National Library of Energy BETA

Sample records for oxide emissions reactive

  1. Effectiveness of Diesel Oxidation Catalyst in Reducing HC and CO Emissions from Reactivity Controlled Compression Ignition

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y; Curran, Scott; Parks, II, James E; Wagner, Robert M

    2013-01-01

    Reactivity Controlled Compression Ignition (RCCI) has been shown to allow for diesel-like or better brake thermal efficiency with significant reductions in nitrogen oxide (NOX) particulate matter (PM) emissions. Hydrocarbon (HC) and carbon monoxide (CO) emission levels, on the other hand, are similar to those of port fuel injected gasoline engines. The higher HC and CO emissions combined with the lower exhaust temperatures with RCCI operation present a challenge for current exhaust aftertreatments. The reduction of HC and CO emissions in a lean environment is typically achieved with an oxidation catalyst. In this work, several diesel oxidation catalysts (DOC) with different precious metal loadings were evaluated for effectiveness to control HC and CO emissions from RCCI combustion in a light-duty multi-cylinder engine operating on gasoline and diesel fuels. Each catalyst was evaluated in a steady-state engine operation with temperatures ranging from 160 to 260 C. A shift to a higher light-off temperature was observed during the RCCI operation. In addition to the steady-state experiments, the performances of the DOCs were evaluated during multi-mode engine operation by switching from diesel-like combustion at higher exhaust temperature and low HC/CO emissions to RCCI combustion at lower temperature and higher HC/CO emissions. High CO and HC emissions from RCCI generated an exotherm keeping the catalyst above the light-off temperature.

  2. On-Road Emission Measurements of Reactive Nitrogen Compounds from

    E-Print Network [OSTI]

    Denver, University of

    - equippedvehiclesarenotbelievedtobesignificant(1).Oxides of nitrogen (NOx) emission rates from light-duty gasoline vehicles have been shown to be rapidly decreasing across the United States, but total NOx emissions are decreasing at a slower rate dueOn-Road Emission Measurements of Reactive Nitrogen Compounds from Three California Cities G A R Y

  3. EIA - Greenhouse Gas Emissions - Nitrous Oxide Emissions

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    U.S. nitrous oxide emissions include agriculture, energy use, industrial processes, and waste management (Figure 22). The largest source is agriculture (73 percent), and the...

  4. Reactive MD Simulations of Electrochemical Oxide Interfaces at...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Reactive MD Simulations of Electrochemical Oxide Interfaces at Mesoscale PI Name: Subramanian Sankaranarayanan PI Email: skrssank@anl.gov Institution:...

  5. Fe(III) Oxide Reactivity Toward Biological versus Chemical

    E-Print Network [OSTI]

    Roden, Eric E.

    size, surface area, and solubility of the mineral. Such variations lead to a continuum of Fe(III) oxideFe(III) Oxide Reactivity Toward Biological versus Chemical Reduction E R I C E . R O D E N of synthetic Fe(III) oxides with a broad range of crystallinity and specific surface area were examined

  6. Hysteresis-free high rate reactive sputtering of niobium oxide, tantalum oxide, and aluminum oxide

    SciTech Connect (OSTI)

    Särhammar, Erik, E-mail: erik.sarhammar@angstrom.uu.se; Berg, Sören; Nyberg, Tomas [Department of Solid State Electronics, The Ångström Laboratory, Uppsala University, Box 534, SE-751 21 Uppsala (Sweden)

    2014-07-01

    This work reports on experimental studies of reactive sputtering from targets consisting of a metal and its oxide. The composition of the targets varied from pure metal to pure oxide of Al, Ta, and Nb. This combines features from both the metal target and oxide target in reactive sputtering. If a certain relation between the metal and oxide parts is chosen, it may be possible to obtain a high deposition rate, due to the metal part, and a hysteresis-free process, due to the oxide part. The aim of this work is to quantify the achievable boost in oxide deposition rate from a hysteresis-free process by using a target consisting of segments of a metal and its oxide. Such an increase has been previously demonstrated for Ti using a homogeneous substoichiometric target. The achievable gain in deposition rate depends on transformation mechanisms from oxide to suboxides due to preferential sputtering of oxygen. Such mechanisms are different for different materials and the achievable gain is therefore material dependent. For the investigated materials, the authors have demonstrated oxide deposition rates that are 1.5–10 times higher than what is possible from metal targets in compound mode. However, although the principle is demonstrated for oxides of Al, Ta, and Nb, a similar behavior is expected for most oxides.

  7. DIESEL OXIDATION CATALYST CONTROL OF HYDROCARBON AEROSOLS FROM REACTIVITY CONTROLLED COMPRESSION IGNITION COMBUSTION

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y; Parks, II, James E; Barone, Teresa L; Curran, Scott; Cho, Kukwon; Lewis Sr, Samuel Arthur; Storey, John Morse; Wagner, Robert M

    2011-01-01

    Reactivity Controlled Compression Ignition (RCCI) is a novel combustion process that utilizes two fuels with different reactivity to stage and control combustion and enable homogeneous combustion. The technique has been proven experimentally in previous work with diesel and gasoline fuels; low NOx emissions and high efficiencies were observed from RCCI in comparison to conventional combustion. In previous studies on a multi-cylinder engine, particulate matter (PM) emission measurements from RCCI suggested that hydrocarbons were a major component of the PM mass. Further studies were conducted on this multi-cylinder engine platform to characterize the PM emissions in more detail and understand the effect of a diesel oxidation catalyst (DOC) on the hydrocarbon-dominated PM emissions. Results from the study show that the DOC can effectively reduce the hydrocarbon emissions as well as the overall PM from RCCI combustion. The bimodal size distribution of PM from RCCI is altered by the DOC which reduces the smaller mode 10 nm size particles.

  8. Effects of Diesel Exhaust Emissions on Soot Oxidation and DPF...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Exhaust Emissions on Soot Oxidation and DPF Regeneration Effects of Diesel Exhaust Emissions on Soot Oxidation and DPF Regeneration DPF regeneration experiments verified the...

  9. Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Presents...

  10. Sulfur oxide adsorbents and emissions control

    DOE Patents [OSTI]

    Li, Liyu (Richland, WA); King, David L. (Richland, WA)

    2006-12-26

    High capacity sulfur oxide absorbents utilizing manganese-based octahedral molecular sieve (Mn--OMS) materials are disclosed. An emissions reduction system for a combustion exhaust includes a scrubber 24 containing these high capacity sulfur oxide absorbents located upstream from a NOX filter 26 or particulate trap.

  11. Nitrogen oxides emission trends in Monthly emission estimates of nitrogen oxides from space provide

    E-Print Network [OSTI]

    Haak, Hein

    Chapter 5 Nitrogen oxides emission trends in East Asia Abstract Monthly emission estimates present first results of a new emission estimation algorithm, specifically designed to use daily satellite observations of column concentrations for fast updates of emission estimates of short-lived atmospheric

  12. Wet oxidation of high-concentration reactive dyes

    SciTech Connect (OSTI)

    Chen, G.; Lei, L.; Yue, P.L.

    1999-05-01

    Advanced oxidation methods were used to degrade reactive dyes at high concentrations in aqueous solutions. Wet peroxide oxidation (WPO) was found to be the best method in terms of the removal of color and total organic carbon (TOC). Reactive blue (Basilen Brilliant Blue P-3R) was chosen as a model dye for determining the suitable reaction conditions. The variables studied include reaction temperature, H{sub 2}O{sub 2} dosage, solution pH, dye concentration, and catalyst usage. The removal of TOC and color by wet oxidation is very sensitive to the reaction temperature. At 150 C, the removal of 77% TOC and 90% color was obtained in less than 30 min. The initial TOC removal rate is proportional to the H{sub 2}O{sub 2} dosage. The TOC removal is insignificant even when 50% of the stoichiometric amount of H{sub 2}O{sub 2} is used. No color change is observed until the dosage of H{sub 2}O{sub 2} is 100% of the stoichiometric amount. The color removal is closely related to TOC removal. When the pH of the solution is adjusted to 3.5, the dye degradation rate increases significantly. The rates of TOC and color removal are enhanced by using a Cu{sup 2+} catalyst. Another four reactive dyes, Procion Red PX-4B, Cibacron Yellow P-6GS, Cibacron Brown P-6R, and Procion Black PX-2R, were treated at 150 C using WPO. More than 80% TOC was removed from the solution in less than 15 min. The process can remove the colors of al these dyes except Procion Black PX-2R.

  13. Bayesian Monte Carlo analysis applied to regional-scale inverse emission modeling for reactive trace gases

    E-Print Network [OSTI]

    Menut, Laurent

    the a priori uncertainties in anthropogenic NOx and volatile organic compounds (VOC) emissions: (1) The a posteriori probability density function (pdf) for NOx emissions is not modified in its averageBayesian Monte Carlo analysis applied to regional-scale inverse emission modeling for reactive

  14. GEOC Andrew Stack Thursday, March 20, 2014 152 Kinetics of arsenic oxidation by manganese oxide minerals: The influence of origin and structure on reactivity

    E-Print Network [OSTI]

    Sparks, Donald L.

    birnessite, randomstacked birnessite, acid birnessite, and biogenic manganese oxide were reacted under being the least reactive. Two synthetic manganese oxides, acid birnessite and HMO, oxidize arsenicH, and temperature were varied with HMO and acid birnessite, the two most reactive manganese oxides. Under

  15. Nitrous Oxide Emissions from the Gulf of Mexico Hypoxic Zone

    E-Print Network [OSTI]

    Nitrous Oxide Emissions from the Gulf of Mexico Hypoxic Zone J O H N T . W A L K E R , * , C R A I,thoughlargenitrogeninputsanddeoxygenation typical of these systems create the potential for large N2O emissions. We report the first N2O emission measurements from the Gulf of Mexico Hypoxic Zone (GOMHZ), including an estimate of the emission "pulse

  16. Molten salt extraction of transuranic and reactive fission products from used uranium oxide fuel

    SciTech Connect (OSTI)

    Herrmann, Steven Douglas

    2014-05-27

    Used uranium oxide fuel is detoxified by extracting transuranic and reactive fission products into molten salt. By contacting declad and crushed used uranium oxide fuel with a molten halide salt containing a minor fraction of the respective uranium trihalide, transuranic and reactive fission products partition from the fuel to the molten salt phase, while uranium oxide and non-reactive, or noble metal, fission products remain in an insoluble solid phase. The salt is then separated from the fuel via draining and distillation. By this method, the bulk of the decay heat, fission poisoning capacity, and radiotoxicity are removed from the used fuel. The remaining radioactivity from the noble metal fission products in the detoxified fuel is primarily limited to soft beta emitters. The extracted transuranic and reactive fission products are amenable to existing technologies for group uranium/transuranic product recovery and fission product immobilization in engineered waste forms.

  17. The Reactivity Limit for Methanol Oxidation on Platinum/Ruthenium Catalysts

    E-Print Network [OSTI]

    The Reactivity Limit for Methanol Oxidation on Platinum/Ruthenium Catalysts A. Wieckowski 0.5 1.0 1.5 2.0 2.5 3.0 Pt/Ru Decorated (UIUC) PtRu Alloy (JM) E = 0.4 V Oxidation in 0.5 M Methanol

  18. Reactivity of ethylene oxide in contact with contaminants 

    E-Print Network [OSTI]

    Dinh, Linh Thi Thuy

    2009-05-15

    , such as isomerization, polymerization, hydrolysis, combustion and decomposition Due to its very reactive characteristic and widely industrial applications, EO has been involved in a number of serious incidents such as Doe Run 1962, Freeport 1974, Deer Park 1988...

  19. Introduction The reduction of nitrogen oxide emissions is

    E-Print Network [OSTI]

    Sandoghdar, Vahid

    is attained in a post-catalyst homogeneous combustion zone.This process leads to substantial reduction of NOxIntroduction The reduction of nitrogen oxide emissions is of great importance in practical emissions (typically NOx is produced exclusively from the gaseous (homogeneous) reaction path

  20. Structure and Reactivity of Surface Oxides on Pt(110) during Catalytic CO Oxidation

    SciTech Connect (OSTI)

    Ackermann, M.D.; Pedersen, T.M.; Hammer, B.; Hendriksen, B.L.M.; Bobaru, S.C.; Frenken, J.W.M.; Robach, O.; Quiros, C.

    2005-12-16

    We present the first structure determination by surface x-ray diffraction during the restructuring of a model catalyst under reaction conditions, i.e., at high pressure and high temperature, and correlate the restructuring with a change in catalytic activity. We have analyzed the Pt(110) surface during CO oxidation at pressures up to 0.5 bar and temperatures up to 625 K. Depending on the O{sub 2}/CO pressure ratio, we find three well-defined structures: namely, (i) the bulk-terminated Pt(110) surface, (ii) a thin, commensurate oxide, and (iii) a thin, incommensurate oxide. The commensurate oxide only appears under reaction conditions, i.e., when both O{sub 2} and CO are present and at sufficiently high temperatures. Density functional theory calculations indicate that the commensurate oxide is stabilized by carbonate ions (CO{sub 3}{sup 2-}). Both oxides have a substantially higher catalytic activity than the bulk-terminated Pt surface.

  1. Robust Nitrogen Oxide/Ammonia Sensors for Vehicle On-board Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Robust Nitrogen OxideAmmonia Sensors for Vehicle On-board Emissions Control Robust Nitrogen OxideAmmonia Sensors for Vehicle On-board Emissions Control 2012 DOE Hydrogen and Fuel...

  2. Effects of Diesel Exhaust Emissions on Soot Oxidation and DPF Regeneration

    Broader source: Energy.gov [DOE]

    DPF regeneration experiments verified the effects of NO2 and O2 emissions found from the thermogravimetric analyzer soot oxidation.

  3. Reactivity of Pb(II) at the Mn(III,IV) (Oxyhydr)Oxide-Water Interface

    E-Print Network [OSTI]

    Sparks, Donald L.

    A T O C H A , * , E V E R T J . E L Z I N G A , A N D D O N A L D L . S P A R K S DepartmentReactivity of Pb(II) at the Mn(III,IV) (Oxyhydr)Oxide-Water Interface C H R I S T O P H E R J . M and surface functional groups on R-Al2O3 depending on the specific surface site exposed. The uptake of Pb

  4. On-farm Assessment of Nitrogen Fertilizer application to corn on Nitrous Oxide Emissions

    E-Print Network [OSTI]

    2009-01-01

    mitigation of greenhouse gas emissions by agriculture. Nutr.1998. Nitrous oxide emission in three years as affected by2008. Soil-surface gas emissions. p.851-861. In: M.R. Carter

  5. Superparamagnetic iron oxide nanoparticles as radiosensitizer via enhanced reactive oxygen species formation

    SciTech Connect (OSTI)

    Klein, Stefanie; Sommer, Anja [Department of Chemistry and Pharmacy, Physical Chemistry I and ICMM, Friedrich-Alexander University of Erlangen-Nuremberg, Egerlandstr. 3, D-91058 Erlangen (Germany)] [Department of Chemistry and Pharmacy, Physical Chemistry I and ICMM, Friedrich-Alexander University of Erlangen-Nuremberg, Egerlandstr. 3, D-91058 Erlangen (Germany); Distel, Luitpold V.R. [Department of Radiation Oncology, Friedrich Alexander University Erlangen-Nuremberg, Universitaetsstrasse 27, D-91054 Erlangen (Germany)] [Department of Radiation Oncology, Friedrich Alexander University Erlangen-Nuremberg, Universitaetsstrasse 27, D-91054 Erlangen (Germany); Neuhuber, Winfried [Department of Anatomy, Chair of Anatomy I, Friedrich Alexander University Erlangen-Nuremberg, Krankenhausstr. 9, D-91054 Erlangen (Germany)] [Department of Anatomy, Chair of Anatomy I, Friedrich Alexander University Erlangen-Nuremberg, Krankenhausstr. 9, D-91054 Erlangen (Germany); Kryschi, Carola, E-mail: kryschi@chemie.uni-erlangen.de [Department of Chemistry and Pharmacy, Physical Chemistry I and ICMM, Friedrich-Alexander University of Erlangen-Nuremberg, Egerlandstr. 3, D-91058 Erlangen (Germany)] [Department of Chemistry and Pharmacy, Physical Chemistry I and ICMM, Friedrich-Alexander University of Erlangen-Nuremberg, Egerlandstr. 3, D-91058 Erlangen (Germany)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Ultrasmall citrate-coated SPIONs with {gamma}Fe{sub 2}O{sub 3} and Fe{sub 3}O{sub 4} structure were prepared. Black-Right-Pointing-Pointer SPIONs uptaken by MCF-7 cells increase the ROS production for about 240%. Black-Right-Pointing-Pointer The SPION induced ROS production is due to released iron ions and catalytically active surfaces. Black-Right-Pointing-Pointer Released iron ions and SPION surfaces initiate the Fenton and Haber-Weiss reaction. Black-Right-Pointing-Pointer X-ray irradiation of internalized SPIONs leads to an increase of catalytically active surfaces. -- Abstract: Internalization of citrate-coated and uncoated superparamagnetic iron oxide nanoparticles by human breast cancer (MCF-7) cells was verified by transmission electron microscopy imaging. Cytotoxicity studies employing metabolic and trypan blue assays manifested their excellent biocompatibility. The production of reactive oxygen species in iron oxide nanoparticle loaded MCF-7 cells was explained to originate from both, the release of iron ions and their catalytically active surfaces. Both initiate the Fenton and Haber-Weiss reaction. Additional oxidative stress caused by X-ray irradiation of MCF-7 cells was attributed to the increase of catalytically active iron oxide nanoparticle surfaces.

  6. Reduction of Nitrogen Oxide Emissions for lean Burn Engine Technology

    SciTech Connect (OSTI)

    McGill, R.N.

    1998-08-04

    Lean-burn engines offer the potential for significant fuel economy improvements in cars and trucks, perhaps the next great breakthrough in automotive technology that will enable greater savings in imported petroleum. The development of lean-burn engines, however, has been an elusive goal among automakers because of the emissions challenges associated with lead-burn engine technology. Presently, cars operate with sophisticated emissions control systems that require the engine's air-fuel ratio to be carefully controlled around the stoichiometric point (chemically correct mixture). Catalysts in these systems are called "three-way" catalysts because they can reduce hydrocarbon, carbon monoxide, and nitrogen oxide emissions simultaneously, but only because of the tight control of the air-fuel ratio. The purpose of this cooperative effort is to develop advanced catalyst systems, materials, and necessary engine control algorithms for reducing NOX emissions in oxygen-rich automotive exhaust (as with lean-burn engine technology) to meet current and near-future mandated Clean Air Act standards. These developments will represent a breakthrough in both emission control technology and automobile efficiency. The total project is a joint effort among five national laboratories, together with US CAR. The role of Lockheed-Martin Energy Systems in the total project is two fold: characterization of catalyst performance through laboratory evaluations from bench-scale flow reactor tests to engine laboratory tests of full-scale prototype catalysts, and microstructural characterization of catalyst material before and after test stand and/or engine testing.

  7. MODELING THE EMISSIONS OF NITROUS OXIDE (N20) AND METHANE (CH 4) FROM THE

    E-Print Network [OSTI]

    MODELING THE EMISSIONS OF NITROUS OXIDE (N20) AND METHANE (CH 4) FROM THE TERRESTRIAL BIOSPHERE;2 #12;MODELING THE EMISSIONS OF NITROUS OXIDE (N 20) AND METHANE (CH 4) FROM THE TERRESTRIAL BIOSPHERE cli- mate has on natural emissions of N2 0 and CH4 from the terrestrial biosphere to the atmosphere

  8. Role of nitric oxide in neurodegeneration and vulnerability of neuronal cells to nitric oxide metabolites and reactive oxygen species

    E-Print Network [OSTI]

    Bondy, SC; Lahiri, DK; Ghosh, C; Rogers, JT; Greig, NH

    2010-01-01

    hormone · Reactive nitrogen species · RNS · Tissue culture 1reactive nitrogen species (RNS), such as NO, suggest that inDisorders NO and other ROS and RNS exert important roles in

  9. Low-Temperature Hydrocarbon/CO Oxidation Catalysis in Support of HCCI Emission Control

    Broader source: Energy.gov [DOE]

    Development of catalyst materials to facilitate the low-temperature oxidation of hydrocarbons and CO in homogeneous charge compression ignition (HCCI) emissions.

  10. Structural and optical properties of DC reactive magnetron sputtered zinc aluminum oxide thin films

    SciTech Connect (OSTI)

    Kumar, B. Rajesh; Rao, T. Subba

    2014-10-15

    Highly transparent conductive Zinc Aluminum Oxide (ZAO) thin films have been deposited on glass substrates using DC reactive magnetron sputtering method. The thin films were deposited at 200 °C and post-deposition annealing from 15 to 90 min. XRD patterns of ZAO films exhibit only (0 0 2) diffraction peak, indicating that they have c-axis preferred orientation perpendicular to the substrate. Scanning electron microscopy (SEM) is used to study the surface morphology of the films. The grain size obtained from SEM images of ZAO thin films are found to be in the range of 20 - 26 nm. The minimum resistivity of 1.74 × 10{sup ?4} ? cm and an average transmittance of 92% are obtained for the thin film post annealed for 30 min. The optical band gap of ZAO thin films increased from 3.49 to 3.60 eV with the increase of annealing time due to Burstein-Moss effect. The optical constants refractive index (n) and extinction coefficient (k) were also determined from the optical transmission spectra.

  11. Does the location of aircraft nitrogen oxide emissions affect their climate impact?

    E-Print Network [OSTI]

    Stevenson, David

    integrations: a base case, then variants with extra aircraft nitrogen oxide (NOx) emissions added to specific NOx emissions. NOx promotes tropospheric ozone (O3) production, but also stimulates methane (CH4 how important the emission location is in influencing the impact of aviation NOx on O3 and CH4. 2

  12. Growth and field-emission property of tungsten oxide nanotip arrays Jun Zhou, Li Gong, Shao Zhi Deng,a

    E-Print Network [OSTI]

    Wang, Zhong L.

    Growth and field-emission property of tungsten oxide nanotip arrays Jun Zhou, Li Gong, Shao Zhi of 010 . The tungsten oxide nanotips exhibit excellent field-emission properties with a low threshold field for an emission current density of 10 mA/cm2 4.37 MV/m and uniform emission from the entire arrays

  13. Reactivity of biogenic manganese oxide for metal sequestration and photochemistry: Computational solid state physics study

    SciTech Connect (OSTI)

    Kwon, K.D.; Sposito, G.

    2010-02-01

    Many microbes, including both bacteria and fungi, produce manganese (Mn) oxides by oxidizing soluble Mn(II) to form insoluble Mn(IV) oxide minerals, a kinetically much faster process than abiotic oxidation. These biogenic Mn oxides drive the Mn cycle, coupling it with diverse biogeochemical cycles and determining the bioavailability of environmental contaminants, mainly through strong adsorption and redox reactions. This mini review introduces recent findings based on quantum mechanical density functional theory that reveal the detailed mechanisms of toxic metal adsorption at Mn oxide surfaces and the remarkable role of Mn vacancies in the photochemistry of these minerals.

  14. Process Modeling of Global Soil Nitrous Oxide Emissions

    E-Print Network [OSTI]

    Saikawa, E.

    2011-09-01

    Nitrous oxide is an important greenhouse gas and is a major ozone-depleting substance. To understand and

  15. Effects of uncertainty in SAPRC90 rate constants and selected product yields on reactivity adjustment factors for alternative fuel vehicle emissions. Final report

    SciTech Connect (OSTI)

    Bergin, M.S.; Russell, A.G.; Yang, Y.J.; Milford, J.B.; Kirchner, F.; Stockwell, W.R.

    1996-07-01

    Tropospheric ozone is formed in the atmosphere by a series of reactions involving volatile organic compounds (VOCs) and nitrogen oxides (NO{sub x}). While NOx emissions are primarily composed of only two compounds, nitrogen oxide (NO) and nitrogen dioxide (NO{sub 2}), there are hundreds of different VOCs being emitted. In general, VOCs promote ozone formation, however, the rate and extent of ozone produced by the individual VOCs varies considerably. For example, it is widely acknowledged that formaldehyde (HCHO) is a very reactive VOC, and produces ozone rapidly and efficiently under most conditions. On the other hand, VOCs such as methane, ethane, propane, and methanol do not react as quickly, and are likely to form less urban ozone than a comparable mass of HCHO. The difference in ozone forming potential is one of the bases for the use of alternative fuels. The fuels considered in this study included compressed natural gas, LPG, mixtures of methanol and gasoline, ethanol and gasoline, and a reformulated gasoline.

  16. Development of the ReaxFF reactive force field for mechanistic studies of catalytic selective oxidation processes on BiMoOx

    E-Print Network [OSTI]

    van Duin, Adri

    our mechanistic understanding of catalytic hydrocarbon oxidation sufficiently to suggest modificationsDevelopment of the ReaxFF reactive force field for mechanistic studies of catalytic selective oxidation processes on BiMoOx William A. Goddard III*, Adri van Duin, Kimberly Chenoweth, Mu-Jeng Cheng

  17. ReaxFF Reactive Force Field for Solid Oxide Fuel Cell Systems with Application to Oxygen Ion Transport in Yttria-Stabilized Zirconia

    E-Print Network [OSTI]

    Goddard III, William A.

    ReaxFF Reactive Force Field for Solid Oxide Fuel Cell Systems with Application to Oxygen Ion through yttria-stabilized zirconia (YSZ) solid oxide fuel cell (SOFC) membranes. All parameters for Reax and cluster systems. We validated the use of ReaxFF for fuel cell applications by using it in molecular

  18. Nitrogen oxides emission control through reburning with biomass in coal-fired power plants 

    E-Print Network [OSTI]

    Arumugam, Senthilvasan

    2005-02-17

    Oxides of nitrogen from coal-fired power stations are considered to be major pollutants, and there is increasing concern for regulating air quality and offsetting the emissions generated from the use of energy. Reburning ...

  19. Mechanistic Details and Reactivity Descriptors in Oxidation and Acid Catalysis of Methanol

    E-Print Network [OSTI]

    Iglesia, Enrique

    /O2 ratios predicted from the elementary steps proposed. First-order ODH rate constants depend-suited to assess reaction mechanisms and the effects of composition on catalytic reactivity and selectivity and the ultimate design of cataly

  20. Solution-mediated strategies for synthesizing metal oxides, borates and phosphides using nanocrystals as reactive precursors 

    E-Print Network [OSTI]

    Henkes, Amanda Erin

    2009-05-15

    ) the solution-mediated diffusion of phosphorus into a nanocrystalline metal to form target metal phosphides. To form multi-metal oxides using the first strategy, metal oxide nanoparticle precursors are mixed in stoichiometric ratios in solution to form a...

  1. Impact of preindustrial biomass-burning emissions on the oxidation pathways of tropospheric sulfur and nitrogen

    E-Print Network [OSTI]

    Alexander, Becky

    the onset of the Industrial Revolution due to increases in fossil fuel burning emissions [e.g., Lelieveld et-burning events in North America just prior to the Industrial Revolution significantly impacted the oxidation the Industrial Revolution, particularly when using paleo-oxidant data as a reference for model evaluation. INDEX

  2. Generation and reactivity of putative support systems, Ce-Al neutral binary oxide nanoclusters: CO oxidation and C–H bond activation

    SciTech Connect (OSTI)

    Wang, Zhe-Chen; Yin, Shi; Bernstein, Elliot R.

    2013-11-21

    Both ceria (CeO{sub 2}) and alumina (Al{sub 2}O{sub 3}) are very important catalyst support materials. Neutral binary oxide nanoclusters (NBONCs), Ce{sub x}Al{sub y}O{sub z}, are generated and detected in the gas phase and their reactivity with carbon monoxide (CO) and butane (C{sub 4}H{sub 10}) is studied. The very active species CeAlO{sub 4}{sup •} can react with CO and butane via O atom transfer (OAT) and H atom transfer (HAT), respectively. Other Ce{sub x}Al{sub y}O{sub z} NBONCs do not show reactivities toward CO and C{sub 4}H{sub 10}. The structures, as well as the reactivities, of Ce{sub x}Al{sub y}O{sub z} NBONCs are studied theoretically employing density functional theory (DFT) calculations. The ground state CeAlO{sub 4}{sup •} NBONC possesses a kite-shaped structure with an O{sub t}CeO{sub b}O{sub b}AlO{sub t} configuration (O{sub t}, terminal oxygen; O{sub b}, bridging oxygen). An unpaired electron is localized on the O{sub t} atom of the AlO{sub t} moiety rather than the CeO{sub t} moiety: this O{sub t} centered radical moiety plays a very important role for the reactivity of the CeAlO{sub 4}{sup •} NBONC. The reactivities of Ce{sub 2}O{sub 4}, CeAlO{sub 4}{sup •}, and Al{sub 2}O{sub 4} toward CO are compared, emphasizing the importance of a spin-localized terminal oxygen for these reactions. Intramolecular charge distributions do not appear to play a role in the reactivities of these neutral clusters, but could be important for charged isoelectronic BONCs. DFT studies show that the reaction of CeAlO{sub 4}{sup •} with C{sub 4}H{sub 10} to form the CeAlO{sub 4}H•C{sub 4}H{sub 9}{sup •} encounter complex is barrierless. While HAT processes have been previously characterized for cationic and anionic oxide clusters, the reported study is the first observation of a HAT process supported by a ground state neutral oxide cluster. Mechanisms for catalytic oxidation of CO over surfaces of Al{sub x}O{sub y}/M{sub m}O{sub n} or M{sub m}O{sub n}/Al{sub x}O{sub y} materials are proposed consistent with the presented experimental and theoretical results.

  3. Impact of California Reformulated Gasoline on Motor Vehicle Emissions. 2. Volatile Organic Compound Speciation and Reactivity

    E-Print Network [OSTI]

    Kirchstetter, Thomas; Singer, Brett; Harley, Robert

    1999-01-01

    California Reformulated Gasoline On Motor Vehicle EmissionsCalifornia Reformulated Gasoline on Motor Vehicle EmmissionsBerkeley Environ. ScLTechnoL gasoline Impact California of

  4. Design of Inherently Safer Complex Reactive Processes: Application on the N-Oxidation of Alkylpyridines 

    E-Print Network [OSTI]

    Pineda Solano, Alba Lucia

    2014-04-18

    -oxides. In addition, this research evaluated the use of in-situ FTIR spectroscopy to monitor this reaction system. Thermal stability analyses showed that the alkylpyridines studied are stable up to 400 °C, while the corresponding N-oxides decompose significantly...

  5. Conjugated Polymers That Respond to Oxidation with Increased Emission

    E-Print Network [OSTI]

    Swager, Timothy Manning

    Thioether-containing poly(para-phenylene-ethynylene) (PPE) copolymers show a strong fluorescence turn-on response when exposed to oxidants in solution as a result of the selective conversion of thioether substituents into ...

  6. The detection of nitric oxide and its reactivity with transition metal thiolate complexes

    E-Print Network [OSTI]

    Tennyson, Andrew Gregory

    2008-01-01

    Nitric oxide (NO) is a molecule that is essential for life and regulates both beneficial and harmful processes. Because this gaseous radical influences many aspects of health and disease, we wish to explore the relationship ...

  7. Electronic structure of perovskite oxide surfaces at elevated temperatures and its correlation with oxygen reduction reactivity

    E-Print Network [OSTI]

    Chen, Yan, Ph. D. Massachusetts Institute of Technology

    2014-01-01

    The objective is to understand the origin of the local oxygen reduction reaction (ORR) activity on the basis of the local electronic structure at the surface of transition metal oxides at elevated temperatures and in oxygen ...

  8. Persistent sensitivity of Asian aerosol to emissions of nitrogen oxides

    E-Print Network [OSTI]

    Kharol, S. K.

    We use a chemical transport model and its adjoint to examine the sensitivity of secondary inorganic aerosol formation to emissions of precursor trace gases from Asia. Sensitivity simulations indicate that secondary inorganic ...

  9. Anthropogenic emissions of highly reactive volatile organic compounds in eastern Texas

    E-Print Network [OSTI]

    Mickley, Loretta J.

    al 2003, Parrish et al 2012) and in an oil/gas field of northern Colorado (Gilman et al 2013 of VOCs, have been used to constrain AHRVOC emissions in East Asia (Fu et al 2007) and Nigeria (Marais et

  10. Reactive nanophase oxide additions to melt-processed high-{Tc} superconductors

    SciTech Connect (OSTI)

    Goretta, K.C.; Brandel, B.P.; Lanagan, M.T.; Hu, J.; Miller, D.J.; Sengupta, S.; Parker, J.C.; Ali, M.N.; Chen, Nan

    1994-10-01

    Nanophase TiO{sub 2} and Al{sub 2}O{sub 3} powders were synthesized by a vapor-phase process and mechanically mixed with stoichiometric YBa{sub 2}Cu{sub 3}O{sub x} and TlBa{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} powders in 20 mole % concentrations. Pellets produced from powders with and without nanophase oxides were heated in air or O{sub 2} above the peritectic melt temperature and slow-cooled. At 4.2 K, the intragranular critical current density (J{sub c}) increased dramatically with the oxide additions. At 35--50 K, effects of the oxide additions were positive, but less pronounced. At 77 K, the additions decreased J{sub c}, probably because of inducing a depresion of the transition temperature.

  11. Reducing Nitrogen Oxide Emissions: 1996 Compliance with Title IV Limits

    Reports and Publications (EIA)

    1998-01-01

    The purpose of this article is to summarize the existing federal nitrogen oxide (Nox) regulations and the 1996 performance of the 239 Title IV generating units. It also reviews the basics of low-Nox burner technology and presents cost and performance data for retrofits at Title IV units.

  12. Regional-Scale Assessment of Nitrous Oxide Emissions within the US Corn Belt: The Impact of Precipitation and Agricultural Drainage on Indirect Emissions

    E-Print Network [OSTI]

    Minnesota, University of

    Regional-Scale Assessment of Nitrous Oxide Emissions within the US Corn Belt: The Impact of Precipitation and Agricultural Drainage on Indirect Emissions Tim Griffis1, Xuhui Lee2, John Baker3, Peter, but mitigation strategies have been limited by the large uncertainties in both direct and indirect emission

  13. CARBON SEQUESTRATION IN ARABLE SOILS IS LIKELY TO INCREASE NITROUS OXIDE EMISSIONS, OFFSETTING

    E-Print Network [OSTI]

    CARBON SEQUESTRATION IN ARABLE SOILS IS LIKELY TO INCREASE NITROUS OXIDE EMISSIONS, OFFSETTING in strategies for climate protection. 1. Introduction Carbon sequestration has been highlighted recently concentration of carbon dioxide (CO2) in the atmo- sphere include sequestering carbon (C) in soils

  14. TITLE: Emissions of Nitrous Oxide from Three Different Turfgrass Species and from Perennial Ryegrass under Different Irrigation Regimes

    E-Print Network [OSTI]

    80 TITLE: Emissions of Nitrous Oxide from Three Different Turfgrass Species and from Perennial). effects of irrigation on N2 O emissions from perennial ryegrass AUTHOR: Jason Lewis and Dale Bremer and frequencies, and irrigated with different amounts of water, all of which may affect N2 O emissions

  15. Inverse modeling of emissions for local photo-oxidant pollution : Testing a new methodology with kriging constraints

    E-Print Network [OSTI]

    Menut, Laurent

    Inverse modeling of emissions for local photo-oxidant pollution : Testing a new methodology. Abstract For chemistry-transport models operating at regional scales, surface emissions are the input data a methodology to optimize surface emissions at local scale i.e. to compute correction factors for the available

  16. Combustion process and nitrogen oxides emission of Shenmu coal added with sodium acetate

    SciTech Connect (OSTI)

    Yang Weijuan; Zhou Junhu; Liu Maosheng; Zhou Zhijun; Liu Jianzhong; Cen Kefa

    2007-09-15

    Shenmu bituminous coal with 4% sodium acetate added was used to investigate the characteristics of combustion and nitrogen oxide (NOx) release in a fixed bed reactor heated by a tube furnace. The composition of the flue gas was analyzed to investigate the effects of sodium acetate on the combustion process and NOx emission. The experiments were carried out in a partial reductive atmosphere and a strong oxidative atmosphere. The O{sub 2} valley value in the partial reductive atmosphere was reduced by the added sodium acetate. Sodium acetate accelerated the combustion and shortened the combustion process. The experimental results showed that the emissions of NO, NO{sub 2}, and N{sub 2}O were affected by the reacting atmosphere and the combustion temperature. In the strong oxidative atmosphere, sodium acetate resulted in a slight NOx reduction. In the partial reductive atmosphere, sodium acetate reduced both the peak value of NO concentration and the total NO emission significantly. An over 30% NOx reduction efficiency was achieved at 900{sup o}C in the partial reductive atmosphere, which decreased with the increase in temperature. Sodium acetate was decomposed into hydrocarbon radicals and sodium hydroxide, which can both reduce NOx emissions due to their special reactions with the nitrogen component. 17 refs., 11 figs., 2 tabs.

  17. Pore Scale Modeling of the Reactive Transport of Chromium in the Cathode of a Solid Oxide Fuel Cell

    SciTech Connect (OSTI)

    Ryan, Emily M.; Tartakovsky, Alexandre M.; Recknagle, Kurtis P.; Khaleel, Mohammad A.; Amon, Cristina

    2011-01-01

    We present a pore scale model of a solid oxide fuel cell (SOFC) cathode. Volatile chromium species are known to migrate from the current collector of the SOFC into the cathode where over time they decrease the voltage output of the fuel cell. A pore scale model is used to investigate the reactive transport of chromium species in the cathode and to study the driving forces of chromium poisoning. A multi-scale modeling approach is proposed which uses a cell level model of the cathode, air channel and current collector to determine the boundary conditions for a pore scale model of a section of the cathode. The pore scale model uses a discrete representation of the cathode to explicitly model the surface reactions of oxygen and chromium with a cathode material. The pore scale model is used to study the reaction mechanisms of chromium by considering the effects of reaction rates, diffusion coefficients, chromium vaporization, and oxygen consumption on chromium’s deposition in the cathode. The study shows that chromium poisoning is most significantly affected by the chromium reaction rates in the cathode and that the reaction rates are a function of the local current density in the cathode.

  18. Evaluation of Corona Reactors of Several Geometries for a Plasma Assisted Nitrogen Oxide Emission Reduction Device

    SciTech Connect (OSTI)

    Herling, Darrell R.; Smith, Monty R.; Hemingway, Mark D.; Goulette, David; Silvis, Thomas W.

    2000-08-09

    Proposed vehicle emissions regulations for the near future have prompted automotive manufactures and component suppliers to focus heavily on developing more efficient exhaust aftertreatment devices to lower emissions from spark and compression ignition engines. One of the primary pollutants from lean-burn engines, especially from diesels, are oxides of nitrogen (NOx). Current three-way catalytic converters will not have adequate performance to meet future emission reduction requirements. Therefore, there is a need for researchers and engineers to develop efficient exhaust aftertreatment devices that will reduce NOx emissions from lean-burn engines. These devices must have very high conversion of NOx gases, be unaffected by exhaust-gas impurity such as sulfur, and have minimal impact on vehicle operations and fuel economy. An effective technology for NOx control that is currently receiving a lot of attention is a non-thermal plasma system. This system is comprised of a two-stage corona generation device (plasma reactor) and reduction catalyst that reduces nitric oxide and nitrogen dioxide emissions to nitrogen.

  19. The synthesis, characterization and reactivity of high oxidation state nickel fluorides

    SciTech Connect (OSTI)

    Chacon, L.C. [Univ. of Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Berkeley National Lab., CA (United States). Chemical Sciences Div.

    1997-12-01

    The research described in this thesis has mainly addressed the challenge of the synthesis of thermodynamically unstable nickel fluorides, which cannot be made by traditional thermal methods. A low-temperature approach towards the synthesis of such transition metal fluorides exploits the greater thermodynamic stability of high oxidation states in anions and involves the use of anhydrous hydrogen fluoride (aHF) as a solvent. The general method consists of combining an aHF soluble starting material (e.g., K{sub 2}NiF{sub 6}) with a Lewis fluoroacid (e.g., BF{sub 3}), which precipitates a neutral polymeric solid state fluoride: 2 K{sup +} + NiF{sub 6}{sup 2{minus}} + BF{sub 3} {r_arrow} NiF{sub 4} + 2 BF{sub 4}{sup {minus}} + 2 K{sup +}. At room temperature, this reaction yields a different structural phase, with composition K{sub x}NiF{sub 3} (x {approx} 0.18). This material has a pseudo-hexagonal tungsten bronze structure (H{sub 0}-K{sub x}NiF{sub 3}), and is an ionic conductor, probably due to K{sup +} ions hosted in the lattice channels. R-NiF{sub 3} is capable of fluorinating a wide range of inorganic and organic substrates. These reactions have probably shed light on the mechanism of the Simons Electrochemical Fluorination (ECF) Process, an important industrial method of fluorinating organic compounds. It has long been speculated that NiF{sub 3} plays a role in the ECF process, which uses nickel electrodes in aHF solvent. K{sub 2}NiF{sub 6} also fluorinates organic compounds in aHF, but interestingly, yields different fluorinated products. The reduction of R-NiF{sub 3} and K{sub 2}NiF{sub 6} during fluorination reactions yields NiF{sub 2}. A method has been developed to regenerate NiF{sub 6}{sup 2{minus}} from NiF{sub 2}.

  20. A Reactive Oxide Overlayer on Rh Nanoparticles during CO Oxidation and Its Size Dependence Studied by in Situ Ambient Pressure XPS

    E-Print Network [OSTI]

    Grass, Michael E.

    2010-01-01

    then the thickness of the oxide layer formed can be roughlyof the surface oxide layer and affect the interaction of COillustrated here with the oxide layers shown to scale, as

  1. Mechanistic, sensitivity, and uncertainty studies of the atmospheric oxidation of dimethylsulfide

    E-Print Network [OSTI]

    Lucas, Donald David, 1969-

    2003-01-01

    The global-scale emissions and reactivity of dimethylsulfide (CH3SCH3, DMS) make it an integral component in the atmospheric sulfur cycle. DMS is rapidly oxidized in the atmosphere by a complex gas-phase mechanism involving ...

  2. DRIVE CYCLE EFFICIENCY AND EMISSIONS ESTIMATES FOR REACTIVITY CONTROLLED COMPRESSION IGNITION IN A MULTI-CYLINDER LIGHT-DUTY DIESEL ENGINE

    SciTech Connect (OSTI)

    Curran, Scott; Briggs, Thomas E; Cho, Kukwon; Wagner, Robert M

    2011-01-01

    In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOx and PM emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that by varying both the percent of premixed gasoline and EGR rate, stable combustion can be extended over more of the light-duty drive cycle load range. Changing the percent premixed gasoline changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and pressure rise rate than the use of EGR alone. This paper examines the combustion and emissions performance of light-duty diesel engine using direct injected diesel fuel and port injected gasoline to carry out RCCI for steady-state engine conditions which are consistent with a light-duty drive cycle. A GM 1.9L four-cylinder engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure EGR system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline. Engine-out emissions, engine performance and combustion behavior for RCCI operation is compared against both CDC and a premixed charge compression ignition (PCCI) strategy which relies on high levels of EGR dilution. The effect of percent of premixed gasoline, EGR rate, boost level, intake mixture temperature, combustion phasing and pressure rise rate is investigated for RCCI combustion for the light-duty modal points. Engine-out emissions of NOx and PM were found to be considerably lower for RCCI operation as compared to CDC and PCCI, while HC and CO emissions were higher. Brake thermal efficiency was similar or higher for many of the modal conditions for RCCI operation. The emissions results are used to estimate hot-start FTP-75 emissions levels with RCCI and are compared against CDC and PCCI modes.

  3. MINIMIZING NET CO2 EMISSIONS BY OXIDATIVE CO-PYROLYSIS OF COAL / BIOMASS BLENDS

    SciTech Connect (OSTI)

    Todd Lang; Robert Hurt

    2001-12-23

    This study presents a set of thermodynamic calculations on the optimal mode of solid fuel utilization considering a wide range of fuel types and processing technologies. The technologies include stand-alone combustion, biomass/coal cofiring, oxidative pyrolysis, and straight carbonization with no energy recovery but with elemental carbon storage. The results show that the thermodynamically optimal way to process solid fuels depends strongly on the specific fuels and technologies available, the local demand for heat or for electricity, and the local baseline energy-production method. Burning renewable fuels reduces anthropogenic CO{sub 2} emissions as widely recognized. In certain cases, however, other processing methods are equally or more effective, including the simple carbonization or oxidative pyrolysis of biomass fuels.

