Powered by Deep Web Technologies
Note: This page contains sample records for the topic "oxide emissions rhode" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

EIA - Greenhouse Gas Emissions - Nitrous Oxide Emissions  

Gasoline and Diesel Fuel Update (EIA)

4. Nitrous Oxide Emissions 4. Nitrous Oxide Emissions 4.1 Total emissions U.S. nitrous oxide emissions in 2009 were 4 MMTCO2e (1.7 percent) below their 2008 total (Table 22). Sources of U.S. nitrous oxide emissions include agriculture, energy use, industrial processes, and waste management (Figure 22). The largest source is agriculture (73 percent), and the majority of agricultural emissions result from nitrogen fertilization of agricultural soils (87 percent of the agriculture total) and management of animal waste (13 percent). U.S. nitrous oxide emissions rose from 1990 to 1994, fell from 1994 to 2002, and returned to an upward trajectory from 2003 to 2007, largely as a result of increased use of synthetic fertilizers. Fertilizers are the primary contributor of emissions from nitrogen fertilization of soils, which grew by more than 30 percent from

2

Air Pollution Control Regulations: No. 3- Particulate Emissions from Industrial Processes (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations limit particulate emissions into the atmosphere by process weight per hour, where process weight is the total weight of all materials introduced into any specific process which...

3

Air Pollution Control Regulations: No. 6- Continuous Emissions Monitors and Opacity Monitors (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

Stationary sources, including fossil fuel fired steam or hot water generating units, may be required to install and operate a continuous emissions monitoring system equipped with an opacity monitor...

4

Nitrogen Oxides Emission Control Options  

NLE Websites -- All DOE Office Websites (Extended Search)

Nitrogen Nitrogen Oxides Emission Control Options for Coal-Fired Electric Utility Boilers Ravi K. Srivastava and Robert E. Hall U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Air Pollution Prevention and Control Division, Research Triangle Park, NC Sikander Khan and Kevin Culligan U.S. Environmental Protection Agency, Office of Air and Radiation, Clean Air Markets Division, Washington, DC Bruce W. Lani U.S. Department of Energy, National Energy Technology Laboratory, Environmental Projects Division, Pittsburgh, PA ABSTRACT Recent regulations have required reductions in emissions of nitrogen oxides (NO x ) from electric utility boilers. To comply with these regulatory requirements, it is increas- ingly important to implement state-of-the-art NO x con- trol technologies on coal-fired utility boilers. This paper reviews NO x control

5

Nitrous Oxide Emissions from a Municipal Landfill  

Science Journals Connector (OSTI)

Nitrous Oxide Emissions from a Municipal Landfill ... Due to the small area of landfills as compared to other land-use classes, the total N2O emissions from landfills are estimated to be of minor importance for the total emissions from Finland. ...

Janne Rinne; Mari Pihlatie; Annalea Lohila; Tea Thum; Mika Aurela; Juha-Pekka Tuovinen; Tuomas Laurila; Timo Vesala

2005-09-21T23:59:59.000Z

6

Effects of Diesel Exhaust Emissions on Soot Oxidation and DPF...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Diesel Exhaust Emissions on Soot Oxidation and DPF Regeneration Effects of Diesel Exhaust Emissions on Soot Oxidation and DPF Regeneration DPF regeneration experiments verified the...

7

Alternative Fuels Data Center: Rhode Island Laws and Incentives for Air  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Air Quality / Emissions to someone by E-mail Air Quality / Emissions to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Air Quality / Emissions on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Air Quality / Emissions on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Air Quality / Emissions on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Air Quality / Emissions on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Air Quality / Emissions on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Air Quality / Emissions on AddThis.com... More in this section... Federal

8

Nitrogen oxides emission trends in Monthly emission estimates of nitrogen oxides from space provide  

E-Print Network (OSTI)

Chapter 5 Nitrogen oxides emission trends in East Asia Abstract Monthly emission estimates present first results of a new emission estimation algorithm, specifically designed to use daily satellite observations of column concentrations for fast updates of emission estimates of short-lived atmospheric

Haak, Hein

9

Air Pollution Control Regulations: No. 13- Particulate Emissions from Fossil Fuel Fired Steam or Hot Water Generating Units (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of this regulation is to limit emissions of particulate matter from fossil fuel fired and wood-fired steam or hot water generating units.

10

Air Pollution Control Regulations: No. 7- Emission of Air Contaminants Detrimental to Person or Property (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

No person shall emit any contaminant which either alone or in connection with other emissions, by reason of their concentration or duration, may be injurious to human, plant or animal life, or...

11

Rhode Island Stormwater Design and Installation Standards Manual (Rhode  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island Stormwater Design and Installation Standards Manual Rhode Island Stormwater Design and Installation Standards Manual (Rhode Island) Rhode Island Stormwater Design and Installation Standards Manual (Rhode Island) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Rhode Island Program Type Environmental Regulations

12

Air Pollution Control Regulations: No. 22 - Air Toxics (Rhode Island) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Pollution Control Regulations: No. 22 - Air Toxics (Rhode Air Pollution Control Regulations: No. 22 - Air Toxics (Rhode Island) Air Pollution Control Regulations: No. 22 - Air Toxics (Rhode Island) < Back Eligibility Commercial Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Rhode Island Program Type Siting and Permitting Provider Department of Environmental Management Permits are required to construct, install, or modify any stationary source which has the potential to increase emissions of a listed toxic air contaminant by an amount greater than the minimum quantity for that contaminant. Minimum quantities are specified in Table III of these regulations. Permits will be granted based in part on the impact of the projected emissions of the stationary source on acceptable ambient levels

13

Rhode Island.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

Rhode Island Rhode Island www.effi cientwindows.org March 2013 1. Meet the Energy Code and Look for the ENERGY STAR ® Windows must comply with your local energy code. Windows that are ENERGY STAR qualifi ed typically meet or exceed energy code requirements. To verify if specific window energy properties comply with the local code requirements, go to Step 2. 2. Look for Effi cient Properties on the NFRC Label The National Fenestration Rating Council (NFRC) label is needed for verifi cation of energy code compliance (www.nfrc. org). The NFRC label displays whole- window energy properties and appears on all fenestration products which are part of the ENERGY STAR program.

14

Small-Scale Solar Grants (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

The Rhode Island Economic Development Corporation (RIEDC) provides incentives for renewable-energy projects. Incentive programs are funded by the Rhode Island Renewable Energy Fund (RIREF) and...

15

Rhodes Hall Ross Heart Hospital  

E-Print Network (OSTI)

Emergency 315 315 26 Rhodes Hall Ross Heart Hospital James Cancer Hospital Martha Morehouse.m. James Cancer Hospital 7:10 a.m. Rhodes Hall 7:13 a.m. Ross Heart Hospital 7:15 a.m. Martha Morehouse

Howat, Ian M.

16

Air Pollution Control Regulations: No.27 - Control of Nitrogen Oxide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Pollution Control Regulations: No.27 - Control of Nitrogen Air Pollution Control Regulations: No.27 - Control of Nitrogen Oxide Emissions (Rhode Island) Air Pollution Control Regulations: No.27 - Control of Nitrogen Oxide Emissions (Rhode Island) < Back Eligibility Commercial Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Rhode Island Program Type Environmental Regulations Provider Department of Environmental Management These regulations apply to stationary sources with the potential to emit 50 tons of nitrogen oxides (NOx) per year from all pollutant-emitting equipment or activities. The regulations describe possibilities for exemptions (i.e., for sources which have the potential to emit 50 tons but do not actually reach that level) and Reasonably Available Control

17

Interconnection Guidelines (Rhode Island) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interconnection Guidelines (Rhode Island) Interconnection Guidelines (Rhode Island) Interconnection Guidelines (Rhode Island) < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Home Weatherization Wind Program Info State Rhode Island Program Type Interconnection Provider Rhode Island Public Utilities Commission Rhode Island enacted legislation (HB 6222) in June 2011 to standardize the application process for the interconnection of customer-sited renewable-energy systems to the state's distribution grid. Rhode Island's interconnection policy is not nearly as comprehensive as

18

Rhode Island/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Rhode Island Rhode Island Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Rhode Island Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Rhode Island No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Rhode Island No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Rhode Island No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Rhode Island Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

19

Alternative Fuels Data Center: Rhode Island Information  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Rhode Island Rhode Island Information to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Information on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Information on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Information on Google Bookmark Alternative Fuels Data Center: Rhode Island Information on Delicious Rank Alternative Fuels Data Center: Rhode Island Information on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Information on AddThis.com... Rhode Island Information This state page compiles information related to alternative fuels and advanced vehicles in Rhode Island and includes new incentives and laws, alternative fueling station locations, truck stop electrification sites, fuel prices, and local points of contact.

20

Influence of reduced carbon emissions and oxidation on the distribution of atmospheric CO 2 : Implications for inversion analyses  

E-Print Network (OSTI)

Influence of reduced carbon emissions and oxidation on thedescription of reduced carbon emission and oxidationInfluence of reduced carbon emissions and oxidation on the

Suntharalingam, Parvadha; Randerson, James T; Krakauer, Nir; Logan, Jennifer A; Jacob, Daniel J

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxide emissions rhode" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Nitrogen oxide emissions from a kraft recovery furnace  

SciTech Connect

Nitrogen Oxide (NOx) emissions from a rebuilt kraft recovery furnace slightly exceeded the specified limit of 1.1 lb/ton (0.55 kg/metric ton) of black-liquor solids. Mill trials were undertaken to determine whether NOx emissions could be minimized by modifying furnace operation. NOx emissions increased when secondary air was shifted to tertiary ports. NOx emissions fell when the amounts of primary and total air were decreased, but this increased emissions of other pollutants. After demonstrating that best operation of the furnace could not meet the permit with an emissions limit that matched the furnace's performance at best operation.

Prouty, A.L.; Stuart, R.C. (James River Corp., Camas, WA (United States)); Caron, A.L. (NCASI West Coast Regional Office, Corvallis, OR (United States))

1993-01-01T23:59:59.000Z

22

Nitrous oxide emissions from wastewater treatment processes  

Science Journals Connector (OSTI)

...specific ammonia oxidation rate. Symbols represent...Research Council (ARC) for funding this...correlated to its ammonia oxidation rate. 51 Arp, D...1146/annurev.micro.61.080706.093449...1146/annurev.micro.61.080706.093449...2004 Anaerobic oxidation of inorganic nitrogen...

2012-01-01T23:59:59.000Z

23

Nitrogen Oxide Emission Statements (Ohio) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nitrogen Oxide Emission Statements (Ohio) Nitrogen Oxide Emission Statements (Ohio) Nitrogen Oxide Emission Statements (Ohio) < Back Eligibility Agricultural Commercial Construction Fuel Distributor Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Ohio Program Type Environmental Regulations Provider Ohio Environmental Protection Agency This chapter of the law establishes that the Ohio Environmental Protection Agency requires any facility that emits 25 tons or more of NOx and/or 25 tons or more of VOC during the calendar year and is located in a county designated as nonattainment for the National Ambient Air Quality Standards for ozone submit emission statements. Any facility that is located in a county described above is exempt from these requirements. If NOx

24

Rhode Island | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Rhode Island Rhode Island Last updated on 2013-11-05 Current News 2012 IECC adopted July 1, 2013 Commercial Residential Code Change Current Code 2012 IECC Amendments / Additional State Code Information The Rhode Island commercial code is the 2012 IECC with reference to ASHRAE 90.1-2010. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Rhode Island (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2012 IECC Effective Date 07/01/2013 Adoption Date 07/01/2013 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: Yes Rhode Island DOE Determination Letter, May 31, 2013 Rhode Island State Certification of Commercial and Residential Building Energy Codes

25

Bristol, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

County, Rhode Island.1 Registered Energy Companies in Bristol, Rhode Island Ocean Wave Energy Company OWECO References US Census Bureau Incorporated place and minor...

26

Effects of Diesel Exhaust Emissions on Soot Oxidation and DPF Regeneration  

Energy.gov (U.S. Department of Energy (DOE))

DPF regeneration experiments verified the effects of NO2 and O2 emissions found from the thermogravimetric analyzer soot oxidation.

27

Microsoft Word - rhode_island.doc  

Gasoline and Diesel Fuel Update (EIA)

Rhode Island Rhode Island NERC Region(s) ....................................................................................................... NPCC Primary Energy Source........................................................................................... Gas Net Summer Capacity (megawatts) ....................................................................... 1,782 49 Electric Utilities ...................................................................................................... 7 50 Independent Power Producers & Combined Heat and Power ................................ 1,775 37 Net Generation (megawatthours) ........................................................................... 7,738,719 47

28

Alternative Fuels Data Center: Rhode Island Points of Contact  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Rhode Island Points of Rhode Island Points of Contact to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Points of Contact on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Points of Contact on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Points of Contact on Google Bookmark Alternative Fuels Data Center: Rhode Island Points of Contact on Delicious Rank Alternative Fuels Data Center: Rhode Island Points of Contact on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Points of Contact on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Rhode Island Points of Contact The following people or agencies can help you find more information about Rhode Island's clean transportation laws, incentives, and funding

29

Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Rhode Island: Energy Resources Rhode Island: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5800945,"lon":-71.4774291,"alt":0,"address":"Rhode

30

MODELING THE EMISSIONS OF NITROUS OXIDE (N20) AND METHANE (CH 4) FROM THE  

E-Print Network (OSTI)

MODELING THE EMISSIONS OF NITROUS OXIDE (N20) AND METHANE (CH 4) FROM THE TERRESTRIAL BIOSPHERE;2 #12;MODELING THE EMISSIONS OF NITROUS OXIDE (N 20) AND METHANE (CH 4) FROM THE TERRESTRIAL BIOSPHERE cli- mate has on natural emissions of N2 0 and CH4 from the terrestrial biosphere to the atmosphere

31

Reduction of carbon monoxide emissions with regenerative thermal oxidizers  

SciTech Connect

Regenerative thermal oxidizers (RTOs) have been extensively used for the control of volatile organic compound (VOC) emissions from various sources. However, very little information is available on the ability of RTOs to control carbon monoxide (CO) emissions. This paper presents the results of extensive tests conducted on two RTOs to determine their VOC and CO control efficiencies. The inlet gas stream to the RTOs includes VOC and CO concentrations as high as 2,000 ppm and 3,600 ppm, respectfully. The testing demonstrated that both RTOs were capable of controlling greater than 98% of both inlet VOCs and CO. While the destruction efficiencies within the combustion chambers exceeded 99.9%, direct leakage past valves accounted for the lower control efficiencies. The tests indicated that the overall VOC and CO control efficiencies of the RTOs may be limited by valve leakage. The design and permitting of a RTO should include conservative control estimates which account for possible valve leakage.

Firmin, S.M.; Lipke, S.; Baturay, A.

1996-09-01T23:59:59.000Z

32

Bluewater Wind Rhode Island | Open Energy Information  

Open Energy Info (EERE)

Rhode Island Rhode Island Jump to: navigation, search Name Bluewater Wind Rhode Island Facility Bluewater Wind Rhode Island Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner NRG Bluewater Wind Developer NRG Bluewater Wind Location Atlantic Ocean RI Coordinates 41.357°, -71.152° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.357,"lon":-71.152,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

33

University of Rhode Island | Open Energy Information  

Open Energy Info (EERE)

Rhode Island Rhode Island Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name University of Rhode Island Address Department of Ocean Engineering, Sheets Building, Bay Campus Place Narragansett, Rhode Island Zip 02882 Sector Hydro Phone number (401) 874-6139 Website http://www.oce.uri.edu/baycamp Coordinates 41.3983403°, -71.4893013° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.3983403,"lon":-71.4893013,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

34

Recovery Act State Memos Rhode Island  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island Rhode Island For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 4

35

Alternative Fuels Data Center: Rhode Island Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Rhode Island Laws and Rhode Island Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Rhode Island Laws and Incentives Listed below are incentives, laws, and regulations related to alternative

36

Low-Temperature Hydrocarbon/CO Oxidation Catalysis in Support of HCCI Emission Control  

Energy.gov (U.S. Department of Energy (DOE))

Development of catalyst materials to facilitate the low-temperature oxidation of hydrocarbons and CO in homogeneous charge compression ignition (HCCI) emissions.

37

Rhode Island Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island Recovery Act State Memo Rhode Island Recovery Act State Memo Rhode Island Recovery Act State Memo Rhode Island has substantial natural resources, including wind and biomass. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Rhode Island are supporting a broad range of clean energy projects, from weatherization to smart grid workforce training. Through these investments, Rhode Island's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Rhode Island to play an important role in the new energy economy of the future. Rhode Island Recovery Act State Memo More Documents & Publications Slide 1 Guam Recovery Act State Memo

38

Rhode Island Renewable Energy Fund (RIREF) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island Renewable Energy Fund (RIREF) Rhode Island Renewable Energy Fund (RIREF) Rhode Island Renewable Energy Fund (RIREF) < Back Eligibility Commercial Industrial Institutional Residential Utility Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Heating & Cooling Commercial Heating & Cooling Solar Heating Water Heating Wind Program Info State Rhode Island Program Type Public Benefits Fund Provider Rhode Island Economic Development Corporation Rhode Island's Public Utilities Restructuring Act of 1996 created the nation's first public benefits fund (PBF) for renewable energy and demand-side management (DSM). The Rhode Island Renewable Energy Fund's (RIREF) renewable-energy component is administered by the Rhode Island Economic Development Corporation (RIEDC), and the fund's demand-side

39

Constellation NewEnergy, Inc (Rhode Island) | Open Energy Information  

Open Energy Info (EERE)

Rhode Island) Jump to: navigation, search Name: Constellation NewEnergy, Inc Place: Rhode Island References: EIA Form EIA-861 Final Data File for 2010 - File220101 EIA Form 861...

40

O. E. Rhodes, Jr. | Savannah River Ecology Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Rhodes Curriculum Vitae Faculty & Scientists SREL Home Olin E. Rhodes, Jr. Savannah River Ecology Laboratory P O Drawer E, Aiken, SC 29802 (803) 725-8191 office (803) 725-3309 fax...

Note: This page contains sample records for the topic "oxide emissions rhode" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Alternative Fuels Data Center: Rhode Island Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

to someone by E-mail to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Rhode Island Laws and Incentives Listed below are the summaries of all current Rhode Island laws, incentives, regulations, funding opportunities, and other initiatives

42

University of Rhode Island inAdvance October 26, 2006  

E-Print Network (OSTI)

at the Rhode Island Community Food Bank. On December 3, the Southwest Florida Gators will get together

Rhode Island, University of

43

Rhodes Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Rhodes Marsh Geothermal Area (Redirected from Rhodes Marsh Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Rhodes Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase:

44

Rhodes Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Rhodes Marsh Geothermal Area Rhodes Marsh Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Rhodes Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

45

Nitric oxide emissions from the high-temperature viscous boundary layers of hypersonic aircraft within the stratosphere  

SciTech Connect

The authors study the nitric oxide emission characteristics of supersonic aircraft resulting from heating of viscous boundary layers along the skin of the aircraft. Previous study has concentrated on nitric oxide emissions coming from combustion products from the scramjet engines. This work shows that above mach 8, emissions from viscous heating become a significant factor in total emission of nitric oxide. Above mach 16 it becomes the dominant source of emission.

Brooks, S.B.; Lewis, M.J.; Dickerson, R.R. [Univ. of Maryland, College Park, MD (United States)

1993-09-20T23:59:59.000Z

46

Alternative Fuels Data Center: Rhode Island Laws and Incentives for  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel to someone by E-mail Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Biodiesel on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Biodiesel on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Biodiesel on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Biodiesel on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Biodiesel on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Biodiesel on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Rhode Island Laws and Incentives for Biodiesel

47

Oxides Emissions from Coal-Fired Boilers TOPICAL REPORT NUMBER 14  

NLE Websites -- All DOE Office Websites (Extended Search)

Reburning Technologies for the Control of Nitrogen Reburning Technologies for the Control of Nitrogen Oxides Emissions from Coal-Fired Boilers TOPICAL REPORT NUMBER 14 MAY 1999 TOPICAL REPORT NUMBER 14 A report on three projects conducted under separate cooperative agreements between: The U.S. Department of Energy and * The Babcock & Wilcox Company * Energy and Environmental Research Corporation * New York State Electric & Gas Corporation MAY 1999 Reburning Technologies for the Control of Nitrogen Oxides Emissions from Coal-Fired Boilers Cover image: Schematic of reburning technology Source: Energy and Environmental Research Corporation Reburning Technologies for the Control of Nitrogen Oxides Emissions from Coal-Fired Boilers Executive Summary ..................................................................................................

48

Process Modeling of Global Soil Nitrous Oxide Emissions  

E-Print Network (OSTI)

Nitrous oxide is an important greenhouse gas and is a major ozone-depleting substance. To understand and

Saikawa, E.

2011-09-01T23:59:59.000Z

49

Methods of reducing emissions of nitrogen oxides at thermal power plants burning solid domestic waste  

Science Journals Connector (OSTI)

Essentially all the major methods of reducing the emissions of nitrogen oxides from flue gases employed in power generation have been tested on plants in Moscow which burn solid domestic waste for production of h...

A. N. Tugov; V. F. Moskvichev

2009-01-01T23:59:59.000Z

50

" Electric Utilities",602076,"Florida","Rhode Island"  

U.S. Energy Information Administration (EIA) Indexed Site

Highest","Lowest" Highest","Lowest" "United States" "Primary Energy Source","Coal" "Net Summer Capacity (megawatts)",1039062,"Texas","District of Columbia" " Electric Utilities",602076,"Florida","Rhode Island" " Independent Power Producers & Combined Heat and Power",436986,"Texas","Alaska" "Net Generation (megawatthours)",4125059899,"Texas","District of Columbia" " Electric Utilities",2471632103,"Florida","New Jersey" " Independent Power Producers & Combined Heat and Power",1653427796,"Texas","District of Columbia" "Emissions (thousand metric tons)"

51

Alternative Fuels Data Center: Rhode Island Laws and Incentives for  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Fuel Cells to someone by E-mail Hydrogen Fuel Cells to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Hydrogen Fuel Cells on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Hydrogen Fuel Cells on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Hydrogen Fuel Cells on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Hydrogen Fuel Cells on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Hydrogen Fuel Cells on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Hydrogen Fuel Cells on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

52

Alternative Fuels Data Center: Rhode Island Laws and Incentives for  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Acquisition / Fuel Use to someone by E-mail Acquisition / Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Acquisition / Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Acquisition / Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Acquisition / Fuel Use on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Acquisition / Fuel Use on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Acquisition / Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Acquisition / Fuel Use on AddThis.com... More in this section... Federal State

53

Categorical Exclusion Determinations: Rhode Island | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island Rhode Island Categorical Exclusion Determinations: Rhode Island Location Categorical Exclusion Determinations issued for actions in Rhode Island. DOCUMENTS AVAILABLE FOR DOWNLOAD August 15, 2013 CX-010757: Categorical Exclusion Determination The New England Solar cost-Reduction Challenge Partnership CX(s) Applied: A9, A11 Date: 08/15/2013 Location(s): Vermont, New Hampshire, Rhode Island, Massachusetts, Connecticut Offices(s): Golden Field Office February 4, 2013 CX-010572: Categorical Exclusion Determination Brown University - Marine Hydro-Kinetic Energy Harvesting Using Cyber-Physical Systems CX(s) Applied: B3.6 Date: 02/04/2013 Location(s): Rhode Island Offices(s): Advanced Research Projects Agency-Energy October 18, 2012 CX-009518: Categorical Exclusion Determination

54

The Jobs Development Act (Rhode Island) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jobs Development Act (Rhode Island) Jobs Development Act (Rhode Island) The Jobs Development Act (Rhode Island) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Institutional Retail Supplier Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Rhode Island Program Type Corporate Tax Incentive Provider Rhode Island Economic Development Corporation The Jobs Development Act provides an incremental reduction in the corporate income tax rate (9%) to companies creating jobs in Rhode Island. For every ten new jobs created for companies with fewer than 100 employees, companies can reduce the tax by a quarter percentage point. For companies with more

55

Alternative Fuels Data Center: Rhode Island Laws and Incentives for  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Producer to someone by E-mail Producer to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Alternative Fuel Producer on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Alternative Fuel Producer on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Alternative Fuel Producer on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Alternative Fuel Producer on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Alternative Fuel Producer on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Alternative Fuel Producer on AddThis.com... More in this section... Federal State

56

NETL: Mercury Emissions Control Technologies - Oxidation of Mercury Across  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxidation of Mercury Across SCR Catalysts in Coal-Fired Power Plants Burning Low Rank Fuels Oxidation of Mercury Across SCR Catalysts in Coal-Fired Power Plants Burning Low Rank Fuels The objective of the proposed research is to assess the potential for the oxidation of mercury in flue gas across SCR catalysts in a coal fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. Results from the project will contribute to a greater understanding of mercury behavior across SCR catalysts. Additional tasks include: review existing pilot and field data on mercury oxidation across SCR catalysts and propose a mechanism for mercury oxidation and create a simple computer model for mercury oxidation based on the hypothetical mechanism. Related Papers and Publications: Final Report - December 31, 2004 [PDF-532KB]

57

Fuel Mix and Emissions Disclosure  

Energy.gov (U.S. Department of Energy (DOE))

Rhode Island requires all entities that sell electricity in the state to disclose details regarding the fuel mix and emissions of their electric generation to end-use customers. This information...

58

Climate Action Plan (Rhode Island) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island) Rhode Island) Climate Action Plan (Rhode Island) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Rhode Island Program Type Climate Policies Provider Department of Environmental Management In the fall of 2001, the Department of Environmental Management (DEM), the

59

Rhode Island's 2nd congressional district: Energy Resources ...  

Open Energy Info (EERE)

Registered Energy Companies in Rhode Island's 2nd congressional district Cookson Electronics Jefferson Renewable Energy Tomorrow BioFuels LLC Retrieved from "http:...

60

,"Rhode Island Natural Gas LNG Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

LNG Storage Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Rhode...

Note: This page contains sample records for the topic "oxide emissions rhode" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Hess Retail Natural Gas and Elec. Acctg. (Rhode Island) | Open...  

Open Energy Info (EERE)

for 2010 - File22010" Retrieved from "http:en.openei.orgwindex.php?titleHessRetailNaturalGasandElec.Acctg.(RhodeIsland)&oldid786295" Categories: EIA Utility...

62

Rhode Island Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern...

63

,"Rhode Island Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

64

,"Rhode Island Natural Gas Deliveries to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas Deliveries to Electric Power Consumers (MMcf)",1,"Monthly","112014" ,"Release...

65

Geothermometry At Rhodes Marsh Area (Coolbaugh, Et Al., 2006...  

Open Energy Info (EERE)

Coolbaugh, Et Al., 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Rhodes Marsh Area (Coolbaugh, Et Al., 2006)...

66

Influence of reduced carbon emissions and oxidation on the distribution of atmospheric CO2: Implications for inversion analyses  

E-Print Network (OSTI)

Influence of reduced carbon emissions and oxidation on the distribution of atmospheric CO2 carbon emissions. We used TransCom3 annual mean simulations from three transport models to evaluate carbon emission and oxidation processes in deriving inversion estimates of CO2 surface fluxes. Citation

Krakauer, Nir Y.

67

Effectiveness of Diesel Oxidation Catalyst in Reducing HC and CO Emissions from Reactivity Controlled Compression Ignition  

SciTech Connect

Reactivity Controlled Compression Ignition (RCCI) has been shown to allow for diesel-like or better brake thermal efficiency with significant reductions in nitrogen oxide (NOX) particulate matter (PM) emissions. Hydrocarbon (HC) and carbon monoxide (CO) emission levels, on the other hand, are similar to those of port fuel injected gasoline engines. The higher HC and CO emissions combined with the lower exhaust temperatures with RCCI operation present a challenge for current exhaust aftertreatments. The reduction of HC and CO emissions in a lean environment is typically achieved with an oxidation catalyst. In this work, several diesel oxidation catalysts (DOC) with different precious metal loadings were evaluated for effectiveness to control HC and CO emissions from RCCI combustion in a light-duty multi-cylinder engine operating on gasoline and diesel fuels. Each catalyst was evaluated in a steady-state engine operation with temperatures ranging from 160 to 260 C. A shift to a higher light-off temperature was observed during the RCCI operation. In addition to the steady-state experiments, the performances of the DOCs were evaluated during multi-mode engine operation by switching from diesel-like combustion at higher exhaust temperature and low HC/CO emissions to RCCI combustion at lower temperature and higher HC/CO emissions. High CO and HC emissions from RCCI generated an exotherm keeping the catalyst above the light-off temperature.

Prikhodko, Vitaly Y [ORNL; Curran, Scott [ORNL; Parks, II, James E [ORNL; Wagner, Robert M [ORNL

2013-01-01T23:59:59.000Z

68

Modeling of Nitrogen Oxides Emissions from CFB Combustion  

Science Journals Connector (OSTI)

In this work, a simplified description of combustion and nitrogen oxides chemistry was implemented in a 1.5D model framework with the aim to compare the results with ones earlier obtained with a detailed react...

S. Kallio; M. Keinonen

2010-01-01T23:59:59.000Z

69

Persistent sensitivity of Asian aerosol to emissions of nitrogen oxides  

E-Print Network (OSTI)

We use a chemical transport model and its adjoint to examine the sensitivity of secondary inorganic aerosol formation to emissions of precursor trace gases from Asia. Sensitivity simulations indicate that secondary inorganic ...

Kharol, S. K.

70

Qualifying RPS State Export Markets (Rhode Island) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island) Rhode Island) Qualifying RPS State Export Markets (Rhode Island) < Back Eligibility Developer Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Rhode Island Program Type Renewables Portfolio Standards and Goals This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Rhode Island as eligible sources towards their RPS targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be delivered to an in-state utility or Load Serving Entity, and often only a portion of compliance

71

FINAL ENVIRONMENTAL ASSESSMENT FOR THE RHODE ISLAND LFG GENCO, LLC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RHODE ISLAND LFG GENCO, LLC RHODE ISLAND LFG GENCO, LLC COMBINED CYCLE ELECTRICITY GENERATION PLANT FUELED BY LANDFILL GAS JOHNSTON, RHODE ISLAND U.S. Department of Energy National Energy Technology Laboratory August 2010 DOE/EA-1742 FINAL ENVIRONMENTAL ASSESSMENT FOR THE RHODE ISLAND LFG GENCO, LLC COMBINED CYCLE ELECTRICITY GENERATION PLANT FUELED BY LANDFILL GAS JOHNSTON, RHODE ISLAND U.S. Department of Energy National Energy Technology Laboratory August 2010 DOE/EA-1742 ACRONYMS AND ABBREVIATIONS CFR Code of Federal Regulations CHP combined heat and power dBA A-weighted decibel DOE U.S. Department of Energy (also called the Department) EA environmental assessment EPA U.S. Environmental Protection Agency MW megawatt NAAQS National Ambient Air Quality Standards

72

Regional-Scale Assessment of Nitrous Oxide Emissions within the US Corn Belt: The Impact of Precipitation and Agricultural Drainage on Indirect Emissions  

E-Print Network (OSTI)

Regional-Scale Assessment of Nitrous Oxide Emissions within the US Corn Belt: The Impact of Precipitation and Agricultural Drainage on Indirect Emissions Tim Griffis1, Xuhui Lee2, John Baker3, Peter, but mitigation strategies have been limited by the large uncertainties in both direct and indirect emission

Minnesota, University of

73

CARBON SEQUESTRATION IN ARABLE SOILS IS LIKELY TO INCREASE NITROUS OXIDE EMISSIONS, OFFSETTING  

E-Print Network (OSTI)

CARBON SEQUESTRATION IN ARABLE SOILS IS LIKELY TO INCREASE NITROUS OXIDE EMISSIONS, OFFSETTING in strategies for climate protection. 1. Introduction Carbon sequestration has been highlighted recently concentration of carbon dioxide (CO2) in the atmo- sphere include sequestering carbon (C) in soils

74

Assessment of soil nitrogen oxides emissions and implementation in LOTOS-EUROS  

E-Print Network (OSTI)

the formation and transport of nitrogen dioxide, ozone, particulate matter and other species throughout EuropeAssessment of soil nitrogen oxides emissions and implementation in LOTOS-EUROS Date 18 March 2013, climate and nitrogen availability. Nitrogen availability is in turn determined by N-deposition from

Haak, Hein

75

Rules and Regulations Governing the Establishment of Various Fees (Rhode  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Establishment of Various Fees the Establishment of Various Fees (Rhode Island) Rules and Regulations Governing the Establishment of Various Fees (Rhode Island) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Rhode Island Program Type Siting and Permitting Provider Department of Environmental Management These regulations describe the fees associated with several Department of Environmental Management regulatory programs, including programs pertaining

76

Inverse modeling of emissions for local photo-oxidant pollution : Testing a new methodology with kriging constraints  

E-Print Network (OSTI)

Inverse modeling of emissions for local photo-oxidant pollution : Testing a new methodology. Abstract For chemistry-transport models operating at regional scales, surface emissions are the input data a methodology to optimize surface emissions at local scale i.e. to compute correction factors for the available

Menut, Laurent

77

Energy Incentive Programs, Rhode Island | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island Rhode Island Energy Incentive Programs, Rhode Island October 29, 2013 - 1:19pm Addthis Updated October 2012 What public-purpose-funded energy efficiency programs are available in my state? Rhode Island's restructuring law includes a system benefits charge of 2 mill/kWh for energy efficiency programs, and 0.3 mills/kWh for renewable energy programs, through 2012. Over $35 million was budgeted for energy efficiency across all program types (including low-income and residential) in 2010; figures for 2011 are not available. The programs are administered by the local utilities. Rebates are available state-wide through the Cool Choice program, which provides rebates for high-efficiency HVAC equipment, including split system and single packaged air conditions and heat pumps. Dual enthalpy economizer

78

Local Option - Property-Assessed Clean Energy Financing (Rhode Island) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Property-Assessed Clean Energy Financing (Rhode Property-Assessed Clean Energy Financing (Rhode Island) Local Option - Property-Assessed Clean Energy Financing (Rhode Island) < Back Eligibility Residential Savings Category Other Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Program Info State Rhode Island Program Type PACE Financing '''''Note: The Federal Housing Financing Agency (FHFA) issued a statement in July 2010 concerning the senior lien status associated with most PACE programs. In response to the FHFA statement, most local PACE programs have been suspended until further clarification is provided. ''''' Property-Assessed Clean Energy (PACE) financing effectively allows property owners to borrow money to pay for energy improvements. The amount borrowed is typically repaid via a special assessment on the property over a period

79

ISO New England Forward Capacity Market (Rhode Island) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ISO New England Forward Capacity Market (Rhode Island) ISO New England Forward Capacity Market (Rhode Island) ISO New England Forward Capacity Market (Rhode Island) < Back Eligibility Developer Industrial State/Provincial Govt Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Rhode Island Program Type Generating Facility Rate-Making Under the Forward Capacity Market (FCM), ISO New England projects the capacity needs of the region's power system three years in advance and then holds an annual auction to purchase the power resources that will satisfy those future regional requirements. Resources that clear in the auction are obligated to provide power or curtail demand when called upon by the ISO. The Forward Capacity Market was developed by ISO New England, the six New

80

FUPWG Meeting Agenda - Providence, Rhode Island | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Providence, Rhode Island Providence, Rhode Island FUPWG Meeting Agenda - Providence, Rhode Island October 7, 2013 - 2:51pm Addthis Image of the FUPWG logo which displays an illustration of a sailboat on water. The logo reads Efficiency Promotion by the Ocean; FUPWG April 14-15, 2010; Providence, Rhode Island. April 14-15, 2010 Hosted by National Grid The following outlines sessions and presentations held during the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting. Some of the following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Tuesday, April 13, 2010 FUPWG held a utility energy service contract (UESC) workshop prior to the Spring 2010 meeting. The workshop materials are available (PDF 5.0 MB) Wednesday, April 14, 2010 8:30 am Welcome

Note: This page contains sample records for the topic "oxide emissions rhode" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Air Pollution Control Regulations: No. 5 - Fugitive Dust (Rhode Island) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 - Fugitive Dust (Rhode 5 - Fugitive Dust (Rhode Island) Air Pollution Control Regulations: No. 5 - Fugitive Dust (Rhode Island) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Wind Program Info State Rhode Island Program Type Environmental Regulations Provider Department of Environmental Management These regulations aim to prevent the release of fugitive dust by forbidding

82

Rhode Island Natural Gas LNG Storage Net Withdrawals (Million...  

