Powered by Deep Web Technologies
Note: This page contains sample records for the topic "oxide emissions reactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Effectiveness of Diesel Oxidation Catalyst in Reducing HC and CO Emissions from Reactivity Controlled Compression Ignition  

SciTech Connect (OSTI)

Reactivity Controlled Compression Ignition (RCCI) has been shown to allow for diesel-like or better brake thermal efficiency with significant reductions in nitrogen oxide (NOX) particulate matter (PM) emissions. Hydrocarbon (HC) and carbon monoxide (CO) emission levels, on the other hand, are similar to those of port fuel injected gasoline engines. The higher HC and CO emissions combined with the lower exhaust temperatures with RCCI operation present a challenge for current exhaust aftertreatments. The reduction of HC and CO emissions in a lean environment is typically achieved with an oxidation catalyst. In this work, several diesel oxidation catalysts (DOC) with different precious metal loadings were evaluated for effectiveness to control HC and CO emissions from RCCI combustion in a light-duty multi-cylinder engine operating on gasoline and diesel fuels. Each catalyst was evaluated in a steady-state engine operation with temperatures ranging from 160 to 260 C. A shift to a higher light-off temperature was observed during the RCCI operation. In addition to the steady-state experiments, the performances of the DOCs were evaluated during multi-mode engine operation by switching from diesel-like combustion at higher exhaust temperature and low HC/CO emissions to RCCI combustion at lower temperature and higher HC/CO emissions. High CO and HC emissions from RCCI generated an exotherm keeping the catalyst above the light-off temperature.

Prikhodko, Vitaly Y [ORNL; Curran, Scott [ORNL; Parks, II, James E [ORNL; Wagner, Robert M [ORNL

2013-01-01T23:59:59.000Z

2

On-Road Emission Measurements of Reactive Nitrogen Compounds from  

E-Print Network [OSTI]

, nitric oxide (NO), nitrogen dioxide (NO2), ammonia (NH3), and nitrous acid (HONO) produced by internalOn-Road Emission Measurements of Reactive Nitrogen Compounds from Three California Cities G A R Y measurements of reactive nitrogen compounds from light-duty vehicles. At the San Jose and wLA sites

Denver, University of

3

Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Presents...

4

Effects of Diesel Exhaust Emissions on Soot Oxidation and DPF...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Diesel Exhaust Emissions on Soot Oxidation and DPF Regeneration Effects of Diesel Exhaust Emissions on Soot Oxidation and DPF Regeneration DPF regeneration experiments verified the...

5

EIA - Greenhouse Gas Emissions - Nitrous Oxide Emissions  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87CBECS Public Use Data03. U.S. EIA4. Nitrous Oxide

6

Nitrogen oxides emission trends in Monthly emission estimates of nitrogen oxides from space provide  

E-Print Network [OSTI]

Chapter 5 Nitrogen oxides emission trends in East Asia Abstract Monthly emission estimates present first results of a new emission estimation algorithm, specifically designed to use daily satellite observations of column concentrations for fast updates of emission estimates of short-lived atmospheric

Haak, Hein

7

Sulfur oxide adsorbents and emissions control  

DOE Patents [OSTI]

High capacity sulfur oxide absorbents utilizing manganese-based octahedral molecular sieve (Mn--OMS) materials are disclosed. An emissions reduction system for a combustion exhaust includes a scrubber 24 containing these high capacity sulfur oxide absorbents located upstream from a NOX filter 26 or particulate trap.

Li, Liyu (Richland, WA); King, David L. (Richland, WA)

2006-12-26T23:59:59.000Z

8

Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission...  

Broader source: Energy.gov (indexed) [DOE]

Monolithic Metal Oxide based Composite Nanowire Lean NO x Emission Control Catalysts Pu-Xian Gao Department of Chemical, Materials and Biomolecular Engineering & Institute of...