  4. Biodiesel Fuel Property Effects on Particulate Matter Reactivity

    SciTech Connect (OSTI)

    Williams, A.; Black, S.; McCormick, R. L.

    2010-06-01

    Controlling diesel particulate emissions to meet the 2007 U.S. standard requires the use of a diesel particulate filter (DPF). The reactivity of soot, or the carbon fraction of particulate matter, in the DPF and the kinetics of soot oxidation are important in achieving better control of aftertreatment devices. Studies showed that biodiesel in the fuel can increase soot reactivity. This study therefore investigated which biodiesel fuel properties impact reactivity. Three fuel properties of interest included fuel oxygen content and functionality, fuel aromatic content, and the presence of alkali metals. To determine fuel effects on soot reactivity, the performance of a catalyzed DPF was measured with different test fuels through engine testing and thermo-gravimetric analysis. Results showed no dependence on the aromatic content or the presence of alkali metals in the fuel. The presence and form of fuel oxygen was the dominant contributor to faster DPF regeneration times and soot reactivity.

  5. Thermal Activation and Quantum Field Emission in a Sketch-Based Oxide Nano Transistor

    E-Print Network [OSTI]

    Cheng Cen; Daniela Bogorin; Jeremy Levy

    2010-09-13

    We report direct measurements of the potential barriers and electronic coupling between nanowire segments within a sketch-based oxide nanotransistor (SketchFET) device. Near room temperature, switching is governed by thermally activation across a potential barrier controlled by the nanowire gate. Below T=150 K, a crossover to quantum field emission is observed that is sensitive to structural phase transitions in the SrTiO3 layer. This direct measurement of the source-drain and gate-drain energy barriers is crucial for the development of room-temperature logic and memory elements and low-temperature quantum devices.

  6. Photoluminescence emission at room temperature in zinc oxide nano-columns

    SciTech Connect (OSTI)

    Rocha, L.S.R.; Deus, R.C.; Foschini, C.R.; Simões, A.Z.

    2014-02-01

    Highlights: • ZnO nanoparticles were obtained by microwave-hydrothermal method. • X-ray diffraction reveals a hexagonal structure. • Photoluminescence emission evidenced two absorption peaks, at around 480 nm and 590 nm wavelengths. - Abstract: Hydrothermal microwave method (HTMW) was used to synthesize crystalline zinc oxide (ZnO) nano-columns at the temperature of 120 °C with a soaking time of 8 min. ZnO nano-columns were characterized by using X-ray analyses (XRD), infrared spectroscopy (FT-IR), thermogravimetric analyses (TG-DTA), field emission gun and transmission electron microscopy (FEG-SEM and TEM) and photoluminescence properties (PL). XRD results indicated that the ZnO nano-columns are free of any impurity phase and crystallize in the hexagonal structure. Typical FT-IR spectra for ZnO nano-columns presented well defined bands, indicating a substantial short-range order in the system. PL spectra consist of a broad band at 590 nm and narrow band at 480 nm corresponding to a near-band edge emission related to the recombination of excitons and level emission related to structural defects. These results show that the HTMW synthesis route is rapid, cost effective, and could be used as an alternative to obtain ZnO nano-columns in the temperature of 120 °C for 8 min.

  7. Nitrogen oxides emission control options for coal-fired electric utility boilers

    SciTech Connect (OSTI)

    Ravi K. Srivastava; Robert E. Hall; Sikander Khan; Kevin Culligan; Bruce W. Lani

    2005-09-01

    Recent regulations have required reductions in emissions of nitrogen oxides (NOx) from electric utility boilers. To comply with these regulatory requirements, it is increasingly important to implement state-of-the-art NOx control technologies on coal-fired utility boilers. This paper reviews NOx control options for these boilers. It discusses the established commercial primary and secondary control technologies and examines what is being done to use them more effectively. Furthermore, the paper discusses recent developments in NOx controls. The popular primary control technologies in use in the United States are low-NOx burners and overfire air. Data reflect that average NOx reductions for specific primary controls have ranged from 35% to 63% from 1995 emissions levels. The secondary NOx control technologies applied on U.S. coal-fired utility boilers include reburning, selective noncatalytic reduction (SNCR), and selective catalytic reduction (SCR). Thirty-six U.S. coal-fired utility boilers have installed SNCR, and reported NOx reductions achieved at these applications ranged from 15% to 66%. Recently, SCR has been installed at 150 U.S. coal-fired utility boilers. Data on the performance of 20 SCR systems operating in the United States with low-NOx emissions reflect that in 2003, these units achieved NOx emission rates between 0.04 and 0.07 lb/106 Btu. 106 refs., 6 figs., 6 tabs.

  8. Fundamental Study of the Oxidation Characteristics and Pollutant Emissions of Model Biodiesel Fuels

    SciTech Connect (OSTI)

    Feng, Q.; Wang, Y. L.; Egolfopoulos, Fokion N.; Tsotsis, T. T.

    2010-07-18

    In this study, the oxidation characteristics of biodiesel fuels are investigated with the goal of contributing toward the fundamental understanding of their combustion characteristics and evaluating the effect of using these alternative fuels on engine performance as well as on the environment. The focus of the study is on pure fatty acid methyl-esters (FAME,) that can serve as surrogate compounds for real biodiesels. The experiments are conducted in the stagnation-flow configuration, which allows for the systematic evaluation of fundamental combustion and emission characteristics. In this paper, the focus is primarily on the pollutant emission characteristics of two C{sub 4} FAMEs, namely, methyl-butanoate and methyl-crotonate, whose behavior is compared with that of n-butane and n-pentane. To provide insight into the mechanisms of pollutant formation for these fuels, the experimental data are compared with computed results using a model with consistent C1-C4 oxidation and NOx formation kinetics.

  9. MINIMIZING NET CARBON DIOXIDE EMISSIONS BY OXIDATIVE CO-PYROLYSIS OF COAL/BIOMASS BLENDS

    SciTech Connect (OSTI)

    Robert Hurt; Todd Lang

    2001-06-25

    Solid fuels vary significantly with respect to the amount of CO{sub 2} directly produced per unit heating value. Elemental carbon is notably worse than other solid fuels in this regard, and since carbon (char) is an intermediate product of the combustion of almost all solid fuels, there is an opportunity to reduce specific CO{sub 2} emissions by reconfiguring processes to avoid char combustion wholly or in part. The primary goal of this one-year Innovative Concepts project is to make a fundamental thermodynamic assessment of three modes of solid fuel use: (1) combustion, (2) carbonization, and (3) oxidative pyrolysis, for a wide range of coal and alternative solid fuels. This period a large set of thermodynamic calculations were carried out to assess the potential of the three processes. The results show that the net carbon dioxide emissions and the relative ranking of the different processes depends greatly on the particular baseline fossil fuel being displaced by the new technology. As an example, in a baseline natural gas environment, it is thermodynamically more advantageous to carbonize biomass than to combust it, and even more advantageous to oxidatively pyrolyze the biomass.

  10. Reactive based NOx sensor

    E-Print Network [OSTI]

    Vassiliou, Christophoros Christou

    2006-01-01

    Diesel engines exhibit better fuel economy and emit fewer greenhouse gases than gasoline engines. Modern diesel technology has virtually eliminated carbon monoxide and particulate emissions. Sulfur oxide emissions have ...

  11. Emissivity of Candidate Materials for VHTR Applicationbs: Role of Oxidation and Surface Modification Treatments

    SciTech Connect (OSTI)

    Sridharan, Kumar; Allen, Todd; Anderson, Mark; Cao, Guoping; Kulcinski, Gerald

    2011-07-25

    The Generation IV (GEN IV) Nuclear Energy Systems Initiative was instituted by the Department of Energy (DOE) with the goal of researching and developing technologies and materials necessary for various types of future reactors. These GEN IV reactors will employ advanced fuel cycles, passive safety systems, and other innovative systems, leading to significant differences between these future reactors and current water-cooled reactors. The leading candidate for the Next Generation Nuclear Plant (NGNP) to be built at Idaho National Lab (INL) in the United States is the Very High Temperature Reactor (VHTR). Due to the high operating temperatures of the VHTR, the Reactor Pressure Vessel (RPV) will partially rely on heat transfer by radiation for cooling. Heat expulsion by radiation will become all the more important during high temperature excursions during off-normal accident scenarios. Radiant power is dictated by emissivity, a material property. The NGNP Materials Research and Development Program Plan [1] has identified emissivity and the effects of high temperature oxide formation on emissivity as an area of research towards the development of the VHTR.

  12. Air Quality Responses to Changes in Black Carbon and Nitrogen Oxide Emissions

    E-Print Network [OSTI]

    Millstein, Dev

    2009-01-01

    2005). Particulate emissions from construction activities.M. S. , (2000b). In-use emissions from heavy- duty dieseland nitrogen dioxide emissions from gasoline- and diesel-

  13. Neutron Emission Characteristics of Two Mixed-Oxide Fuels: Simulations and Initial Experiments

    SciTech Connect (OSTI)

    D. L. Chichester; S. A. Pozzi; J. L. Dolan; M. Flaska; J. T. Johnson; E. H. Seabury; E. M. Gantz

    2009-07-01

    Simulations and experiments have been carried out to investigate the neutron emission characteristics of two mixed-oxide (MOX) fuels at Idaho National Laboratory (INL). These activities are part of a project studying advanced instrumentation techniques in support of the U.S. Department of Energy's Fuel Cycle Research and Development program and it's Materials Protection, Accounting, and Control for Transmutation (MPACT) campaign. This analysis used the MCNP-PoliMi Monte Carlo simulation tool to determine the relative strength and energy spectra of the different neutron source terms within these fuels, and then used this data to simulate the detection and measurement of these emissions using an array of liquid scintillator neutron spectrometers. These calculations accounted for neutrons generated from the spontaneous fission of the actinides in the MOX fuel as well as neutrons created via (alpha,n) reactions with oxygen in the MOX fuel. The analysis was carried out to allow for characterization of both neutron energy as well as neutron coincidences between multiple detectors. Coincidences between prompt gamma rays and neutrons were also analyzed. Experiments were performed at INL with the same materials used in the simulations to benchmark and begin validation tests of the simulations. Data was collected in these experiments using an array of four liquid scintillators and a high-speed waveform digitizer. Advanced digital pulse-shape discrimination algorithms were developed and used to collect this data. Results of the simulation and modeling studies are presented together with preliminary results from the experimental campaign.

  14. Acoustic emission analysis on tensile failure of steam-side oxide scales formed on T22 alloy superheater tubes

    SciTech Connect (OSTI)

    Huang, Jun-Lin; Zhou, Ke-Yi Xu, Jian-Qun; Wang, Xin-Meng; Tu, Yi-You

    2014-07-28

    Failure of steam-side oxide scales on boiler tubes can seriously influence the safety of coal-fired power plants. Uniaxial tensile tests employing acoustic emission (AE) monitoring were performed, in this work, to investigate the failure behavior of steam-side oxide scales on T22 alloy boiler superheater tubes. The characteristic frequency spectra of the captured AE signals were obtained by performing fast Fourier transform. Three distinct peak frequency bands, 100-170, 175-250, and 280-390 kHz, encountered in different testing stages were identified in the frequency spectra, which were confirmed to, respectively, correspond to substrate plastic deformation, oxide vertical cracking, and oxide spalling with the aid of scanning electronic microscopy observations, and can thus be used for distinguishing different oxide failure mechanisms. Finally, the critical cracking strain of the oxide scale and the interfacial shear strength of the oxide/substrate interface were estimated, which are the critical parameters urgently desired for modeling the failure behavior of steam-side oxide scales on boiler tubes of coal-fired power plants.

  15. Light-Duty Reactivity Controlled Compression Ignition Drive Cycle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light-Duty Reactivity Controlled Compression Ignition Drive Cycle Fuel Economy and Emissions Estimates Light-Duty Reactivity Controlled Compression Ignition Drive Cycle Fuel...

  16. First-Principles Statistical Mechanics Study of the Stability of a Subnanometer Thin Surface Oxide in Reactive Environments: CO Oxidation at Pd(100)

    E-Print Network [OSTI]

    First-Principles Statistical Mechanics Study of the Stability of a Subnanometer Thin Surface Oxide) model catalyst as an example. For this system, in situ reactor scanning tunneling microscopy (STM with a notable increase in the catalytic activity [5]. The first-principles statistical mechanics calculations

  17. Steam Oxidation of Advanced Steam Turbine Alloys

    SciTech Connect (OSTI)

    Holcomb, Gordon R.

    2008-01-01

    Power generation from coal using ultra supercritical steam results in improved fuel efficiency and decreased greenhouse gas emissions. Results of ongoing research into the oxidation of candidate nickel-base alloys for ultra supercritical steam turbines are presented. Exposure conditions range from moist air at atmospheric pressure (650°C to 800°C) to steam at 34.5 MPa (650°C to 760°C). Parabolic scale growth coupled with internal oxidation and reactive evaporation of chromia are the primary corrosion mechanisms.

  18. Current emission trends for nitrogen oxides, sulfur dioxide, and volatile organic compounds by month and state: Methodology and results

    SciTech Connect (OSTI)

    Kohout, E.J.; Miller, D.J.; Nieves, L.A.; Rothman, D.S.; Saricks, C.L.; Stodolsky, F.; Hanson, D.A.

    1990-08-01

    This report presents estimates of monthly sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), and nonmethane voltatile organic compound (VOC) emissions by sector, region, and state in the contiguous United States for the years 1975 through 1988. This work has been funded as part of the National Acid Precipitation Assessment Program`s Emissions and Controls Task Group by the US Department of Energy (DOE) Office of Fossil Energy (FE). The DOE project officer is Edward C. Trexler, DOE/FE Office of Planning and Environment.

  19. Current emission trends for nitrogen oxides, sulfur dioxide, and volatile organic compounds by month and state: Methodology and results

    SciTech Connect (OSTI)

    Kohout, E.J.; Miller, D.J.; Nieves, L.A.; Rothman, D.S.; Saricks, C.L.; Stodolsky, F.; Hanson, D.A.

    1990-08-01

    This report presents estimates of monthly sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), and nonmethane voltatile organic compound (VOC) emissions by sector, region, and state in the contiguous United States for the years 1975 through 1988. This work has been funded as part of the National Acid Precipitation Assessment Program's Emissions and Controls Task Group by the US Department of Energy (DOE) Office of Fossil Energy (FE). The DOE project officer is Edward C. Trexler, DOE/FE Office of Planning and Environment.

  20. Reactivity Controlled Compression Ignition (RCCI) Combustion on a Multi-Cylinder Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Curran, Scott; Hanson, Reed M; Wagner, Robert M

    2012-01-01

    Reactivity controlled compression ignition is a low-temperature combustion technique that has been shown, both in computational fluid dynamics modeling and single-cylinder experiments, to obtain diesel-like efficiency or better with ultra-low nitrogen oxide and soot emissions, while operating primarily on gasoline-like fuels. This paper investigates reactivity controlled compression ignition operation on a four-cylinder light-duty diesel engine with production-viable hardware using conventional gasoline and diesel fuel. Experimental results are presented over a wide speed and load range using a systematic approach for achieving successful steady-state reactivity controlled compression ignition combustion. The results demonstrated diesel-like efficiency or better over the operating range explored with low engine-out nitrogen oxide and soot emissions. A peak brake thermal efficiency of 39.0% was demonstrated for 2600 r/min and 6.9 bar brake mean effective pressure with nitrogen oxide emissions reduced by an order of magnitude compared to conventional diesel combustion operation. Reactivity controlled compression ignition emissions and efficiency results are compared to conventional diesel combustion operation on the same engine.

  1. Effectiveness of a Diesel Oxidation Catalyst (DOC) to control CO and hydrocarbon emissions from Reactivity Controlled Compression Ignition (RCCI) combustion

    Broader source: Energy.gov [DOE]

    Performance of two commercially available DOCs with different precious metal loadings and Pt:Pd ratios were compared to model DOC containing Pt only

  2. Exploring the reactivity of bacterial multicomponent monooxygenases

    E-Print Network [OSTI]

    Tinberg, Christine Elaine

    2010-01-01

    Chapter 1. Introduction: The Reactivity of Bacterial Multicomponent Monooxygenases Bacterial multicomponent monooxygenases constitute a remarkable family of enzymes that oxidize small, inert hydrocarbon substrates using ...

  3. Polymer Coated Urea: Effect on Nitrous Oxide Emissions from Potato Agriculture Irrigated potato (Solanum tuberosum L.) production requires significant inputs of fertilizer N for

    E-Print Network [OSTI]

    Minnesota, University of

    Abstract: Polymer Coated Urea: Effect on Nitrous Oxide Emissions from Potato Agriculture Irrigated-textured, well-drained soils where potatoes are commonly grown. Polymer coated controlled-release ureas (PCU

  4. Reducing Emissions of Sulfur Dioxide, Nitrogen Oxides, and Mercury from Electric Power Plants

    Reports and Publications (EIA)

    2001-01-01

    This analysis responds to a request from Senators Bob Smith, George Voinovich, and Sam Brownback to examine the costs of specific multi-emission reduction strategies.

  5. Air Pollution Control Regulations: No.27- Control of Nitrogen Oxide Emissions (Rhode Island)

    Broader source: Energy.gov [DOE]

    These regulations apply to stationary sources with the potential to emit 50 tons of nitrogen oxides (NOx) per year from all pollutant-emitting equipment or activities. The regulations describe...

  6. Emissions of nitrogen oxides from US urban areas: estimation from Ozone Monitoring Instrument retrievals for 2005-2014

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lu, Z.; Streets, D. G.; de Foy, B.; Lamsal, L. N.; Duncan, B. N.; Xing, J.

    2015-05-28

    Satellite remote sensing of tropospheric nitrogen dioxide (NO2) can provide valuable information for estimating surface nitrogen oxides (NOx) emissions. Using an exponentially-modified Gaussian (EMG) method and taking into account the effect of wind on observed NO2 distributions, we estimate three-year moving-average emissions of summertime NOx from 35 US urban areas directly from NO2 retrievals of the Ozone Monitoring Instrument (OMI) during 2005–2014. Following the conclusions of previous studies that the EMG method provides robust and accurate emission estimates under strong-wind conditions, we derive top-down NOx emissions from each urban area by applying the EMG method to OMI data with windmore »speeds greater than 3–5 m s-1. Meanwhile, we find that OMI NO2 observations under weak-wind conditions (i.e., -1) are qualitatively better correlated with the surface NOx source strength in comparison to all-wind OMI maps; and therefore we use them to calculate the satellite-observed NO2 burdens of urban areas and compare with NOx emission estimates. The EMG results show that OMI-derived NOx emissions are highly correlated (R > 0.93) with weak-wind OMI NO2 burdens as well as bottom-up NOx emission estimates over 35 urban areas, implying a linear response of the OMI observations to surface emissions under weak-wind conditions. The simultaneous, EMG-obtained, effective NO2 lifetimes (~3.5 ± 1.3 h), however, are biased low in comparison to the summertime NO2 chemical lifetimes. In general, isolated urban areas with NOx emission intensities greater than ~ 2 Mg h-1 produce statistically significant weak-wind signals in three-year average OMI data. From 2005 to 2014, we estimate that total OMI-derived NOx emissions over all selected US urban areas decreased by 49%, consistent with reductions of 43, 47, 49, and 44% in the total bottom-up NOx emissions, the sum of weak-wind OMI NO2 columns, the total weak-wind OMI NO2 burdens, and the averaged NO2 concentrations, respectively, reflecting the success of NOx control programs for both mobile sources and power plants. The decrease rates of these NOx-related quantities are found to be faster (i.e., -6.8 to -9.3% yr-1) before 2010 and slower (i.e., -3.4 to -4.9% yr-1) after 2010. For individual urban areas, we calculate the R values of pair-wise trends among the OMI-derived and bottom-up NOx emissions, the weak-wind OMI NO2 burdens, and ground-based NO2 measurements; and high correlations are found for all urban areas (median R = 0.8), particularly large ones (R up to 0.97). The results of the current work indicate that using the EMG method and considering the wind effect, the OMI data allow for the estimation of NOx emissions from urban areas and the direct constraint of emission trends with reasonable accuracy.« less

  7. Natural volatile organic compound emissions from plants and their roles in oxidant balance and particle formation

    E-Print Network [OSTI]

    Kesselmeier, JC

    2009-01-01

    of Emissions of Gases and Aero- sols from Nature), Atmos.of secondary organic aero­ sol: A global modeling study, J.and M. Razzaghi (1989), Aero­bic ethanol-production by

  8. Low-Temperature Hydrocarbon/CO Oxidation Catalysis in Support of HCCI Emission Control

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  9. Evaluating the Effects of Organic Amendment Applications on Nitrous Oxide Emissions From Salt-Affected Soils

    E-Print Network [OSTI]

    Pulla Reddy Gari, Namratha

    2013-01-01

    Effect of Soil Properties on Carbon Dioxide and Nitrous110 Effect of Soil Properties on Carbon Dioxide and Nitrousproperties have been well studied, their effects on greenhouse gas emissions such as carbon dioxide (

  10. Rational Catalyst Design Applied to Development of Advanced Oxidation Catalysts for Diesel Emission Control

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  11. Low power zinc-oxide based charge trapping memory with embedded silicon nanoparticles via poole-frenkel hole emission

    SciTech Connect (OSTI)

    El-Atab, Nazek; Nayfeh, Ammar; Ozcan, Ayse; Alkis, Sabri; Okyay, Ali K.; Department of Electrical and Electronics Engineering, Bilkent University, 06800 Ankara

    2014-01-06

    A low power zinc-oxide (ZnO) charge trapping memory with embedded silicon (Si) nanoparticles is demonstrated. The charge trapping layer is formed by spin coating 2?nm silicon nanoparticles between Atomic Layer Deposited ZnO steps. The threshold voltage shift (?V{sub t}) vs. programming voltage is studied with and without the silicon nanoparticles. Applying ?1?V for 5?s at the gate of the memory with nanoparticles results in a ?V{sub t} of 3.4?V, and the memory window can be up to 8?V with an excellent retention characteristic (>10 yr). Without nanoparticles, at ?1?V programming voltage, the ?V{sub t} is negligible. In order to get ?V{sub t} of 3.4?V without nanoparticles, programming voltage in excess of 10?V is required. The negative voltage on the gate programs the memory indicating that holes are being trapped in the charge trapping layer. In addition, at 1?V the electric field across the 3.6?nm tunnel oxide is calculated to be 0.36 MV/cm, which is too small for significant tunneling. Moreover, the ?V{sub t} vs. electric field across the tunnel oxide shows square root dependence at low fields (E??2.7 MV/cm). This indicates that Poole-Frenkel Effect is the main mechanism for holes emission at low fields and Phonon Assisted Tunneling at higher fields.

  12. ENVR Dionysios Dionysiou Wednesday, August 22, 2012 261 -Arsenic mobilization in the critical zone: Oxidation by manganese oxide minerals

    E-Print Network [OSTI]

    Sparks, Donald L.

    with the two most reactive Mn oxides, HMO and acid birnessite. Only higher arsenic concentrations decreased

  13. Emission, oxidation, and secondary organic aerosol formation of volatile organic compounds as observed at Chebogue Point,

    E-Print Network [OSTI]

    Goldstein, Allen

    acid, formaldehyde, acetaldehyde, tentatively identified formic acid and hydroxyacetone organic aerosol production. We clearly show these compounds do not originate from local sources. We also show these compounds match the oxidation products of isoprene observed in smog chamber studies, and we

  14. Reactive Maintenance

    Broader source: Energy.gov [DOE]

    Reactive maintenance follows a run-it-until-it-breaks strategy where no actions or efforts are taken to maintain equipment as intended by the manufacturer. Studies indicate this is still the predominant mode of maintenance for Federal facilities.

  15. Nanoparticles as Reactive Precursors: Synthesis of Alloys, Intermetallic Compounds, and Multi-Metal Oxides Through Low-Temperature Annealing and Conversion Chemistry 

    E-Print Network [OSTI]

    Bauer, John C.

    2010-07-14

    and intermetallic compounds at or below 600 degrees C. This method was further extended to synthesizing multi-metal oxide systems by annealing metal oxide nanoparticle composites hundreds of degrees lower than more traditional methods. Nanoparticles of Pt (supported...

  16. The regenerable trap oxidizer-An emission control technique for diesel engines

    SciTech Connect (OSTI)

    Abthoff, J.; Schuster, H.D.; Langer, H.J.; Loose, G.

    1985-01-01

    Daimler-Benz made an early start with the development of systems for the aftertreatment of the exhaust gas emitted by diesel engines. The more important limiting conditions could best be met by the provision of a ceramic, selfcleaning trap oxidizer (TO). In such filters, self-regeneration is effected continuously while driving without any external control. Either partial or complete regeneration is effected, depending on the temperature, oxygen content and rate of flow of the exhaust gas, the amount of soot in the filter and the period for which a given operating condition is maintained. Such a trap oxidizer was developed for a 3.0 liter turbocharged diesel engine to the extent necessary for series production and has been fitted to type 300 SD and 300 D turbocharged diesel of model year 1985 in California.

  17. Enhancement in light emission and electrical efficiencies of a silicon nanocrystal light-emitting diode by indium tin oxide nanowires

    SciTech Connect (OSTI)

    Huh, Chul, E-mail: chuh@etri.re.kr; Kim, Bong Kyu; Ahn, Chang-Geun; Kim, Sang-Hyeob [IT Convergence Technology Research Laboratory, Electronics and Telecommunications Research Institute, Daejeon 305-350 (Korea, Republic of); Choi, Chel-Jong [Department of BIN Fusion Technology, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2014-07-21

    We report an enhancement in light emission and electrical efficiencies of a Si nanocrystal (NC) light-emitting diode (LED) by employing indium tin oxide (ITO) nanowires (NWs). The formed ITO NWs (diameter?

  18. Reduction of nitrogen oxide emissions from fossil fuels. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect (OSTI)

    1997-05-01

    The bibliography contains citations concerning the removal of nitrogen compounds from fossil fuels and their post-combustion emissions. Removal methods include biological denitrification, fluidized bed combustion, and flue gas denitrification. Applications to utilities, petroleum refineries, and other industries are presented. The design of nitrogen control systems and process optimization are described. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  19. Reduction of nitrogen oxide emissions from fossil fuels. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect (OSTI)

    1996-01-01

    The bibliography contains citations concerning the removal of nitrogen compounds from fossil fuels and their post-combustion emissions. Removal methods include biological denitrification, fluidized bed combustion, and flue gas denitrification. Applications to utilities, petroleum refineries, and other industries are presented. The design of nitrogen control systems and process optimization are described. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  20. Emission

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas NuclearElectronic StructureEly M.Emilio Segrè About the LabEmission

  1. Evaluation of space-based constraints on global nitrogen oxide emissions with regional aircraft measurements over and downwind of

    E-Print Network [OSTI]

    Martin, Randall

    emissions. Our a posteriori NOx emission inventory for land surface NOx emissions (46.1 Tg N yrÀ1 ) is 22 anthropogenic emissions, especially from East Asia. A posteriori NOx emissions for East Asia (9.8 Tg N yrÀ1. Anthropogenic activity has increased global NOx emissions by a factor of 3­6 since preindustrial times [Prather

  2. Light duty vehicle full fuel cycle emissions analysis. Topical report, April 1993-April 1994

    SciTech Connect (OSTI)

    Darrow, K.G.

    1994-04-01

    The report provides a methodology for analyzing full fuel cycle emissions of alternative fuels for vehicles. Included in this analysis is an assessment of the following fuel cycles relevant to vehicle use: gasoline, reformulated gasoline, natural gas, liquefied petroleum gas, electric power (with onboard battery storage), ethanol, and methanol fuels. The analysis focuses on basic criteria pollutants (reactive organic gases, nitrous oxides, carbon monoxide, sulfurous oxides, and particulates less than 10 microns (PM10)). Emissions of greenhouse gases (carbon dioxide, methane, and nitrous oxide) are also defined. The analysis was conducted for two cases, United States and the State of California and two time frames, current and year 2000.

  3. Emissions of nitrogen oxides from US urban areas: estimation from Ozone Monitoring Instrument retrievals for 2005-2014

    SciTech Connect (OSTI)

    Lu, Z. [Argonne National Lab. (ANL), Argonne, IL (United States); Streets, D. G. [Argonne National Lab. (ANL), Argonne, IL (United States); de Foy, B. [Saint Louis Univ., St. Louis, MO (United States)] (ORCID:0000000341509922); Lamsal, L. N. [Goddard Earth Sciences Technology and Research, Universities Space Research Association, Columbia, MD (United States); NASA Goddard Space Flight Center, Greenbelt, MD (United States); Duncan, B. N. [NASA Goddard Space Flight Center, Greenbelt, MD (United States); Xing, J. [US Environmental Protection Agency, Research Triangle Park, NC (United States)

    2015-01-01

    Satellite remote sensing of tropospheric nitrogen dioxide (NO2) can provide valuable information for estimating surface nitrogen oxides (NOx) emissions. Using an exponentially-modified Gaussian (EMG) method and taking into account the effect of wind on observed NO2 distributions, we estimate three-year moving-average emissions of summertime NOx from 35 US urban areas directly from NO2 retrievals of the Ozone Monitoring Instrument (OMI) during 2005–2014. Following the conclusions of previous studies that the EMG method provides robust and accurate emission estimates under strong-wind conditions, we derive top-down NOx emissions from each urban area by applying the EMG method to OMI data with wind speeds greater than 3–5 m s-1. Meanwhile, we find that OMI NO2 observations under weak-wind conditions (i.e., < 3 m s-1) are qualitatively better correlated with the surface NOx source strength in comparison to all-wind OMI maps; and therefore we use them to calculate the satellite-observed NO2 burdens of urban areas and compare with NOx emission estimates. The EMG results show that OMI-derived NOx emissions are highly correlated (R > 0.93) with weak-wind OMI NO2 burdens as well as bottom-up NOx emission estimates over 35 urban areas, implying a linear response of the OMI observations to surface emissions under weak-wind conditions. The simultaneous, EMG-obtained, effective NO2 lifetimes (~3.5 ± 1.3 h), however, are biased low in comparison to the summertime NO2 chemical lifetimes. In general, isolated urban areas with NOx emission intensities greater than ~ 2 Mg h-1 produce statistically significant weak-wind signals in three-year average OMI data. From 2005 to 2014, we estimate that total OMI-derived NOx emissions over all selected US urban areas decreased by 49%, consistent with reductions of 43, 47, 49, and 44% in the total bottom-up NOx emissions, the sum of weak-wind OMI NO2 columns, the total weak-wind OMI NO2 burdens, and the averaged NO2 concentrations, respectively, reflecting the success of NOx control programs for both mobile sources and power plants. The decrease rates of these NOx-related quantities are found to be faster (i.e., -6.8 to -9.3% yr-1) before 2010 and slower (i.e., -3.4 to -4.9% yr-1) after 2010. For individual urban areas, we calculate the R values of pair-wise trends among the OMI-derived and bottom-up NOx emissions, the weak-wind OMI NO2 burdens, and ground-based NO2 measurements; and high correlations are found for all urban areas (median R = 0.8), particularly large ones (R up to 0.97). The results of the current work indicate that using the EMG method and considering the wind effect, the OMI data allow for the estimation of NOx emissions from urban areas and the direct constraint of emission trends with reasonable accuracy.

  4. Response of fine particulate matter to emission changes of oxides of nitrogen and anthropogenic volatile organic compounds in the eastern United States

    SciTech Connect (OSTI)

    Alexandra P. Tsimpidi; Vlassis A. Karydis; Spyros N. Pandis

    2008-11-15

    A three-dimensional chemical transport model (Particulate Matter Comprehensive Air Quality Model with Extensions) is used to investigate changes in fine particle (PM2.5) concentrations in response to 50% emissions changes of oxides of nitrogen (NOx) and anthropogenic volatile organic compounds (VOCs) during July 2001 and January 2002 in the eastern United States. The reduction of NOx emissions by 50% during the summer results in lower average oxidant levels and lowers PM2.5 (8% on average), mainly because of reductions of sulfate (9-11%), nitrate (45-58%), and ammonium (7-11%). The organic particulate matter (PM) slightly decreases in rural areas, whereas it increases in cities by a few percent when NOx is reduced. Reduction of NOx during winter causes an increase of the oxidant levels and a rather complicated response of the PM components, leading to small net changes. Sulfate increases (8-17%), nitrate decreases (18-42%), organic PM slightly increases, and ammonium either increases or decreases a little. The reduction of VOC emissions during the summer causes on average a small increase of the oxidant levels and a marginal increase in PM2.5. This small net change is due to increases in the inorganic components and decreases of the organic ones. Reduction of VOC emissions during winter results in a decrease of the oxidant levels and a 5-10% reduction of PM2.5 because of reductions in nitrate (4-19%), ammonium (4-10%), organic PM (12-14%), and small reductions in sulfate. Although sulfur dioxide (SO{sub 2}) reduction is the single most effective approach for sulfate control, the coupled decrease of SO{sub 2} and NOx emissions in both seasons is more effective in reducing total PM2.5 mass than the SO{sub 2} reduction alone. 34 refs., 7 figs., 1 tab.

  5. Effects of ethanol and reactive species on Hepatitis C virus

    E-Print Network [OSTI]

    Seronello, Scott E.

    2010-01-01

    polymerase chain reaction; RNS, reactive nitrogen species;oxygen/nitrogen species (ROS/RNS) and decreased antioxidantincrease the levels of ROS/RNS, oxidized thioredoxin, lipid

  6. Reactive Air Aluminization

    SciTech Connect (OSTI)

    Choi, Jung-Pyung; Chou, Y. S.; Stevenson, Jeffry W.

    2011-10-28

    Ferritic stainless steels and other alloys are of great interest to SOFC developers for applications such as interconnects, cell frames, and balance of plant components. While these alloys offer significant advantages (e.g., low material and manufacturing cost, high thermal conductivity, and high temperature oxidation resistance), there are challenges which can hinder their utilization in SOFC systems; these challenges include Cr volatility and reactivity with glass seals. To overcome these challenges, protective coatings and surface treatments for the alloys are under development. In particular, aluminization of alloy surfaces offers the potential for mitigating both evaporation of Cr from the alloy surface and reaction of alloy constituents with glass seals. Commercial aluminization processes are available to SOFC developers, but they tend to be costly due to their use of exotic raw materials and/or processing conditions. As an alternative, PNNL has developed Reactive Air Aluminization (RAA), which offers a low-cost, simpler alternative to conventional aluminization methods.

  7. An experimental and theoretical investigation of the structure and reactivity of bilayered VOx/TiOx/SiO2 catalysts for methanol oxidation

    E-Print Network [OSTI]

    Bell, Alexis

    /TiOx/SiO2 catalysts for methanol oxidation William C. Vining, Anthony Goodrow, Jennifer Strunk, Alexis T Accepted 22 December 2009 Available online 2 February 2010 Keywords: Vanadia Silica Titania Methanol vanadia surface density (0.7 V/nm2 ), the turnover frequency for methanol oxidation to formaldehyde

  8. The OH-Initiated Oxidation of 1,3-Butadiene in the Presence of O2 and NO: A Photolytic Route To Study Isomeric Selective Reactivity

    E-Print Network [OSTI]

    North, Simon W.

    The OH-Initiated Oxidation of 1,3-Butadiene in the Presence of O2 and NO: A Photolytic Route, 2005 We report the study of the isomeric selective OH-initiated oxidation of 1,3-butadiene provides only one of the possible OD-butadiene adducts, the minor addition channel product, simplifying

  9. Cell Comp't Thermal Reactivity & Improvements

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for better abuse tolerance Coating cathode particle with stable nano-films of Al-oxide or Al-fluoride that act as a barrier against electrolyte reactivity with cathodes ...

  10. Emission Control Cost-Effectiveness of Alternative-Fuel Vehicles

    E-Print Network [OSTI]

    Wang, Quanlu; Sperling, Daniel; Olmstead, Janis

    1993-01-01

    Reactivity Scale for Low- Emission Vehicles and Clean Fuelsgas, and electricity. Vehicle emission estimates includedtype in controlling vehicle emissions. DedLicated methanol

  11. HIGH EFFICIENCY, LOW EMISSIONS, SOLID OXIDE FUEL CELL SYSTEMS FOR MULTIPLE APPLICATIONS

    SciTech Connect (OSTI)

    Sara Ward; Michael A. Petrik

    2004-07-28

    Technology Management Inc. (TMI), teamed with the Ohio Office of Energy Efficiency and Renewable Energy, has engineered, constructed, and demonstrated a stationary, low power, multi-module solid oxide fuel cell (SOFC) prototype system operating on propane and natural gas. Under Phase I, TMI successfully operated two systems in parallel, in conjunction with a single DC-AC inverter and battery bus, and produced net AC electricity. Phase II testing expanded to include alternative and renewable fuels typically available in rural regions of Ohio. The commercial system is expected to have ultra-low pollution, high efficiency, and low noise. The TMI SOFC uses a solid ceramic electrolyte operating at high temperature (800-1000 C) which electrochemically converts gaseous fuels (hydrogen or mixed gases) and oxygen into electricity. The TMI system design oxidizes fuel primarily via electrochemical reactions and uses no burners (which pollute and consume fuel)--resulting in extremely clean exhaust. The use of proprietary sulfur tolerant materials developed by TMI allows system operation without additional fuel pre-processing or sulfur removal. Further, the combination of high operating temperatures and solid state operation increases the potential for higher reliability and efficiencies compared to other types of fuel cells. Applications for the TMI SOFC system cover a wide range of transportation, building, industrial, and military market sectors. A generic technology, fuel cells have the potential to be embodied into multiple products specific to Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) program areas including: Fuel Cells and Microturbines, School Buildings, Transportation, and Bioenergy. This program focused on low power stationary applications using a multi-module system operating on a range of common fuels. By producing clean electricity more efficiently (thus using less fuel), fuel cells have the triple effect of cleaning up the environment, reducing the amount of fuel consumed and, for energy intensive manufacturers, boosting their profits (by reducing energy expenses). Compared to conventional power generation technologies such as internal combustion engines, gas turbines, and coal plants, fuel cells are extremely clean and more efficient, particularly at smaller scales.

  12. Modeling analyses of the effects of changes in nitrogen oxides emissions from the electric power sector on ozone levels in the eastern United States

    SciTech Connect (OSTI)

    Edith Gego; Alice Gilliland; James Godowitch

    2008-04-15

    In this paper, we examine the changes in ambient ozone concentrations simulated by the Community Multiscale Air Quality (CMAQ) model for summer 2002 under three different nitrogen oxides (NOx) emission scenarios. Two emission scenarios represent best estimates of 2002 and 2004 emissions; they allow assessment of the impact of the NOx emissions reductions imposed on the utility sector by the NOx State Implementation Plan (SIP) Call. The third scenario represents a hypothetical rendering of what NOx emissions would have been in 2002 if no emission controls had been imposed on the utility sector. Examination of the modeled median and 95th percentile daily maximum 8-hr average ozone concentrations reveals that median ozone levels estimated for the 2004 emission scenario were less than those modeled for 2002 in the region most affected by the NOx SIP Call. Comparison of the 'no-control' with the '2002' scenario revealed that ozone concentrations would have been much higher in much of the eastern United States if the utility sector had not implemented NOx emission controls; exceptions occurred in the immediate vicinity of major point sources where increased NO titration tends to lower ozone levels. 13 refs., 8 figs., 2 tabs.

  13. Effects of pretreatment of coal by CO{sub 2} on nitric oxide emission and unburned carbon in various combustion environments

    SciTech Connect (OSTI)

    Gathitu, B.B.; Chen, W.Y. [University of Mississippi, University, MS (United States). Dept. of Chemical Engineering

    2009-12-15

    Polar solvents are known to swell coal, break hydrogen bonds in the macromolecular structure, and enhance coal liquefaction efficiencies. The effects of the pretreatment of coal using supercritical CO{sub 2} on its physical structure and combustion properties have been studied at the bench-scale level. Emphasis has been placed on NO reburning, NO emissions during air-fired and oxy-fired combustion, and loss on ignition (LOI). Pretreatment was found to increase porosity and to significantly alter the fuel nitrogen reaction pathways. Consequently, NO reduction during reburning using bituminous coal increased, and NO emissions during oxidation of lignite decreased. These two benefits were achieved without negative impacts on LOI.

  14. Improved Model of Isoprene Emissions in Africa using Ozone Monitoring Instrument (OMI) Satellite Observations of Formaldehyde: Implications for Oxidants and Particulate Matter

    SciTech Connect (OSTI)

    Marais, E. A.; Jacob, D.; Guenther, Alex B.; Chance, K.; Kurosu, T. P.; Murphy, J. G.; Reeves, C. E.; Pye, H.

    2014-08-01

    We use a 2005-2009 record of isoprene emissions over Africa derived from OMI satellite observations of formaldehyde (HCHO) to better understand the factors controlling isoprene emission on the scale of the continent and evaluate the impact of isoprene emissions on atmospheric composition in Africa. OMI-derived isoprene emissions show large seasonality over savannas driven by temperature and leaf area index (LAI), and much weaker seasonality over equatorial forests driven by temperature. The commonly used MEGAN (version 2.1) global 31 isoprene emission model reproduces this seasonality but is biased high, particularly for 32 equatorial forests, when compared to OMI and relaxed-eddy accumulation measurements. 33 Isoprene emissions in MEGAN are computed as the product of an emission factor Eo, LAI, and 34 activity factors dependent on environmental variables. We use the OMI-derived emissions to 35 provide improved estimates of Eo that are in good agreement with direct leaf measurements from 36 field campaigns (r = 0.55, bias = -19%). The largest downward corrections to MEGAN Eo values are for equatorial forests and semi-arid environments, and this is consistent with latitudinal transects of isoprene over West Africa from the AMMA aircraft campaign. Total emission of isoprene in Africa is estimated to be 77 Tg C a-1, compared to 104 Tg C a-1 in MEGAN. Simulations with the GEOS-Chem oxidant-aerosol model suggest that isoprene emissions increase mean surface ozone in West Africa by up to 8 ppbv, and particulate matter by up to 1.5 42 ?g m-3, due to coupling with anthropogenic influences.

  15. Mechanistic insight into peroxydisulfate reactivity: Oxidation of the cis,cis-[Ru(bpy)2(OH2)]2O4+ "Blue Dimmer"

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hurst, James K.; Roemeling, Margo D.; Lymar, Sergei V.

    2015-04-10

    One-electron oxidation of the ?-oxo dimer (cis,cis-[RuIII(bpy)2(OH2)]2O4+, {3,3}) to {3,4} by S2O82- can be described by three concurrent reaction pathways corresponding to the three protic forms of {3,3}. Free energy correlations of the rate constants, transient species dynamics determined by pulse radiolysis, and medium and temperature dependencies of the alkaline pathway all suggest that the rate determining step in these reactions is a strongly non-adiabatic dissociative electron transfer within a precursor ion pair leading to the {3,4}|SO42-|SO4•- ion triple. As deduced from the SO4•- scavenging experiments with 2-propanol, the SO4•- radical then either oxidizes {3,4} to {4,4} within the ionmore »triple, effecting a net two-electron oxidation of {3,3}, or escapes in solution with ~25 % probability to react with additional {3,3} and {3,4}, that is, effecting sequential one-electron oxidations. The reaction model presented also invokes rapid {3,3} + {4,4} ? 2{3,4} comproportionation, for which kcom ~5×107 M-1 s-1 was independently measured. The model provides an explanation for the observation that despite favorable energetics, no oxidation beyond the {3,4} state was detected. As a result, the indiscriminate nature of oxidation by SO4•- indicates that its fate must be quantitatively determined when using S2O82- as an oxidant« less

  16. Greenhouse gas emissions in biogas production systems

    E-Print Network [OSTI]

    Dittert, Klaus; Senbayram, Mehmet; Wienforth, Babette; Kage, Henning; Muehling, Karl H

    2009-01-01

    Cameron KC. Nitrous oxide emissions from two dairy pastureand land use on N 2 O emissions from an imperfectly drainedoptions for N 2 O emissions from differently managed

  17. Method for Determining Performance of Sulfur Oxide Adsorbents for Diesel Emission Control Using Online Measurement of SO2 and SO3 in the Effluent

    SciTech Connect (OSTI)

    Li, Liyu; King, David L.