Annual Energy Outlook 2012 (EIA)

Net Withdrawals (Million Cubic Feet) Rhode Island Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

83

Rhode Island Natural Gas LNG Storage Additions (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

Additions (Million Cubic Feet) Rhode Island Natural Gas LNG Storage Additions (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

84

Rhode Island Natural Gas Pipeline and Distribution Use (Million...  

Annual Energy Outlook 2012 (EIA)

(Million Cubic Feet) Rhode Island Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

85

Rules and Regulations for Sewage Sludge Management (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of these rules and regulations is to ensure that sewage sludge that is treated, land applied, disposed, distributed, stockpiled or transported in the State of Rhode Island is done so in...

86

Bristol County, Rhode Island: Energy Resources | Open Energy...  

Open Energy Info (EERE)

This article is a stub. You can help OpenEI by expanding it. Bristol County is a county in Rhode Island. Its FIPS County Code is 001. It is classified as ASHRAE 169-2006 Climate...

87

Rhode Island Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Rhode Island Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

88

Rhode Island/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Rhode Island/Wind Resources Rhode Island/Wind Resources < Rhode Island Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Rhode Island Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid?

89

Rules and Regulations for Groundwater Quality (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations provide standards for groundwater quality in the state of Rhode Island. The rules are intended to protect and restore the quality of the state's groundwater resources for use as...

90

Impacts of Standard 90.1-2007 for Commercial Buildings at State Level - Rhode Island  

NLE Websites -- All DOE Office Websites (Extended Search)

Rhode Island Rhode Island September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF STANDARD 90.1-2007 FOR COMMERCIAL BUILDINGS IN RHODE ISLAND BUILDING ENERGY CODES PROGRAM IMPACTS OF STANDARD 90.1-2007 FOR COMMERCIAL BUILDINGS IN RHODE ISLAND Rhode Island Summary Standard 90.1-2007 contains improvements in energy efficiency over the current state code, the 2006 International Energy Conservation Code (IECC) with amendments. Standard 90.1-2007 would improve energy efficiency in commercial buildings in Rhode Island. The analysis of the impact of Standard 90.1-2007 resulted

91

Reducing Emissions of a Diesel Engine Using Fumigation Ethanol and a Diesel Oxidation Catalyst  

Science Journals Connector (OSTI)

Reducing Emissions of a Diesel Engine Using Fumigation Ethanol and a Diesel Oxidation Catalyst ... Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China ... In contrast to the conventional approach of using ethanol in spark-ignition engines, this study demonstrates the potential of ethanol utilization in diesel engines using dual-fuel combustion, where ethanol is injected into the intake manifold and diesel ... ...

K. S. Tsang; Z. H. Zhang; C. S. Cheung; T. L. Chan

2010-10-14T23:59:59.000Z

92

Emissions of carbon dioxide, methane and nitrous oxide from soil receiving urban wastewater for maize (Zea mays L.) cultivation  

Science Journals Connector (OSTI)

We investigated how amending maize with wastewater at 120kg N ha?1 affected crop growth, soil characteristics and emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) compared to plants ferti...

Fabin Fernndez-Luqueo; Vernica Reyes-Varela

2010-06-01T23:59:59.000Z

93

Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Rhode Island Laws and Incentives for Other The list below contains summaries of all Rhode Island laws and incentives

94

Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Rhode Island Laws and Incentives for Other The list below contains summaries of all Rhode Island laws and incentives

95

Alternative Fuels Data Center: Rhode Island Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Rhode Island Laws and Incentives for Ethanol The list below contains summaries of all Rhode Island laws and incentives

96

Alternative Fuels Data Center: Rhode Island Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Rhode Island Laws and Incentives for EVs The list below contains summaries of all Rhode Island laws and incentives

97

Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Rhode Island Laws and Incentives for Other The list below contains summaries of all Rhode Island laws and incentives

98

State of Rhode Island and Providence Plantations State House  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island and Providence Plantations Rhode Island and Providence Plantations State House Providence, Rhode Island 02903-1 196 401 -222-2080 Donald L. Carcieri Governor February 26,2009 The Honorable Steven Chu Secretary U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585 Re: State Energy Program Assurances Dear Secretary Chu: As a condition of receiving our State's share of the 53.1 billion funding for the State Energy Program (SEP) under the American Recovery and Renewal Act of 2009 (H.R.l) (ARRA), 1 am providing the following assurances. I have written to our public utilities commission and requested that they consider additional actions to promote energy efficiency, consistent with the Federal statutory language contained in H.R. 1 and their obligations to maintain just and reasonable

99

Solid Waste Regulation No. 8 - Solid Waste Composting Facilities (Rhode  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulation No. 8 - Solid Waste Composting Facilities Regulation No. 8 - Solid Waste Composting Facilities (Rhode Island) Solid Waste Regulation No. 8 - Solid Waste Composting Facilities (Rhode Island) < Back Eligibility Commercial Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Rhode Island Program Type Environmental Regulations Provider Department of Environmental Management Facilities which compost putrescible waste and/or leaf and yard waste are subject to these regulations. The regulations establish permitting, registration, and operational requirements for composting facilities. Operational requirements for putrescible waste facilities include siting, distance, and buffer requirements, as well as standards for avoiding harm to endangered species and contamination of air and water sources. Specific

100

Process for treating ammonia and nitrite containing waters to prevent nitric oxide emissions therefrom  

SciTech Connect

This patent describes a process for controlling the emission of nitrogen dioxide from, and the amount of one or more organisms, selected from the group consisting of fungi, algae and bacteria, growing in a system for handling a flow of condensate of steam, the condensate containing ammonia, ammonia precursors, or a mixture thereof. It comprises contacting the condensate in a substantially continuous manner with an amount of an oxidizing biocide which substantially prevents the emission of nitrogen dioxide from the condensate handling system but which does not substantially inhibit the growth of the organisms in the condensate handling system; and periodically contacting the condensate with an amount of a second biocide which substantially reduces the amount of the organisms.

Gallup, D.L.; Featherstone, J.L.

1991-07-16T23:59:59.000Z

Note: This page contains sample records for the topic "oxide emissions rhode" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Rhode Island" Rhode Island" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Petroleum",2,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,"*","*","*" " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*" " Other Renewables1","-","-","-","-","-","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*"

102

Evaluation of oxides of nitrogen emissions for the purpose of their transient regulation from a direct injection diesel engine  

Science Journals Connector (OSTI)

The concept of defining a regulatory standard for the maximum allowable emissions of oxides of nitrogen (NOx) from a heavy-duty diesel engine on an instantaneous basis is presented. The significance of this concept from a regulatory point of view is the possibility to realise a steady brake specific NOx emissions result independent of the test schedule used. The emissions of oxides of nitrogen from a state-of-the-art direct injection diesel engine have been examined on an integral as well as on an instantaneous basis over the Federal Test Procedure as well as over several other arbitrary transient cycles generated for this study. Three candidate standards of specific NOx emissions have been evaluated on a real-time, continuous basis. These include brake power specific, fuel mass specific, and carbon dioxide mass specific NOx emissions. Retaining the stock engine control module, the carbon dioxide specific emissions of NOx have been shown to be the most uniform, varying only by about 30% of its mean value regardless of the test schedule or engine operation. The instantaneous fuel specific NOx emissions are shown to be relatively less invariant and the least steady are the brake power specific emissions with a coefficient of variation of up to 200%. Advancing injection timing has been shown to have a wide range of authority over the specific emissions of oxides of nitrogen regardless of the units used, when operating at full load in the vicinity of peak torque speeds. The carbon dioxide specific NOx emissions have shown a linear dependence on the power specific emissions, independent of the examined operating conditions. The trade-off between better brake thermal efficiency, lower exhaust gas temperature at advanced timing and lower NOx emissions has also been shown to be independent of the units of the specific standard used.

Yasser Yacoub; Chris Atkinson

2001-01-01T23:59:59.000Z

103

Commercial-Scale Renewable-Energy Grants (Rhode Island) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial-Scale Renewable-Energy Grants (Rhode Island) Commercial-Scale Renewable-Energy Grants (Rhode Island) Commercial-Scale Renewable-Energy Grants (Rhode Island) < Back Eligibility Commercial Institutional Local Government Low-Income Residential Nonprofit Savings Category Biofuels Alternative Fuel Vehicles Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Hydrogen & Fuel Cells Solar Home Weatherization Water Maximum Rebate $75,000 Program Info Funding Source Rhode Island Renewable Energy Fund (RIREF); Alternative Compliance Payments (ACPs) Start Date 01/01/2013 Expiration Date 12/31/2013 State Rhode Island Program Type State Grant Program Rebate Amount 20% of project funding Provider Rhode Island Economic Development Corporation The Rhode Island Economic Development Corporation (RIEDC) provides

104

Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Rhode Island Laws and Incentives for Propane (LPG)

105

Alternative Fuels Data Center: Rhode Island Laws and Incentives for Natural  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas to someone by E-mail Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Natural Gas on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Natural Gas on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Natural Gas on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Natural Gas on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Rhode Island Laws and Incentives for Natural Gas

106

Alternative Fuels Data Center: Rhode Island Laws and Incentives for Idle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction to someone by E-mail Idle Reduction to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Idle Reduction on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Idle Reduction on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Idle Reduction on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Idle Reduction on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Idle Reduction on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Idle Reduction on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Rhode Island Laws and Incentives for Idle Reduction

107

ZERO EMISSION POWER PLANTS USING SOLID OXIDE FUEL CELLS AND OXYGEN TRANSPORT MEMBRANES  

SciTech Connect

Over 16,700 hours of operational experience was gained for the Oxygen Transport Membrane (OTM) elements of the proposed SOFC/OTM zero-emission power generation concept. It was repeatedly demonstrated that OTMs with no additional oxidation catalysts were able to completely oxidize the remaining depleted fuel in a simulated SOFC anode exhaust at an O{sub 2} flux that met initial targets. In such cases, neither residual CO nor H{sub 2} were detected to the limits of the gas chromatograph (<10 ppm). Dried OTM afterburner exhaust streams contained up to 99.5% CO{sub 2}. Oxygen flux through modified OTMs was double or even triple that of the standard OTMs used for the majority of testing purposes. Both the standard and modified membranes in laboratory-scale and demonstration-sized formats exhibited stable performance over extended periods (2300 to 3500 hours or 3 to 5 months). Reactor contaminants, were determined to negatively impact OTM performance stability. A method of preventing OTM performance degradation was developed and proven to be effective. Information concerning OTM and seal reliability over extended periods and through various chemical and thermal shocks and cycles was also obtained. These findings were used to develop several conceptual designs for pilot (10 kWe) and commercial-scale (250 kWe) SOFC/OTM zero emission power generation systems.

G. Maxwell Christie; Troy M. Raybold

2003-06-10T23:59:59.000Z

108

Field emission effects of nitrogenated carbon nanotubes on chlorination and oxidation  

SciTech Connect

With reference to our recent reports [Appl. Phys. Lett. 90, 192107 (2007); Appl. Phys. Lett. 91, 202102 (2007)] about the electronic structure of chlorine treated and oxygen-plasma treated nitrogenated carbon nanotubes (N-CNTs), here we studied the electron field emission effects on chlorination (N-CNT:Cl) and oxidation (N-CNT:O) of N-CNT. A high current density (J) of 15.0 mA/cm{sup 2} has been achieved on chlorination, whereas low J of 0.0052 mA/cm{sup 2} is observed on oxidation compared to J=1.3 mA/cm{sup 2} for untreated N-CNT at an applied electric field E{sub A} of {approx}1.9 V/{mu}m. The turn-on electric field (E{sub TO}) was {approx}0.875. The 1.25 V/{mu}m was achieved for N-CNT:Cl and N-CNT:O, respectively, with respect to E{sub TO}=1.0 V/{mu}m for untreated one. These findings are due to the formation of different bonds with carbon and nitrogen in the N-CNT during the process of chlorine (oxygen)-plasma treatment by the charge transfer, or else that changes the density of free charge carriers and hence enhances (reduces) the field emission properties of N-CNTs:Cl (N-CNTs:O)

Ray, S. C.; Palnitkar, U.; Pao, C. W.; Tsai, H. M.; Pong, W. F.; Lin, I-N. [Department of Physics, Tamkang University, Tamsui 251, Taiwan (China); Papakonstantinou, P. [NRI, School of Electrical and Mechanical Engineering, University of Ulster at Jordanstown, Newtownabbey, County Antrim BT37OQB, Northern Ireland (United Kingdom); Ganguly, Abhijit; Chen, L. C. [Center for Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan (China); Chen, K. H. [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China)

2008-09-15T23:59:59.000Z

109

renewable energy from waste 1730 RHODE ISLAND AVENUE, NW  

E-Print Network (OSTI)

renewable energy from waste 1730 RHODE ISLAND AVENUE, NW SUITE 700 WASHINGTON, DC 20036 WWW Energy and Security Act of 2009 that was released as a discussion draft on March 31. While waste-to-energy gas reductions and renewable energy provided by waste-to-energy and if it implemented policies

Columbia University

110

Emissivity of Candidate Materials for VHTR Applicationbs: Role of Oxidation and Surface Modification Treatments  

SciTech Connect

The Generation IV (GEN IV) Nuclear Energy Systems Initiative was instituted by the Department of Energy (DOE) with the goal of researching and developing technologies and materials necessary for various types of future reactors. These GEN IV reactors will employ advanced fuel cycles, passive safety systems, and other innovative systems, leading to significant differences between these future reactors and current water-cooled reactors. The leading candidate for the Next Generation Nuclear Plant (NGNP) to be built at Idaho National Lab (INL) in the United States is the Very High Temperature Reactor (VHTR). Due to the high operating temperatures of the VHTR, the Reactor Pressure Vessel (RPV) will partially rely on heat transfer by radiation for cooling. Heat expulsion by radiation will become all the more important during high temperature excursions during off-normal accident scenarios. Radiant power is dictated by emissivity, a material property. The NGNP Materials Research and Development Program Plan [1] has identified emissivity and the effects of high temperature oxide formation on emissivity as an area of research towards the development of the VHTR.

Kumar Sridharan; Todd Allen; Mark Anderson; Guoping Cao; Gerald Kulcinski

2011-07-25T23:59:59.000Z

111

Rhode Island to Build First Offshore Wind Farm | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island to Build First Offshore Wind Farm Rhode Island to Build First Offshore Wind Farm Rhode Island to Build First Offshore Wind Farm March 15, 2010 - 6:38pm Addthis Rhode Island’s first offshore wind farm will be built in Block Island. | File photo Rhode Island's first offshore wind farm will be built in Block Island. | File photo Block Island, a small town with only 1,000 full-time, residents, is the site for a big project, when it will become home to Rhode Island's first offshore wind farm. Powerful ocean winds lie right off Block Island's south shore. That's the benefit of offshore wind farms - they can take advantage of the harder, stronger winds found a few miles off the coast Deepwater Wind LLC is leading the effort with plans to construct up to eight wind turbines three miles off of Block Island's shore.

112

Alternative Fuels Data Center: Rhode Island Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section...

113

Impacts of the 2009 IECC for Residential Buildings at State Level - Rhode Island  

NLE Websites -- All DOE Office Websites (Extended Search)

Rhode Island Rhode Island September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN RHODE ISLAND BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN RHODE ISLAND Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Rhode Island Summary Rhode Island has adopted the 2009 International Energy Conservation Code (IECC). Overview of the 2009 IECC The IECC scope includes residential single-family housing and multifamily housing three stories or less above- grade intended for permanent living (hotel/motel is not "residential"). The code applies to new buildings and

114

Alternative Fuels Data Center: Rhode Island Laws and Incentives for Climate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Climate Change / Energy Initiatives to someone by E-mail Climate Change / Energy Initiatives to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Climate Change / Energy Initiatives on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Climate Change / Energy Initiatives on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Climate Change / Energy Initiatives on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Climate Change / Energy Initiatives on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Climate Change / Energy Initiatives on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Climate Change / Energy Initiatives on

115

Alternative Fuels Data Center: Rhode Island Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal

116

Alternative Fuels Data Center: Rhode Island Laws and Incentives for Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Owner/Driver to someone by E-mail Vehicle Owner/Driver to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Vehicle Owner/Driver on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Vehicle Owner/Driver on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Vehicle Owner/Driver on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Vehicle Owner/Driver on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Vehicle Owner/Driver on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Vehicle Owner/Driver on AddThis.com... More in this section... Federal State Advanced Search

117

Alternative Fuels Data Center: Rhode Island Laws and Incentives for AFV  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

AFV Manufacturer/Retrofitter to someone by E-mail AFV Manufacturer/Retrofitter to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for AFV Manufacturer/Retrofitter on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for AFV Manufacturer/Retrofitter on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for AFV Manufacturer/Retrofitter on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for AFV Manufacturer/Retrofitter on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for AFV Manufacturer/Retrofitter on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for AFV Manufacturer/Retrofitter on AddThis.com...

118

Multispectral Imaging At Rhodes Marsh Area (Kratt, Et Al., 2006) | Open  

Open Energy Info (EERE)

Multispectral Imaging At Rhodes Marsh Area (Kratt, Et Al., 2006) Multispectral Imaging At Rhodes Marsh Area (Kratt, Et Al., 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Multispectral Imaging At Rhodes Marsh Area (Kratt, Et Al., 2006) Exploration Activity Details Location Rhodes Marsh Area Exploration Technique Multispectral Imaging Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes Mapped present-day borate evaporites in Teels and Rhodes Marsh with ASTER satellite imagery References C. Kratt, M. Coolbaugh, Wendy Calvin (2006) Remote Detection Of Quaternary Borate Deposits With Aster Satellite Imagery As A Geothermal Exploration Tool Retrieved from "http://en.openei.org/w/index.php?title=Multispectral_Imaging_At_Rhodes_Marsh_Area_(Kratt,_Et_Al.,_2006)&oldid=511014"

119

Alternative Fuels Data Center: Rhode Island Laws and Incentives for Driving  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

120

Narragansett, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Narragansett, Rhode Island: Energy Resources Narragansett, Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.4501021°, -71.4495005° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4501021,"lon":-71.4495005,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "oxide emissions rhode" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Providence County, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Providence County, Rhode Island: Energy Resources Providence County, Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.8881582°, -71.4774291° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8881582,"lon":-71.4774291,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

122

Cumberland Hill, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Rhode Island: Energy Resources Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9745431°, -71.4670043° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9745431,"lon":-71.4670043,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

123

Burrillville, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Burrillville, Rhode Island: Energy Resources Burrillville, Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9810947°, -71.691066° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9810947,"lon":-71.691066,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

124

Rhode Island Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Rhode Island Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 257 951 718 594 102 130 182 109 391 219 1990's 51 92 155 126 0 27 42 18 1 1 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Rhode Island Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

125

Harrisville, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Harrisville, Rhode Island: Energy Resources Harrisville, Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9656539°, -71.6745112° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9656539,"lon":-71.6745112,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

126

Pascoag, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Pascoag, Rhode Island: Energy Resources Pascoag, Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9556539°, -71.7022899° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9556539,"lon":-71.7022899,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

127

Tiverton, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Tiverton, Rhode Island: Energy Resources Tiverton, Rhode Island: Energy Resources (Redirected from Tiverton, RI) Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.6259357°, -71.2133801° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6259357,"lon":-71.2133801,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

128

Glocester, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Glocester, Rhode Island: Energy Resources Glocester, Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9043113°, -71.691066° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9043113,"lon":-71.691066,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

129

Central Falls, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Rhode Island: Energy Resources Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.8906553°, -71.3922785° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8906553,"lon":-71.3922785,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

130

East Providence, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Providence, Rhode Island: Energy Resources Providence, Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.8137116°, -71.3700545° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8137116,"lon":-71.3700545,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

131

Woonsocket, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Woonsocket, Rhode Island: Energy Resources Woonsocket, Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.0028761°, -71.5147839° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.0028761,"lon":-71.5147839,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

132

Valley Falls, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Rhode Island: Energy Resources Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9067663°, -71.3906119° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9067663,"lon":-71.3906119,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

133

Pawtucket, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Pawtucket, Rhode Island: Energy Resources Pawtucket, Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.878711°, -71.3825558° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.878711,"lon":-71.3825558,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

134

Rhode Island Offshore Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Island Offshore Wind Farm Island Offshore Wind Farm Jump to: navigation, search Name Rhode Island Offshore Wind Farm Facility Rhode Island Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Developer Deepwater Wind Location Offshore from Sakonnet RI Coordinates 40.96°, -71.44° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.96,"lon":-71.44,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

135

Cranston, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cranston, Rhode Island: Energy Resources Cranston, Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.7798226°, -71.4372796° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7798226,"lon":-71.4372796,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

136

EIS-0006: Wind Turbine Generator System, Block Island, Rhode Island  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy prepared this EIS to evaluate the environmental impacts of installing and operating a large experimental wind turbine, designated the MOD-OA, which is proposed to be installed on a knoll in Rhode Island's New Meadow Hill Swamp, integrated with the adjacent Block Island Power Company power plant and operated to supply electricity to the existing utility network.

137

Enterprise GIS System Architecture Prepared for: State of Rhode Island  

E-Print Network (OSTI)

Enterprise GIS System Architecture Prepared for: State of Rhode Island Date: 9/26/2011 Prepared byEdit, ArcEditor, ArcEurope, ArcExplorer, ArcExpress, ArcGIS, ArcGlobe, ArcGrid, ArcIMS, ARC/INFO, ArcInfo, ArcInfo Librarian, ArcInfo--Professional GIS, ArcInfo--The World's GIS, ArcLessons, ArcLocation, Arc

Wang, Y.Q. "Yeqiao"

138

Emissions  

Office of Scientific and Technical Information (OSTI)

the extra emissions that are generated from manufacturing the material used to make CNG tanks); they can amount tc more than 2% of the emissions from 32 the fuel production and...

139

Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Canada Ottawa, Ontario, Canada Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands Derived Fuels W. Stuart Neill 9 th DEER Conference, Newport, Rhode Island August...

140

Zero Emission Power Plants Using Solid Oxide Fuel Cells and Oxygen Transport Membranes  

SciTech Connect

Siemens Westinghouse Power Corp. (SWPC) is engaged in the development of Solid Oxide Fuel Cell stationary power systems. SWPC has combined DOE Developmental funds with commercial customer funding to establish a record of successful SOFC field demonstration power systems of increasing size. SWPC will soon deploy the first unit of a newly developed 250 kWe Combined Heat Power System. It will generate electrical power at greater than 45% electrical efficiency. The SWPC SOFC power systems are equipped to operate on lower number hydrocarbon fuels such as pipeline natural gas, which is desulfurized within the SOFC power system. Because the system operates with a relatively high electrical efficiency, the CO2 emissions, {approx}1.0 lb CO2/ kW-hr, are low. Within the SOFC module the desulfurized fuel is utilized electrochemically and oxidized below the temperature for NOx generation. Therefore the NOx and SOx emissions for the SOFC power generation system are near negligible. The byproducts of the power generation from hydrocarbon fuels that are released into the environment are CO2 and water vapor. This forward looking DOE sponsored Vision 21 program is supporting the development of methods to capture and sequester the CO2, resulting in a Zero Emission power generation system. To accomplish this, SWPC is developing a SOFC module design, to be demonstrated in operating hardware, that will maintain separation of the fuel cell anode gas, consisting of H2, CO, H2O and CO2, from the vitiated air. That anode gas, the depleted fuel stream, containing less than 18% (H2 + CO), will be directed to an Oxygen Transport Membrane (OTM) Afterburner that is being developed by Praxair, Inc.. The OTM is supplied air and the depleted fuel. The OTM will selectively transport oxygen across the membrane to oxidize the remaining H2 and CO. The water vapor is then condensed from the totally 1.5.DOC oxidized fuel stream exiting the afterburner, leaving only the CO2 in gaseous form. That CO2 can then be compressed and sequestered, resulting in a Zero Emission power generation system operating on hydrocarbon fuel that adds only water vapor to the environment. Praxair has been developing oxygen separation systems based on dense walled, mixed electronic, oxygen ion conducting ceramics for a number of years. The oxygen separation membranes find applications in syngas production, high purity oxygen production and gas purification. In the SOFC afterburner application the chemical potential difference between the high temperature SOFC depleted fuel gas and the supplied air provides the driving force for oxygen transport. This permeated oxygen subsequently combusts the residual fuel in the SOFC exhaust. A number of experiments have been carried out in which simulated SOFC depleted fuel gas compositions and air have been supplied to either side of single OTM tubes in laboratory-scale reactors. The ceramic tubes are sealed into high temperature metallic housings which precludes mixing of the simulated SOFC depleted fuel and air streams. In early tests, although complete oxidation of the residual CO and H2 in the simulated SOFC depleted fuel was achieved, membrane performance degraded over time. The source of degradation was found to be contaminants in the simulated SOFC depleted fuel stream. Following removal of the contaminants, stable membrane performance has subsequently been demonstrated. In an ongoing test, the dried afterburner exhaust composition has been found to be stable at 99.2% CO2, 0.4% N2 and 0.6%O2 after 350 hours online. Discussion of these results is presented. A test of a longer, commercial demonstration size tube was performed in the SWPC test facility. A similar contamination of the simulated SOFC depleted fuel stream occurred and the performance degraded over time. A second test is being prepared. Siemens Westinghouse and Praxair are collaborating on the preliminary design of an OTM equipped Afterburner demonstration unit. The intent is to test the afterburner in conjunction with a reduced size SOFC test module that has the anode gas separati

Shockling, Larry A.; Huang, Keqin; Gilboy, Thomas E. (Siemens Westinghouse Power Corporation); Christie, G. Maxwell; Raybold, Troy M. (Praxair, Inc.)

2001-11-06T23:59:59.000Z

Note: This page contains sample records for the topic "oxide emissions rhode" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Does the location of aircraft nitrogen oxide emissions affect their climate impact?  

E-Print Network (OSTI)

approximately balancing the IRF associated with aviation CO2 emissions (28 mWm?2 yr (TgNO2)?1 ). The overall climate impact of global aviation is often represented by a simple multiplier for CO2 emissions­3% of global anthropogenic CO2 emissions [Lee et al., 2009], yet these emissions fall outside the remit

142

Current emission trends for nitrogen oxides, sulfur dioxide, and volatile organic compounds by month and state: Methodology and results  

SciTech Connect

This report presents estimates of monthly sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), and nonmethane voltatile organic compound (VOC) emissions by sector, region, and state in the contiguous United States for the years 1975 through 1988. This work has been funded as part of the National Acid Precipitation Assessment Program`s Emissions and Controls Task Group by the US Department of Energy (DOE) Office of Fossil Energy (FE). The DOE project officer is Edward C. Trexler, DOE/FE Office of Planning and Environment.

Kohout, E.J.; Miller, D.J.; Nieves, L.A.; Rothman, D.S.; Saricks, C.L.; Stodolsky, F.; Hanson, D.A.

1990-08-01T23:59:59.000Z

143

Current emission trends for nitrogen oxides, sulfur dioxide, and volatile organic compounds by month and state: Methodology and results  

SciTech Connect

This report presents estimates of monthly sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), and nonmethane voltatile organic compound (VOC) emissions by sector, region, and state in the contiguous United States for the years 1975 through 1988. This work has been funded as part of the National Acid Precipitation Assessment Program's Emissions and Controls Task Group by the US Department of Energy (DOE) Office of Fossil Energy (FE). The DOE project officer is Edward C. Trexler, DOE/FE Office of Planning and Environment.

Kohout, E.J.; Miller, D.J.; Nieves, L.A.; Rothman, D.S.; Saricks, C.L.; Stodolsky, F.; Hanson, D.A.

1990-08-01T23:59:59.000Z

144

CSER 2007 Shah, Rhodes, Hastings 2007 MIT Slide 1 Systems of Systems and  

E-Print Network (OSTI)

CSER 2007 Shah, Rhodes, Hastings © 2007 MIT Slide 1 Systems of Systems and Emergent System Context MIT Slide 2 Agenda · What is a system of systems (SOS)? · What is the context of a system? · What;CSER 2007 Shah, Rhodes, Hastings © 2007 MIT Slide 3 What is a systems of systems? Much greater

de Weck, Olivier L.

145

TBU-0058 - In the Matter of Donald R. Rhodes | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TBU-0058 - In the Matter of Donald R. Rhodes TBU-0058 - In the Matter of Donald R. Rhodes TBU-0058 - In the Matter of Donald R. Rhodes Donald R. Rhodes (Rhodes or the complainant) appeals the dismissal of his August 25, 2006 complaint of retaliation filed under 10 C.F.R. Part 708, the Department of Energy (DOE) Contractor Employee Protection Program. He filed the complaint with the Whistleblower Program Manager (WP Manager) of the DOE's National Nuclear Security Administration Service Center (NNSA/SC), located in Albuquerque, New Mexico. As explained below, the WP Manager's November 16, 2006 dismissal of the complaint should be upheld, and the appeal denied. tbu0058.pdf More Documents & Publications TBU-0052 - In the Matter of John Merwin TBU-0071 - In the Matter of Jeffrey R. Burnette TBU-0114 - In the Matter of Dennis Rehmeier

146

2-M Probe At Rhodes Marsh Area (Kratt, Et Al., 2008) | Open Energy  

Open Energy Info (EERE)

Rhodes Marsh Area (Kratt, Et Al., 2008) Rhodes Marsh Area (Kratt, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: 2-M Probe At Rhodes Marsh Area (Kratt, Et Al., 2008) Exploration Activity Details Location Rhodes Marsh Area Exploration Technique 2-M Probe Activity Date Usefulness useful DOE-funding Unknown Notes Two-meter survey work at Rhodes Marsh began in December of 2007 followed by more recent activity in May of 2008. More than 65 2-meter-deep temperatures have been measured over a distance of 7 km (Figure 4). At the foot of the Pilot Mountains these data roughly parallel the southern end of Benton Springs fault. Anomalous temperatures up to 26.7°C occur adjacent to opalized sands and reveal a significant NW elongate temperature anomaly more than 5 km long. Cold shallow groundwater at the playa's eastern margin

147

Multispectral Imaging At Rhodes Marsh Area (Shevenell, Et Al., 2008) | Open  

Open Energy Info (EERE)

Rhodes Marsh Area (Shevenell, Et Al., 2008) Rhodes Marsh Area (Shevenell, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Multispectral Imaging At Rhodes Marsh Area (Shevenell, Et Al., 2008) Exploration Activity Details Location Rhodes Marsh Area Exploration Technique Multispectral Imaging Activity Date Usefulness useful DOE-funding Unknown Notes Kratt et al. (2006) demonstrate the effectiveness of using a field-portable ASD Fieldspec spectroradiometer and satellite-based Advanced Spaceborne Thermal and emitted Reflectance Radiometer (ASTER) imagery for mapping borate minerals in the field. Borate crusts that were partially mined during the 1800s were identified and mapped at Rhodes, Teels, and Columbus Marshes (playas), all in western Nevada (Figure 1).

148

Rhode Island Energy and Cost Savings for New Single- and Multifamily Homes  

NLE Websites -- All DOE Office Websites (Extended Search)

Rhode Island Rhode Island Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC BUILDING TECHNOLOGIES PROGRAM 2 2012 IECC AS COMPARED TO THE 2009 IECC Rhode Island Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC The 2012 International Energy Conservation Code (IECC) yields positive benefits for Rhode Island homeowners. Moving to the 2012 IECC from the 2009 IECC is cost-effective over a 30-year life cycle. On average, Rhode Island homeowners will save $11,011 with the 2012 IECC. Each year, the reduction to energy bills will significantly exceed increased mortgage costs. After accounting for up-front costs and additional costs financed in the mortgage, homeowners should

149

Water Sampling At Rhodes Marsh Area (Coolbaugh, Et Al., 2006) | Open Energy  

Open Energy Info (EERE)

Rhodes Marsh Area (Coolbaugh, Et Al., 2006) Rhodes Marsh Area (Coolbaugh, Et Al., 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Rhodes Marsh Area (Coolbaugh, Et Al., 2006) Exploration Activity Details Location Rhodes Marsh Area Exploration Technique Water Sampling Activity Date Usefulness useful DOE-funding Unknown Notes Follow up (to ASTER satellite imaging) analysis of spring and well waters yielded geothermometer reservoir estimates up to 162°C References Mark F. Coolbaugh, Chris Kraft, Chris Sladek, Richard E. Zehner, Lisa Shevenell (2006) Quaternary Borate Deposits As A Geothermal Exploration Tool In The Great Basin Retrieved from "http://en.openei.org/w/index.php?title=Water_Sampling_At_Rhodes_Marsh_Area_(Coolbaugh,_Et_Al.,_2006)&oldid=387552"

150

Rhode Island/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Rhode Island/Wind Resources/Full Version Rhode Island/Wind Resources/Full Version < Rhode Island‎ | Wind Resources Jump to: navigation, search Print PDF Rhode Island Wind Resources RhodeIslandMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

151

REACTOR DOSIMETRY STUDY OF THE RHODE ISLAND NUCLEAR SCIENCE CENTER.  

SciTech Connect

The Rhode Island Nuclear Science Center (RINSC), located on the Narragansett Bay Campus of the University of Rhode Island, is a state-owned and US NRC-licensed nuclear facility constructed for educational and industrial applications. The main building of RINSC houses a two-megawatt (2 MW) thermal power critical reactor immersed in demineralized water within a shielded tank. As its original design in 1958 by the Rhode Island Atomic Energy Commission focused on the teaching and research use of the facility, only a minimum of 3.85 kg fissile uranium-235 was maintained in the fuel elements to allow the reactor to reach a critical state. In 1986 when RINSC was temporarily shutdown to start US DOE-directed core conversion project for national security reasons, all the U-Al based Highly-Enriched Uranium (HEU, 93% uranium-235 in the total uranium) fuel elements were replaced by the newly developed U{sub 3}Si{sub 2}-Al based Low Enriched Uranium (LEU, {le}20% uranium-235 in the total uranium) elements. The reactor first went critical after the core conversion was achieved in 1993, and feasibility study on the core upgrade to accommodate Boron Neutron-Captured Therapy (BNCT) was completed in 2000 [3]. The 2-MW critical reactor at RINSC which includes six beam tubes, a thermal column, a gamma-ray experimental station and two pneumatic tubes has been extensive utilized as neutron-and-photon dual source for nuclear-specific research in areas of material science, fundamental physics, biochemistry, and radiation therapy. After the core conversion along with several major system upgrade (e.g. a new 3-MW cooling tower, a large secondary piping system, a set of digitized power-level instrument), the reactor has become more compact and thus more effective to generate high beam flux in both the in-core and ex-core regions for advance research. If not limited by the manpower and operating budget in recent years, the RINSC built ''in concrete'' structure and control systems should have been systematically upgraded to a 5 Mw power facility to further enhance its experimental capability while still maintaining its safe margin as designed.

HOLDEN, N.E.,; RECINIELLO, R.N.; HU, J.-P.

