a ceramic electrolyte (5) disposed between the electrodes, where the pre-sintered fuel electrode (6) contains particles selected from the group consisting of nickel oxide, cobalt and cerium dioxide particles and mixtures thereof, and titanium dioxide particles, within a matrix of yttria-stabilized zirconia and spaced-apart filamentary nickel strings having a chain structure, and where the fuel electrode can be sintered to provide an active solid oxide fuel cell.

  13. Serially connected solid oxide fuel cells having monolithic cores

    DOE Patents [OSTI]

    Herceg, J.E.

    1985-05-20T23:59:59.000Z

    Disclosed is a solid oxide fuel cell for electrochemically combining fuel and oxidant for generating galvanic output. The cell core has an array of cell segments electrically serially connected in the flow direction, each segment consisting of electrolyte walls and interconnect that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageways; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte composite materials is of the order of 0.002 to 0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002 to 0.05 cm thick. Between 2 and 50 cell segments may be connected in series.

  14. Solid Oxide Fuel Cell Auxiliary Power Units for Long-Haul Trucks

    E-Print Network [OSTI]

    Solid Oxide Fuel Cell Auxiliary Power Units for Long-Haul Trucks Modeling and Control Mohammad and maintenance of the truck engine. While still in the research phase, Solid Oxide Fuel Cell (SOFC) based APUs

  15. Study on Degradation of Solid Oxide Fuel Cell With Pure Ni Anode Zhenjun Jiaoa

    E-Print Network [OSTI]

    Kasagi, Nobuhide

    Study on Degradation of Solid Oxide Fuel Cell With Pure Ni Anode Zhenjun Jiaoa , Naoki Shikazonoa Solid oxide fuel cell (SOFC) has attracted more and more attentions in the last few decades

  16. Dynamic First-Principles Molecular-Scale Model for Solid Oxide Fuel Cells V. Hugo Schmidt

    E-Print Network [OSTI]

    Dynamic First-Principles Molecular-Scale Model for Solid Oxide Fuel Cells V. Hugo Schmidt vs. current density i characteristics applies both to the Solid Oxide Fuel Cell (SOFC) and Solid

  17. Nickel Phase Wettability and YSZ Redox Fracture Percolation in Solid Oxide Fuel Cell Anodes

    E-Print Network [OSTI]

    Petta, Jason

    Nickel Phase Wettability and YSZ Redox Fracture Percolation in Solid Oxide Fuel Cell Anodes Alex and Aerospace Engineering Background Solid oxide fuel cells lose mechanical stability and functionality when

  18. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

    SciTech Connect (OSTI)

    Kurt Montgomery; Nguyen Minh

    2003-08-01T23:59:59.000Z

    This report summarizes the work performed by Honeywell during the October 2001 to December 2001 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. The conceptual and demonstration system designs were proposed and analyzed, and these systems have been modeled in Aspen Plus. Work has also started on the assembly of dynamic component models and the development of the top-level controls requirements for the system. SOFC stacks have been fabricated and performance mapping initiated.

  19. Iron aluminide alloy container for solid oxide fuel cells

    DOE Patents [OSTI]

    Judkins, Roddie Reagan (Knoxville, TN); Singh, Prabhakar (Export, PA); Sikka, Vinod Kumar (Oak Ridge, TN)

    2000-01-01T23:59:59.000Z

    A container for fuel cells is made from an iron aluminide alloy. The container alloy preferably includes from about 13 to about 22 weight percent Al, from about 2 to about 8 weight percent Cr, from about 0.1 to about 4 weight percent M selected from Zr and Hf, from about 0.005 to about 0.5 weight percent B or from about 0.001 to about 1 weight percent C, and the balance Fe and incidental impurities. The iron aluminide container alloy is extremely resistant to corrosion and metal loss when exposed to dual reducing and oxidizing atmospheres at elevated temperatures. The alloy is particularly useful for containment vessels for solid oxide fuel cells, as a replacement for stainless steel alloys which are currently used.

  20. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect (OSTI)

    Nguyen Minh

    2002-03-31T23:59:59.000Z

    This report summarizes the work performed by Honeywell during the January 2002 to March 2002 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. For this reporting period the following activities have been carried out: {lg_bullet} Conceptual system design trade studies were performed {lg_bullet} System-level performance model was created {lg_bullet} Dynamic control models are being developed {lg_bullet} Mechanical properties of candidate heat exchanger materials were investigated {lg_bullet} SOFC performance mapping as a function of flow rate and pressure was completed

  1. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

    SciTech Connect (OSTI)

    Unknown

    2002-03-01T23:59:59.000Z

    This report summarizes the work performed by Honeywell during the July 2001 to September 2001 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. An internal program kickoff was held at Honeywell in Torrance, CA. The program structure was outlined and the overall technical approach for the program was presented to the team members. Detail program schedules were developed and detailed objectives were defined. Initial work has begun on the system design and pressurized SOFC operation.

  2. Method to fabricate high performance tubular solid oxide fuel cells

    DOE Patents [OSTI]

    Chen, Fanglin; Yang, Chenghao; Jin, Chao

    2013-06-18T23:59:59.000Z

    In accordance with the present disclosure, a method for fabricating a solid oxide fuel cell is described. The method includes forming an asymmetric porous ceramic tube by using a phase inversion process. The method further includes forming an asymmetric porous ceramic layer on a surface of the asymmetric porous ceramic tube by using a phase inversion process. The tube is co-sintered to form a structure having a first porous layer, a second porous layer, and a dense layer positioned therebetween.

  3. Phase-field modeling of three-phase electrode microstructures in solid oxide fuel cells

    E-Print Network [OSTI]

    Chen, Long-Qing

    Phase-field modeling of three-phase electrode microstructures in solid oxide fuel cells Qun Li, mechanical deformation, and heterogeneous damage accumulation in solid oxide fuel cell anodes J. Appl. Phys oxide fuel cell/gas turbine cycle J. Renewable Sustainable Energy 4, 043115 (2012) Electric

  4. MicroScale Modeling of an AnodeSupported Planar Solid Oxide Fuel Cell

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Micro­Scale Modeling of an Anode­Supported Planar Solid Oxide Fuel Cell P. Chinda1 , W. Wechsatol A micro ­ scale model of a Solid Oxide Fuel Cell (SOFC) involving the mass transfer together the available literatures. Keywords: Solid Oxide Fuel Cells, Micro ­ Scale Model, Mass Transfer, Electrochemical

  5. A solid oxide fuel cell system for buildings Florian Zink a,*, Yixin Lu b

    E-Print Network [OSTI]

    A solid oxide fuel cell system for buildings Florian Zink a,*, Yixin Lu b , Laura Schaefer c online 7 November 2006 Abstract This paper examines an integrated solid oxide fuel cell (SOFC) absorption. With the present development trends in solid oxide fuel cells and the commercial status of absorption heating

  6. REFORMING PROCESSES FOR MICRO COMBINED HEAT AND POWER SYSTEM BASED ON SOLID OXIDE FUEL CELL

    E-Print Network [OSTI]

    Berning, Torsten

    REFORMING PROCESSES FOR MICRO COMBINED HEAT AND POWER SYSTEM BASED ON SOLID OXIDE FUEL CELL University Denmark ABSTRACT Solid oxide fuel cell (SOFC) is a promising technology for decentralized power performance parameters will be identified. Keywords: Solid Oxide Fuel Cell, Micro CHP System INTRODUCTION

  7. A Planar Anode -Supported Solid Oxide Fuel Cell Model with Internal Reforming of Natural Gas

    E-Print Network [OSTI]

    Boyer, Edmond

    1 A Planar Anode - Supported Solid Oxide Fuel Cell Model with Internal Reforming of Natural Gas.brault@univ-orleans.fr Abstract Solid Oxide Fuel Cells (SOFCs) are of great interest due to their high energy efficiency, low, a mathematical model of a co - flow planar anode - supported solid oxide fuel cell with internal reforming

  8. Operation strategy for solid oxide fuel cell systems for small-scale stationary applications

    E-Print Network [OSTI]

    Berning, Torsten

    Operation strategy for solid oxide fuel cell systems for small-scale stationary applications V Abstract: Solid oxide fuel cell micro cogeneration systems have the potential to reduce domestic energy factor. One of the technologies in focus in EU research programmers is solid oxide fuel cell (SOFC

  9. Evolution of microstructures inside the Ni-YSZ anode of a solid oxide fuel cell

    E-Print Network [OSTI]

    Petta, Jason

    Evolution of microstructures inside the Ni-YSZ anode of a solid oxide fuel cell Jeff Lillibridge Department of Mechanical & Aerospace Engineering Advisor: Mikko Haataja #12;What is a solid oxide fuel cell microstructuralcoarsening processes to electrochemical performancein solid oxide fuel cells: An integrated modeling approach

  10. Oxygen diffusion in solid oxide fuel cell cathode and electrolyte materials: mechanistic insights from atomistic simulations

    E-Print Network [OSTI]

    Yildiz, Bilge

    to drive fast ionic transport. 1. Introduction The interest in Solid Oxide Fuel Cell (SOFC) technologyOxygen diffusion in solid oxide fuel cell cathode and electrolyte materials: mechanistic insights. Current targets of cost and durability necessitate solid oxide fuel cells to operate in the intermediate

  11. Electroless deposition of electrodes in solid-oxide fuel cells

    SciTech Connect (OSTI)

    Murphy, M.M.; Van Herle, J.; McEvoy, A.J.; Thampi, K.R. (Ecole Polytechnique Federale de Lausanne (Switzerland). Inst. de Chimie Physique)

    1994-08-01T23:59:59.000Z

    This study demonstrates the use of electroless deposition for depositing anode and cathode electrocatalysts in solid-oxide fuel cells (SOFC). Ni, Pd, and Ag films produced by electroless deposition techniques were in intimate contact with the electrolyte yttria-stabilized zirconia, and were found to catalyze SOFC anodic and cathodic reactions. Power densities of such cells were in the range of 0.33 W/cm[sup 2] at 800 C. The operating life is low due to agglomeration of the anode and densification of the cathode. For intermediate temperature/range SOFCs electroless deposition is an alternative technique for electrode preparation, if long-term stability can be attained.

  12. SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL

    SciTech Connect (OSTI)

    Steven Shaffer; Sean Kelly; Subhasish Mukerjee; David Schumann; Gail Geiger; Kevin Keegan; John Noetzel; Larry Chick

    2003-12-08T23:59:59.000Z

    The objective of Phase I under this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with the option of piped-in water (Demonstration System A). Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine. This technical progress report covers work performed by Delphi from January 1, 2003 to June 30, 2003, under Department of Energy Cooperative Agreement DE-FC-02NT41246. This report highlights technical results of the work performed under the following tasks: Task 1 System Design and Integration; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant (BOP) Components; Task 5 Manufacturing Development (Privately Funded); Task 6 System Fabrication; Task 7 System Testing; Task 8 Program Management; and Task 9 Stack Testing with Coal-Based Reformate.

  13. Method and apparatus for assembling solid oxide fuel cells

    DOE Patents [OSTI]

    Szreders, B.E.; Campanella, N.

    1988-05-11T23:59:59.000Z

    This invention relates generally to solid oxide fuel power generators and is particularly directed to improvements in the assembly and coupling of solid oxide fuel cell modules. A plurality of jet air tubes are supported and maintained in a spaced matrix array by a positioning/insertion assembly for insertion in respective tubes of a solid oxide fuel cell (SOFC) in the assembly of an SOFC module. The positioning/insertion assembly includes a plurality of generally planar, elongated, linear vanes which are pivotally mounted at each end thereof to a support frame. A rectangular compression assembly of adjustable size is adapted to receive and squeeze a matrix of SOFC tubes so as to compress the inter-tube nickel felt conductive pads which provide series/parallel electrical connection between adjacent SOFCs, with a series of increasingly larger retainer frames used to maintain larger matrices of SOFC tubes in position. Expansion of the SOFC module housing at the high operating temperatures of the SOFC is accommodated by conductive, flexible, resilient expansion, connector bars which provide support and electrical coupling at the top and bottom of the SOFC module housing. 17 figs.

  14. Solid oxide fuel cell having a glass composite seal

    DOE Patents [OSTI]

    De Rose, Anthony J.; Mukerjee, Subhasish; Haltiner, Jr., Karl Jacob

    2013-04-16T23:59:59.000Z

    A solid oxide fuel cell stack having a plurality of cassettes and a glass composite seal disposed between the sealing surfaces of adjacent cassettes, thereby joining the cassettes and providing a hermetic seal therebetween. The glass composite seal includes an alkaline earth aluminosilicate (AEAS) glass disposed about a viscous glass such that the AEAS glass retains the viscous glass in a predetermined position between the first and second sealing surfaces. The AEAS glass provides geometric stability to the glass composite seal to maintain the proper distance between the adjacent cassettes while the viscous glass provides for a compliant and self-healing seal. The glass composite seal may include fibers, powders, and/or beads of zirconium oxide, aluminum oxide, yttria-stabilized zirconia (YSZ), or mixtures thereof, to enhance the desirable properties of the glass composite seal.

  15. Fabrication of solid oxide fuel cell by electrochemical vapor deposition

    DOE Patents [OSTI]

    Brian, Riley (Willimantic, CT); Szreders, Bernard E. (Oakdale, CT)

    1989-01-01T23:59:59.000Z

    In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (approximately 1100.degree.-1300.degree. C.) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20-50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

  16. Fabrication of solid oxide fuel cell by electrochemical vapor deposition

    DOE Patents [OSTI]

    Riley, B.; Szreders, B.E.

    1988-04-26T23:59:59.000Z

    In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (/approximately/1100/degree/ /minus/ 1300/degree/C) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20--50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

  17. Nanostructured Thin Film Electrolyte for Thin Film Solid Oxide Fuel Cells

    E-Print Network [OSTI]

    Cho, Sungmee

    2012-10-19T23:59:59.000Z

    Solid oxide fuel cells (SOFCs) are very attractive as energy generation devices because they are clean, reliable, and almost entirely pollution-free. SOFCs have flexible fuel selections compared with other fuel cell technologies. The main...

  18. Nanostructured Thin Film Electrolyte for Thin Film Solid Oxide Fuel Cells 

    E-Print Network [OSTI]

    Cho, Sungmee

    2012-10-19T23:59:59.000Z

    Solid oxide fuel cells (SOFCs) are very attractive as energy generation devices because they are clean, reliable, and almost entirely pollution-free. SOFCs have flexible fuel selections compared with other fuel cell technologies. The main...

  19. Program Area of Interest: Fuel Transformer Solid Oxide Fuel Cell

    SciTech Connect (OSTI)

    Norman Bessette; Douglas S. Schmidt; Jolyon Rawson; Rhys Foster; Anthony Litka

    2006-02-01T23:59:59.000Z

    The following report documents the technical approach and conclusions made by Acumentrics Corporation during latest budget period toward the development of a low cost 10kW tubular SOFC power system. The present program, guided under direction from the National Energy Technology Laboratory of the US DOE, is a nine-year cost shared Cooperative Agreement totaling close to $74M funded both by the US DOE as well as Acumentrics Corporation and its partners. The latest budget period ran from July of 2005 through December 2005. Work focused on cell technology enhancements as well as BOP and power electronics improvements and overall system design. Significant progress was made in increasing cell power enhancements as well as decreasing material cost in a drive to meet the SECA cost targets. The following report documents these accomplishments in detail as well as the layout plans for further progress in next budget period.

  20. Stability and error analysis of the polarization estimation inverse problem for solid oxide fuel cells.

    E-Print Network [OSTI]

    Renaut, Rosemary

    at the electrodeelectrolyte interfaces of solid oxide fuel cells (SOFC) is investigated physically using Electrochemical describe the performance of a solid oxide fuel cell requires the solution of an inverse problem. TwoStability and error analysis of the polarization estimation inverse problem for solid oxide fuel

  1. Heterogeneous electrocatalysis in porous cathodes of solid oxide fuel cells

    E-Print Network [OSTI]

    Fu, Y; Bertei, A; Qi, C; Mohanram, A; Pietras, J D; Bazant, M Z

    2014-01-01T23:59:59.000Z

    A general physics-based model is developed for heterogeneous electrocatalysis in porous electrodes and used to predict and interpret the impedance of solid oxide fuel cells. This model describes the coupled processes of oxygen gas dissociative adsorption and surface diffusion of the oxygen intermediate to the triple phase boundary, where charge transfer occurs. The model accurately captures the Gerischer-like frequency dependence and the oxygen partial pressure dependence of the impedance of symmetric cathode cells. Digital image analysis of the microstructure of the cathode functional layer in four different cells directly confirms the predicted connection between geometrical properties and the impedance response. As in classical catalysis, the electrocatalytic activity is controlled by an effective Thiele modulus, which is the ratio of the surface diffusion length (mean distance from an adsorption site to the triple phase boundary) to the surface boundary layer length (square root of surface diffusivity div...

  2. A Reversible Planar Solid Oxide Fuel-Fed Electrolysis Cell and Solid Oxide Fuel Cell for Hydrogen and Electricity Production Operating on Natural Gas/Biomass Fuels

    SciTech Connect (OSTI)

    Tao, Greg, G.

    2007-03-31T23:59:59.000Z

    A solid oxide fuel-assisted electrolysis technique was developed to co-generate hydrogen and electricity directly from a fuel at a reduced cost of electricity. Solid oxide fuel-assisted electrolysis cells (SOFECs), which were comprised of 8YSZ electrolytes sandwiched between thick anode supports and thin cathodes, were constructed and experimentally evaluated at various operation conditions on lab-level button cells with 2 cm2 per-cell active areas as well as on bench-scale stacks with 30 cm2 and 100 cm2 per-cell active areas. To reduce the concentration overpotentials, pore former systems were developed and engineered to optimize the microstructure and morphology of the Ni+8YSZ-based anodes. Chemically stable cathode materials, which possess good electronic and ionic conductivity and exhibit good electrocatalytic properties in both oxidizing and reducing gas atmospheres, were developed and materials properties were investigated. In order to increase the specific hydrogen production rate and thereby reduce the system volume and capital cost for commercial applications, a hybrid system that integrates the technologies of the SOFEC and the solid-oxide fuel cell (SOFC), was developed and successfully demonstrated at a 1kW scale, co-generating hydrogen and electricity directly from chemical fuels.

  3. The Hybrid Solid Oxide Fuel Cell (SOFC) and Gas Turbine (GT) Systems Steady State Modeling

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    The Hybrid Solid Oxide Fuel Cell (SOFC) and Gas Turbine (GT) Systems Steady State Modeling Penyarat Fuel Cells (SOFCs) are of great interest nowadays. The feature of SOFCs makes them suitable for hybrid plants offer high cycle efficiencies. In this work a hybrid solid oxide fuel cell and gas turbine power

  4. Control of Natural Gas Catalytic Partial Oxidation for Hydrogen Generation in Fuel Cell Applications1

    E-Print Network [OSTI]

    Peng, Huei

    Control of Natural Gas Catalytic Partial Oxidation for Hydrogen Generation in Fuel Cell the anode field of fuel cell stack is considered. The first reactor that generates the majority in the fuel cell anode and (ii) the temperature of the catalytic partial oxidation reactor during transient

  5. In Situ Synchrotron X-ray Spectroscopy of Lanthanum Manganite Solid Oxide Fuel Cell Electrodes

    E-Print Network [OSTI]

    Yildiz, Bilge

    . Introduction The solid oxide fuel cell (SOFC) has potential to produce energy with high efficiency, especiallyIn Situ Synchrotron X-ray Spectroscopy of Lanthanum Manganite Solid Oxide Fuel Cell Electrodes Kee fuel cells (SOFC) under long term cathodic or anodic polarization, termed `current conditioning

  6. SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL

    SciTech Connect (OSTI)

    Steven Shaffer; Sean Kelly; Subhasish Mukerjee; David Schumann; Gail Geiger; Kevin Keegan; Larry Chick

    2004-05-07T23:59:59.000Z

    The objective of this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with the option of piped-in water (Demonstration System A). Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine. This technical progress report covers work performed by Delphi from July 1, 2003 to December 31, 2003, under Department of Energy Cooperative Agreement DE-FC-02NT41246. This report highlights technical results of the work performed under the following tasks: Task 1 System Design and Integration; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant (BOP) Components; Task 5 Manufacturing Development (Privately Funded); Task 6 System Fabrication; Task 7 System Testing; Task 8 Program Management; Task 9 Stack Testing with Coal-Based Reformate; and Task 10 Technology Transfer from SECA CORE Technology Program. In this reporting period, unless otherwise noted Task 6--System Fabrication and Task 7--System Testing will be reported within Task 1 System Design and Integration. Task 8--Program Management, Task 9--Stack Testing with Coal Based Reformate, and Task 10--Technology Transfer from SECA CORE Technology Program will be reported on in the Executive Summary section of this report.

  7. Development of an External Fuel Processor for a Solid Oxide Fuel Cell

    SciTech Connect (OSTI)

    Daniel Birmingham; Crispin Debellis; Mark Perna; Anant Upadhyayula

    2008-02-28T23:59:59.000Z

    A 250 kW External Fuel Processor was developed and tested that will supply the gases needed by a pipeline natural gas fueled, solid oxide fuel cell during all modes of operation. The fuel processor consists of three major subsystems--a desulfurizer to remove fuel sulfur to an acceptable level, a synthesis gas generator to support plant heat-up and low load fuel cell operations, and a start gas generator to supply a non-flammable, reducing gas to the fuel cell during startup and shutdown operations. The desulfurization subsystem uses a selective catalytic sulfur oxidation process that was developed for operation at elevated pressure and removes the fuel sulfur to a total sulfur content of less than 80 ppbv. The synthesis gas generation subsystem uses a waterless, catalytic partial oxidation reactor to produce a hydrogen-rich mixture from the natural gas and air. An operating window was defined that allows carbon-free operation while maintaining catalyst temperatures that will ensure long-life of the reactor. The start gas subsystem generates an oxygen-free, reducing gas from the pipeline natural gas using a low-temperature combustion technique. These physically and thermally integrated subsystems comprise the 250 kW External Fuel Processor. The 250 kW External Fuel Processor was tested at the Rolls-Royce facility in North Canton, Ohio to verify process performance and for comparison with design specifications. A step wise operation of the automatic controls through the startup, normal operation and shutdown sequences allowed the control system to be tuned and verified. A fully automated system was achieved that brings the fuel processor through its startup procedure, and then await commands from the fuel cell generator module for fuel supply and shutdown. The fuel processor performance met all design specifications. The 250 kW External Fuel Processor was shipped to an American Electric Power site where it will be tested with a Rolls-Royce solid oxide fuel cell generator module.

  8. Air electrode composition for solid oxide fuel cell

    DOE Patents [OSTI]

    Kuo, L.; Ruka, R.J.; Singhal, S.C.

    1999-08-03T23:59:59.000Z

    An air electrode composition for a solid oxide fuel cell is disclosed. The air electrode material is based on lanthanum manganite having a perovskite-like crystal structure ABO{sub 3}. The A-site of the air electrode composition comprises a mixed lanthanide in combination with rare earth and alkaline earth dopants. The B-site of the composition comprises Mn in combination with dopants such as Mg, Al, Cr and Ni. The mixed lanthanide comprises La, Ce, Pr and, optionally, Nd. The rare earth A-site dopants preferably comprise La, Nd or a combination thereof, while the alkaline earth A-site dopant preferably comprises Ca. The use of a mixed lanthanide substantially reduces raw material costs in comparison with compositions made from high purity lanthanum starting materials. The amount of the A-site and B-site dopants is controlled in order to provide an air electrode composition having a coefficient of thermal expansion which closely matches that of the other components of the solid oxide fuel cell. 3 figs.

  9. Air electrode composition for solid oxide fuel cell

    DOE Patents [OSTI]

    Kuo, Lewis (Monroeville, PA); Ruka, Roswell J. (Pittsburgh, PA); Singhal, Subhash C. (Murrysville, PA)

    1999-01-01T23:59:59.000Z

    An air electrode composition for a solid oxide fuel cell is disclosed. The air electrode material is based on lanthanum manganite having a perovskite-like crystal structure ABO.sub.3. The A-site of the air electrode composition comprises a mixed lanthanide in combination with rare earth and alkaline earth dopants. The B-site of the composition comprises Mn in combination with dopants such as Mg, Al, Cr and Ni. The mixed lanthanide comprises La, Ce, Pr and, optionally, Nd. The rare earth A-site dopants preferably comprise La, Nd or a combination thereof, while the alkaline earth A-site dopant preferably comprises Ca. The use of a mixed lanthanide substantially reduces raw material costs in comparison with compositions made from high purity lanthanum starting materials. The amount of the A-site and B-site dopants is controlled in order to provide an air electrode composition having a coefficient of thermal expansion which closely matches that of the other components of the solid oxide fuel cell.

  10. Solid oxide fuel cell having compound cross flow gas patterns

    DOE Patents [OSTI]

    Fraioli, Anthony V. (Hawthorn Woods, IL)

    1985-01-01T23:59:59.000Z

    A core construction for a fuel cell is disclosed having both parallel and cross flow passageways for the fuel and the oxidant gases. Each core passageway is defined by electrolyte and interconnect walls. Each electrolyte wall consists of cathode and anode materials sandwiching an electrolyte material. Each interconnect wall is formed as a sheet of inert support material having therein spaced small plugs of interconnect material, where cathode and anode materials are formed as layers on opposite sides of each sheet and are electrically connected together by the interconnect material plugs. Each interconnect wall in a wavy shape is connected along spaced generally parallel line-like contact areas between corresponding spaced pairs of generally parallel electrolyte walls, operable to define one tier of generally parallel flow passageways for the fuel and oxidant gases. Alternate tiers are arranged to have the passageways disposed normal to one another. Solid mechanical connection of the interconnect walls of adjacent tiers to the opposite sides of the common electrolyte wall therebetween is only at spaced point-like contact areas, 90 where the previously mentioned line-like contact areas cross one another.

  11. Solid oxide fuel cell having compound cross flow gas patterns

    DOE Patents [OSTI]

    Fraioli, A.V.

    1983-10-12T23:59:59.000Z

    A core construction for a fuel cell is disclosed having both parallel and cross flow passageways for the fuel and the oxidant gases. Each core passageway is defined by electrolyte and interconnect walls. Each electrolyte wall consists of cathode and anode materials sandwiching an electrolyte material. Each interconnect wall is formed as a sheet of inert support material having therein spaced small plugs of interconnect material, where cathode and anode materials are formed as layers on opposite sides of each sheet and are electrically connected together by the interconnect material plugs. Each interconnect wall in a wavy shape is connected along spaced generally parallel line-like contact areas between corresponding spaced pairs of generally parallel electrolyte walls, operable to define one tier of generally parallel flow passageways for the fuel and oxidant gases. Alternate tiers are arranged to have the passageways disposed normal to one another. Solid mechanical connection of the interconnect walls of adjacent tiers to the opposite sides of the common electrolyte wall therebetween is only at spaced point-like contact areas, 90 where the previously mentioned line-like contact areas cross one another.

  12. Miniature fuel-cell system complete with on-demand fuel and oxidant supply

    E-Print Network [OSTI]

    Hur, JI; Kim, C-J

    2015-01-01T23:59:59.000Z

    scale direct methanol fuel cell development,” Energy, vol.flow-based microfluidic fuel cell," J. Am. Chem. Soc. , vol.electrolyte membrane fuel cell design," J. Power Sources,

  13. Air feed tube support system for a solid oxide fuel cell generator

    DOE Patents [OSTI]

    Doshi, Vinod B. (Monroeville, PA); Ruka, Roswell J. (Pittsburgh, PA); Hager, Charles A. (Zelienople, PA)

    2002-01-01T23:59:59.000Z

    A solid oxide fuel cell generator (12), containing tubular fuel cells (36) with interior air electrodes (18), where a supporting member (82) containing a plurality of holes (26) supports oxidant feed tubes (51), which pass from an oxidant plenum (52") into the center of the fuel cells, through the holes (26) in the supporting member (82), where a compliant gasket (86) around the top of the oxidant feed tubes and on top (28) of the supporting member (82) helps support the oxidant feed tubes and center them within the fuel cells, and loosen the tolerance for centering the air feed tubes.

  14. Solid Oxide Fuel Cell System (SOFC) Technology R&D Needs (Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System (SOFC) Technology R&D Needs (Presentation) Solid Oxide Fuel Cell System (SOFC) Technology R&D Needs (Presentation) Presented at the DOE Fuel Cell Pre-Solicitation Workshop...

  15. Planar solid oxide fuel cell with staged indirect-internal air and fuel preheating and reformation

    DOE Patents [OSTI]

    2003-10-21T23:59:59.000Z

    A solid oxide fuel cell arrangement and method of use that provides internal preheating of both fuel and air in order to maintain the optimum operating temperature for the production of energy. The internal preheat passes are created by the addition of two plates, one on either side of the bipolar plate, such that these plates create additional passes through the fuel cell. This internal preheat fuel cell configuration and method reduce the requirements for external heat exchanger units and air compressors. Air or fuel may be added to the fuel cell as required to maintain the optimum operating temperature through a cathode control valve or an anode control valve, respectively. A control loop comprises a temperature sensing means within the preheat air and fuel passes, a means to compare the measured temperature to a set point temperature and a determination based on the comparison as to whether the control valves should allow additional air or fuel into the preheat or bypass manifolds of the fuel cell.

  16. Anode supported single chamber solid oxide fuel cells operating in exhaust gases of thermal engine

    E-Print Network [OSTI]

    Boyer, Edmond

    Anode supported single chamber solid oxide fuel cells operating in exhaust gases of thermal engine. Conventional solid oxide fuel cells are separated into two compartments containing each electrode split hydrocarbons, pollutant emissions reduction hal-01056363,version1-21Aug2014 #12;1. Introduction Solid oxide

  17. Method for producing electricity from a fuel cell having solid-oxide ionic electrolyte

    DOE Patents [OSTI]

    Mason, David M. (Los Altos, CA)

    1984-01-01T23:59:59.000Z

    Stabilized quadrivalent cation oxide electrolytes are employed in fuel cells at elevated temperatures with a carbon and/or hydrogen containing fuel anode and an oxygen cathode. The fuel cell is operated at elevated temperatures with conductive metallic coatings as electrodes and desirably having the electrolyte surface blackened. Of particular interest as the quadrivalent oxide is zirconia.

  18. Application of Verified Optimization Techniques to Parameter Identification for Solid Oxide Fuel Cells

    E-Print Network [OSTI]

    Appelrath, Hans-Jürgen

    Application of Verified Optimization Techniques to Parameter Identification for Solid Oxide Fuel at the latest, design and development of solid oxide fuel cells (SOFC) have been in the focus of research electrochemical reactions in each individual fuel cell. We consider different model dimensions resulting

  19. Solid Oxide Fuel Cell Balance of Plant and Stack Component Integration...

    Broader source: Energy.gov (indexed) [DOE]

    Presentation by Acumentrics Corporation for Solid Oxide Fuel Cell Balance of Plant and Stack Component Integration March 16, 2010 fuelcellpre-solicitationwkshopmar10bessette.pd...

  20. Resilient Sealing Materials for Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Signo T. Reis; Richard K. Brow

    2006-09-30T23:59:59.000Z

    This report describes the development of ''invert'' glass compositions designed for hermetic seals in solid oxide fuel cells (SOFC). Upon sealing at temperatures compatible with other SOFC materials (generally {le}900 C), these glasses transform to glass-ceramics with desirable thermo-mechanical properties, including coefficients of thermal expansion (CTE) over 11 x 10{sup -6}/C. The long-term (>four months) stability of CTE under SOFC operational conditions (e.g., 800 C in wet forming gas or in air) has been evaluated, as have weight losses under similar conditions. The dependence of sealant properties on glass composition are described in this report, as are experiments to develop glass-matrix composites by adding second phases, including Ni and YSZ. This information provides design-guidance to produce desirable sealing materials.

  1. Solid oxide fuel cell with single material for electrodes and interconnect

    DOE Patents [OSTI]

    McPheeters, C.C.; Nelson, P.A.; Dees, D.W.

    1994-07-19T23:59:59.000Z

    A solid oxide fuel cell is described having a plurality of individual cells. A solid oxide fuel cell has an anode and a cathode with electrolyte disposed there between, and the anode, cathode and interconnect elements are comprised of substantially one material. 9 figs.

  2. Probabilistic Based Design Methodology for Solid Oxide Fuel Cell Stacks

    SciTech Connect (OSTI)

    Sun, Xin; Tartakovsky, Alexandre M.; Khaleel, Mohammad A.

    2009-05-01T23:59:59.000Z

    A probabilistic-based component design methodology is developed for solid oxide fuel cell (SOFC) stack. This method takes into account the randomness in SOFC material properties as well as the stresses arising from different manufacturing and operating conditions. The purpose of this work is to provide the SOFC designers a design methodology such that desired level of component reliability can be achieved with deterministic design functions using an equivalent safety factor to account for the uncertainties in material properties and structural stresses. Multi-physics-based finite element analyses were used to predict the electrochemical and thermal mechanical responses of SOFC stacks with different geometric variations and under different operating conditions. Failures in the anode and the seal were used as design examples. The predicted maximum principal stresses in the anode and the seal were compared with the experimentally determined strength characteristics for the anode and the seal respectively. Component failure probabilities for the current design were then calculated under different operating conditions. It was found that anode failure probability is very low under all conditions examined. The seal failure probability is relatively high, particularly for high fuel utilization rate under low average cell temperature. Next, the procedures for calculating the equivalent safety factors for anode and seal were demonstrated such that uniform failure probability of the anode and seal can be achieved. Analysis procedures were also included for non-normal distributed random variables such that more realistic distributions of strength and stress can be analyzed using the proposed design methodology.

  3. Structural and electrochemical characterization of two proton conducting oxide thin films for a microfabricated solid oxide fuel cell

    E-Print Network [OSTI]

    Capozzoli, Peter M

    2006-01-01T23:59:59.000Z

    The use of proton conducting oxide materials as an electrolyte offers the potential to reduce the operating temperature of a solid oxide fuel cell (SOFC), leading to improved thermal management and material compatibility. ...

  4. Solid Oxide Fuel Cell Manufacturing Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of EnergySite Screening Decision TreeinSolid Oxide Fuel

  5. Extended Durability Testing of an External Fuel Processor for a Solid Oxide Fuel Cell (SOFC)

    SciTech Connect (OSTI)

    Mark Perna; Anant Upadhyayula; Mark Scotto

    2012-11-05T23:59:59.000Z

    Durability testing was performed on an external fuel processor (EFP) for a solid oxide fuel cell (SOFC) power plant. The EFP enables the SOFC to reach high system efficiency (electrical efficiency up to 60%) using pipeline natural gas and eliminates the need for large quantities of bottled gases. LG Fuel Cell Systems Inc. (formerly known as Rolls-Royce Fuel Cell Systems (US) Inc.) (LGFCS) is developing natural gas-fired SOFC power plants for stationary power applications. These power plants will greatly benefit the public by reducing the cost of electricity while reducing the amount of gaseous emissions of carbon dioxide, sulfur oxides, and nitrogen oxides compared to conventional power plants. The EFP uses pipeline natural gas and air to provide all the gas streams required by the SOFC power plant; specifically those needed for start-up, normal operation, and shutdown. It includes a natural gas desulfurizer, a synthesis-gas generator and a start-gas generator. The research in this project demonstrated that the EFP could meet its performance and durability targets. The data generated helped assess the impact of long-term operation on system performance and system hardware. The research also showed the negative impact of ambient weather (both hot and cold conditions) on system operation and performance.

  6. Effect of Substrate Thickness on Oxide Scale Spallation for Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Liu, Wenning N.; Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2011-07-01T23:59:59.000Z

    In this paper, the effect of the ferritic substrate's thickness on the delamination/spallation of the oxide scale was investigated experimentally and numerically. At the high-temperature oxidation environment of solid oxide fuel cells (SOFCs), a combination of growth stress with thermal stresses may lead to scale delamination/buckling and eventual spallation during SOFC stack cooling, even leading to serious degradation of cell performance. The growth stress is induced by the growth of the oxide scale on the scale/substrate interface, and thermal stress is induced by a mismatch of the coefficient of thermal expansion between the oxide scale and the substrate. The numerical results show that the interfacial shear stresses, which are the driving force of scale delamination between the oxide scale and the ferritic substrate, increase with the growth of the oxide scale and also with the thickness of the ferritic substrate; i.e., the thick ferritic substrate can easily lead to scale delamination and spallation. Experimental observation confirmed the predicted results of the delamination and spallation of the oxide scale on the ferritic substrate.

  7. Apparatus tube configuration and mounting for solid oxide fuel cells

    DOE Patents [OSTI]

    Zymboly, G.E.

    1993-09-14T23:59:59.000Z

    A generator apparatus is made containing long, hollow, tubular, fuel cells containing an inner air electrode, an outer fuel electrode, and solid electrolyte there between, placed between a fuel distribution board and a board which separates the combustion chamber from the generating chamber, where each fuel cell has an insertable open end and in insertable, plugged, closed end, the plugged end being inserted into the fuel distribution board and the open end being inserted through the separator board where the plug is completely within the fuel distribution board. 3 figures.

  8. Materials System for Intermediate Temperature Solid Oxide Fuel Cell

    SciTech Connect (OSTI)

    Uday B. Pal; Srikanth Gopalan

    2006-01-12T23:59:59.000Z

    The objective of this work was to obtain a stable materials system for intermediate temperature solid oxide fuel cell (SOFC) capable of operating between 600-800 C with a power density greater than 0.2 W/cm{sup 2}. The solid electrolyte chosen for this system was La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3}, (LSGM). To select the right electrode materials from a group of possible candidate materials, AC complex impedance spectroscopy studies were conducted between 600-800 C on symmetrical cells that employed the LSGM electrolyte. Based on the results of the investigation, LSGM electrolyte supported SOFCs were fabricated with La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3}-La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3} (LSCF-LSGM) composite cathode and Nickel-Ce{sub 0.6}La{sub 0.4}O{sub 3} (Ni-LDC) composite anode having a barrier layer of Ce{sub 0.6}La{sub 0.4}O{sub 3} (LDC) between the LSGM electrolyte and the Ni-LDC anode. Electrical performance and stability of these cells were determined and the electrode polarization behavior as a function of cell current was modeled between 600-800 C. The electrical performance of the anode-supported SOFC was simulated assuming an electrode polarization behavior identical to the LSGM-electrolyte-supported SOFC. The simulated electrical performance indicated that the selected material system would provide a stable cell capable of operating between 600-800 C with a power density between 0.2 to 1 W/cm{sup 2}.

  9. Integrating catalytic coal gasifiers with solid oxide fuel cells

    SciTech Connect (OSTI)

    Siefert, N.; Shamsi, A.; Shekhawat, D.; Berry, D.

    2010-01-01T23:59:59.000Z

    A review was conducted for coal gasification technologies that integrate with solid oxide fuel cells (SOFC) to achieve system efficiencies near 60% while capturing and sequestering >90% of the carbon dioxide [1-2]. The overall system efficiency can reach 60% when a) the coal gasifier produces a syngas with a methane composition of roughly 25% on a dry volume basis, b) the carbon dioxide is separated from the methane-rich synthesis gas, c) the methane-rich syngas is sent to a SOFC, and d) the off-gases from the SOFC are recycled back to coal gasifier. The thermodynamics of this process will be reviewed and compared to conventional processes in order to highlight where available work (i.e. exergy) is lost in entrained-flow, high-temperature gasification, and where exergy is lost in hydrogen oxidation within the SOFC. The main advantage of steam gasification of coal to methane and carbon dioxide is that the amount of exergy consumed in the gasifier is small compared to conventional, high temperature, oxygen-blown gasifiers. However, the goal of limiting the amount of exergy destruction in the gasifier has the effect of limiting the rates of chemical reactions. Thus, one of the main advantages of steam gasification leads to one of its main problems: slow reaction kinetics. While conventional entrained-flow, high-temperature gasifiers consume a sizable portion of the available work in the coal oxidation, the consumed exergy speeds up the rates of reactions. And while the rates of steam gasification reactions can be increased through the use of catalysts, only a few catalysts can meet cost requirements because there is often significant deactivation due to chemical reactions between the inorganic species in the coal and the catalyst. Previous research into increasing the kinetics of steam gasification will be reviewed. The goal of this paper is to highlight both the challenges and advantages of integrating catalytic coal gasifiers with SOFCs.

  10. Testing of a Catalytic Partial Oxidation Diesel Reformer with a Solid Oxide Fuel Cell System

    SciTech Connect (OSTI)

    Lyman Frost; Bob Carrington; Rodger McKain; Dennis Witmer

    2005-03-01T23:59:59.000Z

    Rural Alaska currently uses diesel generator sets to produce much of its power. The high energy content of diesel (i.e. ~140,000 BTU per gallon) makes it the fuel of choice because this reduces the volume of fuel that must be transported, stored, and consumed in generating the power. There is an existing investment in infrastructure for the distribution and use of diesel fuel. Problems do exist, however, in that diesel generators are not very efficient in their use of diesel, maintenance levels can be rather high as systems age, and the environmental issues related to present diesel generators are of concern. The Arctic Energy Technology Development Laboratory at the University of Alaska -- Fairbanks is sponsoring a project to address the issues mentioned above. The project takes two successful systems, a diesel reformer and a tubular solid oxide fuel cell unit, and jointly tests those systems with the objective of producing a for-purpose diesel fueled solid oxide fuel cell system that can be deployed in rural Alaska. The reformer will convert the diesel to a mixture of carbon monoxide and hydrogen that can be used as a fuel by the fuel cell. The high temperature nature of the solid oxide fuel cell (SOFC is capable of using this mixture to generate electricity and provide usable heat with higher efficiency and lower emissions. The high temperature nature of the SOFC is more compatible with the arctic climate than are low temperature technologies such as the proton exchange membrane fuel cells. This paper will look at the interaction of a SOFC system that is designed to internally reform methane and a catalytic partial oxidation (CPOX) diesel reformer. The diesel reformer produces a reformate that is approximately 140 BTU per scf (after removal of much of the reformate water) as compared to a methane based reformate that is over twice that value in BTU content. The project also considers the effect of altitude since the test location will be at 4800 feet with the consequential drop in oxygen content and necessary increases in flow rates.