    2004-07-21

    Upcoming regulations regarding diesel engine emissions require substantial reduction in particulate matter and nitrogen oxides through aftertreatment methods. Since sulfur oxides in the exhaust greatly reduce the performance of the aftertreatment system, a dedicated trap for removal of sulfur oxides has been considered. Most adsorbents are more effective in removing SO{sub 3} than SO{sub 2}; hence oxidation catalysts have been employed to maximize the concentration of SO{sub 3} in the effluent. Although SO{sub 2} concentrations are easily measured, SO3 is less easily quantified. As a result, the only figure of merit for the SOx trap performance has been total capacity, provided by post-characterization. In this paper we describe a chromatographic method for measurement of SO{sub 2} and SO{sub 3} adsorption in real time, which provides adsorbent performance data on breakthrough capacities and sulfur slip, especially important when operating at high space velocities. We also provide experimental measurements of break through capacities for SO{sub 2} and SO{sub 3} adsorption for some common metal oxide adsorbents using this analytical system.

  18. High Temperature Oxidation Behavior of gamma-Ni+gamma'-Ni3Al Alloys and Coatings Modified with Pt and Reactive Elements

    SciTech Connect (OSTI)

    Nan Mu

    2007-12-01

    Materials for high-pressure turbine blades must be able to operate in the high-temperature gases (above 1000 C) emerging from the combustion chamber. Accordingly, the development of nickel-based superalloys has been constantly motivated by the need to have improved engine efficiency, reliability and service lifetime under the harsh conditions imposed by the turbine environment. However, the melting point of nickel (1455 C) provides a natural ceiling for the temperature capability of nickel-based superalloys. Thus, surface-engineered turbine components with modified diffusion coatings and overlay coatings are used. Theses coatings are capable of forming a compact and adherent oxide scale, which greatly impedes the further transport of reactants between the high-temperature gases and the underlying metal and thus reducing attack by the atmosphere. Typically, these coatings contain {beta}-NiAl as a principal constituent phase in order to have sufficient aluminum content to form an Al{sub 2}O{sub 3} scale at elevated temperatures. The drawbacks to the currently-used {beta}-based coatings, such as phase instabilities, associated stresses induced by such phase instabilities, and extensive coating/substrate interdiffusion, are major motivations in this study to seek next-generation coatings. The high-temperature oxidation resistance of novel Pt + Hf-modified {gamma}-Ni + {gamma}-Ni{sub 3}Al-based alloys and coatings were investigated in this study. Both early-stage and 4-days isothermal oxidation behavior of single-phase {gamma}-Ni and {gamma}{prime}-Ni{sub 3}Al alloys were assessed by examining the weight changes, oxide-scale structures, and elemental concentration profiles through the scales and subsurface alloy regions. It was found that Pt promotes Al{sub 2}O{sub 3} formation by suppressing the NiO growth on both {gamma}-Ni and {gamma}{prime}Ni{sub 3}Al single-phase alloys. This effect increases with increasing Pt content. Moreover, Pt exhibits this effect even at lower temperatures ({approx}970 C) in the very early stage of oxidation. It was also inferred that Pt enhances the diffusive flux of aluminum from the substrate to the scale/alloy interface. Relatively low levels of hafnium addition to Pt-free {gamma}{prime}-Ni{sub 3}Al increased the extent of external NiO formation due to non-protective HfO{sub 2} formation. Accordingly, this effect intensified with increasing Hf content from 0.2 to 0.5 at.%.

  19. EIA - Greenhouse Gas Emissions Overview

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    non-marketed natural gas. g Includes methane emissions related to energy, agriculture, waste management, and industrial processes. h Includes nitrous oxide emissions related...

  20. Life cycle inventory analysis of regenerative thermal oxidation of air emissions from oriented strand board facilities in Minnesota - a perspective of global climate change

    SciTech Connect (OSTI)

    Nicholson, W.J.

    1997-12-31

    Life cycle inventory analysis has been applied to the prospective operation of regenerative thermal oxidation (RTO) technology at oriented strand board plants at Bemidji (Line 1) and Cook, Minnesota. The net system destruction of VOC`s and carbon monoxide, and at Cook a small quantity of particulate, has a very high environmental price in terms of energy and water use, global warming potential, sulfur and nitrogen oxide emissions, solids discharged to water, and solid waste deposited in landfills. The benefit of VOC destruction is identified as minor in terms of ground level ozone at best and possibly slightly detrimental. Recognition of environmental tradeoffs associated with proposed system changes is critical to sound decision-making. There are more conventional ways to address carbon monoxide emissions than combustion in RTO`s. In an environment in which global warming is a concern, fuel supplemental combustion for environmental control does not appear warranted. Consideration of non-combustion approaches to address air emission issues at the two operations is recommended. 1 ref., 5 tabs.

  1. Sulfur dioxide and nitrogen oxides emissions from U.S. pulp and paper mills, 1980-2005

    SciTech Connect (OSTI)

    John E. Pinkerton

    2007-08-15

    Estimates of total SO{sub 2} and NOx emissions from U.S. pulp and paper mills were developed from industry-wide surveys conducted at 5-yr intervals from 1980 to 2005. The following conclusions were drawn from these estimates: (1) Total SO{sub 2} emissions from pulp and paper mills were 340,000 t in 2005. Since 1980, SO{sub 2} emissions have decreased steadily. The decline over the 25-yr period was over 60%. Paper production increased by 50% over the same period. (2) Boilers burning coal and oil are the primary source of SO{sub 2} emissions, with minor contributions from black liquor combustion in kraft recovery furnaces and the burning of noncondensable gases in boilers at kraft pulp mills. Factors contributing to the decline in boiler SO{sub 2} emissions include large reductions in residual oil use, recent decreases in coal use, declines in the average sulfur content of residual oil and coal being burned, and increasing use of flue gas desulfurization systems.(3) NOx emissions from pulp and paper mills were 230,000 t in 2005. NOx emissions were fairly constant through 1995, but then declined by 12% in 2000 and an additional 17% between 2000 and 2005. (4) In 2005, boilers accounted for two-thirds of the NOx emissions, and kraft mill sources approximately 30%. Boiler NOx emissions exhibited very little change through 1995, but decreased by one third in the next 10 yr. The lower emissions resulted from declines in fossil fuel use, a reduction in the EPA emission factors for natural gas combustion in boilers without NOx controls, and more widespread use of combustion modifications and add-on NOx control technologies, particularly on coal-fired boilers subject to EPA's NOx SIP call. Total NOx emissions from kraft mill sources changed little over the 25-yr period. 7 refs., 4 figs., 3 tabs.

  2. On the temperature dependence of organic reactivity, nitrogen oxides, ozone production, and the impact of emission controls in San Joaquin Valley, California

    E-Print Network [OSTI]

    Pusede, S. E.

    The San Joaquin Valley (SJV) experiences some of the worst ozone air quality in the US, frequently exceeding the California 8 h standard of 70.4 ppb. To improve our understanding of trends in the number of ozone violations ...

  3. Heterogeneous-phase reactions of nitrogen dioxide with vermiculite-supported magnesium oxide (as applied to the control of jet engine test cell emissions). Doctoral thesis

    SciTech Connect (OSTI)

    Kimm, L.T.

    1995-11-01

    Controlling nitrogen oxides (NOx) from a non-steady-state stationary source like a jet engine test cell (JETC) requires a method that is effective over a wide range of conditions. A heterogeneous, porous, high surface area sorbent material comprised of magnesium oxide powder attached to a vermiculite substrate has been commercially developed for this purpose. Data from extensive laboratory testing of this material in a packed-bed flow system are presented. NO2 removal efficiencies, kinetics, and proposed NO2 removal mechanisms over a range of representative JETC exhaust gas characteristics are described. Exhaust gas variables evaluated included: NO2 concentration, temperature, flow rate (retention time), oxygen content, and moisture content. Availability of water and oxygen were found to be important variables. It is probable that water is necessary for the conversion of MgO to Mg(OH)2, which is a more reactive compound having thermal stability over the range of temperatures evaluated. Gaseous oxygen serves to oxidize NO to NO2, the latter being more readily removed from the gas stream. The presence of oxygen also serves to offset thermal decomposition of NO2 or surface nitrite/nitrate. Effective `lifetime` and regenerability of the exposed sorbent material were also evaluated. NO2 removal efficiencies were found to greatly exceed those for NO, with a maximum value greater than 90 percent. The effective conversion of NO to NO2 is a crucial requirement for removal of the former. The reaction between NO2 and MgO-vermiculite is first-order with respect to NO2.

  4. Cellulosic emissions (kg of pollutant per km2 county area) -...

    Open Energy Info (EERE)

    Cellulosic emissions (kg of pollutant per km2 county area) Data reflects projected air emissions of nitrogen oxides (NOX), ammonia (NH3), carbon monoxide (CO), sulfur oxide (SOX),...

  5. Low-Temperature Hydrocarbon/CO Oxidation Catalysis in Support...

    Energy Savers [EERE]

    HydrocarbonCO Oxidation Catalysis in Support of HCCI Emission Control Low-Temperature HydrocarbonCO Oxidation Catalysis in Support of HCCI Emission Control Presentation from the...

  6. Vehicle Emissions Review- 2011

    Broader source: Energy.gov [DOE]

    Reviews regulatory requirements and general technology approaches for heavy- and light-duty vehicle emissions control - filter technology, new catalysts, NOx control, diesel oxidation catalysts, gasoline particulate filters

  7. Reactive facies: An approach for parameterizing field-scale reactive...

    Office of Scientific and Technical Information (OSTI)

    Reactive facies: An approach for parameterizing field-scale reactive transport models using geophysical methods Citation Details In-Document Search Title: Reactive facies: An...

  8. Chemical reactivities of ambient air samples in three Southern California communities

    E-Print Network [OSTI]

    2015-01-01

    and A.K. Cho. 2012. The chemical biology of naphthoquinonesinvolvement of organic chemicals and oxidative stress. Curr.www.tandfonline.com/loi/uawm20 Chemical reactivities of

  9. System for reactivating catalysts

    DOE Patents [OSTI]

    Ginosar, Daniel M. (Idaho Falls, ID); Thompson, David N. (Idaho Falls, ID); Anderson, Raymond P. (Idaho Falls, ID)

    2010-03-02

    A method of reactivating a catalyst, such as a solid catalyst or a liquid catalyst is provided. The method comprises providing a catalyst that is at least partially deactivated by fouling agents. The catalyst is contacted with a fluid reactivating agent that is at or above a critical point of the fluid reactivating agent and is of sufficient density to dissolve impurities. The fluid reactivating agent reacts with at least one fouling agent, releasing the at least one fouling agent from the catalyst. The at least one fouling agent becomes dissolved in the fluid reactivating agent and is subsequently separated or removed from the fluid reactivating agent so that the fluid reactivating agent may be reused. A system for reactivating a catalyst is also disclosed.

  10. Electrochemical NOx Sensor for Monitoring Diesel Emissions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of oxide electrodes * Decision point: Down select to metal or electronically- conducting oxide electrodes Electrochemical NO x Sensor for Monitoring Diesel Emissions 17 Plans for...

  11. Fluorescence-based detection methodologies for nitric oxide using transition metal scaffolds

    E-Print Network [OSTI]

    Hilderbrand, Scott A. (Scott Alan), 1976-

    2004-01-01

    Chapter 1. Fluorescence-Based Detection Methodologies for Nitric Oxide: A Review. Chapter 2. Cobalt Chemistry with Mixed Aminotroponimine Salicylaldimine Ligands: Synthesis, Characterization, and Nitric Oxide Reactivity. ...

  12. Clean coal technology: selective catalytic reduction (SCR) technology for the control of nitrogen oxide emissions from coal-fired boilers

    SciTech Connect (OSTI)

    NONE

    2005-05-01

    The report discusses a project carried out under the US Clean Coal Technology (CCT) Demonstration Program which demonstrated selective catalytic reduction (SCR) technology for the control of NOx emissions from high-sulphur coal-fired boilers under typical boilers conditions in the United States. The project was conducted by Southern Company Services, Inc., who served as a co-funder and as the host at Gulf Power Company's Plant Crist. The SCR process consists of injecting ammonia (NH{sub 3}) into boiler flue gas and passing the flue gas through a catalyst bed where the Nox and NH{sub 3} react to form nitrogen and water vapor. The results of the CCTDP project confirmed the applicability of SCR for US coal-fired power plants. In part as a result of the success of this project, a significant number of commercial SCR units have been installed and are operating successfully in the United States. By 2007, the total installed SCR capacity on US coal-fired units will number about 200, representing about 100,000 MWe of electric generating capacity. This report summarizes the status of SCR technology. 21 refs., 3 figs., 2 tabs., 10 photos.

  13. EIA - Greenhouse Gas Emissions - Nitrous Oxide Emissions

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic43,728 243,242ConsumersAnnual

  14. Biodiesel and Pollutant Emissions (Presentation)

    SciTech Connect (OSTI)

    McCormick, R.; Williams, A.; Ireland, J.; Hayes, B.

    2006-09-28

    Presents the results from three methods of testing--engine, chassis, and PEM--for testing nitrogen oxide (NOx) emissions from B20.

  15. Microstructure of amorphous indium oxide and tin oxide thin films

    SciTech Connect (OSTI)

    Rauf, I.A.; Brown, L.M. (Univ. of Cambridge (United Kingdom))

    1994-03-15

    Indium oxide, tin oxide, and some other doped and undoped oxide semiconductors show an interesting and technologically important combination of properties. They have high luminous transparency, good electrical conductivity and high infrared reflectivity. Numerous techniques for depositing these materials have been developed and have undergone a number of changes during last two decades. An understanding of the basic physics of these materials has begun to dawn. Most of the literature on transparent conducting oxides consists of studying the dependence of the properties on the composition, preparation conditions, such as deposition rate, substrate temperature or post-deposition heat treatment. In this paper the authors have employed the transmission electron microscopy to study the microstructure of reactively evaporated, electron beam evaporated, ion-beam sputtered amorphous indium oxide and reactively evaporated amorphous tin oxide thin films. These films, which have received little attention in the past, can have enormous potential as transparent conductive coatings on heat-sensitive substrates and inexpensive solar cells.

  16. Synchronous Reactive Systems Stephen Edwards

    E-Print Network [OSTI]

    -state machines 5 #12;STEPHEN EDWARDS SYNCHRONOUS REACTIVE SYSTEMS The Synchronous Model of Time SynchronousSynchronous Reactive Systems Stephen Edwards http://www.eecs.berkeley.edu/~sedwards/ University of California, Berkeley #12;STEPHEN EDWARDS SYNCHRONOUS REACTIVE SYSTEMS Outline Synchronous Reactive Systems

  17. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    and Greenhouse Gas Emissions from CNG Transit Buses EquippedOxidation Catalyst Effect on CNG Transit Bus Emissions. SAEOxidation Catalyst Effect on CNG Transit Bus Emissions. SAE

  18. In Situ Iron Oxide Emplacement for Groundwater Arsenic Remediation 

    E-Print Network [OSTI]

    Abia, Thomas Sunday

    2012-02-14

    Iron oxide-bearing minerals have long been recognized as an effective reactive media for arsenic-contaminated groundwater remediation. This research aimed to develop a technique that could facilitate in situ oxidative precipitation of Fe3+ in a soil...

  19. Manganese Based Oxidative Technologies For Water/Wastewater Treatment 

    E-Print Network [OSTI]

    Desai, Ishan

    2013-08-27

    is yet to be fully developed. This research work explores the reactivity of manganese oxide to degrade OP in aqueous systems. The rate equation has been determined by conducting experiments at various conditions of oxide and organic loading as well...

  20. Reactive power compensator

    DOE Patents [OSTI]

    El-Sharkawi, Mohamed A. (Renton, WA); Venkata, Subrahmanyam S. (Woodinville, WA); Chen, Mingliang (Kirkland, WA); Andexler, George (Everett, WA); Huang, Tony (Seattle, WA)

    1992-01-01

    A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation.

  1. Reactive Power Compensator.

    DOE Patents [OSTI]

    El-Sharkawi, M.A.; Venkata, S.S.; Chen, M.; Andexler, G.; Huang, T.

    1992-07-28

    A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation. 26 figs.

  2. Three-Dimensional Composite Nanostructures for Lean NOx Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Vehicle Technologies Office Merit Review 2015: Metal Oxide...

  3. Rational Catalyst Design Applied to Development of Advanced Oxidation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rational Catalyst Design Applied to Development of Advanced Oxidation Catalysts for Diesel Emission Control Rational Catalyst Design Applied to Development of Advanced Oxidation...

  4. Stabilized chromium oxide film

    DOE Patents [OSTI]

    Garwin, Edward L. (Los Altos, CA); Nyaiesh, Ali R. (Palo Alto, CA)

    1988-01-01

    Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150.ANG. are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

  5. Stabilized chromium oxide film

    DOE Patents [OSTI]

    Nyaiesh, A.R.; Garwin, E.L.

    1986-08-04

    Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150A are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

  6. Three-Dimensional Composite Nanostructures for Lean NOx Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Three-Dimensional Composite Nanostructures for Lean NOx Emission Control Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission...

  7. Low-Temperature Hydrocarbon/CO Oxidation Catalysis in Support...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalysis in Support of HCCI Emission Control Low-Temperature HydrocarbonCO Oxidation Catalysis in Support of HCCI Emission Control Lean NOx Catalysis Research and Development...

  8. Reactive Power Compensating System.

    DOE Patents [OSTI]

    Williams, Timothy J.; El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.

    1985-01-04

    The circuit was designed for the specific application of wind-driven induction generators. It has great potential for application in any situation where a varying reactive power load is present, such as with induction motors or generators, or for transmission network compensation.

  9. Reactive power compensating system

    DOE Patents [OSTI]

    Williams, Timothy J. (Redondo Beach, CA); El-Sharkawi, Mohamed A. (Renton, WA); Venkata, Subrahmanyam S. (Seattle, WA)

    1987-01-01

    The reactive power of an induction machine is compensated by providing fixed capacitors on each phase line for the minimum compensation required, sensing the current on one line at the time its voltage crosses zero to determine the actual compensation required for each phase, and selecting switched capacitors on each line to provide the balance of the compensation required.

  10. Nitrogen oxide delivery systems for biological media

    E-Print Network [OSTI]

    Skinn, Brian Thomas

    2012-01-01

    Elevated levels of nitric oxide (NO) in vivo are associated with a variety of cellular modifications thought to be mutagenic or carcinogenic. These processes are likely mediated by reactive nitrogen species (RNS) such as ...

  11. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO sub x ) emissions from coal-fired boilers

    SciTech Connect (OSTI)

    Not Available

    1992-02-03

    This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company's Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project.

  12. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, third quarter 1991

    SciTech Connect (OSTI)

    Not Available

    1992-02-03

    This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project.

  13. Generation of Reactive Oxygen Species Mediated by 1Hydroxyphenazine, a Virulence Factor of Pseudomonas aeruginosa

    E-Print Network [OSTI]

    Gates, Kent. S.

    Generation of Reactive Oxygen Species Mediated by 1Hydroxyphenazine, a Virulence Factor tool for the detection of ROS generation mediated by 1-HP. These assays provided evidence that 1-HP evidence that 1-HP mediates the generation of intracellular oxidants. Generation of reactive oxygen species

  14. High quality oxide films on substrates

    DOE Patents [OSTI]

    Ruckman, Mark W. (Middle Island, NY); Strongin, Myron (Center Moriches, NY); Gao, Yong L. (Henrietta, NY)

    1994-01-01

    A method for providing an oxide film of a material on the surface of a substrate using a reactive deposition of the material onto the substrate surface in the presence of a solid or liquid layer of an oxidizing gas. The oxidizing gas is provided on the substrate surface in an amount sufficient to dissipate the latent heat of condensation occurring during deposition as well as creating a favorable oxidizing environment for the material.

  15. High quality oxide films on substrates

    DOE Patents [OSTI]

    Ruckman, M.W.; Strongin, M.; Gao, Y.L.

    1994-02-01

    A method is described for providing an oxide film of a material on the surface of a substrate using a reactive deposition of the material onto the substrate surface in the presence of a solid or liquid layer of an oxidizing gas. The oxidizing gas is provided on the substrate surface in an amount sufficient to dissipate the latent heat of condensation occurring during deposition as well as creating a favorable oxidizing environment for the material. 4 figures.

  16. Turn-on fluorescent probes for detecting nitric oxide in biology

    E-Print Network [OSTI]

    McQuade, Lindsey Elizabeth, 1981-

    2010-01-01

    Chapter 1. Investigating the Biological Roles of Nitric Oxide and Other Reactive Nitrogen Species Using Fluorescent Probes: This chapter presents an overview of recent progress in the field of reactive nitrogen species ...

  17. Reducing the contribution of the power sector to ground-level ozone pollution : an assessment of time-differentiated pricing of nitrogen oxide emissions

    E-Print Network [OSTI]

    Craig, Michael T. (Michael Timothy)

    2014-01-01

    Nitrogen oxide (NOx) is a prevalent air pollutant across the United States and a requisite precursor for tropospheric (ground-level) ozone formation. Both pollutants significantly impact human health and welfare, so National ...

  18. Highly reactive light-dependent monoterpenes in the Amazon

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jardine, A. B.; Jardine, K. J.; Fuentes, J. D.; Martin, S. T.; Martins, G.; Durgante, F.; Carneiro, V.; Higuchi, N.; Manzi, A. O.; Chambers, J. Q.

    2015-03-06

    Despite orders of magnitude difference in atmospheric reactivity and great diversity in biological functioning, little is known about monoterpene speciation in tropical forests. Here we report vertically resolved ambient air mixing ratios for 12 monoterpenes in a central Amazon rainforest including observations of the highly reactive cis-?-ocimene (160 ppt), trans-?-ocimene (79 ppt), and terpinolene (32 ppt) which accounted for an estimated 21% of total monoterpene composition yet 55% of the upper canopy monoterpene ozonolysis rate. All 12 monoterpenes showed a mixing ratio peak in the upper canopy, with three demonstrating subcanopy peaks in 7 of 11 profiles. Leaf level emissionsmore »of highly reactive monoterpenes accounted for up to 1.9% of photosynthesis confirming light-dependent emissions across several Amazon tree genera. These results suggest that highly reactive monoterpenes play important antioxidant roles during photosynthesis in plants and serve as near-canopy sources of secondary organic aerosol precursors through atmospheric photooxidation via ozonolysis.« less

  19. The effects of cycle-to-cycle variations on nitric oxide (NO) emissions for a spark-ignition engine: Numerical results 

    E-Print Network [OSTI]

    Villarroel, Milivoy

    2004-11-15

    . To carry out the proposed study, an engine simulation model was used. The simulation determines engine performance and NO emissions as functions of engine operating conditions, engine design parameters, and combustion parameters. An automotive, spark...

  20. Fact #825: June 16, 2014 Tier 3 Non-Methane Organic Gases Plus Nitrogen Oxide Emission Standards, Model Years 2017-2025

    Broader source: Energy.gov [DOE]

    The Environmental Protection Agency finalized Tier 3 emission standards in a rule issued in March 2014. One effect of the rule is a decrease in the combined amount of non-methane organic gases ...

  1. Emissions and Exhaust Aftertreatment | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that can bring engines into compliance. The reductions in emissions of nitrogen oxide (NOx) from stationary and moving sources have been substantiated by applying selective...

  2. Complex catalytic behaviors of CuTiOx mixed-oxide during CO oxidation...

    Office of Scientific and Technical Information (OSTI)

    reactivity, and selectivity. Here, the activity and stability of the CuTiOx monolayer film supported on Cu(111), CuTiOxCu(111), during CO oxidation was explored using density...

  3. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect (OSTI)

    Berggren, M.H.; Jha, M.C.

    1989-10-01

    AMAX Research Development Center (AMAX R D) investigated methods for enhancing the reactivity and durability of zinc ferrite desulfurization sorbents. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For this program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such as size, strength, and specific surface area during 10 cycles of sulfidation and oxidation. Two base case sorbents, a spherical pellet and a cylindrical extrude used in related METC-sponsored projects, were used to provide a basis for the aimed enhancement in durability and reactivity. Sorbent performance was judged on the basis of physical properties, single particle kinetic studies based on thermogravimetric (TGA) techniques, and multicycle bench-scale testing of sorbents. A sorbent grading system was utilized to quantify the characteristics of the new sorbents prepared during the program. Significant enhancements in both reactivity and durability were achieved for the spherical pellet shape over the base case formulation. Overall improvements to reactivity and durability were also made to the cylindrical extrude shape. The primary variables which were investigated during the program included iron oxide type, zinc oxide:iron oxide ratio, inorganic binder concentration, organic binder concentration, and induration conditions. The effects of some variables were small or inconclusive. Based on TGA studies and bench-scale tests, induration conditions were found to be very significant.

  4. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect (OSTI)

    Jha, M.C.; Berggren, M.H.

    1989-05-02

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  5. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect (OSTI)

    Jha, M.C.; Berggren, M.H.

    1988-11-14

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  6. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect (OSTI)

    Jha, M.C.; Berggren, M.H.

    1989-03-06

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  7. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect (OSTI)

    Jha, M.C.; Berggren, M.H.

    1988-08-19

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  8. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect (OSTI)

    Jha, M.C.; Baltich, L.K.; Berggren, M.H.

    1987-05-18

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  9. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect (OSTI)

    Jha, M.C.; Baltich, L.K.; Berggren, M.H.

    1987-08-28

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  10. Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y; Curran, Scott; Barone, Teresa L; Lewis Sr, Samuel Arthur; Storey, John Morse; Cho, Kukwon; Wagner, Robert M; Parks, II, James E

    2010-01-01

    Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOx) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity- controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection system to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline to diesel fuel that gave the highest engine efficiency and lowest emissions. Engine-out emissions for aldehydes, ketones and PM were compared with emissions from conventional diesel combustion. Sampling and analysis was carried out following micro-tunnel dilution of the exhaust. Particle geometric mean diameter, number-size distribution, and total number concentration were measured by a scanning mobility particle sizer (SMPS). For the particle mass measurements, samples were collected on Teflon-coated quartz-fiber filters and analyzed gravimetrically. Gaseous aldehydes and ketones were sampled using dinitrophenylhydrazine-coated solid phase extraction cartridges and the extracts were analyzed by liquid chromatography/mass spectrometry (LC/MS). In addition, emissions after a diesel oxidation catalyst (DOC) were also measured to investigate the destruction of CO, HC and formaldehydes by the catalyst.

  11. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Topical report, LNCFS Levels 1 and 3 test results

    SciTech Connect (OSTI)

    Not Available

    1993-08-17

    This report presents results from the third phase of an Innovative Clean Coal Technology (ICC-1) project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The purpose of this project was to study the NO{sub x} emissions characteristics of ABB Combustion Engineering`s (ABB CE) Low NO{sub x} Concentric Firing System (LNCFS) Levels I, II, and III. These technologies were installed and tested in a stepwise fashion at Gulf Power Company`s Plant Lansing Smith Unit 2. The objective of this report is to provide the results from Phase III. During that phase, Levels I and III of the ABB C-E Services Low NO{sub x} Concentric Firing System were tested. The LNCFS Level III technology includes separated overfire air, close coupled overfire air, clustered coal nozzles, flame attachment coal nozzle tips, and concentric firing. The LNCFS Level I was simulated by closing the separated overfire air nozzles of the LNCFS Level III system. Based upon long-term data, LNCFS Level HI reduced NO{sub x} emissions by 45 percent at full load. LOI levels with LNCFS Level III increased slightly, however, tests showed that LOI levels with LNCFS Level III were highly dependent upon coal fineness. After correcting for leakage air through the separated overfire air system, the simulated LNCFS Level I reduced NO{sub x} emissions by 37 percent. There was no increase in LOI with LNCFS Level I.

  12. Reactive arthritis – two different cases

    E-Print Network [OSTI]

    Brzezinski, Piotr

    2014-01-01

    syndrome asso- ciated with psoriasis - case report. Actacutaneous lesions of psoriasis (Hg. 3). Fig. 1. BalanitisII. Comparison between psoriasis, reactive arthritis and

  13. Evidence of Reactive Aromatics As a Major Source of Peroxy Acetyl Nitrate over China

    SciTech Connect (OSTI)

    Liu, Zhen; Wang, Yuhang; Gu, Dasa; Zhao, Chun; Huey, L. G.; Stickel, Robert; Liao, Jin; Shao, Min; Zhu, T.; Zeng, Limin; Liu, Shaw C.; Chang, Chih-Chung; Amoroso, Antonio; Costabile, Francesa

    2010-09-15

    We analyze the observations of near-surface peroxy acetyl nitrate (PAN) and its precursors in Beijing, China in August of 2007. The levels of PAN are remarkably high (up to 14 ppbv), surpassing those measured over other urban regions in recent years. Analyses employing a 1-D version of a chemical transport model (Regional chEmical and trAnsport Model, REAM) indicate that aromatic non-methane hydrocarbons (NMHCs) are the dominant (55-75%) PAN source. The major oxidation product of aromatics that produces acetyl peroxy radicals is methylglyoxal (MGLY). PAN and O3 in the observations are correlated at daytime; aromatic NMHCs appear to play an important role in O3 photochemistry. Previous NMHC measurements indicate the presence of reactive aromatics at high levels over broad polluted regions of China. Aromatics are often ignored in global and (to a lesser degree) regional 3D photochemical transport models; their emissions over China as well as photochemistry are quite uncertain.Our findings suggest that critical assessments of aromatics emissions and chemistry (such as the yields of MGLY) are necessary to understand and assess ozone photochemistry and regional pollution export in China.

  14. Metal-based turn-on fluorescent probes for nitric oxide sensing

    E-Print Network [OSTI]

    Lim, Mi Hee

    2006-01-01

    Chapter 1. Metal-Based Turn-On Fluorescent Probes for Sensing Nitric Oxide. Nitric oxide, a reactive free radical, regulates a variety of biological processes. The absence of tools to detect NO directly, rapidly, specifically ...

  15. Volatile organometallic complexes suitable for use in chemical vapor depositions on metal oxide films

    DOE Patents [OSTI]

    Giolando, Dean M.

    2003-09-30

    Novel ligated compounds of tin, titanium, and zinc are useful as metal oxide CVD precursor compounds without the detriments of extreme reactivity yet maintaining the ability to produce high quality metal oxide coating by contact with heated substrates.

  16. Anodic aluminium oxide catalytic membranes for asymmetric epoxidation{

    E-Print Network [OSTI]

    Anodic aluminium oxide catalytic membranes for asymmetric epoxidation{ So-Hye Cho, Nolan D. Walther, the catalytic membrane reactor configuration confers a significant advantage to oxidation reactions--the use of a catalytic membrane can provide a reactive interface for the oxidation to take place while avoiding long

  17. Doped tantalum oxide high K dielectric thin films 

    E-Print Network [OSTI]

    Donnelly, Joseph Patrick

    2000-01-01

    , it was doped with varying amounts of titanium oxide, aluminum oxide and silicon dioxide. The composite oxide films were deposited by reactive radio frequency (RF) cc-sputtering of two targets in a variety of oxygen and argon feed gas mixtures. The targets used...

  18. Optimization of La{sub 0.7}Ba{sub 0.3}MnO{sub 3-{delta}} complex oxide laser ablation conditions by plume imaging and optical emission spectroscopy

    SciTech Connect (OSTI)

    Amoruso, S.; Bruzzese, R.; Scotti di Uccio, U.; Aruta, C.; Granozio, F. Miletto; Wang, X.; Maccariello, D.; Maritato, L.; Orgiani, P.

    2010-08-15

    The properties of thin films of complex oxides, such as La{sub 1-x}D{sub x}MnO{sub 3-{delta}} (D=Ba, Ca, Sr, etc.), produced by pulsed laser deposition depend critically on the experimental parameters in which laser ablation is carried out. Here, we report a comparative analysis of the pulsed laser ablation process of La{sub 0.7}Ba{sub 0.3}MnO{sub 3-{delta}}, in oxygen background, in the ambient pressure range from 10{sup -2} to 1 mbar, typically employed in pulsed laser deposition of manganites. The laser ablation plume was studied by using time-gated imaging and optical emission spectroscopy techniques. It was found that at a pressure of {approx_equal}10{sup -2} mbar, the plume species arriving at the substrate are characterized by hyperthermal kinetic energy ({approx_equal}10 eV), and high degree of excitation. On the contrary, at larger oxygen pressure (0.1-1 mbar), the velocity of plume species reaching the substrate, and their degree of excitation are much reduced by the confining effects of the background gas. These features explain why an appropriate choice of the experimental conditions in which the deposition process is carried out leads to better quality films, providing helpful indications to improve control over the growth process of both La{sub 1-x}D{sub x}MnO{sub 3-{delta}} and other perovskitic oxides.

  19. A Tariff for Reactive Power

    SciTech Connect (OSTI)

    Kueck, John D; Kirby, Brendan J; Li, Fangxing; Tufon, Christopher; Isemonger, Alan

    2008-07-01

    Two kinds of power are required to operate an electric power system: real power, measured in watts, and reactive power, measured in volt-amperes reactive or VARs. Reactive power supply is one of a class of power system reliability services collectively known as ancillary services, and is essential for the reliable operation of the bulk power system. Reactive power flows when current leads or lags behind voltage. Typically, the current in a distribution system lags behind voltage because of inductive loads such as motors. Reactive power flow wastes energy and capacity and causes voltage droop. To correct lagging power flow, leading reactive power (current leading voltage) is supplied to bring the current into phase with voltage. When the current is in phase with voltage, there is a reduction in system losses, an increase in system capacity, and a rise in voltage. Reactive power can be supplied from either static or dynamic VAR sources. Static sources are typically transmission and distribution equipment, such as capacitors at substations, and their cost has historically been included in the revenue requirement of the transmission operator (TO), and recovered through cost-of-service rates. By contrast, dynamic sources are typically generators capable of producing variable levels of reactive power by automatically controlling the generator to regulate voltage. Transmission system devices such as synchronous condensers can also provide dynamic reactive power. A class of solid state devices (called flexible AC transmission system devices or FACTs) can provide dynamic reactive power. One specific device has the unfortunate name of static VAR compensator (SVC), where 'static' refers to the solid state nature of the device (it does not include rotating equipment) and not to the production of static reactive power. Dynamic sources at the distribution level, while more costly would be very useful in helping to regulate local voltage. Local voltage regulation would reduce system losses, increase circuit capacity, increase reliability, and improve efficiency. Reactive power is theoretically available from any inverter-based equipment such as photovoltaic (PV) systems, fuel cells, microturbines, and adjustable-speed drives. However, the installation is usually only economical if reactive power supply is considered during the design and construction phase. In this report, we find that if the inverters of PV systems or the generators of combined heat and power (CHP) systems were designed with capability to supply dynamic reactive power, they could do this quite economically. In fact, on an annualized basis, these inverters and generators may be able to supply dynamic reactive power for about $5 or $6 per kVAR. The savings from the local supply of dynamic reactive power would be in reduced losses, increased capacity, and decreased transmission congestion. The net savings are estimated to be about $7 per kVAR on an annualized basis for a hypothetical circuit. Thus the distribution company could economically purchase a dynamic reactive power service from customers for perhaps $6/kVAR. This practice would provide for better voltage regulation in the distribution system and would provide an alternate revenue source to help amortize the cost of PV and CHP installations. As distribution and transmission systems are operated under rising levels of stress, the value of local dynamic reactive supply is expected to grow. Also, large power inverters, in the range of 500 kW to 1 MW, are expected to decrease in cost as they become mass produced. This report provides one data point which shows that the local supply of dynamic reactive power is marginally profitable at present for a hypothetical circuit. We expect that the trends of growing power flow on the existing system and mass production of inverters for distributed energy devices will make the dynamic supply of reactive power from customers an integral component of economical and reliable system operation in the future.

  20. Three-Dimensional Composite Nanostructures for Lean NOx Emission Control

    SciTech Connect (OSTI)

    Gao, Pu-Xian

    2013-07-31

    This final report to the Department of Energy (DOE) and National Energy Technology Laboratory (NETL) for DE-EE0000210 covers the period from October 1, 2009 to July 31, 2013. Under this project, DOE awarded UConn about $1,248,242 to conduct the research and development on a new class of 3D composite nanostructure based catalysts for lean NOx emission control. Much of the material presented here has already been submitted to DOE/NETL in quarterly technical reports. In this project, through a scalable solution process, we have successfully fabricated a new class of catalytic reactors, i.e., the composite nanostructure array (nano-array) based catalytic converters. These nanocatalysts, distinct from traditional powder washcoat based catalytic converters, directly integrate monolithic substrates together with nanostructures with well-defined size and shape during the scalable hydrothermal process. The new monolithic nanocatalysts are demonstrated to be able to save raw materials including Pt-group metals and support metal oxides by an order of magnitude, while perform well at various oxidation (e.g., CO oxidation and NO oxidation) and reduction reactions (H{sub 2} reduction of NOx) involved in the lean NOx emissions. The size, shape and arrangement of the composite nanostructures within the monolithic substrates are found to be the key in enabling the drastically reduced materials usage while maintaining the good catalytic reactivity in the enabled devices. The further understanding of the reaction kinetics associated with the unique mass transport and surface chemistry behind is needed for further optimizing the design and fabrication of good nanostructure array based catalytic converters. On the other hand, the high temperature stability, hydrothermal aging stability, as well as S-poisoning resistance have been investigated in this project on the nanocatalysts, which revealed promising results toward good chemical and mechanical robustness, as well as S-poisoning resistance. Further investigation is needed for unraveling the understanding, design and selection principles of this new class of nanostructure based monolithic catalysts.

  1. Time-dependent inversion estimates of global biomass-burning CO emissions using Measurement of Pollution in the Troposphere (MOPITT) measurements

    E-Print Network [OSTI]

    Arellano, Avelino F; Kasibhatla, Prasad S; Giglio, Louis; van der Werf, Guido R; Randerson, James T; Collatz, G. James

    2006-01-01

    combustion (FFBF), biomass burning (BIOM) and chemical oxidation of biogenic nonmethane hydrocarbon (NMHC) emissions (

  2. Method and apparatus for measuring reactivity of fissile material

    DOE Patents [OSTI]

    Lee, D.M.; Lindquist, L.O.

    1982-09-07

    Given are a method and apparatus for measuring nondestructively and noninvasively (i.e., using no internal probing) the burnup, reactivity, or fissile content of any material which emits neutrons and which has fissionable components. The assay is accomplished by altering the return flux of neutrons into the fuel assembly by means of changing the reflecting material. The existing passive neutron emissions in the material being assayed are used as the source of interrogating neutrons. Two measurements of either emitted neutron or emitted gamma-ray count rates are made and are then correlated to either reactivity, burnup, or fissionable content of the material being assayed, thus providing a measurement of either reactivity, burnup, or fissionable content of the material being assayed. Spent fuel which has been freshly discharged from a reactor can be assayed using this method and apparatus. Precisions of 1000 MWd/tU appear to be feasible.

  3. Catalytic oxidizers and Title V requirements

    SciTech Connect (OSTI)

    Uberoi, M.; Rach, S.E.

    1999-07-01

    Catalytic oxidizers have been used to reduce VOC emissions from various industries including printing, chemical, paint, coatings, etc. A catalytic oxidizer uses a catalyst to reduce the operating temperature for combustion to approximately 600 F, which is substantially lower than thermal oxidation unit. Title V requirements have renewed the debate on the best methods to assure compliance of catalytic oxidizers, with some suggesting the need for continuous emission monitoring equipment. This paper will discuss the various aspects of catalytic oxidation and consider options such as monitoring inlet/outlet temperatures, delta T across the catalyst, periodic laboratory testing of catalyst samples, and preventive maintenance procedures as means of assuring continuous compliance.

  4. High-Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty Engine via Fuel Reactivity Control High-Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty Engine via Fuel...

  5. Portable Emission Measurements of Yellowstone Park Snowcoaches and Snowmobiles

    E-Print Network [OSTI]

    Denver, University of

    ], and oxides of nitrogen [NOx]). Large emissions variability was still observed despite using a standardized characterized by large emission ranges in CO (5­630 g/mi), HC (1­50 g/mi), and oxides of nitrogen (NOx; 1­49 gPortable Emission Measurements of Yellowstone Park Snowcoaches and Snowmobiles Gary A. Bishop, Ryan

  6. Thermal analysis of vascular reactivity 

    E-Print Network [OSTI]

    Deshpande, Chinmay Vishwas

    2009-05-15

    ANALYSIS OF VASCULAR REACTIVITY A Thesis by CHINMAY DESHPANDE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Chair of Committee, Obdulia Ley... of Advisory Committee: Dr. Obdulia Ley Cardiovascular disease (CVD) is the leading cause of death in the United States. Analysis of vascular reactivity (VR) in response to brachial artery occlusion is used to estimate arterial health and to determine...

  7. Method for producing high quality oxide films on substrates

    DOE Patents [OSTI]

    Ruckman, Mark W. (Middle Island, NY); Strongin, Myron (Center Moriches, NY); Gao, Yong L. (Henrietta, NY)

    1993-01-01

    A method for providing an oxide film of a material on the surface of a substrate using a reactive deposition of the material onto the substrate surface in the presence of a solid or liquid layer of an oxidizing gas. The oxidizing gas is provided on the substrate surface in an amount sufficient to dissipate the latent heat of condensation occurring during deposition as well as creating a favorable oxidizing environment for the material.

  8. Three-Dimensional Composite Nanostructures for Lean NOx Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Three-Dimensional Composite Nanostructures for Lean NOx...

  9. Air Emissions Operating Permit Regulations for the Purposes of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by including the EPA's Green House Gas Emission standards. Green House Gasses are: Carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons, and sulfur...

  10. The use of onboard diagnostics to reduce emissions in automobiles

    E-Print Network [OSTI]

    Perez, Alberto, Jr

    2009-01-01

    The emissions from automobiles are very harmful and include gases such as Carbon Dioxide, Nitrous Oxide, and Sulfur Dioxide. One of the main reasons OBD was created was to control emissions however it currently only monitors ...

  11. Bioinspired Synthesis and Reactivity Studies of Nitric Oxide Iron Complexes 

    E-Print Network [OSTI]

    Hess, Jennifer

    2012-02-14

    and better understand the formation and function of biological DNICs, the scope of donor ligands that might coexist with Fe(NO)2 units, the redox levels of bio-DNICs, and establish other spectroscopic techniques appropriate for characterization. A series of N...

  12. Reactive MD Simulations of Electrochemical Oxide Interfaces at...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    force field-will demonstrate the potential of electrical field application for ceramics processing. This integrated simulation-experimental protocol will determine the way...

  13. Low-Temperature Hydrocarbon/CO Oxidation Catalysis in Support...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Low-Temperature HydrocarbonCO Oxidation Catalysis in Support of HCCI Emission Control Ken Rapp, Liyu Li, Jonathan Male, Dave King Pacific Northwest National...

  14. Low-Temperature Hydrocarbon/CO Oxidation Catalysis in Support...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (OFCVT). deer07rappe.pdf More Documents & Publications Low-Temperature HydrocarbonCO Oxidation Catalysis in Support of HCCI Emission Control Selectlive Catalytic Reducution of...

  15. Vehicle Technologies Office Merit Review 2015: Metal Oxide Nano...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    based Monolithic Catalysts Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Three-Dimensional Composite Nanostructures for Lean NOx...

  16. Millisecond Oxidation of Alkanes

    Broader source: Energy.gov [DOE]

    This factsheet describes a project whose goal is to commercialize a production process for propylene and acrylic acid from propane using a catalytic auto-thermal oxydehydrogenation process operating at short contact times. Auto-thermal oxidation for conversion of propane to propylene and acrylic acid promises energy savings of 20 trillion Btu per year by 2020. In addition to reducing energy consumption, this technology can reduce manufacturing costs by up to 25 percent, and reduce a variety of greenhouse gas emissions.

  17. Development of Enantioselective Polyclonal Antibodies to Detect Styrene Oxide Protein

    E-Print Network [OSTI]

    Hammock, Bruce D.

    Development of Enantioselective Polyclonal Antibodies to Detect Styrene Oxide Protein Adducts, California 95616 Styrene has been reported to be pneumotoxic and hepa- totoxic in humans and animals. Styrene oxide, a major reactive metabolite of styrene, has been found to form covalent binding with proteins

  18. Modeling of Hydrogen Storage Materials: A Reactive Force Field for NaH

    E-Print Network [OSTI]

    Goddard III, William A.

    range transport mechanism of Al during the dissociation process. Briefly, the conventional (de to accurately predict the dynamical and reactive processes in hydrocarbons [2], sihcon/sihcon oxides [3 for hydrocarbons[5], ReaxFF has been successfully applied to study Si/Si02 interfaces[3], MgH2 systems and Al

  19. Engine combustion control via fuel reactivity stratification

    DOE Patents [OSTI]

    Reitz, Rolf Deneys; Hanson, Reed M.; Splitter, Derek A.; Kokjohn, Sage L.