2005-05-08T23:59:59.000Z

152

Air Quality Responses to Changes in Black Carbon and Nitrogen Oxide Emissions  

E-Print Network (OSTI)

D. , (2008a). Carbonyl and nitrogen dioxide emissions fromstudy of indoor nitrogen dioxide levels and respiratoryand modeled nitrogen dioxide (NO 2 ) concentrations. All

Millstein, Dev

2009-01-01T23:59:59.000Z

153

Microsoft PowerPoint - TA-21_LASO_Rhodes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Land Use Case Study for Technical Area Land Use Case Study for Technical Area Land Use Case Study for Technical Area- -21 at 21 at Los Alamos National Laboratory Los Alamos National Laboratory Residential or Industrial Cleanup Standards Residential or Industrial Cleanup Standards Los Alamos Site Office 1 David S. Rhodes, Supervisory Federal Project Director Environmental Restoration Projects and Decontamination and Decommissioning Team Los Alamos Site Office Regulations Regulations Public Law 105-119, Title VI, Section 632 - Authorizes and directs transfer of land to the County of Los Alamos and to Department Of the Interior, in trust for the Pueblo of San Ildefonso 40 CFR 264, Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities (RCRA) and 10 CFR 1021, National Environmental Policy Act

154

Rhode Island Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Rhode Island Regions Rhode Island Regions National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov High School Regionals Rhode Island Regions Print Text Size: A A A RSS Feeds FeedbackShare Page Rhode Island Coaches can review the high school regional locations listed below. Please note: Registrations are based on the location of your school. Please be sure to select the regional that is designated for your

155

Rhode Island Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Rhode Island Regions Rhode Island Regions National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Middle School Regionals Rhode Island Regions Print Text Size: A A A RSS Feeds FeedbackShare Page Rhode Island Coaches can review the middle school regional locations listed below. Please note: Registrations are based on the location of your school. Please be sure to select the regional that is designated for your

156

Geothermometry At Rhodes Marsh Area (Shevenell, Et Al., 2008) | Open Energy  

Open Energy Info (EERE)

Geothermometry At Rhodes Marsh Area (Shevenell, Et Geothermometry At Rhodes Marsh Area (Shevenell, Et Al., 2008) Exploration Activity Details Location Rhodes Marsh Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes Borate crusts that were partially mined during the 1800s were identified and mapped at Rhodes, Teels, and Columbus Marshes (playas), all in western Nevada (Figure 1). Subsequent field verification and chemical analyses of well, spring and groundwater samples indicated the presence of hidden subsurface geothermal reservoirs. Cation and quartz geothermometry indicate subsurface reservoir temperatures between 118°C and 162°C at all three areas based on results from waters sampled proximal to borate crusts. References Lisa Shevenell, Mark Coolbaugh, Chris Sladek, Rick Zehner, Chris

157

Promoting Independence in Rhode Island: Weatherization Assistance Close-Up Fact Sheet  

SciTech Connect

Rhode Island demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes.

D& R International

2001-10-10T23:59:59.000Z

158

2-M Probe At Rhodes Marsh Area (Shevenell, Et Al., 2008) | Open Energy  

Open Energy Info (EERE)

2-M Probe At Rhodes Marsh Area (Shevenell, Et Al., 2-M Probe At Rhodes Marsh Area (Shevenell, Et Al., 2008) Exploration Activity Details Location Rhodes Marsh Area Exploration Technique 2-M Probe Activity Date Usefulness useful DOE-funding Unknown Notes Coolbaugh et al. (2007), Sladek et al. (2007), and Kratt, et al. (2008, this volume) describe a shallow temperature survey system in which temperatures can be measured quickly and inexpensively at 2 m depths. This system was tested at Desert Queen based on its structural setting and availability of thermal gradient well data obtained in the 1970's from which to make thermal anomaly comparisons. The system was subsequently used at Tungsten Mountain and Teels and Rhodes Marshes to help locate blind geothermal systems. References Lisa Shevenell, Mark Coolbaugh, Chris Sladek, Rick Zehner, Chris

159

Calculation of the emission of nitrogen oxides in electric resistance heating furnaces  

Science Journals Connector (OSTI)

The present paper is devoted to the least studied topic in the field of use of modern electric heating equipment, namely, pollution of the atmosphere by nitrogen oxides and reduction of the intensity of this e...

A. V. Aksenov; V. A. Belyakov; Z. G. Sadykova

1998-02-01T23:59:59.000Z

160

Low-Temperature Hydrocarbon/CO Oxidation Catalysis in Support of HCCI Emission Control  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

Note: This page contains sample records for the topic "oxide emissions rhode" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Rational Catalyst Design Applied to Development of Advanced Oxidation Catalysts for Diesel Emission Control  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

162

Nitrous oxide and carbon dioxide emissions from pelletized and nonpelletized poultry litter incorporated into soil  

Science Journals Connector (OSTI)

While several studies have shown that the addition of animal manures to soil can increase N2O and CO2 emissions, limited information is available on the effect that manure physical characteristics can have on the...

M. L. Cabrera; S. C. Chiang; W. C. Merka; O. C. Pancorbo; S. A. Thompson

163

EMISSIONS OF NITROUS OXIDE AND METHANE FROM CONVENTIONAL AND ALTERNATIVE FUEL MOTOR VEHICLES  

E-Print Network (OSTI)

-produced electricity for battery electric vehicles. Already, vehicles powered by compressed natural gas, propane. LIPMAN AND MARK A. DELUCCHI example, promising strategies for powering motor vehicles with reduced GHGEMISSIONS OF NITROUS OXIDE AND METHANE FROM CONVENTIONAL AND ALTERNATIVE FUEL MOTOR VEHICLES

Kammen, Daniel M.

164

High emissivity coatings on titanium alloy prepared by micro-arc oxidation for high temperature application  

Science Journals Connector (OSTI)

Micro-arc oxidation coatings were prepared on Ti6Al4V alloy in...3PO4-based electrolyte with different additives such as FeSO4, Co(CH3COO)2, Ni(CH3COO)2, and K2ZrF6. The composition, structure, surface morphology...

H. Tang; Q. Sun; C. G. Yi; Z. H. Jiang; F. P. Wang

2012-03-01T23:59:59.000Z

165

Nitrous oxide emissions. Topical report, July 1, 1990--June 30, 1993  

SciTech Connect

Published N{sub 2}O emissions data for experimental studies examining large numbers of coals are generally scarce at the pilot-scale fluidized-bed combustion (FBC) level, although some data are available at the laboratory scale. The primary objective of this study was to determine the atmospheric contribution of N{sub 2}O derived from coal combustion. Additionally, the goal was to establish a comprehensive engineering model to assist in the prediction of N{sub 2}O emissions based upon operating and design considerations. To meet the overall objectives of determining the overall contribution of N{sub 2}O derived from FBC and developing an engineering model seven tasks were originally proposed. The objective of each task as originally proposed and finally executed is presented in this topical report. The seven tasks were: (1) literature survey; (2) equipment design and test plan development; (3) experimental techniques; (4) pilot-scale determination of the impacts of coal properties and operating conditions on N{sub 2}O emissions; (5) role of coal char on N{sub 2}O formation and destruction; (6) homogeneous versus heterogeneous reactions; and (7) modeling of N{sub 2}O emissions.

Collings, M.E.; Mann, M.D.

1993-12-01T23:59:59.000Z

166

Influence of solid fuel on the carbon-monoxide and nitrogen-oxide emissions on sintering  

SciTech Connect

Laboratory and industrial research now underway at the sintering plant of AO Mittal Steel Temirtau is focusing on the preparation of fuel of optimal granulometric composition, the replacement of coke fines, and the adaptation of fuel-input technology so as to reduce fuel consumption and toxic emissions without loss of sinter quality.

M.F. Vitushchenko; N.L. Tatarkin; A.I. Kuznetsov; A.E. Vilkov [AO Mittal Steel Temirtau, Temirtau (Kazakhstan)

2007-07-01T23:59:59.000Z

167

16 - Ultra-low nitrogen oxides (NOx) emissions combustion in gas turbine systems  

Science Journals Connector (OSTI)

Abstract: The historical development of gas turbine low \\{NOx\\} combustion from the pioneering NASA work in the early 1970s to the present generation of ultra-low \\{NOx\\} industrial gas turbine combustors is reviewed. The principles of operation of single digit ultra-low \\{NOx\\} gas turbine combustion for industrial applications are outlined. The review shows the potential has been demonstrated by several investigators using different flame stabilizers for \\{NOx\\} to be reduced to 1ppm at 1700K, 2ppm at 1800K and 34ppm at 1900K with no influence of operating pressure and with a practical operating flame stability margin. Under these conditions it is shown that no thermal \\{NOx\\} should occur and all the \\{NOx\\} is formed by the prompt \\{NOx\\} mechanisms. The elimination of thermal \\{NOx\\} makes the \\{NOx\\} emissions independent of residence time or reference velocity and independent of pressure. Also there is no influence of air inlet temperature for the same flame temperature. Where legislation requires emissions to be as low as can be achieved, emissions below 4ppm in production engines are current technology and this review shows the potential to get even lower than this in the future.

G.E. Andrews

2013-01-01T23:59:59.000Z

168

Reducing nitrogen oxides emissions from the combustion of LCV gas staged firing  

E-Print Network (OSTI)

with cotton gin tr ash, one of the primary fuels under consider ation, r esulted in flue NO levels ranging from 650-B60 ng/J (1. 5-2. 0 lb/MBtu). The Texas Air Control Board (TACB) will issue a facility a permit to operate only if NOx emissions are within... NO Methods of NOx Control Methods of NOx control may be lumped into two cate- gories: flue gas treatment (FGT) and combustion modifica- tion. The different processes are described below. Flue Gas Tr eatment Most of the research on FGT to date has been...

Finch, Stanley Frank

2012-06-07T23:59:59.000Z

169

New School Year Means New Energy Systems for Two Rhode Island Schools |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New School Year Means New Energy Systems for Two Rhode Island New School Year Means New Energy Systems for Two Rhode Island Schools New School Year Means New Energy Systems for Two Rhode Island Schools August 16, 2010 - 4:00pm Addthis New energy recovery systems and occupancy sensors are greatly reducing energy costs at Woonsocket Middle School at Hamlet. | Photo courtesy of Woonsocket Education Department New energy recovery systems and occupancy sensors are greatly reducing energy costs at Woonsocket Middle School at Hamlet. | Photo courtesy of Woonsocket Education Department Kevin Craft What are the key facts? Systems and occupancy sensors save 172,365 kWh and $26,000 annually $181,000 Recovery Act grant funded installation Systems also monitor CO2 levels to provide optimal indoor air quality When city officials in Woonsocket, R.I. were planning the construction of

170

New School Year Means New Energy Systems for Two Rhode Island Schools |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

School Year Means New Energy Systems for Two Rhode Island School Year Means New Energy Systems for Two Rhode Island Schools New School Year Means New Energy Systems for Two Rhode Island Schools August 16, 2010 - 4:00pm Addthis New energy recovery systems and occupancy sensors are greatly reducing energy costs at Woonsocket Middle School at Hamlet. | Photo courtesy of Woonsocket Education Department New energy recovery systems and occupancy sensors are greatly reducing energy costs at Woonsocket Middle School at Hamlet. | Photo courtesy of Woonsocket Education Department Kevin Craft What are the key facts? Systems and occupancy sensors save 172,365 kWh and $26,000 annually $181,000 Recovery Act grant funded installation Systems also monitor CO2 levels to provide optimal indoor air quality When city officials in Woonsocket, R.I. were planning the construction of

171

Influence of Oxidized Biodiesel Blends on Regulated and Unregulated Emissions from a Diesel Passenger Car  

Science Journals Connector (OSTI)

Few studies are available on modern passenger cars, employed common-rail engine systems, and after-treatment technologies, and even fewer studies report results, which are not necessarily representative of actual driving conditions, making it difficult to assess the fuel impact on diesel car fleet emissions. ... Although gasoline engines are expected to be replaced by hydrogen-powered fuel cells, compression-ignition engines, the diesel engines, are expected to remain in use for high-power applications because of limitations of hydrogen-storage densities. ... transesterification and sequential esterification-transesterification, followed by washing in water in both cases, in order to set out the most suitable operational conditions to achieve the highest FAME percentage in the shortest time. ...

Georgios Karavalakis; Evangelos Bakeas; Stamos Stournas

2010-05-24T23:59:59.000Z

172

Conversion and upgrade of the Rhode Island Nuclear Science Center Reactor  

SciTech Connect

The Rhode Island Atomic Energy Commission, an agency of the state of Rhode Island, has operated a 2-MW swimming pool research reactor at the Rhode Island Nuclear Science Center (RINSC) since 1964. The reactor, which utilizes plate-type materials test reactor fuel elements, is used primarily by facility and research scientists from the University of Rhode Island for neutron scattering, using the beam tubes and activation analysis programs that use irradiation facilities both inside and adjacent to the core. Along with most other university research reactors, the RINSC reactor is now required, pursuant to 10CFR50.64, to convert from the use of high-enrichment uranium fuel elements to the use of low-enriched uranium (LEU) fuel elements. It is apparent that the US Nuclear Regulatory Commission mandate to convert the RINSC reactor to the use of LEU will result in a new core, designed to use the standard fuel plate and at the same time enhance the available neutron flux and spectrum for research using neutron scattering and activation analysis.

DiMeglio, A.F.

1987-01-01T23:59:59.000Z

173

Rules for the Discharge of Non-Sanitary Wastewater and Other Fluids To or Below the Ground Surface (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of these rules to protect and preserve the quality of the groundwater of the State of Rhode Island (the State) and to prevent contamination of groundwater resources from the discharge...

174

Transitions in Medieval Mediterranean Shipbuilding: A Reconstruction of the Nave Quadra of the Michael of Rhodes Manuscript  

E-Print Network (OSTI)

of Italy, particularly Venice. In most cases, though, this body of evidence is given only a cursory examination or is altogether overlooked. One may highlight various reasons why this appears to be the general trend, the most significant of which...) Page CHAPTER Shipbuilding Treatises of Medieval Venice .................................. 55 V THE MICHAEL OF RHODES MANUSCRIPT????????.. 63 The Service of Michael of Rhodes and the Formation of His Manuscript...

Valenti, Vincent N.

2010-01-14T23:59:59.000Z

175

MHK Projects/Greenwave Rhode Island Ocean Wave Energy Project | Open Energy  

Open Energy Info (EERE)

Greenwave Rhode Island Ocean Wave Energy Project Greenwave Rhode Island Ocean Wave Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4501,"lon":-71.4495,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

176

"1. Rhode Island State Energy Partners","Gas","FPL Energy Operating Serv Inc",528  

U.S. Energy Information Administration (EIA) Indexed Site

Rhode Island" Rhode Island" "1. Rhode Island State Energy Partners","Gas","FPL Energy Operating Serv Inc",528 "2. Manchester Street","Gas","Dominion Energy New England, LLC",447 "3. Tiverton Power Plant","Gas","Tiverton Power Inc",250 "4. Ocean State Power II","Gas","Ocean State Power II",219 "4. Ocean State Power","Gas","Ocean State Power Co",219 "6. Pawtucket Power Associates","Gas","Pawtucket Power Associates LP",63 "7. Ridgewood Providence Power","Other Renewables","Ridgewood Power Management LLC",24 "8. Central Power Plant","Gas","State of Rhode Island",10

177

Nitrogen Oxides, Sulphur Trioxide and Mercury Emissions during Oxy-Fuel Fluidized Bed Combustion of Victorian Brown Coal  

Science Journals Connector (OSTI)

This study investigates, for the first time, the NOX, N2O, SO3 and Hg emissions from combustion of a Victorian brown coal in a 10 kWth fluidized bed unit under oxy-fuel combustion conditions. Compared to air combustion, lower NOX emissions and higher N2O ...

Bithi Roy; Luguang Chen; Sankar Bhattacharya

2014-11-17T23:59:59.000Z

178

Estimation of nitrous oxide emissions (GHG) from wastewater treatment plants using closed-loop mass balance and data reconciliation  

Science Journals Connector (OSTI)

The amount of greenhouse gases (GHG), especially, nitrous oxide (N2O) emitted from wastewater treatment plants (WWTP) using data reconciliation and closed-loop mass balance was estimated. This study is based on a...

JungJin Lim; Boddupalli Sankarrao; TaeSeok Oh

2012-09-01T23:59:59.000Z

179

Effect of encapsulated calcium carbide on dinitrogen, nitrous oxide, methane, and carbon dioxide emissions from flooded rice  

Science Journals Connector (OSTI)

The efficiency of N use in flooded rice is usually low, chiefly due to gaseous losses. Emission of CH4, a gas implicated in global warming, can also be substantial in flooded rice. In a greenhouse study, the nitr...

K. F. Bronson; A. R. Mosier

1991-05-01T23:59:59.000Z

180

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards The Rhode Island Department of Environmental Management has adopted

Note: This page contains sample records for the topic "oxide emissions rhode" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181
182

Environmental Assessment for the Partial Funding of a Proposed Life Sciences Building at Brown University, Providence, Rhode Island  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Assessment for the Partial Funding of a Environmental Assessment for the Partial Funding of a Proposed Life Sciences Building at Brown University, Providence, Rhode Island FINAL July 2003 National Aeronautics and Space Administration Washington, D.C. 20546-0001 U.S. Department of Energy, Chicago Operations Office Argonne, Illinois 60439 Environmental Assessment for the Partial Funding of a Proposed Life Sciences Building at Brown University, Providence, Rhode Island Environmental Assessment for the Partial Funding of a Proposed Life Sciences Building at Brown University, Providence, Rhode Island FINAL Lead Agency: National Aeronautics and Space Administration Cooperating Agency: U.S. Department of Energy Proposed Action: Partial funding for a new Life Sciences Building at Brown

183

,"Rhode Island Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_sri_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_sri_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:55 AM"

184

Rhode Island Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Rhode Island Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.73 0.33 0.39 1970's 0.33 0.38 0.38 0.42 0.41 0.55 0.75 1.67 2.08 2.06 1980's 2.92 4.74 4.53 4.74 4.05 4.53 3.55 2.87 2.20 4.19 1990's 3.74 3.41 2.94 3.31 2.69 2.21 3.35 3.15 3.00 2.53 2000's 4.67 5.20 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Rhode Island Natural Gas Prices

185

Rhode Island Natural Gas Delivered to Commercial Consumers for the Account  

Gasoline and Diesel Fuel Update (EIA)

Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Rhode Island Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,742 1,080 1,411 1990's 330 0 0 0 0 0 1,010 2,405 4,679 5,524 2000's 6,070 5,380 3,912 3,176 3,015 2,834 2,673 3,764 3,663 3,430 2010's 4,062 4,669 4,503 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Delivered to Commercial Consumers for the Account of Others Rhode Island Natural Gas Delivered for the Account of Others

186

Vehicle Emissions Review - 2011 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

NOx control, diesel oxidation catalysts, gasoline particulate filters deer11johnson.pdf More Documents & Publications Vehicle Emissions Review - 2012 Diesel Emission...

187

Analysis of Strategies for Reducing Multiple Emissions from Electric Power Plants: Sulfur Dioxide, Nitrogen Oxides, Carbon Dioxide, and Mercury and a Renewable Portfolio Standard  

Gasoline and Diesel Fuel Update (EIA)

3 3 ERRATA Analysis of Strategies for Reducing Multiple Emissions from Electric Power Plants: Sulfur Dioxide, Nitrogen Oxides, Carbon Dioxide, and Mercury and a Renewable Portfolio Standard July 2001 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This Service Report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should be attributed to the Contacts This report was prepared by the Office of Integrated Analysis and Forecasting, Energy Information Adminis- tration. General questions concerning the report may be directed to Mary J. Hutzler (202/586-2222, mhutzler @eia.doe.gov), Director of the Office of Integrated Analysis and Forecasting, Scott B. Sitzer (202/586-2308,

188

The Advanced Tangentially Fired Combustion Techniques for the Reduction of Nitrogen Oxides (NOx) Emissions From Coal-Fired Boilers Demonstration Project: A DOE Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 The Advanced Tangentially Fired Combustion Techniques for the Reduction of Nitrogen Oxides (NO ) Emissions From Coal-Fired Boilers X Demonstration Project: A DOE Assessment March 2000 U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 and P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

189

Microsoft Word - DOE-ID-11-013 Rhode Island EC.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 SECTION A. Project Title: Reactor Upgrade Grant - Rhode Island Atomic Energy Commission SECTION B. Project Description The objectives of this project are to upgrade the Area Radiation Monitoring System and Confinement Air Handling System I&C with Opto-22 systems, add a Reactor Power Level Trend display that shows power trend data from each of the power level channels, and to replace the Control Rod Magnet Power Supplies and the Control Room Instrumentation Master Switch with new components. Each of these displays will make reactor system data more observable to reactor operators, reactor operator trainees, and laboratory students that are taking data in the control room. The replacement of the Control Rod Magnet Power Supplies and the Control Room

190

Analysis of Offshore Wind Energy Leasing Areas for the Rhode Island/Massachusetts Wind Energy Area  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of Offshore Wind Analysis of Offshore Wind Energy Leasing Areas for the Rhode Island/Massachusetts Wind Energy Area W. Musial, D. Elliott, J. Fields, Z. Parker, and G. Scott Produced under direction of the Bureau of Ocean Energy Management (BOEM) by the National Renewable Energy Laboratory (NREL) under Interagency Agreement M13PG00002 and Task No WFS3.1000. Technical Report NREL/TP-5000-58091 April 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Contract No. DE-AC36-08GO28308 National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.nrel.gov Analysis of Offshore Wind

191

The Rhode Island Nuclear Science Center conversion from HEU to LEU fuel  

SciTech Connect

The 2-MW Rhode Island Nuclear Science Center (RINSC) open pool reactor was converted from 93% UAL-High Enriched Uranium (HEU) fuel to 20% enrichment U3Si2-AL Low Enriched Uranium (LEU) fuel. The conversion included redesign of the core to a more compact size and the addition of beryllium reflectors and a beryllium flux trap. A significant increase in thermal flux level was achieved due to greater neutron leakage in the new compact core configuration. Following the conversion, a second cooling loop and an emergency core cooling system were installed to permit operation at 5 MW. After re-licensing at 2 MW, a power upgrade request will be submitted to the NRC.

Tehan, Terry

2000-09-27T23:59:59.000Z

192

Clean coal technology: selective catalytic reduction (SCR) technology for the control of nitrogen oxide emissions from coal-fired boilers  

SciTech Connect

The report discusses a project carried out under the US Clean Coal Technology (CCT) Demonstration Program which demonstrated selective catalytic reduction (SCR) technology for the control of NOx emissions from high-sulphur coal-fired boilers under typical boilers conditions in the United States. The project was conducted by Southern Company Services, Inc., who served as a co-funder and as the host at Gulf Power Company's Plant Crist. The SCR process consists of injecting ammonia (NH{sub 3}) into boiler flue gas and passing the flue gas through a catalyst bed where the Nox and NH{sub 3} react to form nitrogen and water vapor. The results of the CCTDP project confirmed the applicability of SCR for US coal-fired power plants. In part as a result of the success of this project, a significant number of commercial SCR units have been installed and are operating successfully in the United States. By 2007, the total installed SCR capacity on US coal-fired units will number about 200, representing about 100,000 MWe of electric generating capacity. This report summarizes the status of SCR technology. 21 refs., 3 figs., 2 tabs., 10 photos.

NONE

2005-05-01T23:59:59.000Z

193

Environmental assessment of offshore wind power generation near Rhode Island: Acoustic and electromagnetic effects on marine animals.  

Science Journals Connector (OSTI)

An offshore wind farm is planned for Rhode Island coastal waters. The developer has proposed to deploy wind turbines in two stages: 5 turbines in shallow waters 5 km south of Block Island and 100 turbines in deeper waters 30 km to the east. As part of the planning of the proposed offshore wind powergeneration project under the Rhode Island Special Area Management Plan ambient acoustic and electromagneticmeasurements were made in the area. Two passive acoustic listener (PAL) systems were deployed within 4 km of Block Island from October 6 to November 11 2008. Data from the PALs were used to compute the ocean acousticnoise budget and other statistics by source. Transmission loss measurements were also made to support the noise budget calculation. Measurements of airborne noise from a 1.5?MW land?based wind turbine already in operation in Rhode Island were made. To support the electromagneticeffect study an underwater magnetometer was towed at the two proposed sites and over an operational underwater 23?kV power cable. A preliminary assessment of the effects of the offshore wind farm on marine animals at these sites will be presented. [Funding provided by the RI Office of Energy Resources.

James H. Miller; Gopu R. Potty; Kathleen Vigness Raposa; David Casagrande; Lisa Miller; Steven E. Crocker; Robert Tyce; Jonathan Preston; Brian Roderick; Jeffrey A. Nystuen; Peter M. Scheifele

2009-01-01T23:59:59.000Z

194

Air Pollution Control Regulations: No. 9- Air Pollution Control Permits (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations describe permitting procedures and requirements for minor and major sources of emissions.

195

Reducing Diesel Engine Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Reducing Reducing Diesel Engine Emissions 2 0 1 0 Green TransporTaTion TechnoloGies Compared to traditional gasoline engines, diesel engines require less maintenance, generate energy more efficiently, and produce less carbon dioxide emissions. But when uncontrolled, diesel engines churn out harmful emissions like particu- late matter (PM) and nitrogen oxides (NO x ). Researchers at Argonne National Laboratory are currently working to develop

196

National Grid Deep Energy Retrofit Pilot, Massachusetts and Rhode Island (Fact Sheet)  

SciTech Connect

Between December, 2009 and December, 2012 42 deep energy retrofit (DER) projects were completed through a DER pilot program sponsored by National Grid and conducted in Massachusetts and Rhode Island. 37 of these projects were comprehensive retrofits while 5 were partial DERs, meaning that high performance retrofit was implemented for a single major enclosure component or a limited number of major enclosure components. The 42 DER projects represent 60 units of housing. The comprehensive projects all implemented a consistent "package" of measures in terms of the performance targeted for major building components. Projects exhibited some variations in the approach to implementing the retrofit package. Pre- and post-retrofit air leakage measurements were performed for each of the projects. Each project also reported information about project costs including identification of energy-related costs. Post-retrofit energy-use data was obtained for 29 of the DER projects. Post-retrofit energy use was analyzed based on the net energy used by the DER project regardless of whether the energy was generated on site or delivered to the site. Homeowner surveys were returned by 12 of the pilot participants. Based on the community experience, this DER package is expected to result in yearly source energy use near 110 MMBtu/year or approximately 40% below the Northeast regional average. Larger to medium sized homes that successful implement these retrofits can be expected to achieve source EUI that is comparable to Passive House targets for new construction. The community of DER projects show post-retrofit airtightness below 1.5 ACH50 to be eminently achievable.

Not Available

2014-03-01T23:59:59.000Z

197

Field Performance of Heat Pump Water Heaters in the Northeast, Massachusetts and Rhode Island (Fact Sheet)  

SciTech Connect

Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads. Steven Winter Associates, Inc. embarked on one of the first in situ studies of these newly released HPWH products through a partnership with two sponsoring electric utility companies, National Grid and NSTAR, and one sponsoring energy efficiency service program administrator, Cape Light Compact. Recent laboratory studies have measured performance of HPWHs under various operating conditions, but publicly available field studies have not been as available. This evaluation attempts to provide publicly available field data on new HPWHs by monitoring the performance of three recently released products (General Electric GeoSpring, A.O. Smith Voltex, and Stiebel Eltron Accelera 300). Fourteen HPWHs were installed in Massachusetts and Rhode Island and monitored for over a year. Of the 14 units, ten were General Electric models (50 gallon units), two were Stiebel Eltron models (80 gallon units), and two were A.O. Smith models (one 60-gallon and one 80-gallon unit).

Not Available

2013-12-01T23:59:59.000Z

198

Performance Results for Massachusetts and Rhode Island Deep Energy Retrofit Pilot Community  

SciTech Connect

Between December, 2009 and December, 2012 42 deep energy retrofit (DER) projects were completed through a DER pilot program sponsored by National Grid and conducted in Massachusetts and Rhode Island. 37 of these projects were comprehensive retrofits while 5 were partial DERs, meaning that high performance retrofit was implemented for a single major enclosure component or a limited number of major enclosure components. The 42 DER projects represent 60 units of housing. The comprehensive projects all implemented a consistent 'package' of measures in terms of the performance targeted for major building components. Projects exhibited some variations in the approach to implementing the retrofit package. Pre- and post-retrofit air leakage measurements were performed for each of the projects. Each project also reported information about project costs including identification of energy-related costs. Post-retrofit energy-use data was obtained for 29 of the DER projects. Post-retrofit energy use was analyzed based on the net energy used by the DER project regardless of whether the energy was generated on site or delivered to the site. Homeowner surveys were returned by 12 of the pilot participants. Based on the community experience, this DER package is expected to result in yearly source energy use near 110 MMBtu/year or approximately 40% below the Northeast regional average. Larger to medium sized homes that successful implement these retrofits can be expected to achieve source EUI that is comparable to Passive House targets for new construction. The community of DER projects show post-retrofit airtightness below 1.5 ACH50 to be eminently achievable.

Gates, C.; Neuhauser, K.

2014-03-01T23:59:59.000Z

199

Fuel saving, carbon dioxide emission avoidance, and syngas production by tri-reforming of flue gases from coal- and gas-fired power stations, and by the carbothermic reduction of iron oxide  

Science Journals Connector (OSTI)

Flue gases from coal, gas, or oil-fired power stations, as well as from several heavy industries, such as the production of iron, lime and cement, are major anthropogenic sources of global CO2 emissions. The newly proposed process for syngas production based on the tri-reforming of such flue gases with natural gas could be an important route for CO2 emission avoidance. In addition, by combining the carbothermic reduction of iron oxide with the partial oxidation of the carbon source, an overall thermoneutral process can be designed for the co-production of iron and syngas rich in CO. Water-gas shift (WGS) of CO to H2 enables the production of useful syngas. The reaction process heat, or the conditions for thermoneutrality, are derived by thermochemical equilibrium calculations. The thermodynamic constraints are determined for the production of syngas suitable for methanol, hydrogen, or ammonia synthesis. The environmental and economic consequences are assessed for large-scale commercial production of these chemical commodities. Preliminary evaluations with natural gas, coke, or coal as carbon source indicate that such combined processes should be economically competitive, as well as promising significant fuel saving and CO2 emission avoidance. The production of ammonia in the above processes seems particularly attractive, as it consumes the nitrogen in the flue gases.

M. Halmann; A. Steinfeld

2006-01-01T23:59:59.000Z

200

Oxidized organic functional groups in aerosol particles from forest emissions measured at mid-mountain and high- elevation mountain sites in Whistler, BC  

E-Print Network (OSTI)

with fossil fuel combustion and marine emissions (Russell etfuel combustion, and biomass burning (BB). Natural sources include biogenic (from the biosphere), marine (

Schwartz, Rachel E.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxide emissions rhode" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Rational Catalyst Design Applied to Development of Advanced Oxidation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Catalyst Design Applied to Development of Advanced Oxidation Catalysts for Diesel Emission Control Rational Catalyst Design Applied to Development of Advanced Oxidation...

202

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, third quarter 1991  

SciTech Connect

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project.

Not Available

1992-02-03T23:59:59.000Z

203

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO sub x ) emissions from coal-fired boilers  

SciTech Connect

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company's Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project.

Not Available

1992-02-03T23:59:59.000Z

204

Excitation mechanism and thermal emission quenching of Tb ions in silicon rich silicon oxide thin films grown by plasma-enhanced chemical vapour depositionDo we need silicon nanoclusters?  

SciTech Connect

In this work, we will discuss the excitation and emission properties of Tb ions in a Silicon Rich Silicon Oxide (SRSO) matrix obtained at different technological conditions. By means of electron cyclotron resonance plasma-enhanced chemical vapour deposition, undoped and doped SRSO films have been obtained with different Si content (33, 35, 39, 50 at.%) and were annealed at different temperatures (600, 900, 1100?C). The samples were characterized optically and structurally using photoluminescence (PL), PL excitation, time resolved PL, absorption, cathodoluminescence, temperature dependent PL, Rutherford backscattering spectrometry, Fourier transform infrared spectroscopy and positron annihilation lifetime spectroscopy. Based on the obtained results, we discuss how the matrix modifications influence excitation and emission properties of Tb ions.

Podhorodecki, A., E-mail: artur.p.podhorodecki@pwr.wroc.pl; Golacki, L. W.; Zatryb, G.; Misiewicz, J. [Institute of Physics, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Wang, J.; Jadwisienczak, W. [School of EECS, Ohio University, Stocker Center 363, Athens, Ohio 45701 (United States); Fedus, K. [Institute of Physics, Nicholas Copernicus University, Grudziadzka 5/7, 87-100 Torun (Poland); Wojcik, J.; Wilson, P. R. J.; Mascher, P. [Department of Engineering Physics and Centre for Emerging Device Technologies, McMaster University, 1280 Main St. W, Hamilton, Ontario L8S4L7 (Canada)

2014-04-14T23:59:59.000Z

205

Air emissions inventory for the Idaho National Engineering Laboratory -- 1995 emissions report  

SciTech Connect

This report presents the 1995 update of the Air Emission Inventory for the Idaho National Engineering Laboratory (INEL). The INEL Air Emission Inventory documents sources and emissions of non-radionuclide pollutants from operations at the INEL. The report describes the emission inventory process and all of the sources at the INEL, and provides non-radionuclide emissions estimates for stationary sources. The air contaminants reported include nitrogen oxides, sulfur oxides, carbon monoxide, volatile organic compounds, particulates, and hazardous air pollutants (HAPs).

NONE

1996-06-01T23:59:59.000Z

206

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Fourth quarterly technical progress report, [October--December, 1992  

SciTech Connect

This quarterly report discusses the technical progress of a U. S. Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NOx combustion technologies on NOx emissions and boiler performance. A target of achieving fifty percent NOx reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NOx control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NOx concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NOx reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. During this quarter, tests of the LNCFS Level III system were conducted to determine the effect that fuel fineness has on NOx emissions and unburned carbon levels. Results showed that changing the fineness of the fuel has almost no effect on NOx emissions; however, unburned carbon levels can be reduced significantly by increasing fuel fineness.

Not Available

1992-12-31T23:59:59.000Z

207

Stabilized chromium oxide film  

DOE Patents (OSTI)

Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150.ANG. are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

Garwin, Edward L. (Los Altos, CA); Nyaiesh, Ali R. (Palo Alto, CA)

1988-01-01T23:59:59.000Z

208

Stabilized chromium oxide film  

DOE Patents (OSTI)

Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150A are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

Nyaiesh, A.R.; Garwin, E.L.

1986-08-04T23:59:59.000Z

209

Reducing the contribution of the power sector to ground-level ozone pollution : an assessment of time-differentiated pricing of nitrogen oxide emissions  

E-Print Network (OSTI)

Nitrogen oxide (NOx) is a prevalent air pollutant across the United States and a requisite precursor for tropospheric (ground-level) ozone formation. Both pollutants significantly impact human health and welfare, so National ...

Craig, Michael T. (Michael Timothy)

2014-01-01T23:59:59.000Z

210

The effects of cycle-to-cycle variations on nitric oxide (NO) emissions for a spark-ignition engine: Numerical results  

E-Print Network (OSTI)

. To carry out the proposed study, an engine simulation model was used. The simulation determines engine performance and NO emissions as functions of engine operating conditions, engine design parameters, and combustion parameters. An automotive, spark-ignition...

Villarroel, Milivoy

2004-11-15T23:59:59.000Z

211

Fact #825: June 16, 2014 Tier 3 Non-Methane Organic Gases Plus Nitrogen Oxide Emission Standards, Model Years 2017-2025  

Energy.gov (U.S. Department of Energy (DOE))

The Environmental Protection Agency finalized Tier 3 emission standards in a rule issued in March 2014. One effect of the rule is a decrease in the combined amount of non-methane organic gases ...

212

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from coal-fired boilers  

SciTech Connect

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company's Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO[sub x] combustion technologies on NO[sub x] emissions and boiler performance. A target of achieving fifty percent NO[sub x] reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO[sub x] control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO[sub x] concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO[sub x] reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progress report presents the LNCFS Level I short-term data collected during this quarter. In addition, a comparison of all the long-term emissions data that have been collected to date is included.