9

Hall mobility of cuprous oxide thin films deposited by reactive direct-current magnetron sputtering  

E-Print Network [OSTI]

Cuprous oxide (Cu[subscript 2]O) is a promising earth-abundant semiconductor for photovoltaic applications. We report Hall mobilities of polycrystalline Cu[subscript 2]O thin films deposited by reactive dc magnetron ...

Lee, Yun Seog

10

Influence of reduced carbon emissions and oxidation on the distribution of atmospheric CO 2 : Implications for inversion analyses  

E-Print Network [OSTI]

Influence of reduced carbon emissions and oxidation on thedescription of reduced carbon emission and oxidationInfluence of reduced carbon emissions and oxidation on the

Suntharalingam, Parvadha; Randerson, James T; Krakauer, Nir; Logan, Jennifer A; Jacob, Daniel J

2005-01-01T23:59:59.000Z

11

Molten salt extraction of transuranic and reactive fission products from used uranium oxide fuel  

DOE Patents [OSTI]

Used uranium oxide fuel is detoxified by extracting transuranic and reactive fission products into molten salt. By contacting declad and crushed used uranium oxide fuel with a molten halide salt containing a minor fraction of the respective uranium trihalide, transuranic and reactive fission products partition from the fuel to the molten salt phase, while uranium oxide and non-reactive, or noble metal, fission products remain in an insoluble solid phase. The salt is then separated from the fuel via draining and distillation. By this method, the bulk of the decay heat, fission poisoning capacity, and radiotoxicity are removed from the used fuel. The remaining radioactivity from the noble metal fission products in the detoxified fuel is primarily limited to soft beta emitters. The extracted transuranic and reactive fission products are amenable to existing technologies for group uranium/transuranic product recovery and fission product immobilization in engineered waste forms.

Herrmann, Steven Douglas

2014-05-27T23:59:59.000Z

12

ESTIMATING METHANE EMISSION AND OXIDATION FROM TWO TEMPORARY  

E-Print Network [OSTI]

ESTIMATING METHANE EMISSION AND OXIDATION FROM TWO TEMPORARY COVERS ON LANDFILLED MBT TREATED WASTE to oxidize the methane flux coming from the residual organic fraction. The first plant was operated without recovery of organic fraction and with concentration of the fine fraction in a cell. The methane fluxes were

Paris-Sud XI, Université de

13

Reactivity of ethylene oxide in contact with contaminants  

E-Print Network [OSTI]

Ethylene oxide (EO) is a very versatile compound with considerable energy in its ring structure. Its reactions proceed mainly via ring opening and are highly exothermic. Under some conditions, it is known to undergo a variety of reactions...

Dinh, Linh Thi Thuy

2009-05-15T23:59:59.000Z

14

Structure formation upon reactive direct current magnetron sputtering of transition metal oxide films  

SciTech Connect (OSTI)

A comparative study of reactive direct current magnetron sputtering for different transition metal oxides reveals crystalline films at room temperature for group 4 and amorphous films for groups 5 and 6. This observation cannot be explained by the known growth laws and is attributed to the impact of energetic particles, originating from the oxidized target, on the growing film. This scenario is supported by measured target characteristics, the evolution of deposition stress of the films, and the observed backsputtering.

Ngaruiya, J.M.; Kappertz, O.; Mohamed, S.H.; Wuttig, M. [I. Physikalisches Institut der RWTH Aachen, D-52056 Aachen, Germany and Jomo Kenyatta University of Agriculture and Technology, Box 62000 Nairobi (Kenya); I. Physikalisches Institut der RWTH Aachen, D-52056 Aachen (Germany)

2004-08-02T23:59:59.000Z

15

QUANTIFICATION OF FUGITIVE REACTIVE ALKENE EMISSIONS FROM PETROCHEMICAL PLANTS WITH PERFLUOROCARBON TRACERS.  