  11. PRESSURIZED SOLID OXIDE FUEL CELL/GAS TURBINE POWER SYSTEM

    SciTech Connect (OSTI)

    W.L. Lundberg; G.A. Israelson; R.R. Moritz (Rolls-Royce Allison); S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann (Consultant)

    2000-02-01T23:59:59.000Z

    Power systems based on the simplest direct integration of a pressurized solid oxide fuel cell (SOFC) generator and a gas turbine (GT) are capable of converting natural gas fuel energy to electric power with efficiencies of approximately 60% (net AC/LHV), and more complex SOFC and gas turbine arrangements can be devised for achieving even higher efficiencies. The results of a project are discussed that focused on the development of a conceptual design for a pressurized SOFC/GT power system that was intended to generate 20 MWe with at least 70% efficiency. The power system operates baseloaded in a distributed-generation application. To achieve high efficiency, the system integrates an intercooled, recuperated, reheated gas turbine with two SOFC generator stages--one operating at high pressure, and generating power, as well as providing all heat needed by the high-pressure turbine, while the second SOFC generator operates at a lower pressure, generates power, and provides all heat for the low-pressure reheat turbine. The system cycle is described, major system components are sized, the system installed-cost is estimated, and the physical arrangement of system components is discussed. Estimates of system power output, efficiency, and emissions at the design point are also presented, and the system cost of electricity estimate is developed.

  12. In situ reduction and evaluation of anode supported single chamber solid oxide fuel cells

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    In situ reduction and evaluation of anode supported single chamber solid oxide fuel cells D.05.118 #12;Abstract Single chamber anode-supported fuel cells are investigated under several methane under methane-to-oxygen ratio (Rmix) of 2. Anode-supported fuel cells are investigated regarding

  13. P0906-090-Chnani Macroscopic Model of Solid Oxide Fuel Cell Stack for

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 P0906-090-Chnani Macroscopic Model of Solid Oxide Fuel Cell Stack for Integrating in a Generator fuel cell (SOFC) with the aim to perform a simulation of the whole generator. Three sub-models have at the catalytic sites and gas flows at fuel cell input and output. The electrical response is based

  14. Effect of Transient Hydrogen Evolution/Oxidation Reactions on the OCV of Direct Methanol Fuel Cells

    E-Print Network [OSTI]

    Zhao, Tianshou

    Effect of Transient Hydrogen Evolution/Oxidation Reactions on the OCV of Direct Methanol Fuel Cells of a direct methanol fuel cell DMFC was observed to undergo an overshoot before it stabilized during. Available electronically August 16, 2005. Direct methanol fuel cells DMFCs are considered as a hopeful

  15. Pressurized solid oxide fuel cell integral air accumular containment

    DOE Patents [OSTI]

    Gillett, James E.; Zafred, Paolo R.; Basel, Richard A.

    2004-02-10T23:59:59.000Z

    A fuel cell generator apparatus contains at least one fuel cell subassembly module in a module housing, where the housing is surrounded by a pressure vessel such that there is an air accumulator space, where the apparatus is associated with an air compressor of a turbine/generator/air compressor system, where pressurized air from the compressor passes into the space and occupies the space and then flows to the fuel cells in the subassembly module, where the air accumulation space provides an accumulator to control any unreacted fuel gas that might flow from the module.

  16. Architectures for individual and stacked micro single chamber solid oxide fuel cells

    E-Print Network [OSTI]

    Crumlin, Ethan J

    2007-01-01T23:59:59.000Z

    Solid oxide fuel cells (SOFCs) are electrochemical conversion devices that convert various fuel sources directly into electrical energy at temperatures ranging from 600°C to 1000°C. These high temperatures could potentially ...

  17. Mechanism of oxygen reduction reaction on transition metal oxide catalysts for high temperature fuel cells

    E-Print Network [OSTI]

    La O', Gerardo Jose Cordova

    2008-01-01T23:59:59.000Z

    The solid oxide fuel cell (SOFC) with its high energy conversion efficiency, low emissions, silent operation and its ability to utilize commercial fuels has the potential to create a large impact on the energy landscape. ...

  18. Original Research Article Influence of anodic gas recirculation on solid oxide fuel cells in a micro

    E-Print Network [OSTI]

    Nielsen, Mads Pagh

    Original Research Article Influence of anodic gas recirculation on solid oxide fuel cells Anode off-gas recycle a b s t r a c t The recycle of anode depleted gas has been employed in solid oxide fuel cell systems for the advantage of reusing a fraction of the exhaust rich in steam

  19. Danish Solid Oxide Fuel Cell project: DK-SOFC 1997-1999

    E-Print Network [OSTI]

    Danish Solid Oxide Fuel Cell project: DK-SOFC 1997-1999 Contracts no. ENS 1443/97-0003, ENS 1443 the format of annual- and final reporting from the Danish Solid Oxide Fuel Cell projects. From then on, Denmark #12;Preface It was decided medio 2000 at the 22th DK-SOFC programme board meeting to change

  20. Diesel-fueled solid oxide fuel cell auxiliary power units for heavy-duty vehicles

    SciTech Connect (OSTI)

    Krause, T.; Kumar, R.; Krumpelt, M.

    2000-05-15T23:59:59.000Z

    This paper explores the potential of solid oxide fuel cells (SOFCS) as 3--10 kW auxiliary power units for trucks and military vehicles operating on diesel fuel. It discusses the requirements and specifications for such units, and the advantages, challenges, and development issues for SOFCS used in this application. Based on system design and analysis, such systems should achieve efficiencies approaching 40% (lower heating value), with a relatively simple system configuration. The major components of such a system are the fuel cell stack, a catalytic autothermal reformer, and a spent gas burner/air preheater. Building an SOFC-based auxiliary power unit is not straightforward, however, and the tasks needed to develop a 3--10 kW brassboard demonstration unit are outlined.

  1. Gas turbine cycles with solid oxide fuel cells. Part 2: A detailed study of a gas turbine cycle with an integrated internal reforming solid oxide fuel cell

    SciTech Connect (OSTI)

    Harvey, S.P.; Richter, H.J. (Dartmouth Coll., Hanover, NH (United States). Thayer School of Engineering)

    1994-12-01T23:59:59.000Z

    The energy conversion efficiency can be improved if immediate contact of air and fuel is prevented. One means to prevent this immediate contact is the use of fuel cell technology. High-temperature solid oxide fuel cells (SOFC) have many features that make them attractive for utility and industrial applications. However, in view of their high operating temperatures and the incomplete nature of the fuel oxidation process, such fuel cells must be combined with conventional power generation technology to develop power plant configurations that are both functional and efficient. Most fuel cell cycles proposed in the literature use a high-temperature fuel cell running at ambient pressure and a steam bottoming cycle to recover the waste heat generated by the fuel cell. With such cycles, the inherent flexibility and shorter start-up time characteristics of the fuel cell are lost. In Part 1 of this paper, a pressurized cycle using a solid oxide fuel cell and an integrated gas turbine bottoming cycle was presented. The cycle is simpler than most cycles with steam bottoming cycles and more suited to flexible power generation. In this paper, the authors will discuss this cycle in more detail, with an in-depth discussion of all cycle component characteristics and losses. In particular, they will make use of the fuel cell's internal fuel reforming capability. The optimal cycle parameters were obtained based on calculations performed using Aspen Technology's ASPEN PLUS process simulation software and a fuel cell simulator developed by Argonne National Laboratory. The efficiency of the proposed cycle is 68.1%. A preliminary economic assessment of the cycle shows that it should compare favorable with a state-of-the-art combined cycle plant on a cost per MWe basis.

  2. Characterization of Solid Oxide Fuel Cell Sealant Material G18 by Microindentation Alexandra Woldman, Cornell University, 2009 SURF Fellow

    E-Print Network [OSTI]

    Li, Mo

    Characterization of Solid Oxide Fuel Cell Sealant Material G18 by Microindentation Alexandra Milhans Introduction Solid oxide fuel cells (SOFC) require a hermetic seal between the fuel and air side life of the fuel cell. An ideal sealant is chemically compatible with neighboring fuel cell components

  3. Increasing the CO tolerance of PEM fuel cells via current pulsing and self-oxidation 

    E-Print Network [OSTI]

    Thomason, Arthur Hugh

    2004-09-30T23:59:59.000Z

    An investigation was conducted to determine and compare the effect of cell current pulsing and "self-oxidation" in increasing the CO tolerance of a PEM fuel cell. The most effective pulsing parameter values were also ...

  4. Increasing the CO tolerance of PEM fuel cells via current pulsing and self-oxidation

    E-Print Network [OSTI]

    Thomason, Arthur Hugh

    2004-09-30T23:59:59.000Z

    An investigation was conducted to determine and compare the effect of cell current pulsing and "self-oxidation" in increasing the CO tolerance of a PEM fuel cell. The most effective pulsing parameter values were also determined. Current pulsing...

  5. Automated brush plating process for solid oxide fuel cells

    DOE Patents [OSTI]

    Long, Jeffrey William (Pittsburgh, PA)

    2003-01-01T23:59:59.000Z

    A method of depositing a metal coating (28) on the interconnect (26) of a tubular, hollow fuel cell (10) contains the steps of providing the fuel cell (10) having an exposed interconnect surface (26); contacting the inside of the fuel cell (10) with a cathode (45) without use of any liquid materials; passing electrical current through a contacting applicator (46) which contains a metal electrolyte solution; passing the current from the applicator (46) to the cathode (45) and contacting the interconnect (26) with the applicator (46) and coating all of the exposed interconnect surface.

  6. Formation of thin walled ceramic solid oxide fuel cells

    DOE Patents [OSTI]

    Claar, Terry D. (Tisle, IL); Busch, Donald E. (Hinsdale, IL); Picciolo, John J. (Lockport, IL)

    1989-01-01T23:59:59.000Z

    To reduce thermal stress and improve bonding in a high temperature monolithic solid oxide fuel cell (SOFC), intermediate layers are provided between the SOFC's electrodes and electrolyte which are of different compositions. The intermediate layers are comprised of a blend of some of the materials used in the electrode and electrolyte compositions. Particle size is controlled to reduce problems involving differential shrinkage rates of the various layers when the entire structure is fired at a single temperature, while pore formers are provided in the electrolyte layers to be removed during firing for the formation of desired pores in the electrode layers. Each layer includes a binder in the form of a thermosetting acrylic which during initial processing is cured to provide a self-supporting structure with the ceramic components in the green state. A self-supporting corrugated structure is thus formed prior to firing, which the organic components of the binder and plasticizer removed during firing to provide a high strength, high temperature resistant ceramic structure of low weight and density.

  7. Method and apparatus for assembling solid oxide fuel cells

    DOE Patents [OSTI]

    Szreders, Bernard E. (Oakdale, CT); Campanella, Nicholas (O'Fallon, MO)

    1989-01-01T23:59:59.000Z

    A plurality of jet air tubes are supported and maintained in a spaced matrix array by a positioning/insertion assembly for insertion in respective tubes of a solid oxide fuel cell (SOFC) in the assembly of an SOFC module. The positioning/insertion assembly includes a plurality of generally planar, elongated, linear vanes which are pivotally mounted at each end thereof to a support frame. The vanes, which each include a plurality of spaced slots along the facing edges thereof, may be pivotally displaced from a generally vertical orientation, wherein each jet air tube is positioned within and engaged by the aligned slots of a plurality of paired upper and lower vanes to facilitate their insertion in respective aligned SOFC tubes arranged in a matrix array, to an inclined orientation, wherein the jet air tubes may be removed from the positioning/insertion assembly after being inserted in the SOFC tubes. A rectangular compression assembly of adjustable size is adapted to receive and squeeze a matrix of SOFC tubes so as to compress the inter-tube nickel felt conductive pads which provide series/parallel electrical connection between adjacent SOFCs, with a series of increasingly larger retainer frames used to maintain larger matrices of SOFC tubes in position. Expansion of the SOFC module housing at the high operating temperatures of the SOFC is accommodated by conductive, flexible, resilient expansion, connector bars which provide support and electrical coupling at the top and bottom of the SOFC module housing.

  8. Cover and startup gas supply system for solid oxide fuel cell generator

    DOE Patents [OSTI]

    Singh, P.; George, R.A.

    1999-07-27T23:59:59.000Z

    A cover and startup gas supply system for a solid oxide fuel cell power generator is disclosed. Hydrocarbon fuel, such as natural gas or diesel fuel, and oxygen-containing gas are supplied to a burner. Combustion gas exiting the burner is cooled prior to delivery to the solid oxide fuel cell. The system mixes the combusted hydrocarbon fuel constituents with hydrogen which is preferably stored in solid form to obtain a non-explosive gas mixture. The system may be used to provide both non-explosive cover gas and hydrogen-rich startup gas to the fuel cell. 4 figs.

  9. Cover and startup gas supply system for solid oxide fuel cell generator

    DOE Patents [OSTI]

    Singh, Prabhakar (Export, PA); George, Raymond A. (Pittsburgh, PA)

    1999-01-01T23:59:59.000Z

    A cover and startup gas supply system for a solid oxide fuel cell power generator is disclosed. Hydrocarbon fuel, such as natural gas or diesel fuel, and oxygen-containing gas are supplied to a burner. Combustion gas exiting the burner is cooled prior to delivery to the solid oxide fuel cell. The system mixes the combusted hydrocarbon fuel constituents with hydrogen which is preferably stored in solid form to obtain a non-explosive gas mixture. The system may be used to provide both non-explosive cover gas and hydrogen-rich startup gas to the fuel cell.

  10. Fuel cell-fuel cell hybrid system

    DOE Patents [OSTI]

    Geisbrecht, Rodney A.; Williams, Mark C.

    2003-09-23T23:59:59.000Z

    A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.

  11. Materials System for Intermediate Temperature Solid Oxide Fuel Cell

    SciTech Connect (OSTI)

    Uday B. Pal; Srikanth Gopalan

    2005-01-24T23:59:59.000Z

    AC complex impedance spectroscopy studies were conducted between 600-800 C on symmetrical cells that employed strontium-and-magnesium-doped lanthanum gallate electrolyte, La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3} (LSGM). The objective of the study was to identify the materials system for fabrication and evaluation of intermediate temperature (600-800 C) solid oxide fuel cells (SOFCs). The slurry-coated electrode materials had fine porosity to enhance catalytic activity. Cathode materials investigated include La{sub 1-x}Sr{sub x}MnO{sub 3} (LSM), LSCF (La{sub 1-x}Sr{sub x}Co{sub y}Fe{sub 1-y}O{sub 3}), a two-phase particulate composite consisting of LSM-doped-lanthanum gallate (LSGM), and LSCF-LSGM. The anode materials were Ni-Ce{sub 0.85}Gd{sub 0.15}O{sub 2} (Ni-GDC) and Ni-Ce{sub 0.6}La{sub 0.4}O{sub 2} (Ni-LDC) composites. Experiments conducted with the anode materials investigated the effect of having a barrier layer of GDC or LDC in between the LSGM electrolyte and the Ni-composite anode to prevent adverse reaction of the Ni with lanthanum in LSGM. For proper interpretation of the beneficial effects of the barrier layer, similar measurements were performed without the barrier layer. The ohmic and the polarization resistances of the system were obtained over time as a function of temperature (600-800 C), firing temperature, thickness, and the composition of the electrodes. The study revealed important details pertaining to the ohmic and the polarization resistances of the electrode as they relate to stability and the charge-transfer reactions that occur in such electrode structures.

  12. Bipolar Plate-Supported Solid Oxide Fuel Cell J. D. Carter, T. Cruse, J. Ralph,

    E-Print Network [OSTI]

    Bipolar Plate-Supported Solid Oxide Fuel Cell "TuffCell" J. D. Carter, T. Cruse, J. Ralph, R. Kumar · Objective: Develop an improved SOFC for APUs ­ SOFC advantages · High power density and efficiency · Fuel versatility/simplified fuel processing · Well-suited to duty cycle of APU ­ SOFC issues · Startup time

  13. Combination nickel foam expanded nickel screen electrical connection supports for solid oxide fuel cells

    DOE Patents [OSTI]

    Draper, Robert; Prevish, Thomas; Bronson, Angela; George, Raymond A.

    2007-01-02T23:59:59.000Z

    A solid oxide fuel assembly is made, wherein rows (14, 25) of fuel cells (17, 19, 21, 27, 29, 31), each having an outer interconnection (20) and an outer electrode (32), are disposed next to each other with corrugated, electrically conducting expanded metal mesh member (22) between each row of cells, the corrugated mesh (22) having top crown portions and bottom portions, where the top crown portion (40) have a top bonded open cell nickel foam (51) which contacts outer interconnections (20) of the fuel cells, said mesh and nickel foam electrically connecting each row of fuel cells, and where there are no more metal felt connections between any fuel cells.

  14. Nanostructured thin films for solid oxide fuel cells

    E-Print Network [OSTI]

    Yoon, Jongsik

    2009-05-15T23:59:59.000Z

    in order to facilitate rapid mass transport of reactant gas to the reaction site. Numerous doped oxides have been studied for zirconia based SOFCs and the most common materials for cathodes are perovskite-type lanthanum strontium manganite, La 1-x Sr x... Fig.1.3. Schematic diagram of SOFC operating on hydrogen fuel 1.3.1 History of SOFCs Solid oxide electrolytes were first investigated by Emil Baur and his colleague H. Preis in the late 1930s using lanthanum, yttrium, cerium, tungsten...

  15. Filled glass composites for sealing of solid oxide fuel cells.

    SciTech Connect (OSTI)

    Tandon, Rajan; Widgeon, Scarlett Joyce; Garino, Terry J.; Brochu, Mathieu; Gauntt, Bryan D.; Corral, Erica L.; Loehman, Ronald E.

    2009-04-01T23:59:59.000Z

    Glasses filled with ceramic or metallic powders have been developed for use as seals for solid oxide fuel cells (SOFC's) as part of the U.S. Department of Energy's Solid State Energy Conversion Alliance (SECA) Program. The composites of glass (alkaline earth-alumina-borate) and powders ({approx}20 vol% of yttria-stabilized zirconia or silver) were shown to form seals with SOFC materials at or below 900 C. The type and amount of powder were adjusted to optimize thermal expansion to match the SOFC materials and viscosity. Wetting studies indicated good wetting was achieved on the micro-scale and reaction studies indicated that the degree of reaction between the filled glasses and SOFC materials, including spinel-coated 441 stainless steel, at 750 C is acceptable. A test rig was developed for measuring strengths of seals cycled between room temperature and typical SOFC operating temperatures. Our measurements showed that many of the 410 SS to 410 SS seals, made using silver-filled glass composites, were hermetic at 0.2 MPa (2 atm.) of pressure and that seals that leaked could be resealed by briefly heating them to 900 C. Seal strength measurements at elevated temperature (up to 950 C), measured using a second apparatus that we developed, indicated that seals maintained 0.02 MPa (0.2 atm.) overpressures for 30 min at 750 C with no leakage. Finally, the volatility of the borate component of sealing glasses under SOFC operational conditions was studied using weight loss measurements and found by extrapolation to be less than 5% for the projected SOFC lifetime.

  16. Journal of Power Sources 135 (2004) 184191 A solid oxide fuel cell system fed with hydrogen sulfide

    E-Print Network [OSTI]

    2004-01-01T23:59:59.000Z

    Journal of Power Sources 135 (2004) 184­191 A solid oxide fuel cell system fed with hydrogen for a solid oxide fuel cell (SOFC). This paper presents an examination of a simple hydrogen sulfide and natural gas-fed solid oxide fuel cell system. The possibility of utilization of hydrogen sulfide

  17. IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 19, NO. 5, SEPTEMBER 2004 1263 Solid-Oxide-Fuel-Cell Performance and Durability

    E-Print Network [OSTI]

    Mazumder, Sudip K.

    IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 19, NO. 5, SEPTEMBER 2004 1263 Solid-Oxide-Fuel-Cell of solid-oxide-fuel-cell (SOFC) power-conditioning system (PCS) at the subsystem/component and system Terms--Power-conditioning system (PCS), power-elec- tronics subsystem (PES), solid-oxide-fuel-cell (SOFC

  18. Performance of a solid oxide fuel cell CHP system coupled with a hot water storage tank for

    E-Print Network [OSTI]

    Berning, Torsten

    Performance of a solid oxide fuel cell CHP system coupled with a hot water storage tank for single a solid oxide fuel cell (SOFC) system for cogeneration of heat and power integrated with a stratified heat oxide fuel cell, Cogeneration, Storage heat Tank 1. Introduction In residential sector, energy

  19. CONTROL-ORIENTED MODELING OF A SOLID-OXIDE FUEL CELL STACK USING AN LPV MODEL STRUCTURE

    E-Print Network [OSTI]

    Sanandaji, Borhan M.

    CONTROL-ORIENTED MODELING OF A SOLID-OXIDE FUEL CELL STACK USING AN LPV MODEL STRUCTURE Borhan M dynamic model of a solid oxide fuel cell stack. Using a detailed physical model as a starting point, we (usually air) on the cathode side. Solid-oxide fuel cells (SOFCs) utilize a ceramic oxygen-ion conducting

  20. Operation of a solid oxide fuel cell on biodiesel with a partial oxidation reformer

    SciTech Connect (OSTI)

    Siefert, N, Shekhawat, D.; Gemmen, R.; Berry, D.

    2010-01-01T23:59:59.000Z

    The National Energy Technology Laboratory’s Office of Research & Development (NETL/ORD) has successfully demonstrated the operation of a solid oxide fuel cell (SOFC) using reformed biodiesel. The biodiesel for the project was produced and characterized by West Virginia State University (WVSU). This project had two main aspects: 1) demonstrate a catalyst formulation on monolith for biodiesel fuel reforming; and 2) establish SOFC stack test stand capabilities. Both aspects have been completed successfully. For the first aspect, in–house patented catalyst specifications were developed, fabricated and tested. Parametric reforming studies of biofuels provided data on fuel composition, catalyst degradation, syngas composition, and operating parameters required for successful reforming and integration with the SOFC test stand. For the second aspect, a stack test fixture (STF) for standardized testing, developed by Pacific Northwest National Laboratory (PNNL) and Lawrence Berkeley National Laboratory (LBNL) for the Solid Energy Conversion Alliance (SECA) Program, was engineered and constructed at NETL. To facilitate the demonstration of the STF, NETL employed H.C. Starck Ceramics GmbH & Co. (Germany) anode supported solid oxide cells. In addition, anode supported cells, SS441 end plates, and cell frames were transferred from PNNL to NETL. The stack assembly and conditioning procedures, including stack welding and sealing, contact paste application, binder burn-out, seal-setting, hot standby, and other stack assembly and conditioning methods were transferred to NETL. In the future, fuel cell stacks provided by SECA or other developers could be tested at the STF to validate SOFC performance on various fuels. The STF operated on hydrogen for over 1000 hrs before switching over to reformed biodiesel for 100 hrs of operation. Combining these first two aspects led to demonstrating the biodiesel syngas in the STF. A reformer was built and used to convert 0.5 ml/min of biodiesel into mostly hydrogen and carbon monoxide (syngas.) The syngas was fed to the STF and fuel cell stack. The results presented in this experimental report document one of the first times a SOFC has been operated on syngas from reformed biodiesel.

  1. Novel Sulfur-Tolerant Anodes for Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Lei Yang; Meilin Liu

    2008-12-31T23:59:59.000Z

    One of the unique advantages of SOFCs over other types of fuel cells is the potential for direct utilization of hydrocarbon fuels (it may involve internal reforming). Unfortunately, most hydrocarbon fuels contain sulfur, which would dramatically degrade SOFC performance at parts-per-million (ppm) levels. Low concentration of sulfur (ppm or below) is difficult to remove efficiently and cost-effectively. Therefore, knowing the exact poisoning process for state-of-the-art anode-supported SOFCs with Ni-YSZ cermet anodes, understanding the detailed anode poisoning mechanism, and developing new sulfur-tolerant anodes are essential to the promotion of SOFCs that run on hydrocarbon fuels. The effect of cell operating conditions (including temperature, H{sub 2}S concentration, cell voltage/current density, etc.) on sulfur poisoning and recovery of nickel-based anode in SOFCs was investigated. It was found that sulfur poisoning is more severe at lower temperature, higher H{sub 2}S concentration or lower cell current density (higher cell voltage). In-situ Raman spectroscopy identified the nickel sulfide formation process on the surface of a Ni-YSZ electrode and the corresponding morphology change as the sample was cooled in H{sub 2}S-containing fuel. Quantum chemical calculations predicted a new S-Ni phase diagram with a region of sulfur adsorption on Ni surfaces, corresponding to sulfur poisoning of Ni-YSZ anodes under typical SOFC operating conditions. Further, quantum chemical calculations were used to predict the adsorption energy and bond length for sulfur and hydrogen atoms on various metal surfaces. Surface modification of Ni-YSZ anode by thin Nb{sub 2}O{sub 5} coating was utilized to enhance the sulfur tolerance. A multi-cell testing system was designed and constructed which is capable of simultaneously performing electrochemical tests of 12 button cells in fuels with four different concentrations of H{sub 2}S. Through systematical study of state-of-the-art anode-supported SOFC button cells, it is seen that the long-term sulfur poisoning behavior of those cells indicate that there might be a second-stage slower degradation due to sulfur poisoning, which would last for a thousand hour or even longer. However, when using G-18 sealant from PNNL, the 2nd stage poisoning was effectively prohibited.

  2. Catalytic membranes for CO oxidation in fuel cells

    DOE Patents [OSTI]

    Sandi-Tapia, Giselle; Carrado Gregar, Kathleen; Kizilel, Riza

    2010-06-08T23:59:59.000Z

    A hydrogen permeable membrane, which includes a polymer stable at temperatures of about 200 C having clay impregnated with Pt or Au or Ru or Pd particles or mixtures thereof with average diameters of less than about 10 nanometers (nms) is disclosed. The membranes are useful in fuel cells or any device which requires hydrogen to be separated from carbon monoxide.

  3. Miniature fuel-cell system complete with on-demand fuel and oxidant supply

    E-Print Network [OSTI]

    Hur, JI; Kim, CJ

    2015-01-01T23:59:59.000Z

    fuel cell development,” Energy, vol. 31, pp. 636-649,and T. I. Valdez, “High-energy portable fuel cell powerSomavat and V. Namboodiri, “Energy consumption of personal

  4. Miniature fuel-cell system complete with on-demand fuel and oxidant supply

    E-Print Network [OSTI]

    Hur, JI; Kim, C-J

    2015-01-01T23:59:59.000Z

    a cropped view focusing on the fuel channel and O 2 pocket.The fuel is seen being pumped by the CO 2 bubbles, and O 2micro-scale direct methanol fuel cell development,” Energy,

  5. Seven Projects That Will Advance Solid Oxide Fuel Cell Research Selected by DOE for Further Development

    Broader source: Energy.gov [DOE]

    Seven projects that will help develop low-cost solid oxide fuel cell technology for environmentally responsible central power generation from the Nation’s abundant fossil energy resources have been selected for further research by the Department of Energy.

  6. Thermo-mechanical modeling of a micro-fabricated solid oxide fuel cell

    E-Print Network [OSTI]

    Ie, Tze Yung Andrew, 1978-

    2004-01-01T23:59:59.000Z

    A micro-fabricated solid oxide fuel cell is currently being designed by the Micro-chemical Power Team(funded under the Multidisciplinary University Research Initiative(MURI) Research Program). In the current design a plate ...

  7. Silicon Based Solid Oxide Fuel Cell Chip for Portable Consumer Electronics -- Final Technical Report

    SciTech Connect (OSTI)

    Alan Ludwiszewski

    2009-06-29T23:59:59.000Z

    LSI’s fuel cell uses efficient Solid Oxide Fuel Cell (“SOFC”) technology, is manufactured using Micro Electrical Mechanical System (“MEMS”) fabrication methods, and runs on high energy fuels, such as butane and ethanol. The company’s Fuel Cell on a Chip™ technology enables a form-factor battery replacement for portable electronic devices that has the potential to provide an order-of-magnitude run-time improvement over current batteries. Further, the technology is clean and environmentally-friendly. This Department of Energy funded project focused on accelerating the commercialization and market introduction of this technology through improvements in fuel cell chip power output, lifetime, and manufacturability.

  8. Molten carbonate fuel cell cathode with mixed oxide coating

    DOE Patents [OSTI]

    Hilmi, Abdelkader; Yuh, Chao-Yi

    2013-05-07T23:59:59.000Z

    A molten carbonate fuel cell cathode having a cathode body and a coating of a mixed oxygen ion conductor materials. The mixed oxygen ion conductor materials are formed from ceria or doped ceria, such as gadolinium doped ceria or yttrium doped ceria. The coating is deposited on the cathode body using a sol-gel process, which utilizes as precursors organometallic compounds, organic and inorganic salts, hydroxides or alkoxides and which uses as the solvent water, organic solvent or a mixture of same.

  9. Three-Dimensional Analysis of Solid Oxide Fuel Cell Ni-YSZ Anode Interconnectivity James R. Wilson,a

    E-Print Network [OSTI]

    Kalies, William D.

    of interconnectivity of solid-oxide fuel cell (SOFC) electrode phases. The method was applied to the three1 Three-Dimensional Analysis of Solid Oxide Fuel Cell Ni-YSZ Anode Interconnectivity James R, and hence was not electrochemically active. #12;2 1. Introduction Attempts to understand solid oxide fuel

  10. Cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    DOE Patents [OSTI]

    Jacobson, Allan J; Wang, Shuangyan; Kim, Gun Tae

    2014-01-28T23:59:59.000Z

    Novel cathode, electrolyte and oxygen separation materials are disclosed that operate at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes based on oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  11. Expanded nickel screen electrical connection supports for solid oxide fuel cells

    DOE Patents [OSTI]

    Draper, Robert (Pittsburgh, PA); Antol, Ronald F. (North Huntingdon, PA); Zafred, Paolo R. (Murrysville, PA)

    2002-01-01T23:59:59.000Z

    A solid oxide fuel assembly is made, wherein rows (14, 24) of fuel cells (16, 18, 20, 26, 28, 30), each having an outer interconnection (36) and an outer electrode (32), are disposed next to each other with corrugated, electrically conducting expanded metal mesh (22) between each row of cells, the corrugated mesh (22) having top crown portions (40) and bottom shoulder portions (42), where the top crown portion (40) contacts outer interconnections (36) of the fuel cells (16, 18, 20) in a first row (14), and the bottom shoulder portions (42) contacts outer electrodes (32) of the fuel cells in a second row (24), said mesh electrically connecting each row of fuel cells, and where there are no metal felt connections between any fuel cells.

  12. Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices

    DOE Patents [OSTI]

    Marina, Olga A [Richland, WA; Stevenson, Jeffry W [Richland, WA

    2010-11-23T23:59:59.000Z

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.

  13. Copper-substituted perovskite compositions for solid oxide fuel cell cathodes and oxygen reduction electrodes in other electrochemical devices

    DOE Patents [OSTI]

    Rieke, Peter C. (Pasco, WA); Coffey, Gregory W. (Richland, WA); Pederson, Larry R. (Kennewick, WA); Marina, Olga A. (Richland, WA); Hardy, John S. (Richland, WA); Singh, Prabhaker (Richland, WA); Thomsen, Edwin C. (Richland, WA)

    2010-07-20T23:59:59.000Z

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells. Also provided are electrochemical devices that include active oxygen reduction electrodes, such as solid oxide fuel cells, sensors, pumps and the like. The compositions comprises a copper-substituted ferrite perovskite material. The invention also provides novel methods for making and using the electrode compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having cathodes comprising the compositions.

  14. Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices

    DOE Patents [OSTI]

    Marina, Olga A [Richland, WA; Stevenson, Jeffry W [Richland, WA

    2010-03-02T23:59:59.000Z

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.

  15. Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cells Converting chemical energy of hydrogenated fuels into electricity Project Description Invented in 1839, fuels cells powered the Gemini and Apollo space missions, as well...

  16. Method of improving fuel cell performance by removing at least one metal oxide contaminant from a fuel cell electrode

    DOE Patents [OSTI]

    Kim, Yu Seung (Los Alamos, NM); Choi, Jong-Ho (Los Alamos, NM); Zelenay, Piotr (Los Alamos, NM)

    2009-08-18T23:59:59.000Z

    A method of removing contaminants from a fuel cell catalyst electrode. The method includes providing a getter electrode and a fuel cell catalyst electrode having at least one contaminant to a bath and applying a voltage sufficient to drive the contaminant from the fuel cell catalyst electrode to the getter electrode. Methods of removing contaminants from a membrane electrode assembly of a fuel cell and of improving performance of a fuel cell are also provided.

  17. Hybrid deposition of thin film solid oxide fuel cells and electrolyzers

    DOE Patents [OSTI]

    Jankowski, A.F.; Makowiecki, D.M.; Rambach, G.D.; Randich, E.

    1998-05-19T23:59:59.000Z

    The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated. 8 figs.

  18. Hybrid deposition of thin film solid oxide fuel cells and electrolyzers

    DOE Patents [OSTI]

    Jankowski, Alan F. (Livermore, CA); Makowiecki, Daniel M. (Livermore, CA); Rambach, Glenn D. (Livermore, CA); Randich, Erik (Endinboro, PA)

    1998-01-01T23:59:59.000Z

    The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated.

  19. Hybrid deposition of thin film solid oxide fuel cells and electrolyzers

    DOE Patents [OSTI]

    Jankowski, Alan F. (Livermore, CA); Makowiecki, Daniel M. (Livermore, CA); Rambach, Glenn D. (Livermore, CA); Randich, Erik (Endinboro, PA)

    1999-01-01T23:59:59.000Z

    The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated.

  20. Generation and Solid Oxide Fuel Cell Carbon Sequestration in Northwest Indiana

    SciTech Connect (OSTI)

    Kevin Peavey; Norm Bessette

    2007-09-30T23:59:59.000Z

    The objective of the project is to develop the technology capable of capturing all carbon monoxide and carbon dioxide from natural gas fueled Solid Oxide Fuel Cell (SOFC) system. In addition, the technology to electrochemically oxidize any remaining carbon monoxide to carbon dioxide will be developed. Success of this R&D program would allow for the generation of electrical power and thermal power from a fossil fuel driven SOFC system without the carbon emissions resulting from any other fossil fueled power generationg system.

  1. Innovative Seals for Solid Oxide Fuel Cells (SOFC)

    SciTech Connect (OSTI)

    Singh, Raj

    2008-06-30T23:59:59.000Z

    A functioning SOFC requires different type of seals such as metal-metal, metal-ceramic, and ceramic-ceramic. These seals must function at high temperatures between 600--900{sup o}C and in oxidizing and reducing environments of the fuels and air. Among the different type of seals, the metal-metal seals can be readily fabricated using metal joining, soldering, and brazing techniques. However, the metal-ceramic and ceramic-ceramic seals require significant research and development because the brittle nature of ceramics/glasses can lead to fracture and loss of seal integrity and functionality. Consequently, any seals involving ceramics/glasses require a significant attention and technology development for reliable SOFC operation. This final report is prepared to describe the progress made in the program on the needs, approaches, and performance of high temperature seals for SOFC. In particular, a new concept of self-healing glass seals is pursued for making seals between metal-ceramic material combinations, including some with a significant expansion mismatch.

  2. Low Temperature Constrained Sintering of Cerium Gadolinium OxideFilms for Solid Oxide Fuel Cell Applications

    SciTech Connect (OSTI)

    Nicholas, Jason.D.

    2007-06-30T23:59:59.000Z

    Cerium gadolinium oxide (CGO) has been identified as an acceptable solid oxide fuel cell (SOFC) electrolyte at temperatures (500-700 C) where cheap, rigid, stainless steel interconnect substrates can be used. Unfortunately, both the high sintering temperature of pure CGO, >1200 C, and the fact that constraint during sintering often results in cracked, low density ceramic films, have complicated development of metal supported CGO SOFCs. The aim of this work was to find new sintering aids for Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95}, and to evaluate whether they could be used to produce dense, constrained Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95} films at temperatures below 1000 C. To find the optimal sintering aid, Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95} was doped with a variety of elements, of which lithium was found to be the most effective. Dilatometric studies indicated that by doping CGO with 3mol% lithium nitrate, it was possible to sinter pellets to a relative density of 98.5% at 800 C--a full one hundred degrees below the previous low temperature sintering record for CGO. Further, it was also found that a sintering aid's effectiveness could be explained in terms of its size, charge and high temperature mobility. A closer examination of lithium doped Ce0.9Gd0.1O1.95 indicated that lithium affects sintering by producing a Li{sub 2}O-Gd{sub 2}O{sub 3}-CeO{sub 2} liquid at the CGO grain boundaries. Due to this liquid phase sintering, it was possible to produce dense, crack-free constrained films of CGO at the record low temperature of 950 C using cheap, colloidal spray deposition processes. This is the first time dense constrained CGO films have been produced below 1000 C and could help commercialize metal supported ceria based solid oxide fuel cells.

  3. TAPE CALENDERING MANUFACTURING PROCESS FOR MULTILAYER THIN-FILM SOLID OXIDE FUEL CELLS

    SciTech Connect (OSTI)

    Nguyen Minh; Kurt Montgomery

    2004-10-01T23:59:59.000Z

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC during the Phases I and II under Contract DE-AC26-00NT40705 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Tape Calendering Manufacturing Process For Multilayer Thin-Film Solid Oxide Fuel Cells''. The main objective of this project was to develop the manufacturing process based on tape calendering for multilayer solid oxide fuel cells (SOFC's) using the unitized cell design concept and to demonstrate cell performance under specified operating conditions. Summarized in this report is the development and improvements to multilayer SOFC cells and the unitized cell design. Improvements to the multilayer SOFC cell were made in electrochemical performance, in both the anode and cathode, with cells demonstrating power densities of nearly 0.9 W/cm{sup 2} for 650 C operation and other cell configurations showing greater than 1.0 W/cm{sup 2} at 75% fuel utilization and 800 C. The unitized cell design was matured through design, analysis and development testing to a point that cell operation at greater than 70% fuel utilization was demonstrated at 800 C. The manufacturing process for both the multilayer cell and unitized cell design were assessed and refined, process maps were developed, forming approaches explored, and nondestructive evaluation (NDE) techniques examined.

  4. Pre-Oxidized and Nitrided Stainless Steel Foil for Proton Exchange Membrane Fuel Cell Bipolar Plates: Part 2- Single-Cell Fuel Cell Evaluation of Stamped Plates

    SciTech Connect (OSTI)

    Toops, Todd J [ORNL; Brady, Michael P [ORNL; Tortorelli, Peter F [ORNL; Pihl, Josh A [ORNL; EstevezGenCell, Francisco [GenCell Corp; Connors, Dan [GenCell Corp; Garzon, Fernando [Los Alamos National Laboratory (LANL); Rockward, Tommy [Los Alamos National Laboratory (LANL); Gervasio, Don [Arizona State University; Kosaraju, S.H. [Arizona State University

    2010-01-01T23:59:59.000Z

    Thermal (gas) nitridation of stainless steel alloys can yield low interfacial contact resistance (ICR), electrically conductive and corrosion-resistant nitride containing surface layers (Cr{sub 2}N, CrN, TiN, V{sub 2}N, VN, etc.) of interest for fuel cells, batteries, and sensors. This paper presents results of proton exchange membrane (PEM) single-cell fuel cell studies of stamped and pre-oxidized/nitrided developmental Fe-20Cr-4V weight percent (wt.%) and commercial type 2205 stainless steel alloy foils. The single-cell fuel cell behavior of the stamped and pre-oxidized/nitrided material was compared to as-stamped (no surface treatment) 904L, 2205, and Fe-20Cr-4V stainless steel alloy foils and machined graphite of similar flow field design. The best fuel cell behavior among the alloys was exhibited by the pre-oxidized/nitrided Fe-20Cr-4V, which exhibited {approx}5-20% better peak power output than untreated Fe-20Cr-4V, 2205, and 904L metal stampings. Durability was assessed for pre-oxidized/nitrided Fe-20Cr-4V, 904L metal, and graphite plates by 1000+ h of cyclic single-cell fuel cell testing. All three materials showed good durability with no significant degradation in cell power output. Post-test analysis indicated no metal ion contamination of the membrane electrode assemblies (MEAs) occurred with the pre-oxidized and nitrided Fe-20Cr-4V or graphite plates, and only a minor amount of contamination with the 904L plates.

  5. A thermally self-sustained micro solid-oxide fuel-cell stack with high power density

    E-Print Network [OSTI]

    Haile, Sossina M.

    A thermally self-sustained micro solid-oxide fuel-cell stack with high power density Zongping Shao1 design challenges and cannot operate with hydrocarbon fuels of higher energy density. Solid-oxide fuel cells (SOFCs) enable direct use of higher hydrocarbons4­6 , but have not been seriously con- sidered

  6. In situ reduction and reoxidation of a solid oxide fuel cell anode in an environmental Q. Jeangros1

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    , Denmark Solid oxide fuel cells (SOFC) are efficient devices for the electrochemical conversion of a largeIn situ reduction and reoxidation of a solid oxide fuel cell anode in an environmental TEM Q phase can occur during SOFC stack operation due to air leakage through the sealing, leakage of fuel

  7. Ternary PtSnRhSnO2 nanoclusters: synthesis and electroactivity for ethanol oxidation fuel cell reaction

    E-Print Network [OSTI]

    Frenkel, Anatoly

    Ternary PtSnRh­SnO2 nanoclusters: synthesis and electroactivity for ethanol oxidation fuel cell. Ethanol becomes an attractive fuel in the fuel cell reactions compared with methanol and hydrogen, because­4 A major impediment to the commercialization of ethanol fuel cell stacks is the difficulty in designing

  8. Generator module architecture for a large solid oxide fuel cell power plant

    DOE Patents [OSTI]

    Gillett, James E.; Zafred, Paolo R.; Riggle, Matthew W.; Litzinger, Kevin P.

    2013-06-11T23:59:59.000Z

    A solid oxide fuel cell module contains a plurality of integral bundle assemblies, the module containing a top portion with an inlet fuel plenum and a bottom portion receiving air inlet feed and containing a base support, the base supports dense, ceramic exhaust manifolds which are below and connect to air feed tubes located in a recuperator zone, the air feed tubes passing into the center of inverted, tubular, elongated, hollow electrically connected solid oxide fuel cells having an open end above a combustion zone into which the air feed tubes pass and a closed end near the inlet fuel plenum, where the fuel cells comprise a fuel cell stack bundle all surrounded within an outer module enclosure having top power leads to provide electrical output from the stack bundle, where the fuel cells operate in the fuel cell mode and where the base support and bottom ceramic air exhaust manifolds carry from 85% to all 100% of the weight of the stack, and each bundle assembly has its own control for vertical and horizontal thermal expansion control.