    2015-07-14

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  20. Mitochondrial reactive oxygen species and cancer

    E-Print Network [OSTI]

    Chandel, Navdeep S

    Mitochondria produce reactive oxygen species (mROS) as a natural by-product of electron transport chain activity. While initial studies focused on the damaging effects of reactive oxygen species, a recent paradigm shift ...

  1. Engine combustion control via fuel reactivity stratification

    DOE Patents [OSTI]

    Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

    2013-12-31

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choose the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  2. Method for preparing hydride configurations and reactive metal surfaces

    DOE Patents [OSTI]

    Silver, Gary L. (Centerville, OH)

    1988-08-16

    A method for preparing highly hydrogen-reactive surfaces on metals which normally require substantial heating, high pressures, or an extended induction period, which involves pretreatment of said surfaces with either a non-oxidizing acid or hydrogen gas to form a hydrogen-bearing coating on said surfaces, and subsequently heating said coated metal in the absence of moisture and oxygen for a period sufficient to decompose said coating and cooling said metal to room temperature. Surfaces so treated will react almost instantaneously with hydrogen gas at room temperature and low pressure. The method is particularly applicable to uranium, thorium, and lanthanide metals.

  3. Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions

    DOE Patents [OSTI]

    Biruduganti, Munidhar S. (Naperville, IL); Gupta, Sreenath Borra (Naperville, IL); Sekar, R. Raj (Naperville, IL); McConnell, Steven S. (Shorewood, IL)

    2008-11-25

    A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

  4. Emissions Of Greenhouse Gases From Rice Agriculture

    SciTech Connect (OSTI)

    M. Aslam K. Khalil

    2009-07-16

    This project produced detailed data on the processes that affect methane and nitrous oxide emissions from rice agriculture and their inter-relationships. It defines the shifting roles and potential future of these gases in causing global warming and the benefits and tradeoffs of reducing emissions. The major results include: 1). Mechanisms and Processes Leading to Methane Emissions are Delineated. Our experiments have tested the standard model of methane emissions from rice fields and found new results on the processes that control the flux. A mathematical mass balance model was used to unravel the production, oxidation and transport of methane from rice. The results suggested that when large amounts of organic matter are applied, the additional flux that is observed is due to both greater production and reduced oxidation of methane. 2). Methane Emissions From China Have Been Decreasing Over the Last Two Decades. We have calculated that methane emissions from rice fields have been falling in recent decades. This decrease is particularly large in China. While some of this is due to reduced area of rice agriculture, the bigger effect is from the reduction in the emission factor which is the annual amount of methane emitted per hectare of rice. The two most important changes that cause this decreasing emission from China are the reduced use of organic amendments which have been replaced by commercial nitrogen fertilizers, and the increased practice of intermittent flooding as greater demands are placed on water resources. 3). Global Methane Emissions Have Been Constant For More Than 20 Years. While the concentrations of methane in the atmosphere have been leveling off in recent years, our studies show that this is caused by a near constant total global source of methane for the last 20 years or more. This is probably because as some anthropogenic sources have increased, others, such as the rice agriculture source, have fallen. Changes in natural emissions appear small. 4). Nitrous Oxide Emissions From Rice Fields Increase as Methane Emissions Drop. Inundated conditions favor anaerobic methane production with high emission rates and de-nitrification resulting in modest nitrous oxide emissions. Under drier conditions such as intermittent flooding, methane emissions fall and nitrous oxide emissions increase. Increased nitrogen fertilizer use increases nitrous oxide emissions and is usually accompanied by reduced organic matter applications which decreases methane emissions. These mechanisms cause a generally inverse relationship between methane and nitrous oxide emissions. Reduction of methane from rice agriculture to control global warming comes with tradeoffs with increased nitrous oxide emissions. 5). High Spatial Resolution Maps of Emissions Produced. Maps of methane and nitrous oxide emissions at a resolution of 5 min × 5 min have been produced based on the composite results of this research. These maps are necessary for both scientific and policy uses.

  5. Selective Catalytic Oxidation of Hydrogen Sulfide on Activated Carbons Impregnated with Sodium Hydroxide

    SciTech Connect (OSTI)

    Schwartz, Viviane [ORNL; Baskova, Svetlana [ORNL; Armstrong, Timothy R. [ORNL

    2009-01-01

    Two activated carbons of different origin were impregnated with the solution of sodium hydroxide (NaOH) of various concentrations up to 10 wt %, and the effect of impregnation on the catalytic performance of the carbons was evaluated. The catalytic activity was analyzed in terms of the capacity of carbons for hydrogen sulfide (H2S) conversion and removal from hydrogen-rich fuel streams and the emission times of H2S and the products of its oxidation [e.g., sulfur dioxide (SO2) and carbonyl sulfide (COS)]. The results of impregnation showed a significant improvement in the catalytic activity of both carbons proportional to the amount of NaOH introduced. NaOH introduces hydroxyl groups (OH-) on the surface of the activated carbon that increase its surface reactivity and its interaction with sulfur-containing compounds.

  6. Reactive composite compositions and mat barriers

    DOE Patents [OSTI]

    Langton, Christine A. (Aiken, SC); Narasimhan, Rajendran (Evans, GA); Karraker, David G. (Aiken, SC)

    2001-01-01

    A hazardous material storage area has a reactive multi-layer composite mat which lines an opening into which a reactive backfill and hazardous material are placed. A water-inhibiting cap may cover the hazardous material storage area. The reactive multi-layer composite mat has a backing onto which is placed an active layer which will neutralize or stabilize hazardous waste and a fronting layer so that the active layer is between the fronting and backing layers. The reactive backfill has a reactive agent which can stabilize or neutralize hazardous material and inhibit the movement of the hazardous material through the hazardous material storage area.

  7. Passive Ozone Control Through Use of Reactive Indoor Wall and Ceiling Materials

    E-Print Network [OSTI]

    Siegel, Jeffrey

    Passive Ozone Control Through Use of Reactive Indoor Wall and Ceiling Materials Paper # 715 Donna A) Austin, TX 78758, USA ABSTRACT Most ozone exposure occurs indoors even though some surfaces consume ozone and reduce its concentration relative to outdoors. Ozone consumption often results in emissions of secondary

  8. NEMI MEASUREMENT OF AURORAL NITRIC OXIDE PRODUCTION

    E-Print Network [OSTI]

    Ulich, Thomas

    NEMI MEASUREMENT OF AURORAL NITRIC OXIDE PRODUCTION Carl-Fredrik Enell1 Esa Turunen1 Antti Kero1 measurements for a sodium emission experiment. The main purpose of SGO in the NEMI project is in-situ quantification of the auroral production of nitric oxide (NO). The retrieval requires inverse modelling

  9. Initial performance of the NEOWISE reactivation mission

    SciTech Connect (OSTI)

    Mainzer, A.; Bauer, J.; Masiero, J.; Eisenhardt, P.; Fabinsky, B.; Heinrichsen, I.; Liu, F. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Cutri, R. M.; Beck, R.; Conrow, T.; Dailey, J.; Fajardo-Acosta, S.; Fowler, J.; Gelino, C.; Grillmair, C.; Kirkpatrick, J. Davy; Masci, F. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Grav, T. [Planetary Science Institute, Tucson, AZ (United States); Clarkson, P.; Kendall, M., E-mail: amainzer@jpl.nasa.gov [Ball Aerospace and Technology Center, Boulder, CO (United States); and others

    2014-09-01

    NASA's Wide-field Infrared Survey Explorer (WISE) spacecraft has been brought out of hibernation and has resumed surveying the sky at 3.4 and 4.6 ?m. The scientific objectives of the NEOWISE reactivation mission are to detect, track, and characterize near-Earth asteroids and comets. The search for minor planets resumed on 2013 December 23, and the first new near-Earth object (NEO) was discovered 6 days later. As an infrared survey, NEOWISE detects asteroids based on their thermal emission and is equally sensitive to high and low albedo objects; consequently, NEOWISE-discovered NEOs tend to be large and dark. Over the course of its three-year mission, NEOWISE will determine radiometrically derived diameters and albedos for ?2000 NEOs and tens of thousands of Main Belt asteroids. The 32 months of hibernation have had no significant effect on the mission's performance. Image quality, sensitivity, photometric and astrometric accuracy, completeness, and the rate of minor planet detections are all essentially unchanged from the prime mission's post-cryogenic phase.

  10. Zero emission coal

    SciTech Connect (OSTI)

    Ziock, H.; Lackner, K.

    2000-08-01

    We discuss a novel, emission-free process for producing hydrogen or electricity from coal. Even though we focus on coal, the basic design is compatible with any carbonaceous fuel. The process uses cyclical carbonation of calcium oxide to promote the production of hydrogen from carbon and water. The carbonation of the calcium oxide removes carbon dioxide from the reaction products and provides the additional energy necessary to complete hydrogen production without additional combustion of carbon. The calcination of the resulting calcium carbonate is accomplished using the high temperature waste heat from solid oxide fuel cells (SOFC), which generate electricity from hydrogen fuel. Converting waste heat back to useful chemical energy allows the process to achieve very high conversion efficiency from fuel energy to electrical energy. As the process is essentially closed-loop, the process is able to achieve zero emissions if the concentrated exhaust stream of CO{sub 2} is sequestered. Carbon dioxide disposal is accomplished by the production of magnesium carbonate from ultramafic rock. The end products of the sequestration process are stable naturally occurring minerals. Sufficient rich ultramafic deposits exist to easily handle all the world's coal.

  11. Using Section 111 of the Clean Air Act for Cap-and-Trade of Greenhouse Gas Emissions: Obstacles and Solutions

    E-Print Network [OSTI]

    Enion, Rhead M.

    2012-01-01

    focused nitro- gen oxide emissions-trading program for largeNSPS program could use emissions trading, including cap-and-regulations that allow emissions trading, to achieve GHG

  12. Tuning Reactivity and Electronic Properties through Ligand Reorganization within a Cerium Heterobimetallic Framework

    SciTech Connect (OSTI)

    Robinson, Jerome R.; Gordon, Zachary; Booth, Corwin H.; Carroll, Patrick J.; Walsh, Patrick J.; Schelter, Eric J.

    2014-06-24

    Cerium compounds have played vital roles in organic, inorganic, and materials chemistry due to their reversible redox chemistry between trivalent and tetravalent oxidation states. However, attempts to rationally access molecular cerium complexes in both oxidation states have been frustrated by unpredictable reactivity in cerium(III) oxidation chemistry. Such oxidation reactions are limited by steric saturation at the metal ion, which can result in high energy activation barriers for electron transfer. An alternative approach has been realized using a rare earth/alkali metal/1,1'-BINOLate (REMB) heterobimetallic framework, which uses redox-inactive metals within the secondary coordination sphere to control ligand reorganization. The rational syntheses of functionalized cerium(IV) products and a mechanistic examination of the role of ligand reorganization in cerium(III) oxidation are presented.

  13. Export of reactive nitrogen from coal-fired power plants in the U.S.: Estimates from a plume-in-grid modeling study - article no. D04308

    SciTech Connect (OSTI)

    Vijayaraghavan, K.; Zhang, Y.; Seigneur, C.; Karamchandani, P.; Snell, H.E.

    2009-02-15

    The export of reactive nitrogen (nitrogen oxides and their oxidation products, collectively referred to as NOy) from coal-fired power plants in the U.S. to the rest of the world could have a significant global contribution to ozone. Traditional Eulerian gridded air quality models cannot characterize accurately the chemistry and transport of plumes from elevated point sources such as power plant stacks. A state-of-the-science plume-in-grid (PinG) air quality model, a reactive plume model embedded in an Eulerian gridded model, is used to estimate the export of NOy from 25 large coal-fired power plants in the U. S. (in terms of NOx and SO{sub 2} emissions) in July 2001 to the global atmosphere. The PinG model used is the Community Multiscale Air Quality Model with Advanced Plume Treatment (CMAQ-APT). A benchmark simulation with only the gridded model, CMAQ, is also conducted for comparison purposes. The simulations with and without advanced plume treatment show differences in the calculated export of NOy from the 25 plants considered reflecting the effect of using a detailed and explicit treatment of plume transport and chemistry. The advanced plume treatment results in 31% greater simulated export of NOy compared to the purely grid-based modeling approach. The export efficiency of NOy (the fraction of NOy emitted that is exported) is predicted to be 21% without APT and 27% with APT. When considering only export through the eastern boundary across the Atlantic, CMAQ-APT predicts that the export efficiency is 24% and that 2% of NOy is exported as NOx, 49% as inorganic nitrate, and 25% as PAN. These results are in reasonably good agreement with an analysis reported in the literature of aircraft measurements over the North Atlantic.

  14. Examining the transport of ammonia emissions across landscapes using nitrogen isotope ratios

    E-Print Network [OSTI]

    Elliott, Emily M.

    fertilizer application, during periods of low or no fertilization, vehicle NH3 emissions can be a substantialExamining the transport of ammonia emissions across landscapes using nitrogen isotope ratios J 2014 Keywords: Ammonia Emissions Isotope Nitrogen Ammonium a b s t r a c t The proportion of reactive

  15. Layered reactive particles with controlled geometries, energies, and reactivities, and methods for making the same

    DOE Patents [OSTI]

    Fritz, Gregory M; Knepper, Robert Allen; Weihs, Timothy P; Gash, Alexander E; Sze, John S

    2013-04-30

    An energetic composite having a plurality of reactive particles each having a reactive multilayer construction formed by successively depositing reactive layers on a rod-shaped substrate having a longitudinal axis, dividing the reactive-layer-deposited rod-shaped substrate into a plurality of substantially uniform longitudinal segments, and removing the rod-shaped substrate from the longitudinal segments, so that the reactive particles have a controlled, substantially uniform, cylindrically curved or otherwise rod-contoured geometry which facilitates handling and improves its packing fraction, while the reactant multilayer construction controls the stability, reactivity and energy density of the energetic composite.

  16. Chemical reactivity of potential ferrocyanide precipitates in Hanford tanks with nitrates and nitrites

    SciTech Connect (OSTI)

    Scheele, R.D.; Tingey, J.M.; Lilga, M.A.; Burger, L.L.; Hallen, R.T.

    1992-03-01

    Ferrocyanide-bearing wastes were produced at the Hanford Site during the 1950s. Safe storage of these wastes has recently drawn increased attention. As a result of these concerns, the Pacific Northwest Laboratory was chartered to investigate the chemical reactivity and explosivity of the ferrocyanide bearing wastes. WE have investigated the thermal sensitivity of synthetic wastes and ferrocyanides and observed oxidation at 130{degrees}C and explosions down to 295{degrees}C. Coupled with thermodynamic calculations, these thermal studies have also shown a dependence of the reactivity on the synthetic waste composition, which is dependent on the solids settling behavior.

  17. Diesel hybridization and emissions.

    SciTech Connect (OSTI)

    Pasquier, M.; Monnet, G.

    2004-04-21

    The CTR Vehicle Systems and Fuels team a diesel hybrid powertrain. The goal of this experiment was to investigate and demonstrate the potential of diesel engines for hybrid electric vehicles (HEVs) in a fuel economy and emissions. The test set-up consisted of a diesel engine coupled to an electric motor driving a Continuously Variable Transmission (CVT). This hybrid drive is connected to a dynamometer and a DC electrical power source creating a vehicle context by combining advanced computer models and emulation techniques. The experiment focuses on the impact of the hybrid control strategy on fuel economy and emissions-in particular, nitrogen oxides (NO{sub x}) and particulate matter (PM). The same hardware and test procedure were used throughout the entire experiment to assess the impact of different control approaches.

  18. Eddy Covariance Fluxes of Nitrogen Oxides at Harvard Forest NOx deposition is important to both the biosphere and the atmosphere: the form of

    E-Print Network [OSTI]

    Current estimates indicate that fossil fuel combustion and soil microbial emissions are the largest by smaller contributions from biomass burning, lightning, ammonia oxidation, the ocean, and the stratosphere. Oxidation of natural and anthropogenic hydrocarbon emissions produces intermediate products

  19. Targeting a custom-engineered flavonoid to the mitochondria protects against acute oxidative stress 

    E-Print Network [OSTI]

    Drummond, Nicola Jane

    2015-06-29

    Oxidative stress is caused when there are more reactive oxygen species (ROS), than antioxidants to scavenge them, resulting in damage to cellular components. It has been implicated as a major player at multiple points ...

  20. Radiative forcing from surface NOx emissions: spatial and seasonal variations

    E-Print Network [OSTI]

    Stevenson, David

    Radiative forcing from surface NOx emissions: spatial and seasonal variations R. G. Derwent & D. S distributions of methane CH4 and ozone O3 following the emission of pulses of the oxides of nitrogen NOx. Month-long emission pulses of NOx produce deficits in CH4 mixing ratios that bring about negative radiative forcing

  1. Emissions and Air Quality Impacts of Freight Transportation Erica Bickford

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Emissions and Air Quality Impacts of Freight Transportation by Erica Bickford A dissertation rights reserved. #12;Abstract Emissions and Air Quality Impacts of Freight Transportation Erica Bickford.S. transportation is the largest source of national nitrogen oxide (NOx) emissions and the third largest source

  2. MEASURING GASEOUS EMISSIONS FROM STORED PIG SLURRY S. Espagnol1

    E-Print Network [OSTI]

    Boyer, Edmond

    2 MEASURING GASEOUS EMISSIONS FROM STORED PIG SLURRY S. Espagnol1 , L. Loyon2 , F. Guiziou2 , P to measure emissions factors of ammonia (NH3), nitrous oxide (N2O) methane (CH4) and carbon dioxide (CO2) from stored pig slurry and measured the variations of the emissions in time and space. In 2006, dynamic

  3. Rejuvenating Permeable Reactive Barriers by Chemical Flushing

    Broader source: Energy.gov [DOE]

    Final Report:Rejuvenating Permeable Reactive Barriers by Chemical Flushing,U.S. Environmental Protection Agency, Region 8 Support.August 2004

  4. High Efficiency Fuel Reactivity Controlled Compression Ignition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficiency Fuel Reactivity Controlled Compression Ignition Combustion An optimized dual-fuel PCCI concept, RCCI, is proposed. deer10reitz.pdf More Documents & Publications...

  5. Permeable Reactive Barriers | Department of Energy

    Office of Environmental Management (EM)

    reaction occurs with the barrier material that results in adsorption, mineral precipitation, or degradation to a harmless compound. Reactive barriers that do not incorporate...

  6. Experimental Investigation of Fuel-Reactivity Controlled Compression Ignition (RCCI) Combustion Mode in a Multi-Cylinder, Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Cho, Kukwon; Curran, Scott; Prikhodko, Vitaly Y; Sluder, Scott; Parks, II, James E; Wagner, Robert M

    2011-01-01

    An experimental study was performed to provide the combustion and emission characteristics resulting from fuel-reactivity controlled compression ignition (RCCI) combustion mode utilizing dual-fuel approach in a light-duty, multi-cylinder diesel engine. In-cylinder fuel blending using port fuel injection of gasoline before intake valve opening (IVO) and early-cycle, direct injection of diesel fuel was used as the charge preparation and fuel blending strategy. In order to achieve the desired auto-ignition quality through the stratification of the fuel-air equivalence ratio ( ), blends of commercially available gasoline and diesel fuel were used. Engine experiments were performed at an engine speed of 2300rpm and an engine load of 4.3bar brake mean effective pressure (BMEP). It was found that significant reduction in both nitrogen oxide (NOx) and particulate matter (PM) was realized successfully through the RCCI combustion mode even without applying exhaust gas recirculation (EGR). However, high carbon monoxide (CO) and hydrocarbon (HC) emissions were observed. The low combustion gas temperature during the expansion and exhaust processes seemed to be the dominant source of high CO emissions in the RCCI combustion mode. The high HC emissions during the RCCI combustion mode could be due to the increased combustion quenching layer thickness as well as the -stratification at the periphery of the combustion chamber. The slightly higher brake thermal efficiency (BTE) of the RCCI combustion mode was observed than the other combustion modes, such as the conventional diesel combustion (CDC) mode, and single-fuel, premixed charge compression ignition (PCCI) combustion mode. The parametric study of the RCCI combustion mode revealed that the combustion phasing and/or the peak cylinder pressure rise rate of the RCCI combustion mode could be controlled by several physical parameters premixed ratio (rp), intake swirl intensity, and start of injection (SOI) timing of directly injected fuel unlike other low temperature combustion (LTC) strategies.

  7. Method for reactivating catalysts and a method for recycling supercritical fluids used to reactivate the catalysts

    DOE Patents [OSTI]

    Ginosar, Daniel M. (Idaho Falls, ID); Thompson, David N. (Idaho Falls, ID); Anderson, Raymond P. (Idaho Falls, ID)

    2008-08-05

    A method of reactivating a catalyst, such as a solid catalyst or a liquid catalyst. The method comprises providing a catalyst that is at least partially deactivated by fouling agents. The catalyst is contacted with a fluid reactivating agent that is at or above a critical point of the fluid reactivating agent and is of sufficient density to dissolve impurities. The fluid reactivating agent reacts with at least one fouling agent, releasing the at least one fouling agent from the catalyst. The at least one fouling agent becomes dissolved in the fluid reactivating agent and is subsequently separated or removed from the fluid reactivating agent so that the fluid reactivating agent may be reused. A system for reactivating a catalyst is also disclosed.

  8. Ethanol oxidation on metal oxide-supported platinum catalysts

    SciTech Connect (OSTI)

    L. M. Petkovic 090468; Sergey N. Rashkeev; D. M. Ginosar

    2009-09-01

    Ethanol is a renewable fuel that can be used as an additive to gasoline (or its substitute) with the advantage of octane enhancement and reduced carbon monoxide exhaust emissions. However, on Ethanol is a renewable fuel that can be used as an additive to gasoline (or its substitute) with the advantage of octane enhancement and reduced carbon monoxide exhaust emissions. However, on the standard three-way catalysts, the conversion of unburned ethanol is low because both ethanol and some of its partially oxidized derivatives are highly resistant to oxidation. A combination of first-principles density-functional theory (DFT) based calculations and in-situ diffuse reflectance infrared spectroscopy (DRIFTS) analysis was applied to uncover some of the fundamental phenomena associated with ethanol oxidation on Pt containing catalysts. In particular, the objective was to analyze the role of the oxide (i.e., ?-Al2O3 or SiO2) substrate on the ethanol oxidation activity. The results showed that Pt nanoparticles trap and accumulate oxygen at their surface and perimeter sites and play the role of “stoves” that burn ethanol molecules and their partially oxidized derivatives to the “final” products. The ?-Al2O3 surfaces provided higher mobility of the fragments of ethanol molecules than the SiO2 surface and hence increased the supply rate of these objects to the Pt particles. This will in turn produce a higher conversion rate of unburned ethanol.and some of its partially oxidized derivatives are highly resistant to oxidation. A combination of first-principles density-functional theory (DFT) based calculations and in-situ diffuse reflectance infrared spectroscopy (DRIFTS) analysis was applied to uncover some of the fundamental phenomena associated with ethanol oxidation on Pt containing catalysts. In particular, the objective was to analyze the role of the oxide (i.e., ?-Al2O3 or SiO2) substrate on the ethanol oxidation activity. The results showed that Pt nanoparticles trap and accumulate oxygen at their surface and perimeter sites and play the role of “stoves” that burn ethanol molecules and their partially oxidized derivatives to the “final” products. The ?-Al2O3 surfaces provided higher mobility of the fragments of ethanol molecules than the SiO2 surface and hence increased the supply rate of these objects to the Pt particles. This will in turn produce a higher conversion rate of unburned ethanol.

  9. Poly(ethylene oxide) functionalization

    DOE Patents [OSTI]

    Pratt, Russell Clayton

    2014-04-08

    A simple procedure is provided by which the hydroxyl termini of poly(ethylene oxide) can be appended with functional groups to a useful extent by reaction and precipitation. The polymer is dissolved in warmed toluene, treated with an excess of organic base and somewhat less of an excess of a reactive acylating reagent, reacted for several hours, then precipitated in isopropanol so that the product can be isolated as a solid, and salt byproducts are washed away. This procedure enables functionalization of the polymer while not requiring laborious purification steps such as solvent-solvent extraction or dialysis to remove undesirable side products.

  10. Next generation gas turbines will be required to produce low concentrations of pollutants such as oxides of nitrogen (NOx), carbon monoxide (CO), and soot. In order to design gas turbines which produce lower emissions it is essential

    E-Print Network [OSTI]

    Next generation gas turbines will be required to produce low concentrations of pollutants such as oxides of nitrogen (NOx), carbon monoxide (CO), and soot. In order to design gas turbines which produce

  11. Oxygen Electrocatalysis on Epitaxial La[subscript 0.6]Sr[subscript 0.4]CoO[subscript 3-?] Perovskite Thin Films for Solid Oxide Fuel Cells

    E-Print Network [OSTI]

    Crumlin, Ethan J.

    Hetero-structured interfaces of oxides, which can exhibit reactivity characteristics remarkably different from bulk oxides, are interesting systems to explore in search of highly active fuel cell catalysts for oxygen ...

  12. Stack configurations for tubular solid oxide fuel cells

    DOE Patents [OSTI]

    Armstrong, Timothy R. (Clinton, TN); Trammell, Michael P. (Clinton, TN); Marasco, Joseph A. (Kingston, TN)

    2010-08-31

    A fuel cell unit includes an array of solid oxide fuel cell tubes having porous metallic exterior surfaces, interior fuel cell layers, and interior surfaces, each of the tubes having at least one open end; and, at least one header in operable communication with the array of solid oxide fuel cell tubes for directing a first reactive gas into contact with the porous metallic exterior surfaces and for directing a second reactive gas into contact with the interior surfaces, the header further including at least one busbar disposed in electrical contact with at least one surface selected from the group consisting of the porous metallic exterior surfaces and the interior surfaces.

  13. Reductions in ozone concentrations due to controls on variability in industrial flare emissions in Houston, Texas

    E-Print Network [OSTI]

    Nam, Junsang

    2007-01-01

    High concentrations of ozone in the Houston/Galveston area are associated with industrial plumes of highly reactive hydrocarbons, mixed with NOx. The emissions leading to these plumes can have significant temporal variability, ...

  14. Emissions of greenhouse gases in the United States 1995

    SciTech Connect (OSTI)

    1996-10-01

    This is the fourth Energy Information Administration (EIA) annual report on US emissions of greenhouse gases. This report presents estimates of US anthropogenic (human-caused) emissions of carbon dioxide, methane, nitrous oxide, and several other greenhouse gases for 1988 through 1994. Estimates of 1995 carbon dioxide, nitrous oxide, and halocarbon emissions are also provided, although complete 1995 estimates for methane are not yet available. Emissions of carbon dioxide increased by 1.9% from 1993 to 1994 and by an additional 0.8% from 1994 to 1995. Most carbon dioxide emissions are caused by the burning of fossil fuels for energy consumption, which is strongly related to economic growth, energy prices, and weather. The US economy grew rapidly in 1994 and slowed in 1995. Estimated emissions of methane increased slightly in 1994, as a result of a rise in emissions from energy and agricultural sources. Estimated nitrous oxide emissions increased by 1.8% in 1995, primarily due to increased use of nitrogen fertilizers and higher output of chemicals linked to nitrous oxide emissions. Estimated emissions of hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs), which are known to contribute to global warming, increased by nearly 11% in 1995, primarily as a result of increasing substitution for chlorofluorocarbons (CFCs). With the exception of methane, the historical emissions estimates presented in this report are only slightly revised from those in last year`s report.

  15. Reactive Power Support Services in Electricity Markets

    E-Print Network [OSTI]

    Reactive Power Support Services in Electricity Markets Costing and Pricing of Ancillary Services Reactive Power Support Services in Electricity Markets Costing and Pricing of Ancillary Services Project and Pricing of Ancillary Services." The project title reflects the original proposal that was prepared

  16. Controlling uranium reactivity March 18, 2008

    E-Print Network [OSTI]

    Meyer, Karsten

    March 2008 Controlling uranium reactivity March 18, 2008 Uranium is an often misunderstood metal uranium research. In reality, uranium presents a wealth of possibilities for funda- mental chemistry. Many research groups have been involved in utilizing the large size and unique reactivity of the uranium atom

  17. Shield Synthesis: Runtime Enforcement for Reactive Systems

    E-Print Network [OSTI]

    Wang, Chao

    Shield Synthesis: Runtime Enforcement for Reactive Systems Roderick Bloem1 , Bettina K¨onighofer1 shield" that is attached to the design to enforce the properties at run time. Shield synthesis can of reactive synthesis. The shield continuously monitors the input/output of the design and corrects its erro

  18. Reduction of spalling in mixed metal oxide desulfurization sorbents by addition of a large promoter metal oxide

    DOE Patents [OSTI]

    Poston, James A. (Star City, WV)

    1997-01-01

    Mixed metal oxide pellets for removing hydrogen sulfide from fuel gas mixes derived from coal are stabilized for operation over repeated cycles of desulfurization and regeneration reactions by addition of a large promoter metal oxide such as lanthanum trioxide. The pellets, which may be principally made up of a mixed metal oxide such as zinc titanate, exhibit physical stability and lack of spalling or decrepitation over repeated cycles without loss of reactivity. The lanthanum oxide is mixed with pellet-forming components in an amount of 1 to 10 weight percent.

  19. Reduction of spalling in mixed metal oxide desulfurization sorbents by addition of a large promoter metal oxide

    DOE Patents [OSTI]

    Poston, J.A.

    1997-12-02

    Mixed metal oxide pellets for removing hydrogen sulfide from fuel gas mixes derived from coal are stabilized for operation over repeated cycles of desulfurization and regeneration reactions by addition of a large promoter metal oxide such as lanthanum trioxide. The pellets, which may be principally made up of a mixed metal oxide such as zinc titanate, exhibit physical stability and lack of spalling or decrepitation over repeated cycles without loss of reactivity. The lanthanum oxide is mixed with pellet-forming components in an amount of 1 to 10 weight percent.

  20. Advanced Collaborative Emissions Study (ACES)

    SciTech Connect (OSTI)

    Greenbaum, Daniel; Costantini, Maria; Van Erp, Annemoon; Shaikh, Rashid; Bailey, Brent; Tennant, Chris; Khalek, Imad; Mauderly, Joe; McDonald, Jacob; Zielinska, Barbara; Bemis, Jeffrey; Storey, John; Hallberg, Lance; Clark, Nigel

    2013-12-31

    The objective of the Advanced Collaborative Emissions Study (ACES) was to determine before widespread commercial deployment whether or not the new, energy-efficient, heavy duty diesel engines (2007 and 2010 EPA Emissions Standards Compliant) may generate anticipated toxic emissions that could adversely affect the environment and human health. ACES was planned to take place in three phases. In Phase 1, extensive emissions characterization of four production-intent prototype engine and control systems designed to meet 2007 standards for nitrogen oxides (NOx) and particulate matter (PM) was conducted at an existing emissions characterization facility: Southwest Research Institute (SwRI). One of the tested engines was selected (at random, after careful comparison of results) for health testing in Phase 3. In Phase 2, extensive emission characterization of three production-intent prototype engine and control systems meeting the 2010 standards (including more advanced NOx controls to meet the more stringent 2010 NOx standards) was conducted at the same test facility. In Phase 3, one engine/aftertreatment system selected from Phase 1 was further characterized during health effects studies (at an existing inhalation toxicology laboratory: Lovelace Respiratory Research Institute, [LRRI]) to form the basis of the ACES safety assessment. The Department of Energy (DOE) award provided funding for emissions characterization in Phases 1 and 2 as well as exposure characterization in Phase 3. The main health analyses in Phase 3 were funded separately and are not reported here.

  1. Non-Incineration Treatment to Reduce Benzene and VOC Emissions from Green Sand Molding Systems

    SciTech Connect (OSTI)

    Fred S. Cannon; Robert C. Voigt

    2002-06-28

    Final report describing laboratory, pilot scale and production scale evaluation of advanced oxidation systems for emissions and cost reduction in metal casting green sand systems.

  2. Gas-phase study of the reactivity of optical coating materials with hydrocarbons by use of a

    E-Print Network [OSTI]

    Rocca, Jorge J.

    Gas-phase study of the reactivity of optical coating materials with hydrocarbons by use with hydrocarbons is studied in the gas phase by use of mass spectroscopy of metal-oxide clusters. We report-layer materials with hydrocarbons. An increased understanding of these reactions could lead to the development

  3. Fluidizable zinc titanate materials with high chemical reactivity and attrition resistance

    DOE Patents [OSTI]

    Gupta, Raghubir P. (Durham, NC); Gangwal, Santosh K. (Durham, NC); Jain, Suresh C. (Morgantown, WV)

    1993-01-01

    Highly durable and chemically reactive zinc titanate materials are prepared in a particle size range of 50 to 400 .mu.m suitable for a fluidized-bed reactor for removing reduced sulfur species in a gaseous form by granulating a mixture of fine zinc oxide and titanium oxide with inorganic and organic binders and by optional additions of small amounts of activators such as CoO and MoO.sub.3 ; and then indurating it at 800.degree. to 900.degree. C. for a time sufficient to produce attrition-resistant granules.

  4. Fluidizable zinc titanate materials with high chemical reactivity and attrition resistance

    DOE Patents [OSTI]

    Gupta, R.P.; Gangwal, S.K.; Jain, S.C.

    1993-10-19

    Highly durable and chemically reactive zinc titanate materials are prepared in a particle size range of 50 to 400 [mu]m suitable for a fluidized-bed reactor for removing reduced sulfur species in a gaseous form by granulating a mixture of fine zinc oxide and titanium oxide with inorganic and organic binders and by optional additions of small amounts of activators such as CoO and MoO[sub 3]; and then indurating it at 800 to 900 C for a time sufficient to produce attrition-resistant granules.

  5. Ionic Liquids: Radiation Chemistry, Solvation Dynamics and Reactivity Patterns

    SciTech Connect (OSTI)

    Wishart, J.F.

    2011-06-12

    Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs generally have low volatilities and are combustion-resistant, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of primary radiation chemistry, charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of reactions and product distributions. We study these issues by characterization of primary radiolysis products and measurements of their yields and reactivity, quantification of electron solvation dynamics and scavenging of electrons in different states of solvation. From this knowledge we wish to learn how to predict radiolytic mechanisms and control them or mitigate their effects on the properties of materials used in nuclear fuel processing, for example, and to apply IL radiation chemistry to answer questions about general chemical reactivity in ionic liquids that will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that the slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increase the importance of pre-solvated electron reactivity and consequently alter product distributions and subsequent chemistry. This difference from conventional solvents has profound effects on predicting and controlling radiolytic yields, which need to be quantified for the successful use under radiolytic conditions. Electron solvation dynamics in ILs are measured directly when possible and estimated using proxies (e.g. coumarin-153 dynamic emission Stokes shifts or benzophenone anion solvation) in other cases. Electron reactivity is measured using ultrafast kinetics techniques for comparison with the solvation process.

  6. Investigation of Mixed Oxide Catalysts for NO Oxidation

    SciTech Connect (OSTI)

    Szanyi, Janos; Karim, Ayman M.; Pederson, Larry R.; Kwak, Ja Hun; Mei, Donghai; Tran, Diana N.; Herling, Darrell R.; Muntean, George G.; Peden, Charles HF; Howden, Ken; Qi, Gongshin; Li, Wei

    2014-12-09

    The oxidation of engine-generated NO to NO2 is an important step in the reduction of NOx in lean engine exhaust because NO2 is required for the performance of the LNT technology [2], and it enhances the activities of ammonia selective catalytic reduction (SCR) catalysts [1]. In particular, for SCR catalysts an NO:NO2 ratio of 1:1 is most effective for NOx reduction, whereas for LNT catalysts, NO must be oxidized to NO2 before adsorption on the storage components. However, NO2 typically constitutes less than 10% of NOx in lean exhaust, so catalytic oxidation of NO is essential. Platinum has been found to be especially active for NO oxidation, and is widely used in DOC and LNT catalysts. However, because of the high cost and poor thermal durability of Pt-based catalysts, there is substantial interest in the development of alternatives. The objective of this project, in collaboration with partner General Motors, is to develop mixed metal oxide catalysts for NO oxidation, enabling lower precious metal usage in emission control systems. [1] M. Koebel, G. Madia, and M. Elsener, Catalysis Today 73, 239 (2002). [2] C. H. Kim, G. S. Qi, K. Dahlberg, and W. Li, Science 327, 1624 (2010).

  7. Methane emissions from MBT landfills

    SciTech Connect (OSTI)

    Heyer, K.-U. Hupe, K.; Stegmann, R.

    2013-09-15

    Highlights: • Compilation of methane generation potential of mechanical biological treated (MBT) municipal solid waste. • Impacts and kinetics of landfill gas production of MBT landfills, approach with differentiated half-lives. • Methane oxidation in the waste itself and in soil covers. • Estimation of methane emissions from MBT landfills in Germany. - Abstract: Within the scope of an investigation for the German Federal Environment Agency (“Umweltbundesamt”), the basics for the estimation of the methane emissions from the landfilling of mechanically and biologically treated waste (MBT) were developed. For this purpose, topical research including monitoring results regarding the gas balance at MBT landfills was evaluated. For waste treated to the required German standards, a methane formation potential of approximately 18–24 m{sup 3} CH{sub 4}/t of total dry solids may be expected. Monitoring results from MBT landfills show that a three-phase model with differentiated half-lives describes the degradation kinetics in the best way. This is due to the fact that during the first years of disposal, the anaerobic degradation processes still proceed relatively intensively. In addition in the long term (decades), a residual gas production at a low level is still to be expected. Most of the soils used in recultivation layer systems at German landfills show a relatively high methane oxidation capacity up to 5 l CH{sub 4}/(m{sup 2} h). However, measurements at MBT disposal sites indicate that the majority of the landfill gas (in particular at non-covered areas), leaves the landfill body via preferred gas emission zones (hot spots) without significant methane oxidation. Therefore, rather low methane oxidation factors are recommended for open and temporarily covered MBT landfills. Higher methane oxidation rates can be achieved when the soil/recultivation layer is adequately designed and operated. Based on the elaborated default values, the First Order Decay (FOD) model of the IPCC Guidelines for National Greenhouse Gas Inventories, 2006, was used to estimate the methane emissions from MBT landfills. Due to the calculation made by the authors emissions in the range of 60,000–135,000 t CO{sub 2-eq.}/a for all German MBT landfills can be expected. This wide range shows the uncertainties when the here used procedure and the limited available data are applied. It is therefore necessary to generate more data in the future in order to calculate more precise methane emission rates from MBT landfills. This is important for the overall calculation of the climate gas production in Germany which is required once a year by the German Government.

  8. Neural NetworkBased Modeling and Optimization for Effective Vehicle Emission Testing and

    E-Print Network [OSTI]

    Huang, Yinlun

    Introduction Automotive emission of hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx) has beenNeural Network­Based Modeling and Optimization for Effective Vehicle Emission Testing and Engine emission testing and engine calibration are the key to achieving emission standards with satisfactory fuel

  9. Fuel Impacts on Soot Nanostructure and Reactivity

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: The Pennsylvania State University

  10. Reactive Molecular Simulations of Protonation of Water Clusters...

    Office of Scientific and Technical Information (OSTI)

    Reactive Molecular Simulations of Protonation of Water Clusters and Depletion of Acidity in H-ZSM-5 Zeolite Citation Details In-Document Search Title: Reactive Molecular...

  11. Characterization of Dual-Fuel Reactivity Controlled Compression...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dual-Fuel Reactivity Controlled Compression Ignition (RCCI) Using Hydrated Ethanol and Diesel Fuel Characterization of Dual-Fuel Reactivity Controlled Compression Ignition (RCCI)...

  12. Inducing and Quantifying Forbidden Reactivity with Single Molecule...

    Office of Scientific and Technical Information (OSTI)

    Inducing and Quantifying Forbidden Reactivity with Single Molecule Polymer Mechanochemistry Citation Details In-Document Search Title: Inducing and Quantifying Forbidden Reactivity...

  13. Oxidation catalyst

    DOE Patents [OSTI]

    Ceyer, Sylvia T. (Cambridge, MA); Lahr, David L. (Cambridge, MA)

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  14. Exhaust emission control and diagnostics

    DOE Patents [OSTI]

    Mazur, Christopher John; Upadhyay, Devesh

    2006-11-14

    A diesel engine emission control system uses an upstream oxidation catalyst and a downstream SCR catalyst to reduce NOx in a lean exhaust gas environment. The engine and upstream oxidation catalyst are configured to provide approximately a 1:1 ratio of NO to NO2 entering the downstream catalyst. In this way, the downstream catalyst is insensitive to sulfur contamination, and also has improved overall catalyst NOx conversion efficiency. Degradation of the system is determined when the ratio provided is no longer near the desired 1:1 ratio. This condition is detected using measurements of engine operating conditions such as from a NOx sensor located downstream of the catalysts. Finally, control action to adjust an injected amount of reductant in the exhaust gas based on the actual NO to NO2 ratio upstream of the SCR catalyst and downstream of the oxidation catalyst.

  15. Physical properties and band structure of reactive molecular beam epitaxy grown oxygen engineered HfO{sub 2{+-}x}

    SciTech Connect (OSTI)

    Hildebrandt, Erwin; Kurian, Jose; Alff, Lambert [Institute of Materials Science, Technische Universitaet Darmstadt, 64287 Darmstadt (Germany)

    2012-12-01

    We have conducted a detailed thin film growth structure of oxygen engineered monoclinic HfO{sub 2{+-}x} grown by reactive molecular beam epitaxy. The oxidation conditions induce a switching between (111) and (002) texture of hafnium oxide. The band gap of oxygen deficient hafnia decreases with increasing amount of oxygen vacancies by more than 1 eV. For high oxygen vacancy concentrations, defect bands form inside the band gap that induce optical transitions and p-type conductivity. The resistivity changes by several orders of magnitude as a function of oxidation conditions. Oxygen vacancies do not give rise to ferromagnetic behavior.

  16. Mitigating greenhouse gas emissions: Voluntary reporting

    SciTech Connect (OSTI)

    1997-10-01

    The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report on their emissions of greenhouse gases, and on actions taken that have reduced or avoided emissions or sequestered carbon, to the Energy Information Administration (EIA). This, the second annual report of the Voluntary Reporting Program, describes information provided by the participating organizations on their aggregate emissions and emissions reductions, as well as their emissions reduction or avoidance projects, through 1995. This information has been compiled into a database that includes reports from 142 organizations and descriptions of 967 projects that either reduced greenhouse gas emissions or sequestered carbon. Fifty-one reporters also provided estimates of emissions, and emissions reductions achieved, for their entire organizations. The projects described actions taken to reduce emissions of carbon dioxide from energy production and use; to reduce methane and nitrous oxide emissions from energy use, waste management, and agricultural processes; to reduce emissions of halocarbons, such as CFCs and their replacements; and to increase carbon sequestration.

  17. Mechanism of water oxidation by [Ru(bda)(L)?]: The return of the "blue dimer"

    SciTech Connect (OSTI)

    Concepcion, Javier J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zhong, Diane K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Szalda, David J. [Baruch College, New York, NY (United States); Muckerman, James T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fujita, Etsuko [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-01-01

    We describe here a combined solution-surface-DFT calculations study for complexes of the type [Ru(bda)(L)?] including X-ray structure of intermediates, their reactivity, as well as pH-dependent electrochemistry and spectroelectrochemistry. These studies shed light on the mechanism of water oxidation by [Ru(bda)(L)?], revealing key features unavailable from solution studies with sacrificial oxidants.

  18. Mechanism of water oxidation by [Ru(bda)(L)?]: The return of the "blue dimer"

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Concepcion, Javier J.; Zhong, Diane K.; Szalda, David J.; Muckerman, James T.; Fujita, Etsuko

    2015-02-05

    We describe here a combined solution-surface-DFT calculations study for complexes of the type [Ru(bda)(L)?] including X-ray structure of intermediates, their reactivity, as well as pH-dependent electrochemistry and spectroelectrochemistry. These studies shed light on the mechanism of water oxidation by [Ru(bda)(L)?], revealing key features unavailable from solution studies with sacrificial oxidants.