Not Available

1992-11-25T23:59:59.000Z

213

500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from coal-fired boilers  

SciTech Connect

The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO[sub x] burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO[sub x] reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulatecharacteristics and boiler efficiency. Baseline, AOFA, and LNB without AOFA test segments have been completed. Analysis of the 94 days of LNB long-term data collected show the full-load NO[sub x] emission levels to be approximately 0.65 lb/MBtu. Flyash LOI values for the LNB configuration are approximately 8 percent at full-load. Corresponding values for the AOFA configuration are 0.94 lb/MBtu and approximately 10 percent. Abbreviated diagnostic tests for the LNB+AOFA configuration indicate that at 500 MWe, NO[sub x] emissions are approximately 0.55 lb/MBtu with corresponding flyash LOI values of approximately 11 percent. For comparison, the long-term full-load, baseline NO[sub x] emission level was approximately 1.24 lb/MBtu at 5.2 percent LOI. Comprehensive testing of the LNB+AOFA configuration will be performed when the stackparticulate emissions issue is resolved. Testing of a process optimization package on Plant Hammond Unit 4 was performed during this quarter. The software was configured to minimize NO[sub x] emissions using total combustion air flow and advanced overfire air distribution as the controlled parameters. Preliminary results from this testing indicate that this package shows promise in reducing NO[sub x] emissions while maintaining or improving other boiler performance parameters.

Not Available

1992-01-01T23:59:59.000Z

214

Wind turbine generator interaction with conventional diesel generators on Block Island, Rhode Island. Volume 1. Executive summary  

SciTech Connect

This report summarizes the primary results of a three-part study involving the effects of connecting a MOD-OA wind turbine generator to an isolated diesel power system. The subject utility is that owned and operated by the Block Island Power Company (BIPCO). The MOD-OA installation here was the third of four experimental nominal 200 kW wind turbines connected to various utilities under the Federal Wind Energy Program. The BIPCO installation was characterized by the highest wind energy penetration levels of four sites and, as such, was adjudged the best candidate for conducting the data acquisition and analysis effort that is the subject of this study. The three-phases of the study analysis address: (1) fuel displacement, (2) dynamic interaction, and (3) three modes of reactive power control. These analyses all have as their basis the results of the data acquisition program conducted during 1982 from February into April on Block Island, Rhode Island.

Wilreker, V.F.; Stiller, P.H.; Scott, G.W.; Kruse, V.J.; Smith, R.F.

1984-02-01T23:59:59.000Z

215

Wind turbine generator interaction with conventional diesel generators on Block Island, Rhode Island. Volume II. Data analysis  

SciTech Connect

In order to assess the performance of a MOD-OA horizontal axis wind turbine when connected to an isolated diesel utility, a comprehensive data measurement program was conducted on the Block Island Power Company installation on Block Island, Rhode Island. This report presents the detailed results of that program focusing on three principal areas of (1) fuel displacement (savings), (2) dynamic interaction between the diesel utility and the wind turbine, (3) effects of three modes of wind turbine reactive power control. The approximate two month duration of the data acquisition program conducted in the winter months (February into April 1982) revealed performance during periods of highest wind energy penetration and hence severity of operation. It is concluded that even under such conditions fuel savings were significant resulting in a fuel reduction of 6.7% while the MOD-OA was generating 10.7% of the total electrical energy. Also, electrical disturbance and interactive effects were of an acceptable level.

Wilreker, V.F.; Stiller, P.H.; Scott, G.W.; Kruse, V.J.; Smith, R.F.

1984-02-01T23:59:59.000Z

216

Aerial radiological survey of the area surrounding the UNC Recovery Systems Facility, Wood River Junction, Rhode Island  

SciTech Connect

An aerial radiological survey to measure terrestrial gamma radiation was carried out over the United Nuclear Corporation (UNC) Recovery Systems Facility located near Wood River Junction, Rhode Island. At the time of the survey (August 1979) materials were being processed at the facility. Gamma ray data were collected over a 3.28 km/sup 2/ area centered on the facility by flying north-south lines spaced 60 m apart. Processed data indicated that detected radioisotopes and their associated gamma ray exposure rates were consistent with those expected from normal background emitters, except directly over the UNC Facility. Average exposure rates 1 m above the ground, as calculated from the aerial data, are presented in the form of an isopleth map. No ground sample data were taken at the time of the aerial survey.

Bluitt, C.M.

1981-05-01T23:59:59.000Z

217

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, first quarter 1992  

SciTech Connect

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO{sub x} control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO{sub x} concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progess report presents the LNCFS Level III long-term data collected during this quarter. NO{sub x} emissions for each day of long-term testing are presented. The average NO{sub x} emission during long-term testing was 0.39 lb/MBtu at an average load of 155 MW. The effect of the low NO{sub x} combustion system on other combustion parameters such as carbon monoxide, excess oxygen level, and carbon carryover are also included.

Not Available

1992-05-20T23:59:59.000Z

218

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from coal-fired boilers  

SciTech Connect

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company's Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO[sub x] combustion technologies on NO[sub x] emissions and boiler performance. A target of achieving fifty percent NO[sub x] reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO[sub x] control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO[sub x] concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO[sub x] reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progess report presents the LNCFS Level III long-term data collected during this quarter. NO[sub x] emissions for each day of long-term testing are presented. The average NO[sub x] emission during long-term testing was 0.39 lb/MBtu at an average load of 155 MW. The effect of the low NO[sub x] combustion system on other combustion parameters such as carbon monoxide, excess oxygen level, and carbon carryover are also included.

Not Available

1992-05-20T23:59:59.000Z

219

Electron Emission from Slightly Oxidized Depleted Uranium Generated by its Own Radioactivity Measured by Electron Spectroscopy, and Electron-Induced Dissociation and Ionization of Hydrogen Near its Surface.  

SciTech Connect

Energy dependent electron emission (counts per second) between zero and 1.4 keV generated by the natural reactivity of uranium was measured by an electrostatic spectrometer with known acceptance angle and acceptance area. The electron intensity decreases continuously with energy, but at different rates in different energy regimes, suggesting that a variety of processes may be involved in producing the observed electron emission. The spectrum was converted to energy dependent electron flux (e-/cm{sup 2} s) using the assumption that the emission has a cosine angular distribution. The flux decreased rapidly from {approx}10{sup 6}/cm{sup 2}s to {approx}10{sup 5}/cm{sup 2}s in the energy range from zero to 200 eV, and then more slowly from {approx}10{sup 5}/cm{sup 2}s to {approx}3*10{sup 4}/cm{sup 2} s in the range from 200 to 1400 eV. The energy dependent electron mean free path in gases together with literature cross sections for electron induced reactions were used to determine the number of ionization and dissociation reactions per cm{sup 2}s within the inelastic mean free path of electrons, and found to be about 1.3*10{sup 8}/cm{sup 2}s and 1.5*10{sup 7}/cm{sup 2}s, respectively, for hydrogen. An estimate of the number of ionization and dissociation reactions occurring within the total range, rather than the mean free path of electrons in gases resulted in 6.2*10{sup 9}/cm{sup 2}s and 1.3*10{sup 9}/cm{sup 2}s, respectively. The total energy flux carried by electrons from the surface is suspiciously close to the total possible energy generated by one gram of uranium. A likely source of error is the assumption that the electron emission has a cosine distribution. Angular distribution measurements of the electron emission would check that assumption, and actual measurement of the total current emanating from the surface are needed to confirm the value of the current calculated in section II. These results must therefore be used with caution - until they are confirmed by other measurements.

Siekhaus, W J; Nelson, A J

2011-10-26T23:59:59.000Z

220

Field emission study of cobalt ion implanted porous silicon  

E-Print Network (OSTI)

Analysis . Field Emission Measurements of Cobalt Implanted Porous Silicon Differences between the 1mplanted Porous Silicon Field Emission Devioe and the Al-anode Oxidized Porous Silicon Field Emission Diode VII CONCLUSION 70 94 99 REFERENCES... Emission Diode (OPSFED) was developed and studied [8] . The OPSFED was using the irregularity on the interface between the oxidized porous silicon film and silicon substrate as field emission cathodes, and a thin aluminum layer deposited...

Liu, Hongbiao

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "oxide emissions rhode" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, fourth quarter 1991  

SciTech Connect

This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as parameters such as particulate characteristics and boiler efficiency.

Not Available

1992-04-21T23:59:59.000Z

222

Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, Second quarter 1992  

SciTech Connect

This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (No{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

Not Available

1992-08-24T23:59:59.000Z

223

Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, First quarter 1992  

SciTech Connect

This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

Not Available

1992-12-31T23:59:59.000Z

224

Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from coal-fired boilers  

SciTech Connect

This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (No[sub x]) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company's Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO[sub x] combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO[sub x] reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO[sub x] burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO[sub x] reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

Not Available

1992-08-24T23:59:59.000Z

225

Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO sub x ) emissions from coal-fired boilers  

SciTech Connect

This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company's Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as parameters such as particulate characteristics and boiler efficiency.

Not Available

1992-04-21T23:59:59.000Z

226

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, fourth quarter 1991  

SciTech Connect

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO{sub x} control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO{sub x} concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

Not Available

1992-05-18T23:59:59.000Z

227

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO sub x ) emissions from coal-fired boilers  

SciTech Connect

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company's Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO{sub x} control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO{sub x} concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

Not Available

1992-05-18T23:59:59.000Z

228

Research Projects to Convert Captured CO2 Emissions to Useful Products |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Projects to Convert Captured CO2 Emissions to Useful Projects to Convert Captured CO2 Emissions to Useful Products Research Projects to Convert Captured CO2 Emissions to Useful Products July 6, 2010 - 1:00pm Addthis Washington, DC - Research to help find ways of converting into useful products CO2 captured from emissions of power plants and industrial facilities will be conducted by six projects announced today by the U.S. Department of Energy (DOE). The projects are located in North Carolina, New Jersey, Massachusetts, Rhode Island, Georgia, and Quebec, Canada (through collaboration with a company based in Lexington, Ky.) and have a total value of approximately $5.9 million over two-to-three years, with $4.4 million of DOE funding and $1.5 million of non-Federal cost sharing. The work will be managed by the

229

Emissions Trading  

Science Journals Connector (OSTI)

Emissions trading is a comparatively new policy instrument which ... electricity systems in Europe. The development of emissions trading thus represents an innovation in its own...

2009-01-01T23:59:59.000Z

230

Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NOx) emissions from high-sulfur coal-fired boilers  

SciTech Connect

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor.

Not Available

1991-11-01T23:59:59.000Z

231

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, second quarter 1992  

SciTech Connect

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO{sub x} control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO{sub x} concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progress report presents the LNCFS Level I short-term data collected during this quarter. In addition, a comparison of all the long-term emissions data that have been collected to date is included.

Not Available

1992-11-25T23:59:59.000Z

232

Reduction of NOx emission on NiCrAl-Titanium Oxide coated direct injection diesel engine fuelled with radish (Raphanus sativus) biodiesel  

Science Journals Connector (OSTI)

The main aim of this study is the experimental investigation of single cylinder DI diesel engine with and without coating. Diesel and radish (Raphanus sativus) oil Methyl Ester are used as fuels and the results are compared to find the effect of biodiesel in a thermal barrier coating engine. For this purpose engine cylinder head valves and piston crown are coated with 100??m of nickel-chrome-aluminium bond coat and 450??m of TiO2 by the plasma spray method. Radish oil methyl ester is produced by the transesterification process method. From the experimental investigation slight increase in specific fuel consumption in thermal barrier coating engine is observed when compared with the uncoated engine whereas NOx HC Smoke and CO emissions decreased with coated engine for all test fuels used in the coated engine when compared with that of the uncoated engine.

V. Ravikumar; D. Senthilkumar

2013-01-01T23:59:59.000Z

233

Aerosol Jet Printing of LSCF-CGO Cathode for Solid Oxide Fuel Cells.  

E-Print Network (OSTI)

??Solid oxide fuel cell (SOFC) technology has attracted great attention due to advantages such as low emissions and high efficiency. In this work, solid oxide (more)

Gardner, Paul

2011-01-01T23:59:59.000Z

234

Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO[sub x]) emissions from high-sulfur coal-fired boilers  

SciTech Connect

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO[sub x]) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO[sub x] to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe, there are numerous technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO[sub 2] and SO[sub 3]. (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U. S. coal.

Not Available

1992-08-01T23:59:59.000Z

235

EIA - AEO2010 - Emissions projections  

Gasoline and Diesel Fuel Update (EIA)

Emissions Projections Emissions Projections Annual Energy Outlook 2010 with Projections to 2035 Emissions Projections Figure 93. Carbon dioxide emissions by sector and fuel, 2008 and 2035 Click to enlarge » Figure source and data excel logo Figure 94. Sulfur dioxide emissions from electricity generation, 2000-2035 Click to enlarge » Figure source and data excel logo Figure 95. Nitrogen oxide emissions from electricity generation, 2000-2035 Click to enlarge » Figure source and data excel logo Growth of carbon dioxide emissions slows in the projections Federal and State energy policies recently enacted will stimulate increased use of renewable technologies and efficiency improvements in the future, slowing the growth of energy-related CO2 emissions through 2035. In the Reference case, emissions do not exceed pre-recession 2007 levels until 2025. In 2035, energy-related CO2 emissions total 6,320 million metric tons, about 6 percent higher than in 2007 and 9 percent higher than in 2008 (Figure 93). On average, emissions in the Reference case grow by 0.3 percent per year from 2008 to 2035, compared with 0.7 percent per year from 1980 to 2008.

236

Just the Basics: Vehicle Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Are Exhaust Are Exhaust Emissions? In most heavily settled areas of the U.S., the personal automobile is the single greatest producer of harmful vehicle exhaust emissions. Exhaust emissions are generated by the fuel-air mixture burning in internal combus- tion engines, both gasoline-powered and diesel-powered. Emissions are also produced by fuel evaporation within the vehicle when it is stopped, and again during fueling. The constituents of car (gasoline and diesel) and truck (diesel) emissions vary depending on fuel type and indi- vidual vehicle operating characteris- tics. The bulk of vehicular emissions are composed of water vapor, carbon dioxide, nitrogen, and oxygen (in unconsumed air). There are other pollutants, such as carbon monoxide, nitrogen oxides, unburned fuel, and

237

Emissions Trading  

Science Journals Connector (OSTI)

Emissions trading is a market-based instrument to achieve ... The current international dissemination and intended linking of emissions trading schemes underlines the growing relevance of this ... . There are thr...

Edwin Woerdman

2014-06-01T23:59:59.000Z

238

Emissions Trading  

Science Journals Connector (OSTI)

This chapter covers a series of operations which are essential for the implementation of an efficient emissions trading market on the domestic and international level. An introduction to how a national emissions trading

Dr. Michael See

2001-01-01T23:59:59.000Z

239

electricity emission factors | OpenEI  

Open Energy Info (EERE)

emission factors emission factors Dataset Summary Description Emissions from energy use in buildings are usually estimated on an annual basis using annual average multipliers. Using annual numbers provides a reasonable estimation of emissions, but it provides no indication of the temporal nature of the emissions. Therefore, there is no way of understanding the impact on emissions from load shifting and peak shaving technologies such as thermal energy storage, on-site renewable energy, and demand control. Source NREL Date Released April 11th, 2011 (3 years ago) Date Updated April 11th, 2011 (3 years ago) Keywords buildings carbon dioxide emissions carbon footprinting CO2 commercial buildings electricity emission factors ERCOT hourly emission factors interconnect nitrogen oxides

240

sulfur dioxide emissions | OpenEI  

Open Energy Info (EERE)

sulfur dioxide emissions sulfur dioxide emissions Dataset Summary Description Emissions from energy use in buildings are usually estimated on an annual basis using annual average multipliers. Using annual numbers provides a reasonable estimation of emissions, but it provides no indication of the temporal nature of the emissions. Therefore, there is no way of understanding the impact on emissions from load shifting and peak shaving technologies such as thermal energy storage, on-site renewable energy, and demand control. Source NREL Date Released April 11th, 2011 (3 years ago) Date Updated April 11th, 2011 (3 years ago) Keywords buildings carbon dioxide emissions carbon footprinting CO2 commercial buildings electricity emission factors ERCOT hourly emission factors interconnect nitrogen oxides

Note: This page contains sample records for the topic "oxide emissions rhode" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Emissions Of Greenhouse Gases From Rice Agriculture  

SciTech Connect

This project produced detailed data on the processes that affect methane and nitrous oxide emissions from rice agriculture and their inter-relationships. It defines the shifting roles and potential future of these gases in causing global warming and the benefits and tradeoffs of reducing emissions. The major results include: 1). Mechanisms and Processes Leading to Methane Emissions are Delineated. Our experiments have tested the standard model of methane emissions from rice fields and found new results on the processes that control the flux. A mathematical mass balance model was used to unravel the production, oxidation and transport of methane from rice. The results suggested that when large amounts of organic matter are applied, the additional flux that is observed is due to both greater production and reduced oxidation of methane. 2). Methane Emissions From China Have Been Decreasing Over the Last Two Decades. We have calculated that methane emissions from rice fields have been falling in recent decades. This decrease is particularly large in China. While some of this is due to reduced area of rice agriculture, the bigger effect is from the reduction in the emission factor which is the annual amount of methane emitted per hectare of rice. The two most important changes that cause this decreasing emission from China are the reduced use of organic amendments which have been replaced by commercial nitrogen fertilizers, and the increased practice of intermittent flooding as greater demands are placed on water resources. 3). Global Methane Emissions Have Been Constant For More Than 20 Years. While the concentrations of methane in the atmosphere have been leveling off in recent years, our studies show that this is caused by a near constant total global source of methane for the last 20 years or more. This is probably because as some anthropogenic sources have increased, others, such as the rice agriculture source, have fallen. Changes in natural emissions appear small. 4). Nitrous Oxide Emissions From Rice Fields Increase as Methane Emissions Drop. Inundated conditions favor anaerobic methane production with high emission rates and de-nitrification resulting in modest nitrous oxide emissions. Under drier conditions such as intermittent flooding, methane emissions fall and nitrous oxide emissions increase. Increased nitrogen fertilizer use increases nitrous oxide emissions and is usually accompanied by reduced organic matter applications which decreases methane emissions. These mechanisms cause a generally inverse relationship between methane and nitrous oxide emissions. Reduction of methane from rice agriculture to control global warming comes with tradeoffs with increased nitrous oxide emissions. 5). High Spatial Resolution Maps of Emissions Produced. Maps of methane and nitrous oxide emissions at a resolution of 5 min 5 min have been produced based on the composite results of this research. These maps are necessary for both scientific and policy uses.

M. Aslam K. Khalil

2009-07-16T23:59:59.000Z

242

Effectiveness of a Diesel Oxidation Catalyst (DOC) to control...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Effectiveness of a Diesel Oxidation Catalyst (DOC) to control CO and hydrocarbon emissions from Reactivity Controlled Compression Ignition (RCCI) combustion Effectiveness of a...

243

Development of non-premixed porous inserted regenerative thermal oxidizer  

Science Journals Connector (OSTI)

In this study, a porous inserted regenerative thermal oxidizer (PRTO) system was developed for a... x emissions and high radiant efficiency. Zirconium dioxide (ZrO2...) ceramic ...

Jun-chun Zhang; Le-ming Cheng; Cheng-hang Zheng

2013-09-01T23:59:59.000Z

244

Diesel Particulate Oxidation Model: Combined Effects of Fixed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Volatile Carbon Diesel Particulate Oxidation Model: Combined Effects of Fixed & Volatile Carbon Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research...

245

Zero emission coal  

SciTech Connect

We discuss a novel, emission-free process for producing hydrogen or electricity from coal. Even though we focus on coal, the basic design is compatible with any carbonaceous fuel. The process uses cyclical carbonation of calcium oxide to promote the production of hydrogen from carbon and water. The carbonation of the calcium oxide removes carbon dioxide from the reaction products and provides the additional energy necessary to complete hydrogen production without additional combustion of carbon. The calcination of the resulting calcium carbonate is accomplished using the high temperature waste heat from solid oxide fuel cells (SOFC), which generate electricity from hydrogen fuel. Converting waste heat back to useful chemical energy allows the process to achieve very high conversion efficiency from fuel energy to electrical energy. As the process is essentially closed-loop, the process is able to achieve zero emissions if the concentrated exhaust stream of CO{sub 2} is sequestered. Carbon dioxide disposal is accomplished by the production of magnesium carbonate from ultramafic rock. The end products of the sequestration process are stable naturally occurring minerals. Sufficient rich ultramafic deposits exist to easily handle all the world's coal.

Ziock, H.; Lackner, K.

2000-08-01T23:59:59.000Z

246

NETL: IEP - Mercury Emissions Control: Emissions Characterization  

NLE Websites -- All DOE Office Websites (Extended Search)

Control Control Emissions Characterization In anticipation of the 1990 CAAAs, specifically the draft Title III regarding the characterization of potential HAPs from electric steam generating units, DOE initiated a new Air Toxics Program in 1989. The DOE Mercury Measurement and Control Program evolved as a result of the findings from the comprehensive assessment of hazardous air pollutants studies conducted by DOE from 1990 through 1997. DOE, in collaboration with EPRI, performed stack tests at a number of coal-fired power plants (identified on map below) to accurately determine the emission rates of a series of potentially toxic chemicals. These tests had not been conducted previously because of their cost, about $1 million per test, so conventional wisdom on emissions was based on emission factors derived from analyses of coal. In general, actual emissions were found to be about one-tenth previous estimates, due to a high fraction of the pollutants being captured by existing particulate control systems. These data resulted in a decision by EPA that most of these pollutants were not a threat to the environment, and needed no further regulation at power plants. This shielded the coal-fired power industry from major (tens of millions) costs that would have resulted from further controlling these emissions. However, another finding of these studies was that mercury was not effectively controlled in coal-fired utility boiler systems. Moreover, EPA concluded that a plausible link exists between these emissions and adverse health effects. Ineffective control of mercury by existing control technologies resulted from a number of factors, including variation in coal composition and variability in the form of the mercury in flue gases. The volatility of mercury was the main contributor for less removal, as compared to the less volatile trace elements/metals which were being removed at efficiencies over 99% with the fly ash. In addition, it was determined that there was no reliable mercury speciation method to accurately distinguish between the elemental and oxidized forms of mercury in the flue gas. These two forms of mercury respond differently to removal techniques in existing air pollution control devices utilized by the coal-fired utility industry.

247

Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions  

DOE Patents (OSTI)

A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

Biruduganti, Munidhar S. (Naperville, IL); Gupta, Sreenath Borra (Naperville, IL); Sekar, R. Raj (Naperville, IL); McConnell, Steven S. (Shorewood, IL)

2008-11-25T23:59:59.000Z

248

Nitrous oxide emissions from wastewater treatment processes  

Science Journals Connector (OSTI)

...samples followed by GC analysis has been used in both laboratory scale reactors and full-scale plants...two laboratory scale reactors. Foley et al. [23...measurements. Combining the analyses of both the microsensor...significantly increases the reliability of data. Similar to...

2012-01-01T23:59:59.000Z

249

Emissions and Air Quality Impacts of Freight Transportation Erica Bickford  

E-Print Network (OSTI)

Emissions and Air Quality Impacts of Freight Transportation by Erica Bickford A dissertation rights reserved. #12;Abstract Emissions and Air Quality Impacts of Freight Transportation Erica Bickford.S. transportation is the largest source of national nitrogen oxide (NOx) emissions and the third largest source

Wisconsin at Madison, University of

250

MEASURING GASEOUS EMISSIONS FROM STORED PIG SLURRY S. Espagnol1  

E-Print Network (OSTI)

2 MEASURING GASEOUS EMISSIONS FROM STORED PIG SLURRY S. Espagnol1 , L. Loyon2 , F. Guiziou2 , P to measure emissions factors of ammonia (NH3), nitrous oxide (N2O) methane (CH4) and carbon dioxide (CO2) from stored pig slurry and measured the variations of the emissions in time and space. In 2006, dynamic

Boyer, Edmond

251

Engine performance and exhaust emissions from a diesel  

E-Print Network (OSTI)

. Carbon monoxide emissions increased by an average 15% using B5 and by an average of 19% using B100. Hydrocarbon emissions decreased by 14% using B5 and by 26% using B100. Nitrogen oxide emissions decreased by four percent with B5, five percent with B20...

Powell, Jacob Joseph

2009-05-15T23:59:59.000Z

252

Metal Oxides  

Science Journals Connector (OSTI)

Metal oxides are the class of materials having the widest application in gas sensors. This chapter presents information related to the application of various metal oxides in gas sensors designed on different p...

Ghenadii Korotcenkov

2013-01-01T23:59:59.000Z

253

Version 2 Global Fire Emissions Database Available  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Fire Emissions Database Available Global Fire Emissions Database Available The ORNL DAAC announces the release of the data set "Global Fire Emissions Database, Version 2 (GFEDv2)." This data set, which supersedes and replaces the Global Fire Emissions Database, Version 1 (GFEDv1), consists of 1 degree x 1 degree gridded monthly burned area, fuel loads, combustion completeness, and fire emissions of carbon (C), carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), non-methane hydrocarbons (NMHC), molecular hydrogen (H2), nitrogen oxides (NOx), nitrous oxide (N2O), particulate matter (PM2.5), total particulate matter (TPM), total carbon (TC), organic carbon (OC), and black carbon (BC) for the time period January 1997 - December 2004. For more information or to access this data set, please see the Vegetation

254

Vehicle Emission Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Emission Basics Vehicle Emission Basics Vehicle Emission Basics November 22, 2013 - 2:07pm Addthis Vehicle emissions are the gases emitted by the tailpipes of vehicles powered by internal combustion engines, which include gasoline, diesel, natural gas, and propane vehicles. Vehicle emissions are composed of varying amounts of: water vapor carbon dioxide (CO2) nitrogen oxygen pollutants such as: carbon monoxide (CO) nitrogen oxides (NOx) unburned hydrocarbons (UHCs) volatile organic compounds (VOCs) particulate matter (PM) A number of factors determine the composition of emissions, including the vehicle's fuel, the engine's technology, the vehicle's exhaust aftertreatment system, and how the vehicle operates. Emissions are also produced by fuel evaporation during fueling or even when vehicles are

255

Radon emissions  

Science Journals Connector (OSTI)

... SIR,-Wendy Barnaby (August 28) writes on the problem of radon emission from the tailings of uranium milling in Sweden. This problem would arise from ... that has to be treated. She describes Professor Robert O. Pohl's report that "radon can escape more easily from the broken ground of a mine than from an undisturbed ...

SVEN-ERIC BRUNNSJO

1975-10-09T23:59:59.000Z

256

Separate determination of PM10 emission factors of road traffic for tailpipe emissions and emissions from abrasion and resuspension processes  

Science Journals Connector (OSTI)

Little is known about the relevance of mechanically produced particles of road traffic from abrasion and resuspension processes in relation to the exhaust pipe particles. In this paper, emission factors of PM10 and PM1 for light and heavy-duty vehicles were derived for different representative traffic regimes from concentration differences of particles and nitrogen oxides (NOx) in ambient air upwind and downwind of busy roads, or alternatively of kerbsides and nearby background sites. Hereby, PM1 was interpreted as direct exhaust emissions and PM10-PM1 as mechanically produced emissions from abrasion and resuspension processes. The results show that abrasion and resuspension processes represent a significant part of the total primary PM10 emissions of road traffic. At sites with relatively undisturbed traffic flow they are in the same range as the exhaust pipe emissions. At sites with disturbed traffic flow due to traffic lights, emissions from abrasion/resuspension are even higher than those from the exhaust pipes.

Robert Gehrig; Matz Hill; Brigitte Buchmann; David Imhof; Ernest Weingartner; Urs Baltensperger

2004-01-01T23:59:59.000Z

257

Effects of Future Ship Emissions in the North Sea on Air Quality  

Science Journals Connector (OSTI)

By means of model simulations with the chemistry transport model CMAQ the influence of ship emissions in the North Sea on concentrations ... and nitrogen oxides over Europe was investigated. Ship emissions for th...

Armin Aulinger; Volker Matthias

2014-01-01T23:59:59.000Z

258

Emissions Characterization from Advanced Combustion & Alternative Fuels -  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions Characterization from Advanced Combustion & Emissions Characterization from Advanced Combustion & Alternative Fuels Exhaust emissions from engines operating in advanced combustion modes such as PCCI (Premixed Charge Compression Ignition) and HCCI (Homogeneous Charge Compression Ignition) are analyzed with an array of analytical tools. Furthermore, emissions from a variety of alternative fuels and mixtures thereof with conventional gasoline and diesel fuels are also measured. In addition to measuring the criteria pollutants nitrogen oxides (NOx), carbon monoxide (CO), hydrocarbons (HCs) are also measured and categorized based on chemistry. These chemical details of the emissions provide important information for optimizing combustion processes to maximize fuel efficiency while minimizing emissions

259

Non-Incineration Treatment to Reduce Benzene and VOC Emissions from Green Sand Molding Systems  

SciTech Connect

Final report describing laboratory, pilot scale and production scale evaluation of advanced oxidation systems for emissions and cost reduction in metal casting green sand systems.

Fred S. Cannon; Robert C. Voigt

2002-06-28T23:59:59.000Z

260

Mitigating greenhouse gas emissions: Voluntary reporting  

SciTech Connect

The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report on their emissions of greenhouse gases, and on actions taken that have reduced or avoided emissions or sequestered carbon, to the Energy Information Administration (EIA). This, the second annual report of the Voluntary Reporting Program, describes information provided by the participating organizations on their aggregate emissions and emissions reductions, as well as their emissions reduction or avoidance projects, through 1995. This information has been compiled into a database that includes reports from 142 organizations and descriptions of 967 projects that either reduced greenhouse gas emissions or sequestered carbon. Fifty-one reporters also provided estimates of emissions, and emissions reductions achieved, for their entire organizations. The projects described actions taken to reduce emissions of carbon dioxide from energy production and use; to reduce methane and nitrous oxide emissions from energy use, waste management, and agricultural processes; to reduce emissions of halocarbons, such as CFCs and their replacements; and to increase carbon sequestration.

NONE

1997-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxide emissions rhode" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

nitrogen oxides | OpenEI  

Open Energy Info (EERE)

20 20 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142279720 Varnish cache server nitrogen oxides Dataset Summary Description Emissions from energy use in buildings are usually estimated on an annual basis using annual average multipliers. Using annual numbers provides a reasonable estimation of emissions, but it provides no indication of the temporal nature of the emissions. Therefore, there is no way of understanding the impact on emissions from load shifting and peak shaving technologies such as thermal energy storage, on-site renewable energy, and demand control. Source NREL Date Released April 11th, 2011 (3 years ago) Date Updated April 11th, 2011 (3 years ago)

262

Non-Petroleum-Based Fuels: Effects on Emissions Controls (Agreement...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Non-Petroleum-Based Fuels: Effects on Emissions Controls (Agreement Number 13425)NPBF Effects on PM OxidationNPBF Effects on EGR System Performance Non-Petroleum-Based Fuels:...

263

Preliminary GHG Emissions Inventory for the Slovak Republic  

Science Journals Connector (OSTI)

This paper presents preliminary results of a greenhouse gas emissions inventory for the Slovak Republic. The key gases included are carbon dioxide, methane, and nitrous oxide. Chlorofluorocarbons are excluded ...

Katarna Mare?kova; Pavol Bielek; Stanislav Kucirek

1996-01-01T23:59:59.000Z

264

Optimization of Engine-out Emissions from a Diesel Engine to Meet Tier 2 Bin 5 Emission Limits  

Energy.gov (U.S. Department of Energy (DOE))

Drastic reduction of engine-out emissions and complicated aftertreatment system comprising of oxidation catalyst, particulate filter, and DeNOx catalyst are implemented to meet Tier 2 Bin 5 limits for U.S. market diesel engines.

265

Elastic emission polishing  

SciTech Connect

Elastic emission polishing, also called elastic emission machining (EEM), is a process where a stream of abrasive slurry is used to remove material from a substrate and produce damage free surfaces with controlled surface form. It is a noncontacting method utilizing a thick elasto-hydrodynamic film formed between a soft rotating ball and the workpiece to control the flow of the abrasive. An apparatus was built in the Center, which consists of a stationary spindle, a two-axis table for the workpiece, and a pump to circulate the working fluid. The process is controlled by a programmable computer numerical controller (CNC), which presently can operate the spindle speed and movement of the workpiece in one axis only. This apparatus has been used to determine material removal rates on different material samples as a function of time, utilizing zirconium oxide (ZrO{sub 2}) particles suspended in distilled water as the working fluid. By continuing a study of removal rates the process should become predictable, and thus create a new, effective, yet simple tool for ultra-precision mechanical machining of surfaces.

Loewenthal, M.; Loseke, K.; Dow, T.A.; Scattergood, R.O.

1988-12-01T23:59:59.000Z

266

Exhaust emissions from two intercity passenger locomotives  

SciTech Connect

To enhance the effectiveness of intercity passenger rail service in mitigating exhaust emissions in California, the California Department of Transportation (Caltrans) included limits on exhaust emissions in its intercity locomotive procurement specifications. Because there were no available exhaust emission test data on which emission reduction goals could be based, Caltrans funded a test program to acquire gaseous and particulate exhaust emissions data, along with smoke opacity data, from two state-of-the-art intercity passenger locomotives. The two passenger locomotives (an EMD F59PH and a GE DASH8-32BWH) were tested at the Association of American Railroads Chicago Technical Center. The EMD locomotive was equipped with a separate Detroit Diesel Corporation (DDC) 8V-149 diesel engine used to provide 480 V AC power for the trailing passenger cars. This DDC engine was also emission tested. These data were used to quantify baseline exhaust emission levels as a challenge to locomotive manufacturers to offer new locomotives with reduced emissions. Data from the two locomotive engines were recorded at standard fuel injection timing and with the fuel injection timing retarded 4 deg in an effort to reduce NO[sub x] emissions. Results of this emissions testing were incorporated into the Caltrans locomotive procurement process by including emission performance requirements in the Caltrans intercity passenger locomotive specification, and therefore in the procurement decision. This paper contains steady-state exhaust emission test results for hydrocarbons (HC), carbon monoxide (CO), oxides of nitrogen (NO[sub x]), and particulate matter (PM) from the two locomotives. Computed sulfur dioxide (SO[sub 2]) emissions are also given, and are based on diesel fuel consumption and sulfur content. Exhaust smoke opacity is also reported.

Fritz, S.G. (Southwest Research Inst., San Antonio, TX (United States). Dept. of Emissions Research)

1994-10-01T23:59:59.000Z

267

Global Fire Emissions Database, Version 3.1 Published  

NLE Websites -- All DOE Office Websites (Extended Search)

Fire Emissions Database, Version 3.1 Published Fire Emissions Database, Version 3.1 Published The ORNL DAAC is pleased to announce the release of the Global Fire Emissions Database, Version 3.1: Global Fire Emissions Database, Version 3.1. Data set prepared by J.T. Randerson, G.R. van der Werf, L. Giglio, G.J. Collatz, and P.S. Kasibhatla. This data set provides monthly burned area, and monthly and annual fire emissions data from July 1996 to February 2012. Emissions data are available for carbon (C), dry matter (DM), carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), hydrogen (H2), nitrous oxide (N2O), nitrogen oxides (NOx), non-methane hydrocarbons (NMHC), organic carbon (OC), black carbon (BC), particulate matter 2.5 micron (PM2p5), total particulate matter (TPM), and sulfur dioxide (SO2) among others. The C4 fraction of

268

MOBILE6 Vehicle Emission Modeling Software | Open Energy Information  

Open Energy Info (EERE)

MOBILE6 Vehicle Emission Modeling Software MOBILE6 Vehicle Emission Modeling Software Jump to: navigation, search Tool Summary Name: MOBILE6 Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy Focus Area: Transportation Topics: GHG inventory Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.epa.gov/oms/m6.htm Cost: Free References: http://www.epa.gov/oms/m6.htm MOBILE6 is an emission factor model for predicting gram per mile emissions of Hydrocarbons (HC), Carbon Monoxide (CO), Nitrogen Oxides (NOx), Carbon Dioxide (CO2), Particulate Matter (PM), and toxics from cars, trucks, and motorcycles under various conditions. MOBILE6 is an emission factor model for predicting gram per mile emissions of Hydrocarbons (HC), Carbon Monoxide (CO), Nitrogen Oxides (NOx), Carbon

269

Eight States Plan for 3.3 Million Zero-Emission Vehicles by 2025...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

their states by 2025. The governors of California, Connecticut, Maryland, Massachusetts, New York, Oregon, Rhode Island, and Vermont signed a cooperative agreement to identify...