  9. Iron-based perovskite cathodes for solid oxide fuel cells

    DOE Patents [OSTI]

    Ralph, James M.; Rossignol, Cecile C.R.; Vaughey, John T.

    2007-01-02T23:59:59.000Z

    An A and/or A' site deficient perovskite of general formula of (A.sub.1-xA'.sub.x).sub.1-yFeO.sub.3-.delta. or of general formula A.sub.1-x-yA'.sub.xFeO.sub.3-67, wherein A is La alone or with one or more of the rare earth metals or a rare earth metal other than Ce alone or a combination of rare earth metals and X is in the range of from 0 to about 1; A' is Sr or Ca or mixtures thereof and Y is in the range of from about 0.01 to about 0.3; .delta. represents the amount of compensating oxygen loss. If either A or A' is zero the remaining A or A' is deficient. A fuel cell incorporating the inventive perovskite as a cathode is disclosed as well as an oxygen separation membrane. The inventive perovskite is preferably single phase.

  10. A MULTI-LENGTH SCALE APPROACH TO CORRELATING SOLID OXIDE FUEL CELL POROUS CATHODE MICROSTRUCTURE TO ELECTROCHEMICAL PERFORMANCE

    E-Print Network [OSTI]

    Florida, University of

    1 A MULTI-LENGTH SCALE APPROACH TO CORRELATING SOLID OXIDE FUEL CELL POROUS CATHODE MICROSTRUCTURE.....................................................................................................18 2.2 Mixed Conductor SOFC Cathode

  11. Direct hydrocarbon fuel cells

    DOE Patents [OSTI]

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04T23:59:59.000Z

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  12. Modified cermet fuel electrodes for solid oxide electrochemical cells

    DOE Patents [OSTI]

    Ruka, Roswell J. (Churchill Boro, PA); Spengler, Charles J. (Murrysville, PA)

    1991-01-01T23:59:59.000Z

    An exterior porous electrode (10), bonded to a solid oxygen ion conducting electrolyte (13) which is in contact with an interior electrode (14), contains coarse metal particles (12) of nickel and/or cobalt, having diameters from 3 micrometers to 35 micrometers, where the coarse particles are coated with a separate, porous, multiphase layer (17) containing fine metal particles of nickel and/or cobalt (18), having diameters from 0.05 micrometers to 1.75 micrometers and conductive oxide (19) selected from cerium oxide, doped cerium oxide, strontium titanate, doped strontium titanate and mixtures thereof.

  13. Breakout Group 5: Solid Oxide Fuel Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyandapproximatelyBoostingandDOEBreaking3: Water4:

  14. Solid Oxide Fuel Cell (SOFC) Technology for Greener Airplanes | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmallConfidential,2Cycleof Energy (SOFC) Technology

  15. FY 2014 Solid Oxide Fuel Cell Project Selections | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY 2007FY 2014 Solid Oxide Fuel Cell

  16. Solid Oxide Fuel Cell Technologies: Improved Electrode-Electrode Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9MorganYouof EnergyVehicles and

  17. Electrocatalyst for Alcohol Oxidation at Fuel Cell Anodes - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWater Use GoalResourcesInnovation Portal

  18. Electrocatalysts for Alcohol Oxidation in Fuel Cells - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWater Use GoalResourcesInnovationPortal

  19. National Energy Technology Laboratory Publishes Solid Oxide Fuel Cell

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1,(EAC)TABLEChallenges|Advancedof EnergytoofEfficiencyStudies |

  20. Journal of Power Sources 153 (2006) 6875 Numerical study of a flat-tube high power density solid oxide fuel cell

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    power density (HPD) solid oxide fuel cell (SOFC) is a geometry based on a tubular type SOFC: Flat-tube; High power density (HPD); Solid oxide fuel cell (SOFC); Simulation; Performance; Optimization 1. Introduction A solid oxide fuel cell (SOFC), like any other fuel cell, produces electrical

  1. Advanced Materials for Reversible Solid Oxide Fuel Cell (RSOFC...

    Broader source: Energy.gov (indexed) [DOE]

    RSOFC cell stack technology in the areas of durability and performance, via- - materials development, and - stack design & development. f To meet the following performance...

  2. Final Technical Report, Oct 2004 - Nov. 2006, High Performance Flexible Reversible Solid Oxide Fuel Cell

    SciTech Connect (OSTI)

    Guan, Jie; Minh, Nguyen

    2007-02-21T23:59:59.000Z

    This report summarizes the work performed for the program entitled “High Performance Flexible Reversible Solid Oxide Fuel Cell” under Cooperative Agreement DE-FC36-04GO14351 for the U. S. Department of Energy. The overall objective of this project is to demonstrate a single modular stack that generates electricity from a variety of fuels (hydrogen and other fuels such as biomass, distributed natural gas, etc.) and when operated in the reverse mode, produces hydrogen from steam. This project has evaluated and selected baseline cell materials, developed a set of materials for oxygen and hydrogen electrodes, and optimized electrode microstructures for reversible solid oxide fuel cells (RSOFCs); and demonstrated the feasibility and operation of a RSOFC multi-cell stack. A 10-cell reversible SOFC stack was operated over 1000 hours alternating between fuel cell (with hydrogen and methane as fuel) and steam electrolysis modes. The stack ran very successfully with high power density of 480 mW/cm2 at 0.7V and 80% fuel utilization in fuel cell mode and >6 SLPM hydrogen production in steam electrolysis mode using about 1.1 kW electrical power. The hydrogen generation is equivalent to a specific capability of 2.59 Nm3/m2 with electrical energy demand of 3 kWh/Nm3. The performance stability in electrolysis mode was improved vastly during the program with a degradation rate reduction from 8000 to 200 mohm-cm2/1000 hrs. This was accomplished by increasing the activity and improving microstructure of the oxygen electrode. Both cost estimate and technology assessment were conducted. Besides the flexibility running under both fuel cell mode and electrolysis mode, the reversible SOFC system has the potentials for low cost and high efficient hydrogen production through steam electrolysis. The cost for hydrogen production at large scale was estimated at ~$2.7/kg H2, comparing favorably with other electrolysis techology.

  3. Solid oxide fuel cell systems with hot zones having improved reactant distribution

    DOE Patents [OSTI]

    Poshusta, Joseph C; Booten, Charles W; Martin, Jerry L

    2013-12-24T23:59:59.000Z

    A Solid Oxide Fuel Cell (SOFC) system having a hot zone with a center cathode air feed tube for improved reactant distribution, a CPOX reactor attached at the anode feed end of the hot zone with a tail gas combustor at the opposing end for more uniform heat distribution, and a counter-flow heat exchanger for efficient heat retention.

  4. Solid oxide fuel cell systems with hot zones having improved reactant distribution

    DOE Patents [OSTI]

    Poshusta, Joseph C.; Booten, Charles W.; Martin, Jerry L.

    2012-11-06T23:59:59.000Z

    A Solid Oxide Fuel Cell (SOFC) system having a hot zone with a center cathode air feed tube for improved reactant distribution, a CPOX reactor attached at the anode feed end of the hot zone with a tail gas combustor at the opposing end for more uniform heat distribution, and a counter-flow heat exchanger for efficient heat retention.

  5. Carbon supported PtRh catalysts for ethanol oxidation in alkaline direct ethanol fuel cell

    E-Print Network [OSTI]

    Zhao, Tianshou

    Carbon supported PtRh catalysts for ethanol oxidation in alkaline direct ethanol fuel cell S and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China a r t i c l e i n f o Article history: Received 26 carbon supported PtRh catalysts and compare their catalytic activities with that of Pt/C in alkaline

  6. Solid Oxide Fuel Cell Successfully Powers Truck Cab and Sleeper in DOE-Sponsored Test

    Broader source: Energy.gov [DOE]

    In a test sponsored by the U.S. Department of Energy, a Delphi auxiliary power unit employing a solid oxide fuel cell (SOFC) successfully operated the electrical system and air conditioning of a Peterbilt Model 386 truck under conditions simulating idling conditions for 10 hours.

  7. High Temperature Solid Oxide Fuel Cell Generator Development

    SciTech Connect (OSTI)

    Joseph Pierre

    2007-09-30T23:59:59.000Z

    This report describes the results of the tubular SOFC development program from August 22, 1997 to September 30, 2007 under the Siemens/U.S. Department of Energy Cooperative Agreement. The technical areas discussed include cell manufacturing development, cell power enhancement, SOFC module and system cost reduction and technology advancement, and our field unit test program. Whereas significant progress has been made toward commercialization, significant effort remains to achieve our cost, performance and reliability targets for successful commercialization.

  8. Polymer sphere lithography for solid oxide fuel cells: a route to functional, well-defined electrode structures

    E-Print Network [OSTI]

    Polymer sphere lithography for solid oxide fuel cells: a route to functional, well. Introduction Dramatic breakthroughs in the materials, particularly electrode materials, for solid oxide fuel cells (SOFCs) have been reported in recent years.1­3 Fundamental understanding of the electro- catalytic

  9. The Orientation Distributions of Lines, Surfaces, and Interfaces around Three-Phase Boundaries in Solid Oxide Fuel Cell Cathodes

    E-Print Network [OSTI]

    Rohrer, Gregory S.

    in a multiphase ceramic material. I. Introduction THE active cathode regions of many solid oxide fuel cells (SOFCs in Solid Oxide Fuel Cell Cathodes Shen J. Dillon, Lam Helmick,§,¶ Herbert M. Miller,§ Lane Wilson relevant triple phase boundary lines and surfaces near them in SOFC cathodes made up of a porous mixture

  10. Novel Materials for Intermediate-Temperature Solid Oxide Fuel Cells Vincent Wu, University of California, Berkeley, 2011 SURF Fellow

    E-Print Network [OSTI]

    Li, Mo

    Introduction The need to develop new cathode materials for intermediate-temperature solid-oxide fuel cells (IT-SOFCsNovel Materials for Intermediate-Temperature Solid Oxide Fuel Cells Vincent Wu, University) is driven by the temperature conditions required for IT-SOFC operation. Designing SOFCs to operate at lower

  11. Solid Oxide Fuel Cell Technology Stationary Power Application Project

    SciTech Connect (OSTI)

    Joseph Pierre

    2009-03-05T23:59:59.000Z

    The objectives of this program were to: (1) Develop a reliable, cost-effective, and production-friendly technique to apply the power-enhancing layer at the interface of the air electrode and electrolyte of the Siemens SOFC; (2) Design, build, install, and operate in the field two 5 kWe SOFC systems fabricated with the state-of-the-art cylindrical, tubular cell and bundle technology and incorporating advanced module design features. Siemens successfully demonstrated, first in a number of single cell tests and subsequently in a 48-cell bundle test, a significant power enhancement by employing a power-enhancing composite interlayer at the interface between the air electrode and electrolyte. While successful from a cell power enhancement perspective, the interlayer application process was not suitable for mass manufacturing. The application process was of inconsistent quality, labor intensive, and did not have an acceptable yield. This program evaluated the technical feasibility of four interlayer application techniques. The candidate techniques were selected based on their potential to achieve the technical requirements of the interlayer, to minimize costs (both labor and material), and suitably for large-scale manufacturing. Preliminary screening, utilizing lessons learned in manufacturing tubular cells, narrowed the candidate processes to two, ink-roller coating (IRC) and dip coating (DC). Prototype fixtures were successfully built and utilized to further evaluate the two candidate processes for applying the interlayer to the high power density Delta8 cell geometry. The electrical performance of interlayer cells manufactured via the candidate processes was validated. Dip coating was eventually selected as the application technique of choice for applying the interlayer to the high power Delta8 cell. The technical readiness of the DC process and product quality was successfully and repeatedly demonstrated, and its throughput and cost are amenable to large scale manufacturing. Two 5 kWe-class SOFC power systems were built and installed for the purpose of testing and evaluating state-of-the-art tubular cell and bundle technologies, advanced generator and module design features, balance-of-plant components, and cost reduction measures. Installed at the Phipps Conservatory and Botanical Gardens, a system operated for more than 17,500 hrs, delivering electrical power to the on-site grid and thermal energy in form of hot water for onsite utilization. Operation was typically autonomous, requiring minimal operator intervention, and achieved an overall availability of greater than 85%. Outages were primarily due to an unstable local grid, two weather related outages were experienced, and very few reliability issues were encountered despite harsh operating conditions. No repairs to the stack, module, or balance-of-plant were required. A second system was designed, built, delivered, and installed at a Siemens facility in Charlotte, North Carolina. Operational issues associated with the balance-of-plant were encountered during startup and prevented the system from operating.

  12. Fuel cells and fuel cell catalysts

    DOE Patents [OSTI]

    Masel, Richard I.; Rice, Cynthia A.; Waszczuk, Piotr; Wieckowski, Andrzej

    2006-11-07T23:59:59.000Z

    A direct organic fuel cell includes a formic acid fuel solution having between about 10% and about 95% formic acid. The formic acid is oxidized at an anode. The anode may include a Pt/Pd catalyst that promotes the direct oxidation of the formic acid via a direct reaction path that does not include formation of a CO intermediate.

  13. Unveiling Structure-Property Relationships in Sr2Fe1.5Mo0.5O6-, an Electrode Material for Symmetric Solid Oxide Fuel Cells

    E-Print Network [OSTI]

    Carter, Emily A.

    Solid Oxide Fuel Cells Ana B. Munoz-García, Daniel E. Bugaris, Michele Pavone,,§ Jason P. Hodges, Ashfia oxide fuel cells (SOFCs) can convert a wide variety of fuels with simpler and cheaper designs than those oxide fuel cell electrode material Sr2Fe1.5Mo0.5O6- (SFMO). Rietveld refinement of powder neutron

  14. Compliant sealants for solid oxide fuel cells and other ceramics

    DOE Patents [OSTI]

    Bloom, I.D.; Ley, K.L.

    1995-09-26T23:59:59.000Z

    A glass or glass-ceramic sealant is described for a SOFC having a coefficient of thermal expansion in the range of from about 8 to about 13{times}10{sup {minus}6}/C and a viscosity of at least 10{sup 3}Pa-s at cell operating temperature. The sealant has a composition of SrO present in the range of from about 5 to about 60 mole percent, La{sub 2}O{sub 3} present in the range of from 0 to about 45 mole percent, Al{sub 2}O{sub 3} present in the range from 0 to about 15 mole percent, B{sub 2}O{sub 3} present in the range of from about 15 mole percent to about 80 mole percent, and SiO{sub 2} present in the range of from 0 to about 40 mole percent, wherein the material is a viscous fluid at cell operating temperatures of from about 600 C to about 1000 C. The sealant may also be compounds of CaO present in the range of from 0 to about 35 mole percent, Al{sub 2}O{sub 3} present in the range from 0 to about 15 mole percent, B{sub 2}O{sub 3} present in the range of from about 35 mole percent to about 85 mole percent, and SiO{sub 2} present in the range of from 0 to about 30 mole percent. 2 figs.

  15. Compliant sealants for solid oxide fuel cells and other ceramics

    DOE Patents [OSTI]

    Bloom, Ira D. (Bolingbrook, IL); Ley, Kevin L. (Bolingbrook, IL)

    1995-01-01T23:59:59.000Z

    A glass or glass-ceramic sealant for a SOFC having a coefficient of thermal expansion in the range of from about 8 to about 13.times.10.sup.-6 /.degree.C. and a viscosity of at least 10.sup.3 Pa-s at cell operating temperature. The sealant has a composition of SrO present in the range of from about 5 to about 60 mole percent, La.sub.2 O.sub.3 present in the range of from 0 to about 45 mole percent, Al.sub.2 O.sub.3 present in the range from 0 to about 15 mole percent, B.sub.2 O.sub.3 present in the range of from about 15 mole percent to about 80 mole percent, and SiO.sub.2 present in the range of from 0 to about 40 mole percent, wherein the material is a viscous fluid at cell operating temperatures of from about 600.degree. C. to about 1000.degree. C. The sealant may also be compounds of CaO present in the range of from 0 to about 35 mole percent, Al.sub.2 O.sub.3 present in the range from 0 to about 15 mole percent, B.sub.2 O.sub.3 present in the range of from about 35 mole percent to about 85 mole percent, and SiO.sub.2 present in the range of from 0 to about 30 mole percent.

  16. Tubular solid oxide fuel cells with porous metal supports and ceramic interconnections

    DOE Patents [OSTI]

    Huang, Kevin (Export, PA); Ruka, Roswell J. (Pittsburgh, PA)

    2012-05-08T23:59:59.000Z

    An intermediate temperature solid oxide fuel cell structure capable of operating at from 600.degree. C. to 800.degree. C. having a very thin porous hollow elongated metallic support tube having a thickness from 0.10 mm to 1.0 mm, preferably 0.10 mm to 0.35 mm, a porosity of from 25 vol. % to 50 vol. % and a tensile strength from 700 GPa to 900 GPa, which metallic tube supports a reduced thickness air electrode having a thickness from 0.010 mm to 0.2 mm, a solid oxide electrolyte, a cermet fuel electrode, a ceramic interconnection and an electrically conductive cell to cell contact layer.

  17. MATERIALS SYSTEM FOR INTERMEDIATE TEMPERATURE SOLID OXIDE FUEL CELL

    SciTech Connect (OSTI)

    Uday B. Pal; Srikanth Gopalan

    2004-02-15T23:59:59.000Z

    AC complex impedance spectroscopy studies were conducted on symmetrical cells of the type [gas, electrode/LSGM electrolyte/electrode, gas]. The electrode materials were slurry-coated on both sides of the LSGM electrolyte support. The electrodes selected for this investigation are candidate materials for SOFC electrodes. Cathode materials include La{sub 1-x}Sr{sub x}MnO{sub 3} (LSM), LSCF (La{sub 1-x}Sr{sub x}Co{sub y}Fe{sub 1-y}O{sub 3}), a two-phase particulate composite consisting of LSM + doped-lanthanum gallate (LSGM), and LSCF + LSGM. Pt metal electrodes were also used for the purpose of comparison. Anode material investigated was the Ni + GDC composite. The study revealed important details pertaining to the charge-transfer reactions that occur in such electrodes. The information obtained can be used to design electrodes for intermediate temperature SOFCs based on LSGM electrolyte.

  18. Functionally Graded Cathodes for Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Lei Yang; Ze Liu; Shizhone Wang; Jaewung Lee; Meilin Liu

    2008-04-30T23:59:59.000Z

    The main objective of this DOE project is to demonstrate that the performance and long-term stability of the state-of-the-art LSCF cathode can be enhanced by a catalytically active coating (e.g., LSM or SSC). We have successfully developed a methodology for reliably evaluating the intrinsic surface catalytic properties of cathode materials. One of the key components of the test cell is a dense LSCF film, which will function as the current collector for the electrode material under evaluation to eliminate the effect of ionic and electronic transport. Since it is dense, the effect of geometry would be eliminated as well. From the dependence of the electrode polarization resistance on the thickness of a dense LSCF electrode and on partial pressure of oxygen, we have confirmed that the surface catalytic activity of LSCF limits the performances of LSCF-based cathodes. Further, we have demonstrated, using test cells of different configurations, that the performance of LSCF-based electrodes can be significantly enhanced by infiltration of a thin film of LSM or SSC. In addition, the stability of LSCF-based cathodes was also improved by infiltration of LSM or SSC. While the concept feasibility of the electrode architecture is demonstrated, many details are yet to be determined. For example, it is not clear how the surface morphology, composition, and thickness of the coatings change under operating conditions over time, how these changes influence the electrochemical behavior of the cathodes, and how to control the microscopic details of the coatings in order to optimize the performance. The selection of the catalytic materials as well as the detailed microstructures of the porous LSCF and the catalyst layer may critically impact the performance of the proposed cathodes. Further, other fundamental questions still remain; it is not clear why the degradation rates of LSCF cathodes are relatively high, why a LSM coating improves the stability of LSCF cathodes, which catalysts would be most effective for LSCF, and how to achieve further enhancement of the performance and stability of SOFC cathodes.

  19. Evaluation of thermal stresses in planar solid oxide fuel cells as a function of thermo-mechanical properties of component materials 

    E-Print Network [OSTI]

    Manisha,

    2008-10-10T23:59:59.000Z

    Fuel cells are the direct energy conversion devices which convert the chemical energy of a fuel to electrical energy with much greater efficiency than conventional devices. Solid Oxide Fuel Cell (SOFC) is one of the various types of available fuel...

  20. HIGH EFFICIENCY, LOW EMISSIONS, SOLID OXIDE FUEL CELL SYSTEMS FOR MULTIPLE APPLICATIONS

    SciTech Connect (OSTI)

    Sara Ward; Michael A. Petrik

    2004-07-28T23:59:59.000Z

    Technology Management Inc. (TMI), teamed with the Ohio Office of Energy Efficiency and Renewable Energy, has engineered, constructed, and demonstrated a stationary, low power, multi-module solid oxide fuel cell (SOFC) prototype system operating on propane and natural gas. Under Phase I, TMI successfully operated two systems in parallel, in conjunction with a single DC-AC inverter and battery bus, and produced net AC electricity. Phase II testing expanded to include alternative and renewable fuels typically available in rural regions of Ohio. The commercial system is expected to have ultra-low pollution, high efficiency, and low noise. The TMI SOFC uses a solid ceramic electrolyte operating at high temperature (800-1000 C) which electrochemically converts gaseous fuels (hydrogen or mixed gases) and oxygen into electricity. The TMI system design oxidizes fuel primarily via electrochemical reactions and uses no burners (which pollute and consume fuel)--resulting in extremely clean exhaust. The use of proprietary sulfur tolerant materials developed by TMI allows system operation without additional fuel pre-processing or sulfur removal. Further, the combination of high operating temperatures and solid state operation increases the potential for higher reliability and efficiencies compared to other types of fuel cells. Applications for the TMI SOFC system cover a wide range of transportation, building, industrial, and military market sectors. A generic technology, fuel cells have the potential to be embodied into multiple products specific to Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) program areas including: Fuel Cells and Microturbines, School Buildings, Transportation, and Bioenergy. This program focused on low power stationary applications using a multi-module system operating on a range of common fuels. By producing clean electricity more efficiently (thus using less fuel), fuel cells have the triple effect of cleaning up the environment, reducing the amount of fuel consumed and, for energy intensive manufacturers, boosting their profits (by reducing energy expenses). Compared to conventional power generation technologies such as internal combustion engines, gas turbines, and coal plants, fuel cells are extremely clean and more efficient, particularly at smaller scales.

  1. Solid oxide fuel cell with multi-unit construction and prismatic design

    DOE Patents [OSTI]

    McPheeters, Charles C. (Naperville, IL); Dees, Dennis W. (Downers Grove, IL); Myles, Kevin M. (Downers Grove, IL)

    1999-01-01T23:59:59.000Z

    A single cell unit of a solid oxide fuel cell that is individually fabricated and sintered prior to being connected to adjacent cells to form a solid oxide fuel cell. The single cell unit is comprised of a shaped anode sheet positioned between a flat anode sheet and an anode-electrolyte-cathode (A/E/C) sheet, and a shaped cathode sheet positioned between the A/E/C sheet and a cathode-interconnect-anode (C/I/A) sheet. An alternate embodiment comprises a shaped cathode sheet positioned between an A/E/C sheet and a C/I/A sheet. The shaped sheets form channels for conducting reactant gases. Each single cell unit is individually sintered to form a finished sub-assembly. The finished sub-assemblies are connected in electrical series by interposing connective material between the end surfaces of adjacent cells, whereby individual cells may be inspected for defects and interchanged with non-defective single cell units.

  2. Solid oxide fuel cell with multi-unit construction and prismatic design

    DOE Patents [OSTI]

    McPheeters, C.C.; Dees, D.W.; Myles, K.M.

    1999-03-16T23:59:59.000Z

    A single cell unit of a solid oxide fuel cell is described that is individually fabricated and sintered prior to being connected to adjacent cells to form a solid oxide fuel cell. The single cell unit is comprised of a shaped anode sheet positioned between a flat anode sheet and an anode-electrolyte-cathode (A/E/C) sheet, and a shaped cathode sheet positioned between the A/E/C sheet and a cathode-interconnect-anode (C/I/A) sheet. An alternate embodiment comprises a shaped cathode sheet positioned between an A/E/C sheet and a C/I/A sheet. The shaped sheets form channels for conducting reactant gases. Each single cell unit is individually sintered to form a finished sub-assembly. The finished sub-assemblies are connected in electrical series by interposing connective material between the end surfaces of adjacent cells, whereby individual cells may be inspected for defects and interchanged with non-defective single cell units. 7 figs.

  3. Using CrAIN Multilayer Coatings to Improve Oxidation Resistance of Steel Interconnects for Solid Oxide Fuel Cell Stacks

    SciTech Connect (OSTI)

    Smith, Richard J.; Tripp, C.; Knospe, Anders; Ramana, C. V.; Gorokhovsky, Vladimir I.; Shutthanandan, V.; Gelles, David S.

    2004-06-01T23:59:59.000Z

    The requirements of low cost and high-tempurature corrosion resistance for bipolar interconnect plates in solid oxide fuel cell stacks has directed attention to the use of metal plates with oxidation resistant coatings. We have investigatedt he performance of steel plates with multilayer coatings consisting of CrN for electrical conductivity and CrAIN for oxidation resistance. The coatings were deposited usin large area filterd arc deposition technolgy, and subsequently annealed in air for up to 25 hours at 800 degrees celsius. The composition, structer and morphology of the coated plates were characterized using RBS, nuclear reaction analysis, AFM and TEM techniques. By altering the architecture of the layers within the coatings, the rate of oxidation was reduced by more than an order of magnitute. Electrical resistance was measured at room temperature.

  4. Durability Prediction of Solid Oxide Fuel Cell Anode Material under Thermo-Mechanical and Fuel Gas Contaminants Effects

    SciTech Connect (OSTI)

    Iqbal, Gulfam; Guo, Hua; Kang , Bruce S.; Marina, Olga A.

    2011-01-10T23:59:59.000Z

    Solid Oxide Fuel Cells (SOFCs) operate under harsh environments, which cause deterioration of anode material properties and service life. In addition to electrochemical performance, structural integrity of the SOFC anode is essential for successful long-term operation. The SOFC anode is subjected to stresses at high temperature, thermal/redox cycles, and fuel gas contaminants effects during long-term operation. These mechanisms can alter the anode microstructure and affect its electrochemical and structural properties. In this research, anode material degradation mechanisms are briefly reviewed and an anode material durability model is developed and implemented in finite element analysis. The model takes into account thermo-mechanical and fuel gas contaminants degradation mechanisms for prediction of long-term structural integrity of the SOFC anode. The proposed model is validated experimentally using a NexTech ProbostatTM SOFC button cell test apparatus integrated with a Sagnac optical setup for simultaneously measuring electrochemical performance and in-situ anode surface deformation.

  5. Nickel based anodes for single chamber solid oxide fuel cells : a catalytic study Geoffroy Gadacz, Sorina Udroiu, Jean-Paul Viricelle, Christophe Pijolat, Michle Pijolat

    E-Print Network [OSTI]

    Boyer, Edmond

    Nickel based anodes for single chamber solid oxide fuel cells : a catalytic study Geoffroy Gadacz Single chamber solid oxide fuel cells (SCFC) are an alternative concept to traditional SOFC

  6. Solid oxide fuel cell with transitioned cross-section for improved anode gas management at the open end

    DOE Patents [OSTI]

    Zafred, Paolo R. (Murrysville, PA); Draper, Robert (Pittsburgh, PA)

    2012-01-17T23:59:59.000Z

    A solid oxide fuel cell (400) is made having a tubular, elongated, hollow, active section (445) which has a cross-section containing an air electrode (452) a fuel electrode (454) and solid oxide electrolyte (456) between them, where the fuel cell transitions into at least one inactive section (460) with a flattened parallel sided cross-section (462, 468) each cross-section having channels (472, 474, 476) in them which smoothly communicate with each other at an interface section (458).

  7. SOLID STATE ENERGY CONVERSION ALLIANCE (SECA) SOLID OXIDE FUEL CELL PROGRAM

    SciTech Connect (OSTI)

    Unknown

    2003-06-01T23:59:59.000Z

    This report summarizes the progress made during the September 2001-March 2002 reporting period under Cooperative Agreement DE-FC26-01NT41245 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program''. The program focuses on the development of a low-cost, high-performance 3-to-10-kW solid oxide fuel cell (SOFC) system suitable for a broad spectrum of power-generation applications. The overall objective of the program is to demonstrate a modular SOFC system that can be configured to create highly efficient, cost-competitive, and environmentally benign power plants tailored to specific markets. When fully developed, the system will meet the efficiency, performance, life, and cost goals for future commercial power plants.

  8. Activity and structure of perovskites as diesel reforming catalysts for solid oxide fuel cells.

    SciTech Connect (OSTI)

    Liu, D.-J.; Krumpelt, M.; Chemical Engineering

    2005-01-01T23:59:59.000Z

    Recent progress in developing perovskite materials as more cost-effective catalysts in autothermal reforming (ATR) of diesel fuel to hydrogen-rich reformate for solid oxide fuel cell (SOFC) application is reported. Perovskite-type metal oxides with B sites partially exchanged by ruthenium were prepared and evaluated under ATR reaction conditions. The hydrogen yield, reforming efficiency, and CO{sub x} selectivity of these catalysts were investigated using diesel surrogate fuel with 50 ppm sulfur. The catalyst performances have approached or exceeded a benchmark, high-cost rhodium-based material. In parallel with the reactivity study, we also investigated the physical properties of B-site doped perovskites and their impact on the reforming performance using various characterization techniques such as BET, X-ray powder diffraction, temperature programmable reduction, scanning electron microscopy, and synchrotron X-ray absorption spectroscopy. We found that ruthenium is highly dispersed into perovskite lattice and its redox behavior is directly associated with reforming activity.

  9. SOLID OXIDE PLANAR AND TUBULAR SOLID OXIDE FUEL

    E-Print Network [OSTI]

    Mease, Kenneth D.

    SOLID OXIDE PLANAR AND TUBULAR SOLID OXIDE FUEL CELLS Dynamic Simulation Approach Modular Approach: Individual simulation modules for each fuel cell type · Tubular SOFC · Planar SOFC · MCFC · PEM Reformer · Slow pressure transients #12;Fuel Cell Assumptions · H2 electrochemically oxidized only · CO consumed

  10. DEVELOPMENT OF LOW-COST MANUFACTURING PROCESSES FOR PLANAR, MULTILAYER SOLID OXIDE FUEL CELL ELEMENTS

    SciTech Connect (OSTI)

    Scott Swartz; Matthew Seabaugh; William Dawson; Harlan Anderson; Tim Armstrong; Michael Cobb; Kirby Meacham; James Stephan; Russell Bennett; Bob Remick; Chuck Sishtla; Scott Barnett; John Lannutti

    2004-06-12T23:59:59.000Z

    This report summarizes the results of a four-year project, entitled, ''Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells'', jointly funded by the U.S. Department of Energy, the State of Ohio, and by project participants. The project was led by NexTech Materials, Ltd., with subcontracting support provided by University of Missouri-Rolla, Michael A. Cobb & Co., Advanced Materials Technologies, Inc., Edison Materials Technology Center, Gas Technology Institute, Northwestern University, and The Ohio State University. Oak Ridge National Laboratory, though not formally a subcontractor on the program, supported the effort with separate DOE funding. The objective of the program was to develop advanced manufacturing technologies for making solid oxide fuel cell components that are more economical and reliable for a variety of applications. The program was carried out in three phases. In the Phase I effort, several manufacturing approaches were considered and subjected to detailed assessments of manufacturability and development risk. Estimated manufacturing costs for 5-kW stacks were in the range of $139/kW to $179/kW. The risk assessment identified a number of technical issues that would need to be considered during development. Phase II development work focused on development of planar solid oxide fuel cell elements, using a number of ceramic manufacturing methods, including tape casting, colloidal-spray deposition, screen printing, spin-coating, and sintering. Several processes were successfully established for fabrication of anode-supported, thin-film electrolyte cells, with performance levels at or near the state-of-the-art. The work in Phase III involved scale-up of cell manufacturing methods, development of non-destructive evaluation methods, and comprehensive electrical and electrochemical testing of solid oxide fuel cell materials and components.

  11. Manifold, bus support and coupling arrangement for solid oxide fuel cells

    DOE Patents [OSTI]

    Parry, G.W.

    1988-04-21T23:59:59.000Z

    Individual, tubular solid oxide fuel cells (SOFCs) are assembled into bundles called a module within a housing, with a plurality of modules arranged end-to-end in a linear, stacked configuration called a string. A common set of piping comprised of a suitable high temperature resistant material (1) provides fuel and air to each module housing, (2) serves as electrically conducting buses, and (3) provides structural support for a string of SOFC modules. Ceramic collars are used to connect fuel and air inlet piping to each of the electrodes in an SOFC module and provide (1) electrical insulation for the current carrying bus bars and gas manifolds, (2) damping for the fuel and air inlet piping, and (3) proper spacing between the fuel and air inlet piping to prevent contact between these tubes and possible damage to the SOFC. 11 figs.

  12. Basic properties of a liquidt in anode solid oxide fuel cell

    SciTech Connect (OSTI)

    Harry Abernathy; RandallGemmen; KirkGerdes; Mark Koslowske; ThomasTao

    2010-12-17T23:59:59.000Z

    An unconventional high temperature fuel cell system, the liquidt in anode solid oxide fuel cell(LTA-SOFC), is discussed. A thermodynamic analysis of a solid oxide fuel cell with a liquid metal anode is developed. Pertinent thermo chemical and thermo physical properties of liquid tin in particular are detailed. An experimental setup for analysis of LTA-SOFC anode kinetics is described, and data for a planar cell under hydrogen indicated an effective oxygen diffusion coefficient of 5.3×10?5 cm2 s?1 at 800 ?C and 8.9×10?5 cm2 s?1 at 900 ?C. This value is similar to previously reported literature values for liquid tin. The oxygen conductivity through the tin, calculated from measured diffusion coefficients and theoretical oxygen solubility limits, is found to be on the same order of thatofyttria-stabilizedzirconia(YSZ), a traditional SOFC electrolyte material. As such,the ohmicloss due to oxygen transport through the tin layer must be considered in practical system cell design since the tin layer will usually be at least as thick as the electrolyte.

  13. Use of Alternative Fuels in Solid Oxide Fuel Cells Fuel Cells and Solid State Chemistry Department, Ris National Laboratory, Technical

    E-Print Network [OSTI]

    with the production of electricity and heat. The application of SOFCs can decrease the emission of CO2 as the system uses carbon based fuels more efficiently. In addition, the concentrated formation of CO2 at the anode side of the SOFC makes CO2 sequestration an option. The current ene

  14. Journal of Power Sources 140 (2005) 331339 Numerical study of a flat-tube high power density solid oxide fuel cell

    E-Print Network [OSTI]

    2005-01-01T23:59:59.000Z

    ) solid oxide fuel cell (SOFC) is a new design developed by Siemens Westinghouse, based on their formerly.V. All rights reserved. Keywords: Flat-tube; High power density; Solid oxide fuel cell; Simulation; Heat oxide fuel cell Part I. Heat/mass transfer and fluid flow Yixin Lu1, Laura Schaefer, Peiwen Li2

  15. Bulk Power System Dynamics and Control -VII, August 19-24, 2007, Charleston, South Carolina, USA Dynamics of a Microgrid Supplied by Solid Oxide Fuel Cells1

    E-Print Network [OSTI]

    Hiskens, Ian A.

    Dynamics of a Microgrid Supplied by Solid Oxide Fuel Cells1 Eric M. Fleming Ian A. Hiskens Department-- The paper presents a model for a solid oxide fuel cell (SOFC) stack operating at relatively low pressures. Keywords: Solid oxide fuel cells, microgrid dynamics, inverter control. I. INTRODUCTION Distributed

  16. Transient thermal behaviour of a solid oxide fuel cell Moussa Chnani, Marie-Ccile Pra, Raynal Glises, Jean Marie Kauffmann and

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and Electrochemical modelling. 1- Introduction The solid oxide fuel cell (SOFC) is a promising technologyTransient thermal behaviour of a solid oxide fuel cell Moussa Chnani, Marie-Cécile Péra, Raynal provided by HTceramix. Keywords: Solid oxide fuel cell; Transient thermal modelling; Fluidic

  17. OPERATION OF SOLID OXIDE FUEL CELL ANODES WITH PRACTICAL HYDROCARBON FUELS

    SciTech Connect (OSTI)

    Scott A. Barnett; Jiang Liu; Yuanbo Lin

    2004-07-30T23:59:59.000Z

    This work was carried out to achieve a better understanding of how SOFC anodes work with real fuels. The motivation was to improve the fuel flexibility of SOFC anodes, thereby allowing simplification and cost reduction of SOFC power plants. The work was based on prior results indicating that Ni-YSZ anode-supported SOFCs can be operated directly on methane and natural gas, while SOFCs with novel anode compositions can work with higher hydrocarbons. While these results were promising, more work was clearly needed to establish the feasibility of these direct-hydrocarbon SOFCs. Basic information on hydrocarbon-anode reactions should be broadly useful because reformate fuel gas can contain residual hydrocarbons, especially methane. In the Phase I project, we have studied the reaction mechanisms of various hydrocarbons--including methane, natural gas, and higher hydrocarbons--on two kinds of Ni-containing anodes: conventional Ni-YSZ anodes and a novel ceramic-based anode composition that avoid problems with coking. The effect of sulfur impurities was also studied. The program was aimed both at achieving an understanding of the interactions between real fuels and SOFC anodes, and providing enough information to establish the feasibility of operating SOFC stacks directly on hydrocarbon fuels. A combination of techniques was used to provide insight into the hydrocarbon reactions at these anodes during SOFC operation. Differentially-pumped mass spectrometry was be used for product-gas analysis both with and without cell operation. Impedance spectroscopy was used in order to understand electrochemical rate-limiting steps. Open-circuit voltages measurements under a range of conditions was used to help determine anode electrochemical reactions. Life tests over a wide range of conditions were used to establish the conditions for stable operation of anode-supported SOFC stacks directly on methane. Redox cycling was carried out on ceramic-based anodes. Tests on sulfur tolerance of Ni-YSZ anodes were carried out.

  18. Cassettes for solid-oxide fuel cell stacks and methods of making the same

    DOE Patents [OSTI]

    Weil, K. Scott; Meinhardt, Kerry D; Sprenkle, Vincent L

    2012-10-23T23:59:59.000Z

    Solid-oxide fuel cell (SOFC) stack assembly designs are consistently investigated to develop an assembly that provides optimal performance, and durability, within desired cost parameters. A new design includes a repeat unit having a SOFC cassette and being characterized by a three-component construct. The three components include an oxidation-resistant, metal window frame hermetically joined to an electrolyte layer of a multi-layer, anode-supported ceramic cell and a pre-cassette including a separator plate having a plurality of vias that provide electrical contact between an anode-side collector within the pre-cassette and a cathode-side current collector of an adjacent cell. The third component is a cathode-side seal, which includes a standoff that supports a cathode channel spacing between each of the cassettes in a stack. Cassettes are formed by joining the pre-cassette and the window frame.

  19. Fuel cell arrangement

    DOE Patents [OSTI]

    Isenberg, A.O.

    1987-05-12T23:59:59.000Z

    A fuel cell arrangement is provided wherein cylindrical cells of the solid oxide electrolyte type are arranged in planar arrays where the cells within a plane are parallel. Planes of cells are stacked with cells of adjacent planes perpendicular to one another. Air is provided to the interior of the cells through feed tubes which pass through a preheat chamber. Fuel is provided to the fuel cells through a channel in the center of the cell stack; the fuel then passes the exterior of the cells and combines with the oxygen-depleted air in the preheat chamber. 3 figs.

  20. STABLE HIGH CONDUCTIVITY BILAYERED ELECTROLYTES FOR LOW TEMPERATURE SOLID OXIDE FUEL CELLS

    SciTech Connect (OSTI)

    Eric D. Wachsman

    2000-10-01T23:59:59.000Z

    Solid oxide fuel cells (SOFCs) are the future of energy production in America. They offer great promise as a clean and efficient process for directly converting chemical energy to electricity while providing significant environmental benefits (they produce negligible CO, HC, or NOx and, as a result of their high efficiency, produce about one-third less CO{sub 2} per kilowatt hour than internal combustion engines). Unfortunately, the current SOFC technology, based on a stabilized zirconia electrolyte, must operate in the region of 1000 C to avoid unacceptably high ohmic losses. These high temperatures demand (a) specialized (expensive) materials for the fuel cell interconnects and insulation, (b) time to heat up to the operating temperature and (c) energy input to arrive at the operating temperature. Therefore, if fuel cells could be designed to give a reasonable power output at lower temperatures tremendous benefits may be accrued, not the least of which is reduced cost. The problem is, at lower temperatures the conductivity of the conventional stabilized zirconia electrolyte decreases to the point where it cannot supply electrical current efficiently to an external load. The primary objectives of the proposed research is to develop a stable high conductivity (>0.05 S cm{sup -1} at 550 C) electrolyte for lower temperature SOFCs. This objective is specifically directed toward meeting the lowest (and most difficult) temperature criteria for the 21st Century Fuel Cell Program. Meeting this objective provides a potential for future transportation applications of SOFCs, where their ability to directly use hydrocarbon fuels could permit refueling within the existing transportation infrastructure. In order to meet this objective we are developing a functionally gradient bilayer electrolyte comprised of bismuth oxide on the air side and ceria on the fuel side. Bismuth oxide and doped ceria are among the highest ionic conducting electrolytes and in fact bismuth oxide based electrolytes are the only known solid oxide electrolytes to have an ionic conductivity that meets the program conductivity goal. We have previously demonstrated that this concept works, that a bismuth oxide/ceria bilayer electrolyte provides near theoretical open circuit potential (OCP) and is stable for 1400 h of fuel cell operation under both open circuit and maximum power conditions. More recently, we developed a computer model to determine the defect transport in this bilayer and have found that a bilayer comprised primarily of the more conductive component (bismuth oxide) is stable for 500 C operation. In this first year of the project we are obtaining necessary thermochemical data to complete the computer model as well as initial SOFC results based on thick 1-2 mm single and bilayer ceria/bismuth oxide electrolytes. We will use the computer model to obtain the optimum relative layer thickness as a function of temperature and air/fuel conditions. SOFCs will be fabricated with 1-2 mm single and bilayer electrolytes based on the modeling results, tested for OCP, conductivity, and stability and compared against the predictions. The computer modeling is a continuation of previous work under support from GRI and the student was available at the inception of the contract. However, the experimental effort was delayed until the beginning of the Spring Semester because the contract was started in October, 2 months after the start of our Fall Semester, and after all of the graduate students were committed to other projects. The results from both of these efforts are described in the following two sections: (1) Experimental; and (2) Computer Modeling.