  19. Factors that Influence Cation Segregation at the Surfaces of Perovskite Oxides Wonyoung Lee and Bilge Yildiz

    E-Print Network [OSTI]

    Yildiz, Bilge

    As the oxygen reduction reaction (ORR) becomes more critical for development of solid oxide fuel cells (SOFCs on the reactivity and stability of solid oxide fuel cell (SOFC) cathodes.(2-9) Oxygen reduction reaction (ORR is important to understand and enable design of cathode materials with optimal surface chemistry. Recently we

  20. Redox signaling via the molecular chaperone BiP protects cells against endoplasmic reticulum-derived oxidative stress

    E-Print Network [OSTI]

    Wang, Jie

    Oxidative protein folding in the endoplasmic reticulum (ER) has emerged as a potentially significant source of cellular reactive oxygen species (ROS). Recent studies suggest that levels of ROS generated as a byproduct of ...

  1. Theoretical and Experimental Evaluation of Chemical Reactivity 

    E-Print Network [OSTI]

    Wang, Qingsheng

    2011-10-21

    theoretical and experimental methods. Methylcyclopentadiene (MCP) and Hydroxylamine (HA) are selected as representatives of unsaturated hydrocarbons and self-reacting chemicals, respectively. Chemical reactivity of MCP, including isomerization, dimerization...

  2. Reactivity control assembly for nuclear reactor

    DOE Patents [OSTI]

    Bollinger, Lawrence R. (Schenectady, NY)

    1984-01-01

    Reactivity control assembly for nuclear reactor comprises supports stacked above reactor core for holding control rods. Couplers associated with the supports and a vertically movable drive shaft have lugs at their lower ends for engagement with the supports.

  3. Groundwater well with reactive filter pack

    DOE Patents [OSTI]

    Gilmore, T.J.; Holdren, G.R. Jr.; Kaplan, D.I.

    1998-09-08

    A method and apparatus are disclosed for the remediation of contaminated soil and ground water wherein a reactive pack material is added to the annular fill material utilized in standard well construction techniques. 3 figs.

  4. Groundwater well with reactive filter pack

    DOE Patents [OSTI]

    Gilmore, Tyler J. (Pasco, WA); Holdren, Jr., George R. (Kennewick, WA); Kaplan, Daniel I. (Richland, WA)

    1998-01-01

    A method and apparatus for the remediation of contaminated soil and ground water wherein a reactive pack material is added to the annular fill material utilized in standard well construction techniques.

  5. Systematic approach for chemical reactivity evaluation 

    E-Print Network [OSTI]

    Aldeeb, Abdulrehman Ahmed

    2004-09-30

    incidents, and have harmed people, property, and the environment. Evaluation of reactive chemical hazards is critical to design and operate safer chemical plant processes. Much effort is needed for experimental techniques, mainly calorimetric analysis...

  6. Reactive Attachment Disorder: Concepts, Treatment, and Research

    E-Print Network [OSTI]

    Walter, Uta M.; Petr, Chris

    2004-06-01

    Reactive Attachment Disorder (RAD) is a disorder characterized by controversy, both with respect to its definition and its treatment. By definition, the RAD diagnosis attempts to characterize and explain the origin of certain troubling behaviors...

  7. Method of producing adherent metal oxide coatings on metallic surfaces

    DOE Patents [OSTI]

    Lane, Michael H. (Clifton Park, NY); Varrin, Jr., Robert D. (McLean, VA)

    2001-01-01

    Provided is a process of producing an adherent synthetic corrosion product (sludge) coating on metallic surfaces. The method involves a chemical reaction between a dry solid powder mixture of at least one reactive metal oxide with orthophosphoric acid to produce a coating in which the particles are bound together and the matrix is adherent to the metallic surface.

  8. Optimization of Engine-out Emissions from a Diesel Engine to Meet Tier 2 Bin 5 Emission Limits

    Broader source: Energy.gov [DOE]

    Drastic reduction of engine-out emissions and complicated aftertreatment system comprising of oxidation catalyst, particulate filter, and DeNOx catalyst are implemented to meet Tier 2 Bin 5 limits for U.S. market diesel engines.

  9. Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.

    SciTech Connect (OSTI)

    Pratt, Joseph William; Cordaro, Joseph Gabriel; Sartor, George B.; Dedrick, Daniel E.; Reeder, Craig L.

    2012-02-01

    In an attempt to mitigate the hazards associated with storing large quantities of reactive metal hydrides, polymer composite materials were synthesized and tested under simulated usage and accident conditions. The composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride. Composites with vinyl-containing siloxane oligomers were also polymerized with and without added styrene and divinyl benzene. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride reduced the inherent hydrogen storage capacity of the material. The composites were found to be initially effective at reducing the amount of heat released during oxidation. However, upon cycling the composites, the mitigating behavior was lost. While the polymer composites we investigated have mitigating potential and are physically robust, they undergo a chemical change upon cycling that makes them subsequently ineffective at mitigating heat release upon oxidation of the metal hydride. Acknowledgements The authors would like to thank the following people who participated in this project: Ned Stetson (U.S. Department of Energy) for sponsorship and support of the project. Ken Stewart (Sandia) for building the flow-through calorimeter and cycling test stations. Isidro Ruvalcaba, Jr. (Sandia) for qualitative experiments on the interaction of sodium alanate with water. Terry Johnson (Sandia) for sharing his expertise and knowledge of metal hydrides, and sodium alanate in particular. Marcina Moreno (Sandia) for programmatic assistance. John Khalil (United Technologies Research Corp) for insight into the hazards of reactive metal hydrides and real-world accident scenario experiments. Summary In an attempt to mitigate and/or manage hazards associated with storing bulk quantities of reactive metal hydrides, polymer composite materials (a mixture of a mitigating polymer and a metal hydride) were synthesized and tested under simulated usage and accident conditions. Mitigating the hazards associated with reactive metal hydrides during an accident while finding a way to keep the original capability of the active material intact during normal use has been the focus of this work. These composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride, in this case a prepared sodium alanate (chosen as a representative reactive metal hydride). It was found that the polymerization of styrene and divinyl benzene could be initiated using AIBN in toluene at 70 degC. The resulting composite materials can be either hard or brittle solids depending on the cross-linking density. Thermal decomposition of these styrene-based composite materials is lower than neat polystyrene indicating that the chemical nature of the polymer is affected by the formation of the composite. The char-forming nature of cross-linked polystyrene is low and therefore, not an ideal polymer for hazard mitigation. To obtain composite materials containing a polymer with higher char-forming potential, siloxane-based monomers were investigated. Four vinyl-containing siloxane oligomers were polymerized with and without added styrene and divinyl benzene. Like the styrene materials, these composite materials exhibited thermal decomposition behavior significantly different than the neat polymers. Specifically, the thermal decomposition temperature was shifted approximately 100 degC lower than the neat polymer signifying a major chemical change to the polymer network. Thermal analysis of the cycled samples was performed on the siloxane-based composite materials. It was found that after 30 cycles the siloxane-containing polymer composite material has similar TGA/DSC-MS traces as the virgin composite material indicating that the polymer is physically intact upon cycling. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride in the form of a composite material reduced the inherent hydrogen storage capacity of the material. This

  10. Saving Fuel, Reducing Emissions

    E-Print Network [OSTI]

    Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

    2009-01-01

    lower greenhouse gas emissions from electricity productionAssessment of Greenhouse Gas Emissions from Plug-in Hybridof national greenhouse gas emissions. Both motor vehicle

  11. Extent of Reduction of Vanadium Oxides during Catalytic Oxidation of Alkanes Measured by in-Situ UV-Visible Spectroscopy

    E-Print Network [OSTI]

    Iglesia, Enrique

    of Chemical Engineering, UniVersity of California, Berkeley, California 94720-1462 ReceiVed: August 19, 2003 of active centers in VOx/- Al2O3 during oxidative dehydrogenation (ODH) of propane. Prevalent extents+ suboxides. Surface oxygen atoms are the most abundant reactive intermediates during propane ODH

  12. Ultra Supercritical Steamside Oxidation

    SciTech Connect (OSTI)

    Holcomb, Gordon R.; Cramer, Stephen D.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Ziomek-Moroz, Malgorzata

    2005-01-01

    Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions, which are goals of the U.S. Department of Energy's Advanced Power Systems Initiatives. Most current coal power plants in the U.S. operate at a maximum steam temperature of 538 C. However, new supercritical plants worldwide are being brought into service with steam temperatures of up to 620 C. Current Advanced Power Systems goals include coal generation at 60% efficiency, which require steam temperatures of up to 760 C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections. Initial results of this research are presented.

  13. Optical and electrical studies of cerium mixed oxides

    SciTech Connect (OSTI)

    Sherly, T. R., E-mail: trsherly@gmail.com [Post Graduate Department of Physics, Sanathana Dharma College, Alappuzha, Kerala (India); Raveendran, R. [Nanoscience Research Laboratory, Sree Narayana College, Kollam, Kerala 691001 (India)

    2014-10-15

    The fast development in nanotechnology makes enthusiastic interest in developing nanomaterials having tailor made properties. Cerium mixed oxide materials have received great attention due to their UV absorption property, high reactivity, stability at high temperature, good electrical property etc and these materials find wide applications in solid oxide fuel cells, solar control films, cosmetics, display units, gas sensors etc. In this study cerium mixed oxide compounds were prepared by co-precipitation method. All the samples were doped with Zn (II) and Fe (II). Preliminary characterizations such as XRD, SEM / EDS, TEM were done. UV - Vis, Diffuse reflectance, PL, FT-IR, Raman and ac conductivity studies of the samples were performed.

  14. Method for fluorination of uranium oxide

    DOE Patents [OSTI]

    Petit, George S. (Oak Ridge, TN)

    1987-01-01

    Highly pure uranium hexafluoride is made from uranium oxide and fluorine. The uranium oxide, which includes UO.sub.3, UO.sub.2, U.sub.3 O.sub.8 and mixtures thereof, is introduced together with a small amount of a fluorine-reactive substance, selected from alkali chlorides, silicon dioxide, silicic acid, ferric oxide, and bromine, into a constant volume reaction zone. Sufficient fluorine is charged into the zone at a temperature below approximately 0.degree. C. to provide an initial pressure of at least approximately 600 lbs/sq. in. at the ambient atmospheric temperature. The temperature is then allowed to rise in the reaction zone until reaction occurs.

  15. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent. Quarterly technical progress report 8, July--September 1988

    SciTech Connect (OSTI)

    Jha, M.C.; Berggren, M.H.

    1988-11-14

    AMAX Research & Development Center (AMAX R&D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  16. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent. Quarterly technical progress report 9, October--December 1988

    SciTech Connect (OSTI)

    Jha, M.C.; Berggren, M.H.

    1989-03-06

    AMAX Research & Development Center (AMAX R&D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  17. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent. Quarterly technical progress report No. 3, April--June 1987

    SciTech Connect (OSTI)

    Jha, M.C.; Baltich, L.K.; Berggren, M.H.

    1987-08-28

    AMAX Research & Development Center (AMAX R&D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  18. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent. Quarterly technical progress report 2, January--March 1987

    SciTech Connect (OSTI)

    Jha, M.C.; Baltich, L.K.; Berggren, M.H.

    1987-05-18

    AMAX Research & Development Center (AMAX R&D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  19. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent. Volume 1, Bench-scale testing and analysis

    SciTech Connect (OSTI)

    Jha, M.C.; Berggren, M.H.

    1989-05-02

    AMAX Research & Development Center (AMAX R&D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  20. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent. Quarterly technical progress report 7, April--June 1988

    SciTech Connect (OSTI)

    Jha, M.C.; Berggren, M.H.

    1988-08-19

    AMAX Research & Development Center (AMAX R&D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  1. Elastic emission polishing

    SciTech Connect (OSTI)

    Loewenthal, M.; Loseke, K.; Dow, T.A.; Scattergood, R.O.

    1988-12-01

    Elastic emission polishing, also called elastic emission machining (EEM), is a process where a stream of abrasive slurry is used to remove material from a substrate and produce damage free surfaces with controlled surface form. It is a noncontacting method utilizing a thick elasto-hydrodynamic film formed between a soft rotating ball and the workpiece to control the flow of the abrasive. An apparatus was built in the Center, which consists of a stationary spindle, a two-axis table for the workpiece, and a pump to circulate the working fluid. The process is controlled by a programmable computer numerical controller (CNC), which presently can operate the spindle speed and movement of the workpiece in one axis only. This apparatus has been used to determine material removal rates on different material samples as a function of time, utilizing zirconium oxide (ZrO{sub 2}) particles suspended in distilled water as the working fluid. By continuing a study of removal rates the process should become predictable, and thus create a new, effective, yet simple tool for ultra-precision mechanical machining of surfaces.

  2. Partial oxidation power plant with reheating and method thereof

    DOE Patents [OSTI]

    Newby, R.A.; Yang, W.C.; Bannister, R.L.

    1999-08-10

    A system and method are disclosed for generating power having an air compression/partial oxidation system, a turbine, and a primary combustion system. The air compression/partial oxidation system receives a first air stream and a fuel stream and produces a first partially oxidized fuel stream and a first compressed air stream therefrom. The turbine expands the first partially oxidized fuel stream while being cooled by the first compressed air stream to produce a heated air stream. The heated air stream is injected into the expanding first partially oxidized fuel stream, thereby reheating it in the turbine. A second partially oxidized fuel stream is emitted from the turbine. The primary combustion system receives said second partially oxidized fuel stream and a second air stream, combusts said second partially oxidized fuel stream, and produces rotating shaft power and an emission stream therefrom. 2 figs.

  3. Partial oxidation power plant with reheating and method thereof

    DOE Patents [OSTI]

    Newby, Richard A. (Pittsburgh, PA); Yang, Wen-Ching (Export, PA); Bannister, Ronald L. (Winter Springs, FL)

    1999-01-01

    A system and method for generating power having an air compression/partial oxidation system, a turbine, and a primary combustion system. The air compression/partial oxidation system receives a first air stream and a fuel stream and produces a first partially oxidized fuel stream and a first compressed air stream therefrom. The turbine expands the first partially oxidized fuel stream while being cooled by the first compressed air stream to produce a heated air stream. The heated air stream is injected into the expanding first partially oxidized fuel stream, thereby reheating it in the turbine. A second partially oxidized fuel stream is emitted from the turbine. The primary combustion system receives said second partially oxidized fuel stream and a second air stream, combusts said second partially oxidized fuel stream, and produces rotating shaft power and an emission stream therefrom.

  4. Particulate emissions from commercial shipping: Chemical, physical, and optical properties

    E-Print Network [OSTI]

    regulation of fuel quality or pollution emissions; domestic fleets serve coastal shipping, resource products of fuel combustion from shipping (ranked on a mass basis) include nitrogen oxides (NOX), sulfurParticulate emissions from commercial shipping: Chemical, physical, and optical properties Daniel A

  5. Innovative Clean Coal Technology (ICCT). Demonstration of Selective Catalytic Reduction (SCR) technology for the control of Nitrogen Oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, third and fourth quarters 1995

    SciTech Connect (OSTI)

    1996-05-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese, and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor.

  6. Gas-phase study of the reactivity of optical coating materials with hydrocarbons by use of a desktop-size extreme-ultraviolet laser

    SciTech Connect (OSTI)

    Heinbuch, Scott; Rocca, Jorge J. [Department of Electrical and Computer Engineering, Colorado State University, 1320 Campus Delivery, Fort Collins, Colorado 80523-1320 (United States); National Science Foundation, Engineering Research Center for Extreme Ultraviolet Science and Technology, Colorado State University, 1320 Campus Delivery, Fort Collins, Colorado 80523-1320 (United States); Dong Feng; Bernstein, Elliot R. [National Science Foundation, Engineering Research Center for Extreme Ultraviolet Science and Technology, Colorado State University, 1320 Campus Delivery, Fort Collins, Colorado 80523-1320 (United States); Department of Chemistry, Colorado State University, 1872 Campus Delivery, Fort Collins, Colorado 80523-1872 (United States)

    2008-07-15

    The reactivity of prospective capping-layer extreme-ultraviolet (EUV) mirror materials with hydrocarbons is studied in the gas phase by use of mass spectroscopy of metal-oxide clusters. We report the results of chemistry studies for Si{sub m}, Ti{sub m}, Hf{sub m}, and Zr{sub m}O{sub n} metal-oxide clusters in which the reaction products were ionized with little or no fragmentation by 26.5 eV photons from a desktop-size 46.9 nm Ne-like Ar laser. Hf and Zr oxides are found to be much less reactive than Si or Ti oxides in the presence of EUV light. The results are relevant to the design of EUV mirror capping layers that are resistant to carbon contamination.

  7. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  8. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  9. The Control of NOx Emissions from Combustion and Incinerators 

    E-Print Network [OSTI]

    Heap, M. P.; Chen, S. L.; Seeker, W. R.; Pershing, D. W.

    1988-01-01

    staged combustion and reburning, for the control of nitrogen oxide emissions from coal fired combustors is most often limited by problems due to carbon burnout or flame impingement. This paper presents new data on the use of selective reducing agents.... The major focus has been on minimizing emissions of potentially toxic organics and trace metals. There is growing concern over emissions of NO x from these facilities as well. However, traditional NO x control technologies such as staged combustion...

  10. Properties of reactive oxygen species by quantum Monte Carlo

    SciTech Connect (OSTI)

    Zen, Andrea; Trout, Bernhardt L.; Guidoni, Leonardo

    2014-07-07

    The electronic properties of the oxygen molecule, in its singlet and triplet states, and of many small oxygen-containing radicals and anions have important roles in different fields of chemistry, biology, and atmospheric science. Nevertheless, the electronic structure of such species is a challenge for ab initio computational approaches because of the difficulties to correctly describe the statical and dynamical correlation effects in presence of one or more unpaired electrons. Only the highest-level quantum chemical approaches can yield reliable characterizations of their molecular properties, such as binding energies, equilibrium structures, molecular vibrations, charge distribution, and polarizabilities. In this work we use the variational Monte Carlo (VMC) and the lattice regularized Monte Carlo (LRDMC) methods to investigate the equilibrium geometries and molecular properties of oxygen and oxygen reactive species. Quantum Monte Carlo methods are used in combination with the Jastrow Antisymmetrized Geminal Power (JAGP) wave function ansatz, which has been recently shown to effectively describe the statical and dynamical correlation of different molecular systems. In particular, we have studied the oxygen molecule, the superoxide anion, the nitric oxide radical and anion, the hydroxyl and hydroperoxyl radicals and their corresponding anions, and the hydrotrioxyl radical. Overall, the methodology was able to correctly describe the geometrical and electronic properties of these systems, through compact but fully-optimised basis sets and with a computational cost which scales as N{sup 3} ? N{sup 4}, where N is the number of electrons. This work is therefore opening the way to the accurate study of the energetics and of the reactivity of large and complex oxygen species by first principles.

  11. Goldschmidt Conference Abstracts 2005 Mineral Surface Reactivity

    E-Print Network [OSTI]

    Sparks, Donald L.

    Goldschmidt Conference Abstracts 2005 Mineral Surface Reactivity A492 "Hydration" of rhyolitic of Tennessee, Knoxville, Tennessee 37996, USA 2 Chemical Sciences Division, MS 6110, P.O. Box 2008, Bldg. 4500S, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6110, USA 3 Chemical Sciences Division, MS

  12. Neutron Radiography Reactor Reactivity -- Focused Lessons Learned

    SciTech Connect (OSTI)

    Eric Woolstenhulme; Randal Damiana; Kenneth Schreck; Ann Marie Phillips; Dana Hewit

    2010-11-01

    As part of the Global Threat Reduction Initiative, the Neutron Radiography Reactor (NRAD) at the Idaho National Laboratory (INL) was converted from using highly enriched uranium (HEU) to low enriched uranium (LEU) fuel. After the conversion, NRAD resumed operations and is meeting operational requirements. Radiography image quality and the number of images that can be produced in a given time frame match pre-conversion capabilities. However, following the conversion, NRAD’s excess reactivity with the LEU fuel was less than it had been with the HEU fuel. Although some differences between model predictions and actual performance are to be expected, the lack of flexibility in NRAD’s safety documentation prevented adjusting the reactivity by adding more fuel, until the safety documentation could be modified. To aid future reactor conversions, a reactivity-focused Lessons Learned meeting was held. This report summarizes the findings of the lessons learned meeting and addresses specific questions posed by DOE regarding NRAD’s conversion and reactivity.

  13. Transportable Emissions Testing Laboratory for Alternative Vehicles Emissions Testing

    SciTech Connect (OSTI)

    Clark, Nigel

    2012-01-31

    The overall objective of this project was to perform research to quantify and improve the energy efficiency and the exhaust emissions reduction from advanced technology vehicles using clean, renewable and alternative fuels. Advanced vehicle and alternative fuel fleets were to be identified, and selected vehicles characterized for emissions and efficiency. Target vehicles were to include transit buses, school buses, vocational trucks, delivery trucks, and tractor-trailers. Gaseous species measured were to include carbon monoxide, carbon dioxide, oxides of nitrogen, hydrocarbons, and particulate matter. An objective was to characterize particulate matter more deeply than by mass. Accurate characterization of efficiency and emissions was to be accomplished using a state-of-the-art portable emissions measurement system and an accompanying chassis dynamometer available at West Virginia University. These two units, combined, are termed the Transportable Laboratory. An objective was to load the vehicles in a real-world fashion, using coast down data to establish rolling resistance and wind drag, and to apply the coast down data to the dynamometer control. Test schedules created from actual vehicle operation were to be employed, and a specific objective of the research was to assess the effect of choosing a test schedule which the subject vehicle either cannot follow or can substantially outperform. In addition the vehicle loading objective was to be met better with an improved flywheel system.

  14. Lamins as mediators of oxidative stress

    SciTech Connect (OSTI)

    Sieprath, Tom; Darwiche, Rabih; De Vos, Winnok H.

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer The nuclear lamina defines structural and functional properties of the cell nucleus. Black-Right-Pointing-Pointer Lamina dysfunction leads to a broad spectrum of laminopathies. Black-Right-Pointing-Pointer Recent data is reviewed connecting laminopathies to oxidative stress. Black-Right-Pointing-Pointer A framework is proposed to explain interactions between lamins and oxidative stress. -- Abstract: The nuclear lamina defines both structural and functional properties of the eukaryotic cell nucleus. Mutations in the LMNA gene, encoding A-type lamins, lead to a broad spectrum of diseases termed laminopathies. While different hypotheses have been postulated to explain disease development, there is still no unified view on the mechanistic basis of laminopathies. Recent observations indicate that laminopathies are often accompanied by altered levels of reactive oxygen species and a higher susceptibility to oxidative stress at the cellular level. In this review, we highlight the role of reactive oxygen species for cell function and disease development in the context of laminopathies and present a framework of non-exclusive mechanisms to explain the reciprocal interactions between a dysfunctional lamina and altered redox homeostasis.

  15. The effect of un-saturates on low-temperature oxidation of crude oil Sidqi A. Abu-Khamsin

    E-Print Network [OSTI]

    Abu-Khamsin, Sidqi

    The effect of un-saturates on low-temperature oxidation of crude oil Sidqi A. Abu-temperature oxidation (LTO) is a slow, mildly exothermic reaction, which is prompted whenever air contacts crude oil reactivity becomes necessary. LTO reactions of crude oil prevail at temperatures below 300 o C producing

  16. Anthropogenic emissions of NOx over China: Reconciling the difference of inverse modeling

    E-Print Network [OSTI]

    Boersma, Folkert

    Anthropogenic emissions of NOx over China: Reconciling the difference of inverse modeling results to estimate nitrogen oxides (NOx) emissions in China. Recently, the Global Ozone Monitoring Experiment-2 (GOME NOx emission estimates by applying previously developed monthly inversion (MI) or daily inversion (DI

  17. Synthesis and characterizations of graphene oxide and reduced graphene oxide nanosheets

    SciTech Connect (OSTI)

    Venkanna, M., E-mail: venkanna.pcu@gmail.com; Chakraborty, Amit K., E-mail: venkanna.pcu@gmail.com [Carbon Nanotechnology Laboratory, Department of Physics, National Institute of Technology Durgapur, M.G. Avenue, Durgapur - 713209 (India)

    2014-04-24

    Interest in graphene on its excellent mechanical, electrical, thermal and optical properties, it’s very high specific surface area, and our ability to influence these properties through chemical functionalization. Chemical reduction of graphene oxide is one of the main routes of preparation for large quantities of graphenes. Hydrazine hydrate used as reducing agent to prepare for the reduced graphene oxide (RGO). There are a number of methods for generating graphene and chemically modified graphene from natural graphite flakes, graphite derivative (such as graphite oxide) and graphite interaction compounds (i.e. expandable graphite). Here we review the use of colloidal suspensions of reduced graphene oxide (RGO) with large scalable, and is adaptable to a wide variety of applications. The graphene oxide (GO) and the reduced material (RGO) were characterized by XRD, UV-Vis spectroscopy, Thermo-gravimetric analysis (TGA), Raman spectroscopy and Field emission Scanning electron microscopy (FESEM) etc.

  18. Cell Comp't Thermal Reactivity & Improvements | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Comp't Thermal Reactivity & Improvements Cell Comp't Thermal Reactivity & Improvements Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on...

  19. Fluid-rock interaction: A reactive transport approach

    E-Print Network [OSTI]

    Steefel, C.

    2009-01-01

    to coupled mass transport and fluid-rock interaction in aof a reactive transport approach in fluid-rock interaction,reactive transport models for fluid-rock interaction. Case

  20. The effects of radient heat on pain reactivity 

    E-Print Network [OSTI]

    Kallina, Charles Frank

    1994-01-01

    Prior research has shown that an aversive event can produce either a decrease (hypoalgesia) or an increase in pain reactivity (hyperalgesia). The present study explores the impact of a suprathreshold exposure to radiant heat on pain reactivity. Rats...

  1. Waste Coal Fines Reburn for NOx and Mercury Emission Reduction

    SciTech Connect (OSTI)

    Stephen Johnson; Chetan Chothani; Bernard Breen

    2008-04-30

    Injection of coal-water slurries (CWS) made with both waste coal and bituminous coal was tested for enhanced reduction of NO{sub x} and Hg emissions at the AES Beaver Valley plant near Monaca, PA. Under this project, Breen Energy Solutions (BES) conducted field experiments on the these emission reduction technologies by mixing coal fines and/or pulverized coal, urea and water to form slurry, then injecting the slurry in the upper furnace region of a coal-fired boiler. The main focus of this project was use of waste coal fines as the carbon source; however, testing was also conducted using pulverized coal in conjunction with or instead of waste coal fines for conversion efficiency and economic comparisons. The host site for this research and development project was Unit No.2 at AES Beaver Valley cogeneration station. Unit No.2 is a 35 MW Babcock & Wilcox (B&W) front-wall fired boiler that burns eastern bituminous coal. It has low NO{sub x} burners, overfire air ports and a urea-based selective non-catalytic reduction (SNCR) system for NO{sub x} control. The back-end clean-up system includes a rotating mechanical ash particulate removal and electrostatic precipitator (ESP) and wet flue gas desulfurization (FGD) scrubber. Coal slurry injection was expected to help reduce NOx emissions in two ways: (1) Via fuel-lean reburning when the slurry is injected above the combustion zone. (2) Via enhanced SNCR reduction when urea is incorporated into the slurry. The mercury control process under research uses carbon/water slurry injection to produce reactive carbon in-situ in the upper furnace, promoting the oxidation of elemental mercury in flue gas from coal-fired power boilers. By controlling the water content of the slurry below the stoichiometric requirement for complete gasification, water activated carbon (WAC) can be generated in-situ in the upper furnace. As little as 1-2% coal/water slurry (heat input basis) can be injected and generate sufficient WAC for mercury capture. During July, August, and September 2007, BES designed, procured, installed, and tested the slurry injection system at Beaver Valley. Slurry production was performed by Penn State University using equipment that was moved from campus to the Beaver Valley site. Waste coal fines were procured from Headwaters Inc. and transported to the site in Super Sacks. In addition, bituminous coal was pulverized at Penn State and trucked to the site in 55-gallon drums. This system was operated for three weeks during August and September 2007. NO{sub x} emission data were obtained using the plant CEM system. Hg measurements were taken using EPA Method 30B (Sorbent Trap method) both downstream of the electrostatic precipitator and in the stack. Ohio Lumex Company was on site to provide rapid Hg analysis on the sorbent traps during the tests. Key results from these tests are: (1) Coal Fines reburn alone reduced NO{sub x} emissions by 0-10% with up to 4% heat input from the CWS. However, the NO{sub x} reduction was accompanied by higher CO emissions. The higher CO limited our ability to try higher reburn rates for further NO{sub x} reduction. (2) Coal Fines reburn with Urea (Carbon enhanced SNCR) decreased NO{sub x} emissions by an additional 30% compared to Urea injection only. (3) Coal slurry injection did not change Hg capture across the ESP at full load with an inlet temperature of 400-430 F. The Hg capture in the ESP averaged 40%, with or without slurry injection; low mercury particulate capture is normally expected across a higher temperature ESP because any oxidized mercury is thought to desorb from the particulate at ESP temperatures above 250 F. (4) Coal slurry injection with halogen salts added to the mixing tank increased the Hg capture in the ESP to 60%. This significant incremental mercury reduction is important to improved mercury capture with hot-side ESP operation and wherever hindrance from sulfur oxides limit mercury reduction, because the higher temperature is above sulfur oxide dew point interference.

  2. EIA - Greenhouse Gas Emissions - Methane Emissions

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    of U.S. methane emissions are energy production, distribution, and use; agriculture; and waste management (Figure 17). U.S. methane emissions in 2009 totaled 731 MMTCO2e, 0.9...

  3. Photoluminescence study in diaminobenzene functionalized graphene oxide

    SciTech Connect (OSTI)

    Gupta, Abhisek, E-mail: guptaabhisek017@gmail.com, E-mail: cnssks@iacs.res.in; Saha, Shyamal K., E-mail: guptaabhisek017@gmail.com, E-mail: cnssks@iacs.res.in [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2014-10-15

    Being an excellent electronic material graphene is a very poor candidate for optoelectronic applications. One of the major strategies to develop the optical property in GO is the functionalization of graphene oxide (GO). In the present work GO sheets are functionalized by o-phenylenediamine to achieve diaminobenzene functionalized GO composite (DAB-GO). Formation of DAB-GO composite is further characterized by FTIR, UV, Raman studies. Excellent photoluminescence is observed in DAB-GO composite via passivation of the surface reactive sites by ring-opening amination of epoxides of GO.

  4. Metal oxide membranes for gas separation

    DOE Patents [OSTI]

    Anderson, Marc A. (Madison, WI); Webster, Elizabeth T. (Madison, WI); Xu, Qunyin (Plainsboro, NJ)

    1994-01-01

    A method for permformation of a microporous ceramic membrane onto a porous support includes placing a colloidal suspension of metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane having mean pore sizes less than 30 Angstroms and useful for ultrafiltration, reverse osmosis, or gas separation.

  5. Metal oxide membranes for gas separation

    DOE Patents [OSTI]

    Anderson, M.A.; Webster, E.T.; Xu, Q.

    1994-08-30

    A method for formation of a microporous ceramic membrane onto a porous support includes placing a colloidal suspension of metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane having mean pore sizes less than 30 Angstroms and useful for ultrafiltration, reverse osmosis, or gas separation. 4 figs.

  6. Reactor vessel using metal oxide ceramic membranes

    DOE Patents [OSTI]

    Anderson, Marc A. (Madison, WI); Zeltner, Walter A. (Oregon, WI)

    1992-08-11

    A reaction vessel for use in photoelectrochemical reactions includes as its reactive surface a metal oxide porous ceramic membrane of a catalytic metal such as titanium. The reaction vessel includes a light source and a counter electrode. A provision for applying an electrical bias between the membrane and the counter electrode permits the Fermi levels of potential reaction to be favored so that certain reactions may be favored in the vessel. The electrical biasing is also useful for the cleaning of the catalytic membrane.

  7. Chemical Reactivity Testing for the National Spent Nuclear Fuel Program. Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Newsom, H.C.

    1999-01-24

    This quality assurance project plan (QAPjP) summarizes requirements used by Lockheed Martin Energy Systems, Incorporated (LMES) Development Division at Y-12 for conducting chemical reactivity testing of Department of Energy (DOE) owned spent nuclear fuel, sponsored by the National Spent Nuclear Fuel Program (NSNFP). The requirements are based on the NSNFP Statement of Work PRO-007 (Statement of Work for Laboratory Determination of Uranium Hydride Oxidation Reaction Kinetics.) This QAPjP will utilize the quality assurance program at Y-12, QA-101PD, revision 1, and existing implementing procedures for the most part in meeting the NSNFP Statement of Work PRO-007 requirements, exceptions will be noted.

  8. Optimization of Reactive Power based on Newton-Raphson algorithm

    E-Print Network [OSTI]

    Lavaei, Javad

    the reactive power optimization procedures. Introduction In modern power system transmission technology, reactive power optimization is so important that it has direct influence on the high quality and stable transmitting electrical energy. The first part of the article describes the importance of the reactive power

  9. Interdependence of tetrapyrrole metabolism, the generation of oxidative stress and the mitigative oxidative stress response

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Busch, Andrea W.U.; Montgomery, Beronda L.

    2015-04-01

    Tetrapyrroles are involved in light harvesting and light perception, electron-transfer reactions, and as co-factors for key enzymes and sensory proteins. Under conditions in which cells exhibit stress-induced imbalances of photosynthetic reactions, or light absorption exceeds the ability of the cell to use photoexcitation energy in synthesis reactions, redox imbalance can occur in photosynthetic cells. Such conditions can lead to the generation of reactive oxygen species (ROS) associated with alterations in tetrapyrrole homeostasis. ROS accumulation can result in cellular damage and detrimental effects on organismal fitness, or ROS molecules can serve as signals to induce a protective or damage-mitigating oxidative stressmore »signaling response in cells. Induced oxidative stress responses include tetrapyrrole-dependent and -independent mechanisms for mitigating ROS generation and/or accumulation. Thus, tetrapyrroles can be contributors to oxidative stress, but are also essential in the oxidative stress response to protect cells by contributing to detoxification of ROS. In this review, we highlight the interconnection and interdependence of tetrapyrrole metabolism with the occurrence of oxidative stress and protective oxidative stress signaling responses in photosynthetic organisms.« less

  10. Reactivity of amine antioxidants relative to OH and anti e

    SciTech Connect (OSTI)

    Minkhadzhidinova, D.R.; Nikiforov, G.A.; Khrapova, N.G.; Sharpatyi, V.A.

    1986-06-20

    An ESR study was carried out on the reactivity of various types of amines relative to OH/sup ./ and anti e. The selection of these compounds having anti-oxidant properties was also based on the circumstance that amine molecules contain a set of functional groups which may be potential sites for the attack of both OH and anti e radicals. A sample of 6 M H/sub 3/PO/sub 4/ was used for the matrix solutions and forms a glass upon rapid insertion into liquid nitrogen. The phosphoric acid solutions of these compounds taken in concentrations from 0.025 to 0.05 M were flushed with argon to remove oxygen. Ampules containing the solutions were inserted into liquid nitrogen and irradiated from a cobalt source. The ESR spectra of the irradiated solutions clearly show the components of the atomic hydrogen doublet with a = 50 mT and of H/sub 2/PO/sub 4//sup ./ radicals in the central region of the spectrum.

  11. Nuclear reactivity control using laser induced polarization

    DOE Patents [OSTI]

    Bowman, Charles D. (Los Alamos, NM)

    1990-01-01

    A control element for reactivity control of a fission source provides an atomic density of .sup.3 He in a control volume which is effective to control criticality as the .sup.3 He is spin-polarized. Spin-polarization of the .sup.3 He affects the cross section of the control volume for fission neturons and hence, the reactivity. An irradiation source is directed within the .sup.3 He for spin-polarizing the .sup.3 He. An alkali-metal vapor may be included with the .sup.3 He where a laser spin-polarizes the alkali-metal atoms which in turn, spin-couple with .sup.3 He to spin-polarize the .sup.3 He atoms.

  12. Nuclear reactivity control using laser induced polarization

    DOE Patents [OSTI]

    Bowman, Charles D. (Los Alamos, NM)

    1991-01-01

    A control element for reactivity control of a fission source provides an atomic density of .sup.3 He in a control volume which is effective to control criticality as the .sup.3 He is spin-polarized. Spin-polarization of the .sup.3 He affects the cross section of the control volume for fission neutrons and hence, the reactivity. An irradiation source is directed within the .sup.3 He for spin-polarizing the .sup.3 He. An alkali-metal vapor may be included with the .sup.3 He where a laser spin-polarizes the alkali-metal atoms which in turn, spin-couple with .sup.3 He to spin-polarize the .sup.3 He atoms.

  13. Reactivity control assembly for nuclear reactor. [LMFBR

    DOE Patents [OSTI]

    Bollinger, L.R.

    1982-03-17

    This invention, which resulted from a contact with the United States Department of Energy, relates to a control mechanism for a nuclear reactor and, more particularly, to an assembly for selectively shifting different numbers of reactivity modifying rods into and out of the core of a nuclear reactor. It has been proposed heretofore to control the reactivity of a breeder reactor by varying the depth of insertion of control rods (e.g., rods containing a fertile material such as ThO/sub 2/) in the core of the reactor, thereby varying the amount of neutron-thermalizing coolant and the amount of neutron-capturing material in the core. This invention relates to a mechanism which can advantageously be used in this type of reactor control system.

  14. Comparative Informatics Analysis to Evaluate Site-Specific Protein Oxidation in Multidimensional LC-MS/MS Data

    SciTech Connect (OSTI)

    McClintock, Carlee; Parks, Jerry M; Bern, Marshall; Ghattyvenkatakrishna, Pavan K; Hettich, Robert {Bob} L

    2013-01-01

    Redox proteomics has yielded molecular insight into diseases of protein dysfunction attributable to oxidative stress, underscoring the need for robust detection of protein oxidation products. Additionally, oxidative protein surface mapping techniques utilize hydroxyl radicals to gain structural insight about solvent exposure. Interpretation of tandem mass spectral data is a critical challenge for such investigations, because reactive oxygen species target a wide breadth of amino acids. Additionally, oxidized peptides may be generated in a wide range of abundances since the reactivity of hydroxyl radicals with different amino acids spans three orders of magnitude. Taken together, these attributes of oxidative footprinting pose both experimental and computational challenges to detecting oxidized peptides that are naturally less abundant than their unoxidized counterparts. In this study, three model proteins were oxidized electrochemically and analyzed at both the intact protein and peptide levels. A multidimensional chromatographic strategy was utilized to expand the dynamic range of oxidized peptides measurements. Peptide mass spectral data were searched by the hybrid software packages Inspect and Byonic, which incorporate de novo elements of spectral interpretation into a database search. This dynamic search capacity accommodates the challenge of searching for more than forty oxidative mass shifts that can occur in a staggering variety of possible combinatorial occurrences. A prevailing set of oxidized residues was identified with this comparative approach, and evaluation of these sites was informed by solvent accessible surface area gleaned through molecular dynamics simulations. Along with increased levels of oxidation around highly reactive hotspot sites as expected, the enhanced sensitivity of these measurements uncovered a surprising level of oxidation on less reactive residues.

  15. Innovative Clean Coal Technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, third and fourth quarters 1994

    SciTech Connect (OSTI)

    1995-11-01

    The objective of this project is to demonstrate and evaluate commercially available selective catalytic reduction (SCR) catalysts from U.S., Japanese, and European catalyst suppliers on a high-sulfur U.S. Coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to form nitrogen and water vapor. Although SCR is widely practiced in Japan and European gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; performance of a wide variety of SCR catalyst compositions, geometries, and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small- scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. The demonstration is being performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida. The project is funded by the U.S. Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), the Electric Power Research Institute (EPRI), and Ontario Hydro. SCS is the participant responsible for managing al aspects of this project. 1 ref., 69 figs., 45 tabs.

  16. STATUS OF DIAMOND SECONDARY EMISSION ENHANCED PHOTOCATHODE

    SciTech Connect (OSTI)

    RAO,T.; BEN-ZVI, I.; CHANG, X.; GRIMES, J.; GROVER, R.; ISAKOVIC, A.; SMEDLEY, J.; TODD, R.; WARREN, J.; WU, Q.

    2007-05-25

    The diamond secondary emission enhanced photocathode (SEEP) provides an attractive alternative for simple photo cathodes in high average current electron injectors. It reduces the laser power required to drive the cathode, simultaneously isolating the cathode and the FW cavity from each other, thereby protecting them from contamination and increasing their life time. In this paper, we present the latest results on the secondary electron yield using pulsed thermionic and photo cathodes as primary electron sources, shaping the diamond using laser ablation and reactive ion etching as well as the theoretical underpinning of secondary electron generation and preliminary results of modeling.

  17. Reactor process using metal oxide ceramic membranes

    DOE Patents [OSTI]

    Anderson, M.A.

    1994-05-03

    A reaction vessel for use in photoelectrochemical reactions includes as its reactive surface a metal oxide porous ceramic membrane of a catalytic metal such as titanium. The reaction vessel includes a light source and a counter electrode. A provision for applying an electrical bias between the membrane and the counter electrode permits the Fermi levels of potential reaction to be favored so that certain reactions may be favored in the vessel. The electrical biasing is also useful for the cleaning of the catalytic membrane. Also disclosed is a method regenerating a porous metal oxide ceramic membrane used in a photoelectrochemical catalytic process by periodically removing the reactants and regenerating the membrane using a variety of chemical, thermal, and electrical techniques. 2 figures.

  18. Reactor process using metal oxide ceramic membranes

    DOE Patents [OSTI]

    Anderson, Marc A. (Madison, WI)

    1994-01-01

    A reaction vessel for use in photoelectrochemical reactions includes as its reactive surface a metal oxide porous ceramic membrane of a catalytic metal such as titanium. The reaction vessel includes a light source and a counter electrode. A provision for applying an electrical bias between the membrane and the counter electrode permits the Fermi levels of potential reaction to be favored so that certain reactions may be favored in the vessel. The electrical biasing is also useful for the cleaning of the catalytic membrane. Also disclosed is a method regenerating a porous metal oxide ceramic membrane used in a photoelectrochemical catalytic process by periodically removing the reactants and regenerating the membrane using a variety of chemical, thermal, and electrical techniques.

  19. Fracture toughness for copper oxide superconductors

    DOE Patents [OSTI]

    Goretta, Kenneth C. (Downers Grove, IL); Kullberg, Marc L. (Lisle, IL)

    1993-01-01

    An oxide-based strengthening and toughening agent, such as tetragonal Zro.sub.2 particles, has been added to copper oxide superconductors, such as superconducting YBa.sub.2 Cu.sub.3 O.sub.x (123) to improve its fracture toughness (K.sub.IC). A sol-gel coating which is non-reactive with the superconductor, such as Y.sub.2 BaCuO.sub.5 (211) on the ZrO.sub.2 particles minimized the deleterious reactions between the superconductor and the toughening agent dispersed therethrough. Addition of 20 mole percent ZrO.sub.2 coated with 211 yielded a 123 composite with a K.sub.IC of 4.5 MPa(m).sup.0.5.

  20. Fracture toughness for copper oxide superconductors

    DOE Patents [OSTI]

    Goretta, K.C.; Kullberg, M.L.

    1993-04-13

    An oxide-based strengthening and toughening agent, such as tetragonal ZrO[sub 2] particles, has been added to copper oxide superconductors, such as superconducting YBa[sub 2]Cu[sub 3]O[sub x] (123) to improve its fracture toughness (K[sub IC]). A sol-gel coating which is non-reactive with the superconductor, such as Y[sub 2]BaCuO[sub 5] (211) on the ZrO[sub 2] particles minimized the deleterious reactions between the superconductor and the toughening agent dispersed therethrough. Addition of 20 mole percent ZrO[sub 2] coated with 211 yielded a 123 composite with a K[sub IC] of 4.5 MPa(m)[sup 0.5].

  1. Structural and thermal properties of nanocrystalline CuO synthesized by reactive magnetron sputtering

    SciTech Connect (OSTI)

    Verma, M.; Gupta, V. K.; Gautam, Y. K.; Dave, V.; Chandra, R.

    2014-01-28

    Recent research has shown immense application of metal oxides like CuO, MgO, CaO, Al{sub 2}O{sub 3}, etc. in different areas which includes chemical warfare agents, medical drugs, magnetic storage media and solar energy transformation. Among the metal oxides, CuO nanoparticles are of special interest because of their excellent gas sensing and catalytic properties. In this paper we report structural and thermal properties of CuO synthesized by reactive magnetron DC sputtering. The synthesized nanoparticles were characterized by X-ray diffractometer. The XRD result reveals that as DC power increased from 30W to 80W, size of the CuO nanoparticles increased. The same results have been verified through TEM analysis. Thermal properties of these particles were studied using thermogravimetry.