270

Kinetics of Diesel Nanoparticle Oxidation  

Science Journals Connector (OSTI)

The oxidation rates in air of diesel nanoparticles sampled directly from the exhaust stream of a medium-duty diesel engine were measured over the temperature range of 800?1140 C using online aerosol techniques. ... Particulate emission from diesel engines is currently a topic of great concern from both pollution and public health standpoints. ... In addition, the fundamental carbon-to-hydrogen ratio may be different in diesel particles as compared to the commonly used surrogates (15). ...

Kelly J. Higgins; Heejung Jung; David B. Kittelson; Jeffrey T. Roberts; Michael R. Zachariah

2003-03-25T23:59:59.000Z

271

Vehicle Technologies Office: Emission Control R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

Emission Control R&D Emission Control R&D The Vehicle Technologies Office (VTO) supports research and development of aftertreatment technologies to control advanced combustion engine exhaust emissions. All engines that enter the vehicle market must comply with the Environmental Protection Agency's emissions regulations. Harmful pollutants in these emissions include: Carbon monoxide Nitrogen oxides Unburned hydrocarbons Volatile organic compounds (VOCs) Particulate matter The energy required for emission control often reduces vehicle fuel economy and increases vehicle cost. VTO's Emission Control R&D focuses on developing efficient, durable, low-cost emission control systems that complement new combustion strategies while minimizing efficiency losses. VTO often leverages the national laboratories' unique capabilities and facilities to conduct this research.

272

Steam Oxidation of Advanced Steam Turbine Alloys  

SciTech Connect

Power generation from coal using ultra supercritical steam results in improved fuel efficiency and decreased greenhouse gas emissions. Results of ongoing research into the oxidation of candidate nickel-base alloys for ultra supercritical steam turbines are presented. Exposure conditions range from moist air at atmospheric pressure (650C to 800C) to steam at 34.5 MPa (650C to 760C). Parabolic scale growth coupled with internal oxidation and reactive evaporation of chromia are the primary corrosion mechanisms.

Holcomb, Gordon R.

2008-01-01T23:59:59.000Z

273

Implications of Near-Term Coal Power Plant Retirement for SO2 and NOX and Life Cycle GHG Emissions  

Science Journals Connector (OSTI)

Implications of Near-Term Coal Power Plant Retirement for SO2 and NOX and Life Cycle GHG Emissions ... Life cycle GHG emissions were found to decrease by less than 4% in almost all scenarios modeled. ... Resulting changes in fuel use, life cycle greenhouse gas (GHG) emissions, and emissions of sulfur and nitrogen oxides are estimated. ...

Aranya Venkatesh; Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews

2012-08-13T23:59:59.000Z

274

Innovative Clean Coal Technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Quarterly report No. 6, October--December, 1991  

SciTech Connect

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor.

Not Available

1992-02-01T23:59:59.000Z

275

Innovative Clean Coal Technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO sub x ) emissions from high-sulfur coal-fired boilers  

SciTech Connect

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor.

Not Available

1992-02-01T23:59:59.000Z

276

Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NOx) emissions from high-sulfur coal-fired boilers. Quarterly report No. 5, July--September 1991  

SciTech Connect

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor.

Not Available

1991-11-01T23:59:59.000Z

277

Innovative Clean Coal Technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Quarterly report No. 2, October--December 1990  

SciTech Connect

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide NO{sub x} control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor.

Not Available

1991-02-01T23:59:59.000Z

278

Innovative Clean Coal Technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO sub x ) emissions from high-sulfur coal-fired boilers  

SciTech Connect

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide NO{sub x} control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor.

Not Available

1991-02-01T23:59:59.000Z

279

Innovative clean coal technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Quarterly report No. 3, January--March 1991  

SciTech Connect

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor.

Not Available

1991-07-01T23:59:59.000Z

280

Innovative clean coal technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO sub x ) emissions from high-sulfur coal-fired boilers  

SciTech Connect

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor.

Not Available

1991-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxide emissions rhode" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Technical progress report, First quarter 1991  

SciTech Connect

This project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 (LS-2) located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NOx combustion technologies on NOx emissions and boiler performance. The stepwise approach that is being used to evaluate the NOx control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NOx concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NOx reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This quarterly update provides a description of the flow modeling study. This modeling effort centers on evaluating the in-furnace flow and mixing phenomena for the various low NOx firing systems being demonstrated at LS-2. Testing on the 1/12 scale model of the LS-2 boiler and the 1/6 scale model of the overfire air ductwork was completed. The test matrix included an analysis of the overfire air ductwork and three different boiler configurations. This report also contains results from the Phase 1 baseline tests. Data from the diagnostic, performance, and verification tests are presented. In addition, NOx emissions data and unit load profiles collected during long-term testing are reported. At the full load condition, the baseline NOx emission level at LS-2 is 0.62 lb/mBtu.

Not Available

1991-12-31T23:59:59.000Z

282

180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Technical progress report, Third quarter 1992  

SciTech Connect

The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NOx combustion technologies on NOx emissions and boiler performance. A target of achieving 50% NOx reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NOx control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NOx concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NOx reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progress report presents the LNCFS Level 1 long-term data collected during this quarter. In addition, a comparison of all the long-term emissions data that have been collected to date is included.

Not Available

1992-12-31T23:59:59.000Z

283

Vehicle Emissions Review - 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emissions Review - 2011 (so far) Tim Johnson October 4, 2011 DOE DEER Conference, Detroit JohnsonTV@Corning.com 2 Summary * California LD criteria emission regs are tightening....

284

Seasonal variations in N2O emissions from central California  

NLE Websites -- All DOE Office Websites (Extended Search)

Seasonal variations in N2O emissions from central California Seasonal variations in N2O emissions from central California Title Seasonal variations in N2O emissions from central California Publication Type Journal Article Year of Publication 2012 Authors Jeong, Seongeun, Chuanfeng Zhao, Arlyn E. Andrews, Edward J. Dlugokencky, Colm Sweeney, Laura Bianco, James M. Wilczak, and Marc L. Fischer Journal Geophysical Research Letters Volume 39 Issue 16 Keywords atmospheric transport, inverse modeling, nitrous oxide Abstract We estimate nitrous oxide (N2O) emissions from Central California for the period of December 2007 through November 2009 by comparing N2O mixing ratios measured at a tall tower (Walnut Grove, WGC) with transport model predictions based on two global a priori N2O emission models (EDGAR32 and EDGAR42). Atmospheric particle trajectories and surface footprints are computed using the Weather Research and Forecasting (WRF) and Stochastic Time-Inverted Lagrangian Transport (STILT) models. Regression analyses show that the slopes of predicted on measured N2O from both emission models are low, suggesting that actual N2O emissions are significantly higher than the EDGAR inventories for all seasons. Bayesian inverse analyses of regional N2O emissions show that posterior annual N2O emissions are larger than both EDGAR inventories by factors of 2.0 ± 0.4 (EDGAR32) and 2.1 ± 0.4 (EDGAR42) with seasonal variation ranging from 1.6 ± 0.3 to 2.5 ± 0.4 for an influence region of Central California within approximately 150 km of the tower. These results suggest that if the spatial distribution of N2O emissions in California follows the EDGAR emission models, then actual emissions are 2.7 ± 0.5 times greater than the current California emission inventory, and total N2O emissions account for 8.1 ± 1.4% of total greenhouse gas emissions from California.

285

Oxidation of Propane by Doped Nickel Oxides  

Science Journals Connector (OSTI)

... present study, however, indicate that in the absence of excess oxygen, direct oxidation of propane by the oxide lattice can occur.

D. W. McKEE

1964-04-11T23:59:59.000Z

286

NETL: IEP – Post-Combustion CO2 Emissions Control - Near-Zero Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Near-Zero Emissions Oxy-Combustion Flue Gas Purification Near-Zero Emissions Oxy-Combustion Flue Gas Purification Project No.: DE-NT0005341 Praxair oxy-combustion test equipment Praxair oxy-combustion test equipment. Praxair Inc. will develop a near-zero emissions flue gas purification technology for existing coal-fired power plants retrofit with oxy-combustion technology. Emissions of sulfur dioxide (SO2) and mercury (Hg) will be reduced by at least 99 percent, and nitrogen oxide (NOx) emissions will be reduced by greater than 90 percent without the need for wet flue gas desulfurization and selective catalytic reduction (SCR). Two separate processes are proposed depending on the sulfur content of the coal. For high-sulfur coal, SO2 and NOx will be recovered as product sulfuric acid and nitric acid, respectively, and Hg will be recovered as

287

EIA - Greenhouse Gas Emissions - Carbon Dioxide Emissions  

Gasoline and Diesel Fuel Update (EIA)

2. Carbon Dioxide Emissions 2. Carbon Dioxide Emissions 2.1. Total carbon dioxide emissions Annual U.S. carbon dioxide emissions fell by 419 million metric tons in 2009 (7.1 percent), to 5,447 million metric tons (Figure 9 and Table 6). The annual decrease-the largest over the 19-year period beginning with the 1990 baseline-puts 2009 emissions 608 million metric tons below the 2005 level, which is the Obama Administration's benchmark year for its goal of reducing U.S. emissions by 17 percent by 2020. The key factors contributing to the decrease in carbon dioxide emissions in 2009 included an economy in recession with a decrease in gross domestic product of 2.6 percent, a decrease in the energy intensity of the economy of 2.2 percent, and a decrease in the carbon intensity of energy supply of

288

Ultra Supercritical Steamside Oxidation  

SciTech Connect

Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions, which are goals of the U.S. Department of Energy's Advanced Power Systems Initiatives. Most current coal power plants in the U.S. operate at a maximum steam temperature of 538 C. However, new supercritical plants worldwide are being brought into service with steam temperatures of up to 620 C. Current Advanced Power Systems goals include coal generation at 60% efficiency, which require steam temperatures of up to 760 C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections. Initial results of this research are presented.

Holcomb, Gordon R.; Cramer, Stephen D.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Ziomek-Moroz, Malgorzata

2005-01-01T23:59:59.000Z

289

Trends in On-Road Vehicle Emissions of Ammonia  

NLE Websites -- All DOE Office Websites (Extended Search)

Trends in On-Road Vehicle Emissions of Ammonia Trends in On-Road Vehicle Emissions of Ammonia Title Trends in On-Road Vehicle Emissions of Ammonia Publication Type Journal Article Year of Publication 2008 Authors Kean, Andrew J., David Littlejohn, George Ban-Weiss, Robert A. Harley, Thomas W. Kirchstetter, and Melissa M. Lunden Journal Atmospheric Environment Abstract Motor vehicle emissions of ammonia have been measured at a California highway tunnel in the San Francisco Bay area. Between 1999 and 2006, light-duty vehicle ammonia emissions decreased by 38 ± 6%, from 640 ± 40 to 400 ± 20 mg kg-1. High time resolution measurements of ammonia made in summer 2001 at the same location indicate a minimum in ammonia emissions correlated with slower-speed driving conditions. Variations in ammonia emission rates track changes in carbon monoxide more closely than changes in nitrogen oxides, especially during later evening hours when traffic speeds are highest. Analysis of remote sensing data of Burgard et al. (Environ Sci. Technol. 2006, 40, 7018-7022) indicates relationships between ammonia and vehicle model year, nitrogen oxides, and carbon monoxide. Ammonia emission rates from diesel trucks were difficult to measure in the tunnel setting due to the large contribution to ammonia concentrations in a mixed-traffic bore that were assigned to light-duty vehicle emissions. Nevertheless, it is clear that heavy-duty diesel trucks are a minor source of ammonia emissions compared to light-duty gasoline vehicles.

290

Enforcing Emissions Trading when Emissions Permits are Bankable  

Science Journals Connector (OSTI)

We propose enforcement strategies for emissions trading programs with bankable emissions permits that guarantee...

John K. Stranlund; Christopher Costello

2005-09-01T23:59:59.000Z

291

Practical implications of marine diesel engine emission regulations  

SciTech Connect

The main pollutants from marine diesel engines are oxides of nitrogen (NOx), sulfur oxides (SOx) and particulates (soot). However, the proposed marine diesel engine emission regulations will primarily focus on the levels of NOx and SOx. In the future, once the proposed regulations are met, the limits and levels of other emissions will come under increasing scrutiny, such as particulates, hydrocarbons and carbon monoxide. Regardless of the type of pollutant, there are generally two classes of emission control: (1) techniques that reduce the amount of pollutant formed in the combustion process, or (2) prevent the pollutants from reaching the atmosphere. Unfortunately, some of these control techniques will not be able to meet the incoming regulations. Therefore, this paper identifies the diesel engine emissions of concern, the impending regulations, and the merits of current and future emission control technologies required to meet these regulations.

Bowen, C.E.; Potter, I.J.; Reader, G.T. [Univ. of Calgary, Alberta (Canada). Dept. of Mechanical Engineering

1996-09-01T23:59:59.000Z

292

Excellent oxidation endurance of boron nitride nanotube field electron emitters  

SciTech Connect

Boron nitride nanotubes (BNNTs) are considered as a promising cold electron emission material owing to their negative electron affinity. BNNT field emitters show excellent oxidation endurance after high temperature thermal annealing of 600?C in air ambient. There is no damage to the BNNTs after thermal annealing at a temperature of 600?C and also no degradation of field emission properties. The thermally annealed BNNTs exhibit a high maximum emission current density of 8.39?mA/cm{sup 2} and show very robust emission stability. The BNNTs can be a promising emitter material for field emission devices under harsh oxygen environments.

Song, Yenan [Department of Micro/Nano Systems, Korea University, Seoul 136-713 (Korea, Republic of); Sun, Yuning; Hoon Shin, Dong; Nam Yun, Ki [School of Electrical Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Song, Yoon-Ho [Nano Electron-Source Creative Research Center, Creative and Challenging Research Division, ETRI, Daejeon 305-700 (Korea, Republic of); Milne, William I. [Electrical Engineering Division, Engineering Department, Cambridge University, Cambridge CB3 0FA (United Kingdom); Jin Lee, Cheol, E-mail: cjlee@korea.ac.kr [Department of Micro/Nano Systems, Korea University, Seoul 136-713 (Korea, Republic of); School of Electrical Engineering, Korea University, Seoul 136-713 (Korea, Republic of)

2014-04-21T23:59:59.000Z

293

Measurement and Meaning of Oxidatively Modified DNA Lesions in Urine  

Science Journals Connector (OSTI)

...commercially available kits presently on the market. Two are available from JICA, named...oxidative stress-inducing agents, such as diesel emission particles or potassium bromate...Moller P, et al. Repeated inhalations of diesel exhaust particles and oxidatively damaged...

Marcus S. Cooke; Ryszard Olinski; and Steffen Loft

2008-01-01T23:59:59.000Z

294

EIA - Annual Energy Outlook 2009 - Emissions from Energy Use  

Gasoline and Diesel Fuel Update (EIA)

Emissions from Energy Use Emissions from Energy Use Annual Energy Outlook 2009 with Projections to 2030 Emissions from Energy Use Figure 81. Carbon diioxide emissions by sector and fuel, 2007 and 2030 (million metric tons). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 82. Sulfur dioxide emissions from electricity generation, 1995-2030 (million short tons). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 83. Nitrogen oxide emissions from electricity generation, 1995-2030 (million short tons). Need help, contact the National Energy Information Center at 202-586-8800. figure data Rate of Increase in Carbon Dioxide Emissions Slows in the Projections Even with rising energy prices, growth in energy use leads to increasing

295

Grain-size effects in nanoscaled electrolyte and cathode thin films for solid oxide fuel cells (SOFC).  

E-Print Network (OSTI)

??Due to their high energy conversion efficiencies and low emissions, Solid Oxide Fuel Cells (SOFCs) show promise as a replacement for combustion-based electrical generators at (more)

Peters, Christoph

2009-01-01T23:59:59.000Z

296

Multiwavelength Thermal Emission  

E-Print Network (OSTI)

Multiwavelength Astronomy NASA #12;Thermal Emission #12;Thermal Emission Non-thermal p-p collisions Optical IR Radio/ Microwave sources of emission massive stars, WHIM, Ly many dust, cool objects-ray ~GeV Gamma-ray ~TeV sources of emission AGN, clusters, SNR, binaries, stars AGN (obscured), shocks

California at Santa Cruz, University of

297

Electrical Properties of Tungsten Oxide Films  

Science Journals Connector (OSTI)

... appear that the mechanism of electron emission with oxide films is different from that with roughened electrodes. This would be the case for short gaps if the electrons were drawn ... located on the upper surface of the film, as envisaged by Paetov1, while with roughened electrodes it is possible that photo-ionization can take place throughout the gap due to ...

F. LLEWELLYN JONES

1946-03-23T23:59:59.000Z

298

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Rhode Island" Rhode Island" "NERC Region(s)",,"NPCC" "Primary Energy Source",,"Gas" "Net Summer Capacity (megawatts)",1782,49 " Electric Utilities",7,50 " Independent Power Producers & Combined Heat and Power",1775,37 "Net Generation (megawatthours)",7738719,47 " Electric Utilities",10827,47 " Independent Power Producers & Combined Heat and Power",7727892,33 "Emissions (thousand metric tons)" " Sulfur Dioxide","*",50 " Nitrogen Oxide",3,49 " Carbon Dioxide",3217,48 " Sulfur Dioxide (lbs/MWh)","*",50 " Nitrogen Oxide (lbs/MWh)",0.8,42 " Carbon Dioxide (lbs/MWh)",916,39

299

Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Quarterly report No. 8, April--June, 1992  

SciTech Connect

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe, there are numerous technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U. S. coal.

Not Available

1992-08-01T23:59:59.000Z

300

Innovative clean coal technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Fourth quarterly progress report  

SciTech Connect

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe, there are numerous technical uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal.

NONE

1992-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "oxide emissions rhode" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, first and second quarters 1994  

SciTech Connect

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involve injecting ammonia into the flue gas generated from coal combustion in a boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to form nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. The project is being conducted in the following three phases: permitting, environmental monitoring plan and preliminary engineering; detailed design engineering and construction; and operation, testing, disposition and final report. The project was in the operation and testing phase during this reporting period. Accomplishments for this period are described.

NONE

1995-11-01T23:59:59.000Z

302

Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Draft final report  

SciTech Connect

The primary goal of this project was to demonstrate the use of Selective Catalytic Reduction (SCR) to reduce NO{sub x} emissions from pulverized-coal utility boilers using medium- to high-sulfur US coal. The prototype SCR facility, built in and around the ductwork of Plant Crist Unit 5, consisted of three large SCR reactor units (Reactors A, B, and C), each with a design capacity of 5,000 standard cubic feet per minute (scfm) of flue gas, and six smaller reactors (Reactors D through J), each with a design capacity of 400 scfm of flue gas. The three large reactors contained commercially available SCR catalysts as offered by SCR catalyst suppliers. These reactors were coupled with small-scale air preheaters to evaluate (1) the long-term effects of SCR reaction chemistry on air preheater deposit formation and (2) the impact of these deposits on the performance of air preheaters. The small reactors were used to test additional varieties of commercially available catalysts. The demonstration project was organized into three phases: (1) Permitting, Environmental Monitoring Plan (EMP) Preparation, and Preliminary Engineering; (2) Detail Design Engineering and Construction; and (3) Operation, Testing, Disposition, and Final Report Preparation. Section 2 discusses the planned and actual EMP monitoring for gaseous, aqueous, and solid streams over the course of the SCR demonstration project; Section 3 summarizes sampling and analytical methods and discusses exceptions from the methods specified in the EMP; Section 4 presents and discusses the gas stream monitoring results; Section 5 presents and discusses the aqueous stream monitoring results; Section 6 presents and discusses the solid stream monitoring results; Section 7 discusses EMP-related quality assurance/quality control activities performed during the demonstration project; Section 8 summarizes compliance monitoring reporting activities; and Section 9 presents conclusions based on the EMP monitoring results.

NONE

1996-06-14T23:59:59.000Z

303

Beyond Tailpipe Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Beyond Tailpipe Emissions Beyond Tailpipe Emissions Greenhouse Gas Emissions for Electric and Plug-In Hybrid Electric Vehicles Driving your vehicle can yield both greenhouse gas (GHG) emissions from your vehicle's tailpipe and GHG emissions related to the production of the fuel used to power your vehicle. For example, activities associated with fuel production such as feedstock extraction, feedstock transport to a processing plant, and conversion of feedstock to motor fuel, as well as distribution of the motor fuel, can all produce GHG emissions. The Fuel Economy and Environment Label provides a Greenhouse Gas Rating, from 1 (worst) to 10 (best), based on the vehicle's tailpipe carbon dioxide emissions only, and this rating does not reflect any GHG emissions associated with fuel production.

304

Emissions from Ships  

Science Journals Connector (OSTI)

...Turbine and Diesel) Engine Exhaust Emission...of relative fuel consumption. For commercial...Marine Diesel Engine and Gas Turbine...Turbine and Diesel) Engine Exhaust Emission...of relative fuel consumption. For commercial...

James J. Corbett; Paul Fischbeck

1997-10-31T23:59:59.000Z

305

Introduction to Emissions Trading  

Science Journals Connector (OSTI)

This chapter constitutes an introduction to emissions trading. First, we detail the latest developments ... Second, we introduce the main characteristics of emissions trading, be it in terms of spatial and...2 al...

Dr. Julien Chevallier

2012-01-01T23:59:59.000Z

306

Synthesis and characterizations of graphene oxide and reduced graphene oxide nanosheets  

SciTech Connect

Interest in graphene on its excellent mechanical, electrical, thermal and optical properties, its very high specific surface area, and our ability to influence these properties through chemical functionalization. Chemical reduction of graphene oxide is one of the main routes of preparation for large quantities of graphenes. Hydrazine hydrate used as reducing agent to prepare for the reduced graphene oxide (RGO). There are a number of methods for generating graphene and chemically modified graphene from natural graphite flakes, graphite derivative (such as graphite oxide) and graphite interaction compounds (i.e. expandable graphite). Here we review the use of colloidal suspensions of reduced graphene oxide (RGO) with large scalable, and is adaptable to a wide variety of applications. The graphene oxide (GO) and the reduced material (RGO) were characterized by XRD, UV-Vis spectroscopy, Thermo-gravimetric analysis (TGA), Raman spectroscopy and Field emission Scanning electron microscopy (FESEM) etc.

Venkanna, M., E-mail: venkanna.pcu@gmail.com; Chakraborty, Amit K., E-mail: venkanna.pcu@gmail.com [Carbon Nanotechnology Laboratory, Department of Physics, National Institute of Technology Durgapur, M.G. Avenue, Durgapur - 713209 (India)

2014-04-24T23:59:59.000Z

307

Evaluate Greenhouse Gas Emissions Profile  

Energy.gov (U.S. Department of Energy (DOE))

Evaluating a Federal agency's greenhouse gas (GHG) emissions profile means getting a solid understanding of the organization's largest emission categories, largest emission sources, and its potential for improvement.

308

Rhode Island Natural Gas Prices  

Gasoline and Diesel Fuel Update (EIA)

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Pipeline and Distribution Use Price 1967-2005 Citygate Price 10.62 10.07 6.70 10.05 8.22 4.11 1984-2012 Residential Price 16.66 16.89 17.06 16.48 15.33 14.29 1967-2012 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 1989-2012 Commercial Price 14.91 15.53 15.14 14.46 13.33 12.31 1967-2012 Percentage of Total Commercial Deliveries included in Prices 66.5 66.2 68.0 61.2 56.9 55.4 1990-2012 Industrial Price 12.58 13.26 12.58 12.13 10.98 9.78 1997-2012 Percentage of Total Industrial Deliveries included in Prices 11.6 11.7 9.2 6.5 6.0 6.3 1997-2012 Vehicle Fuel Price 10.96 12.62 10.72 11.71 8.61 16.32 1990-2012 Electric Power Price

309

Rhode Island Natural Gas Summary  

Gasoline and Diesel Fuel Update (EIA)

10.62 10.07 6.70 10.05 8.22 4.11 1984-2012 10.62 10.07 6.70 10.05 8.22 4.11 1984-2012 Residential 16.66 16.89 17.06 16.48 15.33 14.29 1967-2012 Commercial 14.91 15.53 15.14 14.46 13.33 12.31 1967-2012 Industrial 12.58 13.26 12.58 12.13 10.98 9.78 1997-2012 Vehicle Fuel 10.96 12.62 10.72 11.71 8.61 16.32 1990-2012 Electric Power 8.06 10.50 4.98 5.45 5.10 3.98 1997-2012 Underground Storage (Million Cubic Feet) Injections 1973-1996 Withdrawals 1973-1996 Net Withdrawals 1973-1996 Liquefied Natural Gas Storage (Million Cubic Feet) Additions 1,093 656 698 468 430 517 1980-2012 Withdrawals 1,089 730 954 698 436 457 1980-2012 Net Withdrawals 4 -74 -256 -230 -7 60 1980-2012 Consumption (Million Cubic Feet) Total Consumption 87,972 89,256 92,743 94,110 100,455 95,477 1997-2012

310

Rhode Island Natural Gas Prices  

U.S. Energy Information Administration (EIA) Indexed Site

23.13 21.73 16.98 1989-2014 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 2002-2014 Commercial Price 18.82 20.53 19.81 18.89...

311

The Enterprise Zone (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

The Enterprise Zone offers tax incentives to business expanding their workforce by 5% at facilities in designated enterprise zones. The tax credit is equal to 50% of the annual wages paid to a new...

312

Water Quality Regulations (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of these regulations is to establish water quality standards for the state's surface waters. These standards are intended to restore, preserve and enhance the physical, chemical and...

313

Rhodes College February 17, 2014  

E-Print Network (OSTI)

Biology? Implementation of engineering principles and mathematical modeling to the design and construction of biological parts, devices, and systems with applications in energy, medicine, and technology. www.bio of Medicines 10¢ per pill Tuesday, February 18, 2014 #12;Biofuels from Algae CO -neutral2 1,000,000 gallons

Campbell, A. Malcolm

314

Asphalt Oxidation Kinetics and Pavement Oxidation Modeling  

E-Print Network (OSTI)

Most paved roads in the United States are surfaced with asphalt. These asphalt pavements suffer from fatigue cracking and thermal cracking, aggravated by the oxidation and hardening of asphalt. This negative impact of asphalt oxidation on pavement...

Jin, Xin

2012-07-16T23:59:59.000Z

315

Exhaust and evaporative emissions from gasohol-type fuels  

SciTech Connect

An experimental study was conducted at the US Department of Energy's Bartlesville (Okla.) Energy Technology Center in cooperation with the Environmental Protection Agency to determine the characteristics of gasohol-type fuels with respect to exhaust and evaporative emissions. Five fuels, 2 gasolines (reference and commercial unleaded) and 3 gasohols (90% gasoline/10% ethanol) were tested in a fleet of 10 late-model automobiles. Six were equipped with oxidation catalysts and 4 were equipped with three-way catalysts. The results obtained from the 1978 Federal test procedure indicate that the addition of ethanol to the base gasoline, whether it is a reference fuel (Indolene) or a commercial fuel, has measurable effects on exhaust and evaporative emissions. However, on the average, the magnitude of these effects was generally within the 1978 emission standards established by the EPA. More specifically, the addition of ethanol, in the case of vehicles with oxidation catalysts, decreased hydrocarbons by an average of 27%, decreased carbon monoxide by 43%, decreased volumetric fuel economy by 3%, and increased oxides of nitrogen by 16%. Evaporative emissions were increased by 40%. In the case of vehicles with three-way catalysts, the addition of ethanol to the base fuel, on the average, decreased carbon monoxide by 7%, decreased fuel economy by 5%, increased hydrocarbons by 12%, increased oxides of nitrogen by 7%, and increased evaporative emissions by 49%.

Naman, T.M.; Allsup, J.R.

1980-08-01T23:59:59.000Z

316

Regulation of GHG emissions from transportation fuels: Emission quota versus emission intensity standard  

E-Print Network (OSTI)

1 ? ?) and ? respectively. GHG emissions per unit of blend1 ? ?)? i + ?? i Reduction in GHG emissions with respect toSeries RegulationofGHGemissionsfromtransportation

Rajagopal, Deepak

2010-01-01T23:59:59.000Z

317

ORIGINAL PAPER Short-term effect of tillage intensity on N2O and CO2 emissions  

E-Print Network (OSTI)

ORIGINAL PAPER Short-term effect of tillage intensity on N2O and CO2 emissions Pascal Boeckx negative to positive. We studied the short-term effect of tillage intensity on N2O and CO2 emissions. We site, an intermediately aerated Luvisol in Belgium, were similar. Nitrous oxide and CO2 emissions were

Paris-Sud XI, Université de

318

State Emissions Estimates  

Gasoline and Diesel Fuel Update (EIA)

Estimates of state energy-related carbon dioxide emissions Estimates of state energy-related carbon dioxide emissions Because energy-related carbon dioxide (CO 2 ) constitutes over 80 percent of total emissions, the state energy-related CO 2 emission levels provide a good indicator of the relative contribution of individual states to total greenhouse gas emissions. The U.S. Energy Information Administration (EIA) emissions estimates at the state level for energy-related CO 2 are based on data contained in the State Energy Data System (SEDS). 1 The state-level emissions estimates are based on energy consumption data for the following fuel categories: three categories of coal (residential/commercial, industrial, and electric power sector); natural gas; and ten petroleum products including-- asphalt and road oil, aviation gasoline, distillate fuel, jet fuel, kerosene, liquefied petroleum gases

319

Pollutant Emission Factors from Residential Natural Gas Appliances: A Literature Review  

E-Print Network (OSTI)

H. Bromly, Reduction of Nitrogen Dioxide Emissions from Gasthan 10 ! lm), and nitrogen dioxide ( N0 2) standards areare nitric oxide (NO) and nitrogen dioxide (N0 2); although,

Traynor, G.W.

2011-01-01T23:59:59.000Z

320

Low Emissions Aftertreatment and Diesel Emissions Reduction  

SciTech Connect

Detroit Diesel Corporation (DDC) has successfully completed a five-year Low Emissions Aftertreatment and Diesel Emissions Reduction (LEADER) program under a DOE project entitled: ''Research and Development for Compression-Ignition Direct-Injection Engines (CIDI) and Aftertreatment Sub-Systems''. The objectives of the LEADER Program were to: Demonstrate technologies that will achieve future federal Tier 2 emissions targets; and Demonstrate production-viable technical targets for engine out emissions, efficiency, power density, noise, durability, production cost, aftertreatment volume and weight. These objectives were successfully met during the course of the LEADER program The most noteworthy achievements in this program are listed below: (1) Demonstrated Tier 2 Bin 3 emissions target over the FTP75 cycle on a PNGV-mule Neon passenger car, utilizing a CSF + SCR system These aggressive emissions were obtained with no ammonia (NH{sub 3}) slip and a combined fuel economy of 63 miles per gallon, integrating FTP75 and highway fuel economy transient cycle test results. Demonstrated feasibility to achieve Tier 2 Bin 8 emissions levels without active NOx aftertreatment. (2) Demonstrated Tier 2 Bin 3 emissions target over the FTP75 cycle on a light-duty truck utilizing a CSF + SCR system, synergizing efforts with the DOE-DDC DELTA program. This aggressive reduction in tailpipe out emissions was achieved with no ammonia slip and a 41% fuel economy improvement, compared to the equivalent gasoline engine-equipped vehicle. (3) Demonstrated Tier 2 near-Bin 9 emissions compliance on a light-duty truck, without active NOx aftertreatment devices, in synergy with the DOE-DDC DELTA program. (4) Developed and applied advanced combustion technologies such as ''CLEAN Combustion{copyright}'', which yields simultaneous reduction in engine out NOx and PM emissions while also improving engine and aftertreatment integration by providing favorable exhaust species and temperature characteristics. These favorable emissions characteristics were obtained while maintaining performance and fuel economy. These aggressive emissions and performance results were achieved by applying a robust systems technology development methodology. This systems approach benefits substantially from an integrated experimental and analytical approach to technology development, which is one of DDCs core competencies Also, DDC is uniquely positioned to undertake such a systems technology development approach, given its vertically integrated commercial structure within the DaimlerChrysler organization. State-of-the-art analytical tools were developed targeting specific LEADER program objectives and were applied to guide system enhancements and to provide testing directions, resulting in a shortened and efficient development cycle. Application examples include ammonia/NO{sub x} distribution improvement and urea injection controls development, and were key contributors to significantly reduce engine out as well as tailpipe out emissions. Successful cooperation between DDC and Engelhard Corporation, the major subcontractor for the LEADER program and provider of state-of-the-art technologies on various catalysts, was another contributing factor to ensure that both passenger car and LD truck applications achieved Tier 2 Bin 3 emissions levels. Significant technical challenges, which highlight barriers of commercialization of diesel technology for passenger cars and LD truck applications, are presented at the end of this report.

None

2005-05-27T23:59:59.000Z

Note: This page contains sample records for the topic "oxide emissions rhode" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Air Pollution Control Regulations: No. 41 - Nox Budget Trading Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

41 - Nox Budget Trading 41 - Nox Budget Trading Program (Rhode Island) Air Pollution Control Regulations: No. 41 - Nox Budget Trading Program (Rhode Island) < Back Eligibility Commercial Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Rhode Island Program Type Environmental Regulations Provider Department of Environmental Management These regulations establish a budget trading program for nitrogen oxide emissions, setting NOx budget units for generators and an NOx Allowance Tracking System to account for emissions. These regulations apply to units that serve generators with a nameplate capacity greater than 15 MWe and sell any amount of electricity, as well as to units that have a maximum

322

ASH EMISSIVITY CHARACTERIZATION AND PREDICTION  

SciTech Connect

The increased use of western subbituminous coals has generated concerns regarding highly reflective ash disrupting heat transfer in the radiant zone of pulverized-fuel boilers. Ash emissivity and reflectivity is primarily a function of ash particle size, with reflective deposits expected to consist of very small refractory ash materials such as CaO, MgO, or sulfate materials such as Na{sub 2}SO{sub 4}. For biomass fuels and biomass-coal blends, similar reflectivity issues may arise as a result of the presence of abundant organically associated calcium and potassium, which can transform during combustion to fine calcium, and potassium oxides and sulfates, which may act as reflective ash. The relationship of reflectivity to ash chemistry is a second-order effect, with the ash particle size distribution and melting point being determined by the size and chemistry of the minerals present in the starting fuel. Measurement of the emission properties of ash and deposits have been performed by several research groups (1-6) using both laboratory methods and measurements in pilot- and full-scale combustion systems. A review of the properties and thermal properties of ash stresses the important effect of ash deposits on heat transfer in the radiant boiler zone (1).