  1. Gas turbine cycles with solid oxide fuel cells. Part 1: Improved gas turbine power plant efficiency by use of recycled exhaust gases and fuel cell technology

    SciTech Connect (OSTI)

    Harvey, S.P.; Richter, H.J. (Dartmouth Coll., Hanover, NH (United States). Thayer School of Engineering)

    1994-12-01T23:59:59.000Z

    The energy conversion efficiency of the combustion process can be improved if immediate contact of fuel and oxygen is prevent4ed and an oxygen carrier is used. In a previous paper (Harvey et al., 1992), a gas turbine cycle was investigated in which part of the exhaust gases are recycled and used as oxygen-carrying components. For the optimized process, a theoretical thermal efficiency of 66.3% was achieved, based on the lower heating value (LHV) of the methane fuel. One means to further improve the exergetic efficiency of a power cycle is to utilize fuel cell technology. Solid oxide fuel cells (SOFC) have many features that make them attractive for utility and industrial applications. In this paper, the authors will therefore consider SOFC technology. In view of their high operating temperatures and the incomplete nature of the fuel oxidation process, fuel cells must be combined with conventional power generation technology to develop power plant configurations that are both functional and efficient. In this paper, the authors will show how monolithic SOFC (MSOFC) technology may be integrated into the previously described gas turbine cycle using recycled exhaust gases as oxygen carriers. An optimized cycle configuration will be presented based upon a detailed cycle analysis performance using Aspen Plus[trademark] process simulation software and a MSOFC fuel cell simulator developed by Argonne National Labs. The optimized cycle achieves a theoretical thermal efficiency of 77.7%, based on the LHV of the fuel.

  2. National Energy Technology Laboratory Publishes Solid Oxide Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    National Energy Technology Laboratory Publishes Solid Oxide Fuel Cell Studies What does this project do? For more information on DOE's efforts to make solid oxide fuel cells an...

  3. Reforming of fuel inside fuel cell generator

    DOE Patents [OSTI]

    Grimble, R.E.

    1988-03-08T23:59:59.000Z

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream 1 and spent fuel stream 2. Spent fuel stream 1 is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream 1 and exhaust stream 2, and exhaust stream 1 is vented. Exhaust stream 2 is mixed with spent fuel stream 2 to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells. 1 fig.

  4. Reforming of fuel inside fuel cell generator

    DOE Patents [OSTI]

    Grimble, Ralph E. (Finleyville, PA)

    1988-01-01T23:59:59.000Z

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

  5. Fundamental Studies of the Durability of Materials for Interconnects in Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Frederick S. Pettit; Gerald H. Meier

    2006-06-30T23:59:59.000Z

    Ferritic stainless steels are a leading candidate material for use as an SOFC interconnect, but have the problem of forming volatile chromia species that lead to cathode poisoning. This project has focused both on optimization of ferritic alloys for SOFC applications and evaluating the possibility of using alternative materials. The initial efforts involved studying the oxidation behavior of a variety of chromia-forming ferritic stainless steels in the temperature range 700-900 C in atmospheres relevant to solid oxide fuel cell operation. The alloys exhibited a wide variety of oxidation behavior based on composition. A method for reducing the vaporization is to add alloying elements that lead to the formation of a thermally grown oxide layer over the protective chromia. Several commercial steels form manganese chromate on the surface. This same approach, combined with observations of TiO{sub 2} overlayer formation on the chromia forming, Ni-based superalloy IN 738, has resulted in the development of a series of Fe-22 Cr-X Ti alloys (X=0-4 wt%). Oxidation testing has indicated that this approach results in significant reduction in chromia evaporation. Unfortunately, the Ti also results in accelerated chromia scale growth. Fundamental thermo-mechanical aspects of the durability of solid oxide fuel cell (SOFC) interconnect alloys have also been investigated. A key failure mechanism for interconnects is the spallation of the chromia scale that forms on the alloy, as it is exposed to fuel cell environments. Indentation testing methods to measure the critical energy release rate (Gc) associated with the spallation of chromia scale/alloy systems have been evaluated. This approach has been used to evaluate the thermomechanical stability of chromia films as a function of oxidation exposure. The oxidation of pure nickel in SOFC environments was evaluated using thermogravimetric analysis (TGA) to determine the NiO scaling kinetics and a four-point probe was used to measure the area-specific resistance (ASR) to estimate the electrical degradation of the interconnect. In addition to the baseline study of pure nickel, steps were taken to decrease the ASR through alloying and surface modifications. Finally, high conductivity composite systems, consisting of nickel and silver, were studied. These systems utilize high conductivity silver pathways through nickel while maintaining the mechanical stability that a nickel matrix provides.

  6. Microstructure, residual stress, and mechanical properties of thin film materials for a microfabricated solid oxide fuel cell

    E-Print Network [OSTI]

    Quinn, David John, Sc. D. Massachusetts Institute of Technology

    2006-01-01T23:59:59.000Z

    The microstructure and residual stress of sputter-deposited films for use in microfabricated solid oxide fuel cells are presented. Much of the work focuses on the characterization of a candidate solid electrolyte: Yttria ...

  7. MECHANICAL PROPERTIES OF Sc???Ce????Zr????O? ELECTROLYTE MATERIAL FOR INTERMEDIATE TEMPERATURE SOLID OXIDE FUEL CELLS 

    E-Print Network [OSTI]

    Lim, Wendy

    2011-02-22T23:59:59.000Z

    Scandia doped zirconia has been considered a candidate for electrolyte material in intermediate temperature Solid Oxide Fuel Cells (SOFCs) due to its high ionic conductivity, chemical stability and good electrochemical ...

  8. MECHANICAL PROPERTIES OF Sc???Ce????Zr????O? ELECTROLYTE MATERIAL FOR INTERMEDIATE TEMPERATURE SOLID OXIDE FUEL CELLS

    E-Print Network [OSTI]

    Lim, Wendy

    2011-02-22T23:59:59.000Z

    Scandia doped zirconia has been considered a candidate for electrolyte material in intermediate temperature Solid Oxide Fuel Cells (SOFCs) due to its high ionic conductivity, chemical stability and good electrochemical performance. The aim...

  9. An intermediate-temperature solid oxide fuel cell with electrospun nanofiber cathode

    SciTech Connect (OSTI)

    Zhi, Mingjia; Lee, Shiwoo; Miller, Nicholas; Menzler, Norbert H.; Wu, Nianqiang

    2012-05-01T23:59:59.000Z

    Lanthanum strontium cobalt ferrite (LSCF) nanofibers have been fabricated by the electrospinning method and used as the cathode of an intermediate-temperature solid oxide fuel cell (SOFC) with yttria-stabilized zirconia (YSZ) electrolyte. The three-dimensional nanofiber network cathode has several advantages: (i) high porosity; (ii) high percolation; (iii) continuous pathway for charge transport; (iv) good thermal stability at the operating temperature; and (v) excellent scaffold for infiltration. The fuel cell with the monolithic LSCF nanofiber cathode exhibits a power density of 0.90 W cm{sup ?2} at 1.9 A cm{sup ?2} at 750 °C. The electrochemical performance of the fuel cell has been further improved by infiltration of 20 wt% of gadolinia-doped ceria (GDC) into the LSCF nanofiber cathode. The fuel cell with the LSCF–20% GDC composite cathode shows a power density of 1.07 W cm{sup ?2} at 1.9 A cm{sup ?2} at 750 °C. The results obtained show that one-dimensional nanostructures such as nanofibers hold great promise as electrode materials for intermediate-temperature SOFCs.

  10. Farshid Zabihian, Alan Fung A Review on Modeling of Hybrid Solid Oxide Fuel Cell Systems

    E-Print Network [OSTI]

    Farshid Zabihian; Alan Fung

    Over the past 2 decades, there has been tremendous progress on numerical and computational tools for fuel cells and energy systems based on them. The purpose of this work is to summarize the current status of hybrid solid oxide fuel cell (SOFC) cycles and identify areas that require further studies. In this review paper, a comprehensive literature survey on different types of SOFC hybrid systems modeling is presented. The paper has three parts. First, it describes the importance of the fuel cells modeling especially in SOFC hybrid cycles. Key features of the fuel cell models are highlighted and model selection criteria are explained. In the second part, the models in the open literature are categorized and discussed. It includes discussion on a detail example of SOFCgas turbine cycle model, description of early models, models with different objectives such as parametric analysis, comparison of configurations, exergy analysis, optimization, non-stationary power generation applications, transient and off-design analysis, thermoeconomic analysis and so on. Finally, in the last section, key features of selected models are summarized and suggestions for areas that require further studies are presented. In this paper, a hybrid cycle can be any combination of SOFC and gas turbine, steam turbine, coal integrated gasification, and application in combined heat and power cycle.

  11. Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the major national security imperatives of this century. Get Expertise Rod Borup MPA-11, Fuel Cell Program Manager Email Andrew Dattelbaum MPA-11 Group Leader Email Melissa Fox...

  12. Short time proton dynamics in bulk ice and in porous anode solid oxide fuel cell materials

    SciTech Connect (OSTI)

    Basoli, Francesco [Università degli Studi di Roma Tor Vergata, Italy] [Università degli Studi di Roma Tor Vergata, Italy; Senesi, Roberto [ORNL] [ORNL; Kolesnikov, Alexander I [ORNL] [ORNL; Licoccia, Silvia [NAST Center, University of Roma "Tor Vergata"] [NAST Center, University of Roma "Tor Vergata"

    2014-01-01T23:59:59.000Z

    Oxygen reduction and incorporation into solid electrolytes and the reverse reaction of oxygen evolution play a cru-cial role in Solid Oxide Fuel Cell (SOFC) applications. However a detailed un derstanding of the kinetics of the cor-responding reactions, i.e. on reaction mechanisms, rate limiting steps, reaction paths, electrocatalytic role of materials, is still missing. These include a thorough characterization of the binding potentials experienced by protons in the lattice. We report results of Inelastic Neutron Scattering (INS) measurements of the vibrational state of the protons in Ni- YSZ highly porous composites (75% to 90% ), a ceramic-metal material showing a high electrical conductivity and ther mal stability, which is known to be most effectively used as anodes for solid ox ide fuel cells. The results are compared with INS and Deep Inelastic Neutron Scattering (DINS) experiments on the proton binding states in bulk ice.

  13. Performance of solid oxide fuel cells approaching the two-dimensional limit

    SciTech Connect (OSTI)

    Kerman, K., E-mail: kkerman@fas.harvard.edu; Ramanathan, S. [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2014-05-07T23:59:59.000Z

    We model electrochemical kinetics and physical conduction mechanisms for carrier transport in electrolyte membranes to determine the limits of dimensionality reduction (down to 1?nm) on maximum power output of solid oxide fuel cells with symmetric Pt electrodes. Using Y-doped ZrO{sub 2}, we find a minimum thickness of ?6?nm to realize near ideal chemical potential in such fuel cells, which is limited by electronic breakdown when approaching the dielectric breakdown strength. For larger electrolyte thicknesses, the greatest source of electronic leakage influencing power loss is from Ohmic transport of minority carriers and emission of trapped carriers. For porous metallic electrodes, an ideal microstructure with the particle size comparable to particle spacing dimensions is found to accurately model experimental results. The role of electronic trap states in the electrolyte band gap on power density characteristics is highlighted.

  14. ReaxFF Reactive Force Field for Solid Oxide Fuel Cell Systems with Application to Oxygen Ion Transport in Yttria-Stabilized Zirconia

    E-Print Network [OSTI]

    Goddard III, William A.

    through yttria-stabilized zirconia (YSZ) solid oxide fuel cell (SOFC) membranes. All parameters for ReaxReaxFF Reactive Force Field for Solid Oxide Fuel Cell Systems with Application to Oxygen Ion temperature, leading to applications as oxygen sensors and as membranes for high temperature solid oxide fuel

  15. LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES

    SciTech Connect (OSTI)

    Professor Anil V. Virkar

    2003-05-23T23:59:59.000Z

    This report summarizes the work done during the entire project period, between October 1, 1999 and March 31, 2003, which includes a six-month no-cost extension. During the project, eight research papers have, either been, published, accepted for publication, or submitted for publication. In addition, several presentations have been made in technical meetings and workshops. The project also has provided support for four graduate students working towards advanced degrees. The principal technical objective of the project was to analyze the role of electrode microstructure on solid oxide fuel cell performance. Prior theoretical work conducted in our laboratory demonstrated that the particle size of composite electrodes has a profound effect on cell performance; the finer the particle size, the lower the activation polarization, the better the performance. The composite cathodes examined consisted of electronically conducting perovskites such as Sr-doped LaMnO{sub 3} (LSM) or Sr-doped LaCoO{sub 3} (LSC), which is also a mixed conductor, as the electrocatalyst, and yttria-stabilized zirconia (YSZ) or rare earth oxide doped CeO{sub 2} as the ionic conductor. The composite anodes examined were mixtures of Ni and YSZ. A procedure was developed for the synthesis of nanosize YSZ by molecular decomposition, in which unwanted species were removed by leaching, leaving behind nanosize YSZ. Anode-supported cells were made using the as-synthesized powders, or using commercially acquired powders. The electrolyte was usually a thin ({approx}10 microns), dense layer of YSZ, supported on a thick ({approx}1 mm), porous Ni + YSZ anode. The cathode was a porous mixture of electrocatalyst and an ionic conductor. Most of the cell testing was done at 800 C with hydrogen as fuel and air as the oxidant. Maximum power densities as high as 1.8 W/cm{sup 2} were demonstrated. Polarization behavior of the cells was theoretically analyzed. A limited amount of cell testing was done using liquid hydrocarbon fuels where reforming was achieved internally. Significant polarization losses also occur at the anode, especially at high fuel utilizations. An analysis of polarization losses requires that various contributions are isolated, and their dependence on pertinent parameters is quantitatively described. An investigation of fuel composition on gas transport through porous anodes was investigated and the role of fuel diluents was explored. This work showed that the molecular weight of the diluent has a significant effect on anode concentration polarization. This further showed that the presence of some molecular hydrogen is necessary to minimize polarization losses. Theoretical analysis has shown that the electrode microstructure has a profound effect on cell performance. In a series of experiments, cathode microstructural parameters were varied, without altering other parameters. Cathode microstructural parameters, especially three phase boundary (TPB) length, were estimated using techniques in quantitative stereology. Cell performance was quantitatively correlated with the relevant microstructural parameters, and charge transfer resistivity was explicitly evaluated. This is the first time that a fundamental parameter, which governs the activation polarization, has been quantitatively determined. An important parameter, which governs the cathodic activation polarization, and thus cell performance, is the ionic conductivity of the composite cathode. The traditional composite cathode is a mixture of LSM and YSZ. It is well known that Sr and Mg-doped LaGaO{sub 3} (LSGM), exhibits higher oxygen ion conductivity compared to YSZ. Cells were fabricated with composite cathodes comprising a mixture of LSM and LSGM. Studies demonstrated that LSGM-based composite cathodes exhibit excellent behavior. Studies have shown that Ni + YSZ is an excellent anode. In fact, in most cells, the principal polarization losses, at least at low fuel utilizations, are associated with the cathode. Theoretical analysis conducted in our group has also shown that anode-supported cells exhibi

  16. STABLE HIGH CONDUCTIVITY BILAYERED ELECTROLYTES FOR LOW TEMPERATURE SOLID OXIDE FUEL CELLS

    SciTech Connect (OSTI)

    Eric D. Wachsman; Keith L. Duncan

    2002-03-31T23:59:59.000Z

    Solid oxide fuel cells (SOFCs) are the future of energy production in America. They offer great promise as a clean and efficient process for directly converting chemical energy to electricity while providing significant environmental benefits (they produce negligible hydrocarbons, CO, or NO{sub x} and, as a result of their high efficiency, produce about one-third less CO{sub 2} per kilowatt hour than internal combustion engines). Unfortunately, the current SOFC technology, based on a stabilized zirconia electrolyte, must operate in the region of 1000 C to avoid unacceptably high ohmic losses. These high temperatures demand (a) specialized (expensive) materials for the fuel cell interconnects and insulation, (b) time to heat up to the operating temperature and (c) energy input to arrive at the operating temperature. Therefore, if fuel cells could be designed to give a reasonable power output at low to intermediate temperatures tremendous benefits may be accrued. At low temperatures, in particular, it becomes feasible to use ferritic steel for interconnects instead of expensive and brittle ceramic materials such as those based on LaCrO{sub 3}. In addition, sealing the fuel cell becomes easier and more reliable; rapid startup is facilitated; thermal stresses (e.g., those caused by thermal expansion mismatches) are reduced; radiative losses ({approx}T{sup 4}) become minimal; electrode sintering becomes negligible and (due to a smaller thermodynamic penalty) the SOFC operating cycle (heating from ambient) would be more efficient. Combined, all these improvements further result in reduced initial and operating costs. The problem is, at lower temperatures the conductivity of the conventional stabilized zirconia electrolyte decreases to the point where it cannot supply electrical current efficiently to an external load. The primary objectives of the proposed research is to develop a stable high conductivity (> 0.05 S cm{sup -1} at {le} 550 C) electrolyte for lower temperature SOFCs. This objective is specifically directed toward meeting the lowest (and most difficult) temperature criteria for the 21st Century Fuel Cell Program. Meeting this objective provides a potential for future transportation applications of SOFCs, where their ability to directly use hydrocarbon fuels could permit refueling within the existing transportation infrastructure. In order to meet this objective we are developing a functionally gradient bilayer electrolyte comprised of a layer of erbia-stabilized bismuth oxide (ESB) on the oxidizing side and a layer of SDC or GDC on the reducing side, see Fig. 1. Bismuth oxide and doped ceria are among the highest ionic conducting electrolytes and in fact bismuth oxide based electrolytes are the only known solid oxide electrolytes to have an ionic conductivity that meets the program conductivity goal. In this arrangement, the ceria layer protects the bismuth oxide layer from decomposing by shielding it from very low P{sub O{sub 2}}'s and the ESB layer serves to block electronic flux through the electrolyte. This arrangement has two significant advantages over the YSZ/SDC bilayers investigated by others [1, 2]. The first advantage is that SDC is conductive enough to serve as an intermediate temperature SOFC electrolyte. Moreover, ESB is conductive enough to serve as a low temperature electrolyte. Consequently, at worst an SDC/ESB bilayered SOFC should have the conductivity of SDC but with improved efficiency due to the electronic flux barrier provided by ESB. The second advantage is that small (dopant) concentrations of SDC in ESB or ESB in SDC, have been found to have conductivities comparable to the host lattice [3, 4]. Therefore, if solid solutioning occurs at the SDC-ESB interface, it should not be detrimental to the performance of the bilayer. In contrast, solid solutions of SDC and YSZ have been found to be significantly less conductive than SDC or YSZ. Thus, it bears emphasizing that, at this time, only SDC/ESB electrolytes have potential in low temperature SOFC applications.

  17. Cost Study for Manufacturing of Solid Oxide Fuel Cell Power Systems

    SciTech Connect (OSTI)

    Weimar, Mark R.; Chick, Lawrence A.; Gotthold, David W.; Whyatt, Greg A.

    2013-09-30T23:59:59.000Z

    Solid oxide fuel cell (SOFC) power systems can be designed to produce electricity from fossil fuels at extremely high net efficiencies, approaching 70%. However, in order to penetrate commercial markets to an extent that significantly impacts world fuel consumption, their cost will need to be competitive with alternative generating systems, such as gas turbines. This report discusses a cost model developed at PNNL to estimate the manufacturing cost of SOFC power systems sized for ground-based distributed generation. The power system design was developed at PNNL in a study on the feasibility of using SOFC power systems on more electric aircraft to replace the main engine-mounted electrical generators [Whyatt and Chick, 2012]. We chose to study that design because the projected efficiency was high (70%) and the generating capacity was suitable for ground-based distributed generation (270 kW).

  18. Development of a catalytic partial oxidation ethanol reformer for fuel cell applications

    SciTech Connect (OSTI)

    Mitchell, W.L.; Thijssen, J.H.J.; Bentley, J.M.; Marek, N.J.

    1995-12-31T23:59:59.000Z

    Arthur D. Little in conjunction with the Department of Energy and the Illinois Department of Commerce and Community Affairs are developing an ethanol fuel processor for fuel cell vehicles. Initial studies were carried out on a 25 kWe catalytic partial oxidation (POX) reformer to determine the effect of equivalence ratio, steam to carbon ratio, and residence time on ethanol conversion. Results of the POX experiments show near equilibrium yields of hydrogen and carbon monoxide for an equivalence ratio of 3.0 with a fuel processor efficiency of 80%. The size and weight of the prototype reformer yield power densities of 1.44 l/kW and 1.74 kg/kW at an estimated cost of $20/kW.

  19. Micro fuel cell

    SciTech Connect (OSTI)

    Zook, L.A.; Vanderborgh, N.E. [Los Alamos National Lab., NM (United States); Hockaday, R. [Energy Related Devices Inc., Los Alamos, NM (United States)

    1998-12-31T23:59:59.000Z

    An ambient temperature, liquid feed, direct methanol fuel cell device is under development. A metal barrier layer was used to block methanol crossover from the anode to the cathode side while still allowing for the transport of protons from the anode to the cathode. A direct methanol fuel cell (DMFC) is an electrochemical engine that converts chemical energy into clean electrical power by the direct oxidation of methanol at the fuel cell anode. This direct use of a liquid fuel eliminates the need for a reformer to convert the fuel to hydrogen before it is fed into the fuel cell.

  20. Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program

    SciTech Connect (OSTI)

    Nguyen Minh

    2006-07-31T23:59:59.000Z

    This report summarizes the work performed for Phase I (October 2001 - August 2006) under Cooperative Agreement DE-FC26-01NT41245 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled 'Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program'. The program focuses on the development of a low-cost, high-performance 3-to-10-kW solid oxide fuel cell (SOFC) system suitable for a broad spectrum of power-generation applications. During Phase I of the program significant progress has been made in the area of SOFC technology. A high-efficiency low-cost system was designed and supporting technology developed such as fuel processing, controls, thermal management, and power electronics. Phase I culminated in the successful demonstration of a prototype system that achieved a peak efficiency of 41%, a high-volume cost of $724/kW, a peak power of 5.4 kW, and a degradation rate of 1.8% per 500 hours. . An improved prototype system was designed, assembled, and delivered to DOE/NETL at the end of the program. This prototype achieved an extraordinary peak efficiency of 49.6%.

  1. LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES

    SciTech Connect (OSTI)

    Anil V. Virkar

    2001-06-21T23:59:59.000Z

    A simple, approximate analysis of the effect of differing cathode and anode areas on the measurement of cell performance on anode-supported solid oxide fuel cells, wherein the cathode area is smaller than the anode area, is presented. It is shown that the effect of cathode area on cathode polarization, on electrolyte contribution, and on anode resistance, as normalized on the basis of the cathode area, is negligible. There is a small but measurable effect on anode polarization, which results from concentration polarization. Effectively, it is the result of a greater amount of fuel transported to the anode/electrolyte interface in cases wherein the anode area is larger than the cathode area. Experiments were performed on cells made with differing cathode areas and geometries. Cathodic and anodic overpotentials measured using reference electrodes, and the measured ohmic area specific resistances by current interruption, were in good agreement with expectations based on the analysis presented. At 800 C, the maximum power density measured with a cathode area of {approx}1.1 cm{sup 2} was {approx}1.65 W/cm{sup 2} compared to {approx}1.45 W/cm{sup 2} for cathode area of {approx}2 cm{sup 2}, for anode thickness of {approx}1.3 mm, with hydrogen as the fuel and air as the oxidant. At 750 C, the measured maximum power densities were {approx}1.3 W/cm{sup 2} for the cell with cathode area {approx}1.1 cm{sup 2}, and {approx}1.25 W/cm{sup 2} for the cell with cathode area {approx}2 cm{sup 2}.

  2. Development of a hydrogen generator for fuel cells based on the partial oxidation of methane

    SciTech Connect (OSTI)

    Recupero, V.; Torre, T.; Saija, G.; Fiordano, N. [Institute CNR-TAE, Lucia, Messina (Italy)

    1996-12-31T23:59:59.000Z

    As well known, the most acknowledged process for generation of hydrogen for fuel cells is based upon the steam reforming of methane or natural gas (SRM). The reaction is endothermic ({Delta}H{sub 298}= 206 kJ/mole) and high H{sub 2}O/CH{sub 4} ratios are required in order to limit coke formation at T higher than 1000 K. Moreover, it is a common practice that the process`s fuel economy is highly sensitive to proper heat fluxes and reactor design (tubular type) and to operational conditions. Efficient heat recovery can be accomplished only on large scale units (> 40,000 Nm{sup 3}/h), far from the range of interest of {open_quotes}on-site{close_quotes} fuel cells. Even if, to fit the needs of the fuel cell technology, medium sized external reforming units (50-200 Nm{sup 3} H{sub 2}/h) have been developed and/or planned for integration with both the first and the second generation fuel cells, amelioration in their heat recovery and efficiency is at the expense of an increased sophistication and therefore at higher per unit costs. In all cases, SRM requires an extra {open_quotes}fuel{close_quotes} supply (to substain the endothermicity of the reaction) in addition to stoichiometric requirements ({open_quotes}feed{close_quotes} gas). A valid alternative could be a process based on catalytic partial oxidation of CH{sub 4} (CSPOM), since the process is mildly exothermic ({Delta}H{sub 298}= -35.6 kJ/mole) and therefore not energy intensive. Consequently, great interest is expected from conversion of methane into syngas, if an autothermal, low energy intensive, compact and reliable process could be developed.

  3. Solid oxide fuel cells having porous cathodes infiltrated with oxygen-reducing catalysts

    DOE Patents [OSTI]

    Liu, Meilin; Liu, Ze; Liu, Mingfei; Nie, Lifang; Mebane, David Spencer; Wilson, Lane Curtis; Surdoval, Wayne

    2014-08-12T23:59:59.000Z

    Solid-oxide fuel cells include an electrolyte and an anode electrically coupled to a first surface of the electrolyte. A cathode is provided, which is electrically coupled to a second surface of the electrolyte. The cathode includes a porous backbone having a porosity in a range from about 20% to about 70%. The porous backbone contains a mixed ionic-electronic conductor (MIEC) of a first material infiltrated with an oxygen-reducing catalyst of a second material different from the first material.

  4. Structural, chemical, and electrochemical characteristics of LaSr2Fe2CrO9--based solid oxide fuel cell anodes

    E-Print Network [OSTI]

    Poeppelmeier, Kenneth R.

    -of-the-art solid oxide fuel cell (SOFC) anode is Ni-8-mole% yttria stabilized zirconia (YSZ), which performs very Available online 5 March 2012 Keywords: Solid oxide fuel cell Perovskite Oxide anode Redox Sulfur tolerance Solid oxide fuel cells with LaSr2Fe2CrO9-­Gd0.1Ce0.9O2- composite anodes were tested in H2, H2S

  5. STABLE HIGH CONDUCTIVITY BILAYERED ELECTROLYTES FOR LOW TEMPERATURE SOLID OXIDE FUEL CELLS

    SciTech Connect (OSTI)

    Eric D. Wachsman; Keith L. Duncan

    2002-09-30T23:59:59.000Z

    A bilayer electrolyte consisting of acceptor-doped ceria (on the fuel/reducing side) and cubic-stabilized bismuth oxide (on the oxidizing side) was developed. The bilayer electrolyte that was developed showed significant improvement in open-circuit potential versus a typical ceria based SOFC. Moreover, the OCP of the bilayer cells increased as the thickness of the bismuth oxide layer increased relative to the ceria layer. Thereby, verifying the bilayer concept. Although, because of the absence of a suitable cathode (a problem we are still working assiduously to solve), we were unable to obtain power density curves, our modeling work predicts a reduction in electrolyte area specific resistance of two orders of magnitude over cubic-stabilized zirconia and projects a maximum power density of 9 W/m{sup 2} at 800 C and 0.09 W/m{sup 2} at 500 C. Towards the development of the bilayer electrolyte other significant strides were made. Among these were, first, the development of a, bismuth oxide based, oxide ion conductor with the highest conductivity (0.56 S/cm at 800 C and 0.043 S/cm at 500 C) known to date. Second, a physical model of the defect transport mechanisms and the driving forces for the ordering phenomena in bismuth oxide and other fluorite systems was developed. Third, a model for point defect transport in oxide mixed ionic-electronic conductors was developed, without the typical assumption of a uniform distribution of ions and including the effect of variable loads on the transport properties of an SOFC (with either a single or bilayer electrolyte).

  6. Manifold, bus support and coupling arrangement for solid oxide fuel cells

    DOE Patents [OSTI]

    Parry, Gareth W. (East Windsor, CT)

    1989-01-01T23:59:59.000Z

    Individual, tubular solid oxide fuel cells (SOFCs) are assembled into bundles called a module within a housing, with a plurality of modules arranged end-to-end in a linear, stacked configuration called a string. A common set of piping comprised of a suitable high temperture resistant material (1) provides fuel and air to each module housing, (2) serves as electrically conducting buses, and (3) provides structural support for a string of SOFC modules. The piping thus forms a manfold for directing fuel and air to each module in a string and makes electrical contact with the module's anode and cathode to conduct the DC power generated by the SOFC. The piping also provides structureal support for each individual module and maintains each string of modules as a structurally integral unit for ensuring high strength in a large 3-dimensional array of SOFC modules. Ceramic collars are used to connect fuel and air inlet piping to each of the electrodes in an SOFC module and provide (1) electrical insulation for the current carrying bus bars and gas manifolds, (2) damping for the fuel and air inlet piping, and (3) proper spacing between the fuel and air inlet piping to prevent contact between these tubes and possible damage to the SOFC.

  7. High performance of a carbon supported ternary PdIrNi catalyst for ethanol electro-oxidation in anion-exchange membrane direct ethanol fuel cells

    E-Print Network [OSTI]

    Zhao, Tianshou

    -oxidation in anion-exchange membrane direct ethanol fuel cells Shuiyun Shen, T. S. Zhao,* Jianbo Xu and Yinshi Li-exchange membrane direct ethanol fuel cells (AEM DEFCs). We demonstrate that the use of the ternary PdIrNi catalyst for the ethanol oxidation reaction (EOR) in anion-exchange membrane direct ethanol fuel cells (AEM DEFCs) offers

  8. A thermally self-sustained micro-power plant with integrated micro-solid oxide fuel cells, micro-reformer and functional

    E-Print Network [OSTI]

    Daraio, Chiara

    A thermally self-sustained micro-power plant with integrated micro-solid oxide fuel cells, micro Micro-solid oxide fuel cell Thin films Butane reformation Chemical micro-reactors Thermally independent fuel cell (micro-SOFC) systems are an attractive alternative power source for small-size portable

  9. Molten carbonate fuel cell

    DOE Patents [OSTI]

    Kaun, T.D.; Smith, J.L.

    1986-07-08T23:59:59.000Z

    A molten electrolyte fuel cell is disclosed with an array of stacked cells and cell enclosures isolating each cell except for access to gas manifolds for the supply of fuel or oxidant gas or the removal of waste gas. The cell enclosures collectively provide an enclosure for the array and effectively avoid the problems of electrolyte migration and the previous need for compression of stack components. The fuel cell further includes an inner housing about and in cooperation with the array enclosure to provide a manifold system with isolated chambers for the supply and removal of gases. An external insulated housing about the inner housing provides thermal isolation to the cell components.

  10. Optimization design of electrodes for anode-supported solid oxide fuel cells via genetic algorithm

    SciTech Connect (OSTI)

    Shi, J.; Xue, X.

    2011-01-01T23:59:59.000Z

    Porous electrode is the critical component of solid-oxide fuel cells (SOFCs) and provides a functional material backbone for multi-physicochemical processes. Model based electrode designs could significantly improve SOFC performance. This task is usually performed via parameter studies for simple case and assumed property distributions for graded electrodes. When nonlinearly coupled multiparameters of electrodes are considered, it could be very difficult for the model based parameter study method to effectively and systematically search the design space. In this research, the optimization approach with a genetic algorithm is demonstrated for this purpose. An anode-supported proton conducting SOFC integrated with a fuel supply system is utilized as a physical base for the model development and the optimization design. The optimization results are presented, which are difficult to obtain for parametric study method.

  11. Composite solid oxide fuel cell anode based on ceria and strontium titanate

    DOE Patents [OSTI]

    Marina, Olga A. (Richland, WA); Pederson, Larry R. (Richland, WA)

    2008-12-23T23:59:59.000Z

    An anode and method of making the same wherein the anode consists of two separate phases, one consisting of a doped strontium titanate phase and one consisting of a doped cerium oxide phase. The strontium titanate phase consists of Sr.sub.1-xM.sub.xTiO.sub.3-.delta., where M is either yttrium (Y), scandium (Sc), or lanthanum (La), where "x" may vary typically from about 0.01 to about 0.5, and where .delta. is indicative of some degree of oxygen non-stoichiometry. A small quantity of cerium may also substitute for titanium in the strontium titanate lattice. The cerium oxide consists of N.sub.yCe.sub.1-yO.sub.2-.delta., where N is either niobium (Nb), vanadium (V), antimony (Sb) or tantalum (Ta) and where "y" may vary typically from about 0.001 to about 0.1 and wherein the ratio of Ti in said first phase to the sum of Ce and N in the second phase is between about 0.2 to about 0.75. Small quantities of strontium, yttrium, and/or lanthanum may additionally substitute into the cerium oxide lattice. The combination of these two phases results in better performance than either phase used separately as an anode for solid oxide fuel cell or other electrochemical device.

  12. Electrical Generation for More-Electric Aircraft Using Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Whyatt, Greg A.; Chick, Lawrence A.

    2012-04-01T23:59:59.000Z

    This report examines the potential for Solid-Oxide Fuel Cells (SOFC) to provide electrical generation on-board commercial aircraft. Unlike a turbine-based auxiliary power unit (APU) a solid oxide fuel cell power unit (SOFCPU) would be more efficient than using the main engine generators to generate electricity and would operate continuously during flight. The focus of this study is on more-electric aircraft which minimize bleed air extraction from the engines and instead use electrical power obtained from generators driven by the main engines to satisfy all major loads. The increased electrical generation increases the potential fuel savings obtainable through more efficient electrical generation using a SOFCPU. However, the weight added to the aircraft by the SOFCPU impacts the main engine fuel consumption which reduces the potential fuel savings. To investigate these relationships the Boeing 787­8 was used as a case study. The potential performance of the SOFCPU was determined by coupling flowsheet modeling using ChemCAD software with a stack performance algorithm. For a given stack operating condition (cell voltage, anode utilization, stack pressure, target cell exit temperature), ChemCAD software was used to determine the cathode air rate to provide stack thermal balance, the heat exchanger duties, the gross power output for a given fuel rate, the parasitic power for the anode recycle blower and net power obtained from (or required by) the compressor/expander. The SOFC is based on the Gen4 Delphi planar SOFC with assumed modifications to tailor it to this application. The size of the stack needed to satisfy the specified condition was assessed using an empirically-based algorithm. The algorithm predicts stack power density based on the pressure, inlet temperature, cell voltage and anode and cathode inlet flows and compositions. The algorithm was developed by enhancing a model for a well-established material set operating at atmospheric pressure to reflect the effect of elevated pressure and to represent the expected enhancement obtained using a promising cell material set which has been tested in button cells but not yet used to produce full-scale stacks. The predictions for the effect of pressure on stack performance were based on literature. As part of this study, additional data were obtained on button cells at elevated pressure to confirm the validity of the predictions. The impact of adding weight to the 787-8 fuel consumption was determined as a function of flight distance using a PianoX model. A conceptual design for a SOFC power system for the Boeing 787 is developed and the weight estimated. The results indicate that the power density of the stacks must increase by at least a factor of 2 to begin saving fuel on the 787 aircraft. However, the conceptual design of the power system may still be useful for other applications which are less weight sensitive.

  13. Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof Energy ForrestalPrinceton PlasmaEnergyFuel Cell

  14. Optimization and Demonstration of a Solid Oxide Regenerative Fuel Cell System

    SciTech Connect (OSTI)

    James F. McElroy; Darren B. Hickey; Fred Mitlitsky

    2006-09-30T23:59:59.000Z

    Single cell solid oxide regenerative fuel cells (SORFCs) have been demonstrated for over 1000 hours of operation at degradation rates as low as 0.5% per thousand hours for current densities as high as 300mA/cm{sup 2}. Efficiency levels (fuel cell power out vs. electrolysis power in) have been demonstrated in excess of 80% at 100mA/cm{sup 2}. All testing has been performed with metallic based interconnects and non-noble metal electrodes in order to limit fabrication costs for commercial considerations. The SORFC cell technology will be scaled up to a 1kW sized stack which will be demonstrated in Year 2 of the program. A self contained SORFC system requires efficient thermal management in order to maintain operating temperatures during exothermic and endothermic operational modes. The use of LiF as a phase change material (PCM) was selected as the optimum thermal storage medium by virtue of its superior thermal energy density by volume. Thermal storage experiments were performed using LiF and a simulated SORFC stack. The thermal storage concept was deemed to be technically viable for larger well insulated systems, although it would not enable a high efficiency thermally self-sufficient SORFC system at the 1 kW level.

  15. Thin film preparation and interfacial reaction study of solid oxide fuel cell materials

    SciTech Connect (OSTI)

    Chen, Chiehcheng.

    1992-01-01T23:59:59.000Z

    Solid oxide fuel cells (SOFC's) operate at 1000 C and their components are processed at even higher temperatures. It is generally desirable to reduce the operating and processing temperatures of SOFC's to make them competitive with other types of fuel cells and to avoid the interactions and interdiffusion between cell components. This can be achieved by either developing a technology to produce thin film electrolytes, or by developing new electrolyte and electrode materials with reduced interaction, lower interfacial resistance. The synthesis and characterization of (Ce-O2)0.8(Sm01.5)0.2 thin films from polymeric precursors is discussed. The reaction mechanism of the precursors and important parameters for making dense, crack-free films were investigated. The cathode/electrolyte interactions and their expected impact on SOFC performance are addressed. The cathode characteristics and cathode/electrolyte interaction of various perovskites are studied. The impact of interfacial reactions on cell performance is investigated. The electrode characteristics of dense La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) thin film produced by polymeric precursors are presented. The electrode resistance and characteristics of the electrode (dense)/electrolyte interface are studied. The effect of reactions and interdiffusion on interfacial resistance are discussed. A potential method for making dense ZrO2 films at relatively low temperatures by plasma-enhanced chemical vapor deposition is presented. The deposition parameters and characterization of ZrO2 film are reported.

  16. Method of Fabrication of High Power Density Solid Oxide Fuel Cells

    DOE Patents [OSTI]

    Pham, Ai Quoc (San Jose, CA); Glass, Robert S. (Livermore, CA)

    2008-09-09T23:59:59.000Z

    A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O(LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.

  17. Miniature fuel-cell system complete with on-demand fuel and oxidant supply

    E-Print Network [OSTI]

    Hur, JI; Kim, C-J

    2015-01-01T23:59:59.000Z

    cell system. The maximum power density of 18.8 mW/cm 2 wascell [23]. Not only the power density slightly improved butcorresponds to the power density axis. The measurements

  18. Fuel cell stack arrangements

    DOE Patents [OSTI]

    Kothmann, Richard E. (Churchill Boro, PA); Somers, Edward V. (Murrysville, PA)

    1982-01-01T23:59:59.000Z

    Arrangements of stacks of fuel cells and ducts, for fuel cells operating with separate fuel, oxidant and coolant streams. An even number of stacks are arranged generally end-to-end in a loop. Ducts located at the juncture of consecutive stacks of the loop feed oxidant or fuel to or from the two consecutive stacks, each individual duct communicating with two stacks. A coolant fluid flows from outside the loop, into and through cooling channels of the stack, and is discharged into an enclosure duct formed within the loop by the stacks and seals at the junctures at the stacks.

  19. Global Failure Criteria for Positive/Electrolyte/Negative Structure of Planar Solid Oxide Fuel Cell

    SciTech Connect (OSTI)

    Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.; Qu, Jianmin

    2009-07-15T23:59:59.000Z

    Due to mismatch of the coefficients of thermal expansion of various layers in the positive/electrolyte/negative (PEN) structures of solid oxide fuel cells (SOFC), thermal stresses and warpage on the PEN are unavoidable due to the temperature changes from the stress-free sintering temperature to room temperature during the PEN manufacturing process. In the meantime, additional mechanical stresses will also be created by mechanical flattening during the stack assembly process. In order to ensure the structural integrity of the cell and stack of SOFC, it is necessary to develop failure criteria for SOFC PEN structures based on the initial flaws occurred during cell sintering and stack assembly. In this paper, the global relationship between the critical energy release rate and critical curvature and maximum displacement of the warped cells caused by the temperature changes as well as mechanical flattening process is established so that possible failure of SOFC PEN structures may be predicted deterministically by the measurement of the curvature and displacement of the warped cells.

  20. Method of fabricating a monolithic core for a solid oxide fuel cell

    DOE Patents [OSTI]

    Zwick, Stanley A. (Woodridge, IL); Ackerman, John P. (Downers Grove, IL)

    1985-01-01T23:59:59.000Z

    A method is disclosed for forming a core for use in a solid oxide fuel cell that electrochemically combines fuel and oxidant for generating galvanic output. The core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support consisting instead only of the active anode, cathode, electrolyte and interconnect materials. Each electrolyte wall consists of cathode and anode materials sandwiching electrolyte material therebetween, and each interconnect wall consists of the cathode and anode materials sandwiching interconnect material therebetween. The electrolyte and interconnect walls define a plurality of substantially parallel core passageways alternately having respectively the inside faces thereof with only the anode material or with only the cathode material exposed. In the wall structure, the electrolyte and interconnect materials are only 0.002-0.01 cm thick; and the cathode and anode materials are only 0.002-0.05 cm thick. The method consists of building up the electrolyte and interconnect walls by depositing each material on individually and endwise of the wall itself, where each material deposit is sequentially applied for one cycle; and where the depositing cycle is repeated many times until the material buildup is sufficient to formulate the core. The core is heat cured to become dimensionally and structurally stable.