  2. Drop Dynamics and Speciation in Isolation of Metals from Liquid Wastes by Reactive Scavenging

    SciTech Connect (OSTI)

    Arne J. Pearlstein; Alexander Scheeline

    2002-08-30

    Computational and experimental studies of the motion and dynamics of liquid drops in gas flows were conducted with relevance to reactive scavenging of metals from atomized liquid waste. Navier-Stoke's computations of deformable drops revealed a range of conditions from which prolate drops are expected, and showed how frajectiones of deformable drops undergoing deceleration can be computed. Experimental work focused on development of emission fluorescence, and scattering diagnostics. The instrument developed was used to image drop shapes, soot, and nonaxisymmetric departures from steady flow in a 22kw combustor

  3. Photo-oxidation catalysts

    DOE Patents [OSTI]

    Pitts, J. Roland (Lakewood, CO); Liu, Ping (Irvine, CA); Smith, R. Davis (Golden, CO)

    2009-07-14

    Photo-oxidation catalysts and methods for cleaning a metal-based catalyst are disclosed. An exemplary catalyst system implementing a photo-oxidation catalyst may comprise a metal-based catalyst, and a photo-oxidation catalyst for cleaning the metal-based catalyst in the presence of light. The exposure to light enables the photo-oxidation catalyst to substantially oxidize absorbed contaminants and reduce accumulation of the contaminants on the metal-based catalyst. Applications are also disclosed.

  4. Apparatus and method for oxidation and stabilization of polymeric materials

    DOE Patents [OSTI]

    Paulauskas, Felix L. (Knoxville, TN) [Knoxville, TN; White, Terry L. (Knoxville, TN) [Knoxville, TN; Sherman, Daniel M. (Knoxville, TN) [Knoxville, TN

    2009-05-19

    An apparatus for treating polymeric materials comprises a treatment chamber adapted to maintain a selected atmosphere; a means for supporting the polymeric material within the chamber; and, a source of plasma-derived gas containing at least one reactive oxidative species whereby the polymer is stabilized and cross linked through exposure to the oxidative species in the chamber at a selected temperature. The polymer may be directly exposed to the plasma, or alternatively, the plasma may be established in a separate volume from which the reactive species may be extracted and introduced into the vicinity of the polymer. The apparatus may be configured for either batch-type or continuous-type processing. The apparatus and method are especially useful for preparing polymer fibers, particularly PAN fibers, for later carbonization treatments.

  5. Apparatus and method for oxidation and stabilization of polymeric materials

    DOE Patents [OSTI]

    Paulauskas, Felix L. (Knoxville, TN) [Knoxville, TN; White, Terry L. (Knoxville, TN) [Knoxville, TN; Sherman, Daniel M. (Knoxville, TN) [Knoxville, TN

    2010-08-31

    An apparatus for treating polymeric materials comprises a treatment chamber adapted to maintain a selected atmosphere; a means for supporting the polymeric material within the chamber; and, a source of plasma-derived gas containing at least one reactive oxidative species whereby the polymer is stabilized and cross linked through exposure to the oxidative species in the chamber at a selected temperature. The polymer may be directly exposed to the plasma, or alternatively, the plasma may be established in a separate volume from which the reactive species may be extracted and introduced into the vicinity of the polymer. The apparatus may be configured for either batch-type or continuous-type processing. The apparatus and method are especially useful for preparing polymer fibers, particularly PAN fibers, for later carbonization treatments.

  6. Fuel Sulfur Effects on a Medium-Duty Diesel Pick-Up with a NOx Adsorber, Diesel Particle Filter Emissions Control System: 2000-Hour Aging Results

    SciTech Connect (OSTI)

    Thornton, M.; Webb, C. C.; Weber, P. A.; Orban, J.; Slone, E.

    2006-05-01

    Discusses the emission results of a nitrogen oxide adsorber catalyst and a diesel particle filter in a medium-duty, diesel pick-up truck.

  7. Durable zinc oxide-containing sorbents for coal gas desulfurization

    DOE Patents [OSTI]

    Siriwardane, Ranjani V. (Morgantown, WV)

    1996-01-01

    Durable zinc-oxide containing sorbent pellets for removing hydrogen sulfide from a gas stream at an elevated temperature are made up to contain titania as a diluent, high-surface-area silica gel, and a binder. These materials are mixed, moistened, and formed into pellets, which are then dried and calcined. The resulting pellets undergo repeated cycles of sulfidation and regeneration without loss of reactivity and without mechanical degradation. Regeneration of the pellets is carried out by contacting the bed with an oxidizing gas mixture.

  8. Vehicle Emissions Review- 2012

    Broader source: Energy.gov [DOE]

    Reviews vehicle emission control highlighting representative studies that illustrate the state-of-the-art

  9. Multiwavelength Thermal Emission

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Multiwavelength Astronomy NASA #12;Thermal Emission #12;Thermal Emission Non-thermal p-p collisions Optical IR Radio/ Microwave sources of emission massive stars, WHIM, Ly many dust, cool objects-ray ~GeV Gamma-ray ~TeV sources of emission AGN, clusters, SNR, binaries, stars AGN (obscured), shocks

  10. Diesel Emission Control Review

    Broader source: Energy.gov [DOE]

    Reviews regulatory requirements and technology approaches for diesel emission control for heavy and light duty applications

  11. Nanocrystalline films for gas-reactive applications

    DOE Patents [OSTI]

    Eastman, Jeffrey A.; Thompson, Loren J.

    2004-02-17

    A gas sensor for detection of oxidizing and reducing gases, including O.sub.2, CO.sub.2, CO, and H.sub.2, monitors the partial pressure of a gas to be detected by measuring the temperature rise of an oxide-thin-film-coated metallic line in response to an applied electrical current. For a fixed input power, the temperature rise of the metallic line is inversely proportional to the thermal conductivity of the oxide coating. The oxide coating contains multi-valent cation species that change their valence, and hence the oxygen stoichiometry of the coating, in response to changes in the partial pressure of the detected gas. Since the thermal conductivity of the coating is dependent on its oxygen stoichiometry, the temperature rise of the metallic line depends on the partial pressure of the detected gas. Nanocrystalline (<100 nm grain size) oxide coatings yield faster sensor response times than conventional larger-grained coatings due to faster oxygen diffusion along grain boundaries rather than through grain interiors.

  12. Phase Discrimination through Oxidant Selection for Iron Oxide...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phase Discrimination through Oxidant Selection for Iron Oxide Ultrathin Films Home > Research > ANSER Research Highlights > Phase Discrimination through Oxidant Selection for Iron...

  13. Cerium Oxide Coating for Oxidation Reduction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Award In order to produce power more efficiently and cleanly, the next generation of power plant boilers, turbines, solid oxide fuel cells (SOFCs) and other essential equipment...

  14. Synergetic effects of mixed copper-iron oxides oxygen carriers in chemical looping combustion

    SciTech Connect (OSTI)

    Siriwardane, Ranjani; Tian, Hanjing; Simonyi, Thomas; Poston, James

    2013-06-01

    Chemical looping combustion (CLC) is an emerging technology for clean energy production from fuels. CLC produces sequestration-ready CO{sub 2}-streams without a significant energy penalty. Development of efficient oxygen carriers is essential to successfully operate a CLC system. Copper and iron oxides are promising candidates for CLC. Copper oxide possesses high reactivity but it has issues with particle agglomeration due to its low melting point. Even though iron oxide is an inexpensive oxygen carrier it has a slower reactivity. In this study, mixed metal oxide carriers containing iron and copper oxides were evaluated for coal and methane CLC. The components of CuO and Fe{sub 2}O{sub 3} were optimized to obtain good reactivity while maintaining physical and chemical stability during cyclic reactions for methane-CLC and solid-fuel CLC. Compared with single metal oxygen carriers, the optimized Cu–Fe mixed oxide oxygen carriers demonstrated high reaction rate, better combustion conversion, greater oxygen usage and improved physical stability. Thermodynamic calculations, XRD, TGA, flow reactor studies and TPR experiments suggested that there is a strong interaction between CuO and Fe{sub 2}O{sub 3} contributing to a synergistic effect during CLC reactions. The amount of oxygen release of the mixed oxide carrier in the absence of a fuel was similar to that of the single metal oxides. However, in the presence of fuels, the oxygen consumption and the reaction profiles of the mixed oxide carriers were significantly better than that of the single metal oxides. The nature of the fuel not only influenced the reactivity, but also the final reduction status of the oxygen carriers during chemical looping combustion. Cu oxide of the mixed oxide was fully reduced metallic copper with both coal and methane. Fe oxide of the mixed oxide was fully reduced Fe metal with methane but it was reduced to only FeO with coal. Possible mechanisms of how the presence of CuO enhances the reduction of Fe{sub 2}O{sub 3} are discussed.

  15. Thermal stability and adhesion of low-emissivity electroplated Au coatings.

    SciTech Connect (OSTI)

    Jorenby, Jeff W.; Hachman, John T., Jr.; Yang, Nancy Y. C.; Chames, Jeffrey M.; Clift, W. Miles

    2010-12-01

    We are developing a low-emissivity thermal management coating system to minimize radiative heat losses under a high-vacuum environment. Good adhesion, low outgassing, and good thermal stability of the coating material are essential elements for a long-life, reliable thermal management device. The system of electroplated Au coating on the adhesion-enhancing Wood's Ni strike and 304L substrate was selected due to its low emissivity and low surface chemical reactivity. The physical and chemical properties, interface bonding, thermal aging, and compatibility of the above Au/Ni/304L system were examined extensively. The study shows that the as-plated electroplated Au and Ni samples contain submicron columnar grains, stringers of nanopores, and/or H{sub 2} gas bubbles, as expected. The grain structure of Au and Ni are thermally stable up to 250 C for 63 days. The interface bonding is strong, which can be attributed to good mechanical locking among the Au, the 304L, and the porous Ni strike. However, thermal instability of the nanopore structure (i.e., pore coalescence and coarsening due to vacancy and/or entrapped gaseous phase diffusion) and Ni diffusion were observed. In addition, the study also found that prebaking 304L in the furnace at {ge} 1 x 10{sup -4} Torr promotes surface Cr-oxides on the 304L surface, which reduces the effectiveness of the intended H-removal. The extent of the pore coalescence and coarsening and their effect on the long-term system integrity and outgassing are yet to be understood. Mitigating system outgassing and improving Au adhesion require a further understanding of the process-structure-system performance relationships within the electroplated Au/Ni/304L system.

  16. Oxidation of advanced steam turbine alloys

    SciTech Connect (OSTI)

    Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.

    2006-03-01

    Advanced or ultra supercritical (USC) steam power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.

  17. Oxidation of alloys for advanced steam turbines

    SciTech Connect (OSTI)

    Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Ziomek-Moroz, M.; Alman, David E.

    2005-01-01

    Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.

  18. Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model

    SciTech Connect (OSTI)

    Greenblatt, Jeffery B.

    2013-10-10

    A California Greenhouse Gas Inventory Spreadsheet (GHGIS) model was developed to explore the impact of combinations of state policies on state greenhouse gas (GHG) and regional criteria pollutant emissions. The model included representations of all GHG- emitting sectors of the California economy (including those outside the energy sector, such as high global warming potential gases, waste treatment, agriculture and forestry) in varying degrees of detail, and was carefully calibrated using available data and projections from multiple state agencies and other sources. Starting from basic drivers such as population, numbers of households, gross state product, numbers of vehicles, etc., the model calculated energy demands by type (various types of liquid and gaseous hydrocarbon fuels, electricity and hydrogen), and finally calculated emissions of GHGs and three criteria pollutants: reactive organic gases (ROG), nitrogen oxides (NOx), and fine (2.5 ?m) particulate matter (PM2.5). Calculations were generally statewide, but in some sectors, criteria pollutants were also calculated for two regional air basins: the South Coast Air Basin (SCAB) and the San Joaquin Valley (SJV). Three scenarios were developed that attempt to model: (1) all committed policies, (2) additional, uncommitted policy targets and (3) potential technology and market futures. Each scenario received extensive input from state energy planning agencies, in particular the California Air Resources Board. Results indicate that all three scenarios are able to meet the 2020 statewide GHG targets, and by 2030, statewide GHG emissions range from between 208 and 396 MtCO2/yr. However, none of the scenarios are able to meet the 2050 GHG target of 85 MtCO2/yr, with emissions ranging from 188 to 444 MtCO2/yr, so additional policies will need to be developed for California to meet this stringent future target. A full sensitivity study of major scenario assumptions was also performed. In terms of criteria pollutants, targets were less well-defined, but while all three scenarios were able to make significant reductions in ROG, NOx and PM2.5 both statewide and in the two regional air basins, they may nonetheless fall short of what will be required by future federal standards. Specifically, in Scenario 1, regional NOx emissions are approximately three times the estimated targets for both 2023 and 2032, and in Scenarios 2 and 3, NOx emissions are approximately twice the estimated targets. Further work is required in this area, including detailed regional air quality modeling, in order to determine likely pathways for attaining these stringent targets.

  19. Overview on backfill materials and permeable reactive barriers for nuclear waste disposal facilities.

    SciTech Connect (OSTI)

    Moore, Robert Charles; Hasan, Ahmed Ali Mohamed; Holt, Kathleen Caroline; Hasan, Mahmoud A. (Egyptian Atomic Energy Authority, Cairo, Egypt)

    2003-10-01

    A great deal of money and effort has been spent on environmental restoration during the past several decades. Significant progress has been made on improving air quality, cleaning up and preventing leaching from dumps and landfills, and improving surface water quality. However, significant challenges still exist in all of these areas. Among the more difficult and expensive environmental problems, and often the primary factor limiting closure of contaminated sites following surface restoration, is contamination of ground water. The most common technology used for remediating ground water is surface treatment where the water is pumped to the surface, treated and pumped back into the ground or released at a nearby river or lake. Although still useful for certain remediation scenarios, the limitations of pump-and-treat technologies have recently been recognized, along with the need for innovative solutions to ground-water contamination. Even with the current challenges we face there is a strong need to create geological repository systems for dispose of radioactive wastes containing long-lived radionuclides. The potential contamination of groundwater is a major factor in selection of a radioactive waste disposal site, design of the facility, future scenarios such as human intrusion into the repository and possible need for retrieving the radioactive material, and the use of backfills designed to keep the radionuclides immobile. One of the most promising technologies for remediation of contaminated sites and design of radioactive waste repositories is the use of permeable reactive barriers (PRBs). PRBs are constructed of reactive material(s) to intercept and remove the radionuclides from the water and decontaminate the plumes in situ. The concept of PRBs is relatively simple. The reactive material(s) is placed in the subsurface between the waste or contaminated area and the groundwater. Reactive materials used thus far in practice and research include zero valent iron, hydroxyapatite, magnesium oxide, and others. As the contaminant moves through the reactive material, the contaminant is either sorbed by the reactive material or chemically reacts with the material to form a less harmful substance. Because of the high risk associated with failure of a geological repository for nuclear waste, most nations favor a near-field multibarrier engineered system using backfill materials to prevent release of radionuclides into the surrounding groundwater.

  20. Potential for reactive pulsed-dc magnetron sputtering of nanocomposite VO{sub x} microbolometer thin films

    SciTech Connect (OSTI)

    Jin, Yao O., E-mail: yoj5055@psu.edu; Ozcelik, Adem; Horn, Mark W. [Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Jackson, Thomas N. [Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2014-11-01

    Vanadium oxide (VO{sub x}) thin films were deposited by reactive pulsed-dc sputtering a metallic vanadium target in argon/oxygen mixtures with substrate bias. Hysteretic oxidation of the vanadium target surface was assessed by measuring the average cathode current during deposition. Nonuniform oxidization of the target surface was analyzed by Raman spectroscopy. The VO{sub x} film deposition rate, resistivity, and temperature coefficient of resistance were correlated to oxygen to argon ratio, processing pressure, target-to-substrate distance, and oxygen inlet positions. To deposit VO{sub x} in the resistivity range of 0.1–10 ?-cm with good uniformity and process control, lower processing pressure, larger target-to-substrate distance, and oxygen inlet near the substrate are useful.

  1. Acetone sensor based on zinc oxide hexagonal tubes

    SciTech Connect (OSTI)

    Hastir, Anita, E-mail: anitahastir@gmail.com; Singh, Onkar, E-mail: anitahastir@gmail.com; Anand, Kanika, E-mail: anitahastir@gmail.com; Singh, Ravi Chand, E-mail: anitahastir@gmail.com [Department of Physics, Guru Nanak Dev University, Amritsar-143005, Punjab (India)

    2014-04-24

    In this work hexagonal tubes of zinc oxide have been synthesized by co-precipitation method. For structural, morphological, elemental and optical analysis synthesized powders were characterized by using x-ray diffraction, field emission scanning microscope, EDX, UV-visible and FTIR techniques. For acetone sensing thick films of zinc oxide have been deposited on alumina substrate. The fabricated sensors exhibited maximum sensing response towards acetone vapour at an optimum operating temperature of 400°C.

  2. Reactive Spreading of a Lead-Free Solder on Alumina

    E-Print Network [OSTI]

    Gremillard, L.; Saiz, E.; Radmilovic, V.R.; Tomsia, A.P.

    2008-01-01

    below 550°C, a solid oxide layer encapsulates the liquidoxidation of tin, a tin oxide layer around the metallic dropto the formation of an oxide layer encapsulating the metal.

  3. Air-pollutant emissions from kerosene space heaters

    SciTech Connect (OSTI)

    Leaderer, B.P.

    1982-12-10

    Air pollutant emissions from portable convective and radiant kerosene space heaters were measured in an environmental chamber. Emission factors for nitrogen oxides, sulfur dioxide, carbon monoxide, carbon dioxide, and oxygen depletion are presented. The data suggest that the use of such heaters in residences can result in exposures to air pollutants in excess of ambient air quality standards and in some cases in excess of occupational health standards.

  4. Edge-emission electroluminescence study of as-grown vertical-cavity surface-emitting laser structures

    E-Print Network [OSTI]

    Ghosh, Sandip

    Edge-emission electroluminescence study of as-grown vertical-cavity surface-emitting laser 22 April 2000 We report polarized edge- and front-emission electroluminescence studies on red on pieces of as-grown wafers using indium­tin­oxide-coated glass electrodes. The front-emission spectra

  5. North American influence on tropospheric ozone and the effects of recent emission reductions: Constraints from ICARTT observations

    E-Print Network [OSTI]

    Goldstein, Allen

    s, possibly reflecting the decrease in the NOx/CO emission ratio as well as an increase in the ozone production efficiency per unit NOx. North American NOx emissions during summer 2004 as constrained organic compounds (NMVOCs) in the presence of nitrogen oxides (NOx = NO + NO2). Anthropogenic emissions

  6. A global comparison of carbon monoxide profiles and column amounts from Tropospheric Emission Spectrometer (TES)

    E-Print Network [OSTI]

    and anthropogenic incomplete combustion processes. In the presence of nitrogen oxides, carbon monoxide (COA global comparison of carbon monoxide profiles and column amounts from Tropospheric Emission compare carbon monoxide (CO) products from the Measurements of Pollution in the Troposphere (MOPITT

  7. Global and regional emissions estimates for N[subscript 2]O

    E-Print Network [OSTI]

    Dlugokencky, E.

    We present a comprehensive estimate of nitrous oxide (N[subscript 2]O) emissions using observations and models from 1995 to 2008. High-frequency records of tropospheric N[subscript 2]O are available from measurements at ...

  8. BP's Perspective on Emissions Purdue Emissions Trading Workshop

    E-Print Network [OSTI]

    BP's Perspective on Emissions Trading Purdue Emissions Trading Workshop April 30, 2010 Mark - Government policies can create a carbon price via three primary mechanisms: - Emissions trading (BP's strong

  9. Experimental Evidence for Self-Limiting Reactive Flow through...

    Office of Scientific and Technical Information (OSTI)

    Experimental Evidence for Self-Limiting Reactive Flow through a Fractured Cement Core: Implications for Time-Dependent Wellbore Leakage Citation Details In-Document Search Title:...

  10. Characterization and Surface Reactivity of Ferrihydrite Nanoparticles Assembled in Ferritin

    E-Print Network [OSTI]

    Sparks, Donald L.

    Characterization and Surface Reactivity of Ferrihydrite Nanoparticles Assembled in Ferritin Gang of the nanoparticles were characterized by AFM and STM. Scanning tunneling spectroscopy (STS) measurements suggested

  11. PFLOTRAN User Manual: A Massively Parallel Reactive Flow and...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: PFLOTRAN User Manual: A Massively Parallel Reactive Flow and Transport Model for Describing Surface and Subsurface Processes Citation Details In-Document Search...

  12. PFLOTRAN User Manual: A Massively Parallel Reactive Flow and...

    Office of Scientific and Technical Information (OSTI)

    PFLOTRAN User Manual: A Massively Parallel Reactive Flow and Transport Model for Describing Surface and Subsurface Processes Lichtner, Peter OFM Research; Karra, Satish Los...

  13. Chemical Imaging and Dynamical Studies of Reactivity and Emergent...

    Office of Scientific and Technical Information (OSTI)

    uses of chemical imaging, and the development of advanced reactivity concepts in combustion and catalysis including carbon management. These activities directly benefitted...

  14. Airborne measurement of OH reactivity during INTEX-B

    E-Print Network [OSTI]

    2009-01-01

    plus OH sign), reactiv- propane ing different gases gases atisoprene (plus sign), propane (star) and propene (triangle).NMHC includes ethane, ethene, propane, propene, i-butane, n-

  15. Reactive Dehydration technology for Production of Fuels and Chemicals...

    Broader source: Energy.gov (indexed) [DOE]

    Catalytic and Reactive Distillation) for compact, inexpensive production of biomass-based chemicals from complex aqueous mixtures. SeparationPurification of Biomass...

  16. PARAMETRIC STUDY ON THE WATER CONTENT PROFILES AND OXIDATION RATES IN NEARLY SATURATED TAILINGS ABOVE THE

    E-Print Network [OSTI]

    Aubertin, Michel

    PARAMETRIC STUDY ON THE WATER CONTENT PROFILES AND OXIDATION RATES IN NEARLY SATURATED TAILINGS of various factors on the water content profiles in reactive tailings. The results presented here show that the position of the water table has a large influence on the water content profiles and on the oxygen flux

  17. Macrophage Polarization And Nitric Oxide Mechanisms In Lymphatic Dysfunction In A Rat Model Of Metabolic Syndrome 

    E-Print Network [OSTI]

    Zawieja, Scott D

    2014-12-10

    ). The reactive oxygen species scavenging agent 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPOL) did not restore flow sensitivity, however control vessels treated with the nitric oxide synthase inhibitor L-NG-nitro arginine methyl ester (LNAME) had...

  18. Theory of the electronic and structural properties of solid state oxides

    SciTech Connect (OSTI)

    Chelikowsky, J.R.

    1990-01-01

    Studies on electronic and structural properties of solid state oxides continued. This quarter, studies have concentrated on silica. Progress is discussed in the following sections: interatomic potentials and the structural properties of silica; chemical reactivity and covalent/metallic bonding on Si clusters; and surface and thermodynamic interatomic forces fields for silicon. 64 refs., 20 figs., 5 tabs. (CBS)

  19. Hydrogen production from steam reforming of coke oven gas and its utility for indirect reduction of iron oxides in blast

    E-Print Network [OSTI]

    Leu, Tzong-Shyng "Jeremy"

    a remarkable source of carbon dioxide (CO2) emissions from anthropogenic and industrial activities [4 for indirect reduction (IR) of iron oxides in blast furnaces (BFs), carbon dioxide emissions can be lessened. Motivated from utilizing hydrogen and mitigating greenhouse gas emissions in ironmaking, the reaction

  20. Kinetics and mechanisms of reactions involving small aromatic reactive intermediates

    SciTech Connect (OSTI)

    Lin, M.C. [Emory Univ., Atlanta, GA (United States)

    1993-12-01

    Small aromatic radicals such as C{sub 6}H{sub 5}, C{sub 6}H{sub 5}O and C{sub 6}H{sub 4} are key prototype species of their homologs. C{sub 6}H{sub 5} and its oxidation product, C{sub 6}H{sub 5}O are believed to be important intermediates which play a pivotal role in hydrocarbon combustion, particularly with regard to soot formation. Despite their fundamental importance, experimental data on the reaction mechanisms and reactivities of these species are very limited. For C{sub 6}H{sub 5}, most kinetic data except its reactions with NO and NO{sub 2}, were obtained by relative rate measurements. For C{sub 6}H{sub 5}O, the authors have earlier measured its fragmentation reaction producing C{sub 5}H{sub 5} + CO in shock waves. For C{sub 6}H{sub 4}, the only rate constant measured in the gas phase is its recombination rate at room temperature. The authors have proposed to investigate systematically the kinetics and mechanisms of this important class of molecules using two parallel laser diagnostic techniques--laser resonance absorption (LRA) and resonance enhanced multiphoton ionization mass spectrometry (REMPI/MS). In the past two years, study has been focused on the development of a new multipass adsorption technique--the {open_quotes}cavity-ring-down{close_quotes} technique for kinetic applications. The preliminary results of this study appear to be quite good and the sensitivity of the technique is at least comparable to that of the laser-induced fluorescence method.

  1. Mechanism of oxygen reduction reaction on transition metal oxide catalysts for high temperature fuel cells

    E-Print Network [OSTI]

    La O', Gerardo Jose Cordova

    2008-01-01

    The solid oxide fuel cell (SOFC) with its high energy conversion efficiency, low emissions, silent operation and its ability to utilize commercial fuels has the potential to create a large impact on the energy landscape. ...

  2. Theoretical and experimental study of solid oxide fuel cell (SOFC) using impedance spectra

    E-Print Network [OSTI]

    Fu, Yeqing

    2014-01-01

    Solid oxide fuel cell (SOFC) is a promising alternative energy source, with its advantages of high operating efficiency, fuel flexibility, low emissions and relatively low cost. However, there are several challenges ...

  3. Natural Gas Variability In California: Environmental Impacts And Device Performance Combustion Modeling of Pollutant Emissions From a Residential Cooking Range

    SciTech Connect (OSTI)

    Tonse, S. R.; Singer, B. C.

    2011-07-01

    As part of a larger study of liquefied natural gas impacts on device performance and pollutant emissions for existing equipment in California, this report describes a cmoputer modeling study of a partially premixed flame issueing from a single cooktop burner port. The model consisted of a reactive computational fluid dynamics three-dimensional spatial grid and a 71-species chemical mechanism with propane combustion capability. Simulations were conducted with a simplified fuel mixture containing methane, ethane, and propane in proportions that yield properties similar to fuels distributed throughout much of California now and in recent years (baseline fuel), as well as with two variations of simulated liquefied natural gas blends. A variety of simulations were conducted with baseline fuel to explore the effect of several key parameters on pollutant formation and other flame characteristics. Simulations started with fuel and air issuing through the burner port, igniting, and continuing until the flame was steady with time. Conditions at this point were analyzed to understand fuel, secondary air and reaction product flows, regions of pollutant formation, and exhaust concentrations of carbon monoxide, nitric oxide and formaldehyde. A sensitivity study was conducted, varying the inflow parameters of this baseline gs about real-world operating conditions. Flame properties responded as expected from reactive flow theory. In the simulation, carbon monoxide levels were influenced more by the mixture's inflow velocity than by the gas-to-air ratio in the mixture issuing from the inflow port. Additional simulations were executed at two inflow conditions - high heat release and medium heat release - to examine the impact of replacing the baseline gas with two mixtures representative of liquefied natural gas. Flame properties and pollutant generation rates were very similar among the three fuel mixtures.

  4. Mechanism-Based Design of Green Oxidation Catalysts

    SciTech Connect (OSTI)

    Rybak-Akimova, Elena

    2015-03-16

    In modern era of scarce resources, developing chemical processes that can eventually generate useful materials and fuels from readily available, simple, cheap, renewable starting materials is of paramount importance. Small molecules, such as dioxygen, dinitrogen, water, or carbon dioxide, can be viewed as ideal sources of oxygen, nitrogen, or carbon atoms in synthetic applications. Living organisms perfected the art of utilizing small molecules in biosynthesis and in generating energy; photosynthesis, which couples carbohydrate synthesis from carbon dioxide with photocatalytic water splitting, is but one impressive example of possible catalytic processes. Small molecule activation in synthetic systems remains challenging, and current efforts are focused on developing catalytic reactions that can convert small molecules into useful building blocks for generating more complicated organic molecules, including fuels. Modeling nature is attractive in many respects, including the possibility to use non-toxic, earth-abundant metals in catalysis. Specific systems investigated in our work include biomimetic catalytic oxidations with dioxygen, hydrogen peroxide, and related oxygen atom donors. More recently, a new direction was been also pursued in the group, fixation of carbon dioxide with transition metal complexes. Mechanistic understanding of biomimetic metal-catalyzed oxidations is critical for the design of functional models of metalloenzymes, and ultimately for the rational synthesis of useful, selective and efficient oxidation catalysts utilizing dioxygen and hydrogen peroxide as terminal oxidants. All iron oxidases and oxygenases (both mononuclear and dinuclear) utilize metal-centered intermediates as reactive species in selective substrate oxidation. In contrast, free radical pathways (Fenton chemistry) are common for traditional inorganic iron compounds, producing hydroxyl radicals as very active, non-selective oxidants. Recent developments, however, changed this situation. Growing families of synthetic iron complexes that resemble active sites of metalloenzymes produce metal-based intermediates (rather than hydroxyl radicals) in reactions with oxygen donors. These complexes are very promising for selective oxygen and peroxide activation. In order to understand the mechanisms of metal-based small molecule activation, kinetically competent metal-oxygen intermediates must be identified. One of the grand challenges identified by the Department of Energy workshop "Catalysis for Energy" is understanding mechanisms and dynamics of catalyzed reactions. The research summarized herein focuses on detailed characterization of the formation and reactivity of various iron-peroxo- and iron-oxo intermediates that are involved in catalysis. Rates of rapid reactions were studied at low temperatures by a specialized technique termed cryogenic stopped-flow spectrophotometry. These measurements identified reaction conditions which favor the formation of catalytically competent oxidants. Chemical structures of reactive complexes was determined, and new, efficient catalysts for hydrocarbon oxidation were synthesized. Importantly, these catalysts are selective, they promote oxidation of hydrocarbons at a specific site. The catalysts are also efficient and robust, hundreds of cycles of substrate oxidation occur within minutes at room temperature. Furthermore, they enable utilization of environmentally friendly oxidants, such as hydrogen peroxide, which produces water as the only byproduct. Mechanistic insights uncovered the role of various acid-containing additives in catalytic oxidations. Proton delivery to the active catalytic sites facilitated oxidations, similarly to the catalytic pathways in metal-containing enzymes. Under certain conditions, two metals in one complex can act in concert, modeling the reactivity of a bacterial enzyme which converts methane into methanol. In related studies, a family of nickel complexes that react with carbon dioxide at the rates comparable to enzyme carbonic anhydrase, was discovered. Sequestration and che

  5. Methane oxidation rates by AMS

    E-Print Network [OSTI]

    Pack, M; Heintz, M; ReeburGh, WS; Trumbore, SE; Valentine, DL; Xu, X

    2009-01-01

    second case. Number of cases Methane oxidation rates by AMSIn the marine environment methane (CH 4 ) oxidation consumes

  6. Comparison of reactive magnesia-, carbide slag-activated ground granulated blastfurnace slag and Portland cement for stabilisation of a natural soil

    E-Print Network [OSTI]

    Yi, Yaolin; Zheng, Xu; Liu, Songyu; Al-Tabbaa, Abir

    2015-04-11

    -Tabbaa, 2013). Compared to PC, less energy is required for manufacturing reactive MgO (~2400 MJ/t MgO) due to its lower calcination temperature, and renewable energy sources can be used (Liska, 2009). Manufacturing 1t reactive MgO consumes 2.08 t MgCO3... ; Kitazume and Terash, 2013; Terashi, 2003; Terashi and Kitazume, 2011); however, there are significant environmental impacts associated with Portland cement (PC) production, such as high CO2 emissions (0.95t CO2/t PC), energy consumption (5000 MJ/t PC...

  7. Emissions Trading and Social Justice

    E-Print Network [OSTI]

    Farber, Daniel A

    2011-01-01

    David  M.  Driesen,  Does  Emissions  Trading  Encourage  Jason  Coburn,  Emissions  Trading   and   Environmental  Szambelan,  U.S.  Emissions  Trading  Markets  for  SO 2  

  8. Partial oxidation catalyst

    DOE Patents [OSTI]

    Krumpelt, Michael (Naperville, IL); Ahmed, Shabbir (Bolingbrook, IL); Kumar, Romesh (Naperville, IL); Doshi, Rajiv (Downers Grove, IL)

    2000-01-01

    A two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion. The dehydrogenation portion is a group VIII metal and the oxide-ion conducting portion is selected from a ceramic oxide crystallizing in the fluorite or perovskite structure. There is also disclosed a method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400.degree. C. for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide.

  9. Metal loading and reactivity of Zeolite Y 

    E-Print Network [OSTI]

    Sa?enz, Marc Gerard

    1988-01-01

    V) are transi- tion metal oxides or sulfides on an alumina support. These catalysts were not specifically developed for hydrodenitrogenaiion but were adopted from hydrocracking or hydrodesul- furization (HDS) processes. HDN is more difficult than HDS; thus... No. ;&778365, "Hydrocracking and Hydrodenitrogenation of Shale Oil" (7). The patent disclosed a class of catalysi. s based on large pore zeolites loaded v;ith transition metals. The zeolite based catalysts were preferred over the traditional alumina...

  10. Regulation of GHG emissions from transportation fuels: Emission quota versus emission intensity standard

    E-Print Network [OSTI]

    Rajagopal, Deepak

    2010-01-01

    Derivation of average cost of emission reduction by blending?) and ? respectively. GHG emissions per unit of blend is, ?+ ?? i Reduction in GHG emissions with respect to unblended

  11. Completing the complex Poynting theorem: Conservation of reactive energy in reactive time

    E-Print Network [OSTI]

    Gerald Kaiser

    2014-12-11

    The complex Poynting theorem is extended canonically to a time-scale domain $(t, s)$ by replacing the phasors of time-harmonic fields by the analytic signals $X(r, t+is)$ of fields $X(r,t)$ with general time dependence. The imaginary time $s>0$ is shown to play the role of a time resolution scale, and the extended Poynting theorem splits into two conservation laws: its real part gives the conservation in $t$ of the scale-averaged active energy at fixed $s$, and its imaginary part gives the conservation in $s$ of the scale-averaged reactive energy at fixed $t$. At coarse scales (large $s$, slow time), where the system reduces to the circuit level, this may have applications to the theory of electric power transmission and conditioning. At fine scales (small $s$, fast time) it describes reactive energy dynamics in radiating systems.

  12. UV/oxidation providers shed technical problems, fight cost perceptions

    SciTech Connect (OSTI)

    Rapaport, D. )

    1993-05-01

    Systems combining ultraviolet light and oxidation (UV/oxidation) to remove contaminants from water were introduced in the early 1980s. Since then, improvements in the technology, a wide array of applications, educational efforts by companies offering the systems and changes in environmental regulations have accelerated acceptance of UV/oxidation technology. From the standpoint of regulatory officials, the major advantage of UV/oxidation is that it creates no secondary pollutants to treat or haul away. It is a self-contained, in situ treatment technology. This benefit has gained importance as regulations have become more stringent regarding disposal of secondary pollutants, such as saturated carbon, and concentration levels of air emissions created by air stripping. Such regulations have increased the costs of monitoring and disposal, while the costs of using UV/oxidation were decreasing.

  13. Task 1: Steam Oxidation,”

    SciTech Connect (OSTI)

    I. G. Wright and G. R. Holcomb

    2009-03-01

    Need to improve efficiency, decrease emissions (esp. CO2) associated with the continued use of coal for power generation

  14. Tracking Emission Rate Dynamics of NV Centers in Nanodiamonds

    E-Print Network [OSTI]

    Faraz A Inam; Andrew M Edmonds; Michael J Steel; Stefania Castelletto

    2013-05-28

    Spontaneous emission from crystal centers is influenced by both the photonic local density of states and non-radiative processes. Here we monitor the spontaneous emission of single nitrogen vacancy (NV) centers as their host diamond is reduced in size from a large monolithic crystal to a nanocrystal by successive cycles of oxidation. The size reduction induces a quenching of the NV radiative emission. New non-radiative channels lead to a decrease of the fluorescence intensity and the excited state lifetime. In one case we observe the onset of blinking which may provide a route to understand these additional non-radiative decay channels.

  15. Phase of atmospheric secondary organic material affects its reactivity

    E-Print Network [OSTI]

    of the reactivity of atmospheric SOM particles. atmospheric chemistry chemical aging organic aerosol collectionPhase of atmospheric secondary organic material affects its reactivity Mikinori Kuwata and Scot T of atmospheric organic particles among solid, semisolid, and liquid phases is of keen current scientific interest

  16. Assessment of sequence homology and cross-reactivity

    SciTech Connect (OSTI)

    Aalberse, Rob C. [Department of Immunopathology, Sanquin Research at CLB, Plesmanlaan 125, 1066 CX Amsterdam (Netherlands) and Landsteiner Laboratory, Academic Medical Centre, 1066 CX Amsterdam (Netherlands)]. E-mail: r.aalberse@sanquin.nl

    2005-09-01

    Three aspects of allergenicity assessment and are discussed: IgE immunogenicity, IgE cross-reactivity and T cell cross-reactivity, all with emphasis on in-silico predictability: from amino acid sequence via 3D structure to allergenicity.(1)IgE immunogenicity depends to an overwhelming degree on factors other than the protein itself: the context and history of the protein by the time it reaches the immune system. Without specification of these two factors very few foreign proteins can be claimed to be absolutely non-allergenic. Any antigen may be allergenic, particularly if it avoids activation of TH2-suppressive mechanisms (CD8 cells, TH1 cells, other regulatory T cells and regulatory cytokines). (2)IgE cross-reactivity can be much more reliably assessed by a combination of in-silico homology searches and in vitro IgE antibody assays. The in-silico homology search is unlikely to miss potential cross-reactivity with sequenced allergens. So far, no biologically relevant cross-reactivity at the antibody level has been demonstrated between proteins without easily-demonstrable homology. (3)T cell cross-reactivity is much more difficult to predict compared to B cell cross-reactivity, and its effects are more diverse. Yet, pre-existing cross-reactive T cell activity is likely to influence the outcome not only of the immune response, but also of the effector phase of the allergic reaction.

  17. Controller Patterns for Component-based Reactive Control Software Systems

    E-Print Network [OSTI]

    Lau, Kung-Kiu

    Controller Patterns for Component-based Reactive Control Software Systems Petr Stepán, Kung-Kiu Lau Organization]: Special-Purpose and Application-Based Systems--Process control systems; D.2.2 [Software of the device they are embedded in, hence we call them reactive control systems. The general schema

  18. Abstract Interpretation of Reactive Systems DENNIS DAMS and ROB GERTH

    E-Print Network [OSTI]

    Grumberg, Orna

    Abstract Interpretation of Reactive Systems DENNIS DAMS and ROB GERTH Eindhoven University, formal methods, model checking, mu-calculus, reactive systems Correspondenceaddress: D. Dams, Dept;112 Dennis Dams et al. 1. INTRODUCTION In the model-checking approach Queille and Sifakis 1982 Clarke et al

  19. Abstract Interpretation of Reactive Systems DENNIS DAMS and ROB GERTH

    E-Print Network [OSTI]

    Dams, Dennis

    Abstract Interpretation of Reactive Systems DENNIS DAMS and ROB GERTH Eindhoven University, formal methods, model checking, mu­calculus, reactive systems Correspondence address: D. Dams, Dept; 112 \\Delta Dennis Dams et al. 1. INTRODUCTION In the model­checking approach [Queille and Sifakis 1982

  20. A REACTIVE APPROACH FOR MINING PROJECT EVALUATION UNDER PRICE UNCERTAINTY

    E-Print Network [OSTI]

    Duffy, Ken

    A REACTIVE APPROACH FOR MINING PROJECT EVALUATION UNDER PRICE UNCERTAINTY Meimei Zhang. This method often undervalues a mining project since it ignores future price uncertainty and does not allow on metal price. This paper also demonstrates that the "reactive" approach can estimate the mine project

  1. MARKETS FOR REACTIVE POWER AND RELIABILITY: A WHITE PAPER

    E-Print Network [OSTI]

    , including line and generator failures. This is the correct way, in terms of economics, to determine optimal to zero if optimal investment in reactive-power #12;3 sources (e.g., generators and reactive during contingencies, such as when failures occur, remain relatively low because of the low cost

  2. Reactive ion etched substrates and methods of making and using

    DOE Patents [OSTI]

    Rucker, Victor C. (San Francisco, CA); Shediac, Rene (Oakland, CA); Simmons, Blake A. (San Francisco, CA); Havenstrite, Karen L. (New York, NY)

    2007-08-07

    Disclosed herein are substrates comprising reactive ion etched surfaces and specific binding agents immobilized thereon. The substrates may be used in methods and devices for assaying or isolating analytes in a sample. Also disclosed are methods of making the reactive ion etched surfaces.

  3. ZIRCONIUM OXIDE NANOSTRUCTURES PREPARED BY ANODIC OXIDATION

    SciTech Connect (OSTI)

    Dang, Y. Y.; Bhuiyan, M.S.; Paranthaman, M. P.

    2008-01-01

    Zirconium oxide is an advanced ceramic material highly useful for structural and electrical applications because of its high strength, fracture toughness, chemical and thermal stability, and biocompatibility. If highly-ordered porous zirconium oxide membranes can be successfully formed, this will expand its real-world applications, such as further enhancing solid-oxide fuel cell technology. Recent studies have achieved various morphologies of porous zirconium oxide via anodization, but they have yet to create a porous layer where nanoholes are formed in a highly ordered array. In this study, electrochemical methods were used for zirconium oxide synthesis due to its advantages over other coating techniques, and because the thickness and morphology of the ceramic fi lms can be easily tuned by the electrochemical parameters, such as electrolyte solutions and processing conditions, such as pH, voltage, and duration. The effects of additional steps such as pre-annealing and post-annealing were also examined. Results demonstrate the formation of anodic porous zirconium oxide with diverse morphologies, such as sponge-like layers, porous arrays with nanoholes ranging from 40 to 75 nm, and nanotube layers. X-ray powder diffraction analysis indicates a cubic crystallographic structure in the zirconium oxide. It was noted that increased voltage improved the ability of the membrane to stay adhered to the zirconium substrate, whereas lower voltages caused a propensity for the oxide fi lm to fl ake off. Further studies are needed to defi ne the parameters windows that create these morphologies and to investigate other important characteristics such as ionic conductivity.

  4. Apparatus for photocatalytic destruction of internal combustion engine emissions during cold start

    DOE Patents [OSTI]

    Janata, Jiri (Richland, WA); McVay, Gary L. (Richland, WA); Peden, Charles H. (West Richland, WA); Exarhos, Gregory J. (Richland, WA)

    1998-01-01

    A method and apparatus for the destruction of emissions from an internal combustion engine wherein a substrate coated with TiO.sub.2 is exposed to a light source in the exhaust system of an internal combustion engine thereby catalyzing oxidation/reduction reactions between gaseous hydrocarbons, carbon monoxide, nitrogen oxides and oxygen in the exhaust of the internal combustion engine.

  5. Complex catalytic behaviors of CuTiOx mixed-oxide during CO oxidation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kim, Hyun You; Liu, Ping

    2015-09-21

    Mixed metal oxides have attracted considerable attention in heterogeneous catalysis due to the unique stability, reactivity, and selectivity. Here, the activity and stability of the CuTiOx monolayer film supported on Cu(111), CuTiOx/Cu(111), during CO oxidation was explored using density functional theory (DFT). The unique structural frame of CuTiOx is able to stabilize and isolate a single Cu+ site on the terrace, which is previously proposed active for CO oxidation. Furthermore, it is not the case, where the reaction via both the Langmuir–Hinshelwood (LH) and the Mars-van Krevelen (M-vK) mechanisms are hindered on such single Cu+ site. Upon the formation ofmore »step-edges, the synergy among Cu?+ sites, TiOx matrix, and Cu(111) is able to catalyze the reaction well. Depending on temperatures and partial pressure of CO and O2, the surface structure varies, which determines the dominant mechanism. In accordance with our results, the Cu?+ ion alone does not work well for CO oxidation in the form of single sites, while the synergy among multiple active sites is necessary to facilitate the reaction.« less

  6. EIA - Greenhouse Gas Emissions - Carbon Dioxide Emissions

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    carbon-intensive fossil fuel, increased by 4.8 percent. 2.8. Carbon dioxide emissions and carbon sequestration from nonfuel uses of energy inputs Nonfuel uses of fossil fuels (for...