SciTech Connect (OSTI)

Recent studies demonstrate the impact of fugitive emissions of reactive alkenes on the atmospheric chemistry of the Houston Texas metropolitan area (1). Petrochemical plants located in and around the Houston area emit atmospheric alkenes, such as ethene, propene and 1,3-butadiene. The magnitude of emissions is a major uncertainty in assessing their effects. Even though the petrochemical industry reports that fugitive emissions of alkenes have been reduced to less than 0.1% of daily production, recent measurement data, obtained during the TexAQS 2000 experiment indicates that emissions are perhaps a factor of ten larger than estimated values. Industry figures for fugitive emissions are based on adding up estimated emission factors for every component in the plant to give a total estimated emission from the entire facility. The dramatic difference between estimated and measured rates indicates either that calculating emission fluxes by summing estimates for individual components is seriously flawed, possibly due to individual components leaking well beyond their estimated tolerances, that not all sources of emissions for a facility are being considered in emissions estimates, or that there are known sources of emissions that are not being reported. This experiment was designed to confirm estimates of reactive alkene emissions derived from analysis of the TexAQS 2000 data by releasing perfluorocarbon tracers (PFTs) at a known flux from a petrochemical plant and sampling both the perfluorocarbon tracer and reactive alkenes downwind using the Piper-Aztec research aircraft operated by Baylor University. PFTs have been extensively used to determine leaks in pipelines, air infiltration in buildings, and to characterize the transport and dispersion of air parcels in the atmosphere. Over 20 years of development by the Tracer Technology Center (TTC) has produced a range of analysis instruments, field samplers and PFT release equipment that have been successfully deployed in a large variety of experiments. PFTs are inert, nontoxic, noncombustible and nonreactive. Up to seven unique PFTs can be simultaneously released, sampled and analyzed and the technology is well suited for determining emission fluxes from large petrochemical facilities. The PFT experiment described here was designed to quantitate alkene emissions from a single petrochemical facility, but such experiments could be applied to other industrial sources or groups of sources in the Houston area.

SENUM,G.I.; DIETZ,R.N.

2004-06-30T23:59:59.000Z

16

Evaluation of Partial Oxidation Reformer Emissions  

SciTech Connect (OSTI)

In this study, a gasoline fuel processor and an ethanol fuel processor were operated under conditions simulating both startup and normal operation. Emissions were measured before and after the AGB in order to quantify the effectiveness of the burner catalyst in controlling emissions. The emissions sampling system includes CEM for O2, CO2, CO, NOx, and THC. Also, integrated gas samples are collected in evacuated canisters for hydrocarbon speciation analysis via GC. This analysis yields the concentrations of the hydrocarbon species required for the California NMOG calculation. The PM concentration in the anode burner exhaust was measured through the placement of a filter in the exhaust stream. The emissions from vehicles with fully developed on board reformer systems were estimated.

Unnasch, Stefan; Fable, Scott; Waterland, Larry

2006-01-06T23:59:59.000Z

17

Effects of reactive element additions and sulfur removal on the oxidation behavior of FECRAL alloys  

SciTech Connect (OSTI)

The results of this study have shown that desulfurization of FeCrAl alloys by hydrogen annealing can result in improvements in cyclic oxidation comparable to that achieved by doping with reactive elements. Moreover, specimens of substantial thicknesses can be effectively desulfurized because of the high diffusivity of sulfur in bcc iron alloys. The results have also shown that there is less stress generation during the cyclic oxidation of Y-doped FeCrAl compared to Ti-doped or desulfurized FeCrAl. This indicates that the growth mechanism, as well as the strength of the oxide/alloy interface, influences the ultimate oxidation morphology and stress state which will certainly affect the length of time the alumina remains protective.

Stasik, M.C.; Pettit, F.S.; Meier, G.H. (Univ. of Pittsburgh, PA (United States). Dept. of Materials Science and Engineering); Ashary, A. (Praxair, Indianapolis, IN (United States)); Smialek, J.L. (NASA Lewis Research Center, Cleveland, OH (United States))

1994-12-15T23:59:59.000Z

18

On-farm Assessment of Nitrogen Fertilizer application to corn on Nitrous Oxide Emissions  

E-Print Network [OSTI]

mitigation of greenhouse gas emissions by agriculture. Nutr.1998. Nitrous oxide emission in three years as affected by2008. Soil-surface gas emissions. p.851-861. In: M.R. Carter