  1. Phase 1 - Evaluation of a Functional Interconnect System for Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    James M. Rakowski

    2006-09-30T23:59:59.000Z

    This project is focused on evaluating the suitability of materials and complex multi-materials systems for use as solid oxide fuel cell interconnects. ATI Allegheny Ludlum has generated promising results for interconnect materials which incorporate modified surfaces. Methods for producing these surfaces include cladding, which permits the use of novel materials, and modifications via unique thermomechanical processing, which allows for the modification of materials chemistry. The University of Pittsburgh is assisting in this effort by providing use of their in-place facilities for dual atmosphere testing and ASR measurements, along with substantial work to characterize post-exposure specimens. Carnegie Mellon is testing interconnects for chromia scale spallation resistance using macro-scale and nano-scale indentation tests. Chromia spallation can increase electrical resistance to unacceptable levels and interconnect systems must be developed that will not experience spallation within 40,000 hours at operating temperatures. Spallation is one of three interconnect failure mechanisms, the others being excessive growth of the chromia scale (increasing electrical resistance) and scale evaporation (which can poison the cathode). The goal of indentation fracture testing at Carnegie Mellon is to accelerate the evaluation of new interconnect systems (by inducing spalls at after short exposure times) and to use fracture mechanics to understand mechanisms leading to premature interconnect failure by spallation. Tests include bare alloys from ATI and coated systems from DOE Laboratories and industrial partners, using ATI alloy substrates. West Virginia University is working towards developing a cost-effective material for use as a contact material in the cathode chamber of the SOFC. Currently materials such as platinum are well suited for this purpose, but are cost-prohibitive. For the solid-oxide fuel cell to become a commercial reality it is imperative that lower cost components be developed. Based on the results obtained to date, it appears that sterling silver could be an inexpensive, dependable candidate for use as a contacting material in the cathode chamber of the solid-oxide fuel cell. Although data regarding pure silver samples show a lower rate of thickness reduction, the much lower cost of sterling silver makes it an attractive alternative for use in SOFC operation.

  2. Zero Emission Power Plants Using Solid Oxide Fuel Cells and Oxygen Transport Membranes

    SciTech Connect (OSTI)

    Shockling, Larry A.; Huang, Keqin; Gilboy, Thomas E. (Siemens Westinghouse Power Corporation); Christie, G. Maxwell; Raybold, Troy M. (Praxair, Inc.)

    2001-11-06T23:59:59.000Z

    Siemens Westinghouse Power Corp. (SWPC) is engaged in the development of Solid Oxide Fuel Cell stationary power systems. SWPC has combined DOE Developmental funds with commercial customer funding to establish a record of successful SOFC field demonstration power systems of increasing size. SWPC will soon deploy the first unit of a newly developed 250 kWe Combined Heat Power System. It will generate electrical power at greater than 45% electrical efficiency. The SWPC SOFC power systems are equipped to operate on lower number hydrocarbon fuels such as pipeline natural gas, which is desulfurized within the SOFC power system. Because the system operates with a relatively high electrical efficiency, the CO2 emissions, {approx}1.0 lb CO2/ kW-hr, are low. Within the SOFC module the desulfurized fuel is utilized electrochemically and oxidized below the temperature for NOx generation. Therefore the NOx and SOx emissions for the SOFC power generation system are near negligible. The byproducts of the power generation from hydrocarbon fuels that are released into the environment are CO2 and water vapor. This forward looking DOE sponsored Vision 21 program is supporting the development of methods to capture and sequester the CO2, resulting in a Zero Emission power generation system. To accomplish this, SWPC is developing a SOFC module design, to be demonstrated in operating hardware, that will maintain separation of the fuel cell anode gas, consisting of H2, CO, H2O and CO2, from the vitiated air. That anode gas, the depleted fuel stream, containing less than 18% (H2 + CO), will be directed to an Oxygen Transport Membrane (OTM) Afterburner that is being developed by Praxair, Inc.. The OTM is supplied air and the depleted fuel. The OTM will selectively transport oxygen across the membrane to oxidize the remaining H2 and CO. The water vapor is then condensed from the totally 1.5.DOC oxidized fuel stream exiting the afterburner, leaving only the CO2 in gaseous form. That CO2 can then be compressed and sequestered, resulting in a Zero Emission power generation system operating on hydrocarbon fuel that adds only water vapor to the environment. Praxair has been developing oxygen separation systems based on dense walled, mixed electronic, oxygen ion conducting ceramics for a number of years. The oxygen separation membranes find applications in syngas production, high purity oxygen production and gas purification. In the SOFC afterburner application the chemical potential difference between the high temperature SOFC depleted fuel gas and the supplied air provides the driving force for oxygen transport. This permeated oxygen subsequently combusts the residual fuel in the SOFC exhaust. A number of experiments have been carried out in which simulated SOFC depleted fuel gas compositions and air have been supplied to either side of single OTM tubes in laboratory-scale reactors. The ceramic tubes are sealed into high temperature metallic housings which precludes mixing of the simulated SOFC depleted fuel and air streams. In early tests, although complete oxidation of the residual CO and H2 in the simulated SOFC depleted fuel was achieved, membrane performance degraded over time. The source of degradation was found to be contaminants in the simulated SOFC depleted fuel stream. Following removal of the contaminants, stable membrane performance has subsequently been demonstrated. In an ongoing test, the dried afterburner exhaust composition has been found to be stable at 99.2% CO2, 0.4% N2 and 0.6%O2 after 350 hours online. Discussion of these results is presented. A test of a longer, commercial demonstration size tube was performed in the SWPC test facility. A similar contamination of the simulated SOFC depleted fuel stream occurred and the performance degraded over time. A second test is being prepared. Siemens Westinghouse and Praxair are collaborating on the preliminary design of an OTM equipped Afterburner demonstration unit. The intent is to test the afterburner in conjunction with a reduced size SOFC test module that has the anode gas separati

  3. Performance of solid oxide fuel cells operated with coal syngas provided directly from a gasification process

    SciTech Connect (OSTI)

    Hackett, Gregory A.; Gerdes, Kirk R.; Song, Xueyan; Chen, Yun; Shutthanandan, V.; Engelhard, Mark H.; Zhu, Zihua; Thevuthasan, Suntharampillai; Gemmen, Randall

    2012-09-15T23:59:59.000Z

    Solid oxide fuel cells (SOFCs) are presently being developed for gasification integrated power plants that generate electricity from coal at 50+% efficiency. The interaction of trace metals in coal syngas with the Ni-based SOFC anodes is being investigated through thermodynamic analyses and in laboratory experiments, but direct test data from coal syngas exposure are sparsely available. This research effort evaluates the significance of SOFC performance losses associated with exposure of a SOFC anode to direct coal syngas. SOFC specimen of industrially relevant composition are operated in a unique mobile test skid that was deployed to the research gasifier at the National Carbon Capture Center (NCCC) in Wilsonville, AL. The mobile test skid interfaces with a gasifier slipstream to deliver hot syngas (up to 300°C) directly to a parallel array of 12 button cell specimen, each of which possesses an active area of approximately 2 cm2. During the 500 hour test period, all twelve cells were monitored for performance at four discrete operating current densities, and all cells maintained contact with a data acquisition system. Of these twelve, nine demonstrated good performance throughout the test, while three of the cells were partially compromised. Degradation associated with the properly functioning cells was attributed to syngas exposure and trace material attack on the anode structure that was accelerated at increasing current densities. Cells that were operated at 0 and 125 mA/cm² degraded at 9.1 and 10.7% per 1000 hours, respectively, while cells operated at 250 and 375 mA/cm² degraded at 18.9 and 16.2% per 1000 hours, respectively. Post-trial spectroscopic analysis of the anodes showed carbon, sulfur, and phosphorus deposits; no secondary Ni-metal phases were found.

  4. In situ synchrotron X-ray studies of dense thin-film strontium-doped lanthanum manganite solid oxide fuel cell cathodes

    E-Print Network [OSTI]

    Yildiz, Bilge

    oxide fuel cell cathodes Kee-Chul Chang1 , Brian Ingram2 , Balasubramaniam Kavaipatti3 , Bilge Yildiz4, suggesting that the electrochemistry plays a role in the Sr segregation. INTRODUCTION The solid oxide fuel cell (SOFC) has advantages of high efficiency and fuel-flexibility but is not yet economically

  5. Application of LaSr2Fe2CrO9-in Solid Oxide Fuel Cell Jacob M. Haag,a

    E-Print Network [OSTI]

    Poeppelmeier, Kenneth R.

    28, 2008. Ni­yttria stabilized zirconia YSZ cermets are commonly used in solid oxide fuel cell SOFCApplication of LaSr2Fe2CrO9- in Solid Oxide Fuel Cell Anodes Jacob M. Haag,a Brian D. Madsen composition LaSr2Fe2CrO9- was tested for application as an anode material for solid oxide fuel cells. Despite

  6. Performance of solid oxide fuel cells operaated with coal syngas provided directly from a gasification process

    SciTech Connect (OSTI)

    Hackett, G.; Gerdes, K.; Song, X.; Chen, Y.; Shutthanandan, V.; Englehard, M.; Zhu, Z.; Thevuthasan, S.; Gemmen, R.

    2012-01-01T23:59:59.000Z

    Solid oxide fuel cells (SOFCs) are being developed for integrated gasification power plants that generate electricity from coal at 50% efficiency. The interaction of trace metals in coal syngas with Ni-based SOFC anodes is being investigated through thermodynamic analyses and in laboratory experiments, but test data from direct coal syngas exposure are sparsely available. This effort evaluates the significance of performance losses associated with exposure to direct coal syngas. Specimen are operated in a unique mobile test skid that is deployed to the research gasifier at NCCC in Wilsonville, AL. The test skid interfaces with a gasifier slipstream to deliver hot syngas to a parallel array of twelve SOFCs. During the 500 h test period, all twelve cells are monitored for performance at four current densities. Degradation is attributed to syngas exposure and trace material attack on the anode structure that is accelerated at increasing current densities. Cells that are operated at 0 and 125 mA cm{sup 2} degrade at 9.1 and 10.7% per 1000 h, respectively, while cells operated at 250 and 375 mA cm{sup 2} degrade at 18.9 and 16.2% per 1000 h, respectively. Spectroscopic analysis of the anodes showed carbon, sulfur, and phosphorus deposits; no secondary Ni-metal phases were found.

  7. NOVEL ELECTRODE MATERIALS FOR LOW-TEMPERATURE SOLID-OXIDE FUEL CELLS

    SciTech Connect (OSTI)

    Shaowu Zha; Luis Aguilar; Meilin Liu

    2003-12-01T23:59:59.000Z

    Fuel cell performance depends strongly on the anode microstructure, which is determined by the anode compositions and fabrication conditions. Four types of anodes with two kinds of NiO and GDC powders were investigated. By carefully adjusting the anode microstructure, the GDC electrolyte/anode interfacial polarization resistances reduced dramatically. The interfacial resistance at 600 C decreased from 1.61 {Omega} cm{sup 2} for the anodes prepared using commercially available powders to 0.06 {Omega} cm{sup 2} for those prepared using powders derived from a glycine-nitrate process. The critical issues facing the development of economically competitive SOFC systems include lowering the operation temperature and creating novel anode materials and microstructures capable of efficiently utilizing hydrocarbon fuels. Anode-supported SOFCs with an electrolyte of 20 {micro}m- thick Gd-doped ceria (GDC) were fabricated by co-pressing, and both Ni- and Cu-based anodes were prepared by a solution impregnation process. At 600 C, SOFCs fueled with humidified H{sub 2}, methane, and propane, reached peak power densities of 602, 519, and 433 mW/cm{sup 2}, respectively. Both microstructure and composition of the anodes, as fabricated using a solution impregnation technique, greatly influence fuel cell performance. Although steam reforming or partial oxidation is effective in avoiding carbon deposition of hydrocarbon fuels, it increases the operating cost and reduces the energy efficiency. A catalyst (1 %wt Pt dispersed on porous Gd-doped ceria) for pre-reforming of propane was developed with relatively low steam to carbon (S/C) ratio ({approx}0.5), coupled with direct utilization of the reformate in low-temperature SOFCs. Propane was converted to smaller molecules during pre-reforming, including H{sub 2}, CH{sub 4}, CO, and CO{sub 2}. A peak power density of 247 mW/cm{sup 2} was observed when pre-reformed propane was directly fed to an SOFC operated at 600 C. No carbon deposition was observed in the fuel cell for a continuous operation of 10 hours at 600 C.

  8. The Modeling of a Standalone Solid-Oxide Fuel Cell Auxiliary Power Unit

    SciTech Connect (OSTI)

    Lu, Ning; Li, Qinghe; Sun, Xin; Khaleel, Mohammad A.

    2006-10-27T23:59:59.000Z

    In this research, a Simulink model of a standalone vehicular solid-oxide fuel cell (SOFC) auxiliary power unit (APU) is developed. The SOFC APU model consists of three major components: a controller model; a power electronics system model; and an SOFC plant model, including an SOFC stack module; two heat exchanger modules; and a combustor module. This paper discusses the development of the nonlinear dynamic models for the SOFC stacks, the heat exchangers and the combustors. When coupling with a controller model and a power electronic circuit model, the developed SOFC plant model is able to model the thermal dynamics and the electrochemical dynamics inside the SOFC APU components as well as the transient responses to the electric loading changes. It has been shown that having such a model for the SOFC APU will benefit design engineers to adjust design parameters to optimize the performance. The modeling results of the heat-up stage of an SOFC APU and the output voltage response to a sudden load change are presented in the paper. The fuel flow regulation based on fuel utilization is also briefly discussed.

  9. Micro Fuel Cells Direct Methanol Fuel Cells

    E-Print Network [OSTI]

    Micro Fuel Cells TM Direct Methanol Fuel Cells for Portable Power A Fuel Cell System Developer-17, 2002 Phoenix, Arizona #12;Micro Fuel Cells Direct Methanol Fuel Cells for Portable Power Outline (1 Energy Content (Wh) Volume(cm^3) Li-Ion Battery DMFC #12;Direct Methanol Fuel Cell Technology

  10. Combined Theoretical and Experimental Analysis of Processes Determining Cathode Performance in Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Kukla, Maija M.; Kotomin, Eugene Alexej; Merkle, R.; Mastrikov, Yuri; Maier, J.

    2013-02-11T23:59:59.000Z

    Solid oxide fuel cells (SOFC) are under intensive investigation since the 1980’s as these devices open the way for ecologically clean direct conversion of the chemical energy into electricity, avoiding the efficiency limitation by Carnot’s cycle for thermochemical conversion. However, the practical development of SOFC faces a number of unresolved fundamental problems, in particular concerning the kinetics of the electrode reactions, especially oxygen reduction reaction. We review recent experimental and theoretical achievements in the current understanding of the cathode performance by exploring and comparing mostly three materials: (La,Sr)MnO3 (LSM), (La,Sr)(Co,Fe)O3 (LSCF) and (Ba,Sr)(Co,Fe)O3 (BSCF). Special attention is paid to a critical evaluation of advantages and disadvantages of BSCF, which shows the best cathode kinetics known so far for oxides. We demonstrate that it is the combined experimental and theoretical analysis of all major elementary steps of the oxygen reduction reaction which allows us to predict the rate determining steps for a given material under specific operational conditions and thus control and improve SOFC performance.

  11. Co-flow anode/cathode supply heat exchanger for a solid-oxide fuel cell assembly

    DOE Patents [OSTI]

    Haltiner, Jr., Karl J.; Kelly, Sean M.

    2005-11-22T23:59:59.000Z

    In a solid-oxide fuel cell assembly, a co-flow heat exchanger is provided in the flow paths of the reformate gas and the cathode air ahead of the fuel cell stack, the reformate gas being on one side of the exchanger and the cathode air being on the other. The reformate gas is at a substantially higher temperature than is desired in the stack, and the cathode gas is substantially cooler than desired. In the co-flow heat exchanger, the temperatures of the reformate and cathode streams converge to nearly the same temperature at the outlet of the exchanger. Preferably, the heat exchanger is formed within an integrated component manifold (ICM) for a solid-oxide fuel cell assembly.

  12. Fuel cell market applications

    SciTech Connect (OSTI)

    Williams, M.C.

    1995-12-31T23:59:59.000Z

    This is a review of the US (and international) fuel cell development for the stationary power generation market. Besides DOE, GRI, and EPRI sponsorship, the US fuel cell program has over 40% cost-sharing from the private sector. Support is provided by user groups with over 75 utility and other end-user members. Objectives are to develop and demonstrate cost-effective fuel cell power generation which can initially be commercialized into various market applications using natural gas fuel by the year 2000. Types of fuel cells being developed include PAFC (phosphoric acid), MCFC (molten carbonate), and SOFC (solid oxide); status of each is reported. Potential international applications are reviewed also. Fuel cells are viewed as a force in dispersed power generation, distributed power, cogeneration, and deregulated industry. Specific fuel cell attributes are discussed: Fuel cells promise to be one of the most reliable power sources; they are now being used in critical uninterruptible power systems. They need hydrogen which can be generated internally from natural gas, coal gas, methanol landfill gas, or other fuels containing hydrocarbons. Finally, fuel cell development and market applications in Japan are reviewed briefly.

  13. A NOVEL INTEGRATED STACK APPROACH FOR REALIZING MECHANICALLY ROBUST SOLID OXIDE FUEL CELLS

    SciTech Connect (OSTI)

    Scott A. Barnett; Tammy Lai; Jiang Liu

    2001-11-01T23:59:59.000Z

    SOFCs are a very promising energy conversion technology for utilization of fossil fuels. The proposed project is to improve the viability of SOFCs by introducing a novel stacking geometry. The geometry involved has all active SOFC components and the interconnect deposited as thin layers on an electrically insulating support. This allows the choice of a support material that provides optimal mechanical toughness and thermal shock resistance. The supports are in the form of flattened tubes, providing relatively high strength, high packing densities, and minimizing the number of seals required. The integration of SOFCs and interconnects on the same support has several other advantages including the reduction of electrical resistances associated with pressure contacts between the cells and interconnects, relaxation of fabrication tolerances required for pressure contacts, reduction of ohmic losses, and reduction of interconnect conductivity requirements. In this report, we describe the processing methodologies that have been developed for fabricating the integrated solid oxide fuel cell (ISOFC), along with results on characterization of the component materials: support, electrolyte, anode, cathode, and interconnect. Screen printing was the primary processing method developed. A centrifugal casting technique was also developed for depositing thin 8 mol % yttrium stabilized zirconia (YSZ) electrolyte layers on porous NiO-YSZ anode substrates. Dense pinhole-free YSZ coatings were obtained by co-sintering the bi-layers at 1400 C. After depositing La{sub 0.8}Sr{sub 0.2}MnO{sub 3} (LSM)-YSZ cathodes, single SOFCs produced near-theoretical open-circuit voltages and power densities of 0.55 W/cm{sup 2} at 800 C. Initial stack operation results are also described.

  14. Development of Low-Cost Manufacturing Processes for Planar, Multilayer Solid Oxide Fuel Cell Elements

    SciTech Connect (OSTI)

    Scott Swartz; Matthew Seabaugh; William Dawson; Tim Armstrong; Harlan Anderson; John Lannutti

    2001-09-30T23:59:59.000Z

    This report summarizes the results of Phase II of this program, 'Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells'. The objective of the program is to develop advanced ceramic manufacturing technologies for making planar solid oxide fuel cell (SOFC) components that are more economical and reliable for a variety of applications. Phase II development work focused on three distinct manufacturing approaches (or tracks) for planar solid oxide fuel cell elements. Two development tracks, led by NexTech Materials and Oak Ridge National Laboratory, involved co-sintering of planar SOFC elements of cathode-supported and anode-supported variations. A third development track, led by the University of Missouri-Rolla, focused on a revolutionary approach for reducing operating temperature of SOFCs by using spin-coating to deposit ultra-thin, nano-crystalline YSZ electrolyte films. The work in Phase II was supported by characterization work at Ohio State University. The primary technical accomplishments within each of the three development tracks are summarized. Track 1--NexTech's targeted manufacturing process for planar SOFC elements involves tape casting of porous electrode substrates, colloidal-spray deposition of YSZ electrolyte films, co-sintering of bi-layer elements, and screen printing of opposite electrode coatings. The bulk of NexTech's work focused on making cathode-supported elements, although the processes developed at NexTech also were applied to the fabrication of anode-supported cells. Primary accomplishments within this track are summarized below: (1) Scale up of lanthanum strontium manganite (LSM) cathode powder production process; (2) Development and scale-up of tape casting methods for cathode and anode substrates; (3) Development of automated ultrasonic-spray process for depositing YSZ films; (4) Successful co-sintering of flat bi-layer elements (both cathode and anode supported); (5) Development of anode and cathode screen-printing processes; and (6) Demonstration of novel processes for composite cathode and cermet anode materials. Track 2--ORNL's development work focused solely on making anode-supported planar cells by tape casting of a porous anode substrate, screen printing of a YSZ electrolyte film, co-sintering of the bi-layer element, and screen-printing of an opposite cathode coating. Primary accomplishments within this track are summarized below: (1) Development and scale-up of anode tape casting and lamination processes; (2) Development of proprietary ink vehicle for screen-printing processes; (3) Development of screen-printing process for depositing YSZ films; (4) Successful co-sintering of flat bi-layer anode-supported elements; and (5) Development of cathode screen-printing process. Track 3--UMR's process development work involved fabrication of a micro-porous cathode substrate, deposition of a nano-porous interlayer film, deposition of nano-crystalline YSZ electrolyte films from polymeric precursor solutions, and deposition of an anode coating. Primary accomplishments within this track are summarized below: (1) Development and scale up of tape casting and sintering methods for cathode substrates; (2) Deposition of nano-porous ceria interlayer films on cathode substrates; (3) Successful deposition of dense YSZ films on porous cathode substrates; and (4) Identification of several anode material options.

  15. Exergy & Economic Analysis of Catalytic Coal Gasifiers Coupled with Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Siefert, Nicholas; Litster, Shawn

    2012-01-01T23:59:59.000Z

    The National Energy Technology Laboratory (NETL) has undertaken a review of coal gasification technologies that integrate with solid oxide fuel cells (SOFC) to achieve system efficiencies near 60% while capturing and sequestering >90% of the carbon dioxide. One way to achieve an overall system efficiency of greater than 60% is in a power plant in which a catalytic coal gasifier produces a syngas with a methane composition of roughly 25% on a dry volume basis and this is sent to a SOFC, with CO{sub 2} capture occurring either before or after the SOFC. Integration of a catalytic gasifier with a SOFC, as opposed to a conventional entrained flow gasifier, is improved due to (a) decreased exergy destruction inside a catalytic, steam-coal gasifier producing a high-methane content syngas, and (b) decreased exergy destruction in the SOFC due to the ability to operate at lower air stoichiometric flow ratios. For example, thermal management of the SOFC is greatly improved due to the steam-methane reforming in the anode of the fuel cell. This paper has two main goals. First, we converted the levelized cost of electricity (LCOE) estimates of various research groups into an average internal rate of return on investment (IRR) in order to make comparisons between their results, and to underscore the increased rate of return on investment for advanced integrated gasification fuel cell systems with carbon capture & sequestration (IGFC-CCS) compared with conventional integrated gasification combined cycle (IGCC-CCS) systems and pulverized coal combustion (PCC-CCS) systems. Using capital, labor, and fuel costs from previous researchers and using an average price of baseload electricity generation of $61.50 / MW-hr, we calculated inflation-adjusted IRR values of up to 13%/yr for catalytic gasification with pressurized fuel cell and carbon dioxide capture and storage (CCS), whereas we calculate an IRR of ?4%/yr and ?2%/yr for new, conventional IGCC-CCS and PCC-CCS, respectively. If the carbon dioxide is used for enhanced oil recovery rather than for saline aquifer storage, then the IRR values improve to 16%/yr, 10%/yr, and 8%/yr, respectively. For comparison, the IRR of a new conventional IGCC or PCC power plant without CO{sub 2} capture are estimated to be 11%/yr and 15.0%/yr, respectively. Second, we conducted an exergy analysis of two different configurations in which syngas from a catalytic gasifier fuels a SOFC. In the first case, the CO{sub 2} is captured before the SOFC, and the anode tail gas is sent back to the catalytic gasifier. In the second case, the anode tail gas is oxy-combusted using oxygen ion ceramic membranes and then CO{sub 2} is captured for sequestration. In both cases, we find that the system efficiency is greater than 60%. These values compare well with previous system analysis. In future work, we plan to calculate the IRR of these two cases and compare with previous economic analyses conducted at NETL.

  16. Solid oxide fuel cell having monolithic cross flow core and manifolding

    DOE Patents [OSTI]

    Poeppel, R.B.; Dusek, J.T.

    1983-10-12T23:59:59.000Z

    This invention discloses a monolithic core construction having the flow passageways for the fuel and for the oxidant gases extended transverse to one another, whereby full face core manifolding can be achieved for these gases and their reaction products. The core construction provides that only anode material surround each fuel passageway and only cathode material surround each oxidant passageway, each anode and each cathode further sandwiching at spaced opposing sides electrolyte and interconnect materials to define electrolyte and interconnect walls. Webs of the cathode and anode material hold the electrolyte and interconnect walls spaced apart to define the flow passages. The composite anode and cathode wall structures are further alternately stacked on one another (with the separating electrolyte or interconnect material typically being a single common layer) whereby the fuel passageways and the oxidant passageways are disposed transverse to one another.

  17. Solid oxide fuel cell having monolithic cross flow core and manifolding

    DOE Patents [OSTI]

    Poeppel, Roger B. (Glen Ellyn, IL); Dusek, Joseph T. (Downers Grove, IL)

    1984-01-01T23:59:59.000Z

    This invention discloses a monolithic core construction having the flow passageways for the fuel and for the oxidant gases extended transverse to one another, whereby full face core manifolding can be achieved for these gases and their reaction products. The core construction provides that only anode material surround each fuel passageway and only cathode material surround each oxidant passageway, each anode and each cathode further sandwiching at spaced opposing sides electrolyte and interconnect materials to define electrolyte and interconnect walls. Webs of the cathode and anode material hold the electrolyte and interconnect walls spaced apart to define the flow passages. The composite anode and cathode wall structures are further alternately stacked on one another (with the separating electrolyte or interconnect material typically being a single common layer) whereby the fuel passageway and the oxidant passageways are disposed transverse to one another.

  18. Commercialization of fuel-cells

    SciTech Connect (OSTI)

    Penner, S.S.; Appleby, A.J.; Baker, B.S.; Bates, J.L.; Buss, L.B.; Dollard, W.J.; Farris, P.J.; Gillis, E.A.; Gunsher, J.A.; Khandkar, A.; Krumpelt, M.; O'Sullivan, J.B.; Runte, G.; Savinell, R.F.; Selman, J.R.; Shores, D.A.; Tarman, P.

    1995-03-01T23:59:59.000Z

    This report is an abbreviated version of the ''Report of the DOE Advanced Fuel Cell Commercialization Working Group (AFC2WG),'' released January 1995. We describe fuel-cell commercialization for stationary power applications of phosphoric acid, molten carbonate, solid oxide, and polymer electrolyte membrane fuel cells.

  19. Exploration of alloy 441 chemistry for solid oxide fuel cell interconnect application

    SciTech Connect (OSTI)

    Paul D. Jablonski; Christopher J. Cowen; John S. Sears

    2010-02-01T23:59:59.000Z

    Alloy 441 stainless steel (UNS S 44100) is being considered for application as an SOFC interconnect material. There are several advantages to the selection of this alloy over other iron-based or nickel-based alloys: first and foremost alloy 441ss is a production alloy which is both low in cost and readily available. Second, the coefficient of thermal expansion (CTE) more closely matches the CTE of the adjoining ceramic components of the fuel cell. Third, this alloy forms the Laves phase at typical SOFC operating temperatures of 600–800 °C. It is thought that the Laves phase preferentially consumes the Si present in the alloy microstructure. As a result it has been postulated that the long-term area specific resistance (ASR) performance degradation often seen with other ferritic stainless steels, which is associated with the formation of electrically resistive Si-rich oxide subscales, may be avoidable with alloy 441ss. In this paper we explore the physical metallurgy of alloy 441, combining computational thermodynamics with experimental verification, and discuss the results with regards to Laves phase formation under SOFC operating conditions. We show that the incorporation of the Laves phase into the microstructure cannot in itself remove sufficient Si from the ferritic matrix in order to completely avoid the formation of Si-rich oxide subscales. However, the thickness, morphology, and continuity of the Si-rich subscale that forms in this alloy is modified in comparison to non-Laves forming ferritic stainless steel alloys and therefore may not be as detrimental to long-term SOFC performance.

  20. Fuel cell water transport

    DOE Patents [OSTI]

    Vanderborgh, Nicholas E. (Los Alamos, NM); Hedstrom, James C. (Los Alamos, NM)

    1990-01-01T23:59:59.000Z

    The moisture content and temperature of hydrogen and oxygen gases is regulated throughout traverse of the gases in a fuel cell incorporating a solid polymer membrane. At least one of the gases traverses a first flow field adjacent the solid polymer membrane, where chemical reactions occur to generate an electrical current. A second flow field is located sequential with the first flow field and incorporates a membrane for effective water transport. A control fluid is then circulated adjacent the second membrane on the face opposite the fuel cell gas wherein moisture is either transported from the control fluid to humidify a fuel gas, e.g., hydrogen, or to the control fluid to prevent excess water buildup in the oxidizer gas, e.g., oxygen. Evaporation of water into the control gas and the control gas temperature act to control the fuel cell gas temperatures throughout the traverse of the fuel cell by the gases.

  1. A Partial Oxidation Technique for Fuel-Cell Anode Exhaust-Gas Synthesis

    SciTech Connect (OSTI)

    Edward H. Robey, Jr.; Randall S. Gemmen

    1998-11-10T23:59:59.000Z

    This paper describes the performance of a gas generator used to synthesize the exhaust gas from the anode of a molten-carbonate fuel cell. The composition of this gas is estimated to be that of equilibrium at 1,250 ° F and 1 atm: 48% CO2 , 39% H2O, 5% CO, and 8% H2, with an energy content of approximately 39 Btu/scf (higher heating value). To synthesize a range of gas compositions around this point, the gas generator partially oxidizes a mixture of CH4 , O2 , and CO2 to generate energy densities between 20 and 60 Btu/scf at temperatures between 1,198 and 1,350 ° F. Results show that the technique provides a relatively high ratio of CO to H2 concentrations compared with the target composition (CO:H2 of 2, versus 0.71). A detailed chemical model shows that the likely cause is quenching of the CO and H2 chemistry below 2,000 ° F.

  2. Interaction of coal-derived synthesis gas impurities with solid oxide fuel cell metallic components

    SciTech Connect (OSTI)

    Marina, Olga A.; Pederson, Larry R.; Coyle, Christopher A.; Edwards, Danny J.; Chou, Y. S.; Cramer, Carolyn N.

    2010-05-28T23:59:59.000Z

    Chromium-containing iron-based alloys Crofer22 APU and SS 441 and nickel-based alloy Inconel600, all commonly used in a solid oxide fuel cell (SOFC) stack as interconnect materials, heat exchanger and gas feeding pipes, were exposed at 700-850oC to a synthetic coal gas containing ?2 ppm phosphine, arsine, sulfur and antimony. Samples were characterized by SEM/EDS and XRD to monitor the secondary phase formation. Exposure of ferritic stainless steels to P led to the formation of surface Cr-Mn-P-O and Fe-P-O compounds and increased temperatures accelerated the rate of interactions. Fewer interactions were observed after exposures to As and Sb. No sulfur containing compounds were found. Nickel-based alloy exhibited much stronger interactions with As and P in comparison with ferritic steels and the arsenic interactions were particularly strong. The difference between the iron- and nickel-based alloys is explained by the different chemistry and morphology of the scales grown on the alloy surfaces in coal gas. While P and As interactions with the metallic parts in the SOFC are likely to mitigate the nickel/zirconia anode poisoning, the other degradation mechanisms should be taken into consideration to avoid potential stack failures. Manganese spinels were found to be effective as phosphorus getters and could be used in coal gas cleanup.

  3. Lanthanum manganite-based air electrode for solid oxide fuel cells

    DOE Patents [OSTI]

    Ruka, Roswell J. (Pittsburgh, PA); Kuo, Lewis (Monroeville, PA); Li, Baozhen (Essex Junction, VT)

    1999-01-01T23:59:59.000Z

    An air electrode material for a solid oxide fuel cell is disclosed. The electrode material is based on lanthanum manganite having a perovskite-like crystal structure ABO.sub.3. The A-site of the air electrode material preferably comprises La, Ca, Ce and at least one lanthanide selected from Sm, Gd, Dy, Er, Y and Nd. The B-site of the electrode material comprises Mn with substantially no dopants. The ratio of A:B is preferably slightly above 1. A preferred air electrode composition is of the formula La.sub.w Ca.sub.x Ln.sub.y Ce.sub.z MnO.sub.3, wherein Ln comprises at least one lanthanide selected from Sm, Gd, Dy, Er, Y and Nd, w is from about 0.55 to about 0.56, x is from about 0.255 to about 0.265, y is from about 0.175 to about 0.185, and z is from about 0.005 to about 0.02. The air electrode material possesses advantageous chemical and electrical properties as well as favorable thermal expansion and thermal cycle shrinkage characteristics.

  4. Lanthanum manganite-based air electrode for solid oxide fuel cells

    DOE Patents [OSTI]

    Ruka, R.J.; Kuo, L.; Li, B.

    1999-06-29T23:59:59.000Z

    An air electrode material for a solid oxide fuel cell is disclosed. The electrode material is based on lanthanum manganite having a perovskite-like crystal structure ABO[sub 3]. The A-site of the air electrode material preferably comprises La, Ca, Ce and at least one lanthanide selected from Sm, Gd, Dy, Er, Y and Nd. The B-site of the electrode material comprises Mn with substantially no dopants. The ratio of A:B is preferably slightly above 1. A preferred air electrode composition is of the formula La[sub w]Ca[sub x]Ln[sub y]Ce[sub z]MnO[sub 3], wherein Ln comprises at least one lanthanide selected from Sm, Gd, Dy, Er, Y and Nd, w is from about 0.55 to about 0.56, x is from about 0.255 to about 0.265, y is from about 0.175 to about 0.185, and z is from about 0.005 to about 0.02. The air electrode material possesses advantageous chemical and electrical properties as well as favorable thermal expansion and thermal cycle shrinkage characteristics. 10 figs.

  5. Heat removal from high temperature tubular solid oxide fuel cells utilizing product gas from coal gasifiers.

    SciTech Connect (OSTI)

    Parkinson, W. J. (William Jerry),

    2003-01-01T23:59:59.000Z

    In this work we describe the results of a computer study used to investigate the practicality of several heat exchanger configurations that could be used to extract heat from tubular solid oxide fuel cells (SOFCs) . Two SOFC feed gas compositions were used in this study. They represent product gases from two different coal gasifier designs from the Zero Emission Coal study at Los Alamos National Laboratory . Both plant designs rely on the efficient use of the heat produced by the SOFCs . Both feed streams are relatively rich in hydrogen with a very small hydrocarbon content . One feed stream has a significant carbon monoxide content with a bit less hydrogen . Since neither stream has a significant hydrocarbon content, the common use of the endothermic reforming reaction to reduce the process heat is not possible for these feed streams . The process, the method, the computer code, and the results are presented as well as a discussion of the pros and cons of each configuration for each process .

  6. Innovative Self-Healing Seals for Solid Oxide Fuel Cells (SOFC)

    SciTech Connect (OSTI)

    Raj Singh

    2012-06-30T23:59:59.000Z

    Solid oxide fuel cell (SOFC) technology is critical to several national initiatives. Solid State Energy Conversion Alliance (SECA) addresses the technology needs through its comprehensive programs on SOFC. A reliable and cost-effective seal that works at high temperatures is essential to the long-term performance of the SOFC for 40,000 hours at 800°C. Consequently, seals remain an area of highest priority for the SECA program and its industry teams. An innovative concept based on self-healing glasses was advanced and successfully demonstrated through seal tests for 3000 hours and 300 thermal cycles to minimize internal stresses under both steady state and thermal transients for making reliable seals for the SECA program. The self-healing concept requires glasses with low viscosity at the SOFC operating temperature of 800°C but this requirement may lead to excessive flow of the glass in areas forming the seal. To address this challenge, a modification to glass properties by addition of particulate fillers is pursued in the project. The underlying idea is that a non-reactive ceramic particulate filler is expected to form glass-ceramic composite and increase the seal viscosity thereby increasing the creep resistance of the glass-composite seals under load. The objectives of the program are to select appropriate filler materials for making glass-composite, fabricate glass-composites, measure thermal expansion behaviors, and determine stability of the glass-composites in air and fuel environments of a SOFC. Self-healing glass-YSZ composites are further developed and tested over a longer time periods under conditions typical of the SOFCs to validate the long-term stability up to 2000 hours. The new concepts of glass-composite seals, developed and nurtured in this program, are expected to be cost-effective as these are based on conventional processing approaches and use of the inexpensive materials.

  7. Composite Cathode for High-Power Density Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Ilwon Kim; Scott Barnett; Yi Jiang; Manoj Pillai; Nikkia McDonald; Dan Gostovic; Zhongryang Zhan; Jiang Liu

    2004-01-31T23:59:59.000Z

    Reduction of solid oxide fuel cell (SOFC) operating temperature will play a key role in reducing the stack cost by allowing the use of low-cost metallic interconnects and new approaches to sealing, while making applications such as transportation more feasible. Reported results for anode-supported SOFCs show that cathode polarization resistance is the primary barrier to achieving high power densities at operating temperatures of 700 C and lower. This project aims to identify and develop composite cathodes that could reduce SOFC operating temperatures below 700 C. This effort focuses on study and use of (La,Sr)(Co,Fe)O{sub 3} (LSCF) based composite cathodes, which have arguably the best potential to substantially improve on the currently-used, (La,Sr)MnO{sub 3}-Yttria-stabilized Zirconia. During this Phase I, it was successfully demonstrated that high performances can be achieved with LSCF/Gadolinium-Doped Ceria composite cathodes on Ni-based anode supported cells operating at 700 C or lower. We studied electrochemical reactions at LSCF/Yttria-stabilized Zirconia (YSZ) interfaces, and observed chemical reactions between LSCF and YSZ. By using ceria electrolytes or YSZ electrolytes with ceria diffusion barrier layers, the chemical reactions between LSCF and electrolytes were prevented under cathode firing conditions necessary for the optimal adhesion of the cathodes. The protection provided by ceria layer is expected to be adequate for stable long-term cathode performances, but more testing is needed to verify this. Using ceria-based barrier layers, high performance Ni-YSZ anode supported cells have been demonstrated with maximum power densities of 0.8W/cm2 at 700 C and 1.6W/cm{sup 2} at 800 C. Ni-SDC anode supported cells with SDC electrolytes yielded >1W/cm{sup 2} at 600 C. We speculate that the power output of Ni-YSZ anode supported cell at 700 C and lower, was limited by the quality of the Ceria and Ceria YSZ interface. Improvements in the low-temperature performances are expected based on further development of barrier layer fabrication processes and optimization of cathode microstructure.

  8. Multivariable Robust Control of a Simulated Hybrid Solid Oxide Fuel Cell Gas Turbine Plant

    SciTech Connect (OSTI)

    Tsai, Alex; Banta, Larry; Tucker, D.A.; Gemmen, R.S.

    2008-06-01T23:59:59.000Z

    This paper presents a systematic approach to the multivariable robust control of a hybrid fuel cell gas turbine plant. The hybrid configuration under investigation comprises a physical simulation of a 300kW fuel cell coupled to a 120kW auxiliary power unit single spool gas turbine. The facility provides for the testing and simulation of different fuel cell models that in turn help identify the key issues encountered in the transient operation of such systems. An empirical model of the facility consisting of a simulated fuel cell cathode volume and balance of plant components is derived via frequency response data. Through the modulation of various airflow bypass valves within the hybrid configuration, Bode plots are used to derive key input/output interactions in Transfer Function format. A multivariate system is then built from individual transfer functions, creating a matrix that serves as the nominal plant in an H-Infinity robust control algorithm. The controller’s main objective is to track and maintain hybrid operational constraints in the fuel cell’s cathode airflow, and the turbo machinery states of temperature and speed, under transient disturbances. This algorithm is then tested on a Simulink/MatLab platform for various perturbations of load and fuel cell heat effluence.

  9. Characterization of a 5 kW solid oxide fuel cell stack using power electronic excitation

    E-Print Network [OSTI]

    Seger, Eric

    Fuel cells have attracted great interest as a means of clean, efficient conversion of chemical to electrical energy. This paper demonstrates the identification of both non-parametric and lumped circuit models of our stack ...

  10. Conductivity measurements of molten metal oxides and their evaluation in a Direct Carbon Fuel Cell (DCFC)

    E-Print Network [OSTI]

    Yarlagadda, Venkata Raviteja

    2011-09-08T23:59:59.000Z

    ABSTRACT Since Direct Carbon Fuel Cell (DCFC) technology is in a beginning stage, emphasis should be laid on addressing the fundamental aspects. A molten electrolyte is required to facilitate ionic contact between solid ...

  11. Solid Oxide Fuel Cell System (SOFC) Technology R&D Needs (Presentation...

    Broader source: Energy.gov (indexed) [DOE]

    SOFC Technology R& D Needs Steven Shaffer Chief Engineer - Fuel Cell Development DOE Pre-Solicitation Workshop January 23 &24, 2008 2 DOE Pre-Solicitation Workshop, Golden CO Field...