Christopher J. Zygarlicke; Donald P. McCollor; Charlene R. Crocker

1999-12-01T23:59:59.000Z

323

New gas turbine combustor supports emissions limits  

SciTech Connect

Gas Research Institute, in partnership with Allison Engine Co. of Indianapolis, has introduced a natural gas-fired, low-emissions combustor that it says will give customers of industrial gas turbines a least-cost approach for meeting US emissions regulations. The LE IV combustor uses dry, low-nitrogen oxides (DLN) technology to reduce emissions from the Allison 501K industrial gas turbine to 25 parts per million or less (corrected to 15 percent oxygen)--levels that are expected to meet pending federal emissions regulations. GRI is funding similar efforts with other manufacturers of turbines commonly used at pipeline compressor stations and industrial power generation sites. The Allison combustor features a dual operating mode. During the pilot mode of operation, fuel is directly injected into the combustor`s liner where it is consumed in a diffusion flame reaction. During higher power operation, the fuel and air are uniformly premixed in fuel-lean proportions to control NO{sub x} formation. In addition, optimum engine performance is maintained by the dry, lean-mixed combustion technology as it suppresses NO{sub x} formation in the turbine`s combustion section. An added advantage of the LE IV combustor is its ability to lower emissions without any adverse affect on engine performance and operations, according to GRI> The combustor is available as either a retrofit or as an option on a new engine.

NONE

1996-10-01T23:59:59.000Z

324

Carbon Emissions: Food Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Food Industry Food Industry Carbon Emissions in the Food Industry The Industry at a Glance, 1994 (SIC Code: 20) Total Energy-Related Emissions: 24.4 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 6.6% Total First Use of Energy: 1,193 trillion Btu -- Pct. of All Manufacturers: 5.5% Carbon Intensity: 20.44 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 24.4 Net Electricity 9.8 Natural Gas 9.1 Coal 4.2 All Other Sources 1.3 Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998

325

Carbon Emissions: Chemicals Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Chemicals Industry Chemicals Industry Carbon Emissions in the Chemicals Industry The Industry at a Glance, 1994 (SIC Code: 28) Total Energy-Related Emissions: 78.3 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 21.1% -- Nonfuel Emissions: 12.0 MMTC Total First Use of Energy: 5,328 trillion Btu -- Pct. of All Manufacturers: 24.6% Energy Sources Used As Feedstocks: 2,297 trillion Btu -- LPG: 1,365 trillion Btu -- Natural Gas: 674 trillion Btu Carbon Intensity: 14.70 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 78.3 Natural Gas 32.1

326

NETL: Mercury Emissions Control  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Technologies > Coal & Power Systems > Innovations for Existing Plants > Mercury Emissions Control Home > Technologies > Coal & Power Systems > Innovations for Existing Plants > Mercury Emissions Control Innovations for Existing Plants Mercury Emissions Control NETL managed the largest funded research program in the country to develop an in-depth understanding of fossil combustion-based mercury emissions. The program goal was to develop effective control options that would allow generators to comply with regulations. Research focus areas included measurement and characterization of mercury emissions, as well as the development of cost-effective control technologies for the U.S. coal-fired electric generating industry. Control Technologies Field Testing Phase I & II Phase III Novel Concepts APCD Co-benefits Emissions Characterization

327

Carbon Emissions: Paper Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Paper Industry Paper Industry Carbon Emissions in the Paper Industry The Industry at a Glance, 1994 (SIC Code: 26) Total Energy-Related Emissions: 31.6 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 8.5% Total First Use of Energy: 2,665 trillion Btu -- Pct. of All Manufacturers: 12.3% -- Pct. Renewable Energy: 47.7% Carbon Intensity: 11.88 MMTC per quadrillion Btu Renewable Energy Sources (no net emissions): -- Pulping liquor: 882 trillion Btu -- Wood chips and bark: 389 trillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 31.6 Net Electricity 11.0

328

emissions | OpenEI  

Open Energy Info (EERE)

emissions emissions Dataset Summary Description The New Zealand Ministry of Economic Development publishes an annual Energy Outlook, which presents projections of New Zealand's future energy supply, demand, prices and greenhouse gas emissions. The principle aim of these projections is to inform the national energy debate. Included here are the model results for emissions. The spreadsheet provides an interactive tool for selecting which model results to view, and which scenarios to evaluate; full model results for each scenario are also included. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated December 15th, 2010 (4 years ago) Keywords emissions New Zealand projections Data application/vnd.ms-excel icon 2010 New Zealand emissions outlook (xls, 1.2 MiB)

329

Power Plant Emission Reductions Using a Generation Performance Standard  

Gasoline and Diesel Fuel Update (EIA)

Power Plant Emission Reductions Power Plant Emission Reductions Using a Generation Performance Standard by J. Alan Beamon, Tom Leckey, and Laura Martin There are many policy instruments available for reducing power plant emissions, and the choice of a policy will affect compliance decisions, costs, and prices faced by consumers. In a previous analysis, the Energy Information Administration analyzed the impacts of power sector caps on nitrogen oxides (NO x ), sulfur dioxide (SO 2 ), and carbon dioxide (CO 2 ) emissions, assuming a policy instru- ment patterned after the SO 2 allowance program created in the Clean Air Act Amendments of 1990. 1 This report compares the results of that work with the results of an analysis that assumes the use of a dynamic generation performance standard (GPS) as an instrument for reducing CO 2 emissions. 2 In general, the results of the two analyses are similar: to reduce

330

Emissions of greenhouse gases in the United States 1997  

SciTech Connect

This is the sixth annual report on aggregate US national emissions of greenhouse gases. It covers emissions over the period 1990--1996, with preliminary estimates of emissions for 1997. Chapter one summarizes some background information about global climate change and the greenhouse effect. Important recent developments in global climate change activities are discussed, especially the third Conference of the Parties to the Framework Convention on Climate Change, which was held in December of 1997 in Kyoto, Japan. Chapters two through five cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons and related gases, respectively. Chapter six describes potential sequestration and emissions of greenhouse gases as a result of land use changes. Six appendices are included in the report. 96 refs., 38 tabs.

NONE

1998-10-01T23:59:59.000Z

331

Saving Fuel, Reducing Emissions  

E-Print Network (OSTI)

would in turn lower PHEV fuel costs and make them morestretches from fossil-fuel- powered conventional vehiclesbraking, as do Saving Fuel, Reducing Emissions Making Plug-

Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

2009-01-01T23:59:59.000Z

332

Vehicle Emissions Review - 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Emissions Review - 2012 Tim Johnson October 16, 2012 2 Environmental Technologies Summary * Regulations - LEVIII finalized, Tier 3? RDE in Europe developing and very...

333

EMSL - emission spectra  

NLE Websites -- All DOE Office Websites (Extended Search)

emission-spectra en Structures and Stabilities of (MgO)n Nanoclusters. http:www.emsl.pnl.govemslwebpublicationsstructures-and-stabilities-mgon-nanoclusters

334

NETL: Emissions Characterization - CMU Emissions Characterization Study  

NLE Websites -- All DOE Office Websites (Extended Search)

Source Emissions Characterization Study Source Emissions Characterization Study The emissions characterization study is being performed in conjunction with the Pittsburgh Air Quality Study [PDF-744KB], a larger effort that includes ambient measurements and atmospheric modeling of the Pittsburgh region. The main objectives of this portion of the study are: To achieve advanced characterization of the PM in the Pittsburgh region. Measurements include the PM size, surface, volume, and mass distribution; chemical composition as a function of size and on a single particle basis; temporal and spatial variability. To obtain accurate current fingerprints of the major primary PM sources in the Pittsburgh region using traditional filter-based sampling and state-of-the-art techniques such as dilution sampling and single particle analysis using mass spectroscopy and LIBS.

335

Oxidation of advanced steam turbine alloys  

SciTech Connect

Advanced or ultra supercritical (USC) steam power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energys Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.

Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.

2006-03-01T23:59:59.000Z

336

Global and regional drivers of accelerating CO2 emissions  

Science Journals Connector (OSTI)

...emissions from fossil-fuel combustion and industrial...flux from fossil fuel combustion and industrial processes...sources: national-level combustion of solid, liquid...oxidation of nonfuel hydrocarbons; and fuel from...renewables, mainly as heat from biomass...

Michael R. Raupach; Gregg Marland; Philippe Ciais; Corinne Le Qur; Josep G. Canadell; Gernot Klepper; Christopher B. Field

2007-01-01T23:59:59.000Z

337

Performance and emission enhancements of a variable geometry turbocharger on a heavy-duty diesel engine  

Science Journals Connector (OSTI)

Variable Geometry Turbochargers (VGTs) have emerged in the heavy-duty diesel market with the simultaneous introduction of Exhaust Gas Recirculation (EGR) in meeting emission standards. From a military perspective, VGTs offer considerable promise of improving low speed torque and overall fuel economy. Despite these gains, nitric oxides (NOx) emissions generally increase with increased boost. During times when the military can reduce its environmental impact, VGTs can drive EGR and counter the increase in NOx emissions with relatively minor penalty in particulate matter (PM) emissions. This study highlights the performance and emission enhancements enabled by a VGT on a heavy-duty diesel engine.

Timothy J. Jacobs; Chad Jagmin; Wesley J. Williamson; Zoran S. Filipi; Dennis N. Assanis; Walter Bryzik

2008-01-01T23:59:59.000Z

338

Apparatus for photocatalytic destruction of internal combustion engine emissions during cold start  

DOE Patents (OSTI)

A method and apparatus for the destruction of emissions from an internal combustion engine wherein a substrate coated with TiO.sub.2 is exposed to a light source in the exhaust system of an internal combustion engine thereby catalyzing oxidation/reduction reactions between gaseous hydrocarbons, carbon monoxide, nitrogen oxides and oxygen in the exhaust of the internal combustion engine.

Janata, Jiri (Richland, WA); McVay, Gary L. (Richland, WA); Peden, Charles H. (West Richland, WA); Exarhos, Gregory J. (Richland, WA)

1998-01-01T23:59:59.000Z

339

Oxidation of propylene over copper oxide catalysts  

E-Print Network (OSTI)

to the study of propylene oxidation. Dunlop (17) reported that small quantities of iron compounds substantially enhanced the catalytic activity of chromia-alumina catalysts with respect to propylene oxidation, Woodharn (72) has suggested that under... between 360 C and 430oC the rate of propane oxidation decreases as the teznperature is increased, and the rate of conversion to olefins, especially propylene, becomes progressively greater. Above 430 C the proportion of propane converted to ethylene in...

Billingsley, David Stuart

2012-06-07T23:59:59.000Z

340

REAL-WORLD EFFICACY OF HEAVY DUTY DIESEL TRUCK NOX AND PM EMISSIONS CONTROLS  

E-Print Network (OSTI)

are International. b DOC = Diesel Oxidation Catalyst; DPF = Diesel Particulate Filter; EGR = Exhaust GasREAL-WORLD EFFICACY OF HEAVY DUTY DIESEL TRUCK NOX AND PM EMISSIONS CONTROLS Gurdas Sandhu H 26-28, 2012 #12;2 Objectives 1. Quantify inter-run variability in exhaust emission rates 2. Assess

Frey, H. Christopher

Note: This page contains sample records for the topic "oxide emissions rhode" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Catalysts for Lean Engine Emission Control - Emissions & Emission Controls  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalysts for Lean Engine Emission Control Catalysts for Lean Engine Emission Control Catalysts for controlling NOx from lean engines are studied in great detail at FEERC. Lean NOx Traps (LNTs) and Selective Catalytic Reduction (SCR) are two catalyst technologies of interest. Catalysts are studied from the nanoscale to full scale. On the nanoscale, catalyst powders are analyzed with chemisorptions techniques to determine the active metal surface area where catalysis occurs. Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopy is used to observe the chemical reactions occurring on the catalyst surface during catalyst operation. Both powder and coated catalyst samples are analyzed on bench flow reactors in controlled simulated exhaust environments to better characterize the chemical

342

Air Emission Inventory for the INEEL -- 1999 Emission Report  

SciTech Connect

This report presents the 1999 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradionuclide emissions estimates for stationary sources.

Zohner, Steven K

2000-05-01T23:59:59.000Z

343

Observation of green emission from Ce3+ doped gadolinium oxide...  

NLE Websites -- All DOE Office Websites (Extended Search)

freshly-prepared Gd2O3 undoped nanoparticles which is attributed to the stabilizer, polyethylene glycol biscarboxymethyl ether. Upon aging, the undoped particles show similar...

344

Nitrous oxide emission from denitrification in stream and river networks  

Science Journals Connector (OSTI)

...82071; e Environmental Sciences Division, Oak Ridge National Laboratory , Oak Ridge, TN 37831; f Department of Ecology and Evolutionary Biology...experiments on their lands. We also acknowledge the many workers who helped with the Lotic Intersite Nitrogen experiments...

Jake J. Beaulieu; Jennifer L. Tank; Stephen K. Hamilton; Wilfred M. Wollheim; Robert O. Hall; Jr.; Patrick J. Mulholland; Bruce J. Peterson; Linda R. Ashkenas; Lee W. Cooper; Clifford N. Dahm; Walter K. Dodds; Nancy B. Grimm; Sherri L. Johnson; William H. McDowell; Geoffrey C. Poole; H. Maurice Valett; Clay P. Arango; Melody J. Bernot; Amy J. Burgin; Chelsea L. Crenshaw; Ashley M. Helton; Laura T. Johnson; Jonathan M. O'Brien; Jody D. Potter; Richard W. Sheibley; Daniel J. Sobota; Suzanne M. Thomas

2011-01-01T23:59:59.000Z

345

Oxide coated silicon tip arrays for electron emission.  

E-Print Network (OSTI)

??The study of cold cathode materials is currently an active topic of research due to widespread and important applications of these materials in products such (more)

Bian, Haijiao.

2011-01-01T23:59:59.000Z

346

UK emissions of the greenhouse gas nitrous oxide  

Science Journals Connector (OSTI)

...other land use, (v) waste, and (vi) other sources...forestry (LULUCF) and waste are similarly proportioned...8 per cent and manure storage systems for 6 per cent...is reported here from long-term monitoring of greenhouse...are still not enough long-term datasets to provide the...

2012-01-01T23:59:59.000Z

347

UK emissions of the greenhouse gas nitrous oxide  

Science Journals Connector (OSTI)

...ranges from 33 to 170 per cent for fuel combustion processes and 195 per cent for other combustion processes (annex 7 of MacCarthy et al. [11...manure storage and N fertilizers. Combustion processes are the main source of NO x and microbial...

2012-01-01T23:59:59.000Z

348

Mechanistic, sensitivity, and uncertainty studies of the atmospheric oxidation of dimethylsulfide  

E-Print Network (OSTI)

The global-scale emissions and reactivity of dimethylsulfide (CH3SCH3, DMS) make it an integral component in the atmospheric sulfur cycle. DMS is rapidly oxidized in the atmosphere by a complex gas-phase mechanism involving ...

Lucas, Donald David, 1969-

2003-01-01T23:59:59.000Z

349

Mechanism of oxygen reduction reaction on transition metal oxide catalysts for high temperature fuel cells  

E-Print Network (OSTI)

The solid oxide fuel cell (SOFC) with its high energy conversion efficiency, low emissions, silent operation and its ability to utilize commercial fuels has the potential to create a large impact on the energy landscape. ...

La O', Gerardo Jose Cordova

2008-01-01T23:59:59.000Z

350

FETC Programs for Reducing Greenhouse Gas Emissions  

SciTech Connect

Mark Twain once quipped that everyone talks about the weather but no one does anything about it. With interest in global climate change on the rise, researchers in the fossil-energy sector are feeling the heat to provide new technology to permit continued use of fossil fuels but with reduced emissions of so-called `greenhouse gases.` Three important greenhouse gases, carbon dioxide, methane, and nitrous oxide, are released to the atmosphere in the course of recovering and combusting fossil fuels. Their importance for trapping radiation, called forcing, is in the order given. In this report, we briefly review how greenhouse gases cause forcing and why this has a warming effect on the Earth`s atmosphere. Then we discuss programs underway at FETC that are aimed at reducing emissions of methane and carbon dioxide.

Ruether, J.A.

1998-02-01T23:59:59.000Z

351

Solid Oxide Fuel Cells  

Science Journals Connector (OSTI)

A Solid Oxide Fuel Cell (SOFC) is typically composed of two porous electrodes, interposed between an electrolyte made of a particular solid oxide ceramic material. The system originates from the work of Nernst...

Nigel M. Sammes; Roberto Bove; Jakub Pusz

2006-01-01T23:59:59.000Z

352

Nanoparticle Emissions from Internal Combustion Engines | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nanoparticle Emissions from Internal Combustion Engines Nanoparticle Emissions from Internal Combustion Engines 2004 Diesel Engine Emissions Reduction (DEER) Conference...

353

Materials Applications of Photoelectron Emission Microscopy....  

NLE Websites -- All DOE Office Websites (Extended Search)

Applications of Photoelectron Emission Microscopy. Materials Applications of Photoelectron Emission Microscopy. Abstract: Photoelectron emission microscopy (PEEM) is a versatile...

354

Spontaneous Emission Rate Enhancement Using Optical Antennas  

E-Print Network (OSTI)

of Spontaneous Emission in a Semiconductor nanoLED, emission rate enhancement using the Fluorescent Emission by Lattice Resonances in

Kumar, Nikhil

2013-01-01T23:59:59.000Z

355

Emission Abatement System  

DOE Patents (OSTI)

Emission abatement system. The system includes a source of emissions and a catalyst for receiving the emissions. Suitable catalysts are absorber catalysts and selective catalytic reduction catalysts. A plasma fuel converter generates a reducing gas from a fuel source and is connected to deliver the reducing gas into contact with the absorber catalyst for regenerating the catalyst. A preferred reducing gas is a hydrogen rich gas and a preferred plasma fuel converter is a plasmatron. It is also preferred that the absorber catalyst be adapted for absorbing NO.sub.x.

Bromberg, Leslie (Sharon, MA); Cohn, Daniel R. (Chestnut Hill, MA); Rabinovich, Alexander (Swampscott, MA)

2003-05-13T23:59:59.000Z

356

Emission control cost-effectiveness of alternative-fuel vehicles  

SciTech Connect

Although various legislation and regulations have been adopted to promote the use of alternative-fuel vehicles for curbing urban air pollution problems, there is a lack of systematic comparisons of emission control cost-effectiveness among various alternative-fuel vehicle types. In this paper, life-cycle emission reductions and life-cycle costs were estimated for passenger cars fueled with methanol, ethanol, liquefied petroleum gas, compressed natural gas, and electricity. Vehicle emission estimates included both exhaust and evaporative emissions for air pollutants of hydrocarbon, carbon monoxide, nitrogen oxides, and air-toxic pollutants of benzene, formaldehyde, 1,3-butadiene, and acetaldehyde. Vehicle life-cycle cost estimates accounted for vehicle purchase prices, vehicle life, fuel costs, and vehicle maintenance costs. Emission control cost-effectiveness presented in dollars per ton of emission reduction was calculated for each alternative-fuel vehicle types from the estimated vehicle life-cycle emission reductions and costs. Among various alternative-fuel vehicle types, compressed natural gas vehicles are the most cost-effective vehicle type in controlling vehicle emissions. Dedicated methanol vehicles are the next most cost-effective vehicle type. The cost-effectiveness of electric vehicles depends on improvements in electric vehicle battery technology. With low-cost, high-performance batteries, electric vehicles are more cost-effective than methanol, ethanol, and liquified petroleum gas vehicles.

Wang, Q. [Argonne National Lab., IL (United States); Sperling, D.; Olmstead, J. [California Univ., Davis, CA (United States). Inst. of Transportation Studies

1993-06-14T23:59:59.000Z

357

Task 1: Steam Oxidation,  

SciTech Connect

Need to improve efficiency, decrease emissions (esp. CO2) associated with the continued use of coal for power generation

I. G. Wright and G. R. Holcomb

2009-03-01T23:59:59.000Z

358

EPA Emissions | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

EPA Emissions ORNL research informs new EPA emissions standards July 11, 2014 Oak Ridge National Laboratory (ORNL) has developed a streamlined method for determining vehicle...

359

Emission Standards for Contaminants (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations list emissions standards for various contaminants, and contain special requirements for anaerobic lagoons. These regulations also describe alternative emissions limits, which may...

360

Engines - Emissions Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

EPRI Hybrid Electric Vehicle Working Group: HEV Costs and Emissions EPRI Hybrid Electric Vehicle Working Group: HEV Costs and Emissions Hybrid electric vehicles (HEVs) are attractive options for increasing vehicle fuel economy and reducing emissions of criteria pollutants and greenhouse gases. Two automobile manufacturers have already introduced HEVs, and other manufacturers are planning to introduce their own models. One available HEV combines mass reduction (also applicable to conventional vehicles) with idle-stop, regenerative braking, and electric-drive assist to achieve a fuel economy more than 2.5 times the current Corporate Average Fuel Economy (CAFE) standard. The second HEV combines idle-stop, regenerative braking, electric assist acceleration, and continuously variable transmission (CVT) to achieve a fuel economy of more than twice the current CAFÉ standard, qualifying as a super ultra-low emissions vehicle (SULEV).

Note: This page contains sample records for the topic "oxide emissions rhode" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Gas Turbine Emissions  

E-Print Network (OSTI)

Historically, preliminary design information regarding gas turbine emissions has been unreliable, particularly for facilities using steam injection and other forms of Best Available Control Technology (BACT). This was probably attributed to the lack...

Frederick, J. D.

362

Photon enhanced thermionic emission  

DOE Patents (OSTI)

Photon Enhanced Thermionic Emission (PETE) is exploited to provide improved efficiency for radiant energy conversion. A hot (greater than 200.degree. C.) semiconductor cathode is illuminated such that it emits electrons. Because the cathode is hot, significantly more electrons are emitted than would be emitted from a room temperature (or colder) cathode under the same illumination conditions. As a result of this increased electron emission, the energy conversion efficiency can be significantly increased relative to a conventional photovoltaic device. In PETE, the cathode electrons can be (and typically are) thermalized with respect to the cathode. As a result, PETE does not rely on emission of non-thermalized electrons, and is significantly easier to implement than hot-carrier emission approaches.

Schwede, Jared; Melosh, Nicholas; Shen, Zhixun

2014-10-07T23:59:59.000Z

363

Fuel Consumption and Emissions  

Science Journals Connector (OSTI)

Calculating fuel consumption and emissions is a typical offline analysis ... simulations or real trajectory data) and the engine speed (as obtained from gear-shift schemes ... as input and is parameterized by veh...

Martin Treiber; Arne Kesting

2013-01-01T23:59:59.000Z

364

Intelligent field emission arrays  

E-Print Network (OSTI)

Field emission arrays (FEAs) have been studied extensively as potential electron sources for a number of vacuum microelectronic device applications. For most applications, temporal current stability and spatial current ...

Hong, Ching-yin, 1973-

2003-01-01T23:59:59.000Z

365

Carbon Dioxide Emissions  

Science Journals Connector (OSTI)

Abating greenhouse gas (GHG) emissions on a national level involves substantial investment efforts, though part of these may be regained soon.1 On a global level, the costs of the available options are likely to ...

Catrinus J. Jepma; Che Wah Lee

1995-01-01T23:59:59.000Z

366

Field emission electron source  

DOE Patents (OSTI)

A novel field emitter material, field emission electron source, and commercially feasible fabrication method is described. The inventive field emission electron source produces reliable electron currents of up to 400 mA/cm.sup.2 at 200 volts. The emitter is robust and the current it produces is not sensitive to variability of vacuum or the distance between the emitter tip and the cathode. The novel emitter has a sharp turn-on near 100 volts.

Zettl, Alexander Karlwalter (Kensington, CA); Cohen, Marvin Lou (Berkeley, CA)

2000-01-01T23:59:59.000Z

367

Nitrous Oxide Fluxes from the Gulf of Mexico "Dead Zone" Primary Investigator: Craig Stow -NOAA GLERL  

E-Print Network (OSTI)

forecasts require accurate estimates of greenhouse gas emission rates. Currently, there are few measurements Management Research Laboratory Overview Nitrous oxide is a potent greenhouse gas with a global warming oxide is a potent greenhouse gas with a global warming potential ~300 times that of carbon dioxide

368

Diesel exhaust emissions from engines for use in underground mines  

SciTech Connect

Experimental data were obtained from two medium-duty diesel engines derated to qualify for use in underground mines. Gaseous and particulate emissions from these engines were measured and results provide information on the effect of exhaust treatment devices on the emissions. The devices in the study were a catalyst, a particulate trap, and an exhaust gas cooler of the water scrubber type. Emission levels of carbon monoxide and hydrocarbons were observed to be very low in comparison with emission levels of comparable engines in full-rated operation. Oxides of nitrogen and benzo(a)pyrene content of the exhaust also were found to be somewhat low in comparison with previous findings. For particulate reduction, the combination of a particulate trap and a scrubber was observed to be the most effective combination tried; in some cases, over 60% particulate reduction was effected by the trap-scrubber combination.

Eccleston, B.H.; Seizinger, D.E.; Clingenpeel, J.M.

1981-04-01T23:59:59.000Z

369

Wildland fire emissions, carbon, and climate: Emission factors Shawn Urbanski  

E-Print Network (OSTI)

Wildland fire emissions, carbon, and climate: Emission factors Shawn Urbanski Missoula Fire burning Greenhouse gases Emission factors a b s t r a c t While the vast majority of carbon emitted wildland fire greenhouse gas and aerosol (organic aerosol (OA) and black carbon (BC)) emission inventories

370

Advanced Petroleum-Based Fuels -- Diesel Emissions Control Project (APBF-DEC): Lubricants Project, Phase 2 Final Report  

SciTech Connect

This report summarizes the results of the second phase of a lubricants project, which investigated the impact of engine oil formulation on diesel vehicle emissions and the performance of a nitrogen oxide adsorber catalyst (NAC).

Not Available

2006-06-01T23:59:59.000Z

371

Reduction of Multi-pollutant Emissions from Industrial Sectors: The U.S. Cement Industry A Case Study  

Science Journals Connector (OSTI)

Sulfur dioxide (SO2) emissions from cement kilns result from the sulfur in the fuel and the sulfur in the feed materials. Sulfur in the fuel will oxidize to SO2during pyroprocessing and a significant amount is li...

Ravi K. Srivastava; Samudra Vijay

2011-01-01T23:59:59.000Z

372

Arabidopsis Nonsymbiotic Hemoglobin AHb1 Modulates Nitric Oxide Bioactivity  

Science Journals Connector (OSTI)

...used as control and showed a rate of NADPH oxidation that was...detector CLD 770 AL ppt (Eco-Physics, Munich, Germany) by a vacuum...excitation filter, 515-nm long-pass emission filter). Data acquired...The influence of delivery rate on the chemistry and biological...

Michele Perazzolli; Paola Dominici; Maria C. Romero-Puertas; Elisa Zago; Jürgen Zeier; Masatoshi Sonoda; Chris Lamb; Massimo Delledonne

2004-09-14T23:59:59.000Z

373

Oxidation in Environments with Elevated CO2 Levels  

SciTech Connect

Efforts to reduce greenhouse gas emissions from fossil energy power productions focus primarily on either pre- or post-combustion removal of CO2. The research presented here examines corrosion and oxidation issues associated with two types of post-combustion CO2 removal processesoxyfuel combustion in refit boilers and oxyfuel turbines.

Gordon H. Holcomb

2009-05-01T23:59:59.000Z

374

Role of Moisture in Adsorption, Photocatalytic Oxidation, and  

E-Print Network (OSTI)

various Hg emission sources. A novel low-cost methodology using titanium dioxide (TiO2) nanoparticlesRole of Moisture in Adsorption, Photocatalytic Oxidation, and Reemission of Elemental Mercury gas. Without UV irradiation, Hg0 adsorption was found to be insignificant, but it could be enhanced

Li, Ying

375

Diesel Soot Oxidation with NO2:? Engine Experiments and Simulations  

Science Journals Connector (OSTI)

Diesel Soot Oxidation with NO2:? Engine Experiments and Simulations ... Particulate filtration in the exhaust system of diesel engines is increasingly gaining in importance for both light- and heavy-duty applications. ... The reaction rates are, in general, in the same order of magnitude with the engine-out soot emission rates. ...

Ioannis P. Kandylas; Onoufrios A. Haralampous; Grigorios C. Koltsakis

2002-09-20T23:59:59.000Z

376

Diesel Emission Control -- Sulfur Effects (DECSE) Program; Phase I Interim Data Report No. 1  

SciTech Connect

The Diesel Emission Control-Sulfur Effects (DECSE) is a joint government/industry program to determine the impact of diesel fuel sulfur levels on emission control systems whose use could lower emissions of nitrogen oxides (NO{sub x}) and particulate matter (PM) from on-highway trucks in the 2002--2004 model years. Phase 1 of the program was developed with the following objectives in mind: (1) evaluate the effects of varying the level of sulfur content in the fuel on the emission reduction performance of four emission control technologies; and (2) measure and compare the effects of up to 250 hours of aging on selected devices for multiple levels of fuel sulfur content. This interim data report summarizes results as of August, 1999, on the status of the test programs being conducted on three technologies: lean-NO{sub x} catalysts, diesel particulate filters and diesel oxidation catalysts.

DOE; ORNL; NREL; EMA; MECA

1999-08-15T23:59:59.000Z

377

Comparison of the Catalytic Oxidation Reaction on Graphene Oxide and Reduced Graphene Oxide  

E-Print Network (OSTI)

Comparison of the Catalytic Oxidation Reaction on Graphene Oxide and Reduced Graphene Oxide Laboratory (PAL), Pohang 790-784, Republic of Korea ABSTRACT: The capacities of graphene oxide (GO) and reduced graphene oxide (rGO) films grown on silicon substrate to cause the aniline to azobenzene oxidation

Kim, Sehun

378

Oxidation Resistant Graphite Studies  

SciTech Connect

The Very High Temperature Reactor (VHTR) Graphite Research and Development Program is investigating doped nuclear graphite grades exhibiting oxidation resistance. During a oxygen ingress accident the oxidation rates of the high temperature graphite core region would be extremely high resulting in significant structural damage to the core. Reducing the oxidation rate of the graphite core material would reduce the structural effects and keep the core integrity intact during any air-ingress accident. Oxidation testing of graphite doped with oxidation resistant material is being conducted to determine the extent of oxidation rate reduction. Nuclear grade graphite doped with varying levels of Boron-Carbide (B4C) was oxidized in air at nominal 740C at 10/90% (air/He) and 100% air. The oxidation rates of the boronated and unboronated graphite grade were compared. With increasing boron-carbide content (up to 6 vol%) the oxidation rate was observed to have a 20 fold reduction from unboronated graphite. Visual inspection and uniformity of oxidation across the surface of the specimens were conducted. Future work to determine the remaining mechanical strength as well as graphite grades with SiC doped material are discussed.

W. Windes; R. Smith

2014-07-01T23:59:59.000Z

379

EIA - Greenhouse Gas Emissions Overview  

Gasoline and Diesel Fuel Update (EIA)

Environment Environment Emissions of Greenhouse Gases in the U. S. Release Date: March 31, 2011 | Next Release Date: Report Discontinued | Report Number: DOE/EIA-0573(2009) Greenhouse Gas Emissions Overview Diagram Notes [a] CO2 emissions related to petroleum consumption (includes 64 MMTCO2 of non-fuel-related emissions). [b] CO2 emissions related to coal consumption (includes 0.3 MMTCO2 of non-fuel-related emissions). [c] CO2 emissions related to natural gas consumption (includes 13 MMTCO2 of non-fuel-related emissions). [d] Excludes carbon sequestered in nonfuel fossil products. [e] CO2 emissions from the plastics portion of municipal solid waste (11 MMTCO2) combusted for electricity generation and very small amounts (0.4 MMTCO2) of geothermal-related emissions.

380

GHG emissions | OpenEI  

Open Energy Info (EERE)

GHG emissions GHG emissions Dataset Summary Description These datasets include GHG and CO2 emissions statistics for the European Union (EU). The statistics are available from the European Commission. Source European Commission Date Released Unknown Date Updated Unknown Keywords Biofuels CO2 emissions EU GHG emissions Data application/vnd.ms-excel icon Total GHG and CO2 Emissions for EU (xls, 853.5 KiB) application/vnd.ms-excel icon GHG Emissions by Sector, all member countries (xls, 2 MiB) application/vnd.ms-excel icon GHG Emissions from Transport, all member countries (xls, 1.3 MiB) application/vnd.ms-excel icon CO2 emissions by sector, all member countries (xls, 2.1 MiB) application/vnd.ms-excel icon CO2 emissions by transport, all member countries (xls, 1.5 MiB)

Note: This page contains sample records for the topic "oxide emissions rhode" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

METAL OXIDE NANOPARTICLES  

SciTech Connect

This chapter covers the fundamental science, synthesis, characterization, physicochemical properties and applications of oxide nanomaterials. Explains fundamental aspects that determine the growth and behavior of these systems, briefly examines synthetic procedures using bottom-up and top-down fabrication technologies, discusses the sophisticated experimental techniques and state of the art theory results used to characterize the physico-chemical properties of oxide solids and describe the current knowledge concerning key oxide materials with important technological applications.

FERNANDEZ-GARCIA,M.; RODGRIGUEZ, J.A.

2007-10-01T23:59:59.000Z

382

Optimal irreversible stimulated emission  

E-Print Network (OSTI)

We studied the dynamics of an initially inverted atom in a semi-infinite waveguide, in the presence of a single propagating photon. We show that atomic relaxation is enhanced by a factor of 2, leading to maximal bunching in the output field. This optimal irreversible stimulated emission is a novel phenomenon that can be observed with state-of-the-art solid-state atoms and waveguides. When the atom interacts with two one-dimensional electromagnetic environments, the preferential emission in the stimulated field can be exploited to efficiently amplify a classical or a quantum state.

D Valente; Y Li; J P Poizat; J M Gerard; L C Kwek; M F Santos; A Auffeves

2012-08-28T23:59:59.000Z

383

Controlled spontaneous emission  

E-Print Network (OSTI)

The problem of spontaneous emission is studied by a direct computer simulation of the dynamics of a combined system: atom + radiation field. The parameters of the discrete finite model, including up to 20k field oscillators, have been optimized by a comparison with the exact solution for the case when the oscillators have equidistant frequencies and equal coupling constants. Simulation of the effect of multi-pulse sequence of phase kicks and emission by a pair of atoms shows that both the frequency and the linewidth of the emitted spectrum could be controlled.

Jae-Seung Lee; Mary A. Rohrdanz; A. K. Khitrin

2007-07-03T23:59:59.000Z

384

Photocatalytic destruction of automobile exhaust emissions  

SciTech Connect

Hydrocarbons, carbon monoxide, and nitrogen oxides contained in automobile exhaust emissions are among the major atmospheric air pollutants. During the first few minutes of a cold start of the engine, the emission levels of unburned hydrocarbon and CO pollutants are very high due to the inefficiency of the cold engine and the poor activity of the catalysts lower temperatures. Therefore, it is necessary to provide an alternative approach to deal with this specific problem in order to meet near-term regulatory requirements. Our approach has been to use known photocatalytic reactions obtainable on semiconducting powders such as titanium dioxide. In this presentation we describe our recent studies aimed at the photocatalytic reduction of unburned hydrocarbons and carbon monoxide in automobile exhaust emissions. Our results demonstrate the effective destruction of propylene into water and carbon dioxide. The conversion was found to be dependent on the propylene flow rate. The reaction rate was studied as a function of time, humidity and temperature. The effect of the power of the UV source on conversion will also be presented.