2009-01-01T23:59:59.000Z

19

Synthesis, structure, and reactivity of high oxidation state silver fluorides and related compounds  

SciTech Connect (OSTI)

This thesis has been largely concerned with defining the oxidizing power of Ag(III) and Ag(II) in anhydrous hydrogen fluoride (aHF) solution. Emphasis was on cationic species, since in a cation the electronegativity of a given oxidation state is greatest. Cationic Ag(III) solv has a short half life at ordinary temperatures, oxidizing the solvent to elemental fluorine with formation of Ag(II). Salts of such a cation have not yet been preparable, but solutions which must contain such a species have proved to be effective and powerful oxidizers. In presence of PtF{sub 6}{sup {minus}}, RuF{sub 6}{sup {minus}}, or RhF{sub 6}{sup {minus}}, Ag(III) solv effectively oxidizes the anions to release the neutral hexafluorides. Such reactivity ranks cationic Ag(III) as the most powerfully oxidizing chemical agent known as far. Unlike its trivalent relative Ag (II) solv is thermodynamically stable in acid aHF. Nevertheless, it oxidizes IrF{sub 6}{sup {minus}} to IrF{sub 6} at room temperature, placing its oxidizing potential not more than 2 eV below that of cationic Ag(III). Range of Ag{sup 2+} (MF{sub 6}{sup {minus}}){sub 2} salts attainable in aHF has been explored. An anion must be stable with respect to electron loss to Ag{sup 2+}. The anion must also be a poor F{sup {minus}} donor; otherwise, either AgF{sup +} salts or AgF{sub 2} are generated.

Lucier, G.M.

1995-05-01T23:59:59.000Z

20

Reduction of Nitrogen Oxide Emissions for lean Burn Engine Technology  

SciTech Connect (OSTI)

Lean-burn engines offer the potential for significant fuel economy improvements in cars and trucks, perhaps the next great breakthrough in automotive technology that will enable greater savings in imported petroleum. The development of lean-burn engines, however, has been an elusive goal among automakers because of the emissions challenges associated with lead-burn engine technology. Presently, cars operate with sophisticated emissions control systems that require the engine's air-fuel ratio to be carefully controlled around the stoichiometric point (chemically correct mixture). Catalysts in these systems are called "three-way" catalysts because they can reduce hydrocarbon, carbon monoxide, and nitrogen oxide emissions simultaneously, but only because of the tight control of the air-fuel ratio. The purpose of this cooperative effort is to develop advanced catalyst systems, materials, and necessary engine control algorithms for reducing NOX emissions in oxygen-rich automotive exhaust (as with lean-burn engine technology) to meet current and near-future mandated Clean Air Act standards. These developments will represent a breakthrough in both emission control technology and automobile efficiency. The total project is a joint effort among five national laboratories, together with US CAR. The role of Lockheed-Martin Energy Systems in the total project is two fold: characterization of catalyst performance through laboratory evaluations from bench-scale flow reactor tests to engine laboratory tests of full-scale prototype catalysts, and microstructural characterization of catalyst material before and after test stand and/or engine testing.

McGill, R.N.

1998-08-04T23:59:59.000Z

Note: This page contains sample records for the topic "oxide emissions reactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Effectiveness of a Diesel Oxidation Catalyst (DOC) to control...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Effectiveness of a Diesel Oxidation Catalyst (DOC) to control CO and hydrocarbon emissions from Reactivity Controlled Compression Ignition (RCCI) combustion Effectiveness of a...