  12. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    Research Institute 1990 Fuel Cell Status," Proceedings ofMiller, "Introduction: Fuel-Cell-Powered Vehicle DevelopmentPrograms," presented at Fuel Cells for Transportation,

  13. Novel Electrode Materials for Low-Temperature Solid-Oxide Fuel Cells

    SciTech Connect (OSTI)

    Shaowu Zha; Meilin Liu

    2005-03-23T23:59:59.000Z

    Composites electrodes consisting of silver and bismuth vanadates exhibit remarkable catalytic activity for oxygen reduction at 500-550 C and greatly reduce the cathode-electrolyte (doped ceria) resistances of low temperature SOFCs, down to about 0.53 {omega}cm{sup 2} at 500 C and 0.21 {omega}cm{sup 2} at 550 C. The observed power densities of 231, 332, and 443 mWcm-2 at 500, 525 and 550 C, respectively, make it possible to operate SOFCs at temperatures about 500 C. Fuel cell performance depends strongly on the anode microstructure, which is determined by the anode compositions and fabrication conditions. Four types of anodes with two kinds of NiO and GDC powders were investigated. By carefully adjusting the anode microstructure, the GDC electrolyte/anode interfacial polarization resistances reduced dramatically. The interfacial resistance at 600 C decreased from 1.61 {omega} cm{sup 2} for the anodes prepared using commercially available powders to 0.06 {omega} cm{sup 2} for those prepared using powders derived from a glycine-nitrate process. Although steam reforming or partial oxidation is effective in avoiding carbon deposition of hydrocarbon fuels, it increases the operating cost and reduces the energy efficiency. Anode-supported SOFCs with an electrolyte of 20 {micro}m-thick Gd-doped ceria (GDC) were fabricated by co-pressing. A catalyst (1 %wt Pt dispersed on porous Gd-doped ceria) for pre-reforming of propane was developed with relatively low steam to carbon (S/C) ratio ({approx}0.5), coupled with direct utilization of the reformate in low-temperature SOFCs. Propane was converted to smaller molecules during pre-reforming, including H{sub 2}, CH{sub 4}, CO, and CO{sub 2}. A peak power density of 247 mW/cm{sup 2} was observed when pre-reformed propane was directly fed to an SOFC operated at 600 C. No carbon deposition was observed in the fuel cell for a continuous operation of 10 hours at 600 C. The ability of producing vastly different microstructures and morphologies of the very same material is critical to the fabrication of functionally graded electrodes for solid-state electrochemical devices such as SOFCs and lithium batteries. By carefully adjusting deposition parameters, we have successfully produced oxide nano-powders with the size of 30 {approx} 200 nm. Porous films with various microstructures and morphologies are also deposited on several substrates by systematic adjustment of the deposition parameters. Highly porous, excellently bonded and nano-structured electrodes fabricated by combustion CVD exhibit extremely high surface area and remarkable catalytic activities. Using in situ potential dependent FTIR emission spectroscopy, we have found evidence for two, possibly three distinct di-oxygen species present on the electrode surface. We have successfully identified which surface oxygen species is present under a particular electrical or chemical condition and have been able to deduce the reaction mechanisms. This technique will be used to probe the gas-solid interactions at or near the TPB and on the surfaces of mixed-conducting electrodes in an effort to understand the molecular processes relevant to the intrinsic catalytic activity. Broad spectral features are assigned to the electrochemical-polarization-induced changes in the optical properties of the electrode surface layer.

  14. Reversible Poisoning of the Nickel/Zirconia Solid Oxide Fuel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Poisoning of the NickelZirconia Solid Oxide Fuel Cell Anodes by Hydrogen Chloride in Coal Gas. Reversible Poisoning of the NickelZirconia Solid Oxide Fuel Cell Anodes by Hydrogen...

  15. Effect of pre-oxidation and environmental aging on the seal strength of a novel high-temperature solid oxide fuel cell (SOFC) sealing glass with metallic interconnect

    SciTech Connect (OSTI)

    Chou, Y. S.; Stevenson, Jeffry W.; Singh, Prabhakar

    2008-09-15T23:59:59.000Z

    A novel high-temperature alkaline-earth silicate sealing glass was developed for solid oxide fuel cell (SOFC) applications. The glass was used to join two ferritic stainless steel coupons for strength evaluation. The steel coupons were pre-oxidized at elevated temperatures to promote thick oxide layers to simulate long-term exposure conditions. In addition, seals to as-received metal coupons were also tested after aging in oxidizing or reducing environments to simulate the actual SOFC environment. Room temperature tensile testing showed strength degradation when using pre-oxidized coupons, and more extensive degradation after aging in air. Fracture surface and microstructural analysis confirmed that the cause of degradation was formation of SrCrO4 at the outer sealing edges exposed to air.

  16. Optimized cell configurations for stable LSCF-based solid oxide fuel cells

    DOE Patents [OSTI]

    Kim, Jin Yong (Richland, WA); Sprenkle, Vincent L. (Richland, WA); Canfield, Nathan L. (Richland, WA); Meinhardt, Kerry D. (Kennewick); WA, Chick, Lawrence A. (West Richland, WA)

    2012-05-22T23:59:59.000Z

    Lanthanum strontium cobalt iron oxides (La(1-x)SrxCoyFe1-yO3-f; (LSCF) have excellent power density (>500 mW/cm2 at 750.degree. C.). When covered with a metallization layer, LSCF cathodes have demonstrated increased durability and stability. Other modifications, such as the thickening of the cathode, the preparation of the device by utilizing a firing temperature in a designated range, and the use of a pore former paste having designated characteristics and combinations of these features provide a device with enhanced capabilities.

  17. Sintering behavior of lanthanide-containing glass-ceramic sealants for solid oxide fuel cells

    SciTech Connect (OSTI)

    Goel, Ashutosh; Reddy, Allu Amarnath; Pascual, Maria J.; Gremillard, Laurent; Malchere, Annie; Ferreira, Jose M.

    2012-05-01T23:59:59.000Z

    This article reports on the influence of different lanthanides (La, Nd, Gd and Yb) on sintering behavior of alkaline-earth aluminosilicate glass-ceramics sealants for their application in solid oxide fuel cells (SOFC). All the glasses have been prepared by melt-quench technique. The in situ follow up of sintering behavior of glass powders has been done by high temperature - environmental scanning electron microscope (HT-ESEM) and hot-stage microscope (HSM) while the crystalline phase evolution and assemblage has been analyzed by x-ray diffraction (XRD) and scanning electron microscopy (SEM). All the glass compositions exhibit a glass-in-glass phase separation followed by two stage sintering resulting in well sintered glass powder compacts after heat treatment at 850 C for 1 h. Diopside (CaMgSi{sub 2}O{sub 6}) based phases constituted the major crystalline part in glass-ceramics followed by some minor phases. The increase in lanthanide content in glasses suppressed their tendency towards devitrification, thus, resulting in glass-ceramics with high amount of residual glassy phase (50-96 wt.%) which is expected to facilitate their self-healing behavior during SOFC operation. The electrical conductivity of the investigated glass-ceramics varied between (1.19 and 7.33) x 10{sup -7} S cm{sup -1} (750-800 C), and depended on the ionic field strength of lanthanide cations. Further experimentation with respect to the long term thermal and chemical stability of residual glassy phase under SOFC operation conditions along with high temperature viscosity measurements will be required in order to elucidate the potential of these glass-ceramics as self-healing sealants.

  18. Analysis of Actual Operating Conditions of an Off-grid Solid Oxide Fuel Cell

    SciTech Connect (OSTI)

    Dennis Witmer; Thomas Johnson; Jack Schmid

    2008-12-31T23:59:59.000Z

    Fuel cells have been proposed as ideal replacements for other technologies in remote locations such as Rural Alaska. A number of suppliers have developed systems that might be applicable in these locations, but there are several requirements that must be met before they can be deployed: they must be able to operate on portable fuels, and be able to operate with little operator assistance for long periods of time. This project was intended to demonstrate the operation of a 5 kW fuel cell on propane at a remote site (defined as one without access to grid power, internet, or cell phone, but on the road system). A fuel cell was purchased by the National Park Service for installation in their newly constructed visitor center at Exit Glacier in the Kenai Fjords National Park. The DOE participation in this project as initially scoped was for independent verification of the operation of this demonstration. This project met with mixed success. The fuel cell has operated over 6 seasons at the facility with varying degrees of success, with one very good run of about 1049 hours late in the summer of 2006, but in general the operation has been below expectations. There have been numerous stack failures, the efficiency of electrical generation has been lower than expected, and the field support effort required has been far higher than expected. Based on the results to date, it appears that this technology has not developed to the point where demonstrations in off road sites are justified.

  19. Multivariable Robust Control of a Simulated Hybrid Solid Oxide Fuel Cell Gas Turbine Plant

    SciTech Connect (OSTI)

    Tsai, Alex [Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV (United States); Banta, Larry [Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV (United States); Tucker, David [National Energy Technology Laboratory (NETL), Pittsburgh, PA, and Morgantown, WV (United States); Gemmen, Randall [National Energy Technology Laboratory (NETL), Pittsburgh, PA, and Morgantown, WV (United States)

    2010-08-01T23:59:59.000Z

    This work presents a systematic approach to the multivariable robust control of a hybrid fuel cell gas turbine plant. The hybrid configuration under investigation built by the National Energy Technology Laboratory comprises a physical simulation of a 300kW fuel cell coupled to a 120kW auxiliary power unit single spool gas turbine. The public facility provides for the testing and simulation of different fuel cell models that in turn help identify the key difficulties encountered in the transient operation of such systems. An empirical model of the built facility comprising a simulated fuel cell cathode volume and balance of plant components is derived via frequency response data. Through the modulation of various airflow bypass valves within the hybrid configuration, Bode plots are used to derive key input/output interactions in transfer function format. A multivariate system is then built from individual transfer functions, creating a matrix that serves as the nominal plant in an H{sub {infinity}} robust control algorithm. The controller’s main objective is to track and maintain hybrid operational constraints in the fuel cell’s cathode airflow, and the turbo machinery states of temperature and speed, under transient disturbances. This algorithm is then tested on a Simulink/MatLab platform for various perturbations of load and fuel cell heat effluence. As a complementary tool to the aforementioned empirical plant, a nonlinear analytical model faithful to the existing process and instrumentation arrangement is evaluated and designed in the Simulink environment. This parallel task intends to serve as a building block to scalable hybrid configurations that might require a more detailed nonlinear representation for a wide variety of controller schemes and hardware implementations.

  20. Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar Presentation by Sunita Satyapal at the Fuel Cell Seminar on November...

  1. Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Fact sheet produced by the Fuel Cell...

  2. Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities Presentation covers stationary fuel cells...

  3. Fabrication and characterization of anode-supported single chamber solid oxide fuel cell based on La0.6Sr0.4Co0.2Fe0.8O3--

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    -CGO cathode 1. Introduction Single-chamber solid oxide fuel cells (SC-SOFCs) have received many attentionsFabrication and characterization of anode-supported single chamber solid oxide fuel cell based-supported solid oxide fuel cells consisting of nickel-gadolinium doped ceria (NiO-CGO, 60:40 wt%) anode

  4. 1986 fuel cell seminar: Program and abstracts

    SciTech Connect (OSTI)

    none,

    1986-10-01T23:59:59.000Z

    Ninety nine brief papers are arranged under the following session headings: gas industry's 40 kw program, solid oxide fuel cell technology, phosphoric acid fuel cell technology, molten carbonate fuel cell technology, phosphoric acid fuel cell systems, power plants technology, fuel cell power plant designs, unconventional fuels, fuel cell application and economic assessments, and plans for commerical development. The papers are processed separately for the data base. (DLC)

  5. Hydrogen Peroxide as an Oxidant for Microfluidic Fuel Cells Erik Kjeang,a,c,

    E-Print Network [OSTI]

    Brolo, Alexandre G.

    , b Department of Chemistry, and c Institute for Integrated Energy Systems, University of Victoria, Victoria, British Columbia, Canada V8W 3P6 We demonstrate a microfluidic fuel cell incorporating hydrogen reserved. Manuscript submitted March 23, 2007; revised manuscript received August 13, 2007. Available

  6. Rapid thermal cycling of metal-supported solid oxide fuel cell membranes

    E-Print Network [OSTI]

    Matus, Yuriy B.; De Jonghe, Lutgard C.; Jacobson, Craig P.; Visco, Steven J.

    2004-01-01T23:59:59.000Z

    co- firing at 1350°C. LSCF cathode L SCF cathode Electrolyte+6AT supported fuel cell with LSCF cathode before and afterProducts, Inc. Subsequently, LSCF (La 0.6 Sr 0.4 Co 0.8 FeO

  7. Electron Microscopy Study of Novel Ru Doped La0.8Sr0.2CrO3 as Anode Materials for Solid Oxide Fuel Cells (SOFCs)

    E-Print Network [OSTI]

    Marks, Laurence D.

    Electron Microscopy Study of Novel Ru Doped La0.8Sr0.2CrO3 as Anode Materials for Solid Oxide Fuel Fuel Cells (SOFCs) have been the center of research activities with the goal of improving energy Cells (SOFCs) Y. Wang,* B. D. Madsen,* W. Kobsiriphat,* S.A. Barnett* and L.D. Marks* * Department

  8. Evaluation of thermal stresses in planar solid oxide fuel cells as a function of thermo-mechanical properties of component materials

    E-Print Network [OSTI]

    Manisha,

    2008-10-10T23:59:59.000Z

    EVALUATION OF THERMAL STRESSES IN PLANAR SOLID OXIDE FUEL CELLS AS A FUNCTION OF THERMO-MECHANICAL PROPERTIES OF COMPONENT MATERIALS A Thesis by MANISHA Submitted to the Office of Graduate Studies of Texas A&M University... in partial fulfillment of the requirements for the degree of MASTERS OF SCIENCE August 2008 Major Subject: Mechanical Engineering EVALUATION OF THERMAL STRESSES IN PLANAR SOLID OXIDE FUEL CELLS AS A FUNCTION OF THERMO...

  9. Study of oxygen reduction mechanism on Ag modified1 Sm1.8Ce0.2CuO4 cathode for solid oxide fuel cell2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    to oxygen dissociation and diffusion process.26 KEYWORDS: Solid oxide fuel cell; Silver infiltrationStudy of oxygen reduction mechanism on Ag modified1 Sm1.8Ce0.2CuO4 cathode for solid oxide fuel cell2 3 4 Li-Ping Sun1 -- Hui Zhao1 -- Qiang Li1 -- Li-Hua Huo1 -- Jean-Paul Viricelle*2 --5 Christophe

  10. MATERIAL AND PROCESS DEVELOPMENT LEADING TO ECONOMICAL HIGH-PERFORMANCE THIN-FILM SOLID OXIDE FUEL CELLS

    SciTech Connect (OSTI)

    Jie Guan; Atul Verma; Nguyen Minh

    2003-04-01T23:59:59.000Z

    This document summarizes the technical progress from September 2002 to March 2003 for the program, Material and Process Development Leading to Economical High-Performance Thin-Film Solid Oxide Fuel Cells, contract number DE-AC26-00NT40711. The causes have been identified for the unstable open circuit voltage (OCV) and low performance exhibited by the anode-supported lanthanum gallate based cells from the earlier development. Promising results have been obtained in the area of synthesis of electrolyte and cathode powders, which showed excellent sintering and densification at low temperatures. The fabrication of cells using tapecalendering process for anode-supported thin lanthanum gallate electrolyte cells and their performance optimization is in progress.

  11. Electrochemical Performance and Stability of the Cathode for Solid Oxide Fuel Cells IV. On the Ohmic loss in anode supported button cells with LSM or LSCF cathodes

    SciTech Connect (OSTI)

    Lu, Zigui; Zhou, Xiao Dong; Templeton, Jared W.; Stevenson, Jeffry W.

    2010-05-08T23:59:59.000Z

    Anode-supported solid oxide fuel cells (SOFC) with a variety of YSZ electrolyte thicknesses were fabricated by tape casting and lamination. The preparation of the YSZ electrolyte tapes with various thicknesses was accomplished by using doctor blades with different gaps between the precision machined, polished blade and the casting surface. The green tape was cut into discs, sintered at 1385°C for 2 h, and subsequently creep-flattened at 1350°C for 2 h. Either LSCF with an SDC interlayer or LSM+YSZ composite was used as the cathode material for the fuel cells. The ohmic resistances of these anode-supported fuel cells were characterized by electrochemical impedance spectroscopy at temperatures from 500°C to 750°C. A linear relationship was found between the ohmic resistance of the fuel cell and the YSZ electrolyte thickness at all the measuring temperatures for both LSCF and LSM+YSZ cathode fuel cells. The ionic conductivities of the YSZ electrolyte, derived for the fuel cells with LSM+YSZ or LSCF cathodes, were independent of the cathode material and cell configuration. The ionic conductivities of the YSZ electrolyte was slightly lower than that of the bulk material, possibly due to Ni-doping into the electrolyte. The fuel cell with a SDC interlayer and LSCF cathode showed larger intercept resistance than the fuel cell with LSM+YSZ cathode, which was possibly due to the imperfect contact between the SDC interlayer and the YSZ electrolyte and the migration of Zr into the SDC interlayer to form an insulating solid solution during cell fabrication. Calculations of the contribution of the YSZ electrolyte to the total ohmic resistance showed that YSZ was still a satisfactory electrolyte at temperatures above 650°C. Explorations should be directed to reduce the intercept resistance to achieve significant improvement in cell performance.

  12. Effects of Tungsten Oxide Addition on the Electrochemical Performance of Nanoscale Tantalum Oxide-Based Electrocatalysts for Proton Exchange Membrane PEM Fuel Cells

    SciTech Connect (OSTI)

    Oh, Tak Keun; Kim, Jin Yong; Shin, Yongsoon; Engelhard, Mark H.; Weil, K. Scott

    2011-08-01T23:59:59.000Z

    In the present study, the properties of a series of non-platinum based nanoscale tantalum oxide/tungsten oxide-carbon composite catalysts was investigated for potential use in catalyzing the oxygen reduction reaction (ORR) on the cathode side of a PEM fuel cell membrane electrode assembly. Electrochemical performance was measured using a half-cell test set up with a rotating disc electrode and compared with a commercial platinum-on-carbon (Pt/C) catalyst. Overall, all of the oxide-based composite catalysts exhibit high ORR on-set potentials, comparable to that of the baseline Pt/C catalyst. The addition of tungsten oxide as a dopant to tantalum oxide greatly improved mass specific current density. Maximum performance was achieved with a catalyst containing 32 mol% of tungsten oxide, which exhibited a mass specific current density ~8% that of the Pt/C catalyst at 0.6 V vs. the normal hydrogen electrode (NHE) and ~35% that of the Pt/C catalyst at 0.2 V vs. NHE. Results from X-ray photoelectron spectroscopy analysis indicated that the tungsten cations in the composite catalysts exist in the +6 oxidation state, while the tantalum displays an average valence of +5, suggesting that the addition of tungsten likely creates an oxygen excess in the tantalum oxide structure that influences its oxygen absorption kinetics. When the 32mol% tungsten doped catalyst loading on the working electrode was increased to five times that of the original loading (which was equivalent to that of the baseline Pt/C catalyst), the area specific current density improved four fold, achieving an area specific current density ~35% that of the Pt/C catalyst at 0.6 V vs. NHE.

  13. Zirconia fuel cells and electrolyzers

    SciTech Connect (OSTI)

    Isaacs, H.S.

    1980-01-01T23:59:59.000Z

    A review of the historical development, operation, and problems of solid oxide electrolyte fuel cells and electrolyzers is given. The thermodynamic principles of operation are reviewed, and the overvoltage losses during operation of fuel cells and steam electrolyzers are discussed including physical factors and electrochemical factors. (WHK)

  14. Fuel cell generator with fuel electrodes that control on-cell fuel reformation

    DOE Patents [OSTI]

    Ruka, Roswell J. (Pittsburgh, PA); Basel, Richard A. (Pittsburgh, PA); Zhang, Gong (Murrysville, PA)

    2011-10-25T23:59:59.000Z

    A fuel cell for a fuel cell generator including a housing including a gas flow path for receiving a fuel from a fuel source and directing the fuel across the fuel cell. The fuel cell includes an elongate member including opposing first and second ends and defining an interior cathode portion and an exterior anode portion. The interior cathode portion includes an electrode in contact with an oxidant flow path. The exterior anode portion includes an electrode in contact with the fuel in the gas flow path. The anode portion includes a catalyst material for effecting fuel reformation along the fuel cell between the opposing ends. A fuel reformation control layer is applied over the catalyst material for reducing a rate of fuel reformation on the fuel cell. The control layer effects a variable reformation rate along the length of the fuel cell.

  15. Enhanced Thermal Conductivity Oxide Fuels

    SciTech Connect (OSTI)

    Alvin Solomon; Shripad Revankar; J. Kevin McCoy

    2006-01-17T23:59:59.000Z

    the purpose of this project was to investigate the feasibility of increasing the thermal conductivity of oxide fuels by adding small fractions of a high conductivity solid phase.

  16. Effects of temperature and pressure on the performance of a solid oxide fuel cell running on steam reformate of kerosene

    SciTech Connect (OSTI)

    Chick, Lawrence A.; Marina, Olga A.; Coyle, Christopher A.; Thomsen, Edwin C.

    2013-08-15T23:59:59.000Z

    A button solid oxide fuel cell with a La0.6Sr0.4Co0.2Fe0.8O3 cathode and a nickel-YSZ anode was tested over a range of temperatures from 650 to 800°C and a range of pressures from 101 to 724 kPa. The fuel was simulated steam-reformed kerosene and the oxidant was air. The observed increases in open circuit voltages (OCV) were accurately predicted by the Nernst equation. Kinetics also increased, although the power boost due to kinetics was about two thirds as large as the boost due to OCV. The total power boost in going from 101 to 724 kPa at 750°C and 0.8 volts was 66%. Impedance spectroscopy demonstrated a significant decrease in electrodic losses at elevated pressures. Complex impedance spectra were dominated by a combination of low frequency processes that decreased markedly with increasing pressure. A composite of high-frequency processes also decreased with pressure, but to a lesser extent. An empirical algorithm that accurately predicts the increased fuel cell performance at elevated pressures was developed for our results and was also suitable for some, but not all, data reported in the literature.

  17. Experimental characterization of glass-ceramic seal properties and their constitutive implementation in solid oxide fuel cell stack models

    SciTech Connect (OSTI)

    Stephens, Elizabeth V.; Vetrano, John S.; Koeppel, Brian J.; Chou, Y. S.; Sun, Xin; Khaleel, Mohammad A.

    2009-09-05T23:59:59.000Z

    This paper discusses experimental determination of solid oxide fuel cell (SOFC) glass-ceramic seal material properties and seal/interconnect interfacial properties to support development and optimization of SOFC designs through modeling. Material property experiments such as dynamic resonance, dilatometry, flexure, creep, tensile, and shear tests were performed on PNNL’s glass-ceramic sealant material, designated as G18, to obtain property data essential to constitutive and numerical model development. Characterization methods for the physical, mechanical, and interfacial properties of the sealing material, results, and their application to the constitutive implementation in SOFC stack modeling are described.

  18. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September bycost than both. Solar-hydrogen fuel- cell vehicles would becost than both. Solar-hydrogen fuel- cell vehicles would be

  19. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    vehicles except the methanol/fuel cell vehicle and the BPEVe estimates for the methanol/fuel cell vehicle are based onbiomass-derived methanol used in fuel cell vehicles. Several

  20. Compact fuel cell

    DOE Patents [OSTI]

    Jacobson, Craig (Moraga, CA); DeJonghe, Lutgard C. (Lafayette, CA); Lu, Chun (Richland, WA)

    2010-10-19T23:59:59.000Z

    A novel electrochemical cell which may be a solid oxide fuel cell (SOFC) is disclosed where the cathodes (144, 140) may be exposed to the air and open to the ambient atmosphere without further housing. Current collector (145) extends through a first cathode on one side of a unit and over the unit through the cathode on the other side of the unit and is in electrical contact via lead (146) with housing unit (122 and 124). Electrical insulator (170) prevents electrical contact between two units. Fuel inlet manifold (134) allows fuel to communicate with internal space (138) between the anodes (154 and 156). Electrically insulating members (164 and 166) prevent the current collector from being in electrical contact with the anode.

  1. ZERO EMISSION POWER PLANTS USING SOLID OXIDE FUEL CELLS AND OXYGEN TRANSPORT MEMBRANES

    SciTech Connect (OSTI)

    G. Maxwell Christie; Troy M. Raybold

    2003-06-10T23:59:59.000Z

    Over 16,700 hours of operational experience was gained for the Oxygen Transport Membrane (OTM) elements of the proposed SOFC/OTM zero-emission power generation concept. It was repeatedly demonstrated that OTMs with no additional oxidation catalysts were able to completely oxidize the remaining depleted fuel in a simulated SOFC anode exhaust at an O{sub 2} flux that met initial targets. In such cases, neither residual CO nor H{sub 2} were detected to the limits of the gas chromatograph (<10 ppm). Dried OTM afterburner exhaust streams contained up to 99.5% CO{sub 2}. Oxygen flux through modified OTMs was double or even triple that of the standard OTMs used for the majority of testing purposes. Both the standard and modified membranes in laboratory-scale and demonstration-sized formats exhibited stable performance over extended periods (2300 to 3500 hours or 3 to 5 months). Reactor contaminants, were determined to negatively impact OTM performance stability. A method of preventing OTM performance degradation was developed and proven to be effective. Information concerning OTM and seal reliability over extended periods and through various chemical and thermal shocks and cycles was also obtained. These findings were used to develop several conceptual designs for pilot (10 kWe) and commercial-scale (250 kWe) SOFC/OTM zero emission power generation systems.

  2. Fuel Cell Handbook, Fourth Edition

    SciTech Connect (OSTI)

    Stauffer, D.B; Hirschenhofer, J.H.; Klett, M.G.; Engleman, R.R.

    1998-11-01T23:59:59.000Z

    Robust progress has been made in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in January 1994. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultra high efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 6 describe the four major fuel cell types and their performance based on cell operating conditions. The section on polymer electrolyte membrane fuel cells has been added to reflect their emergence as a significant fuel cell technology. Phosphoric acid, molten carbonate, and solid oxide fuel cell technology description sections have been updated from the previous edition. New information indicates that manufacturers have stayed with proven cell designs, focusing instead on advancing the system surrounding the fuel cell to lower life cycle costs. Section 7, Fuel Cell Systems, has been significantly revised to characterize near-term and next-generation fuel cell power plant systems at a conceptual level of detail. Section 8 provides examples of practical fuel cell system calculations. A list of fuel cell URLs is included in the Appendix. A new index assists the reader in locating specific information quickly.

  3. DOE Fuel Cell Technologies Office: 2013 Fuel Cell Seminar and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Fuel Cell Technologies Office: 2013 Fuel Cell Seminar and Energy Exposition DOE Fuel Cell Technologies Office: 2013 Fuel Cell Seminar and Energy Exposition Overview of DOE's...

  4. DOE Fuel Cell Technologies Office Record 13012: Fuel Cell System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Technologies Office Record 13012: Fuel Cell System Cost - 2013 DOE Fuel Cell Technologies Office Record 13012: Fuel Cell System Cost - 2013 This program record from the...

  5. Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar...

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar and Exposition Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar and Exposition Presentation by...

  6. Effect of Creep of Ferritic Interconnect on Long-Term Performance of Solid Oxide Fuel Cell Stacks

    SciTech Connect (OSTI)

    Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.

    2010-08-01T23:59:59.000Z

    High-temperature ferritic alloys are potential candidates as interconnect (IC) materials and spacers due to their low cost and coefficient of thermal expansion (CTE) compatibility with other components for most of the solid oxide fuel cells (SOFCs) . However, creep deformation becomes relevant for a material when the operating temperature exceeds or even is less than half of its melting temperature (in degrees of Kelvin). The operating temperatures for most of the SOFCs under development are around 1,073 K. With around 1,800 K of the melting temperature for most stainless steel, possible creep deformation of ferritic IC under the typical cell operating temperature should not be neglected. In this paper, the effects of IC creep behavior on stack geometry change and the stress redistribution of different cell components are predicted and summarized. The goal of the study is to investigate the performance of the fuel cell stack by obtaining the changes in fuel- and air-channel geometry due to creep of the ferritic stainless steel IC, therefore indicating possible changes in SOFC performance under long-term operations. The ferritic IC creep model was incorporated into software SOFC-MP and Mentat-FC, and finite element analyses were performed to quantify the deformed configuration of the SOFC stack under the long-term steady-state operating temperature. It was found that the creep behavior of the ferritic stainless steel IC contributes to narrowing of both the fuel- and the air-flow channels. In addition, stress re-distribution of the cell components suggests the need for a compliant sealing material that also relaxes at operating temperature.

  7. TESTING AND PERFORMANCE ANALYSIS OF NASA 5 CM BY 5 CM BI-SUPPORTED SOLID OXIDE ELECTROLYSIS CELLS OPERATED IN BOTH FUEL CELL AND STEAM ELECTROLYSIS MODES

    SciTech Connect (OSTI)

    R. C. O'Brien; J. E. O'Brien; C. M. Stoots; X. Zhang; S. C. Farmer; T. L. Cable; J. A. Setlock

    2011-11-01T23:59:59.000Z

    A series of 5 cm by 5 cm bi-supported Solid Oxide Electrolysis Cells (SOEC) were produced by NASA for the Idaho National Laboratory (INL) and tested under the INL High Temperature Steam Electrolysis program. The results from the experimental demonstration of cell operation for both hydrogen production and operation as fuel cells is presented. An overview of the cell technology, test apparatus and performance analysis is also provided. The INL High Temperature Steam Electrolysis laboratory has developed significant test infrastructure in support of single cell and stack performance analyses. An overview of the single cell test apparatus is presented. The test data presented in this paper is representative of a first batch of NASA's prototypic 5 cm by 5 cm SOEC single cells. Clearly a significant relationship between the operational current density and cell degradation rate is evident. While the performance of these cells was lower than anticipated, in-house testing at NASA Glenn has yielded significantly higher performance and lower degradation rates with subsequent production batches of cells. Current post-test microstructure analyses of the cells tested at INL will be published in a future paper. Modification to cell compositions and cell reduction techniques will be altered in the next series of cells to be delivered to INL with the aim to decrease the cell degradation rate while allowing for higher operational current densities to be sustained. Results from the testing of new batches of single cells will be presented in a future paper.

  8. Corrosion resistant PEM fuel cell

    DOE Patents [OSTI]

    Li, Y.; Meng, W.J.; Swathirajan, S.; Harris, S.J.; Doll, G.L.

    1997-04-29T23:59:59.000Z

    The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell`s operating environment. Stainless steels rich in Cr, Ni, and Mo are particularly effective protective interlayers. 6 figs.

  9. Fuel Cell Handbook, Fifth Edition

    SciTech Connect (OSTI)

    Energy and Environmental Solutions

    2000-10-31T23:59:59.000Z

    Progress continues in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in November 1998. Uppermost, polymer electrolyte fuel cells, molten carbonate fuel cells, and solid oxide fuel cells have been demonstrated at commercial size in power plants. The previously demonstrated phosphoric acid fuel cells have entered the marketplace with more than 220 power plants delivered. Highlighting this commercial entry, the phosphoric acid power plant fleet has demonstrated 95+% availability and several units have passed 40,000 hours of operation. One unit has operated over 49,000 hours. Early expectations of very low emissions and relatively high efficiencies have been met in power plants with each type of fuel cell. Fuel flexibility has been demonstrated using natural gas, propane, landfill gas, anaerobic digester gas, military logistic fuels, and coal gas, greatly expanding market opportunities. Transportation markets worldwide have shown remarkable interest in fuel cells; nearly every major vehicle manufacturer in the U.S., Europe, and the Far East is supporting development. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultrahigh efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 8 describe the six major fuel cell types and their performance based on cell operating conditions. Alkaline and intermediate solid state fuel cells were added to this edition of the Handbook. New information indicates that manufacturers have stayed with proven cell designs, focusing instead on advancing the system surrounding the fuel cell to lower life cycle costs. Section 9, Fuel Cell Systems, has been significantly revised to characterize near-term and next-generation fuel cell power plant systems at a conceptual level of detail. Section 10 provides examples of practical fuel cell system calculations. A list of fuel cell URLs is included in the Appendix. A new index assists the reader in locating specific information quickly.

  10. Fuel Cell Comparison of Distributed Power Generation Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model Fuel Cell Development Status Solid Oxide Fuel Cell (SOFC) Technology for Greener Airplanes...

  11. U.S. solid oxide fuel cell powerplant development and commercialization

    SciTech Connect (OSTI)

    Williams, M.C. [Fuel Cells Product Manager, USDOE Federal Energy Technology Center, Morgantown, WV (United States)

    1997-04-01T23:59:59.000Z

    SOFC powerplants have many potential attributes which make them suitable for distributed generation applications. Power densities for SOFCs are very promising. Power densities possibilities of 20 watts per square centimeter have been reported to be possible. Westinghouse Electric is the leader in tubular SOFC technology. Several completely packaged and self-contained generators, up to nominal 25-kW size, have been manufactured and tested by Westinghouse Electric. A manufacturing facility currently produces these generators. In the US, several planar designs are also under development. Organizations developing planar designs include IGT, Celamalec, Ztek, TMI, and Allied Signal Aerospace. One of the most promising developments in SOFC powerplants is the conceptual development of very high efficiency fuel cell gas turbine powerplants. Combination of SOFC and turbine has the potential for enormous synergies.

  12. POLYMER ELECTROLYTE FUEL CELLS

    E-Print Network [OSTI]

    Petta, Jason

    POLYMER ELECTROLYTE FUEL CELLS: The Gas Diffusion Layer Johannah Itescu Princeton University PRISM REU #12;PEM FUEL CELLS: A little background information I. What do fuel cells do? Generate electricity through chemical reaction #12;PEM FUEL CELLS: A little background information -+ + eHH 442 2 0244 22 He

  13. 1990 fuel cell seminar: Program and abstracts

    SciTech Connect (OSTI)

    Not Available

    1990-12-31T23:59:59.000Z

    This volume contains author prepared short resumes of the presentations at the 1990 Fuel Cell Seminar held November 25-28, 1990 in Phoenix, Arizona. Contained herein are 134 short descriptions organized into topic areas entitled An Environmental Overview, Transportation Applications, Technology Advancements for Molten Carbonate Fuel Cells, Technology Advancements for Solid Fuel Cells, Component Technologies and Systems Analysis, Stationary Power Applications, Marine and Space Applications, Technology Advancements for Acid Type Fuel Cells, and Technology Advancement for Solid Oxide Fuel Cells.

  14. Pore Scale Modeling of the Reactive Transport of Chromium in the Cathode of a Solid Oxide Fuel Cell

    SciTech Connect (OSTI)

    Ryan, Emily M.; Tartakovsky, Alexandre M.; Recknagle, Kurtis P.; Khaleel, Mohammad A.; Amon, Cristina

    2011-01-01T23:59:59.000Z

    We present a pore scale model of a solid oxide fuel cell (SOFC) cathode. Volatile chromium species are known to migrate from the current collector of the SOFC into the cathode where over time they decrease the voltage output of the fuel cell. A pore scale model is used to investigate the reactive transport of chromium species in the cathode and to study the driving forces of chromium poisoning. A multi-scale modeling approach is proposed which uses a cell level model of the cathode, air channel and current collector to determine the boundary conditions for a pore scale model of a section of the cathode. The pore scale model uses a discrete representation of the cathode to explicitly model the surface reactions of oxygen and chromium with a cathode material. The pore scale model is used to study the reaction mechanisms of chromium by considering the effects of reaction rates, diffusion coefficients, chromium vaporization, and oxygen consumption on chromium’s deposition in the cathode. The study shows that chromium poisoning is most significantly affected by the chromium reaction rates in the cathode and that the reaction rates are a function of the local current density in the cathode.

  15. Combined Theoretical and Experimental Investigation and Design of H2S Tolerant Anode for Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Gerardine G. Botte; Damilola Daramola; Madhivanan Muthuvel

    2009-01-07T23:59:59.000Z

    A solid oxide fuel cell (SOFC) is a high temperature fuel cell and it normally operates in the range of 850 to 1000 C. Coal syngas has been considered for use in SOFC systems to produce electric power, due to its high temperature and high hydrogen and carbon monoxide content. However, coal syngas also has contaminants like carbon dioxide (CO{sub 2}) and hydrogen sulfide (H{sub 2}S). Among these contaminants, H{sub 2}S is detrimental to electrode material in SOFC. Commonly used anode material in SOFC system is nickel-yttria stabilized zirconia (Ni-YSZ). The presence of H{sub 2}S in the hydrogen stream will damage the Ni anode and hinder the performance of SOFC. In the present study, an attempt was made to understand the mechanism of anode (Ni-YSZ) deterioration by H{sub 2}S. The study used computation methods such as quantum chemistry calculations and molecular dynamics to predict the model for anode destruction by H{sub 2}S. This was done using binding energies to predict the thermodynamics and Raman spectroscopy to predict molecular vibrations and surface interactions. On the experimental side, a test stand has been built with the ability to analyze button cells at high temperature under syngas conditions.

  16. Internal reforming solid oxide fuel cell-gas turbine combined cycles (IRSOFC-GT): Part A -- Cell model and cycle thermodynamic analysis

    SciTech Connect (OSTI)

    Massardo, A.F.; Lubelli, F.

    2000-01-01T23:59:59.000Z

    The aim of this work is to investigate the performance of internal reforming solid oxide fuel cell (IRSOFC) and gas turbine (GT) combined cycles. To study complex systems involving IRSOFC a mathematical model has been developed that simulates the fuel cell steady-state operation. The model, tested with a data available in literature, has been used for a complete IRSOFC parametric analysis taking into account the influence of cell operative pressure, cell and stream temperatures, fuel oxidant flow rates and composition, etc. The analysis of IRSOFC-GT combined cycles has been carried out by using the Thermo Economic Modular Program TEMP.The code has been modified to allow IRSOFC, external reformer and flue gas condenser performance to be taken into account. Using as test case the IRSOFC-GT combined plant proposed by Harvey and Richter (1994) the capability of the modified TEMP code has been demonstrated. The thermodynamic analysis of a number of IRSOFC-GT combined cycles is presented and discussed, taking into account the influence of several technological constraints. The results are presented for both atmospheric and pressurized IRSOFC.

  17. Fuel cell with internal flow control

    DOE Patents [OSTI]

    Haltiner, Jr., Karl J. (Fairport, NY); Venkiteswaran, Arun (Karnataka, IN)

    2012-06-12T23:59:59.000Z

    A fuel cell stack is provided with a plurality of fuel cell cassettes where each fuel cell cassette has a fuel cell with an anode and cathode. The fuel cell stack includes an anode supply chimney for supplying fuel to the anode of each fuel cell cassette, an anode return chimney for removing anode exhaust from the anode of each fuel cell cassette, a cathode supply chimney for supplying oxidant to the cathode of each fuel cell cassette, and a cathode return chimney for removing cathode exhaust from the cathode of each fuel cell cassette. A first fuel cell cassette includes a flow control member disposed between the anode supply chimney and the anode return chimney or between the cathode supply chimney and the cathode return chimney such that the flow control member provides a flow restriction different from at least one other fuel cell cassettes.

  18. Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar...

    Energy Savers [EERE]

    Update: 2010 Fuel Cell Seminar and Exposition Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar and Exposition Presentation by Sunita Satyapal at the 2010 Fuel...

  19. Design Principles for Oxygen-Reduction Activity on Perovskite Oxide Catalysts for Fuel Cells and Metal-air Batteries

    SciTech Connect (OSTI)

    J Suntivich; H Gasteiger; N Yabuuchi; H Nakanishi; J Goodenough; Y Shao-Horn

    2011-12-31T23:59:59.000Z

    The prohibitive cost and scarcity of the noble-metal catalysts needed for catalysing the oxygen reduction reaction (ORR) in fuel cells and metal-air batteries limit the commercialization of these clean-energy technologies. Identifying a catalyst design principle that links material properties to the catalytic activity can accelerate the search for highly active and abundant transition-metal-oxide catalysts to replace platinum. Here, we demonstrate that the ORR activity for oxide catalysts primarily correlates to {sigma}*-orbital (e{sub g}) occupation and the extent of B-site transition-metal-oxygen covalency, which serves as a secondary activity descriptor. Our findings reflect the critical influences of the {sigma}* orbital and metal-oxygen covalency on the competition between O{sub 2}{sup 2-}/OH{sup -} displacement and OH{sup -} regeneration on surface transition-metal ions as the rate-limiting steps of the ORR, and thus highlight the importance of electronic structure in controlling oxide catalytic activity.

  20. SOLID OXIDE FUEL CELL MANUFACTURING COST MODEL: SIMULATING RELATIONSHIPS BETWEEN PERFORMANCE, MANUFACTURING, AND COST OF PRODUCTION

    SciTech Connect (OSTI)

    Eric J. Carlson; Yong Yang; Chandler Fulton

    2004-04-20T23:59:59.000Z

    The successful commercialization of fuel cells will depend on the achievement of competitive system costs and efficiencies. System cost directly impacts the capital equipment component of cost of electricity (COE) and is a major contributor to the O and M component. The replacement costs for equipment (also heavily influenced by stack life) is generally a major contributor to O and M costs. In this project, they worked with the SECA industrial teams to estimate the impact of general manufacturing issues of interest on stack cost using an activities-based cost model for anode-supported planar SOFC stacks with metallic interconnects. An earlier model developed for NETL for anode supported planar SOFCs was enhanced by a linkage to a performance/thermal/mechanical model, by addition of Quality Control steps to the process flow with specific characterization methods, and by assessment of economies of scale. The 3-dimensional adiabatic performance model was used to calculate the average power density for the assumed geometry and operating conditions (i.e., inlet and exhaust temperatures, utilization, and fuel composition) based on publicly available polarizations curves. The SECA team provided guidance on what manufacturing and design issues should be assessed in this Phase I demonstration of cost modeling capabilities. They considered the impact of the following parameters on yield and cost: layer thickness (i.e., anode, electrolyte, and cathode) on cost and stress levels, statistical nature of ceramic material failure on yield, and Quality Control steps and strategies. In this demonstration of the capabilities of the linked model, only the active stack (i.e., anode, electrolyte, and cathode) and interconnect materials were included in the analysis. Factory costs are presented on an area and kilowatt basis to allow developers to extrapolate to their level of performance, stack design, materials, seal and system configurations, and internal corporate overheads and margin goals.