Kaviranta, P.D.; Peden, C.H.F. [Pacific Northwest National Lab., Richland, WA (United States)

1996-10-01T23:59:59.000Z

385

EIA - Greenhouse Gas Emissions Overview  

Gasoline and Diesel Fuel Update (EIA)

Greenhouse Gas Tables (1990-2009) Greenhouse Gas Tables (1990-2009) Table Title Formats Overview 1 U.S. emissions of greenhouse gases, based on global warming potential 2 U.S. greenhouse gas intensity and related factors 3 Distribution of total U.S. greenhouse gas emissions by end-use sector 4 World energy-related carbon dioxide emissions by region 5 Greenhouse gases and 100-year net global warming potentials Carbon dioxide emissions 6 U.S. carbon dioxide emissions from energy and industry 7 U.S. energy-related carbon dioxide emissions by end-use sector 8 U.S. carbon dioxide emission from residential sector energy consumption 9 U.S. carbon dioxide emissions from commercial sector energy consumption 10 U.S. carbon dioxide emissions from industrial sector energy consumption

386

NETL: Mercury Emissions Control Technologies - Bench Scale Kinetics of  

NLE Websites -- All DOE Office Websites (Extended Search)

Bench Scale Kinetics of Mercury Reactions in FGD Liquors Bench Scale Kinetics of Mercury Reactions in FGD Liquors When research into the measurement and control of Hg emissions from coal-fired power plants began in earnest in the early 1990s, it was observed that oxidized mercury can be scrubbed at high efficiency in wet FGD systems, while elemental mercury can not. In many cases, elemental mercury concentrations were observed to increase slightly across wet FGD systems, but this was typically regarded as within the variability of the measurement methods. However, later measurements have shown substantial re-emissions from some FGD systems. The goal of this project is to develop a fundamental understanding of the aqueous chemistry of mercury (Hg) absorbed by wet flue gas desulfurization (FGD) scrubbing liquors. Specifically, the project will determine the chemical reactions that oxidized mercury undergoes once absorbed, the byproducts of those reactions, and reaction kinetics.

387

Secondary emission gas chamber  

E-Print Network (OSTI)

For a hadron calorimeter active element there is considered a gaseous secondary emis-sion detector (150 micron gap, 50 kV/cm). Such one-stage parallel plate chamber must be a radiation hard, fast and simple. A model of such detector has been produced, tested and some characteristics are presented.

V. In'shakov; V. Kryshkin; V. Skvortsov

2014-12-10T23:59:59.000Z

388

CARBON DIOXIDE EMISSION REDUCTION  

E-Print Network (OSTI)

.5 Primary Energy Use and Carbon Dioxide Emissions for Selected US Chemical Subsectors in 1994 ...............................................................................................................16 Table 2.7 1999 Energy Consumption and Specific Energy Consumption (SEC) in the U.S. Cement Efficiency Technologies and Measures in Cement Industry.................22 Table 2.9 Energy Consumption

Delaware, University of

389

Graphene Coating Coupled Emission  

E-Print Network (OSTI)

Graphene Coating Coupled Emission A COMSET, A single sheet of sp2-hybridized carbon atoms, called of graphene and its unique properties, I will present amplification of surface graphene-Ag hybrid films which when graphene is used as the spacer layer in a conventional Ag- harnessed the nonlinear properties

Shyamasundar, R.K.

390

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Emissions Inspection Exemption Vehicles powered exclusively by electricity are exempt from state emissions control inspections. For more information, see the Rhode...

391

Ethylene Oxide Explosions  

Science Journals Connector (OSTI)

... THE occasional occurrence of ethylene oxide explosions during the fumigation of dried fruit has led us to undertake a detailed ... yielded results somewhat like those for acetaldehyde1,2.. Cool flames can be initiated in ethylene oxide air mixtures in the neighbourhood of 330 C. at atmospheric pressure. ...

J. H. BURGOYNE; F. A. BURDEN

1948-07-31T23:59:59.000Z

392

Oxidative Degradation of Monoethanolamine  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxidative Degradation of Monoethanolamine Oxidative Degradation of Monoethanolamine Susan Chi Gary T. Rochelle* (gtr@che.utexas.edu, 512-471-7230) The University of Texas at Austin Department of Chemical Engineering Austin, Texas 78712 Prepared for presentation at the First National Conference on Carbon Sequestration, Washington, DC, May 14-17, 2001 Abstract Oxidative degradation of monoethanolamine (MEA) was studied under typical absorber condition of 55°C. The rate of evolution of NH 3 , which was indicative of the overall rate of degradation, was measured continuously in a batch system sparged with air. Dissolved iron from 0.0001 mM to 1 mM yields oxidation rates from 0.37 to 2 mM/hr in MEA solutions loaded with 0.4 mole CO 2 / mole MEA. Ethylenediaminetetraacetic acid (EDTA) and N,N-bis(2- hydroxyethyl)glycine effectively decrease the rate of oxidation in the presence of iron by 40 to

393

Regenerative thermal oxidation and alternative technologies for VOC control  

SciTech Connect

Thermal oxidation technologies have been used successfully to control VOC`s for many years but the recent 1990 Clean Air Act Amendments have spurred improvements in the established processes and development of economic alternatives. The combination of the regulatory maze and confusion in the selection of the best technology for a particular application has created a potential nightmare for those companies facing a need to reduce their VOC EMISSIONS. The relative advantages and disadvantages of regenerative, recuperative and catalytic oxidizers will be reviewed, with an emphasis on the economic justification for regenerative thermal oxidation (RTO). Control efficiencies of more than 99% have been demonstrated for RTO`s on a multitude of industrial process exhaust streams. Lowest evaluated cost over a fifteen to twenty year effective equipment life is a key selection criteria. This paper describes the underlying principles of thermal oxidation, and discusses the applicability of these and other emerging technologies for VOC control.

Biedell, E.L. [REECQ, Somerville, NJ (United States)

1995-12-31T23:59:59.000Z

394

Allocation of emission rights Economic incentives for emission  

E-Print Network (OSTI)

for all countries High cost effectiviness:High cost effectiviness: International Emission trading Fairness NAM Department of Physical Resource Theory #12;Financial flows from emissions trading 450 ppmGDP SAS CPA WEU NAM Department of Physical Resource Theory #12;Financial flows from emissions trading 450

395

Downstream Emissions Trading for Transport  

Science Journals Connector (OSTI)

This chapter addresses the issue of downstream emission trading within the transport sector. It is argued that emission trading may be relevant in this sector, and ... regarding international transport, it is arg...

Charles Raux

2011-01-01T23:59:59.000Z

396

Phase-Transfer-Catalyzed Oxidations  

Science Journals Connector (OSTI)

Phase-transfer catalysis (PTC) offers many excellent opportunities for conducting oxidation reactions using inexpensive primary oxidants such as oxygen, sodium hypochlorite, hydrogen peroxide, electrooxidation...

Charles M. Starks; Charles L. Liotta; Marc E. Halpern

1994-01-01T23:59:59.000Z

397

Radionuclide Air Emission Report for 2011  

E-Print Network (OSTI)

470E-201 Radionuclide Air Emission Report for Prepared by:Environmental Protection Agency, National Emission Standardsfor Emissions of Radionuclides Other Than Radon From

Wahl, Linnea

2012-01-01T23:59:59.000Z

398

GBTL Workshop GHG Emissions | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

GHG Emissions GBTL Workshop GHG Emissions EERE Presentation of Greenhouse Gas EmissionsResource Potential gbtlworkshopghgemissions.pdf More Documents & Publications GBTL...

399

Distributed Energy Resources for Carbon Emissions Mitigation  

E-Print Network (OSTI)

Energy Resources for Carbon Emissions Mitigation RyanEnergy Resources for Carbon Emissions Mitigation Ryanand/or site-attributable carbon emissions at commercial and

Firestone, Ryan; Marnay, Chris

2008-01-01T23:59:59.000Z

400

Low emissions diesel fuel  

DOE Patents (OSTI)

A method and matter of composition for controlling NO.sub.x emissions from existing diesel engines. The method is achieved by adding a small amount of material to the diesel fuel to decrease the amount of NO.sub.x produced during combustion. Specifically, small amounts, less than about 1%, of urea or a triazine compound (methylol melamines) are added to diesel fuel. Because urea and triazine compounds are generally insoluble in diesel fuel, microemulsion technology is used to suspend or dissolve the urea or triazine compound in the diesel fuel. A typical fuel formulation includes 5% t-butyl alcohol, 4.5% water, 0.5% urea or triazine compound, 9% oleic acid, and 1% ethanolamine. The subject invention provides improved emissions in heavy diesel engines without the need for major modifications.

Compere, Alicia L. (Knoxville, TN); Griffith, William L. (Oak Ridge, TN); Dorsey, George F. (Farragut, TN); West, Brian H. (Kingston, TN)

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxide emissions rhode" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Regenerative catalytic oxidation  

SciTech Connect

Currently Regenerative Thermal Oxidizers (R.T.O.`s) are an accepted technology for the control of volatile organic compounds (VOC`s) and hazardous air pollutants (HAP`s). This control technology, when introduced, offered substantial reductions in operating costs, especially auxiliary fuel requirements when compared to existing control technologies such as recuperative thermal and recuperative catalytic oxidizers. While these savings still exist, there is a demand for control of new and/or hybrid technologies, one of which is Regenerative Catalytic Oxidizers (R.C.O.`s). This paper will explore the development of regenerative catalytic oxidation from the theoretical stage through pilot testing through a commercial installation. The operating cost of R.C.O.`s will be compared to R.T.O.`s to verify the savings that are achievable through the use of regenerative catalytic oxidation. In the development of this technology, which is a combination of two (2) existing technologies, R.T.O.`s and catalysis, a second hybrid technology was explored and pilot tested. This is a combination R.C.O. for VOC and HAP control and simultaneous SCR (Selective Catalytic Reduction) for NOx (Oxides of Nitrogen) control. Based on the pilot and full scale testing, both regenerative catalytic oxidizers and systems which combine R.C.O. with SCR for both VOC and NOx reduction are economically viable and are in fact commercially available. 6 figs., 2 tabs.

Gribbon, S.T. [Engelhard Process Emission Systems, South Lyon, MI (United States)

1996-12-31T23:59:59.000Z

402

CORONAL EMISSION LINES AS THERMOMETERS  

SciTech Connect

Coronal emission-line intensities are commonly used to measure electron temperatures using emission measure and/or line ratio methods. In the presence of systematic errors in atomic excitation calculations and data noise, the information on underlying temperature distributions is fundamentally limited. Increasing the number of emission lines used does not necessarily improve the ability to discriminate between different kinds of temperature distributions.

Judge, Philip G., E-mail: judge@ucar.ed [High Altitude Observatory, National Center for Atmospheric Research , P.O. Box 3000, Boulder CO 80307-3000 (United States)

2010-01-10T23:59:59.000Z

403

Coronal emission lines as thermometers  

E-Print Network (OSTI)

Coronal emission line intensities are commonly used to measure electron temperatures using emission measure and/or line ratio methods. In the presence of systematic errors in atomic excitation calculations and data noise, the information on underlying temperature distributions is fundamentally limited. Increasing the number of emission lines used does not necessarily improve the ability to discriminate between different kinds of temperature distributions.

Judge, Philip G

2009-01-01T23:59:59.000Z

404

On-Road Measurement of Gas and Particle Phase Pollutant Emission Factors  

NLE Websites -- All DOE Office Websites (Extended Search)

On-Road Measurement of Gas and Particle Phase Pollutant Emission Factors On-Road Measurement of Gas and Particle Phase Pollutant Emission Factors for Individual Heavy-Duty Diesel Trucks Title On-Road Measurement of Gas and Particle Phase Pollutant Emission Factors for Individual Heavy-Duty Diesel Trucks Publication Type Journal Article Year of Publication 2012 Authors Dallmann, Timothy R., Steven J. DeMartini, Thomas W. Kirchstetter, Scott C. Herndon, Timothy B. Onasch, Ezra C. Wood, and Robert A. Harley Journal Environmental Science and Technology Volume 46 Issue 15 Pagination 8511-8518 Abstract Pollutant concentrations in the exhaust plumes of individual diesel trucks were measured at high time resolution in a highway tunnel in Oakland, CA, during July 2010. Emission factors for individual trucks were calculated using a carbon balance method, in which pollutants measured in each exhaust plume were normalized to measured concentrations of carbon dioxide. Pollutants considered here include nitric oxide, nitrogen dioxide (NO2), carbon monoxide, formaldehyde, ethene, and black carbon (BC), as well as optical properties of emitted particles. Fleet-average emission factors for oxides of nitrogen (NOx) and BC respectively decreased 30 ± 6 and 37 ± 10% relative to levels measured at the same location in 2006, whereas a 34 ± 18% increase in the average NO2 emission factor was observed. Emissions distributions for all species were skewed with a small fraction of trucks contributing disproportionately to total emissions. For example, the dirtiest 10% of trucks emitted half of total NO2 and BC emissions. Emission rates for NO2 were found to be anticorrelated with all other species considered here, likely due to the use of catalyzed diesel particle filters to help control exhaust emissions. Absorption and scattering cross-section emission factors were used to calculate the aerosol single scattering albedo (SSA, at 532 nm) for individual truck exhaust plumes, which averaged 0.14 ± 0.03.

405

EIA - Emissions of Greenhouse Gases in the United States 2009  

Gasoline and Diesel Fuel Update (EIA)

Environment Environment Emissions of Greenhouse Gases in the U. S. Release Date: March 31, 2011 | Next Release Date: Report Discontinued | Report Number: DOE/EIA-0573(2009) This report-the eighteenth annual report-presents the U.S. Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. Download the GHG Report Introduction For this report, activity data on coal and natural gas consumption and electricity sales and losses by sector were obtained from the January 2011 Monthly Energy Review (MER). In keeping with current international practice, this report presents data on greenhouse gas emissions in million metric tons carbon dioxide equivalent. The data can be converted to carbon equivalent units by

406

Analysis of Emission Shapes  

E-Print Network (OSTI)

Shapes of relative emission sources can be accessed by expanding shapes of correlations at low relative velocities in pair center of mass in Cartesian harmonics. Coefficients of expansion for correlations are related to the respective coefficients of expansion for the sources through one dimensional integral transforms involving properties of pair relative wavefunctions. The methodology is illustrated with analyses of NA49 and PHENIX correlation data.

P. Danielewicz

2007-07-03T23:59:59.000Z

407

Analysis of Emission Shapes  

E-Print Network (OSTI)

Shapes of relative emission sources can be accessed by expanding shapes of correlations at low relative velocities in pair center of mass in Cartesian harmonics. Coefficients of expansion for correlations are related to the respective coefficients of expansion for the sources through one dimensional integral transforms involving properties of pair relative wavefunctions. The methodology is illustrated with analyses of NA49 and PHENIX correlation data.

Danielewicz, P

2007-01-01T23:59:59.000Z

408

Fundamental studies of stress distributions and stress relaxation in oxide scales on high temperature alloys. [Final progress report  

SciTech Connect

This report summarizes a three-year study of stresses arising in the oxide scale and underlying metal during high temperature oxidation and of scale cracking. In-situ XRD was developed to measure strains during oxidation over 1000{degrees}C on pure metals. Acoustic emission was used to observe scale fracture during isothermal oxidation and cooling, and statistical analysis was used to infer mechanical aspects of cracking. A microscratch technique was used to measure the fracture toughness of scale/metal interface. A theoretical model was evaluated for the development and relaxation of stresses in scale and metal substrate during oxidation.

Shores, D.A.; Stout, J.H.; Gerberich, W.W.

1993-06-01T23:59:59.000Z

409

Induced and Spontaneous Emission  

Science Journals Connector (OSTI)

The problem of induced and spontaneous emission is investigated for an atomic two?level system with incident beams of radiation which are either in a coherent state or in a stationary state (contain a definite number of photons). The treatment is fully quantum?mechanical and is confined to the case where the frequency spectrum of the incident beam is narrow compared to the natural linewidth of the system. It is shown that under such conditions the spontaneous emission for frequencies within the narrow band of the incident radiation is sharply reduced compared to the prediction of the natural lineshape. It is shown that a hole is burned in the natural lineshape within the narrow frequency band thus effectively quenching the spontaneous emission at some frequency within the band. This effect is shown to occur both for the coherent and stationary beams. Quantities proportional to the induced and spontaneous probability amplitudes and the lifetimes are computed for times comparable to and long compared to the free lifetime of the state. An expression is found for the spectrum of the emergent radiation in terms of these quantities. Its physical meaning is briefly discussed. The density operator of the field for all times is given.

Saul M. Bergmann

1967-01-01T23:59:59.000Z

410

Emissions Inventory Report Summary for Los Alamos National Laboratory for Calendar Year 2004  

SciTech Connect

Los Alamos National Laboratory (LANL) is subject to annual emissions reporting requirements for regulated air pollutants under Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73 (20.2.73 NMAC), ''Notice of Intent and Emissions Inventory Requirements''. The applicability of the requirements is based on the Laboratory's potential to emit 100 tons per year of suspended particulate matter, nitrogen oxides, carbon monoxide, sulfur oxides, or volatile organic compounds. Additionally, on April 30, 2004, LANL was issued a Title V Operating Permit from the New Mexico Environment Department, Air Quality Bureau, under 20.2.70 NMAC. This Title V Operating Permit (Permit No. P-100) includes emission limits and operating limits for all regulated sources of air pollution at LANL. The Title V Operating Permit also requires semi-annual emissions reporting for all sources included in the permit. This report summarizes both the annual emissions inventory reporting and the semi-annual emissions reporting for LANL for calendar year 2004. LANL's 2004 emissions are well below the emission limits in the Title V Operating Permit.

M. Stockton

2005-10-01T23:59:59.000Z

411

Apparatus for photocatalytic destruction of internal combustion engine emissions during cold start  

SciTech Connect

A method and apparatus are disclosed for the destruction of emissions from an internal combustion engine wherein a substrate coated with TiO{sub 2} is exposed to a light source in the exhaust system of an internal combustion engine thereby catalyzing oxidation/reduction reactions between gaseous hydrocarbons, carbon monoxide, nitrogen oxides and oxygen in the exhaust of the internal combustion engine. 4 figs.

Janata, J.; McVay, G.L.; Peden, C.H.; Exarhos, G.J.

1998-07-14T23:59:59.000Z

412

Process for combined control of mercury and nitric oxide.  

SciTech Connect

Continuing concern about the effects of mercury in the environment may lead to requirements for the control of mercury emissions from coal-fired power plants. If such controls are mandated, the use of existing flue-gas cleanup systems, such as wet scrubbers currently employed for flue-gas desulfurization, would be desirable, Such scrubbers have been shown to be effective for capturing oxidized forms of mercury, but cannot capture the very insoluble elemental mercury (Hg{sup 0}) that can form a significant fraction of the total emissions. At Argonne National Laboratory, we have proposed and tested a concept for enhancing removal of Hg{sup 0}, as well as nitric oxide, through introduction of an oxidizing agent into the flue gas upstream of a scrubber, which readily absorbs the soluble reaction products. Recently, we developed a new method for introducing the oxidizing agent into the flue-gas stream that dramatically improved reactant utilization. The oxidizing agent employed was NOXSORB{trademark}, which is a commercial product containing chloric acid and sodium chlorate. When a dilute solution of this agent was introduced into a gas stream containing Hg{sup 0} and other typical flue-gas species at 300 F, we found that about 100% of the mercury was removed from the gas phase and recovered in process liquids. At the same time, approximately 80% of the nitric oxide was removed. The effect of sulfur dioxide on this process was also investigated and the results showed that it slightly decreased the amount of Hg{sup 0} oxidized while appearing to increase the removal of nitric oxide from the gas phase. We are currently testing the effects of variations in NOXSORB{trademark} concentration, sulfur dioxide concentration, nitric oxide concentration, and reaction time (residence time). Preliminary economic projections based on the results to date indicate that the chemical cost for nitric oxide oxidation could be less than $5,000/ton removed, while for Hg{sup 0} oxidation it would be about $20,000/lb removed.

Livengood, C. D.; Mendelsohn, M. H.

1999-11-03T23:59:59.000Z

413

Choose the best heat-recovery method for thermal oxidizers  

SciTech Connect

Thermal oxidation is current the most economically favorable add-on method of controlling hydrocarbon air emissions of moderate to low concentration (below 10,000 ppm). This concentration range covers emissions from a wide variety of chemical process industries (CPI) sources, including dryers, reactor vents, tank vents, and coaters. Thermal oxidizer systems consist of three basic sub-systems--burner, combustion chamber, and primary heat recovery. Selecting the type of primary heat recovery is probably the most important decision in the design of a thermal oxidizer, and requires consideration of a wide range of factors. The two most widely used types of primary heat recovery--recuperative and regenerative--each have distinct advantages and disadvantages. In general, recuperative oxidizers are simpler and less costly to purchase, whereas regenerative oxidizers offer substantially lower operating costs. Selecting between recuperative and regenerative heat recovery requires balancing a number of factors, such as capital and operating costs, exhaust gas composition and temperature, and secondary heat demand. This article provides guidance on when, where, and how to use each.

Klobucar, J.M.

1995-04-01T23:59:59.000Z

414

SOLID OXIDE PLANAR AND TUBULAR SOLID OXIDE FUEL  

E-Print Network (OSTI)

SOLID OXIDE PLANAR AND TUBULAR SOLID OXIDE FUEL CELLS Dynamic Simulation Approach Modular Approach · Parallel planes: PSOFC · Other: combustor, reformer Solid Oxide Fuel Cell Electrochemistry Cell Reactions · Slow pressure transients #12;Fuel Cell Assumptions · H2 electrochemically oxidized only · CO consumed

Mease, Kenneth D.

415

Syngas Oxidation Mechanism  

Science Journals Connector (OSTI)

A comprehensive analysis of synthesis gas (syngas) oxidation kinetics in wide ranges of temperature ... on the basis of the reaction mechanism of syngas ignition and combustion in air. A vast set of experimental ...

A. M. Starik; N. S. Titova; A. S. Sharipov

2010-09-01T23:59:59.000Z

416

Implementation of SB 1368 Emission Performance  

E-Print Network (OSTI)

........................................................................................................ 18 Calculation of Biomass, Biogas or Landfill Net Emissions ..................................... 19

417

Partnerships to continue moving toward zero emissions  

E-Print Network (OSTI)

Partnerships to continue moving toward zero emissions Zero Emission transportation goals Zero Emission MAP makes available technical assistance to states and cities to support the growth of zero emission mobility markets. 1 Research shows

California at Davis, University of

418

Controlled CO preferential oxidation  

DOE Patents (OSTI)

Method is described for controlling the supply of air to a PROX (PReferential OXidation for CO cleanup) reactor for the preferential oxidation in the presence of hydrogen wherein the concentration of the hydrogen entering and exiting the PROX reactor is monitored, the difference there between correlated to the amount of air needed to minimize such difference, and based thereon the air supply to the PROX reactor adjusted to provide such amount and minimize such difference. 2 figs.

Meltser, M.A.; Hoch, M.M.

1997-06-10T23:59:59.000Z

419

Introduction to Photoelectron Emission Microscopy: Principles...  

NLE Websites -- All DOE Office Websites (Extended Search)

Introduction to Photoelectron Emission Microscopy: Principles and Applications. Introduction to Photoelectron Emission Microscopy: Principles and Applications. Abstract: In the...

420

Improve emissions monitoring  

SciTech Connect

Marathon`s Texas City refinery was subject to five separate EPA regulations in addition to a state program for monitoring and repairing fugitive leaks. In this case history, the refinery sought an organizational solution that reduced monitoring costs and kept the facility fully compliant with current state and federal regulations. Equally important, the new monitoring program incorporated flexibility for future emission-reduction requirements. The paper describes the solution, regulatory background, the previous system, leak-threshold consolidation, operator ownership, and projects benefits.

Vining, S.K. [Marathon Oil Co., Texas City, TX (United States)

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxide emissions rhode" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Emission control technology  

SciTech Connect

Environmental protection is indispensable for preserving the earth for later generations. Indeed, industrial development has made our life rich; however, it also accelerates environmental pollution. Above all, such global problems as acid rain caused by SOx and NOx emissions and air pollution caused by particulates have become serious in recent years. Countermeasures currently in service or under development for these problems include: upgrading of fuel-burning systems; conversion of energy sources to clean fuels; pretreatment of fuels; and flue gas treatment. This chapter focuses on technologies that treat flue gases including the circumstances of the development of the technologies.

Yamaguchi, Fumihiko

1993-12-31T23:59:59.000Z

422

Positron Emission Tomography (PET)  

DOE R&D Accomplishments (OSTI)

Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET.

Welch, M. J.

1990-01-00T23:59:59.000Z

423

Modeling of Diesel Oxidation Catalyst  

Science Journals Connector (OSTI)

Modeling of Diesel Oxidation Catalyst ... Optimization of hydrocarbon (HC) oxidation over a diesel oxidation catalyst (DOC) requires consideration of (i) HC gas diffusion into the catalyst layer, (ii) HC gas adsorption and desorption from catalyst sites, and (iii) kinetics of the oxidation reaction. ... Mutagenicity of Diesel Engine Exhaust Is Eliminated in the Gas Phase by an Oxidation Catalyst but Only Slightly Reduced in the Particle Phase ...

Yasushi Tanaka; Takashi Hihara; Makoto Nagata; Naoto Azuma; Akifumi Ueno

2005-09-30T23:59:59.000Z

424

EIA - Greenhouse Gas Emissions Overview  

Gasoline and Diesel Fuel Update (EIA)

1. Greenhouse Gas Emissions Overview 1. Greenhouse Gas Emissions Overview 1.1 Total emissions Total U.S. anthropogenic (human-caused) greenhouse gas emissions in 2009 were 5.8 percent below the 2008 total (Table 1). The decline in total emissions-from 6,983 million metric tons carbon dioxide equivalent (MMTCO2e) in 2008 to 6,576 MMTCO2e in 2009-was the largest since emissions have been tracked over the 1990-2009 time frame. It was largely the result of a 419-MMTCO2e drop in carbon dioxide (CO2) emissions (7.1 percent). There was a small increase of 7 MMTCO2e (0.9 percent) in methane (CH4) emissions, and an increase of 8 MMTCO2e (4.9 percent), based on partial data, in emissions of man-made gases with high global warming potentials (high-GWP gases). (Draft estimates for emissions of HFC and PFC

425

NETL: Mercury Emissions Control Technologies - Testing of Mercury Control  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing of Mercury Control with Calcium-Based Sorbents and Oxidizing Agents Testing of Mercury Control with Calcium-Based Sorbents and Oxidizing Agents Southern Research Institute, Birmingham, Alabama Subcontractor- ARCADIS Geraghty & Miller The overall goal of this project is to test the effectiveness of calcium-based sorbents and oxidizing agents for controlling mercury emissions from coal-fired power plant boilers. ARCADIS Geraghty & Miller, with EPA support, has developed calcium-based sorbents to remove SO2 and mercury simultaneously. The sorbents consist of hydrated lime (Ca(OH)2) and an added oxidant and a silica-modified calcium (CaSiO3) with an added oxidant. The mercury capacity in ug Hg/g sorbent for the two sorbents is 20 and 110-150, respectively, verses a mercury capacity for the current standard sorbent, activated carbon, of 70-100. The advantages of a lime based sorbent verses carbon is lower cost, simultaneous removal of sulfur, and allowance of ash to be utilized for a cement additive.

426

Emissions and fuel economy of a prechamber diesel engine with natural gas dual fuelling  

SciTech Connect

A four-cylinder turbocharged prechamber diesel engine (Caterpillar 3304) was operated with natural gas and pilot diesel fuel ignition over a wide range of load and speed. Measurements were made of fuel consumption and the emissions of unburned hydrocarbons, carbon monoxide, and the oxides of nitrogen. Improvements in fuel economy and emissions were found to be affected by the diesel fuel-gas fraction, and by air restriction and fuel injection timing. Boundaries of unstable, inefficient and knocking operation were defined and the importance of gas-air equivalance ratio was demonstrated in its effect on economy, emissions and stability of operation.

Ding, X.; Hill, P.G.

1986-01-01T23:59:59.000Z

427

Vehicle-emission characteristics using mechanically emulsified alcohol/diesel fuels  

SciTech Connect

A light-duty diesel vehicle fueled with an emulsified alcohol/diesel fuel was operated under cyclic mode. Emission and fuel economy measurements were taken during vehicle operation. The test results showed the volumetric fuel economy decreased slightly. Carbon monoxide emissions increased slightly, and oxides of nitrogen showed no significant change. Particulate emissions were reduced slightly, and the particulate extractables increased slightly. The environmental effect of these data cancel each other resulting in no significant changes in the total release of biological activity into the environment.

Allsup, J.R.; Seizinger, D.E.; Cox, F.W.; Brook, A.L.; McClellan, R.O.

1983-07-01T23:59:59.000Z

428

Effect of biodiesel fuels on diesel engine emissions  

Science Journals Connector (OSTI)

The call for the use of biofuels which is being made by most governments following international energy policies is presently finding some resistance from car and components manufacturing companies, private users and local administrations. This opposition makes it more difficult to reach the targets of increased shares of use of biofuels in internal combustion engines. One of the reasons for this resistance is a certain lack of knowledge about the effect of biofuels on engine emissions. This paper collects and analyzes the body of work written mainly in scientific journals about diesel engine emissions when using biodiesel fuels as opposed to conventional diesel fuels. Since the basis for comparison is to maintain engine performance, the first section is dedicated to the effect of biodiesel fuel on engine power, fuel consumption and thermal efficiency. The highest consensus lies in an increase in fuel consumption in approximate proportion to the loss of heating value. In the subsequent sections, the engine emissions from biodiesel and diesel fuels are compared, paying special attention to the most concerning emissions: nitric oxides and particulate matter, the latter not only in mass and composition but also in size distributions. In this case the highest consensus was found in the sharp reduction in particulate emissions.

Magn Lapuerta; Octavio Armas; Jos Rodrguez-Fernndez

2008-01-01T23:59:59.000Z

429

Greenhouse gas emissions from home composting of organic household waste  

SciTech Connect

The emission of greenhouse gases (GHGs) is a potential environmental disadvantage of home composting. Because of a lack of reliable GHG emission data, a comprehensive experimental home composting system was set up. The system consisted of six composting units, and a static flux chamber method was used to measure and quantify the GHG emissions for one year composting of organic household waste (OHW). The average OHW input in the six composting units was 2.6-3.5 kg week{sup -1} and the temperature inside the composting units was in all cases only a few degrees (2-10 {sup o}C) higher than the ambient temperature. The emissions of methane (CH{sub 4}) and nitrous oxide (N{sub 2}O) were quantified as 0.4-4.2 kg CH{sub 4} Mg{sup -1} input wet waste (ww) and 0.30-0.55 kg N{sub 2}O Mg{sup -1} ww, depending on the mixing frequency. This corresponds to emission factors (EFs) (including only CH{sub 4} and N{sub 2}O emissions) of 100-239 kg CO{sub 2}-eq. Mg{sup -1} ww. Composting units exposed to weekly mixing had the highest EFs, whereas the units with no mixing during the entire year had the lowest emissions. In addition to the higher emission from the frequently mixed units, there was also an instant release of CH{sub 4} during mixing which was estimated to 8-12% of the total CH{sub 4} emissions. Experiments with higher loads of OHW (up to 20 kg every fortnight) entailed a higher emission and significantly increased overall EFs (in kg substance per Mg{sup -1} ww). However, the temperature development did not change significantly. The GHG emissions (in kg CO{sub 2}-eq. Mg{sup -1} ww) from home composting of OHW were found to be in the same order of magnitude as for centralised composting plants.

Andersen, J.K., E-mail: jka@env.dtu.d [Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kongens Lyngby (Denmark); Boldrin, A.; Christensen, T.H.; Scheutz, C. [Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kongens Lyngby (Denmark)

2010-12-15T23:59:59.000Z

430

Oxidation of Mercury in Products of Coal Combustion  

SciTech Connect

Laboratory measurements of mercury oxidation during selective catalytic reduction (SCR) of nitric oxide, simulation of pilot-scale measurements of mercury oxidation and adsorption by unburned carbon and fly ash, and synthesis of new materials for simultaneous oxidation and adsorption of mercury, were performed in support of the development of technology for control of mercury emissions from coal-fired boilers and furnaces. Conversion of gas-phase mercury from the elemental state to water-soluble oxidized form (HgCl{sub 2}) enables removal of mercury during wet flue gas desulfurization. The increase in mercury oxidation in a monolithic V{sub 2}O{sub 5}-WO{sub 3}/TiO{sub 2} SCR catalyst with increasing HCl at low levels of HCl (< 10 ppmv) and decrease in mercury oxidation with increasing NH{sub 3}/NO ratio during SCR were consistent with results of previous work by others. The most significant finding of the present work was the inhibition of mercury oxidation in the presence of CO during SCR of NO at low levels of HCl. In the presence of 2 ppmv HCl, expected in combustion products from some Powder River Basin coals, an increase in CO from 0 to 50 ppmv reduced the extent of mercury oxidation from 24 {+-} 3 to 1 {+-} 4%. Further increase in CO to 100 ppmv completely suppressed mercury oxidation. In the presence of 11-12 ppmv HCl, increasing CO from 0 to {approx}120 ppmv reduced mercury oxidation from {approx}70% to 50%. Conversion of SO{sub 2} to sulfate also decreased with increasing NH{sub 3}/NO ratio, but the effects of HCl and CO in flue gas on SO{sub 2} oxidation were unclear. Oxidation and adsorption of mercury by unburned carbon and fly ash enables mercury removal in a particulate control device. A chemical kinetic mechanism consisting of nine homogeneous and heterogeneous reactions for mercury oxidation and removal was developed to interpret pilot-scale measurements of mercury oxidation and adsorption by unburned carbon and fly ash in experiments at pilot scale, burning bituminous coals (Gale, 2006) and blends of bituminous coals with Powder River Basin coal (Gale, 2005). The removal of mercury by fly ash and unburned carbon in the flue gas from combustion of the bituminous coals and blends was reproduced with satisfactory accuracy by the model. The enhancement of mercury capture in the presence of calcium (Gale, 2005) explained a synergistic effect of blending on mercury removal across the baghouse. The extent of mercury oxidation, on the other hand, was not so well described by the simulation, because of oversensitivity of the oxidation process in the model to the concentration of unburned carbon. Combined catalysts and sorbents for oxidation and removal of mercury from flue gas at low temperature were based on surfactant-templated silicas containing a transition metal and an organic functional group. The presence of both metal ions and organic groups within the pore structure of the materials is expected to impart to them the ability to simultaneously oxidize elemental mercury and adsorb the resulting oxidized mercury. Twelve mesoporous organosilicate catalysts/sorbents were synthesized, with and without metals (manganese, titanium, vanadium) and organic functional groups (aminopropyl, chloropropyl, mercaptopropyl). Measurement of mercury oxidation and adsorption by the candidate materials remains for future work.

Peter Walsh; Giang Tong; Neeles Bhopatkar; Thomas Gale; George Blankenship; Conrad Ingram; Selasi Blavo Tesfamariam Mehreteab; Victor Banjoko; Yohannes Ghirmazion; Heng Ban; April Sibley

2009-09-14T23:59:59.000Z

431

Oxidation of alloys targeted for advanced steam turbines  

SciTech Connect

Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energys Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760C. This research examines the steamside oxidation of alloys for use in USC systems, with emphasis placed on applications in high- and intermediate-pressure turbines.

Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.; Alman, D.E.

2006-03-12T23:59:59.000Z

432

Using market-based dispatching with environmental price signals to reduce emissions and  

Science Journals Connector (OSTI)

The possibility of using electricity dispatching strategies to achieve a 50% nitrogen oxide (NOx) emission reduction from electricity generating units was examined using the grid of the Electricity Reliability Council of Texas as a case study. Simulations of a hypothetical policy demonstrate that imposing higher NOx prices induces a switch from some coal-fired generation to natural gas generation, lowering NOx emissions. The simulation is for a day with relatively high electricity demand and accounts for transmission constraints. In addition to the lowering of the NOx emissions, there are co-benefits of the redispatching of generation from coal to natural gas, including reductions in the emissions of sulfur oxides (24%71%), Hg (16%82%) and CO2 (8.8%22%). Water consumption was also decreased, by 4.4%8.7%. Substantial reductions of NOx emissions can be achieved for an increased generation cost of 413%, which is due to the higher fuel price of gas relative to coal (assuming a price of $3.87 per MMBTU (MMBTU: million British thermal units) for natural gas, and $1.89 per MMBTU for coal). However, once the system has reduced NOx emissions by approximately 50%, there is little incremental reduction in emissions due to further increases in NOx prices.