22

MODELING THE EMISSIONS OF NITROUS OXIDE (N20) AND METHANE (CH 4) FROM THE  

E-Print Network [OSTI]

MODELING THE EMISSIONS OF NITROUS OXIDE (N20) AND METHANE (CH 4) FROM THE TERRESTRIAL BIOSPHERE;2 #12;MODELING THE EMISSIONS OF NITROUS OXIDE (N 20) AND METHANE (CH 4) FROM THE TERRESTRIAL BIOSPHERE cli- mate has on natural emissions of N2 0 and CH4 from the terrestrial biosphere to the atmosphere

23

How sensitive is tropospheric oxidation to anthropogenic emissions? Oliver Wild1  

E-Print Network [OSTI]

How sensitive is tropospheric oxidation to anthropogenic emissions? Oliver Wild1 and Paul I. Palmer regime. Citation: Wild, O., and P. I. Palmer (2008), How sensitive is tropospheric oxidation

Palmer, Paul

24

Physical properties of erbium implanted tungsten oxide filmsdeposited by reactive dual magnetron sputtering  

SciTech Connect (OSTI)

Amorphous and partially crystalline WO3 thin films wereprepared by reactive dual magnetron sputtering and successively implantedby erbium ions with a fluence in the range from 7.7 x 1014 to 5 x 1015ions/cm2. The electrical and optical properties were studied as afunction of the film deposition parameters and the ion fluence. Ionimplantation caused a strong decrease of the resistivity, a moderatedecrease of the index of refraction and a moderate increase of theextinction coefficient in the visible and near infrared, while theoptical band gap remained almost unchanged. These effects could belargely ascribed to ion-induced oxygen deficiency. When annealed in air,the already low resistivities of the implanted samples decreased furtherup to 70oC, whereas oxidation, and hence a strong increase of theresistivity, was observed at higher annealing temperatures.

Mohamed, Sodky H.; Anders, Andre

2006-11-08T23:59:59.000Z

25

Sequence-Dependent Variation in the Reactivity of 8-Oxo-7,8-dihydro-2?-deoxyguanosine toward Oxidation  

E-Print Network [OSTI]

The goal of this study was to define the effect of DNA sequence on the reactivity of 8-oxo-7,8-dihydro-2?-deoxyguanosine (8-oxodG) toward oxidation. To this end, we developed a quadrupole/time-of-flight (QTOF) mass ...

Lim, Kok Seong

26

Effect of oxidizing environment on the strength and oxidation kinetics of HTGR graphites. Part I. Reactivity and strength loss of H451, PGX and IG-11 graphites  

SciTech Connect (OSTI)

The effects of oxidizing atmosphere and temperature on the reactivities and strengths of PGX, H451, and IG-11 were examined. Preliminary measurements of the oxidation kinetics of these graphites in H/sub 2/O-, CO/sub 2/- and O/sub 2/-containing atmospheres indicated that the reactivities of H451 graphite toward O/sub 2/ and H/sub 2/O are quite similar to those of IG-11 graphite. The apparent activation energy for oxidation of these in O/sub 2/ were estimated to be approx. 175 kJ/mol while that in H/sub 2/O is probably approx. 200 kJ/mol. The apparent activation energy of IG-11 graphite oxidized in CO/sub 2/ is 255 +- 18 kJ/mol. PGX graphite was found to be quite variable in its reactivity toward H/sub 2/O. A linear dependence with (Fe) was determined, but other intrinsic properties were found to affect its absolute reactivity by as much as a factor of X50.

Eto, M.; Growcock, F.B.

1981-09-01T23:59:59.000Z

27

Methane oxidation associated with submerged brown mosses reduces methane emissions from Siberian  

E-Print Network [OSTI]

Methane oxidation associated with submerged brown mosses reduces methane emissions from Siberian, University of Hamburg, Allende-Platz 2, 20146 Hamburg, Germany Summary 1. Methane (CH4) oxidation to Sphagnum species and low-pH peatlands. 2. Moss-associated methane oxidation (MAMO) can be an effective

Wehrli, Bernhard

28

Physical properties of erbium implanted tungsten oxide films deposited by reactive dual magnetron sputtering  

E-Print Network [OSTI]

of erbium implanted tungsten oxide films deposited byDual magnetron sputtering; tungsten oxide films; Er ionoptical waveguides [3,5]. Tungsten oxide (WO 3 ) thin films

Mohamed, Sodky H.; Anders, Andre

2006-01-01T23:59:59.000Z

29

Global inventory of nitrogen oxide emissions constrained by space-based observations of NO2 columns  