  1. Microbial fuel cells

    DOE Patents [OSTI]

    Nealson, Kenneth H; Pirbazari, Massoud; Hsu, Lewis

    2013-04-09T23:59:59.000Z

    A microbial fuel cell includes an anode compartment with an anode and an anode biocatalyst and a cathode compartment with a cathode and a cathode biocatalyst, with a membrane positioned between the anode compartment and the cathode compartment, and an electrical pathway between the anode and the cathode. The anode biocatalyst is capable of catalyzing oxidation of an organic substance, and the cathode biocatalyst is capable of catalyzing reduction of an inorganic substance. The reduced organic substance can form a precipitate, thereby removing the inorganic substance from solution. In some cases, the anode biocatalyst is capable of catalyzing oxidation of an inorganic substance, and the cathode biocatalyst is capable of catalyzing reduction of an organic or inorganic substance.

  2. NOVEL ELECTRODE MATERIALS FOR LOW-TEMPERATURE SOLID-OXIDE FUEL CELLS

    SciTech Connect (OSTI)

    X. Lu; C. Xia; Y. Liu; W. Rauch; M. Liu

    2002-12-01T23:59:59.000Z

    Composite electrodes consisting of silver and bismuth vanadates exhibit remarkable catalytic activity for oxygen reduction at 500-550 C and greatly reduce the cathode-electrolyte (doped ceria) resistances of low temperature SOFCs, down to about 0.53 {Omega}cm{sup 2} at 500 C and 0.21 {Omega}cm{sup 2} at 550 C. The observed power densities of 231, 332, and 443 mWcm{sup -2} at 500, 525 and 550 C, respectively, make it possible to operate SOFCs at temperatures about 500 C. Using in situ potential dependent FTIR emission spectroscopy, we have found evidence for two, possibly three distinct di-oxygen species present on the electrode surface. We have successfully identified which surface oxygen species is present under a particular electrical or chemical condition and have been able to deduce the reaction mechanisms. This technique will be used to probe the gas-solid interactions at or near the TPB and on the surfaces of mixed-conducting electrodes in an effort to understand the molecular processes relevant to the intrinsic catalytic activity. Broad spectral features are assigned to the polarization-induced changes in the optical properties of the electrode surface layer. The ability of producing vastly different microstructures and morphologies of the very same material is critical to the fabrication of functionally graded electrodes for solid-state electrochemical devices, such as SOFCs and lithium batteries. By carefully adjusting deposition parameters of combustion CVD, we have successfully produced oxide nano-powders with the size of 30 {approx} 200 nm. Porous films with various microstructures and morphologies are also deposited on several substrates by systematic adjustment of deposition parameters. Symmetrical cells were fabricated by depositing cathode materials on both sides of GDC electrolytes.

  3. Electrical Stability of a Novel Refractory Sealing Glass in a Dual Environment for Solid Oxide Fuel Cell Applications

    SciTech Connect (OSTI)

    Chou, Y. S.; Stevenson, Jeffry W.; Meinhardt, Kerry D.

    2010-03-01T23:59:59.000Z

    A novel refractory alkaline-earth silicate (Sr-Ca-Y-B-Si) sealing glass was developed for solid oxide fuel cell (SOFC) applications. The glass was sealed between two metallic interconnect plates and tested for electrical stability at elevated temperatures and duel environments under DC loading. The isothermal aging results showed very stable electrical resistivity with values 5-9 orders of magnititudes higher than typical SOFC function materials at 850 degrees C for ~700 hr. For comparison, the state-of-the-art sealing glass (G18, Ba-Ca-Al-B-Si) was also evaluated in a similar condition and showed less stable in accelerated tests at 830 degrees C for ~100 hr. Interfacial microstruicture was characterized and possible reactions were discussed.

  4. Ni coarsening in the three-phase solid oxide fuel cell anode - a phase-field simulation study

    E-Print Network [OSTI]

    Chen, Hsun-Yi; Cronin, J Scott; Wilson, James R; Barnett, Scott A; Thornton, Katsuyo

    2012-01-01T23:59:59.000Z

    Ni coarsening in Ni-yttria stabilized zirconia (YSZ) solid oxide fuel cell anodes is considered a major reason for anode degradation. We present a predictive, quantative modeling framework based on the phase-field approach to systematically examine coarsening kinetics in such anodes. The initial structures for simulations are experimentally acquired functional layers of anodes. Sample size effects and error analysis of contact angles are examined. Three phase boundary (TPB) lengths and Ni surface areas are quantatively identified on the basis of the active, dead-end, and isolated phase clusters throughout coarsening. Tortuosity evolution of the pores is also investigated. We find that phase clusters with larger characteristic length evolve slower than those with smaller length scales. As a result, coarsening has small positive effects on transport, and impacts less on the active Ni surface area than the total counter part. TPBs, however, are found to be sensitive to local morphological features and are only i...

  5. MATERIAL AND PROCESS DEVELOPMENT LEADING TO ECONOMICAL HIGH-PERFORMANCE THIN-FILM SOLID OXIDE FUEL CELLS

    SciTech Connect (OSTI)

    Jie Guan; Nguyen Minh

    2003-10-01T23:59:59.000Z

    This document summarizes the technical progress from April to September 2003 for the program, Material and Process Development Leading to Economical High-Performance Thin-Film Solid Oxide Fuel Cells, contract number DE-AC26-00NT40711. Characteristics of doped lanthanum gallate (LSGMF) powder suitable for thin electrolyte fabrication have been defined. Bilayers with thin LSGMF electrolyte supported on an anode were fabricated and the fabrication process was improved. Preliminary performance was characterized. High performance cathode material Sr{sub 0.5}Sm{sub 0.5}CoO{sub 3} has been down-selected and is being optimized by modifying materials characteristics and processing parameters. The selected cathode exhibited excellent performance with cathode polarization of {approx}0.23 ohm-cm{sup 2} at 600 C.

  6. Fuel Cell Technologies Overview

    Broader source: Energy.gov (indexed) [DOE]

    Cells Key Benefits Very High Efficiency Reduced CO 2 Emissions Reduced Oil Use Reduced Air Pollution Fuel Flexibility * 40 - 60% (electrical) * > 70% (electrical, hybrid fuel...

  7. High Performance Ceramic Interconnect Material for Solid Oxide Fuel Cells (SOFCs): Ca- and Transition Metal-doped Yttrium Chromite

    SciTech Connect (OSTI)

    Yoon, Kyung J.; Stevenson, Jeffry W.; Marina, Olga A.

    2011-10-15T23:59:59.000Z

    The effect of transition metal substitution on thermal and electrical properties of Ca-doped yttrium chromite was investigated in relation to use as a ceramic interconnect in high temperature solid oxide fuel cells (SOFCs). 10 at% Co, 4 at% Ni, and 1 at% Cu substitution on B-site of 20 at% Ca-doped yttrium chromite led to a close match of thermal expansion coefficient (TEC) with that of 8 mol% yttria-stabilized zirconia (YSZ), and a single phase Y0.8Ca0.2Cr0.85Co0.1Ni0.04Cu0.01O3 remained stable between 25 and 1100 degree C over a wide oxygen partial pressure range. Doping with Cu significantly facilitated densification of yttrium chromite. Ni dopant improved both electrical conductivity and dimensional stability in reducing environments, likely through diminishing the oxygen vacancy formation. Substitution with Co substantially enhanced electrical conductivity in oxidizing atmosphere, which was attributed to an increase in charge carrier density and hopping mobility. Electrical conductivity of Y0.8Ca0.2Cr0.85Co0.1Ni0.04Cu0.01O3 at 900 degree C is 57 S/cm in air and 11 S/cm in fuel (pO2=5×10^-17 atm) environments. Chemical compatibility of doped yttrium chromite with other cell components was verified at the processing temperatures. Based on the chemical and dimensional stability, sinterability, and thermal and electrical properties, Y0.8Ca0.2Cr0.85Co0.1Ni0.04Cu0.01O3 is suggested as a promising SOFC ceramic interconnect to potentially overcome technical limitations of conventional acceptor-doped lanthanum chromites.

  8. Corrosion resistant PEM fuel cell

    DOE Patents [OSTI]

    Li, Yang (Troy, MI); Meng, Wen-Jin (Okemos, MI); Swathirajan, Swathy (West Bloomfield, MI); Harris, Stephen Joel (Bloomfield, MI); Doll, Gary Lynn (Orion Township, Oakland County, MI)

    2002-01-01T23:59:59.000Z

    The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell's operating environment. Stainless steels rich in CR, Ni, and Mo are particularly effective protective interlayers.

  9. Corrosion resistant PEM fuel cell

    DOE Patents [OSTI]

    Li, Yang (Troy, MI); Meng, Wen-Jin (Okemos, MI); Swathirajan, Swathy (West Bloomfield, MI); Harris, Stephen J. (Bloomfield, MI); Doll, Gary L. (Orion Township, Oakland County, MI)

    1997-01-01T23:59:59.000Z

    The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell's operating environment. Stainless steels rich in CR, Ni, and Mo are particularly effective protective interlayers.

  10. Corrosion resistant PEM fuel cell

    DOE Patents [OSTI]

    Li, Yang; Meng, Wen-Jin; Swathirajan, Swathy; Harris, Stephen Joel; Doll, Gary Lynn

    2001-07-17T23:59:59.000Z

    The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell's operating environment. Stainless steels rich in CR, Ni, and Mo are particularly effective protective interlayers.

  11. Demonstration of a Highly Efficient Solid Oxide Fuel Cell Power System Using Adiabatic Steam Reforming and Anode Gas Recirculation

    SciTech Connect (OSTI)

    Powell, Michael R.; Meinhardt, Kerry D.; Sprenkle, Vincent L.; Chick, Lawrence A.; Mcvay, Gary L.

    2012-05-01T23:59:59.000Z

    Solid oxide fuel cells (SOFC) are currently being developed for a wide variety of applications because of their high efficiency at multiple power levels. Applications for SOFCs encompass a large range of power levels including 1-2 kW residential combined heat and power applications, 100-250 kW sized systems for distributed generation and grid extension, and MW-scale power plants utilizing coal. This paper reports on the development of a highly efficient, small-scale SOFC power system operating on methane. The system uses adiabatic steam reforming of methane and anode gas recirculation to achieve high net electrical efficiency. The anode exit gas is recirculated and all of the heat and water required for the endothermic reforming reaction are provided by the anode gas emerging from the SOFC stack. Although the single-pass fuel utilization is only about 55%, because of the anode gas recirculation the overall fuel utilization is up to 93%. The demonstrated system achieved gross power output of 1650 to 2150 watts with a maximum net LHV efficiency of 56.7% at 1720 watts. Overall system efficiency could be further improved to over 60% with use of properly sized blowers.

  12. Advanced Materials for Reversible Solid Oxide Fuel Cell (RSOFC), Dual Mode

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAcceleratedDepartment of Energy LWRTheOperation with Low

  13. Solid Oxide Fuel Cell Balance of Plant and Stack Component Integration |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmallConfidential,2Cycleof Energy (SOFC)

  14. Solid Oxide Fuel Cell System (SOFC) Technology R&D Needs (Presentation) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmallConfidential,2Cycleof Energy (SOFC)Solid

  15. Solid Oxide Fuel Cell Systems for APU Functions and Beyond | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmallConfidential,2Cycleof Energy

  16. Solid Oxide Fuel Cell and Power System Development at PNNL | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmallConfidential,2Cycleof EnergyEnergy and Power

  17. Solid Oxide Fuel Cells (SOFC) as Military APU Replacements | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmallConfidential,2Cycleof EnergyEnergy and

  18. Fuel cell system for transportation applications

    DOE Patents [OSTI]

    Kumar, Romesh (Naperville, IL); Ahmed, Shabbir (Evanston, IL); Krumpelt, Michael (Naperville, IL); Myles, Kevin M. (Downers Grove, IL)

    1993-01-01T23:59:59.000Z

    A propulsion system for a vehicle having pairs of front and rear wheels and a fuel tank. An electrically driven motor having an output shaft operatively connected to at least one of said pair of wheels is connected to a fuel cell having a positive electrode and a negative electrode separated by an electrolyte for producing dc power to operate the motor. A partial oxidation reformer is connected both to the fuel tank and to the fuel cell receives hydrogen-containing fuel from the fuel tank and water and air and for partially oxidizing and reforming the fuel with water and air in the presence of an oxidizing catalyst and a reforming catalyst to produce a hydrogen-containing gas. The hydrogen-containing gas is sent from the partial oxidation reformer to the fuel cell negative electrode while air is transported to the fuel cell positive electrode to produce dc power for operating the electric motor.

  19. Fuel cell system for transportation applications

    DOE Patents [OSTI]

    Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

    1993-09-28T23:59:59.000Z

    A propulsion system is described for a vehicle having pairs of front and rear wheels and a fuel tank. An electrically driven motor having an output shaft operatively connected to at least one of said pair of wheels is connected to a fuel cell having a positive electrode and a negative electrode separated by an electrolyte for producing dc power to operate the motor. A partial oxidation reformer is connected both to the fuel tank and to the fuel cell and receives hydrogen-containing fuel from the fuel tank and uses water and air for partially oxidizing and reforming the fuel in the presence of an oxidizing catalyst and a reforming catalyst to produce a hydrogen-containing gas. The hydrogen-containing gas is sent from the partial oxidation reformer to the fuel cell negative electrode while air is transported to the fuel cell positive electrode to produce dc power for operating the electric motor. 3 figures.

  20. Fuel cell electric power production

    SciTech Connect (OSTI)

    Hwang, H.-S.; Heck, R. M.; Yarrington, R. M.

    1985-06-11T23:59:59.000Z

    A process for generating electricity from a fuel cell includes generating a hydrogen-rich gas as the fuel for the fuel cell by treating a hydrocarbon feed, which may be a normally liquid feed, in an autothermal reformer utilizing a first monolithic catalyst zone having palladium and platinum catalytic components therein and a second, platinum group metal steam reforming catalyst. Air is used as the oxidant in the hydrocarbon reforming zone and a low oxygen to carbon ratio is maintained to control the amount of dilution of the hydrogen-rich gas with nitrogen of the air without sustaining an insupportable amount of carbon deposition on the catalyst. Anode vent gas may be utilized as the fuel to preheat the inlet stream to the reformer. The fuel cell and the reformer are preferably operated at elevated pressures, up to about a pressure of 150 psia for the fuel cell.

  1. Fuel cell electric power production

    DOE Patents [OSTI]

    Hwang, Herng-Shinn (Livingston, NJ); Heck, Ronald M. (Frenchtown, NJ); Yarrington, Robert M. (Westfield, NJ)

    1985-01-01T23:59:59.000Z

    A process for generating electricity from a fuel cell includes generating a hydrogen-rich gas as the fuel for the fuel cell by treating a hydrocarbon feed, which may be a normally liquid feed, in an autothermal reformer utilizing a first monolithic catalyst zone having palladium and platinum catalytic components therein and a second, platinum group metal steam reforming catalyst. Air is used as the oxidant in the hydrocarbon reforming zone and a low oxygen to carbon ratio is maintained to control the amount of dilution of the hydrogen-rich gas with nitrogen of the air without sustaining an insupportable amount of carbon deposition on the catalyst. Anode vent gas may be utilized as the fuel to preheat the inlet stream to the reformer. The fuel cell and the reformer are preferably operated at elevated pressures, up to about a pressure of 150 psia for the fuel cell.

  2. EA-0510: High-Temperature Solid Oxide Fuel Cell (Sofc) Generator Development Project (METC), Churchill, Pennsylvania

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to enter into a 5-year cooperative agreement with the Westinghouse Electric Corporation for the development of high-temperature solid oxide...

  3. DOE Selects Research Projects to Advance Solid Oxide Fuel Cell Technology |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732 DOE F 243.2 Records Scheduling3-2008Department

  4. Digital Sofcell Shanghai ShenLi Goeta solid oxide fuel cell joint venture |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential Microhydro SiteDaytonDestilaria detheDiebuOpen Energy

  5. High Performance Mica-based Compressive Seals for Solid Oxide Fuel Cells -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanfordDepartmentInnovationHigh Flux Isotopethe Role

  6. Gas-Tight Sealing Method for Solid Oxide Fuel Cells - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof EnergyFunding OpportunityF GGaryPortal Gas-Tight

  7. Glass Fiber Mesh Method of Joining for Solid Oxide Fuel Cells - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heat Pump Basics AcrobatGiselle

  8. Glass-Ceramic Seal for Solid-Oxide Fuel Cells - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heat Pump Basics AcrobatGiselleGlass

  9. Electrochemical, Structural and Surface Characterization of Nickel/Zirconia Solid Oxide Fuel Cell Anodes in Coal Gas Containing Antimony

    SciTech Connect (OSTI)

    Marina, Olga A.; Pederson, Larry R.; Coyle, Christopher A.; Thomsen, Edwin C.; Nachimuthu, Ponnusamy; Edwards, Danny J.

    2011-02-27T23:59:59.000Z

    The interaction of antimony with the nickel-zirconia solid oxide fuel cell (SOFC) anode has been investigated. Tests with both anode-supported and electrolyte-supported button cells were performed at 700 and 800oC in synthetic coal gas containing 10 ppb to 9 ppm antimony. Minor performance loss was observed immediately after Sb introduction to coal gas resulting in ca. 5 % power output drop. While no further degradation was observed during the following several hundred hours of testing, cells abruptly and irreversibly failed after 800-1500 hours depending on Sb concentration and test temperature. Antimony was found to interact strongly with nickel and result in extensive alteration phase formation, consistent with expectations based on thermodynamic properties. Nickel antimonide phases, NiSb and Ni5Sb2, were partially coalesced into large grains and eventually affected electronic percolation through the anode support. Initial degradation was attributed to diffusion of antimony to the active anode/electrolyte interface to form an adsorption layer.

  10. Characterization and Quantification of Electronic and Ionic Ohmic Overpotential and Heat Generation in a Solid Oxide Fuel Cell Anode

    SciTech Connect (OSTI)

    Grew, Kyle N.; Izzo, Jr., John R.; Chiu, W. K. S.

    2011-01-01T23:59:59.000Z

    The development of a solid oxide fuel cell (SOFC) with a higher efficiency and power density requires an improved understanding and treatment of the irreversibilities. Losses due to the electronic and ionic resistances, which are also known as ohmic losses in the form of Joule heating, can hinder the SOFC’s performance. Ohmic losses can result from the bulk material resistivities as well as the complexities introduced by the cell’s microstructure. In this work, two-dimensional (2D), electronic and ionic transport models are used to develop a method of quantification of the ohmic losses within the SOFC anode microstructure. This quantification is completed as a function of properties determined from a detailed microstructure characterization, namely, the tortuosity of the electronic and ionic phases, phase volume fraction, contiguity, and mean free path. A direct modeling approach at the level of the pore-scale microstructure is achieved through the use of a representative volume element (RVE) method. The correlation of these ohmic losses with the quantification of the SOFC anode microstructure are examined. It is found with this analysis that the contributions of the SOFC anode microstructure on ohmic losses can be correlated with the volume fraction, contiguity, and mean free path.

  11. Microstructural and chemical evolution near anode triple phase boundary in Ni/YSZ solid oxide fuel cells

    SciTech Connect (OSTI)

    Chen, Yun; Chen, Song; Hackett, Gregory; Finklea, Harry; Song, Xueyan; Gerdes, Kirk

    2011-12-12T23:59:59.000Z

    In this study, we report the micro-structural and chemical evolution of anode grain boundaries and triple phase boundary (TPB) junctions of Ni/YSZ anode supported solid oxide fuel cells. A NiO phase was found to develop along the Ni/YSZ interfaces extending to TPBs in the operated cells. The thickness of the NiO ribbon phase remains constant at ~ 5 nm in hydrogen for operating durations up to 540 h. When operating on synthesis gas, an increase in interphase thickness was observed from ~ 11 nm for 24 h of operation to ~ 51 nm for 550 h of operation. YSZ phases are observed to be stable in H{sub 2} over 540 h of operation. However, for the cell operated in syngas for 550 h, a 5–10 nm tetragonal YSZ (t-YSZ) interfacial layer was identified that originated from the Ni/YSZ interfaces. Yttrium species seem to segregate to the interfaces during operation, leading to the formation of t-YSZ in the Y-depleted regions.

  12. Oxygen Electrocatalysis on Epitaxial La[subscript 0.6]Sr[subscript 0.4]CoO[subscript 3-?] Perovskite Thin Films for Solid Oxide Fuel Cells

    E-Print Network [OSTI]

    Crumlin, Ethan J.

    Hetero-structured interfaces of oxides, which can exhibit reactivity characteristics remarkably different from bulk oxides, are interesting systems to explore in search of highly active fuel cell catalysts for oxygen ...

  13. Fuel Cells Team

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    test stands Fuel Cell Team The FC team focus is R&D on polymer electrolyte membrane (PEM) fuel cells for commercial and military applications. Our program has had ongoing funding...

  14. Small-Scale Low Cost Solid Oxide Fuel Cell Power Systems

    SciTech Connect (OSTI)

    S. D. Vora

    2008-02-01T23:59:59.000Z

    Progress in tasks seeking greater cell power density and lower cost through new cell designs, new cell materials and lower operating temperature is summarized. The design of the program required Proof-of-Concept unit of residential capacity scale is reviewed along with a summary of results from its successful test. Attachment 1 summarizes the status of cell development. Attachment 2 summarizes the status of generator design, and Attachment 3 of BOP design.

  15. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    California, June (1986). General Electric, Direct Energy Conversion Programs, Feasibility Study ofSPE Fuel Cell Power Plants

  16. Webinar: Fuel Cell Buses

    Broader source: Energy.gov [DOE]

    Video recording and text version of the webinar titled, Fuel Cell Buses, originally presented on September 12, 2013.

  17. Solid oxide fuel cell with internal reforming, catalyzed interconnect for use therewith, and methods

    DOE Patents [OSTI]

    Liu, Di-Jia; Guan, Jie; Minh, Nguyen

    2010-06-08T23:59:59.000Z

    A catalyzed interconnect for an SOFC electrically connects an anode and an anodic current collector and comprises a metallic substrate, which provides space between the anode and anodic current collector for fuel gas flow over at least a portion of the anode, and a catalytic coating on the metallic substrate comprising a catalyst for catalyzing hydrocarbon fuel in the fuel gas to hydrogen rich reformate. An SOFC including the catalyzed anodic inter-connect, a method for operating an SOFC, and a method for making a catalyzed anodic interconnect are also disclosed.

  18. Fuel Cells and Renewable Gaseous Fuels

    Broader source: Energy.gov [DOE]

    Breakout Session 3-C: Renewable Gaseous FuelsFuel Cells and Renewable Gaseous FuelsSarah Studer, ORISE Fellow—Fuel Cell Technologies Office, U.S. Department of Energy

  19. Studies involving high temperature desulfurization/regeneration reactions of metal oxides for fuel cell development. Final report

    SciTech Connect (OSTI)

    Jalan, V.

    1983-10-01T23:59:59.000Z

    Research conducted at Giner, Inc. during 1981 to 1983 under the present contract has been a continuation of the investigation of a high temperature regenerable desulfurization process capable of reducing the sulfur content in coal gases from 200 ppM to 1 ppM. The overall objective has been the integration of a coal gasifier with a molten carbonate fuel cell, which requires that the sulfur content be below 1 ppM. Commercially available low temperature processes incur an excessive energy penalty. Results obtained with packed-bed and fluidized bed reactors have demonstrated that a CuO/ZnO mixed oxide sorbent is regenerable and capable of lowering the sulfur content (as H/sub 2/S and COS) from 200 ppM in simulated hot coal-derived gases to below 1 ppM level at 600 to 650/sup 0/C. Four potential sorbents (copper, tungsten oxide, vanadium oxide and zinc oxide) were initially selected for experimental use in hot regenerable desulfurization in the temperature range 500 to 650/sup 0/C. Based on engineering considerations, such as desulfurization capacity in per weight or volume of sorbents, a coprecipitated CuO/ZnO was selected for further study. A structural reorganization mechanism, unique to mixed oxides, was identified: the creation of relatively fine crystallites of the sulfided components (Cu/sub 2/S and ZnS) to counteract the loss of surface area due to sintering during regeneration. Studies with 9 to 26% water vapor in simulated coal gases show that sulfur levels below 1 ppM can be achieved in the temperature range of 500/sup 0/ to 650/sup 0/C. The ability of CuO/ZnO to remove COS, CS/sub 2/ and CH/sub 3/SH at these conditions has been demonstrated in this study. Also a previously proposed pore-plugging model was further developed with good success for data treatment of both packed bed and fluidized-bed reactors. 96 references, 42 figures, 21 tables.

  20. Fuel Cells for Supermarkets: Cleaner Energy with Fuel Cell Combined...

    Broader source: Energy.gov (indexed) [DOE]

    smith.pdf More Documents & Publications Fuel Cells at Supermarkets: NYSERDA's Perspective Fuel Cell Case Study Hydrogen Production and Storage for Fuel Cells: Current Status...

  1. Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities Pete Devlin Fuel Cell Technologies Program United States Department of Energy Federal Utility Partnership...

  2. Small-Scale Low Cost Solid Oxide Fuel Cell Power Systems

    SciTech Connect (OSTI)

    S.D. Vora

    2003-02-28T23:59:59.000Z

    Tasks carried out during the first six months of the program are summarized. Development of seal-less cells with increased power density at lower operating temperature (800 C) was started. This required a new cell design and investigation of new cell materials. Conceptual design of the generator and balance of plant (BOP) for a residential system was initiated. Attachment 1 describes the progress in cell development and Attachments 2 and 3 deal with status of the generator and BOP design. Overall progress during the first six months and plans for future work are summarized in Attachment 4.

  3. Analysis of Differences in Void Coefficient Predictions for Mixed-Oxide-Fueled Tight-Pitch Light Water Reactor Cells

    SciTech Connect (OSTI)

    Unesaki, Hironobu [Kyoto University (Japan); Shiroya, Seiji [Kyoto University (Japan); Kanda, Keiji [Kyoto University (Japan); Cathalau, Stephane [Commissariat a l'Energie Atomique (France); Carre, Franck-Olivier [Commissariat a l'Energie Atomique (France); Aizawa, Otohiko [Musashi Institute of Technology (Japan); Takeda, Toshikazu [Osaka University (Japan)

    2000-05-15T23:59:59.000Z

    Analysis of the benchmark problems on the void coefficient of mixed-oxide (MOX)-fueled tight-pitch cells has been performed using the Japanese SRAC code system with the JENDL-3.2 library and the French APOLLO-2 code with the CEA93 library based on JEF-2.2. The benchmark problems have been specified to investigate the physical phenomena occurring during the progressive voidage of MOX-fueled tight-pitch lattices, such as high conversion light water reactor lattices, and to evaluate the impact of nuclear data and calculational methods. Despite the most recently compiled nuclear data libraries and the sophisticated calculation schemes employed in both code systems, the k{sub {infinity}} and void reactivity values obtained by the two code systems show considerable discrepancy especially in the highly voided state. The discrepancy of k{sub {infinity}} values shows an obvious dependence on void fraction and also has been shown to be sensitive to the isotopic composition of plutonium. The observed discrepancies are analyzed by being decomposed into contributing isotopes and reactions and have been shown to be caused by a complicated balance of both negative and positive components, which are mainly attributable to differences in a limited number of isotopes including {sup 239}Pu, {sup 241}Pu, {sup 16}O, and stainless steel.

  4. REVERSIBLE SOLID OXIDE CELLS Mogens Mogensen1

    E-Print Network [OSTI]

    Chorkendorff2 and Torben Jacobsen3 1 Fuel Cell and Solid State Chemistry Department Risø National Laboratory The reversibility of solid oxide fuel cells (SOFC), i.e. that they could also work in the solid oxide electrolyser at a cell voltage of 1.48 V, which is the overall thermo-neutral voltage. Assuming an electricity cost of 3

  5. Long-term oxidation behavior of spinel-coated ferritic stainless steel for solid oxide fuel cell interconnect applications

    SciTech Connect (OSTI)

    Stevenson, Jeffry W.; Yang, Zhenguo (Gary) [Gary; Xia, Guanguang; Nie, Zimin; Templeton, Joshua D.

    2013-06-01T23:59:59.000Z

    Long-term tests (>8,000 hours) indicate that AISI 441 ferritic stainless steel coated with a Mn-Co spinel protection layer is a promising candidate material system for IT-SOFC interconnect applications. While uncoated AISI 441 showed a substantial increase in area-specific electrical resistance (ASR), spinel-coated AISI 441 exhibited much lower ASR values (11-13 mOhm-cm2). Formation of an insulating silica sublayer beneath the native chromia-based scale was not observed, and the spinel coatings reduced the oxide scale growth rate and blocked outward diffusion of Cr from the alloy substrate. The structure of the scale formed under the spinel coatings during the long term tests differed from that typically observed on ferritic stainless steels after short term oxidation tests. While short term tests typically indicate a dual layer scale structure consisting of a chromia layer covered by a layer of Mn-Cr spinel, the scale grown during the long term tests consisted of a chromia matrix with discrete regions of Mn-Cr spinel distributed throughout the matrix. The presence of Ti in the chromia scale matrix and/or the presence of regions of Mn-Cr spinel within the scale may have increased the scale electrical conductivity, which would explain the fact that the observed ASR in the tests was lower than would be expected if the scale consisted of pure chromia.

  6. SURFACE-MODIFIED FERRITIC INTERCONNECT MATERIALS FOR SOLID OXIDE FUEL CELLS

    SciTech Connect (OSTI)

    Bruce R. Lanning; James Arps; Ronghua Wei; Goeff Dearnaley

    2004-03-15T23:59:59.000Z

    Interconnects are a critical element of an SOFC assembly and although much work has focused on chromium and chromium-iron alloys containing an oxide that is both oxidation resistant and electrically conductive, the thermal instability of typical native metal oxides allow interdiffusion of cations across the interconnect-electrode boundary that ultimately leads to degradation of SOFC performance. Phase I of the SECA Core Technology Program has been a one-year effort to investigate and evaluate the feasibility of: (1) Ion implanting an alumina-scale forming ferritic steel, such as FeCrAlY, to form an interconnect material with low resistance (< 0.1 {Omega}/cm{sup 2}) in oxidizing/reducing environments up to 800 C, and (2) Maintaining the above low resistance metric for an extended time (> 1000 hours at 800 C) in contact with an LSF cathode material. We confirmed, as part of our oxidation kinetics evaluation of FeCrAlY and 430 ferritic steel, the parabolic growth of a mixed chromia/alumina scale on FeCrAlY and a single chromia layer in the case of the 430 stainless steel; the outer contiguous layer of Al{sub 2}O{sub 3}, in the case of FeCrAlY, forming a stable, self-limiting, protective scale with no detectable cation interdiffusion between FeCrAlY and an LSF electrode even after 1000 hours at 800 C in air. To render the alumina scale conductive, we implanted either titanium or niobium ions into FeCrAlY scales to a fixed depth (0.12 {micro}m), varying only the thickness of the oxide. ASR for an un-doped FeCrAlY oxide scale (i.e., alumina) was more than an order of magnitude greater than the 430 control sample whereas, the ASR for the doped FeCrAlY oxide scale sample was comparable to the 430 control sample; hence, the resistance of a doped alumina scale on FeCrAlY was equal to the resistance of a chromia-scale forming alloy, such as 430 (chromia scales of which are typically < 0.1 {Omega}-cm). Along with the ASR measurements, AC impedance measurements were conducted to evaluate conduction mechanisms. From the AC impedance measurements, we observed that the addition of niobium resulted in at least a two order of magnitude reduction in resistance over the un-doped specimen and that the conduction in the doped alumina scale was pure electronic conduction, as opposed to mixed ionic-electronic conduction (dominated by intrinsic (ionic) defects) for the un-doped alumina scales. The DC resistance component was {approx}4 {Omega} although when this value is adjusted to account for the system resistance (i.e., leads, junctions, etc.), the ASR was determined to be < 0.1 {Omega}-cm; even after 1000 hours at 800 C in air. Our results have clearly shown that dopant additions increase the electronic conductivity of alumina forming scale alloys, such as FeCrAlY, transforming from a mixed ionic/electronic conduction mechanism. Just as importantly, the demonstrated stable formation of an alumina scale was shown to be an advantage over conventional pure chromia forming alloys as interconnect materials.

  7. Anode protection system for shutdown of solid oxide fuel cell system

    DOE Patents [OSTI]

    Li, Bob X; Grieves, Malcolm J; Kelly, Sean M

    2014-12-30T23:59:59.000Z

    An Anode Protection Systems for a SOFC system, having a Reductant Supply and safety subsystem, a SOFC anode protection subsystem, and a Post Combustion and slip stream control subsystem. The Reductant Supply and safety subsystem includes means for generating a reducing gas or vapor to prevent re-oxidation of the Ni in the anode layer during the course of shut down of the SOFC stack. The underlying ammonia or hydrogen based material used to generate a reducing gas or vapor to prevent the re-oxidation of the Ni can be in either a solid or liquid stored inside a portable container. The SOFC anode protection subsystem provides an internal pressure of 0.2 to 10 kPa to prevent air from entering into the SOFC system. The Post Combustion and slip stream control subsystem provides a catalyst converter configured to treat any residual reducing gas in the slip stream gas exiting from SOFC stack.

  8. Characterization and Quantification of Electronic and Ionic Ohmic Overpotential and Heat Generation in a Solid Oxide Fuel Cell Anode

    SciTech Connect (OSTI)

    Grew, Kyle N.; Izzo, John R.; Chiu, Wilson K.S.

    2011-08-16T23:59:59.000Z

    The development of a solid oxide fuel cell (SOFC) with a higher efficiency and power density requires an improved understanding and treatment of the irreversibilities. Losses due to the electronic and ionic resistances, which are also known as ohmic losses in the form of Joule heating, can hinder the SOFC's performance. Ohmic losses can result from the bulk material resistivities as well as the complexities introduced by the cell's microstructure. In this work, two-dimensional (2D), electronic and ionic transport models are used to develop a method of quantification of the ohmic losses within the SOFC anode microstructure. This quantification is completed as a function of properties determined from a detailed microstructure characterization, namely, the tortuosity of the electronic and ionic phases, phase volume fraction, contiguity, and mean free path. A direct modeling approach at the level of the pore-scale microstructure is achieved through the use of a representative volume element (RVE) method. The correlation of these ohmic losses with the quantification of the SOFC anode microstructure are examined. It is found with this analysis that the contributions of the SOFC anode microstructure on ohmic losses can be correlated with the volume fraction, contiguity, and mean free path.

  9. Fuel cell having dual electrode anode or cathode

    DOE Patents [OSTI]

    Findl, E.

    1984-04-10T23:59:59.000Z

    A fuel cell that is characterized by including a dual electrode anode that is operable to simultaneously electro-oxidize a gaseous fuel and a liquid fuel. In alternative embodiments, a fuel cell having a single electrode anode is provided with a dual electrode cathode that is operable to simultaneously reduce a gaseous oxidant and a liquid oxidant to electro-oxidize a fuel supplied to the cell.

  10. Hydrogen and Fuel Cell Activities

    Broader source: Energy.gov (indexed) [DOE]

    and Fuel Cell Activities Mr. Pete Devlin U.S. Department of Energy Fuel Cell Technologies Program Market Transformation Manager Stationary Fuel Cell Applications First National...

  11. Electrochemical Performance and Stability of the Cathode for Solid Oxide Fuel Cells. I. Cross Validation of Polarization Measurements by Impedance Spectroscopy and Current-Potential Sweep

    SciTech Connect (OSTI)

    Zhou, Xiao Dong; Pederson, Larry R.; Templeton, Jared W.; Stevenson, Jeffry W.

    2009-12-09T23:59:59.000Z

    The aim of this paper is to address three issues in solid oxide fuel cells: (1) cross-validation of the polarization of a single cell measured using both dc and ac approaches, (2) the precise determination of the total areal specific resistance (ASR), and (3) understanding cathode polarization with LSCF cathodes. The ASR of a solid oxide fuel cell is a dynamic property, meaning that it changes with current density. The ASR measured using ac impedance spectroscopy (low frequency interception with real Z´ axis of ac impedance spectrum) matches with that measured from a dc IV sweep (the tangent of dc i-V curve). Due to the dynamic nature of ASR, we found that an ac impedance spectrum measured under open circuit voltage or on a half cell may not represent cathode performance under real operating conditions, particularly at high current density. In this work, the electrode polarization was governed by the cathode activation polarization; the anode contribution was negligible.

  12. Mechanical and electrochemical performance of composite cathode contact materials for solid oxide fuel cells

    SciTech Connect (OSTI)

    Tucker, Michael C. [Lawrence Berkeley National Laboratory (LBNL); Dejonghe, Lutgard C. [Lawrence Berkeley National Laboratory (LBNL); Garcia-Negron, Valerie [Material Science and Technology Division, Oak Ridge National Laboratory; Trejo, Rosa M [ORNL; Lara-Curzio, Edgar [ORNL

    2013-01-01T23:59:59.000Z

    The feasibility of adding glass or inorganic binder to conventional SOFC cathode contact materials (CCM) in order to improve bonding to adjacent materials in the cell stack is assessed. Two glasses (SEM-COM SCZ-8 and Schott GM31107) and one inorganic binder (Aremco 644A) are mixed with LSM particles to produce composite CCM pastes. These are used to bond Mn1.5Co1.5O4-coated stainless steel mesh current collectors to anode-supported button cells. The cells are operated at 800 C for about 1000 h. The cell with SCZ-8 addition to the CCM displays quite stable operation (3.9%/1000 h degradation), whereas the other additives lead to somewhat higher degradation rate. Bonding of the CCM to coated stainless steel coupons is also assessed. Interfacial fracture toughness is determined using a four-point bend test. The fracture toughness for LSM Schott glass (12.3 N mm 1), LSM SCZ-8 glass (6.8 N mm 1) and LSM 644A binder (5.4 N mm 1) are significantly improved relative to pure LSM (1.7 N mm 1). Indeed, addition of binder or glass is found to improve bonding of the CCM layer without sacrificing cell performance.

  13. Solid Oxide Fuel Cell Development for Auxiliary Power in Heavy Duty Vehicle Applications

    SciTech Connect (OSTI)

    Daniel T. Hennessy

    2010-06-15T23:59:59.000Z

    Changing economic and environmental needs of the trucking industry is driving the use of auxiliary power unit (APU) technology for over the road haul trucks. The trucking industry in the United States remains the key to the economy of the nation and one of the major changes affecting the trucking industry is the reduction of engine idling. Delphi Automotive Systems, LLC (Delphi) teamed with heavy-duty truck Original Equipment Manufacturers (OEMs) PACCAR Incorporated (PACCAR), and Volvo Trucks North America (VTNA) to define system level requirements and develop an SOFC based APU. The project defines system level requirements, and subsequently designs and implements an optimized system architecture using an SOFC APU to demonstrate and validate that the APU will meet system level goals. The primary focus is on APUs in the range of 3-5 kW for truck idling reduction. Fuels utilized were derived from low-sulfur diesel fuel. Key areas of study and development included sulfur remediation with reformer operation; stack sensitivity testing; testing of catalyst carbon plugging and combustion start plugging; system pre-combustion; and overall system and electrical integration. This development, once fully implemented and commercialized, has the potential to significantly reduce the fuel idling Class 7/8 trucks consume. In addition, the significant amounts of NOx, CO2 and PM that are produced under these engine idling conditions will be virtually eliminated, inclusive of the noise pollution. The environmental impact will be significant with the added benefit of fuel savings and payback for the vehicle operators / owners.

  14. DOE Fuel Cell Technologies Office Record 14012: Fuel Cell System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: Fuel Cell System Cost - 2013 DOE Fuel Cell Technologies Office Record 14012: Fuel Cell System Cost - 2013 This program record from the U.S. Department of Energy's Fuel Cell...

  15. Fuel Cell Technologies Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies Program (FCTP)Overview Fuel CellFuel Cell Seminar

  16. Fuel Cell Technologies Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies Program (FCTP)Overview Fuel CellFuel Cell

  17. Long-term evaluation of solid oxide fuel cell candidate materials in a 3-cell generic short stack fixture, Part II: sealing glass stability, microstructure and interfacial reactions.

    SciTech Connect (OSTI)

    Chou, Y. S.; Stevenson, Jeffry W.; Choi, Jung-Pyung

    2014-03-15T23:59:59.000Z

    A generic solid oxide fuel cell stack test fixture was developed to evaluate candidate materials and processing methods under realistic conditions. Part I of the work addressed the stack fixture, seal system and cell performance of a 3-cell short stack tested at 800oC for 6000h. Commercial NiO-YSZ anode-supported thin YSZ electrolyte cells with LSM cathodes were used for assessment and were tested in constant current mode with dilute (~50% H2) fuel versus air. Part II of the work examined the sealing glass stability, microstructure development, interfacial reactions, and volatility issues. Part III of the work investigated the stability of Ce-(Mn,Co) spinel coating, AISI441 metallic interconnect, alumina coating, and cell degradation. After 6000h of testing, the refractory sealing glass YSO77 (Ba-Sr-Y-B-Si) showed desirable chemical compatibility with YSZ electrolyte in that no discernable interfacial reaction was identified, consistent with thermodynamic calculations. In addition, no glass penetration into the thin electrolyte was observed. At the aluminized AISI441 interface, the protective alumina coating appeared to be corroded by the sealing glass. Air side interactions appeared to be more severe than fuel side interactions. Metal species such as Cr, Mn, and Fe were detected in the glass, but were limited to the vicinity of the interface. No alkaline earth chromates were found at the air side. Volatility was also studied in a similar glass and weight loss in a wet reducing environment was determined. Using the steady-state volatility data, the life time (40,000h) weight loss of refractory sealing glass YSO77 was estimated to be less than 0.1 wt%.