Nawaf S Alhajeri; Pearl Donohoo; Ashlynn S Stillwell; Carey W King; Mort D Webster; Michael E Webber; David T Allen

2011-01-01T23:59:59.000Z

433

Thin film deposition of barium strontium oxide by rf magnetron sputtering  

SciTech Connect

Barium strontium oxide [(BaSr)O] thin films approximately 1 {mu}m in thickness were deposited on tungsten substrates using rf magnetron sputter deposition for thermionic cathode applications. Three substrate temperatures ranging from 25 to 700 deg. C were used in the deposition processes to create oxide films with different surface morphologies and crystalline structures. The films were characterized with scanning electron microscopy and their surface morphologies were correlated to their thermionic emission properties. The results showed that the surface morphology and crystalline structure of the oxide films strongly affected the emission properties. The oxide film deposited at the lowest substrate temperature of 25 deg. C showed a rough surface and a crystalline structure consisting of nanograins. At higher substrate temperatures, the oxide films exhibited smooth surfaces and close-packed crystalline structures with larger grains. The work function of the oxide films was reduced and the emission current density increased as a result of the increase in the growth temperature. The (BaSr)O film made at 700 deg. C exhibited the lowest work function of 1.57 eV and the largest emission current density of 1.60 A/cm{sup 2} at 1198 K under an electrical field of 0.88 V/{mu}m. The emission current density and the work function of the (BaSr)O thin film cathodes were stable over the testing period of 8 h. Compared to the traditional cathode fabrication process, which involves the coating of carbonates followed by an activation process, rf magnetron sputtering has a greater ability to control the deposition parameters, which makes it a valuable alternative technique to fabricate oxide cathodes.

Liu Yan; Day, Christopher M.; Little, Scott A.; Jin, Feng [Department of Physics and Astronomy, Ball State University, Muncie, Indiana 47306 (United States)

2006-11-15T23:59:59.000Z

434

Fuel Mix and Emissions Disclosure  

Energy.gov (U.S. Department of Energy (DOE))

As part of the state's 1997 electric utility restructuring legislation, Illinois established provisions for the disclosure of fuel mix and emissions data. All electric utilities and alternative...

435

Fuel Mix and Emissions Disclosure  

Energy.gov (U.S. Department of Energy (DOE))

Oregon's 1999 electric utility restructuring legislation requires electricity companies and electric service suppliers to disclose details regarding their fuel mix and emissions of electric...

436

Emissions trading under market imperfections.  

E-Print Network (OSTI)

??In this thesis we consider emissions trading under various market imperfections such as uncertainty over permit price, imperfect competition and noncompliance. First, we study the (more)

Lappi, Pauli

2013-01-01T23:59:59.000Z

437

field emission electron microprobe | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

field emission electron microprobe Leads No leads are available at this time. Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. Abstract: As a...

438

EMSL - field emission electron microprobe  

NLE Websites -- All DOE Office Websites (Extended Search)

field-emission-electron-microprobe en Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. http:www.emsl.pnl.govemslwebpublications...

439

Acoustic emission during polymer crystallization  

Science Journals Connector (OSTI)

... .G.; part support to L.K.) Acoustic Emission, Special Technical Publication 505, ASTM, Philadelphia, 1971; Grabec, I. & Peterlin, A. J. Polymer Sci. ...

A. Galeski; L. Koenczoel; E. Piorkowska; E. Baer

1987-01-01T23:59:59.000Z

440

Thermally Oxidized Silicon  

NLE Websites -- All DOE Office Websites (Extended Search)

Anneli Munkholm (Lumileds Lighting) and Sean Brennan (SSRL) Anneli Munkholm (Lumileds Lighting) and Sean Brennan (SSRL) Illustration of the silicon positions near the Si-SiO2 interface for a 4° miscut projected onto the ( ) plane. The silicon atoms in the substrate are blue and those in the oxide are red. The small black spots represent the translated silicon positions in the absence of static disorder. The silicon atoms in the oxide have been randomly assigned a magnitude and direction based on the static disorder value at that position in the lattice. The outline of four silicon unit cells is shown in black, whereas the outline of four expanded lattice cells in the oxide is shown in blue One of the most studied devices of modern technology is the field-effect transistor, which is the basis for most integrated circuits. At its heart

Note: This page contains sample records for the topic "oxide emissions rhode" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Oxidative Tritium Decontamination System  

SciTech Connect

The Princeton Plasma Physics Laboratory, Tritium Systems Group has developed and fabricated an Oxidative Tritium Decontamination System (OTDS), which is designed to reduce tritium surface contamination on various components and items. The system is configured to introduce gaseous ozone into a reaction chamber containing tritiated items that require a reduction in tritium surface contamination. Tritium surface contamination (on components and items in the reaction chamber) is removed by chemically reacting elemental tritium to tritium oxide via oxidation, while purging the reaction chamber effluent to a gas holding tank or negative pressure HVAC system. Implementing specific concentrations of ozone along with catalytic parameters, the system is able to significantly reduce surface tritium contamination on an assortment of expendable and non-expendable items. This paper will present the results of various experimentation involving employment of this system.

Charles A. Gentile; John J. Parker; Gregory L. Guttadora; Lloyd P. Ciebiera

2002-02-11T23:59:59.000Z

442

Methanol partial oxidation reformer  

DOE Patents (OSTI)

A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

Ahmed, Shabbir (Bolingbrook, IL); Kumar, Romesh (Naperville, IL); Krumpelt, Michael (Naperville, IL)

1999-01-01T23:59:59.000Z

443

Methanol partial oxidation reformer  

DOE Patents (OSTI)

A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

Ahmed, Shabbir (Bolingbrook, IL); Kumar, Romesh (Naperville, IL); Krumpelt, Michael (Naperville, IL)

2001-01-01T23:59:59.000Z

444

Methanol partial oxidation reformer  

DOE Patents (OSTI)

A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

Ahmed, S.; Kumar, R.; Krumpelt, M.

1999-08-17T23:59:59.000Z

445

Methanol partial oxidation reformer  

DOE Patents (OSTI)

A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

Ahmed, S.; Kumar, R.; Krumpelt, M.

1999-08-24T23:59:59.000Z

446

Source Emissions and Transport  

NLE Websites -- All DOE Office Websites (Extended Search)

electron micrograph image, Lara Gundel with instrumentation electron micrograph image, Lara Gundel with instrumentation Source Emissions and Transport Investigators conduct research here to characterize and better understand the sources of airborne volatile, semi-volatile and particulate organic pollutants in the indoor environment. This research includes studies of the physical and chemical processes that govern indoor air pollutant concentrations and exposures. The motivation is to contribute to the reduction of potential human health effects. Contacts Randy Maddalena RLMaddalena@lbl.gov (510) 486-4924 Mark Mendell MJMendell@lbl.gov (510) 486-5762 Links Pollutant Sources, Dynamics and Chemistry Group Batteries and Fuel Cells Buildings Energy Efficiency Electricity Grid Energy Analysis Energy Technologies Environmental Impacts

447

Carbon 41 (2003) 18271831 Optical emission spectroscopy study of the influence of  

E-Print Network (OSTI)

arc discharge, laser ablation, and analyzing optical emissions in the plasma and comparing chemical by an iron oxide film with a aligned CNTs [4,5]. thickness of 50 nm by the sol­gel method [8 characterized by scanning electron micro- increased to 80% o

Zhang, Guangyu

448

Analysis of Strategies for Reducing Multiple Emissions from Electric Power Plants: SO2, Nox, CO2  

Reports and Publications (EIA)

This report responds to a request received from Senator David McIntosh on June 29, 2000 to analyze the impacts on energy consumers and producers of coordinated strategies to reduce emissions of sulfur dioxide, nitrogen oxides, and carbon dioxide at U.S. power plants.

2001-01-01T23:59:59.000Z

449

From Acid Dip to Thriving Waters The Impact of Emissions Reductions on Lake Recovery  

E-Print Network (OSTI)

-Range Transboundary Air Pollution for various pollutants including sulphur dioxide (SO2), nitrogen oxides (NOx countries implementing domestic regula- tions to control emissions of pollutants. While the problems October 1, 2007 Abstract We develop an optimal control model for the recovery of a representative

Sadoulet, Elisabeth

450

Tetraalklylammonium polyoxoanionic oxidation catalysts  

DOE Patents (OSTI)

Alkanes are catalytically oxidized in air or oxygen using iron-substituted polyoxoanions (POAs) of the formula: H{sub e{minus}z}[(n-C{sub 4}H{sub 9}){sub 4}N]{sub z}(XM{sub 11}M{prime}O{sub 39}){sup {minus}e}. The M{prime} (e.g., iron(III)/iron(II)) reduction potential of the POAs is affected by selection of the central atom X and the framework metal M, and by the number of tetrabutyl-ammonium groups. Decreased Fe(III)/Fe(II) reduction potential has been found to correlate to increased oxidation activity.

Ellis, P.E.; Lyons, J.E.; Myers, H.K. Jr.; Shaikh, S.N.

1998-10-06T23:59:59.000Z

451

Tetraalykylammonium polyoxoanionic oxidation catalysts  

DOE Patents (OSTI)

Alkanes are catalytically oxidized in air or oxygen using iron-substituted polyoxoanions (POAs) of the formula: H.sub.e-z (n-C.sub.4 H.sub.9).sub.4 N!.sub.z (XM.sub.11 M'O.sub.39).sup.-e The M' (e.g., iron(III)/iron(II)) reduction potential of the POAs is affected by selection of the central atom X and the framework metal M, and by the number of tetrabutyl-ammonium groups. Decreased Fe(III)/Fe(II) reduction potential has been found to correlate to increased oxidation activity.

Ellis, Paul E. (Downingtown, PA); Lyons, James E. (Wallingford, PA); Myers, Jr., Harry K. (Cochranville, PA); Shaikh, Shahid N. (Media, PA)

1998-01-01T23:59:59.000Z

452

Emissions of greenhouse gases in the United States, 1987--1994  

SciTech Connect

The Energy Information Administration (EIA) is required by the Energy Policy Act of 1992 to prepare a report on aggregate US national emissions of greenhouse gases for the period 1987--1992, with annual updates thereafter. This is the third annual update report,covering national emissions over the period 1987--1993, with preliminary estimates of US carbon dioxide and halocarbon emissions for 1994. Calculating national aggregate emissions(or ``national inventories``) of greenhouse gases is a recently developed form of intellectual endeavor. Greenhouse gas emissions are rarely measured directly or reported to statistical agencies. Thus, to prepare emissions inventories usually requires inferring emissions indirectly from information collected for other purposes. Both the available information and the inferences drawn may be of varying reliability. Chapter 1 of this report briefly recapitulates some background information about global climate change and the greenhouse effect and discusses important recent developments in global climate change activities. Chapters 2 through 6 cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons, and criteria pollutants, respectively. Chapter 7 describes potential sequestration and emissions of greenhouse gases as a result of land use changes.

NONE

1995-09-25T23:59:59.000Z

453

An oxygenating additive for improving the performance and emission characteristics of marine diesel engines  

Science Journals Connector (OSTI)

Diesel engines provide the major power sources for marine transportation and contribute to the prosperity of the worldwide economy. However, the emissions from diesel engines also seriously threaten the environment and are considered one of the major sources of air pollution. The pollutants emitted from marine vessels are confirmed to cause the ecological environmental problems such as the ozone layer destruction, enhancement of the greenhouse effect, and acid rain, etc. Marine diesel engine emissions such as particulate matter and black smoke carry carcinogen components that significantly impact the health of human beings. Investigations on reducing pollutants, in particular particulate matter and nitrogen oxides are critical to human health, welfare and continued prosperity. The addition of an oxygenating agent into fuel oil is one of the possible approaches for reducing this problem because of the obvious fuel oil constituent influences on engine emission characteristics. Ethylene glycol monoacetate was found to be a promising candidate primarily due to its low poison and oxygen-rich composition properties. In this experimental study ethylene glycol monoacetate was mixed with diesel fuel in various proportions to prepare oxygenated diesel fuel. A four-cylinder diesel engine was used to test the engine performance and emission characteristics. The influences of ethylene glycol monoacetate ration to diesel oil, inlet air temperature and humidity parameters on the engines speed and torque were considered. The experimental results show that an increase in the inlet air temperature caused an increase in brake specific fuel consumption (BSFC), carbon monoxide, carbon dioxide emission, and exhaust gas temperature, while decreasing the excess air, oxygen and nitrogen oxide emission concentrations. Increasing the inlet air humidity increased the carbon monoxide concentration while the decreased excess air, oxygen and nitrogen oxide emission concentrations. In addition, increasing ethylene glycol monoacetate ratio in the diesel fuel caused an increase in the BSFC while the excess air and oxygen emission concentrations decreased.

C.-Y. Lin; J.-C. Huang

2003-01-01T23:59:59.000Z

454

A Porphyrin-Stabilized Iridium Oxide Water Oxidation Catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

A Porphyrin-Stabilized Iridium Oxide Water Oxidation Catalyst Authors: Sherman, B. D., Pillai, S., Kodis, G., Bergkamp, J., Mallouk, T. E., Gust, D., Moore, T. A., and Moore, A. L....

455

X-ray Emission from Massive StarsX-ray Emission from Massive Stars David CohenDavid Cohen  

E-Print Network (OSTI)

X-ray Emission from Massive StarsX-ray Emission from Massive Stars David CohenDavid Cohen/s)Velocity (km/s) #12;absorption emission emission occulted emission emission UV telescope side side front back #12;absorption emission emission occulted emission emission UV telescope side side front back #12;The

Cohen, David

456

EMISSIONS TO AIR OPERATIONAL PROCEDURE  

E-Print Network (OSTI)

EMISSIONS TO AIR OPERATIONAL PROCEDURE Swansea University Estates Services Singleton Park Swansea to Air Department: Estates and Facilities Site: All Author: Ambreen Jahangir Approved by: Mark Durdin PURPOSE: To minimise emissions and discharges to air from boilers, fume cupboards, air conditioning

Harman, Neal.A.

457

Oxidative Reforming of Biodiesel Over Molybdenum (IV) Oxide  

E-Print Network (OSTI)

as potential feedstock in solid oxide fuel cells. Petroleum based fuels become scarcer daily, and biodiesel for use in solid oxide fuel cells. This cutting edge area of research continues to be important as energy prove useful for solid oxide fuel cells. METHODS Commercial molybdenum dioxide was used for all tests

Collins, Gary S.

458

Highly oxidized superconductors  

DOE Patents (OSTI)

Novel superconducting materials in the form of compounds, structures or phases are formed by performing otherwise known synthesis in a highly oxidizing atmosphere rather than that created by molecular oxygen at atmospheric pressure or below. This leads to the successful synthesis of novel superconducting compounds which are thermodynamically stable at the conditions under which they are formed. 16 figs.

Morris, D.E.

1994-09-20T23:59:59.000Z

459

Alternative Fuels Data Center: Emissions Reduction Requirements  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Emissions Reduction Emissions Reduction Requirements to someone by E-mail Share Alternative Fuels Data Center: Emissions Reduction Requirements on Facebook Tweet about Alternative Fuels Data Center: Emissions Reduction Requirements on Twitter Bookmark Alternative Fuels Data Center: Emissions Reduction Requirements on Google Bookmark Alternative Fuels Data Center: Emissions Reduction Requirements on Delicious Rank Alternative Fuels Data Center: Emissions Reduction Requirements on Digg Find More places to share Alternative Fuels Data Center: Emissions Reduction Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Emissions Reduction Requirements Recognizing the impact of carbon-emitting fuels on climate change and to

460

Update on CO2 emissions  

SciTech Connect

Emissions of CO2 are the main contributor to anthropogenic climate change. Here we present updated information on their present and near-future estimates. We calculate that global CO2 emissions from fossil fuel burning decreased by 1.3% in 2009 owing to the global financial and economic crisis that started in 2008; this is half the decrease anticipated a year ago1. If economic growth proceeds as expected2, emissions are projected to increase by more than 3% in 2010, approaching the high emissions growth rates that were observed from 2000 to 20081, 3, 4. We estimate that recent CO2 emissions from deforestation and other land-use changes (LUCs) have declined compared with the 1990s, primarily because of reduced rates of deforestation in the tropics5 and a smaller contribution owing to forest regrowth elsewhere.

Friedingstein, P. [University of Exeter, Devon, England; Houghton, R.A. [Woods Hole Research Center, Woods Hole, MA; Marland, Gregg [ORNL; Hackler, J. [Woods Hole Research Center, Woods Hole, MA; Boden, Thomas A [ORNL; Conway, T.J. [NOAA, Boulder, CO; Canadell, J.G. [CSIRO Marine and Atmospheric Research; Raupach, Mike [GCP, Canberra, Australia; Ciais, Philippe [Laboratoire des Sciences du Climat et de l'Environement, France; Le Quere, Corrine [University of East Anglia, Norwich, United Kingdom

2010-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxide emissions rhode" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Staged membrane oxidation reactor system  

DOE Patents (OSTI)

Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

2012-09-11T23:59:59.000Z

462

Staged membrane oxidation reactor system  

DOE Patents (OSTI)

Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

2014-05-20T23:59:59.000Z

463

Staged membrane oxidation reactor system  

DOE Patents (OSTI)

Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

2013-04-16T23:59:59.000Z

464

Aviation emission inventory development and analysis  

Science Journals Connector (OSTI)

An up to date and accurate aviation emission inventory is a prerequisite for any detailed analysis of aviation emission impact on greenhouse gases and local air quality around airports. In this paper we present an aviation emission inventory using real ... Keywords: Air traffic, Aviation emission, Emission inventory, Environmental modelling

Viet Van Pham; Jiangjun Tang; Sameer Alam; Chris Lokan; Hussein A. Abbass

2010-12-01T23:59:59.000Z

465

UNIVERSITY OF RHODE ISLAND HEALTH SERVICES  

E-Print Network (OSTI)

. PLEASE REVIEW IT CAREFULLY. URI Health Services is committed to protecting the privacy of your health or received about your past, present, or future health or condition, the provision of health care to you, or the payment for this health care that can be used to identify you. We provide you with this notice about our

Rhode Island, University of

466

OF RHODE ISLAND Office of International  

E-Print Network (OSTI)

or lockout in the course of a labor dispute at the place of employment. The Labor Condition Application

Rhode Island, University of

467

University of Rhode Island DEGREES CONFERRED  

E-Print Network (OSTI)

Women Men Women Men Women Men Women Total 010699 Envir Hort & Turf Mgmt - BS Bacc EL_EHTM_BS ELSCI RDV 1 EL_WCB_BS ELSCI RDV 1 5 12 2 5 15 20 040601 Landscape Architecture Bacc EL_LDA_BLA ELSCI RDV 1 1 13 1

Rhode Island, University of

468

University of Rhode Island DEGREES CONFERRED  

E-Print Network (OSTI)

Women Men Women Men Women Men Women Total 010699 Envir Hort & Turf Mgmt - BS 5 EL_EHTM_BS ELSCI RDV 17 3_WCB_BS ELSCI RDV 1 1 4 11 2 5 14 19 040601 Landscape Architecture 5 EL_LDA_BLA ELSCI RDV 10 3 4 1 14 4 18

Rhode Island, University of

469

University of Rhode Island DEGREES CONFERRED  

E-Print Network (OSTI)

Women Men Women Total 010699 Envir Hort & Turf Mgmt - BS 5 EL_EHTM_BS ELSCI RDV 10 1 10 1 11 010901 RDV 1 4 7 2 1 7 8 15 040601 Landscape Architecture 5 EL_LDA_BLA ELSCI RDV 14 7 3 17 7 24 050201

Rhode Island, University of

470

University of Rhode Island DEGREES CONFERRED  

E-Print Network (OSTI)

Women Men Women Men Women Men Women Total 010699 Envir Hort & Turf Mgmt - BOS 5 EL_EHTM_BS ELSCI RDV 1 RDV 5 9 4 5 13 18 040601 Landscape Architecture 5 EL_LDA_BLA ELSCI RDV 1 10 2 10 3 13 050201 African

Rhode Island, University of

471

University of Rhode Island DEGREES CONFERRED  

E-Print Network (OSTI)

Women Men Women Men Women Men Women Total 010699 Envir Hort & Turf Mgmt - BS 5 EL_EHTM_BS ELSCI RDV 13 1 Conservation Biol- BS 5 EL_WCB_BS ELSCI RDV 3 18 1 3 19 22 040601 Landscape Architecture 5 EL_LDA_BLA ELSCI RDV

Rhode Island, University of

472

University of Rhode Island DEGREES CONFERRED  

E-Print Network (OSTI)

Women Men Women Men Women Men Women Total 010699 Envir Hort & Turf Mgmt - BS 5 EL_EHTM_BS ELSCI RDV 18 4_WCB_BS ELSCI RDV 1 1 8 7 1 9 9 18 040601 Landscape Architecture 5 EL_LDA_BLA ELSCI RDV 1 9 7 9 8 17 050201

Rhode Island, University of

473

Ultrafast Graphene Oxide Humidity Sensors  

Science Journals Connector (OSTI)

Ultrafast Graphene Oxide Humidity Sensors ... Graphene oxide can be exploited in humidity and temperature sensors with a number of convenient features such as flexibility, transparency and suitability for large-scale manufacturing. ... Here we show that the two-dimensional nature of graphene oxide and its superpermeability to water combine to enable humidity sensors with unprecedented response speed (?30 ms response and recovery times). ...

Stefano Borini; Richard White; Di Wei; Michael Astley; Samiul Haque; Elisabetta Spigone; Nadine Harris; Jani Kivioja; Tapani Ryhnen

2013-11-09T23:59:59.000Z

474

Doped palladium containing oxidation catalysts  

DOE Patents (OSTI)

A supported oxidation catalyst includes a support having a metal oxide or metal salt, and mixed metal particles thereon. The mixed metal particles include first particles including a palladium compound, and second particles including a precious metal group (PMG) metal or PMG metal compound, wherein the PMG metal is not palladium. The oxidation catalyst may also be used as a gas sensor.

Mohajeri, Nahid

2014-02-18T23:59:59.000Z

475

Generalized local emission tomography  

DOE Patents (OSTI)

Emission tomography enables locations and values of internal isotope density distributions to be determined from radiation emitted from the whole object. In the method for locating the values of discontinuities, the intensities of radiation emitted from either the whole object or a region of the object containing the discontinuities are inputted to a local tomography function .function..sub..LAMBDA..sup.(.PHI.) to define the location S of the isotope density discontinuity. The asymptotic behavior of .function..sub..LAMBDA..sup.(.PHI.) is determined in a neighborhood of S, and the value for the discontinuity is estimated from the asymptotic behavior of .function..sub..LAMBDA..sup.(.PHI.) knowing pointwise values of the attenuation coefficient within the object. In the method for determining the location of the discontinuity, the intensities of radiation emitted from an object are inputted to a local tomography function .function..sub..LAMBDA..sup.(.PHI.) to define the location S of the density discontinuity and the location .GAMMA. of the attenuation coefficient discontinuity. Pointwise values of the attenuation coefficient within the object need not be known in this case.

Katsevich, Alexander J. (Los Alamos, NM)

1998-01-01T23:59:59.000Z

476

NETL: Mercury Emissions Control Technologies - Evaluation of Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

Control Technology Evaluation of Mercury Emissions from Coal-Fired Facilities w/ SCR and FGD Systems Control Technology Evaluation of Mercury Emissions from Coal-Fired Facilities w/ SCR and FGD Systems CONSOL is evaluating the mercury removal co-benefits achieved by SCR-FGD combi nations. Specific issues that will be addressed include the effects of SCR, catalyst degradation, and load changes on mercury oxidation and capture. This objective will be achieved by measuring mercury removal achieved by SCR-FGD combinations at ten plants with such equipment configurations. These plants include five with wet limestone, three wet lime, and two with dry scrubbing. Material balance will be conducted. Related Papers and Publications: Final Report - April 2006 [PDF-377KB] Topical Report # 11 - January 2006 [PDF-19MB] Topical Report # 9 - January 2006 [PDF-6MB]

477

Control of air pollution emissions from municipal waste combustors  

SciTech Connect

The November 1990 Clear Air Act Amendments (CAAAs) directed EPA to establish municipal waste combustor (MWC) emissions limits for particulate matter, opacity, hydrogen chloride, sulfur dioxide, nitrogen oxides, carbon monoxide, dioxins, dibenzofurans, cadmium, lead, and mercury. Revised MWC air pollution regulations were subsequently proposed by EPA on September 20, 1994, and promulgated on December 19, 1995. The MWC emission limits were based on the application of maximum achievable control technology (MACT). This paper provides a brief overview of MWC technologies, a summary of EPA`s revised air pollution rules for MWCs, a review of current knowledge concerning formation and control of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans, and a discussion of the behavior and control of mercury in MWC flue gases. 56 refs., 11 figs., 3 tabs.

Kolgroe, J.D. [Environmental Protection Agency, Research Triangle Park, NC (United States). National Risk Management Research Lab.; Licata, A. [Licata Energy and Environmental Consultants, Inc., Yonkers, NY (United States)

1996-09-01T23:59:59.000Z

478

Relationship Between Composition and Toxicity of Engine Emissions...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Emissions Relationship Between Composition and Toxicity of Engine Emissions 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Lovelace Respiratory Research...

479

Ultra supercritical turbines--steam oxidation  

SciTech Connect

Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions, which are goals of the U.S. Department of Energy?s Advanced Power Systems Initiatives. Most current coal power plants in the U.S. operate at a maximum steam temperature of 538?C. However, new supercritical plants worldwide are being brought into service with steam temperatures of up to 620?C. Current Advanced Power Systems goals include coal generation at 60% efficiency, which would require steam temperatures of up to 760?C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections. Initial results of this research are presented.

Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Ziomek-Moroz, Margaret; Alman, David E.

2004-01-01T23:59:59.000Z

480

Graphene and Graphene Oxide: Biofunctionalization and Applications...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Graphene Oxide: Biofunctionalization and Applications in Biotechnology. Graphene and Graphene Oxide: Biofunctionalization and Applications in Biotechnology. Abstract: Graphene...

Note: This page contains sample records for the topic "oxide emissions rhode" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Reading for Thursday Emissions scenario summary  

E-Print Network (OSTI)

emissions, for year 2000 #12;USA ­ CO2 emissions from fossil fuel combustion (2005) US EPA #12 of global rise in sea level red: reconstructed blue: tide gauges black: satellite #12;Other changes GHG emissions #12;

Schweik, Charles M.

482

Diesel emission control: Catalytic filters for particulate removal  

Science Journals Connector (OSTI)

The European diesel engine industry represents a vital sector across the Continent, with more than 2 million direct work positions and a turnover of over 400 billion Euro. Diesel engines provide large paybacks to society since they are extensively used to transport goods, services and people. In recent years increasing attention has been paid to the emissions from diesel engines which, like gasoline engine emissions, include carbon monoxide (CO), hydrocarbons (HC) and oxides of nitrogen (NOx). Diesel engines also produce significant levels of particulate matter (PM), which consists mostly of carbonaceous soot and a soluble organic fraction (SOF) of hydrocarbons that have condensed on the soot.Meeting the emission levels imposed for NOx and PM by legislation (Euro IV in 2005 and, in the 2008 perspective, Euro V) requires the development of a number of critical technologies to fulfill these very stringent emission limits (e.g. 0.005g/km for PM). This review is focused on these innovative technologies with special reference to catalytic traps for diesel particulate removal.

Debora Fino

2007-01-01T23:59:59.000Z

483

NETL: Emissions Characterization - Adv. Low-NOx Burner Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Low-NOx Burner Emissions Characterization Advanced Low-NOx Burner Emissions Characterization The goal of this work is to develop a comprehensive, high-quality database characterizing PM2.5 emissions from utility plants firing high sulfur coals. The specific objectives are to: 1) develop and test an ultra low-NOx pulverized coal burner for plug-in retrofit applications without boiler wall tube modifications, 2) assess the impact of low-NOx PC burner operation on NOx and PM2.5 emissions, and 3) provide high-quality data to ensure that future PM2.5 regulations are based on good scientific information. The work will be performed in the Clean Environment Development Facility (CEDF), a 100 million Btu/hr near-full-scale facility located at the Alliance Research Center. Related Papers and Publications:

484

Appendix: Mercury Emissions used in CAM-Chem/Hg model. 1. Anthropogenic emissions  

E-Print Network (OSTI)

Appendix: Mercury Emissions used in CAM-Chem/Hg model. 1. Anthropogenic emissions The anthropogenic emission of mercury is directly adopted from global mercury emission inventory [Pacyna et al., 2005]. The anthropogenic emissions are shown in annual averaged total mercury emissions. (Unit: µg/m2 /day) 2. Land

Meskhidze, Nicholas

485

Wildland fire emissions, carbon, and climate: U.S. emissions inventories Narasimhan K. Larkin a,  

E-Print Network (OSTI)

Wildland fire emissions, carbon, and climate: U.S. emissions inventories Narasimhan K. Larkin a: Fire emissions Emissions inventories Greenhouse gases a b s t r a c t Emissions from wildland fire fire emissions change considerably due to fluctuations from year to year with overall fire season

486

Innovative technical advances in the application of regenerative thermal oxidizers  

SciTech Connect

Regenerative Thermal Oxidizers (RTOs) have been applied in industry for over twenty (20) years to reduce the emissions of Volatile Organic compounds (VOCs) into the atmosphere from industrial process emissions. The Clean Air Act and its amendments have established a regulatory framework setting standards for allowable levels of VOC emissions. Several forces are driving the increasing use and acceptance of this technology: (1) High efficiency and increasing stringent standards require higher destruction efficiency; (2) Low operating cost and control of emission streams with less VOCs (therefore, less fuel value) causing higher use of natural gas for combustion; (3) Low NO{sub x}--the overlapping concern of NO{sub x} generation from the combustion process; (4) Low process upsets with improved productivity of industrial process require continuous integration of VOC abatement equipment; and (5) Reduced capital cost--capital cost criteria is $/ton of VOC abated. The latest development in RTO technology is the Single Can Oxidizer (SCO). This regenerative thermal oxidizer is the accumulation of developments in many subsystems of RTOs, combined with a dramatic new configuration. Several features of the system offer unique benefits to industrial end users: (1) Single can configuration gives reduced weight, material usage, and cost; (2) Rotary valve design gives smooth operation, and low pressure fluctuations; (3) Structured block heat recovery media reduces pressure drop, and lowers HP/operating cost; and (4) SMART system lowers NO{sub x} output/reduced operation cost. This paper will present a discussion of the features listed above. In addition, it will provide analytical documentation of test results for a full scale commercial unit.

Grzanka, R.; Truppi, T.

1999-07-01T23:59:59.000Z

487

Impact of N2 dilution on combustion and emissions in a spark ignition CNG engine  

Science Journals Connector (OSTI)

Abstract In order to reduce \\{NOx\\} (nitrogen oxides) emissions, N2 (nitrogen) was introduced as dilution gas to dilute mixture with a specially-designed injection device. The impacts of varying N2 DR (dilution ratio) on the combustion and the exhaust emissions were investigated, including engine heat release rate, indicator diagram, NOx, CO (carbon monoxide), THC (total hydrocarbon) emissions and so on. For this study, a modified 6.6L CNG (compressed natural gas) engine was tested and N2 was injected into the end of intake manifold by a specially-designed device. The results showed that N2 dilution has a significant influence on the combustion and the exhaust emissions. With the rise of N2 DR, the maximum of pressure in cylinder and the maximum of heat release rate exhibited decrease trends, the centre of heat release curve showed a moving backward tendency. Higher N2 DR exhibited lower \\{NOx\\} (1781%) emissions, but higher emissions of THC (378%) and CO (128%). The change of BSFC (brake specific fuel consumption) can be ignored with N2 DR no more than 167%. Satisfactory results can be obtained, with lower \\{NOx\\} (31%) emissions, lower BSFC (0.5%), and relatively higher THC (6%) and CO (1%) emissions, when N2 DR is 67%.

Zhongshu Wang; Hongbin Zuo; Zhongchang Liu; Weifeng Li; Huili Dou

2014-01-01T23:59:59.000Z

488

Radionuclide Air Emissions Report for 2012  

E-Print Network (OSTI)

Air Emissions Annual Reports for DOE Sites, memo tooffices providing guidance for report preparation (March 22,470E-2012 Radionuclide Air Emission Report for Prepared by

Wahl, Linnea

2014-01-01T23:59:59.000Z

489

Demonstrating Fuel Consumption and Emissions Reductions with...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Consumption and Emissions Reductions with Next Generation Model-Based Diesel Engine Control Demonstrating Fuel Consumption and Emissions Reductions with Next Generation...

490

Diesel Engine Emission Reduction (DEER) Experiment | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Emission Reduction (DEER) Experiment Diesel Engine Emission Reduction (DEER) Experiment Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the...

491

Collaborative Emissions Research at EMSL | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

Collaborative Emissions Research at EMSL Collaborative Emissions Research at EMSL EMSL produced this video for the annual congressional science expo organized by the National User...

492

Low Emissions Asian Development (LEAD) Program - Bangladesh ...  

Open Energy Info (EERE)

Redirect page Jump to: navigation, search REDIRECT Low Emissions Asian Development (LEAD) Program Retrieved from "http:en.openei.orgwindex.php?titleLowEmissionsAsianDevel...

493

School Bus Emissions Study | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

School Bus Emissions Study School Bus Emissions Study 2003 DEER Conference Presentation: international Truck and Engine Corporation deer2003slodowske.pdf More Documents &...

494

Particle Number & Particulate Mass Emissions Measurements on...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Number & Particulate Mass Emissions Measurements on a 'Euro VI' Heavy-duty Engine using the PMP Methodologies Particle Number & Particulate Mass Emissions Measurements on a 'Euro...

495

Characterizing Test Methods and Emissions Reduction Performance...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Test Methods and Emissions Reduction Performance of In-Use Diesel Retrofit Technologies from the National Clean Diesel Campaign Characterizing Test Methods and Emissions Reduction...

496

Vehicle Technologies Office: Emission Control | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Batteries Fuel Efficiency & Emissions Combustion Engines Fuel Effects on Combustion Idle Reduction Emissions Waste Heat Recovery Lightweighting Parasitic Loss Reduction Lubricants...

497

Vehicle Technologies Office: Fuel Efficiency and Emissions |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Batteries Fuel Efficiency & Emissions Combustion Engines Fuel Effects on Combustion Idle Reduction Emissions Waste Heat Recovery Lightweighting Parasitic Loss Reduction Lubricants...

498

Measurement and Characterization of Unregulated Emissions from...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More Documents & Publications Ethanol Effects on Lean-Burn and Stoichiometric GDI Emissions Measurement and Characterization of Unregulated Emissions from Advanced...

499

Particulate Emissions Control by Advanced Filtration Systems...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Particulate Emissions Control by Advanced Filtration Systems or GDI Engines Particulate Emissions Control by Advanced Filtration Systems or GDI Engines 2013 DOE Hydrogen and Fuel...

500

Corporate response to emissions trading in Lithuania  

Science Journals Connector (OSTI)

The article highlights the preconditions for emissions trading in Lithuania, identifies the factors that influence ... competitive advantage via participation in the European Union Emissions Trading Scheme (EU ET...

R?ta Bubnien?

2008-01-01T23:59:59.000Z