  7. Technological modifications in the nitrogen oxides tradable permit program

    SciTech Connect (OSTI)

    Linn, J.

    2008-07-01

    Tradable permit programs allow firms greater flexibility in reducing emissions than command-and-control regulations and encourage firms to use low cost abatement options, including small-scale modifications to capital equipment. This paper shows that firms have extensively modified capital equipment in the Nitrogen Oxides Budget Trading Program, which covers power plants in the eastern United States. The empirical strategy uses geographic and temporal features of the program to estimate counterfactual emissions, finding that modifications have reduced emission rates by approximately 10-15 percent. The modifications would not have occurred under command-and-control regulation and have reduced regulatory costs.

  8. Anode supported single chamber solid oxide fuel cells operating in exhaust gases of thermal engine

    E-Print Network [OSTI]

    Boyer, Edmond

    conditions is selected. It is composed of hydrocarbons (HC: propane and propene), oxygen, carbon monoxide hydrocarbons, pollutant emissions reduction hal-01056363,version1-21Aug2014 #12;1. Introduction Solid oxide. Conventional solid oxide fuel cells are separated into two compartments containing each electrode split

  9. Abatement of Air Pollution: Control of Nitrogen Oxides Emissions...

    Broader source: Energy.gov (indexed) [DOE]

    Program Info State Connecticut Program Type Environmental Regulations Provider Department of Energy and Environmental Protection These regulations may apply to reciprocating...

  10. Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIX F Wetlandsof EnergyGap Analysis |Monitoring theCatalysts

  11. Oxidation Resistant Graphite Studies

    SciTech Connect (OSTI)

    W. Windes; R. Smith

    2014-07-01

    The Very High Temperature Reactor (VHTR) Graphite Research and Development Program is investigating doped nuclear graphite grades exhibiting oxidation resistance. During a oxygen ingress accident the oxidation rates of the high temperature graphite core region would be extremely high resulting in significant structural damage to the core. Reducing the oxidation rate of the graphite core material would reduce the structural effects and keep the core integrity intact during any air-ingress accident. Oxidation testing of graphite doped with oxidation resistant material is being conducted to determine the extent of oxidation rate reduction. Nuclear grade graphite doped with varying levels of Boron-Carbide (B4C) was oxidized in air at nominal 740°C at 10/90% (air/He) and 100% air. The oxidation rates of the boronated and unboronated graphite grade were compared. With increasing boron-carbide content (up to 6 vol%) the oxidation rate was observed to have a 20 fold reduction from unboronated graphite. Visual inspection and uniformity of oxidation across the surface of the specimens were conducted. Future work to determine the remaining mechanical strength as well as graphite grades with SiC doped material are discussed.

  12. Light-Duty Reactivity Controlled Compression Ignition Drive Cycle Fuel Economy and Emissions Estimates

    Broader source: Energy.gov [DOE]

    Vehicle systems simulations using experimental data demonstrate improved modeled fuel economy of 15% for passenger vehicles solely from powertrain efficiency relative to a 2009 PFI gasoline baseline.

  13. Principal ComponentAnalysisof Optical EmissionSpectroscopy and MassSpectrometry:Applicationto Reactive Ion Etch

    E-Print Network [OSTI]

    Shadmehr, Reza

    , Yorktown Heights, New York 10598 ABSTRACT We report on a simple technique that characterizes the effect of CHFJO2 plasma. This technique is sensitive to changes in chamber contamination levels (e.g., formation of each sensor. Projection of the mass spectrum on its principal components suggests a strong linear

  14. Mercury emission behavior during isolated coal particle combustion 

    E-Print Network [OSTI]

    Puchakayala, Madhu Babu

    2009-05-15

    and bioaccumulates in human and animal tissue. The largest source of human-caused mercury air emissions in the U.S is from combustion coal, a dominant fuel used for power generation. The Hg emitted from plants primarily occurs in two forms: elemental Hg and oxidized...

  15. Low Emissions Aftertreatment and Diesel Emissions Reduction

    SciTech Connect (OSTI)

    None

    2005-05-27

    Detroit Diesel Corporation (DDC) has successfully completed a five-year Low Emissions Aftertreatment and Diesel Emissions Reduction (LEADER) program under a DOE project entitled: ''Research and Development for Compression-Ignition Direct-Injection Engines (CIDI) and Aftertreatment Sub-Systems''. The objectives of the LEADER Program were to: Demonstrate technologies that will achieve future federal Tier 2 emissions targets; and Demonstrate production-viable technical targets for engine out emissions, efficiency, power density, noise, durability, production cost, aftertreatment volume and weight. These objectives were successfully met during the course of the LEADER program The most noteworthy achievements in this program are listed below: (1) Demonstrated Tier 2 Bin 3 emissions target over the FTP75 cycle on a PNGV-mule Neon passenger car, utilizing a CSF + SCR system These aggressive emissions were obtained with no ammonia (NH{sub 3}) slip and a combined fuel economy of 63 miles per gallon, integrating FTP75 and highway fuel economy transient cycle test results. Demonstrated feasibility to achieve Tier 2 Bin 8 emissions levels without active NOx aftertreatment. (2) Demonstrated Tier 2 Bin 3 emissions target over the FTP75 cycle on a light-duty truck utilizing a CSF + SCR system, synergizing efforts with the DOE-DDC DELTA program. This aggressive reduction in tailpipe out emissions was achieved with no ammonia slip and a 41% fuel economy improvement, compared to the equivalent gasoline engine-equipped vehicle. (3) Demonstrated Tier 2 near-Bin 9 emissions compliance on a light-duty truck, without active NOx aftertreatment devices, in synergy with the DOE-DDC DELTA program. (4) Developed and applied advanced combustion technologies such as ''CLEAN Combustion{copyright}'', which yields simultaneous reduction in engine out NOx and PM emissions while also improving engine and aftertreatment integration by providing favorable exhaust species and temperature characteristics. These favorable emissions characteristics were obtained while maintaining performance and fuel economy. These aggressive emissions and performance results were achieved by applying a robust systems technology development methodology. This systems approach benefits substantially from an integrated experimental and analytical approach to technology development, which is one of DDCs core competencies Also, DDC is uniquely positioned to undertake such a systems technology development approach, given its vertically integrated commercial structure within the DaimlerChrysler organization. State-of-the-art analytical tools were developed targeting specific LEADER program objectives and were applied to guide system enhancements and to provide testing directions, resulting in a shortened and efficient development cycle. Application examples include ammonia/NO{sub x} distribution improvement and urea injection controls development, and were key contributors to significantly reduce engine out as well as tailpipe out emissions. Successful cooperation between DDC and Engelhard Corporation, the major subcontractor for the LEADER program and provider of state-of-the-art technologies on various catalysts, was another contributing factor to ensure that both passenger car and LD truck applications achieved Tier 2 Bin 3 emissions levels. Significant technical challenges, which highlight barriers of commercialization of diesel technology for passenger cars and LD truck applications, are presented at the end of this report.

  16. Emissions of greenhouse gases in the United States 1997

    SciTech Connect (OSTI)

    1998-10-01

    This is the sixth annual report on aggregate US national emissions of greenhouse gases. It covers emissions over the period 1990--1996, with preliminary estimates of emissions for 1997. Chapter one summarizes some background information about global climate change and the greenhouse effect. Important recent developments in global climate change activities are discussed, especially the third Conference of the Parties to the Framework Convention on Climate Change, which was held in December of 1997 in Kyoto, Japan. Chapters two through five cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons and related gases, respectively. Chapter six describes potential sequestration and emissions of greenhouse gases as a result of land use changes. Six appendices are included in the report. 96 refs., 38 tabs.

  17. Impact of Stops on Vehicle Fuel Consumption and Emissions Hesham Rakha1 and Yonglian Ding2

    E-Print Network [OSTI]

    Rakha, Hesham A.

    chemical compounds that leave the engine through the tail pipe system and crankcase, and evaporative or exhaust emissions). Currently, diesel-powered engines cannot use catalytic oxidizers due to plugging from on a limited number of standard drive cycles. For example, the MOBILE5a model utilizes baseline emission rates

  18. Constraining European biogenic isoprene emissions using satellite observations of formaldehyde G. Curci a,

    E-Print Network [OSTI]

    Curci, Gabriele

    Constraining European biogenic isoprene emissions using satellite observations of formaldehyde G://www.quitsat.it. Abstract ­ Formaldehyde (HCHO) is an intermediate product of the atmospheric oxidation of many volatile between isoprene emissions and formaldehyde column over Europe, then used to invert OMI HCHO column

  19. Comparison of model estimates of the effects of aviation emissions on atmospheric ozone and methane

    E-Print Network [OSTI]

    Jacobson, Mark

    of the world econ- omy and demand for aviation and its emissions are expected to increase in the future from aviation (mainly carbon dioxide (CO2), water vapor (H2O), nitrogen oxides (NOx = NO + NO2), VOCsComparison of model estimates of the effects of aviation emissions on atmospheric ozone and methane

  20. Structure and Reactivity of Zeolite- and Carbon-Supported Catalysts for the Oxidative Carbonylation of Alcohols

    E-Print Network [OSTI]

    Briggs, Daniel Neal

    2010-01-01

    can also function as eco-friendly alternatives to phosgenequantities of HCl. A more eco-friendly process to make alkyl

  1. Interfacial electron transfer dynamics of photosensitized zinc oxide nanoclusters

    SciTech Connect (OSTI)

    Murakoshi, Kei; Yanagida, Shozo; Capel, M.

    1997-06-01

    The authors have prepared and characterized photosensitized zinc oxide (ZnO) nanoclusters, dispersed in methanol, using carboxylated coumarin dyes for surface adsorption. Femtosecond time-resolved emission spectroscopy allows the authors to measure the photo-induced charge carrier injection rate constant from the adsorbed photosensitizer to the n-type semiconductor nanocluster. These results are compared with other photosensitized semiconductors.

  2. METAL OXIDE NANOPARTICLES

    SciTech Connect (OSTI)

    FERNANDEZ-GARCIA,M.; RODGRIGUEZ, J.A.

    2007-10-01

    This chapter covers the fundamental science, synthesis, characterization, physicochemical properties and applications of oxide nanomaterials. Explains fundamental aspects that determine the growth and behavior of these systems, briefly examines synthetic procedures using bottom-up and top-down fabrication technologies, discusses the sophisticated experimental techniques and state of the art theory results used to characterize the physico-chemical properties of oxide solids and describe the current knowledge concerning key oxide materials with important technological applications.

  3. Barium oxide, calcium oxide, magnesia, and alkali oxide free glass

    DOE Patents [OSTI]

    Lu, Peizhen Kathy; Mahapatra, Manoj Kumar

    2013-09-24

    A glass composition consisting essentially of about 10-45 mole percent of SrO; about 35-75 mole percent SiO.sub.2; one or more compounds from the group of compounds consisting of La.sub.2O.sub.3, Al.sub.2O.sub.3, B.sub.2O.sub.3, and Ni; the La.sub.2O.sub.3 less than about 20 mole percent; the Al.sub.2O.sub.3 less than about 25 mole percent; the B.sub.2O.sub.3 less than about 15 mole percent; and the Ni less than about 5 mole percent. Preferably, the glass is substantially free of barium oxide, calcium oxide, magnesia, and alkali oxide. Preferably, the glass is used as a seal in a solid oxide fuel/electrolyzer cell (SOFC) stack. The SOFC stack comprises a plurality of SOFCs connected by one or more interconnect and manifold materials and sealed by the glass. Preferably, each SOFC comprises an anode, a cathode, and a solid electrolyte.

  4. Mixed oxide solid solutions

    DOE Patents [OSTI]

    Magno, Scott (Dublin, CA); Wang, Ruiping (Fremont, CA); Derouane, Eric (Liverpool, GB)

    2003-01-01

    The present invention is a mixed oxide solid solution containing a tetravalent and a pentavalent cation that can be used as a support for a metal combustion catalyst. The invention is furthermore a combustion catalyst containing the mixed oxide solid solution and a method of making the mixed oxide solid solution. The tetravalent cation is zirconium(+4), hafnium(+4) or thorium(+4). In one embodiment, the pentavalent cation is tantalum(+5), niobium(+5) or bismuth(+5). Mixed oxide solid solutions of the present invention exhibit enhanced thermal stability, maintaining relatively high surface areas at high temperatures in the presence of water vapor.

  5. Regional respiratory tract absorption of inhaled reactive gases

    SciTech Connect (OSTI)

    Miller, F.J.; Overton, J.H.; Kimbell, J.S.; Russell, M.L.

    1992-06-29

    Highly reactive gases present unique problems due to the number of factors which must be taken into account to determine regional respiratory tract uptake. The authors reviewed some of the physical, chemical, and biological factors that affect dose and that must be understood to interpret toxicological data, to evaluate experimental dosimetry studies, and to develop dosimetry models. Selected dosimetry experiments involving laboratory animals and humans were discussed, showing the variability and uptake according to animal species and respiratory tract region for various reactive gases. New experimental dosimetry approaches, such as those involving isotope ratio mass spectroscopy and cyclotron generation reactive gases, were discussed that offer great promise for improving the ability to study regional respiratory tract absorption of reactive gases. Various dosimetry modeling applications were discussed which demonstrate: the importance of airflow patterns for site-specific dosimetry in the upper respiratory tract, the influence of the anatomical model used to make inter- and intraspecies dosimetric comparisons, the influence of tracheobronchial path length on predicted dose curves, and the implications of ventilatory unit structure and volume on dosimetry and response. Collectively, these examples illustrate important aspects of regional respiratory tract absorption of inhaled reactive gases. Given the complex nature of extent and pattern of injury in the respiratory tract from exposure to reactive gases, understanding interspecies differences in the absorption of reactive gases will continue to be an important area for study.

  6. Pyrolysis process for producing condensed stabilized hydrocarbons utilizing a beneficially reactive gas

    DOE Patents [OSTI]

    Durai-Swamy, Kandaswamy (Culver City, CA)

    1982-01-01

    In a process for recovery of values contained in solid carbonaceous material, the solid carbonaceous material is comminuted and then subjected to pyrolysis, in the presence of a carbon containing solid particulate source of heat and a beneficially reactive transport gas in a transport flash pyrolysis reactor, to form a pyrolysis product stream. The pyrolysis product stream contains a gaseous mixture and particulate solids. The solids are separated from the gaseous mixture to form a substantially solids-free gaseous stream which comprises volatilized hydrocarbon free radicals newly formed by pyrolysis. Preferably the solid particulate source of heat is formed by oxidizing part of the separated particulate solids. The beneficially reactive transport gas inhibits the reactivity of the char product and the carbon-containing solid particulate source of heat. Condensed stabilized hydrocarbons are obtained by quenching the gaseous mixture stream with a quench fluid which contains a capping agent for stabilizing and terminating newly formed volatilized hydrocarbon free radicals. The capping agent is partially depleted of hydrogen by the stabilization and termination reaction. Hydrocarbons of four or more carbon atoms in the gaseous mixture stream are condensed. A liquid stream containing the stabilized liquid product is then treated or separated into various fractions. A liquid containing the hydrogen depleted capping agent is hydrogenated to form a regenerated capping agent. At least a portion of the regenerated capping agent is recycled to the quench zone as the quench fluid. In another embodiment capping agent is produced by the process, separated from the liquid product mixture, and recycled.

  7. Organic/inorganic nanocomposites, methods of making, and uses as a permeable reactive barrier

    DOE Patents [OSTI]

    Harrup, Mason K. (Idaho Falls, ID); Stewart, Frederick F. (Idaho Falls, ID)

    2007-05-15

    Nanocomposite materials having a composition including an inorganic constituent, a preformed organic polymer constituent, and a metal ion sequestration constituent are disclosed. The nanocomposites are characterized by being single phase, substantially homogeneous materials wherein the preformed polymer constituent and the inorganic constituent form an interpenetrating network with each other. The inorganic constituent may be an inorganic oxide, such as silicon dioxide, formed by the in situ catalyzed condensation of an inorganic precursor in the presence of the solvated polymer and metal ion sequestration constituent. The polymer constituent may be any hydrophilic polymer capable of forming a type I nanocomposite such as, polyacrylonitrile (PAN), polyethyleneoxide (PEO), polyethylene glycol (PEG), polyvinyl acetate (PVAc), polyvinyl alcohol (PVA), and combinations thereof. Nanocomposite materials of the present invention may be used as permeable reactive barriers (PRBs) to remediate contaminated groundwater. Methods for making nanocomposite materials, PRB systems, and methods of treating groundwater are also disclosed.

  8. Chemical reactivity testing for the National Spent Nuclear Fuel Program. Revision 2

    SciTech Connect (OSTI)

    Koester, L.W.

    2000-02-08

    This quality assurance project plan (QAPjP) summarizes requirements used by Lockheed Martin Energy Systems, Incorporated (LMES) Development Division at Y-12 for conducting chemical reactivity testing of Department of Energy (DOE) owned spent nuclear fuel, sponsored by the National Spent Nuclear Fuel Program (NSNFP). The requirements are based on the NSNFP Statement of work PRO-007 (Statement of Work for Laboratory Determination of Uranium Hydride Oxidation Reaction Kinetics.) This QAPjP will utilize the quality assurance program at Y-12, Y60-101PD, Quality Program Description, and existing implementing procedures for the most part in meeting the NSNFP Statement of Work PRO-007 requirements, exceptions will be noted. The project consists of conducting three separate series of related experiments, ''Passivation of Uranium Hydride Powder With Oxygen and Water'', '''Passivation of Uranium Hydride Powder with Surface Characterization'', and ''Electrochemical Measure of Uranium Hydride Corrosion Rate''.

  9. ROLE OF TRIVALENT Mn IN OXIDATION OF ORGANIC MATTER Christopher J. Matocha and D.L. Sparks

    E-Print Network [OSTI]

    Sparks, Donald L.

    organic matter^ M AT E R I A L S A N D M E T H O D S Reactivity studies of solid Mn(lll,IV) (hydr) oxide of available Mn(lli). R E S U L T S No correlation existed between the initial reductive dissolution ratesROLE OF TRIVALENT Mn IN OXIDATION OF ORGANIC MATTER Christopher J. Matocha and D.L. Sparks Dept

  10. Impact of Biodiesel on the Oxidation Kinetics and Morphology of Diesel Particulate

    SciTech Connect (OSTI)

    Strzelec, Andrea [ORNL] [ORNL; Toops, Todd J [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL

    2011-01-01

    We compare the oxidation characteristics of four different diesel particulates generated with a modern light-duty engine. The four particulates represent engine fueling with conventional ultra-low sulfur diesel (ULSD), biodiesel, and two intermediate blends of these fuels. The comparisons discussed here are based on complementary measurements implemented in a laboratory micro-reactor, including temperature programmed desorption and oxidation, pulsed isothermal oxidation, and BET surface area. From these measurements we have derived models that are consistent with the observed oxidation reactivity differences. When accessible surface area effects are properly accounted for, the oxidation kinetics of the fixed carbon components were found to consistently exhibit an Arrhenius activation energy of 113 6 kJ/mol. Release of volatile carbon from the as-collected particulate appears to follow a temperaturedependent rate law.

  11. Assessment of the Economic Potential of Microgrids for Reactive Power Supply

    E-Print Network [OSTI]

    Appen, Jan von

    2012-01-01

    of Commercial Building Microgrids,” IEEE Transactions onEconomic Potential of Microgrids for Reactive Power Supplyof creating an incentive for microgrids to provide reactive

  12. Effect of shape reactivity on the rod-ejection accident

    SciTech Connect (OSTI)

    Neogy, P.; Carew, J.F.

    1982-09-01

    The shape reactivity has a significant influence on the rod ejection accident. After the control rod is fully ejected from the core, the neutron flux undergoes a large reduction at the ejected rod location. The corresponding effect on the control reactivity is comparable in magnitude to the Doppler reactivity, and makes a significant contribution to limiting the power excursion during the transient. The neglect of this effect in point kinetics and space time synthesis analyses of the rod ejection accident may account in part for the large degree of conservatism usually associated with these analyses.

  13. Field emission chemical sensor

    DOE Patents [OSTI]

    Panitz, J.A.

    1983-11-22

    A field emission chemical sensor for specific detection of a chemical entity in a sample includes a closed chamber enclosing two field emission electrode sets, each field emission electrode set comprising (a) an electron emitter electrode from which field emission electrons can be emitted when an effective voltage is connected to the electrode set; and (b) a collector electrode which will capture said electrons emitted from said emitter electrode. One of the electrode sets is passive to the chemical entity and the other is active thereto and has an active emitter electrode which will bind the chemical entity when contacted therewith.

  14. Modeling Traffic Flow Emissions

    E-Print Network [OSTI]

    Cappiello, Alessandra

    2002-09-17

    The main topic of this thesis is the development of light-duty vehicle dynamic emission models and their integration with dynamic traffic models. Combined, these models

  15. Biological Air Emissions Control

    Office of Energy Efficiency and Renewable Energy (EERE)

    Air quality standards are becoming more stringent for the U.S. wood products industry. Emissions of volatile organic compounds (VOCs) and hazardous air pollutants (HAPs) (including methanol,...

  16. Saving Fuel, Reducing Emissions

    E-Print Network [OSTI]

    Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

    2009-01-01

    would in turn lower PHEV fuel costs and make them morestretches from fossil-fuel- powered conventional vehiclesbraking, as do Saving Fuel, Reducing Emissions Making Plug-

  17. Air Emission Inventory for the INEEL -- 1999 Emission Report

    SciTech Connect (OSTI)

    Zohner, Steven K

    2000-05-01

    This report presents the 1999 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradionuclide emissions estimates for stationary sources.

  18. Comparison of the Catalytic Oxidation Reaction on Graphene Oxide and Reduced Graphene Oxide

    E-Print Network [OSTI]

    Kim, Sehun

    Comparison of the Catalytic Oxidation Reaction on Graphene Oxide and Reduced Graphene Oxide catalytic systems.12,13 On the other hand, the reduced graphene oxide (rGO) is functionalized graphene Laboratory (PAL), Pohang 790-784, Republic of Korea ABSTRACT: The capacities of graphene oxide (GO

  19. Modeling carbon nanotube growth on the catalyst-substrate surface subjected to reactive plasma [

    SciTech Connect (OSTI)

    Tewari, Aarti; Sharma, Suresh C.

    2014-06-15

    The paper presents a theoretical model to study the growth of the carbon nanotube (CNT) on the catalyst substrate surface subjected to reactive plasma. The charging rate of the CNT, kinetics of electron, ions and neutral atoms, the growth rate of the CNT because of diffusion and accretion of ions on the catalyst nanoparticle inclusion of the issue of the plasma sheath is undertaken in the present model. Numerical calculations on the effect of ion density and temperature and the substrate bias on the growth of the CNT have been carried out for typical glow discharge plasma parameters. It is found that the height of CNT increases with the ion density of carbon ions and radius of CNT decreases with hydrogen ion density. The substrate bias also affects the growth rate of the CNT. The field emission characteristics from the CNTs can be analyzed from the results obtained.

  20. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect (OSTI)

    Jha, M.C.; Berggren, M.H.

    1987-10-27

    AMAX Research Development Center (AMAX R D) has been investigating methods for improving the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hog coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. The reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point in a bench-scale fixed-bed reactor. The durability may be defined as the ability of the sorbent to maintain its reactivity and other important physical characteristics such as size, strength, and specific surface area during 10 cycles of sulfidation and regeneration. Two base case sorbents, spherical pellets and cylindrical extrudes used in related METC sponsored projects, are being used to provide a basis for the comparison of physical characteristics and chemical reactivity.

  1. Reactive Oxygen Species Driven Angiogenesis by Inorganic Nanorods

    E-Print Network [OSTI]

    Patra, Chitta Ranjan

    The exact mechanism of angiogenesis by europium hydroxide nanorods was unclear. In this study we have showed that formation of reactive oxygen species (H2O2 and O2·?) is involved in redox signaling pathways during angiogenesis, ...

  2. Towards Interactive Timing Analysis for Designing Reactive Systems

    E-Print Network [OSTI]

    : Medium: Timing Centric Software), and #0931843 (ActionWebs), the Naval Research Laboratory (NRL #N0013- action Time, Synchronous Languages, Precision Timed Machines, Sequential Constructiveness 1 Introduction reactive systems. Such systems typically interact with the physical environment by sensing, performing

  3. Conversion of carboxylate salts to carboxylic acids via reactive distillation 

    E-Print Network [OSTI]

    Williamson, Shelly Ann

    2000-01-01

    , municipal solid wastes, sewage sludge, and industrial biosludge. Using a proprietary technology owned by Texas A&M University the wastes are first treated with lime to enhance reactivity. Then they are converted to calcium carboxylate salts using a mixed...

  4. Towards Synthesis of Reactive & Robust Behavior Chains Amol D. Mali

    E-Print Network [OSTI]

    Mali, Amol D.

    Towards Synthesis of Reactive & Robust Behavior Chains Amol D. Mali Electrical Engg. & Computer Science, P.O.Box 784 University of Wisconsin, Milwaukee, Milwaukee, WI 53201, USA. e-mail: mali

  5. Comparison of Conventional Diesel and Reactivity Controlled Compressio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in a Light-Duty Engine CFD modeling was used to compare conventional diesel and dual-fuel Reactivity Controlled Compression Ignition combustion at US Tier 2 Bin 5 NOx...

  6. Non-OH chemistry in oxidation flow reactors for the study of atmospheric chemistry systematically examined by modeling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Peng, Z.; Day, D. A.; Ortega, A. M.; Palm, B. B.; Hu, W. W.; Stark, H.; Li, R.; Tsigaridis, K.; Brune, W. H.; Jimenez, J. L.

    2015-09-01

    Oxidation flow reactors (OFRs) using low-pressure Hg lamp emission at 185 and 254 nm produce OH radicals efficiently and are widely used in atmospheric chemistry and other fields. However, knowledge of detailed OFR chemistry is limited, allowing speculation in the literature about whether some non-OH reactants, including several not relevant for tropospheric chemistry, may play an important role in these OFRs. These non-OH reactants are UV radiation, O(1D), O(3P), and O3. In this study, we investigate the relative importance of other reactants to OH for the fate of reactant species in OFR under a wide range of conditions via boxmore »modeling. The relative importance of non-OH species is less sensitive to UV light intensity than to relative humidity (RH) and external OH reactivity (OHRext), as both non-OH reactants and OH scale roughly proportional to UV intensity. We show that for field studies in forested regions and also the urban area of Los Angeles, reactants of atmospheric interest are predominantly consumed by OH. We find that O(1D), O(3P), and O3 have relative contributions to VOC consumption that are similar or lower than in the troposphere. The impact of O atoms can be neglected under most conditions in both OFR and troposphere. Under "pathological OFR conditions" of low RH and/or high OHRext, the importance of non-OH reactants is enhanced because OH is suppressed. Some biogenics can have substantial destructions by O3, and photolysis at non-tropospheric wavelengths (185 and 254 nm) may also play a significant role in the degradation of some aromatics under pathological conditions. Working under low O2 with the OFR185 mode allows OH to completely dominate over O3 reactions even for the biogenic species most reactive with O3. Non-tropospheric VOC photolysis may have been a problem in some laboratory and source studies, but can be avoided or lessened in future studies by diluting source emissions and working at lower precursor concentrations in lab studies, and by humidification. SOA photolysis is shown to be insignificant for most functional groups, except for nitrates and especially aromatics, which may be photolyzed at high UV flux settings. Our work further establishes the OFR's usefulness as a tool to study atmospheric chemistry and enables better experiment design and interpretation, as well as improved future reactor design.« less

  7. Motor Vehicle Fleet Emissions by K I M B E R L Y S . B R A D L E Y ,

    E-Print Network [OSTI]

    Denver, University of

    concentrations of carbon monoxide (CO), carbon dioxide (CO2), and nitrous oxide (N2O) caused by emissions from to average emissions results obtained from on-road exhaust analysis using individual vehicle remote sensing based emission ratio. In effect this technique makes use of CO2, and the other usually minor carbon

  8. Rules to Cut Carbon Emissions Also Reduce Other Air Pollutants A first-of-its-kind study released today by scientists at Syracuse and

    E-Print Network [OSTI]

    Mather, Patrick T.

    Rules to Cut Carbon Emissions Also Reduce Other Air Pollutants A first-of-its-kind study released emissions from power plants would provide an added bonus--reductions in other air pollutants that can make in power plant emissions of four other harmful air pollutants: fine particulate matter, nitrogen oxides

  9. Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils

    SciTech Connect (OSTI)

    Jeremy Semrau; Sung-Woo Lee; Jeongdae Im; Sukhwan Yoon; Michael Barcelona

    2010-09-30

    The overall objective of this project, 'Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils' was to develop effective, efficient, and economic methodologies by which microbial production of nitrous oxide can be minimized while also maximizing microbial consumption of methane in landfill cover soils. A combination of laboratory and field site experiments found that the addition of nitrogen and phenylacetylene stimulated in situ methane oxidation while minimizing nitrous oxide production. Molecular analyses also indicated that methane-oxidizing bacteria may play a significant role in not only removing methane, but in nitrous oxide production as well, although the contribution of ammonia-oxidizing archaea to nitrous oxide production can not be excluded at this time. Future efforts to control both methane and nitrous oxide emissions from landfills as well as from other environments (e.g., agricultural soils) should consider these issues. Finally, a methanotrophic biofiltration system was designed and modeled for the promotion of methanotrophic activity in local methane 'hotspots' such as landfills. Model results as well as economic analyses of these biofilters indicate that the use of methanotrophic biofilters for controlling methane emissions is technically feasible, and provided either the costs of biofilter construction and operation are reduced or the value of CO{sub 2} credits is increased, can also be economically attractive.

  10. Atmospheric process evaluation of mobile source emissions

    SciTech Connect (OSTI)

    1995-07-01

    During the past two decades there has been a considerable effort in the US to develop and introduce an alternative to the use of gasoline and conventional diesel fuel for transportation. The primary motives for this effort have been twofold: energy security and improvement in air quality, most notably ozone, or smog. The anticipated improvement in air quality is associated with a decrease in the atmospheric reactivity, and sometimes a decrease in the mass emission rate, of the organic gas and NO{sub x} emissions from alternative fuels when compared to conventional transportation fuels. Quantification of these air quality impacts is a prerequisite to decisions on adopting alternative fuels. The purpose of this report is to present a critical review of the procedures and data base used to assess the impact on ambient air quality of mobile source emissions from alternative and conventional transportation fuels and to make recommendations as to how this process can be improved. Alternative transportation fuels are defined as methanol, ethanol, CNG, LPG, and reformulated gasoline. Most of the discussion centers on light-duty AFVs operating on these fuels. Other advanced transportation technologies and fuels such as hydrogen, electric vehicles, and fuel cells, will not be discussed. However, the issues raised herein can also be applied to these technologies and other classes of vehicles, such as heavy-duty diesels (HDDs). An evaluation of the overall impact of AFVs on society requires consideration of a number of complex issues. It involves the development of new vehicle technology associated with engines, fuel systems, and emission control technology; the implementation of the necessary fuel infrastructure; and an appropriate understanding of the economic, health, safety, and environmental impacts associated with the use of these fuels. This report addresses the steps necessary to properly evaluate the impact of AFVs on ozone air quality.

  11. Effect of precursor mineralogy on the thermal infrared emission spectra of hematite: Application to Martian hematite mineralization

    E-Print Network [OSTI]

    Glotch, Timothy D.

    samples derived by (1) dehydroxylation of fine- grained goethite and (2) oxidation of magnetite derived by pseudomorphic and topotactic dehydroxylation of goethite at 300°C. Spectra of goethite spectrum. Thermal emission spectra of goethites heated at lower temperatures are characterized

  12. Development of Low Temperature Combustion Modes to Reduce Overall Emissions from a Medium-Duty, Four Cylinder Diesel Engine 

    E-Print Network [OSTI]

    Breen, Jonathan Robert

    2011-10-21

    Low temperature combustion (LTC) is an appealing new method of combustion that promises low nitric oxides and soot emissions while maintaining or improving on engine performance. The three main points of this study were ...

  13. Advanced Petroleum-Based Fuels -- Diesel Emissions Control Project (APBF-DEC): Lubricants Project, Phase 2 Final Report

    SciTech Connect (OSTI)

    Not Available

    2006-06-01

    This report summarizes the results of the second phase of a lubricants project, which investigated the impact of engine oil formulation on diesel vehicle emissions and the performance of a nitrogen oxide adsorber catalyst (NAC).

  14. Reduction of iron-oxide-carbon composites: part I. Estimation of the rate constants

    SciTech Connect (OSTI)

    Halder, S.; Fruehan, R.J. [Praxair Inc., Tonawanda, NY (United States). Technological Center

    2008-12-15

    A new ironmaking concept using iron-oxide-carbon composite pellets has been proposed, which involves the combination of a rotary hearth furnace (RHF) and an iron bath smelter. This part of the research focuses on studying the two primary chemical kinetic steps. Efforts have been made to experimentally measure the kinetics of the carbon gasification by CO{sub 2} and wustite reduction by CO by isolating them from the influence of heat- and mass-transport steps. A combined reaction model was used to interpret the experimental data and determine the rate constants. Results showed that the reduction is likely to be influenced by the chemical kinetics of both carbon oxidation and wustite reduction at the temperatures of interest. Devolatilized wood-charcoal was observed to be a far more reactive form of carbon in comparison to coal-char. Sintering of the iron-oxide at the high temperatures of interest was found to exert a considerable influence on the reactivity of wustite by virtue of altering the internal pore surface area available for the reaction. Sintering was found to be predominant for highly porous oxides and less of an influence on the denser ores. It was found using an indirect measurement technique that the rate constants for wustite reduction were higher for the porous iron-oxide than dense hematite ore at higher temperatures (> 1423 K). Such an indirect mode of measurement was used to minimize the influence of sintering of the porous oxide at these temperatures.

  15. Suspension Hydrogen Reduction of Iron Oxide Concentrates

    SciTech Connect (OSTI)

    H.Y. Sohn

    2008-03-31

    The objective of the project is to develop a new ironmaking technology based on hydrogen and fine iron oxide concentrates in a suspension reduction process. The ultimate objective of the new technology is to replace the blast furnace and to drastically reduce CO2 emissions in the steel industry. The goals of this phase of development are; the performance of detailed material and energy balances, thermochemical and equilibrium calculations for sulfur and phosphorus impurities, the determination of the complete kinetics of hydrogen reduction and bench-scale testing of the suspension reduction process using a large laboratory flash reactor.

  16. Nitrogen oxides storage catalysts containing cobalt

    DOE Patents [OSTI]

    Lauterbach, Jochen (Newark, DE); Snively, Christopher M. (Clarks Summit, PA); Vijay, Rohit (Annandale, NJ); Hendershot, Reed (Breinigsville, PA); Feist, Ben (Newark, DE)

    2010-10-12

    Nitrogen oxides (NO.sub.x) storage catalysts comprising cobalt and barium with a lean NO.sub.x storage ratio of 1.3 or greater. The NO.sub.x storage catalysts can be used to reduce NO.sub.x emissions from diesel or gas combustion engines by contacting the catalysts with the exhaust gas from the engines. The NO.sub.x storage catalysts can be one of the active components of a catalytic converter, which is used to treat exhaust gas from such engines.

  17. Emission control cost-effectiveness of alternative-fuel vehicles

    SciTech Connect (OSTI)

    Wang, Q.; Sperling, D.; Olmstead, J.

    1993-06-14

    Although various legislation and regulations have been adopted to promote the use of alternative-fuel vehicles for curbing urban air pollution problems, there is a lack of systematic comparisons of emission control cost-effectiveness among various alternative-fuel vehicle types. In this paper, life-cycle emission reductions and life-cycle costs were estimated for passenger cars fueled with methanol, ethanol, liquefied petroleum gas, compressed natural gas, and electricity. Vehicle emission estimates included both exhaust and evaporative emissions for air pollutants of hydrocarbon, carbon monoxide, nitrogen oxides, and air-toxic pollutants of benzene, formaldehyde, 1,3-butadiene, and acetaldehyde. Vehicle life-cycle cost estimates accounted for vehicle purchase prices, vehicle life, fuel costs, and vehicle maintenance costs. Emission control cost-effectiveness presented in dollars per ton of emission reduction was calculated for each alternative-fuel vehicle types from the estimated vehicle life-cycle emission reductions and costs. Among various alternative-fuel vehicle types, compressed natural gas vehicles are the most cost-effective vehicle type in controlling vehicle emissions. Dedicated methanol vehicles are the next most cost-effective vehicle type. The cost-effectiveness of electric vehicles depends on improvements in electric vehicle battery technology. With low-cost, high-performance batteries, electric vehicles are more cost-effective than methanol, ethanol, and liquified petroleum gas vehicles.

  18. Emissions Benefits of Distributed Generation in the Texas Market

    SciTech Connect (OSTI)

    Hadley, SW

    2005-06-16

    One potential benefit of distributed generation (DG) is a net reduction in air emissions. While DG will produce emissions, most notably carbon dioxide and nitrogen oxides, the power it displaces might have produced more. This study used a system dispatch model developed at Oak Ridge National Laboratory to simulate the 2012 Texas power market with and without DG. This study compares the reduction in system emissions to the emissions from the DG to determine the net savings. Some of the major findings are that 85% of the electricity displaced by DG during peak hours will be simple cycle natural gas, either steam or combustion turbine. Even with DG running as baseload, 57% of electricity displaced will be simple cycle natural gas. Despite the retirement of some gas-fired steam units and the construction of many new gas turbine and combined cycle units, the marginal emissions from the system remain quite high (1.4 lb NO{sub x}/MWh on peak and 1.1 lb NO{sub x}/MWh baseload) compared to projected DG emissions. Consequently, additions of DG capacity will reduce emissions in Texas from power generation in 2012. Using the DG exhaust heat for combined heat and power provides an even greater benefit, since it eliminates further boiler emissions while adding none over what would be produced while generating electricity. Further studies are warranted concerning the robustness of the result with changes in fuel prices, demands, and mixes of power generating technology.

  19. Investigation on Nitric Oxide and Soot of Biodiesel and Conventional Diesel using a Medium Duty Diesel Engine 

    E-Print Network [OSTI]

    Song, Hoseok

    2012-07-16

    Biodiesel has been suggested as an alternative fuel to the petroleum diesel fuel. It beneficially reduces regulated emission gases, but increases NOx (nitric oxide and nitrogen dioxide) Thus, the increase in NOx is the ...

  20. Sources of air pollution in a region of oil and gas exploration downwind of a large city

    E-Print Network [OSTI]

    2015-01-01

    Oxidation 2. from oil and gas development infrastructure (pollution in a region of oil and gas exploration downwind ofozone. Reactivities suggest oil and gas emissions contribute

  1. NEPTUNIUM OXIDE PROCESSING

    SciTech Connect (OSTI)

    Jordan, J; Watkins, R; Hensel, S

    2009-05-27

    The Savannah River Site's HB-Line Facility completed a campaign in which fifty nine cans of neptunium oxide were produced and shipped to the Idaho National Laboratory in the 9975 shipping container. The neptunium campaign was divided into two parts: Part 1 which consisted of oxide made from H-Canyon neptunium solution which did not require any processing prior to conversion into an oxide, and Part 2 which consisted of oxide made from additional H-Canyon neptunium solutions which required processing to purify the solution prior to conversion into an oxide. The neptunium was received as a nitrate solution and converted to oxide through ion-exchange column extraction, precipitation, and calcination. Numerous processing challenges were encountered in order make a final neptunium oxide product that could be shipped in a 9975 shipping container. Among the challenges overcome was the issue of scale: translating lab scale production into full facility production. The balance between processing efficiency and product quality assurance was addressed during this campaign. Lessons learned from these challenges are applicable to other processing projects.

  2. Ethane and n-butane oxidation over supported vanadium oxide catalysts: An in situ UV-visible diffuse reflectance spectroscopic investigation

    SciTech Connect (OSTI)

    Gao, X.; Banares, M.A.; Wachs, I.E.

    1999-12-10

    The coordination/oxidation states of surface vanadium oxide species on several oxide supports (Al{sub 2}O{sub 3}, ZrO{sub 2}, SiO{sub 2}) during ethane and n-butane oxidation were examined by in situ UV-vis diffuse reflectance spectroscopy (DRS). Only a small amount of the surface V(V)cations are reduced to V(IV)/V(III) cations under present steady-state reaction conditions. The extents of reduction of the surface V(V) species are a strong function of the specific oxide support, V{sub 2}O{sub 5}/ZrO{sub 2} {gt} V{sub 2}O{sub 5}/Al{sub 2}O{sub 5}/Al{sub 2}O{sub 3} {gt} V{sub 2}O{sub 5}/SiO{sub 2}, and also correlate with their reactivities (turnover frequencies) for ethane and n-butane oxidation reactions. For ZrO{sub 2}-supported samples, the polymerized surface vanadia species were found to be more easily reduced than the isolated surface vanadia species in reducing environments (i.e., ethane or n-butane in He), but no significant differences in the extents of reduction were observed under present steady-state reaction conditions (i.e., ethane/O{sub 2}/He or n-butane/O{sub 2}/He). This observation is also consistent with the ethane oxidation catalytic study, which revealed that the polymerization degree, the domain size, of the surface vanadia species does not appear to significantly affect the reactivity of the supported vanadia catalysts for ethane oxidation.

  3. Nanoparticle Emissions from Internal Combustion Engines | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanoparticle Emissions from Internal Combustion Engines Nanoparticle Emissions from Internal Combustion Engines 2004 Diesel Engine Emissions Reduction (DEER) Conference...

  4. Spontaneous Emission Rate Enhancement Using Optical Antennas

    E-Print Network [OSTI]

    Kumar, Nikhil

    2013-01-01

    of  Spontaneous  Emission  in  a  Semiconductor  nanoLED,”  emission  rate  enhancement  using  the  Fluorescent  Emission  by  Lattice   Resonances  in  

  5. Uniform 2 nm gold nanoparticles supported on iron oxides as active catalysts for CO oxidation reaction: Structure-activity relationship

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guo, Yu; Senanayake, Sanjaya; Gu, Dong; Jin, Zhao; Du, Pei -Pei; Si, Rui; Xu, Wen -Qian; Huang, Yu -Ying; Tao, Jing; Song, Qi -Sheng; et al

    2015-01-12

    Uniform Au nanoparticles (~2 nm) with narrow size-distribution (standard deviation: 0.5–0.6 nm) supported on both hydroxylated (Fe_OH) and dehydrated iron oxide (Fe_O) have been prepared by either deposition-precipitation (DP) or colloidal-deposition (CD) methods. Different structural and textural characterizations were applied to the dried, calcined and used gold-iron oxide samples. The transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) described the high homogeneity in the supported Au nanoparticles. The ex-situ and in-situ X-ray absorption fine structure (XAFS) characterization monitored the electronic and short-range local structure of active gold species. The synchrotron-based in-situ X-ray diffraction (XRD), together with the corresponding temperature-programmed reductionmore »by hydrogen (H?-TPR), indicated a structural evolution of the iron-oxide supports, correlating to their reducibility. An inverse order of catalytic activity between DP (Au/Fe_OH Au/Fe_O) was observed. Effective gold-support interaction results in a high activity for gold nanoparticles, locally generated by the sintering of dispersed Au atoms on the oxide support in the DP synthesis, while a hydroxylated surface favors the reactivity of externally introduced Au nanoparticles on Fe_OH support for the CD approach. This work reveals why differences in the synthetic protocol translate to differences in the catalytic performance of Au/FeOx catalysts with very similar structural characteristics in CO oxidation.« less

  6. Fuel reactivity effects on the efficiency and operational window of dual-fuel compression ignition engines

    SciTech Connect (OSTI)

    Splitter, Derek A [ORNL; Reitz, Rolf [University of Wisconsin

    2014-01-01

    Fuel reactivity effects on the efficiency and operational window of dual-fuel compression ignition engines

  7. Systems and methods for controlling diesel engine emissions

    DOE Patents [OSTI]

    Webb, Cynthia Chaffin; Weber, Phillip Anthony; Khair, Magdi K.