  18. LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES

    SciTech Connect (OSTI)

    Anil V. Virkar

    2002-03-26T23:59:59.000Z

    Anode-supported cells comprising Ni + yttria-stabilized zirconia (YSZ) anode, thin ({approx}10 {micro}m) YSZ electrolyte, and composite cathodes containing a mixture of La{sub 0.8}Sr{sub 0.2}MnO{sub (3-{delta})} (LSM) and La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub (3-{lambda})} (LSGM) were fabricated. The relative proportions of LSGM and LSM were varied between 30 wt.% LSGM + 70 wt.% LSM and 70 wt.% LSGM + 30 wt.% LSM, while the firing temperature was varied between 1000 and 1200 C. The cathode interlayer composition had a profound effect on cathode performance at 800 C with overpotentials ranging between 60 and 425 mV at 1.0 A/cm{sup 2} and exhibiting a minimum for 50 wt.% LSGM + 50 wt.% LSM. The cathodic overpotential decreased with increasing firing temperature of the composite interlayer in the range 1000 {le} T {le} 1150 C, and then increased dramatically for the interlayer fired at 1200 C. The cell with the optimized cathode interlayer of 50 wt.% LSM + 50 wt.% LSGM fired at 1150 C exhibited an area specific cell resistance of 0.18 {Omega}cm{sup 2} and a maximum power density of 1.4 W/cm{sup 2} at 800 C. Chemical analysis revealed that LSGM reacts with YSZ above 1000 C to form the pyrochlore phase, La{sub 2}Zr{sub 2}O{sub 7}. The formation of the pyrochlore phase at the interface between the LSGM/LSM composite cathode and the YSZ electrolyte limits the firing time and temperature of the cathode interlayer.

  19. Supporting electrodes for solid oxide fuel cells and other electrochemical devices

    DOE Patents [OSTI]

    Sprenkle, Vincent L. (Richland, WA); Canfield, Nathan L. (Kennewick, WA); Meinhardt, Kerry (Kennewick, WA); Stevenson, Jeffry W. (Richland, WA)

    2008-04-01T23:59:59.000Z

    An electrode supported electrolyte membrane includes an electrode layer 630 facing an electrolyte layer 620. The opposing side of the electrode layer 630 includes a backing layer 640 of a material with a thermal expansion coefficient approximately equal to the thermal expansion coefficient of the electrolyte layer 620. The backing layer 640 is in a two dimensional pattern that covers only a portion of the electrolyte layer 630. An electrochemical cell such as a SOFC is formed by providing a cathode layer 610 on an opposing side of the electrolyte layer 620.

  20. Three-dimensional microstructural changes in the Ni–YSZ solid oxide fuel cell anode during operation

    SciTech Connect (OSTI)

    Nelson G. J.; Chu Y.; Grew, K.N.; Izzo Jr. J.R.; Lombardo, J.J.; Harris, W.M.; Faes, A.; Hessler-Wyser, A.; Van herle, J.; Wang, S.; Virkar, A.V.; Chiu, W.K.S.

    2012-04-07T23:59:59.000Z

    Microstructural evolution in solid oxide fuel cell (SOFC) cermet anodes has been investigated using X-ray nanotomography along with differential absorption imaging. SOFC anode supports composed of Ni and yttria-stabilized zirconia (YSZ) were subjected to extended operation and selected regions were imaged using a transmission X-ray microscope. X-ray nanotomography provides unique insight into microstructure changes of all three phases (Ni, YSZ, pore) in three spatial dimensions, and its relation to performance degradation. Statistically significant 3D microstructural changes were observed in the anode Ni phase over a range of operational times, including phase size growth and changes in connectivity, interfacial contact area and contiguous triple-phase boundary length. These observations support microstructural evolution correlated to SOFC performance. We find that Ni coarsening is driven by particle curvature as indicated by the dihedral angles between the Ni, YSZ and pore phases, and hypothesize that growth occurs primarily by means of diffusion and particle agglomeration constrained by a pinning mechanism related to the YSZ phase. The decrease in Ni phase size after extended periods of time may be the result of a second process connected to a mobility-induced decrease in the YSZ phase size or non-uniform curvature resulting in a net decrease in Ni phase size.

  1. Characterization of Cr poisoning in a solid oxide fuel cell cathode using a high-energy x-ray microbeam.

    SciTech Connect (OSTI)

    Liu, D. J.; Almer, J.; Cruse, T.

    2010-01-01T23:59:59.000Z

    A key feature of planar solid oxide fuel cells (SOFCs) is the feasibility of using metallic interconnects made of high temperature ferritic stainless steels, which reduce system cost while providing excellent electric conductivity. Such interconnects, however, contain high levels of chromium, which has been found to be associated with SOFC cathode performance degradation at SOFC operating temperatures; a phenomenon known as Cr poisoning. Here, we demonstrate an accurate measurement of the phase and concentration distributions of Cr species in a degraded SOFC, as well as related properties including deviatoric strain, integrated porosity, and lattice parameter variation, using high energy microbeam X-ray diffraction and radiography. We unambiguously identify (MnCr){sub 3}O{sub 4} and Cr{sub 2}O{sub 3} as the two main contaminant phases and find that their concentrations correlate strongly with the cathode layer composition. Cr{sub 2}O{sub 3} deposition within the active cathode region reduces porosity and produces compressive residual strains, which hinders the reactant gas percolation and can cause structural breakdown of the SOFC cathode. The information obtained through this study can be used to better understand the Cr-poisoning mechanism and improve SOFC design.

  2. Soft X-Ray Spectroscopic Study of Dense Strontium-Doped Lanthanum Manganite Cathodes for Solid Oxide Fuel Cell Applications

    SciTech Connect (OSTI)

    L Piper; A Preston; S Cho; A DeMasi; J Laverock; K Smith; L Miara; J Davis; S Basu; et al.

    2011-12-31T23:59:59.000Z

    The evolution of the Mn charge state, chemical composition, and electronic structure of La{sub 0.8}Sr{sub 0.2}MnO{sub 3} (LSMO) cathodes during the catalytic activation of solid oxide fuel cell (SOFC) has been studies using X-ray spectroscopy of as-processed, exposed, and activated dense thin LSMO films. Comparison of O K-edge and Mn L{sub 3,2}-edge X-ray absorption spectra from the different stages of LSMO cathodes revealed that the largest change after the activation occurred in the Mn charge state with little change in the oxygen environment. Core-level X-ray photoemission spectroscopy and Mn L{sub 3} resonant photoemission spectroscopy studies of exposed and as-processed LSMO determined that the SOFC environment (800 C ambient pressure of O{sub 2}) alone results in La deficiency (severest near the surface with Sr doping >0.55) and a stronger Mn{sup 4+} contribution, leading to the increased insulating character of the cathode prior to activation. Meanwhile, O K-edge X-ray absorption measurements support Sr/La enrichment nearer the surface, along with the formation of mixed Sr{sub x}Mn{sub y}O{sub z} and/or passive MnO{sub x} and SrO species.

  3. Creep Behavior of Glass/Ceramic Sealant and its Effect on Long-term Performance of Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Liu, Wenning N.; Sun, Xin; Koeppel, Brian J.; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2009-10-14T23:59:59.000Z

    The creep behavior of glass or glass-ceramic sealant materials used in solid oxide fuel cells (SOFCs) becomes relevant under SOFC operating temperatures. In this paper, the creep of glass-ceramic sealants was experimentally examined, and a standard linear solid model was applied to capture the creep behavior of glass ceramic sealant materials developed for planar SOFCs at high temperatures. The parameters of this model were determined based on the creep test results. Furthermore, the creep model was incorporated into finite-element software programs SOFC-MP and Mentat-FC developed at Pacific Northwest National Laboratory for multi-physics simulation of SOFCs. The effect of creep of glass ceramic sealant materials on the long-term performance of SOFC stacks was investigated by studying the stability of the flow channels and the stress redistribution in the glass seal and on the various interfaces of the glass seal with other layers. Finite element analyses were performed to quantify the stresses in various parts. The stresses in glass seals were released because of creep behavior during operations.

  4. Development of Ni1-xCoxO as the cathode/interconnect contact for solid oxide fuel cells

    SciTech Connect (OSTI)

    Lu, Zigui; Xia, Guanguang; Templeton, Joshua D.; Li, Xiaohong S.; Nie, Zimin; Yang, Zhenguo; Stevenson, Jeffry W.

    2011-06-01T23:59:59.000Z

    A new type of material, Ni1-xCoxO, was developed for solid oxide fuel cell (SOFC) cathode/interconnect contact applications. The phase structure, coefficient of thermal expansion, sintering behavior, electrical property, and mechanical bonding strength of these materials were evaluated against the requirements of the SOFC cathode/interconnect contact. A dense cathode/interconnect contact layer was developed through reaction sintering from Ni and Co metal powders. An area specific resistance (ASR) as low as 5.5 mohm.cm2 was observed after 1000 h exposure in air at 800 °C for the LSM/Ni0.33Co0.67O/AISI441 assembly. Average mechanical strengths of 6.8 and 5.0 MPa were obtained for the cathode/contact/cathode and interconnect/contact/interconnect structures, respectively. The significantly low ASR was probably due to the dense structure and therefore improved electrical conductivity of the Ni0.33Co0.67O contact and the good bonding of the interfaces between the contact and the cathode, and between the contact and the interconnect.

  5. Hard X-ray Fluorescence Measurements of Heteroepitaxial Solid Oxide Fuel Cell Cathode Materials

    SciTech Connect (OSTI)

    Davis, Jacob N.; Miara, Lincoln J.; Saraf, Laxmikant V.; Kaspar, Tiffany C.; Gopalan, Srikanth; Pal, Uday B.; Woicik, Joseph C.; Basu, Soumendra N.; Ludwig, Karl F.

    2012-12-01T23:59:59.000Z

    Commonly, SOFCs are operated at high temperatures (above 800°C). At these temperatures expensive housing is needed to contain an operating stack as well as coatings to contain the oxidation of the metallic interconnects. Lowering the temperature of an operating device would allow for more conventional materials to be used, thus lowering overall cost. Understanding the surface chemical states of cations in the surface of the SOFC cathode is vital to designing a system that will perform well at lower temperatures. The samples studied were grown by pulsed laser deposition (PLD) at the Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). 20% strontium doped lanthanum manganite (LSM-20) was grown on YSZ and NGO (neodymium gallate). The films on YSZ have a fiber texture. LSM-20 on NGO is heteroepitaxial. Lanthanum strontium cobalt ferrite (LSCF-6428) films were grown on LAO and YSZ with a GDC barrier layer. Total X-ray Reflection Fluorescence (TXRF) was used to depth profile the samples. In a typical experiment, the angle of the incident beam is varied though the critical angle. Below the critical angle, the x-ray decays as an evanescent wave and will only penetrate the top few nanometers. TXRF experiments done on LSM films have suggested strontium segregates to the surface and form strontium enriched nanoparticles (1). It should be pointed out that past studies have focused on 30% strontium A-site doping, but this project uses 20% strontium doped lanthanum manganite. XANES and EXAFS data were taken as a function of incoming angle to probe composition as a function of depth. XANES spectra can be difficult to analyze fully. For other materials density functional theory calculations compared to near edge measurements have been a good way to understand the 3d valence electrons (2).

  6. Webinar: Fuel Cell Mobile Lighting

    Broader source: Energy.gov [DOE]

    Video recording of the Fuel Cell Technologies Office webinar, Fuel Cell Mobile Lighting, originally presented on November 13, 2012.

  7. Module 4: Fuel Cell Technology

    Broader source: Energy.gov [DOE]

    This course covers advantages and disadvantages of fuel cells, principles on which fuel cells work, operating principles and chemical reactions

  8. Development of intermediate temperature planar solid oxide fuel cells. Annual report, September 1992-1993

    SciTech Connect (OSTI)

    Nasrallah, M.M.; Anderson, H.U.; Huebner, W.

    1993-10-01T23:59:59.000Z

    Dense, uniform thin films (0.5 - 0.2 micrometer) of LSCF, YSZ and LSM were deposited on dense or porous substrates at temperatures not exceeding 600 C. Cathode/electrolyte interaction studies revealed the formation of reaction products at the interface. The presence of a CSO buffer layer eliminated the interactions and decreased the interfacial resistance appreciably. Both LSCF and YCF systems have been evaluated and are considered potential cathode materials at reduced temperatures. They are chemically and structurally stable over a wide range of temperature and oxygen activity, they exhibit mixed conductivity and their thermal expansion coefficient can be made to match that of YSZ. Blocking electrode experiments revealed that the partial ionic conductivity of LSCF is comparable to that of YSZ. Single cells based on planar thin film design will be fabricated and tested.

  9. Automotive Fuel Cell Corporation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Automotive Fuel Cell Corporation n SNL researcher Cy Fujimoto demonstrates his new flexible hydrocarbon polymer electrolyte mem- brane, which could be a key factor in realizing a...

  10. Microcomposite Fuel Cell Membranes

    Broader source: Energy.gov [DOE]

    Summary of microcomposite fuel cell membrane work presented to the High Temperature Membrane Working Group Meeting, Orlando FL, October 17, 2003

  11. Hydrogen Fuel Cells

    Fuel Cell Technologies Publication and Product Library (EERE)

    The fuel cell — an energy conversion device that can efficiently capture and use the power of hydrogen — is the key to making it happen.

  12. Analytical Investigations of Varying Cross Section Microstructures on Charge Transfer in Solid Oxide Fuel Cell Electrodes

    SciTech Connect (OSTI)

    Nelson, George J.; Peracchio, Aldo A.; Chiu, W. K. S.

    2011-01-01T23:59:59.000Z

    An extended surface modeling concept (electrochemical fin) is applied to charge transport within the SOFC electrode microstructure using an analytical modeling approach analogous to thermal fin analysis. This model is distinct from similar approaches applied to SOFC electrode microstructure in its application of a governing equation that allows for variable cross-section geometry. The model presented is capable of replicating experimentally observed electrode behavior inclusive of sensitivity to microstructural geometry, which stands in contrast to existing models that apply governing equations analogous to a constant cross-section thermal fin equation. Insights learned from this study include: the establishment of a suite of dimensionless parameters and performance metrics that can be applied to assess electrode microstructure, the definition of microstructure-related transport regimes relevant to electrode design, and correlations that allow performance predictions for electrodes that provide cell structural support. Of particular note, the variable cross-section modeling approach motivates the definition of a sintering quality parameter that quantifies the degree of constriction within the conducting network of the electrode, a phenomenon that exerts influence over electrode polarization. One-dimensional models are presented for electrochemical fins of several cross-sectional geometries with the ultimate goal of developing a general tool that enables the prompt performance evaluation of electrode microstructures. Such a tool would facilitate SOFC microstructural design by focusing more detailed modeling efforts on the most promising microstructures.

  13. Fuel Cell Demonstration Program

    SciTech Connect (OSTI)

    Gerald Brun

    2006-09-15T23:59:59.000Z

    In an effort to promote clean energy projects and aid in the commercialization of new fuel cell technologies the Long Island Power Authority (LIPA) initiated a Fuel Cell Demonstration Program in 1999 with six month deployments of Proton Exchange Membrane (PEM) non-commercial Beta model systems at partnering sites throughout Long Island. These projects facilitated significant developments in the technology, providing operating experience that allowed the manufacturer to produce fuel cells that were half the size of the Beta units and suitable for outdoor installations. In 2001, LIPA embarked on a large-scale effort to identify and develop measures that could improve the reliability and performance of future fuel cell technologies for electric utility applications and the concept to establish a fuel cell farm (Farm) of 75 units was developed. By the end of October of 2001, 75 Lorax 2.0 fuel cells had been installed at the West Babylon substation on Long Island, making it the first fuel cell demonstration of its kind and size anywhere in the world at the time. Designed to help LIPA study the feasibility of using fuel cells to operate in parallel with LIPA's electric grid system, the Farm operated 120 fuel cells over its lifetime of over 3 years including 3 generations of Plug Power fuel cells (Lorax 2.0, Lorax 3.0, Lorax 4.5). Of these 120 fuel cells, 20 Lorax 3.0 units operated under this Award from June 2002 to September 2004. In parallel with the operation of the Farm, LIPA recruited government and commercial/industrial customers to demonstrate fuel cells as on-site distributed generation. From December 2002 to February 2005, 17 fuel cells were tested and monitored at various customer sites throughout Long Island. The 37 fuel cells operated under this Award produced a total of 712,635 kWh. As fuel cell technology became more mature, performance improvements included a 1% increase in system efficiency. Including equipment, design, fuel, maintenance, installation, and decommissioning the total project budget was approximately $3.7 million.

  14. Fuel Cells as an Emerging Technology 

    E-Print Network [OSTI]

    Jewell, D. M.

    1986-01-01T23:59:59.000Z

    electrodes. SOFC Status Very high temperature (l,OOOOC) solid oxide fuel cells might offer greater sulfur tolerance, more systems design options, and cost advantages by not requiring expensive noble metal catalysts. The solid oxide cell offers... to the Consolidated Edison site in New York City for installation. The modular design greatly simpli fied plant installation. The same type fuel cell was manufactured, shipped, assembled, and operated in Japan for 2,500 hours, which further demon strated...

  15. Catalysts and materials development for fuel cell power generation

    E-Print Network [OSTI]

    Weiss, Steven E

    2005-01-01T23:59:59.000Z

    Catalytic processing of fuels was explored in this thesis for both low-temperature polymer electrolyte membrane (PEM) fuel cell as well as high-temperature solid oxide fuel cell (SOFC) applications. Novel catalysts were ...

  16. Manufacturing Cost Analysis of 1 kW and 5 kW Solid Oxide Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    kW and 5 kW Solid Oxide Fuel Cell (SOFC) for Auxiliary Power Applications Manufacturing Cost Analysis of 1 kW and 5 kW Solid Oxide Fuel Cell (SOFC) for Auxiliary Power...

  17. Manufacturing Cost Analysis of 1 kW and 5 kW Solid Oxide Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Cost Analysis of 1 kW and 5 kW Solid Oxide Fuel Cell (SOFC) for Auxiliary Power Applications Manufacturing Cost Analysis of 1 kW and 5 kW Solid Oxide Fuel Cell (SOFC)...

  18. California Fuel Cell Partnership: Alternative Fuels Research...

    Broader source: Energy.gov (indexed) [DOE]

    by Chris White of the California Fuel Cell Partnership provides information about alternative fuels research. cafcpinitiativescall.pdf More Documents & Publications The...

  19. Doped Yttrium Chromite-Ceria Composite as a Redox-Stable and Sulfur-Tolerant Anode for Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Yoon, Kyung J.; Coyle, Christopher A.; Marina, Olga A.

    2011-12-11T23:59:59.000Z

    A Ca- and Co-doped yttrium chromite (YCCC) - samaria-doped ceria (SDC) composite was studied in relation to a potential use as a solid oxide fuel cell (SOFC) anode material. Tests performed using the yttria-stabilized zirconia (YSZ) electrolyte-supported cells revealed that the electrocatalytic activity of the YCCC-SDC anode towards hydrogen oxidation at 800 C was comparable to that of the Ni-YSZ anode. In addition, the YCCC-SDC anode exhibited superior sulfur tolerant characteristics showing less than 10% increase in a polarization resistance, fully reversible, upon exposure to 20 ppm H2S at 800 C. No performance degradation was observed during multiple reduction-oxidation (redox) cycles when the anode was intentionally exposed to the air environment followed by the reduction in hydrogen. The redox tolerance of the YCCC-SDC anode was attributed to the dimensional and chemical stability of the YCCC exhibiting minimal isothermal chemical expansion upon redox cycling.

  20. Microbial fuel cell treatment of fuel process wastewater

    DOE Patents [OSTI]

    Borole, Abhijeet P; Tsouris, Constantino

    2013-12-03T23:59:59.000Z

    The present invention is directed to a method for cleansing fuel processing effluent containing carbonaceous compounds and inorganic salts, the method comprising contacting the fuel processing effluent with an anode of a microbial fuel ell, the anode containing microbes thereon which oxidatively degrade one or more of the carbonaceous compounds while producing electrical energy from the oxidative degradation, and directing the produced electrical energy to drive an electrosorption mechanism that operates to reduce the concentration of one or more inorganic salts in the fuel processing effluent, wherein the anode is in electrical communication with a cathode of the microbial fuel cell. The invention is also directed to an apparatus for practicing the method.

  1. Heating subsurface formations by oxidizing fuel on a fuel carrier

    DOE Patents [OSTI]

    Costello, Michael; Vinegar, Harold J.

    2012-10-02T23:59:59.000Z

    A method of heating a portion of a subsurface formation includes drawing fuel on a fuel carrier through an opening formed in the formation. Oxidant is supplied to the fuel at one or more locations in the opening. The fuel is combusted with the oxidant to provide heat to the formation.

  2. Direct Internal Reformation and Mass Transport in the Solid Oxide Fuel Cell Anode: A Pore-Scale Lattice Boltzmann Study with Detailed Reaction Kinetics

    SciTech Connect (OSTI)

    Grew, Kyle N.; Joshi, Abhijit S.; Chiu, W. K. S.

    2010-01-01T23:59:59.000Z

    The solid oxide fuel cell (SOFC) allows the conversion of chemical energy that is stored in a given fuel, including light hydrocarbons, to electrical power. Hydrocarbon fuels, such as methane, are logistically favourable and provide high energy densities. However, the use of these fuels often results in a decreased efficiency and life. An improved understanding of the reactive flow in the SOFC anode can help address these issues. In this study, the transport and heterogeneous internal reformation of a methane based fuel is addressed. The effect of the SOFC anode's complex structure on transport and reactions is shown to exhibit a complicated interplay between the local molar concentrations and the anode structure. Strong coupling between the phenomenological microstructures and local reformation reaction rates are recognised in this study, suggesting the extension to actual microstructures may provide new insights into the reformation processes.

  3. Miniature ceramic fuel cell

    DOE Patents [OSTI]

    Lessing, Paul A. (Idaho Falls, ID); Zuppero, Anthony C. (Idaho Falls, ID)

    1997-06-24T23:59:59.000Z

    A miniature power source assembly capable of providing portable electricity is provided. A preferred embodiment of the power source assembly employing a fuel tank, fuel pump and control, air pump, heat management system, power chamber, power conditioning and power storage. The power chamber utilizes a ceramic fuel cell to produce the electricity. Incoming hydro carbon fuel is automatically reformed within the power chamber. Electrochemical combustion of hydrogen then produces electricity.

  4. DOE Fuel Cell Technologies Program Record, Record # 11003, Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Fuel Cell Technologies Program Record, Record 11003, Fuel Cell Stack Durability DOE Fuel Cell Technologies Program Record, Record 11003, Fuel Cell Stack Durability Dated...

  5. Rapidly refuelable fuel cell

    DOE Patents [OSTI]

    Joy, Richard W. (Santa Clara, CA)

    1983-01-01T23:59:59.000Z

    This invention is directed to a metal-air fuel cell where the consumable metal anode is movably positioned in the cell and an expandable enclosure, or bladder, is used to press the anode into contact with separating spacers between the cell electrodes. The bladder may be depressurized to allow replacement of the anode when consumed.

  6. Internet Fuel Cells Forum

    SciTech Connect (OSTI)

    Sudhoff, Frederick A.

    1996-08-01T23:59:59.000Z

    The rapid development and integration of the Internet into the mainstream of professional life provides the fuel cell industry with the opportunity to share new ideas with unprecedented capabilities. The U.S. Department of Energy's (DOE's) Morgantown Energy Technology Center (METC) has undertaken the task to maintain a Fuel Cell Forum on the Internet. Here, members can exchange ideas and information pertaining to fuel cell technologies. The purpose of this forum is to promote a better understanding of fuel cell concepts, terminology, processes, and issues relating to commercialization of fuel cell power technology. The Forum was developed by METC to provide those interested with fuel cell conference information for its current concept of exchanging ideas and information pertaining to fuel cells. Last August, the Forum expanded to an on-line and world-wide network. There are 250 members, and membership is growing at a rate of several new subscribers per week. The forum currently provides updated conference information and interactive information exchange. Forum membership is encouraged from utilities, industry, universities, and government. Because of the public nature of the internet, business sensitive, confidential, or proprietary information should not be placed on this system. The Forum is unmoderated; therefore, the views and opinions of authors expressed in the forum do not necessarily state or reflect those of the U.S. government or METC.

  7. Energy conversion with solid oxide fuel cell systems: A review of concepts amd outlooks for the short- and long-term

    SciTech Connect (OSTI)

    Adams, II, Thomas A. [McMaster University; Nease, Jake [McMaster University; Tucker, David [U.S DOE; Barton, Paul I. [MIT

    2013-01-01T23:59:59.000Z

    A review of energy conversion systems which use solid oxide fuel cells (SOFCs) as their primary electricity generation component is presented. The systems reviewed are largely geared for development and use in the short- and long-term future. These include systems for bulk power generation, distributed power generation, and systems integrated with other forms of energy conversion such as fuel production. The potential incorporation of CO{sub 2} capture and sequestration technologies and the influences of potential government policies are also discussed.

  8. Method of making straight fuel cell tubes

    DOE Patents [OSTI]

    Borglum, Brian P. (Edgewood, PA)

    2001-01-01T23:59:59.000Z

    A method and an apparatus for making straight fuel cell tubes are disclosed. Extruded tubes comprising powders of fuel cell material and a solvent are dried by rotating the extruded tubes. The rotation process provides uniform circumferential drying which results in uniform linear shrinkage of the tubes. The resultant dried tubes are very straight, thereby eliminating subsequent straightening steps required with conventional processes. The method is particularly useful for forming inner air electrode tubes of solid oxide fuel cells.

  9. Preventing CO poisoning in fuel cells

    DOE Patents [OSTI]

    Gottesfeld, Shimshon (Los Alamos, NM)

    1990-01-01T23:59:59.000Z

    Proton exchange membrane (PEM) fuel cell performance with CO contamination of the H.sub.2 fuel stream is substantially improved by injecting O.sub.2 into the fuel stream ahead of the fuel cell. It is found that a surface reaction occurs even at PEM operating temperatures below about 100.degree. C. to oxidatively remove the CO and restore electrode surface area for the H.sub.2 reaction to generate current. Using an O.sub.2 injection, a suitable fuel stream for a PEM fuel cell can be formed from a methanol source using conventional reforming processes for producing H.sub.2.

  10. Phantom Power: The Status of Fuel Cell Technology Markets 

    E-Print Network [OSTI]

    Shipley, A. M.; Elliott, R. N.

    2003-01-01T23:59:59.000Z

    ) ? Phosphoric Acid Fuel Cell (PAFC) ? Solid Oxide Fuel Cell (SOFC) ? Molten Carbonate Fuel Cell (MCFC) In the teclmology descriptions that follow, these are matched to the various market segments where they will be most attractive, based on their operating...(flHV) 75% SOLID OXIDE FUEL CELL (SOFC) 200-250 KW Solid Oxide fuel cells in this size range will compete with the currently commercialized Phosphoric Acid fuel cells in the commercial and small industrial market. SOFC will be used only in facilities...

  11. FUEL CELL TECHNOLOGIES PROGRAM Case Study: Fuel

    E-Print Network [OSTI]

    through March), cooling water conveys waste heat from the fuel cells to an unfired furnace for space by the boilers. Early in the project, Verizon decided not to utilize the fuel cell's low temperature waste heat the cooling season (April through October), the high-grade waste heat from the fuel cells is used in two 70

  12. 2007 Fuel Cell Technologies Market Report

    SciTech Connect (OSTI)

    McMurphy, K.

    2009-07-01T23:59:59.000Z

    The fuel cell industry, which has experienced continued increases in sales, is an emerging clean energy industry with the potential for significant growth in the stationary, portable, and transportation sectors. Fuel cells produce electricity in a highly efficient electrochemical process from a variety of fuels with low to zero emissions. This report describes data compiled in 2008 on trends in the fuel cell industry for 2007 with some comparison to two previous years. The report begins with a discussion of worldwide trends in units shipped and financing for the fuel cell industry for 2007. It continues by focusing on the North American and U.S. markets. After providing this industry-wide overview, the report identifies trends for each of the major fuel cell applications -- stationary power, portable power, and transportation -- including data on the range of fuel cell technologies -- polymer electrolyte membrane fuel cell (PEMFC), solid oxide fuel cell (SOFC), alkaline fuel cell (AFC), molten carbonate fuel cell (MCFC), phosphoric acid fuel cell (PAFC), and direct-methanol fuel cell (DMFC) -- used for these applications.

  13. Fuel Cells Vehicle Systems Analysis (Fuel Cell Freeze Investigation)

    SciTech Connect (OSTI)

    Pesaran, A.; Kim, G.; Markel, T.; Wipke, K.

    2005-05-01T23:59:59.000Z

    Presentation on Fuel Cells Vehicle Systems Analysis (Fuel Cell Freeze Investigation) for the 2005 Hydrogen, Fuel Cells & Infrastructure Technologies Program Annual Review held in Arlington, Virginia on May 23-26, 2005.

  14. Automotive Fuel Cell Corporation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperationalAugust August 2015 Events2-7148Automotive Fuel Cell

  15. Sandia Energy - Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesInAppliedEnergy Storage ComponentsFuel Cells

  16. Compliant fuel cell system

    DOE Patents [OSTI]

    Bourgeois, Richard Scott (Albany, NY); Gudlavalleti, Sauri (Albany, NY)

    2009-12-15T23:59:59.000Z

    A fuel cell assembly comprising at least one metallic component, at least one ceramic component and a structure disposed between the metallic component and the ceramic component. The structure is configured to have a lower stiffness compared to at least one of the metallic component and the ceramic component, to accommodate a difference in strain between the metallic component and the ceramic component of the fuel cell assembly.

  17. Composite fuel cell membranes

    SciTech Connect (OSTI)

    Plowman, Keith R. (Lake Jackson, TX); Rehg, Timothy J. (Lake Jackson, TX); Davis, Larry W. (West Columbia, TX); Carl, William P. (Marble Falls, TX); Cisar, Alan J. (Cypress, TX); Eastland, Charles S. (West Columbia, TX)

    1997-01-01T23:59:59.000Z

    A bilayer or trilayer composite ion exchange membrane suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.

  18. Composite fuel cell membranes

    DOE Patents [OSTI]

    Plowman, K.R.; Rehg, T.J.; Davis, L.W.; Carl, W.P.; Cisar, A.J.; Eastland, C.S.

    1997-08-05T23:59:59.000Z

    A bilayer or trilayer composite ion exchange membrane is described suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.

  19. Soft X-Ray Spectroscopic Study of Dense Strontium-Doped Lanthanum Manganite Cathodes for Solid Oxide Fuel Cell Applications

    SciTech Connect (OSTI)

    Piper, L.F.J.; Preston, Andrew R.H.; Cho, Sang Wan; DeMasi, Alexander; Chen, Bin; Laverock, J.; Smith, K. E.; Miara, Lincoln J.; Davis, Jacob N.; Basu, Soumendra; Pal, Uday B.; Gopalan, Srikanth; Saraf, Laxmikant V.; Kaspar, Tiffany C.; Matsuura, A. Y.; Glans, P.A.; Guo, Jianzhong

    2010-12-02T23:59:59.000Z

    The modification of the Mn charge-state, chemical composition and electronic structure of La0.8Sr0.2MnO3 (LSMO) cathodes for solid oxide fuel cell (SOFC) applications remains an area of interest, due to the poorly understood enhanced catalytic activity (often referred to as the "burn-in" phenomenon) observed after many hours of operation. Using a combination of core-level X-ray photoemission spectroscopy (XPS), X-ray emission/absorption spectroscopy (XES/XAS), resonant inelastic X-ray scattering (RIXS) and resonant photoemission spectroscopy (RPES), we have monitored the evolution of these properties in LSMO at various stages of fabrication and operation. By rapidly quenching and sealing in vacuum, we were able to directly compare the pristine (as-fabricated) LSMO with both "heat-treated" (800°C in air, and no bias) and "burnt-in" (800°C in air, -1 V bias) LSMO cathodes i.e. before and after the activation observed in our electrochemical impendence spectroscopy measurements. Comparison between the O K-edge XAS/XES and Mn L3,2-edge XAS of pristine and “burnt-in” LSMO cathodes revealed a severe change in the oxygen environment along with a reduced Mn2+ presence near the surface following activation. The change in the oxygen environment is attributed to SrxMnyOz formation, along with possible passive SrO and Mn3O4 species. We present evidence from our “heat-treated” samples that SrxMnyOz regions form at elevated temperatures in air before the application of a cathodic bias. Our core-level XPS, Mn L3,2-edge RIXS and Mn L3 RPES studies of “heat-treated” and pristine LSMO determined that SOFC environments result in La-deficiency (severest near the surface) and stronger Mn4+ contribution, leading to the increased insulating character of the cathode prior to activation. The passive Mn2+ species near the surface and increased hole-doping (>0.6) of the LSMO upon exposure to the operating environment are considered responsible for the initially poor performance of the SOFC. Meanwhile, the improved oxygen reduction following the application of a cathodic bias is considered to be due to enhanced bulk oxygen-ion diffusion resulting from the migration of Mn2+ ions towards the LSMO/electrolyte interface and the SrxMnyOz regions facilitating enhanced bulk oxygen reduction reaction kinetics.

  20. A Feasibility Study of Fuel Cell Cogeneration in Industry 

    E-Print Network [OSTI]

    Phelps, S. B.; Kissock, J. K.

    1997-01-01T23:59:59.000Z

    ), and Solid Oxide Fuel Cell (SOFC) (see Table 2). The different fuel cells operate at different temperatures. Each fuel cell has advantages and disadvantages that must be weighed when deciding which fuel cell to use for a particular application. The PC25...

  1. DOE Hydrogen & Fuel Cell Overview

    Broader source: Energy.gov (indexed) [DOE]

    t t 1 | Fuel Cell Technologies Program eere.energy.gov Fuel Cell Technologies Program DOE Hydrogen & Fuel Cell Overview Dr. Sunita Satyapal Program Manager U S D f E Overview U.S....

  2. Power from the Fuel Cell

    E-Print Network [OSTI]

    Lipman, Timothy E.

    2000-01-01T23:59:59.000Z

    Power for Buildings Using Fuel-Cell Cars,” Proceedings ofwell as to drive down fuel-cell system costs through productthe potential advantages of fuel cells as clean and reliable

  3. HYDROGEN FUEL CELL BUS EVALUATION

    Broader source: Energy.gov [DOE]

    This paper describes the prototype fuel cell bus, fueling infrastructure, and maintenance facility for an early technology adopter.

  4. Fuel cell anode configuration for CO tolerance

    DOE Patents [OSTI]

    Uribe, Francisco A.; Zawodzinski, Thomas A.

    2004-11-16T23:59:59.000Z

    A polymer electrolyte fuel cell (PEFC) is designed to operate on a reformate fuel stream containing oxygen and diluted hydrogen fuel with CO impurities. A polymer electrolyte membrane has an electrocatalytic surface formed from an electrocatalyst mixed with the polymer and bonded on an anode side of the membrane. An anode backing is formed of a porous electrically conductive material and has a first surface abutting the electrocatalytic surface and a second surface facing away from the membrane. The second surface has an oxidation catalyst layer effective to catalyze the oxidation of CO by oxygen present in the fuel stream where at least the layer of oxidation catalyst is formed of a non-precious metal oxidation catalyst selected from the group consisting of Cu, Fe, Co, Tb, W, Mo, Sn, and oxides thereof, and other metals having at least two low oxidation states.

  5. Modular fuel-cell stack assembly

    DOE Patents [OSTI]

    Patel, Pinakin (Danbury, CT); Urko, Willam (West Granby, CT)

    2008-01-29T23:59:59.000Z

    A modular multi-stack fuel-cell assembly in which the fuel-cell stacks are situated within a containment structure and in which a gas distributor is provided in the structure and distributes received fuel and oxidant gases to the stacks and receives exhausted fuel and oxidant gas from the stacks so as to realize a desired gas flow distribution and gas pressure differential through the stacks. The gas distributor is centrally and symmetrically arranged relative to the stacks so that it itself promotes realization of the desired gas flow distribution and pressure differential.

  6. FUEL CELL TECHNOLOGIES PROGRAM Technologies

    E-Print Network [OSTI]

    and fuel cells offer great promise for our energy future. Fuel cell vehicles are not yet commercially, such as a hydrogen fueling station or hydrogen fuel cell vehicle. Technology validation does not certify, and the Federal Government to evaluate hydrogen fuel cell vehicle and infrastructure technologies together in real

  7. Sandia National Laboratories: Fuel Cell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell ECIS, Boeing, Caltrans, and Others: Fuel-Cell-Powered Mobile Lighting Applications On March 29, 2013, in Capabilities, CRF, Energy, Energy Efficiency, Facilities,...

  8. Air Liquide - Biogas & Fuel Cells

    Broader source: Energy.gov (indexed) [DOE]

    Concept Landfill WWTP digester Biogas membrane Pipeline quality methane CH4 Pipeline Hydrogen Production To Fuel Cell Vehicles Stationary Fuel Cells With H2...

  9. Fuel Cell Technologies Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CSD Workshop Washington, DC Fuel Cell Technologies Program Overview Dr. Sunita Satyapal Director, Fuel Cell Technologies Office Energy Efficiency and Renewable Energy U.S....

  10. Fuel Cell Technologies Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Non-Metallic Materials Meeting Washington, DC Fuel Cell Technologies Program Overview Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager...

  11. Fuel cell system

    DOE Patents [OSTI]

    Early, Jack (Perth Amboy, NJ); Kaufman, Arthur (West Orange, NJ); Stawsky, Alfred (Teaneck, NJ)

    1982-01-01T23:59:59.000Z

    A fuel cell system is comprised of a fuel cell module including sub-stacks of series-connected fuel cells, the sub-stacks being held together in a stacked arrangement with cold plates of a cooling means located between the sub-stacks to function as electrical terminals. The anode and cathode terminals of the sub-stacks are connected in parallel by means of the coolant manifolds which electrically connect selected cold plates. The system may comprise a plurality of the fuel cell modules connected in series. The sub-stacks are designed to provide a voltage output equivalent to the desired voltage demand of a low voltage, high current DC load such as an electrolytic cell to be driven by the fuel cell system. This arrangement in conjunction with switching means can be used to drive a DC electrical load with a total voltage output selected to match that of the load being driven. This arrangement eliminates the need for expensive voltage regulation equipment.

  12. FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Fuel

    E-Print Network [OSTI]

    of refueling today's gasoline vehicles. Using currently available high-pressure tank storage technology that can achieve similar performance, at a similar cost, as gasoline fuel storage systems. Compressed gasFUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Fuel Cell Technologies Program: Storage Hydrogen

  13. 7th European SOFC Forum, Session B03, Tuesday, 4 July 2006, 14:45h, File No. B034 Solid Oxide Fuel Cell Development at

    E-Print Network [OSTI]

    Fuel Cell Development at Topsoe Fuel Cell A/S and Risø Niels Christiansen1 , John B. Hansen1 , Helge Fuel Cell A/S Nymøllevej 55 DK-2800 Lyngby / Denmark Tel.: +45-4527-2085 Fax: +45-4527-2999 nc@topsoe.dk 2 Risø National Laboratory DK-4000 Roskilde / Denmark Abstract The consortium of Topsoe Fuel Cell A

  14. Study of low-temperature-combustion diesel engines as an on-board reformer for intermediate temperature Solid Oxide Fuel Cell vehicles

    E-Print Network [OSTI]

    Hahn, Tairin

    2006-01-01T23:59:59.000Z

    Fuel cells have been recognized as a feasible alternative to current IC engines. A significant technical problem yet to be resolved is the on bound fuel supply before fuel cells can be practically used for vehicles. Use ...

  15. Fuel cell system combustor

    DOE Patents [OSTI]

    Pettit, William Henry (Rochester, NY)

    2001-01-01T23:59:59.000Z

    A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode and cathode effluents. The combustor includes a turbulator section at its input end for intimately mixing the anode and cathode effluents before they contact the combustors primary catalyst bed. The turbulator comprises at least one porous bed of mixing media that provides a tortuous path therethrough for creating turbulent flow and intimate mixing of the anode and cathode effluents therein.

  16. Solid polymer MEMS-based fuel cells

    DOE Patents [OSTI]

    Jankowski, Alan F. (Livermore, CA); Morse, Jeffrey D. (Pleasant Hill, CA)

    2008-04-22T23:59:59.000Z

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  17. Fuel dissipater for pressurized fuel cell generators

    DOE Patents [OSTI]

    Basel, Richard A.; King, John E.

    2003-11-04T23:59:59.000Z

    An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a pressurized fuel cell generator (10) when the electrical power output of the fuel cell generator is terminated during transient operation, such as a shutdown; where, two electrically resistive elements (two of 28, 53, 54, 55) at least one of which is connected in parallel, in association with contactors (26, 57, 58, 59), a multi-point settable sensor relay (23) and a circuit breaker (24), are automatically connected across the fuel cell generator terminals (21, 22) at two or more contact points, in order to draw current, thereby depleting the fuel inventory in the generator.

  18. Cathode preparation method for molten carbonate fuel cell

    DOE Patents [OSTI]

    Smith, James L. (Lemont, IL); Sim, James W. (Evergreen Park, IL); Kucera, Eugenia H. (Downers Grove, IL)

    1988-01-01T23:59:59.000Z

    A method of preparing a porous cathode structure for use in a molten carbonate fuel cell begins by providing a porous integral plaque of sintered nickel oxide particles. The nickel oxide plaque can be obtained by oxidizing a sintered plaque of nickel metal or by compacting and sintering finely divided nickel oxide particles to the desired pore structure. The porous sintered nickel oxide plaque is contacted with a lithium salt for a sufficient time to lithiate the nickel oxide structure and thus enhance its electronic conductivity. The lithiation can be carried out either within an operating fuel cell or prior to assembling the plaque as a cathode within the fuel cell.

  19. Fuel cell generator energy dissipator

    DOE Patents [OSTI]

    Veyo, Stephen Emery (Murrysville, PA); Dederer, Jeffrey Todd (Valencia, PA); Gordon, John Thomas (Ambridge, PA); Shockling, Larry Anthony (Pittsburgh, PA)

    2000-01-01T23:59:59.000Z

    An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a fuel cell generator when the electrical power output of the fuel cell generator is terminated. During a generator shut down condition, electrically resistive elements are automatically connected across the fuel cell generator terminals in order to draw current, thereby depleting the fuel

  20. Seventh Edition Fuel Cell Handbook

    SciTech Connect (OSTI)

    NETL

    2004-11-01T23:59:59.000Z

    Provides an overview of fuel cell technology and research projects. Discusses the basic workings of fuel cells and their system components, main fuel cell types, their characteristics, and their development status, as well as a discussion of potential fuel cell applications.