    2004-06-01

    Systems and methods for controlling diesel engine emissions, including, for example, oxides of nitrogen emissions, particulate matter emissions, and the like. The emission control system according to this invention is provided in the exhaust passageway of a diesel engine and includes a catalyst-based particulate filter; and first and second lean NO.sub.x trap systems coupled to the catalyst-based particulate filter. The first and second lean NO.sub.x trap systems are arranged in a parallel flow configuration with each other. Each of the first and second lean NO.sub.x trap systems include a carbon monoxide generating catalyst device, a sulfur trap device, a lean NO.sub.x device, a supplemental fuel injector device, and a plurality of flow diverter devices.

  8. Contraction & Convergence: UK carbon emissions and the

    E-Print Network [OSTI]

    Watson, Andrew

    the EU's emissions trading scheme will do little to mitigate carbon emissions 4) Aviation growth must emissions. Keywords Contraction & Convergence; aviation; emissions trading; passengers; carbon dioxide #12

  9. Inhalation of Vehicle Emissions in Urban Environments

    E-Print Network [OSTI]

    Marshall, Julian David

    2005-01-01

    distances between vehicles, and emissions from neighboringgasoline on motor vehicle emissions. 2. 6 Volatile organicgasoline on motor vehicle emissions. 1. Mass emission rates.

  10. Reactivity of Pt/BaO/Al?O? for NOx Storage/Reduction: Effects of Pt and Ba Loading

    SciTech Connect (OSTI)

    Kwak, Ja Hun; Kim, Do Heui; Szanyi, Janos; Szailer, Tamas; Peden, Charles HF

    2005-02-01

    The control of NOx (NO and NO?) emissions from combustion processes, including vehicle engines, remains a challenge particularly for systems operating at high air-to-fuel ratios (so-called ‘lean’ combustion). The current “3-way”, precious metal-based catalytic converters are unable to selectively reduce NOx with reductants (e.g., CO and residual unburned hydrocarbon) in the presence of excess O?. In the last few years, worldwide environmental regulations regarding NOx emissions from diesel engines (inherently operated ‘lean’) have become significantly more stringent resulting in considerable research efforts to reduce NOx under the highly oxidizing engine operation conditions. Urea selective catalytic reduction (SCR) and non-thermal plasma assisted NOx reduction have been explored as possible technologies. In recent years, alkaline and alkaline earth oxide-based NOx storage/reduction catalysts (especially BaO/Al?O?) have been developed, and have shown promising activities for lean-NOx reduction [1,2].

  11. Laboratory evaluation of a reactive baffle approach to NOx control. Final technical report, February-April 1993

    SciTech Connect (OSTI)

    Nelson, S.G.; Van Stone, D.A.; Little, R.C.; Peterson, R.A.

    1993-09-01

    Vermiculite, vermiculite coated with magnesia, and activated carbon sorbents have successfully removed NOx (and carbon monoxide and particles) from combustion exhausts in a subscale drone jet engine test cell (JETC), but back pressure so generated elevated the temperature of the JETC and of the engine. The objective of this effort was to explore the feasibility of locating the sorbents in the face of the duct or of baffles parallel to the direction of flow within the ducts. Jet engine test cells (JETCs) are stationary sources of oxides of nitrogen (NOx), soot, and unburned or partially oxidized carbon compounds that form as byproducts of imperfect combustion. Regulation of NOx emissions is being considered for implementation under the Clean Air Act Amendments of 1990. Several principles have been examined as candidate methods to control NOx emissions from JETCs.

  12. In Situ Formation Of Reactive Barriers For Pollution Control

    DOE Patents [OSTI]

    Gilmore, Tyler J. (Pasco, WA); Riley, Robert G. (West Richland, WA)

    2004-04-27

    A method of treating soil contamination by forming one or more zones of oxidized material in the path of percolating groundwater is disclosed. The zone or barrier region is formed by delivering an oxidizing agent into the ground for reaction with an existing soil component. The oxidizing agent modifies the existing soil component creating the oxidized zone. Subsequently when soil contaminates migrate into the zone, the oxidized material is available to react with the contaminates and degrade them into benign products. The existing soil component can be an oxidizable mineral such as manganese, and the oxidizing agent can be ozone gas or hydrogen peroxide. Soil contaminates can be volatile organic compounds. Oxidized barriers can be used single or in combination with other barriers.

  13. Emission Abatement System

    DOE Patents [OSTI]

    Bromberg, Leslie (Sharon, MA); Cohn, Daniel R. (Chestnut Hill, MA); Rabinovich, Alexander (Swampscott, MA)

    2003-05-13

    Emission abatement system. The system includes a source of emissions and a catalyst for receiving the emissions. Suitable catalysts are absorber catalysts and selective catalytic reduction catalysts. A plasma fuel converter generates a reducing gas from a fuel source and is connected to deliver the reducing gas into contact with the absorber catalyst for regenerating the catalyst. A preferred reducing gas is a hydrogen rich gas and a preferred plasma fuel converter is a plasmatron. It is also preferred that the absorber catalyst be adapted for absorbing NO.sub.x.

  14. Oxidative Tritium Decontamination System

    DOE Patents [OSTI]

    Gentile, Charles A. (Plainsboro, NJ), Guttadora, Gregory L. (Highland Park, NJ), Parker, John J. (Medford, NJ)

    2006-02-07

    The Oxidative Tritium Decontamination System, OTDS, provides a method and apparatus for reduction of tritium surface contamination on various items. The OTDS employs ozone gas as oxidizing agent to convert elemental tritium to tritium oxide. Tritium oxide vapor and excess ozone gas is purged from the OTDS, for discharge to atmosphere or transport to further process. An effluent stream is subjected to a catalytic process for the decomposition of excess ozone to diatomic oxygen. One of two configurations of the OTDS is employed: dynamic apparatus equipped with agitation mechanism and large volumetric capacity for decontamination of light items, or static apparatus equipped with pressurization and evacuation capability for decontamination of heavier, delicate, and/or valuable items.

  15. EPA Emissions | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EPA Emissions ORNL research informs new EPA emissions standards July 11, 2014 Oak Ridge National Laboratory (ORNL) has developed a streamlined method for determining vehicle...

  16. Recent VOC Control Test Data for a Reactive VOC Converter- Scrubber System for Non-Thermal Control of VOCs 

    E-Print Network [OSTI]

    McGinness, M.

    2003-01-01

    plug and blind off the media or kill the microorganisms if the emissions carry metals or organics that act as biocides at elevated concentrations (Webster, 1999). Bio-trickling filters and stationary air biofilters use fixed microorganisms... but the bio-trickling filters use a flowing water phase. Bio-scrubbers use a suspended biomass and a flowing water phase. Biofilters do not produce CO, NOx, and only produce small amounts of C02. Incineration They typically oxidize VOHAPs to C02...

  17. Emissions of Transport Refrigeration Units with CARB Diesel, Gas-to-Liquid Diesel, and Emissions Control Devices

    SciTech Connect (OSTI)

    Barnitt, R. A.; Chernich, D.; Burnitzki, M.; Oshinuga, A.; Miyasato, M.; Lucht, E.; van der Merwe, D.; Schaberg, P.

    2010-05-01

    A novel in situ method was used to measure emissions and fuel consumption of transport refrigeration units (TRUs). The test matrix included two fuels, two exhaust configurations, and two TRU engine operating speeds. Test fuels were California ultra low sulfur diesel and gas-to-liquid (GTL) diesel. Exhaust configurations were a stock muffler and a Thermo King pDPF diesel particulate filter. The TRU engine operating speeds were high and low, controlled by the TRU user interface. Results indicate that GTL diesel fuel reduces all regulated emissions at high and low engine speeds. Application of a Thermo King pDPF reduced regulated emissions, sometimes almost entirely. The application of both GTL diesel and a Thermo King pDPF reduced regulated emissions at high engine speed, but showed an increase in oxides of nitrogen at low engine speed.

  18. Controlled CO preferential oxidation

    DOE Patents [OSTI]

    Meltser, M.A.; Hoch, M.M.

    1997-06-10

    Method is described for controlling the supply of air to a PROX (PReferential OXidation for CO cleanup) reactor for the preferential oxidation in the presence of hydrogen wherein the concentration of the hydrogen entering and exiting the PROX reactor is monitored, the difference there between correlated to the amount of air needed to minimize such difference, and based thereon the air supply to the PROX reactor adjusted to provide such amount and minimize such difference. 2 figs.

  19. Oxidation of zirconium alloys in 2.5 kPa water vapor for tritium readiness.

    SciTech Connect (OSTI)

    Mills, Bernice E.

    2007-11-01

    A more reactive liner material is needed for use as liner and cruciform material in tritium producing burnable absorber rods (TPBAR) in commercial light water nuclear reactors (CLWR). The function of these components is to convert any water that is released from the Li-6 enriched lithium aluminate breeder material to oxide and hydrogen that can be gettered, thus minimizing the permeation of tritium into the reactor coolant. Fourteen zirconium alloys were exposed to 2.5 kPa water vapor in a helium stream at 300 C over a period of up to 35 days. Experimental alloys with aluminum, yttrium, vanadium, titanium, and scandium, some of which also included ternaries with nickel, were included along with a high nitrogen impurity alloy and the commercial alloy Zircaloy-2. They displayed a reactivity range of almost 500, with Zircaloy-2 being the least reactive.

  20. CARBON DIOXIDE EMISSION REDUCTION

    E-Print Network [OSTI]

    Delaware, University of

    ........................................................................................ 21 2.3.5 Pulp and paper industry Technologies and Measures in Pulp and Paper IndustryCARBON DIOXIDE EMISSION REDUCTION TECHNOLOGIES AND MEASURES IN US INDUSTRIAL SECTOR FINAL REPORT

  1. Gas Turbine Emissions 

    E-Print Network [OSTI]

    Frederick, J. D.

    1990-01-01

    Historically, preliminary design information regarding gas turbine emissions has been unreliable, particularly for facilities using steam injection and other forms of Best Available Control Technology (BACT). This was probably attributed to the lack...

  2. Photon enhanced thermionic emission

    DOE Patents [OSTI]

    Schwede, Jared; Melosh, Nicholas; Shen, Zhixun

    2014-10-07

    Photon Enhanced Thermionic Emission (PETE) is exploited to provide improved efficiency for radiant energy conversion. A hot (greater than 200.degree. C.) semiconductor cathode is illuminated such that it emits electrons. Because the cathode is hot, significantly more electrons are emitted than would be emitted from a room temperature (or colder) cathode under the same illumination conditions. As a result of this increased electron emission, the energy conversion efficiency can be significantly increased relative to a conventional photovoltaic device. In PETE, the cathode electrons can be (and typically are) thermalized with respect to the cathode. As a result, PETE does not rely on emission of non-thermalized electrons, and is significantly easier to implement than hot-carrier emission approaches.

  3. Apparatus and method for stabilization or oxidation of polymeric materials

    DOE Patents [OSTI]

    Paulauskas, Felix L. (Knoxville, TN) [Knoxville, TN; Sherman, Daniel M. (Knoxville, TN) [Knoxville, TN

    2010-01-19

    An apparatus for treating polymeric materials comprises a treatment chamber adapted to maintain a selected atmosphere at a selected temperature; a means for supporting the polymeric material within the chamber; and, a source of ozone-containing gas, which decomposes at the selected temperature yielding at least one reactive oxidative species whereby the polymer is stabilized and cross linked through exposure to the oxidative species in the chamber at the selected temperature. The ozone may be generated by a plasma discharge or by various chemical processes. The apparatus may be configured for either batch-type or continuous-type processing. The apparatus and method are especially useful for preparing polymer fibers, particularly PAN fibers, for later carbonization treatments as well as to make flame-retardant fabrics.

  4. Field emission electron source

    DOE Patents [OSTI]

    Zettl, Alexander Karlwalter (Kensington, CA); Cohen, Marvin Lou (Berkeley, CA)

    2000-01-01

    A novel field emitter material, field emission electron source, and commercially feasible fabrication method is described. The inventive field emission electron source produces reliable electron currents of up to 400 mA/cm.sup.2 at 200 volts. The emitter is robust and the current it produces is not sensitive to variability of vacuum or the distance between the emitter tip and the cathode. The novel emitter has a sharp turn-on near 100 volts.

  5. 468 IEEE ELECTRON DEVICE LETTERS, VOL. EDL-7, NO. 8, AUGUST 1986 Low-Energy Ion Beam Oxidation of Silicon

    E-Print Network [OSTI]

    Fossum, Eric R.

    468 IEEE ELECTRON DEVICE LETTERS, VOL. EDL-7, NO. 8, AUGUST 1986 Low-Energy Ion Beam Oxidation and neutralized by a thermionic filament whose electron emission is adjusted to yield a net neutral beam of Silicon Abstract-A low-energyoxygen ion beam with energy below 100 eV has been applied to the oxidation

  6. Structure of graphene oxide dispersed with ZnO nanoparticles

    SciTech Connect (OSTI)

    Yadav, Rishikesh Pandey, Devendra K.; Khare, P. S.

    2014-10-15

    Graphene has been proposed as a promising two-dimensional nanomaterial with outstanding electronic, optical, thermal and mechanical properties for many applications. In present work a process of dispersion of graphene oxide with ZnO nanoparticles in ethanol solution with different pH values, have been studied. Samples have been characterized by XRD, SEM, PL, UV-visible spectroscopy and particles size measurement. The results analysis indicates overall improved emission spectrum. It has been observed that the average diameter of RGO (Reduced Graphene Oxide) decreases in presence of ZnO nanoparticles from 3.8?m to 0.41?m.

  7. Allocation of emission rights Economic incentives for emission

    E-Print Network [OSTI]

    Allocation of emission rights Economic incentives for emission reductions of CO2 in developing of Physical Resource Theory #12;CO2 per capita emissions in 1999 0 1 2 3 4 5 6 Population PercapitaCO2emissions(tonC/cap/yr) AFRICA CPA FAR EAST MEA OCEANIA WEU NAM FSU/ EEU WORLD AVERAGE LAM Department

  8. A HISTORY OF ON-ROAD EMISSIONS AND EMISSIONS DETERIORATION

    E-Print Network [OSTI]

    Denver, University of

    emissions relative to the newer. · Why? IM240 is registration based, every old car is supposed to be testedA HISTORY OF ON-ROAD EMISSIONS AND EMISSIONS DETERIORATION www.feat.biochem.du.edu www of Denver 2101 E. Wesley Ave. Denver, CO 80208 303 871-2580.. FAX 2587 dstedman@du.edu #12;Emissions

  9. Wildland fire emissions, carbon, and climate: Emission factors Shawn Urbanski

    E-Print Network [OSTI]

    Wildland fire emissions, carbon, and climate: Emission factors Shawn Urbanski Missoula Fire burning Greenhouse gases Emission factors a b s t r a c t While the vast majority of carbon emitted mixture of gases and aerosols. Primary emissions include sig- nificant amounts of CH4 and aerosol (organic

  10. Influence of cluster–support interactions on reactivity of size-selected NbxOy clusters

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nakayama, Miki; Xue, Meng; An, Wei; Liu, Ping; White, Michael G.

    2015-04-17

    Size-selected niobium oxide nanoclusters (Nb3O5, Nb3O7, Nb4O7, and Nb4O10) were deposited at room temperature onto a Cu(111) surface and a thin film of Cu2O on Cu(111), and their interfacial electronic interactions and reactivity toward water dissociation were examined. These clusters were specifically chosen to elucidate the effects of the oxidation state of the metal centers; Nb3O5 and Nb4O7 are the reduced counterparts of Nb3O7 and Nb4O10, respectively. From two-photon photoemission spectroscopy (2PPE) measurements, we found that the work function increases upon cluster adsorption in all cases, indicating a negative interfacial dipole moment with the positive end pointing into the surface.more »The amount of increase was greater for the clusters with more metal centers and higher oxidation state. Additional analysis with DFT calculations of the clusters on Cu(111) indicated that the reduced clusters donate electrons to the substrate, indicating that the intrinsic cluster dipole moment makes a larger contribution to the overall interfacial dipole moment than charge transfer. X-ray photoelectron spectroscopy (XPS) measurements showed that the Nb atoms of Nb3O7 and Nb4O10 are primarily Nb5+ on Cu(111), while for the reduced Nb3O5 and Nb4O7 clusters, a mixture of oxidation states was observed on Cu(111). Temperature-programmed desorption (TPD) experiments with D2O showed that water dissociation occurred on all systems except for the oxidized Nb3O7 and Nb4O10 clusters on the Cu2O film. A comparison of our XPS and TPD results suggests that Nb5+ cations associated with Nb=O terminal groups act as Lewis acid sites which are key for water binding and subsequent dissociation. TPD measurements of 2-propanol dehydration also show that the clusters active toward water dissociation are indeed acidic. DFT calculations of water dissociation on Nb3O7 support our TPD results, but the use of bulk Cu2O(111) as a model for the Cu2O film merits future scrutiny in terms of interfacial charge transfer. The combination of our experimental and theoretical results suggests that both Lewis acidity and metal reducibility are important for water dissociation.« less

  11. Isolation of Metals from Liquid Wastes: Reactive Scavenging in Turbulent Thermal Reactors

    SciTech Connect (OSTI)

    William Linak

    2004-12-16

    Sorption of cesium and strontium on kaolinite powders was investigated as a means to minimize the emissions of these metals during certain high temperature processes currently being developed to isolate and dispose of radiological and mixed wastes. In this work, non-radioactive aqueous cesium acetate or strontium acetate was atomized down the center of a natural gas flame supported on a variable-swirl burner in a refractory-lined laboratory-scale combustion facility. Kaolinite powder was injected at a post-flame location in the combustor. Cesium readily vaporizes in the high temperature regions of the combustor, but was reactively scavenged onto dispersed kaolinite. Global sorption mechanisms of cesium vapor on kaolinite were quantified, and are related to those available in the literature for sodium and lead. Both metal adsorption and substrate deactivation steps are important, and so there is an optimum temperature, between 1400 and 1500 K, at which maximum sorption occurs. The presence of chlorine inhibits cesium sorption. In contrast to cesium, and in the absence of chlorine, strontium was only partially vaporized and was, therefore, only partially scavengeable. The strontium data did not allow quantification of global kinetic mechanisms of interaction, although equilibrium arguments provided insight into the effects of chlorine on strontium sorption. These results have implications for the use of sorbents to control cesium and strontium emissions during high temperature waste processing including incineration and vitrification.

  12. Power Plant Emission Reductions Using a Generation Performance Standard

    Reports and Publications (EIA)

    2001-01-01

    In an earlier analysis completed in response to a request received from Representative David McIntosh, Chairman of the Subcommittee on National Economic Growth, Natural Resources, and Regulatory Affairs, the Energy Information Administration analyzed the impacts of power sector caps on nitrogen oxides, sulfur dioxide, and carbon dioxide emissions, assuming a policy instrument patterned after the sulfur dioxide allowance program created in the Clean Air Act Amendments of 1990. This paper compares the results of that work with the results of an analysis that assumes the use of a dynamic generation performance standard as an instrument for reducing carbon dioxide emissions.

  13. Band-Gap Engineering at a Semiconductor-Crystalline Oxide Interface

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jahangir-Moghadam, Mohammadreza; Ahmadi-Majlan, Kamyar; Shen, Xuan; Droubay, Timothy; Bowden, Mark; Chrysler, Matthew; Su, Dong; Chambers, Scott A.; Ngai, Joseph H.

    2015-02-09

    The epitaxial growth of crystalline oxides on semiconductors provides a pathway to introduce new functionalities to semiconductor devices. Key to integrating the functionalities of oxides onto semiconductors is controlling the band alignment at interfaces between the two materials. Here we apply principles of band gap engineering traditionally used at heterojunctions between conventional semiconductors to control the band offset between a single crystalline oxide and a semiconductor. Reactive molecular beam epitaxy is used to realize atomically abrupt and structurally coherent interfaces between SrZrxTi1-xO? and Ge, in which the band gap of the former is enhanced with Zr content x. We presentmore »structural and electrical characterization of SrZrxTi1-xO?-Ge heterojunctions and demonstrate a type-I band offset can be achieved. These results demonstrate that band gap engineering can be exploited to realize functional semiconductor crystalline oxide heterojunctions.« less

  14. Constraints on Carbon Monoxide Emissions Based on Tall Tower Measurements in the U.S. Upper Midwest

    E-Print Network [OSTI]

    Minnesota, University of

    Constraints on Carbon Monoxide Emissions Based on Tall Tower Measurements in the U.S. Upper Midwest-up emission estimates in response to top-down constraints. 1. INTRODUCTION Carbon monoxide (CO) is a precursor is emitted during the combustion of biomass and fossil fuel and produced photochemically from the oxidation

  15. Options for Control of Reactive Power by Distributed Photovoltaic Generators

    E-Print Network [OSTI]

    Sulc, Petr; Backhaus, Scott; Chertkov, Michael

    2010-01-01

    High penetration levels of distributed photovoltaic(PV) generation on an electrical distribution circuit present several challenges and opportunities for distribution utilities. Rapidly varying irradiance conditions may cause voltage sags and swells that cannot be compensated by slowly responding utility equipment resulting in a degradation of power quality. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We discuss and compare via simulation various design options for control systems to manage the reactive power generated by these inverters. An important design de...

  16. Effect of superbanana diffusion on fusion reactivity in stellarators

    SciTech Connect (OSTI)

    Hinton, Fred L. [Center for Astrophysics and Space Sciences, University of California, San Diego, La Jolla, California 92093-0424 (United States)

    2012-08-15

    Fusion reactivity is usually obtained using a Maxwellian distribution. However, energy-dependent radial diffusion can modify the energy distribution. Superbanana diffusion is energy-dependent and occurs in nonaxisymmetric magnetic confinement devices, such as stellarators, because of ripple-trapped particles which can take large steps between collisions. In this paper, the D-T fusion reactivity is calculated using a non-Maxwellian energy distribution obtained by solving the Fokker-Planck equation numerically, including radial superbanana diffusion as well as energy scattering. The ions in the tail of the distribution, with energies larger than thermal, which are most needed for fusion, are depleted by superbanana diffusion. In this paper, it is shown that the D-T fusion reactivity is reduced by tail ion depletion due to superbanana diffusion, by roughly a factor of 0.5 for the parameters used in the calculation.

  17. Continuum Radio Emission and Diagnostics

    E-Print Network [OSTI]

    White, Stephen

    Continuum Radio Emission and Diagnostics The Sun is a strong radio source (one of the first objects discusses incoher­ ent emission from thermal plasma in the non­flaring so­ lar atmosphere; other relevant material may be found in Coherent Plasma Emission and in Solar Flares: Radio Bursts. Emission mechanisms

  18. Volcanic gas emissions and their effect on ambient air character

    SciTech Connect (OSTI)

    Sutton, A.J.; Elias, T.

    1994-01-01

    This bibliography was assembled to service an agreement between Department of Energy and the USGS to provide a body of references and useful annotations for understanding background gas emissions from Kilauea volcano. The current East Rift Zone (ERZ) eruption of Kilauea releases as much as 500,000 metric tonnes of SO{sub 2} annually, along with lesser amounts of other chemically and radiatively active species including H{sub 2}S, HCl, and HF. Primary degassing locations on Kilauea are located in the summit caldera and along the middle ERZ. The effects of these emissions on ambient air character are a complex function of chemical reactivity, source geometry and effusivity, and local meteorology. Because of this complexity, we organized the bibliography into three main sections: (1) characterizing gases as they leave the edifice; (2) characterizing gases and chemical reaction products away from degassing sources; and (3) Hawaii Island meteorology.

  19. Progress Update: Creating Mobile Emission Reduction Credits

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Emission Reduction Specialists

  20. Increasing Class C fly ash reduces alkali silica reactivity

    SciTech Connect (OSTI)

    Hicks, J.K.

    2007-07-01

    Contrary to earlier studies, it has been found that incremental additions of Class C fly ash do reduce alkali silica reactivity (ASR), in highly reactive, high alkali concrete mixes. AST can be further reduced by substituting 5% metakaolin or silica fume for the aggregate in concrete mixes with high (more than 30%) Class C fly ash substitution. The paper reports results of studies using Class C fly ash from the Labadie Station plant in Missouri which typically has between 1.3 and 1.45% available alkalis by ASTM C311. 7 figs.

  1. The relative reactivity of formic esters with aromatic amines

    E-Print Network [OSTI]

    Markley, Max C.

    1922-01-01

    at 100° are as follows- Ester used Percent yield Methyl formate ' 3% Ethyl M 81 Propyl " 92 Butyl " 80 Sec,octyl n 10 ( 15 ) PROPYL P OREATE W ITH SEVERAL A MINES The next move was to secure data on the relative reactivity of the amines... at 100° are as follows- Ester used Percent yield Methyl formate ' 3% Ethyl M 81 Propyl " 92 Butyl " 80 Sec,octyl n 10 ( 15 ) PROPYL P OREATE W ITH SEVERAL A MINES The next move was to secure data on the relative reactivity of the amines...

  2. Oxidation of Mercury in Products of Coal Combustion

    SciTech Connect (OSTI)

    Peter Walsh; Giang Tong; Neeles Bhopatkar; Thomas Gale; George Blankenship; Conrad Ingram; Selasi Blavo Tesfamariam Mehreteab; Victor Banjoko; Yohannes Ghirmazion; Heng Ban; April Sibley

    2009-09-14

    Laboratory measurements of mercury oxidation during selective catalytic reduction (SCR) of nitric oxide, simulation of pilot-scale measurements of mercury oxidation and adsorption by unburned carbon and fly ash, and synthesis of new materials for simultaneous oxidation and adsorption of mercury, were performed in support of the development of technology for control of mercury emissions from coal-fired boilers and furnaces. Conversion of gas-phase mercury from the elemental state to water-soluble oxidized form (HgCl{sub 2}) enables removal of mercury during wet flue gas desulfurization. The increase in mercury oxidation in a monolithic V{sub 2}O{sub 5}-WO{sub 3}/TiO{sub 2} SCR catalyst with increasing HCl at low levels of HCl (< 10 ppmv) and decrease in mercury oxidation with increasing NH{sub 3}/NO ratio during SCR were consistent with results of previous work by others. The most significant finding of the present work was the inhibition of mercury oxidation in the presence of CO during SCR of NO at low levels of HCl. In the presence of 2 ppmv HCl, expected in combustion products from some Powder River Basin coals, an increase in CO from 0 to 50 ppmv reduced the extent of mercury oxidation from 24 {+-} 3 to 1 {+-} 4%. Further increase in CO to 100 ppmv completely suppressed mercury oxidation. In the presence of 11-12 ppmv HCl, increasing CO from 0 to {approx}120 ppmv reduced mercury oxidation from {approx}70% to 50%. Conversion of SO{sub 2} to sulfate also decreased with increasing NH{sub 3}/NO ratio, but the effects of HCl and CO in flue gas on SO{sub 2} oxidation were unclear. Oxidation and adsorption of mercury by unburned carbon and fly ash enables mercury removal in a particulate control device. A chemical kinetic mechanism consisting of nine homogeneous and heterogeneous reactions for mercury oxidation and removal was developed to interpret pilot-scale measurements of mercury oxidation and adsorption by unburned carbon and fly ash in experiments at pilot scale, burning bituminous coals (Gale, 2006) and blends of bituminous coals with Powder River Basin coal (Gale, 2005). The removal of mercury by fly ash and unburned carbon in the flue gas from combustion of the bituminous coals and blends was reproduced with satisfactory accuracy by the model. The enhancement of mercury capture in the presence of calcium (Gale, 2005) explained a synergistic effect of blending on mercury removal across the baghouse. The extent of mercury oxidation, on the other hand, was not so well described by the simulation, because of oversensitivity of the oxidation process in the model to the concentration of unburned carbon. Combined catalysts and sorbents for oxidation and removal of mercury from flue gas at low temperature were based on surfactant-templated silicas containing a transition metal and an organic functional group. The presence of both metal ions and organic groups within the pore structure of the materials is expected to impart to them the ability to simultaneously oxidize elemental mercury and adsorb the resulting oxidized mercury. Twelve mesoporous organosilicate catalysts/sorbents were synthesized, with and without metals (manganese, titanium, vanadium) and organic functional groups (aminopropyl, chloropropyl, mercaptopropyl). Measurement of mercury oxidation and adsorption by the candidate materials remains for future work.

  3. Multiple Species Reactive Chemical Transport in Groundwater: A Verification Exercise

    E-Print Network [OSTI]

    Narasimhan, T.N.

    2010-01-01

    oxidizing acidic sulfate leachate (Eh = 300 mY, pR = 4.1, SOthe tube at one end. This leachate also contains 185 ppm of

  4. Soft X-ray Spectroscopy Study of the Electronic Structure of Oxidized and Partially Oxidized Magnetite Nanoparticles

    SciTech Connect (OSTI)

    Gilbert, Benjamin; Katz, Jordan E.; Denlinger, Jonathan D.; Yin, Yadong; Falcone, Roger; Waychunas, Glenn A.

    2010-10-24

    The crystal structure of magnetite nanoparticles may be transformed to maghemite by complete oxidation, but under many relevant conditions the oxidation is partial, creating a mixed-valence material with structural and electronic properties that are poorly characterized. We used X-ray diffraction, Fe K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy, and soft X-ray absorption and emission spectroscopy to characterize the products of oxidizing uncoated and oleic acid-coated magnetite nanoparticles in air. The oxidization of uncoated magnetite nanoparticles creates a material that is structurally and electronically indistinguishable from maghemite. By contrast, while oxidized oleic acid-coated nanoparticles are also structurally indistinguishable from maghemite, Fe L-edge spectroscopy revealed the presence of interior reduced iron sites even after a 2-year period. We used X-ray emission spectroscopy at the O K-edge to study the valence bands (VB) of the iron oxide nanoparticles, using resonant excitation to remove the contributions from oxygen atoms in the ligands and from low-energy excitations that obscured the VB edge. The bonding in all nanoparticles was typical of maghemite, with no detectable VB states introduced by the long-lived, reduced-iron sites in the oleic acid-coated sample. However, O K-edge absorption spectroscopy observed a 0.2 eV shift in the position of the lowest unoccupied states in the coated sample, indicating an increase in the semiconductor band gap relative to bulk stoichiometric maghemite that was also observed by optical absorption spectroscopy. The results show that the ferrous iron sites within ferric iron oxide nanoparticles coated by an organic ligand can persist under ambient conditions with no evidence of a distinct interior phase and can exert an effect on the global electronic and optical properties of the material. This phenomenon resembles the band gap enlargement caused by electron accumulation in the conduction band of TiO2.

  5. Ethane oxidative dehydrogenation pathways on vanadium oxide catalysts

    SciTech Connect (OSTI)

    Argyle, Morris; Chen, Kaidong; Bell, Alexis T.; Iglesia, Enrique

    2001-12-10

    Kinetic and isotopic tracer and exchange measurements were used to determine the identity and reversibility of elementary steps involved in ethane oxidative dehydrogenation (ODH) on VOx/Al2O3 and VOx/ZrO2. C2H6-C2D6-O2 and C2H6-D2O-O2 react to form alkenes and COx without concurrent formation of C2H6-xDx orC2H4-xDx isotopomers, suggesting that C-H bond cleavage in ethane and ethene is an irreversible and kinetically relevant step in ODH and combustion reactions. Primary ethane ODH reactions show normal kinetic isotopic effects (kC-H/kC-D 2.4); similar values were measured for ethane and ethene combustion(1.9 and 2.8, respectively). 16O2-18O2-C2H6 reactions on supported V16Ox domains led to the initial appearance of 16O from the lattice in H2O, CO, and CO2, consistent with the involvement of lattice oxygen in C-H bond activation steps. Isotopic contents are similar in H2O, CO, and CO2, suggesting that ODH and combustion reactions use similar lattice oxygen sites. No 16O-18O isotopomer s were detected during reactions of 16O2-18O2-C2H6 mixtures, as expected if dissociative O2 chemisorption steps were irreversible. The alkyl species formed in these steps desorb irreversibly as ethene and the resulting O-H groups recombine to form H2O and reduced V centers in reversible desorption steps. These reduced V centers reoxidize by irreversible dissociative chemisorption of O2. A pseudo-steady state analysis of these elementary steps together with these reversibility assumptions led to a rate expression that accurately describes the observed inhibition of ODH rates by water and the measured kinetic dependence of ODH rates on C2H6 and O2 pressures. This kinetic analysis suggests that surface oxygen, OH groups, and oxygen vacancies are the most abundant reactive intermediates during ethane ODH on active VOx domains.

  6. Ethane oxidative dehydrogenation pathways on vanadium oxide catalysts

    SciTech Connect (OSTI)

    Argyle, Morris; Chen, Kaidong; Bell, Alexis T.; Iglesia, Enrique

    2001-12-10

    Kinetic and isotopic tracer and exchange measurements were used to determine the identity and reversibility of elementary steps involved in ethane oxidative dehydrogenation (ODH) on VOx/Al2O3 and VOx/ZrO2. C2H6-C2D6-O2 and C2H6-D2O-O2 react to form alkenes and COx without concurrent formation of C2H6-xDx orC2H4-xDx isotopomers, suggesting that C-H bond cleavage in ethane and ethene is an irreversible and kinetically relevant step in ODH and combustion reactions. Primary ethane ODH reactions show normal kinetic isotopic effects (kC-H/kC-D) 2.4; similar values were measured for ethane and ethene combustion(1.9 and 2.8, respectively). 16O2-18O2-C2H6 reactions on supported V16Ox domains led to the initial appearance of 16O from the lattice in H2O, CO, and CO2, consistent with the involvement of lattice oxygen in C-H bond activation steps. Isotopic contents are similar in H2O, CO, and CO2, suggesting that ODH and combustion reactions use similar lattice oxygen sites. No 16O-18O isotopomer s were detected during reactions of 16O2-18O2-C2H6 mixtures, as expected if dissociative O2 chemisorption steps were irreversible. The alkyl species formed in these steps desorb irreversibly as ethene and the resulting O-H groups recombine to form H2O and reduced V centers in reversible desorption steps. These reduced V centers reoxidize by irreversible dissociative chemisorption of O2. A pseudo-steady state analysis of these elementary steps together with these reversibility assumptions led to a rate expression that accurately describes the observed inhibition of ODH rates by water and the measured kinetic dependence of ODH rates on C2H6 and O2 pressures. This kinetic analysis suggests that surface oxygen, OH groups, and oxygen vacancies are the most abundant reactive intermediates during ethane ODH on active VOx domains.

  7. An embryo of protocell membrane: The capsule of graphene oxide

    E-Print Network [OSTI]

    Zhan Li; Chunmei Wang; Longlong Tian; Jing Bai; Yang Zhao; Xin Zhang; Shiwei Cao; Wei Qi; Hongdeng Qiu; Suomin Wang; Keliang Shi; Youwen Xu; Zhang Mingliang; Bo Liu; Huijun Yao; Jie Liu; Wangsuo Wu; Xiaoli Wang

    2014-11-12

    Many signs indicate that the graphene could widely occur on the early Earth. Here, we report a new theory that graphene might be an embryo of protocell membrane, and found several evidences. Firstly, the graphene oxide and phospholipid-graphene oxide composite would curl into capsules in strongly acidic saturated solution of Pb(NO3)2 at low temperature, providing a protective space for biochemical reactions. Secondly, L-animi acids exhibit higher reactivity than D-animi acids for graphene oxides in favor of the formation of left-handed proteins. Thirdly, monolayer graphene with nanopores prepared by unfocused 84Kr25+ has high selectivity for permeation of the monovalent metal ions (Rb+ > K+ > Cs+ > Na+ > Li+), but does not allow Cl- through, which could be attributed to the ion exchange of oxygen-containing groups on the rim of nanopores. It is similar to K+ channels, which would cause efflux of some ions from capsule of graphene oxides with the decrease of pH in the primitive ocean, creating a suitable inner condition for the origin of life. Consequently, the strongly acidic, high salinity and strong radiation as well as temperature changes in the early Earth, regarded as negative factors, would be indispensable for the origin of protocell. In short, graphene bred life, but digested gradually by the evolution.

  8. Toxicological and pharmacological concerns on oxidative stress and related diseases

    SciTech Connect (OSTI)

    Saeidnia, Soodabeh; Abdollahi, Mohammad

    2013-12-15

    Although reactive oxygen species (ROS) such as superoxide, hydrogen peroxide and hydroxyl radical are generated as the natural byproduct of normal oxygen metabolism, they can create oxidative damage via interaction with bio-molecules. The role of oxidative stress as a remarkable upstream part is frequently reported in the signaling cascade of inflammation as well as chemo attractant production. Even though hydrogen peroxide can control cell signaling and stimulate cell proliferation at low levels, in higher concentrations it can initiate apoptosis and in very high levels may create necrosis. So far, the role of ROS in cellular damage and death is well documented with implicating in a broad range of degenerative alterations e.g. carcinogenesis, aging and other oxidative stress related diseases (OSRDs). Reversely, it is cleared that antioxidants are potentially able to suppress (at least in part) the immune system and to enhance the normal cellular protective responses to tissue damage. In this review, we aimed to provide insights on diverse OSRDs, which are correlated with the concept of oxidative stress as well as its cellular effects that can be inhibited by antioxidants. Resveratrol, angiotensin converting enzyme inhibitors, angiotensin receptor blockers, statins, nebivolol and carvedilol, pentaerythritol tetranitrate, mitochondria-targeted antioxidants, and plant-derived drugs (alone or combined) are the potential medicines that can be used to control OSRD.

  9. Methanol partial oxidation reformer

    DOE Patents [OSTI]

    Ahmed, Shabbir (Bolingbrook, IL); Kumar, Romesh (Naperville, IL); Krumpelt, Michael (Naperville, IL)

    1999-01-01

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  10. Methanol partial oxidation reformer

    DOE Patents [OSTI]

    Ahmed, Shabbir (Bolingbrook, IL); Kumar, Romesh (Naperville, IL); Krumpelt, Michael (Naperville, IL)

    2001-01-01

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  11. Methanol partial oxidation reformer

    DOE Patents [OSTI]

    Ahmed, S.; Kumar, R.; Krumpelt, M.

    1999-08-24

    A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

  12. Methanol partial oxidation reformer

    DOE Patents [OSTI]

    Ahmed, S.; Kumar, R.; Krumpelt, M.

    1999-08-17

    A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

  13. Tetraalykylammonium polyoxoanionic oxidation catalysts

    DOE Patents [OSTI]

    Ellis, Paul E. (Downingtown, PA); Lyons, James E. (Wallingford, PA); Myers, Jr., Harry K. (Cochranville, PA); Shaikh, Shahid N. (Media, PA)

    1998-01-01

    Alkanes are catalytically oxidized in air or oxygen using iron-substituted polyoxoanions (POAs) of the formula: H.sub.e-z ›(n-C.sub.4 H.sub.9).sub.4 N!.sub.z (XM.sub.11 M'O.sub.39).sup.-e The M' (e.g., iron(III)/iron(II)) reduction potential of the POAs is affected by selection of the central atom X and the framework metal M, and by the number of tetrabutyl-ammonium groups. Decreased Fe(III)/Fe(II) reduction potential has been found to correlate to increased oxidation activity.

  14. Tetraalklylammonium polyoxoanionic oxidation catalysts

    DOE Patents [OSTI]

    Ellis, P.E.; Lyons, J.E.; Myers, H.K. Jr.; Shaikh, S.N.

    1998-10-06

    Alkanes are catalytically oxidized in air or oxygen using iron-substituted polyoxoanions (POAs) of the formula: H{sub e{minus}z}[(n-C{sub 4}H{sub 9}){sub 4}N]{sub z}(XM{sub 11}M{prime}O{sub 39}){sup {minus}e}. The M{prime} (e.g., iron(III)/iron(II)) reduction potential of the POAs is affected by selection of the central atom X and the framework metal M, and by the number of tetrabutyl-ammonium groups. Decreased Fe(III)/Fe(II) reduction potential has been found to correlate to increased oxidation activity.

  15. In-Cylinder Fuel Blending of Gasoline/Diesel for Improved Efficiency and Lowest Possible Emissions on a Multi-Cylinder Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Curran, Scott; Prikhodko, Vitaly Y; Wagner, Robert M; Parks, II, James E; Cho, Kukwon; Sluder, Scott; Kokjohn, Sage; Reitz, Rolf

    2010-01-01

    In-cylinder fuel blending of gasoline/diesel fuel is investigated on a multi-cylinder light-duty diesel engine as a potential strategy to control in-cylinder fuel reactivity for improved efficiency and lowest possible emissions. This approach was developed and demonstrated at the University of Wisconsin through modeling and single-cylinder engine experiments. The objective of this study is to better understand the potential and challenges of this method on a multi-cylinder engine. More specifically, the effect of cylinder-to-cylinder imbalances, heat rejection, and in-cylinder charge motion as well as the potential limitations imposed by real-world turbo-machinery were investigated on a 1.9-liter four-cylinder engine. This investigation focused on one engine condition, 2300 rpm, 4.2 bar brake mean effective pressure (BMEP). Gasoline was introduced with a port-fuel-injection system. Parameter sweeps included gasoline-to-diesel fuel ratio, intake air mixture temperature, in-cylinder swirl number, and diesel start-of-injection phasing. In addition, engine parameters were trimmed for each cylinder to balance the combustion process for maximum efficiency and lowest emissions. An important observation was the strong influence of intake charge temperature on cylinder pressure rise rate. Experiments were able to show increased thermal efficiency along with dramatic decreases in oxides of nitrogen (NOX) and particulate matter (PM). However, indicated thermal efficiency for the multi-cylinder experiments were less than expected based on modeling and single-cylinder results. The lower indicated thermal efficiency is believed to be due increased heat transfer as compared to the model predictions and suggest a need for improved cylinder-to-cylinder control and increased heat transfer control.

  16. Controlled spontaneous emission

    E-Print Network [OSTI]

    Jae-Seung Lee; Mary A. Rohrdanz; A. K. Khitrin

    2007-07-03

    The problem of spontaneous emission is studied by a direct computer simulation of the dynamics of a combined system: atom + radiation field. The parameters of the discrete finite model, including up to 20k field oscillators, have been optimized by a comparison with the exact solution for the case when the oscillators have equidistant frequencies and equal coupling constants. Simulation of the effect of multi-pulse sequence of phase kicks and emission by a pair of atoms shows that both the frequency and the linewidth of the emitted spectrum could be controlled.

  17. Optimal irreversible stimulated emission

    E-Print Network [OSTI]

    D Valente; Y Li; J P Poizat; J M Gerard; L C Kwek; M F Santos; A Auffeves

    2012-08-28

    We studied the dynamics of an initially inverted atom in a semi-infinite waveguide, in the presence of a single propagating photon. We show that atomic relaxation is enhanced by a factor of 2, leading to maximal bunching in the output field. This optimal irreversible stimulated emission is a novel phenomenon that can be observed with state-of-the-art solid-state atoms and waveguides. When the atom interacts with two one-dimensional electromagnetic environments, the preferential emission in the stimulated field can be exploited to efficiently amplify a classical or a quantum state.

  18. Fuel-Flexible, Low-Emissions Catalytic Combustor for Opportunity Fuels

    SciTech Connect (OSTI)

    2009-11-01

    Precision Combustion, Inc. will develop a unique, fuel-flexible Rich Catalytic Lean-Burn (RCL®) injector with catalytic combustor capable of enabling ultralow-emission, lean premixed combustion of a wide range of gaseous opportunity fuels. This will broaden the range of opportunity fuels that can be utilized to include low- and ultralow-Btu gases, such as digester and blast furnace gases, and fuels containing reactive species, such as refinery, wellhead, and industrial byproduct gases.

  19. Melting Alpine Glaciers Enrich High-Elevation Lakes with Reactive

    E-Print Network [OSTI]

    Wolfe, Alexander P.

    melt alone (SF lakes) and those fed by both glacial and snowpack meltwaters (GSF lakes). We foundMelting Alpine Glaciers Enrich High-Elevation Lakes with Reactive Nitrogen J A S M I N E E . S A R century in many regions of the world. Resulting changes in glacial runoff not only affect the hydrological

  20. Towards Energy-Efficient Reactive Thermal Management in Instrumented Datacenters

    E-Print Network [OSTI]

    Pompili, Dario

    Towards Energy-Efficient Reactive Thermal Management in Instrumented Datacenters Ivan Rodero, Eun techniques used to alleviate thermal anomalies (i.e., hotspots) in cloud datacenter's servers of by reducing such as voltage scaling that also can be applied to reduce the temperature of the servers in datacenters. Because