E-Print Network [OSTI]

Global inventory of nitrogen oxide emissions constrained by space-based observations of NO2 columns NO + NO2), and combine these with a priori information from a bottom- up emission inventory (with error and a factor of 2 over remote regions. We derive a top-down NOx emission inventory from the GOME data by using

Chance, Kelly

30

Solution-mediated strategies for synthesizing metal oxides, borates and phosphides using nanocrystals as reactive precursors  

E-Print Network [OSTI]

Because of their high surface area (and hence, increased reactivity) nanocrystals can be used as reactive precursors in the low-temperature synthesis of solid state materials. When nanocrystals are used as reactants, the temperatures needed...

Henkes, Amanda Erin

2009-05-15T23:59:59.000Z

31

Nitric oxide emissions from the high-temperature viscous boundary layers of hypersonic aircraft within the stratosphere  

SciTech Connect (OSTI)

The authors study the nitric oxide emission characteristics of supersonic aircraft resulting from heating of viscous boundary layers along the skin of the aircraft. Previous study has concentrated on nitric oxide emissions coming from combustion products from the scramjet engines. This work shows that above mach 8, emissions from viscous heating become a significant factor in total emission of nitric oxide. Above mach 16 it becomes the dominant source of emission.

Brooks, S.B.; Lewis, M.J.; Dickerson, R.R. [Univ. of Maryland, College Park, MD (United States)

1993-09-20T23:59:59.000Z

32

Surface reactivity and oxygen migration in amorphous indium-gallium-zinc oxide films annealed in humid atmosphere  

SciTech Connect (OSTI)

An isotope tracer study, i.e., {sup 18}O/{sup 16}O exchange using {sup 18}O{sub 2} and H{sub 2}{sup 18}O, was performed to determine how post-deposition annealing (PDA) affected surface reactivity and oxygen diffusivity of amorphous indium–gallium–zinc oxide (a-IGZO) films. The oxygen tracer diffusivity was very high in the bulk even at low temperatures, e.g., 200?°C, regardless of PDA and exchange conditions. In contrast, the isotope exchange rate, dominated by surface reactivity, was much lower for {sup 18}O{sub 2} than for H{sub 2}{sup 18}O. PDA in a humid atmosphere at 400?°C further suppressed the reactivity of O{sub 2} at the a-IGZO film surface, which is attributable to –OH-terminated surface formation.

Watanabe, Ken, E-mail: Watanabe.Ken@nims.go.jp [International Center for Young Scientists (ICYS-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044 (Japan)] [International Center for Young Scientists (ICYS-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044 (Japan); Lee, Dong-Hee [Optical and Electronic Materials Unit, NIMS, 1-1 Namiki, Tsukuba 305-0044 (Japan) [Optical and Electronic Materials Unit, NIMS, 1-1 Namiki, Tsukuba 305-0044 (Japan); Materials and Structures Laboratory (MSL), Tokyo Institute of Technology, Mailbox R3-4, 4259 Nagatsuta, Midori-ku, Yokohama 226-0026 (Japan); Sakaguchi, Isao; Haneda, Hajime [Optical and Electronic Materials Unit, NIMS, 1-1 Namiki, Tsukuba 305-0044 (Japan)] [Optical and Electronic Materials Unit, NIMS, 1-1 Namiki, Tsukuba 305-0044 (Japan); Nomura, Kenji [Frontier Research Center, Tokyo Institute of Technology, Mailbox S2-13, 4259 Nagatsuta, Midori-ku, Yokohama 226-0026 (Japan)] [Frontier Research Center, Tokyo Institute of Technology, Mailbox S2-13, 4259 Nagatsuta, Midori-ku, Yokohama 226-0026 (Japan); Kamiya, Toshio [Materials and Structures Laboratory (MSL), Tokyo Institute of Technology, Mailbox R3-4, 4259 Nagatsuta, Midori-ku, Yokohama 226-0026 (Japan) [Materials and Structures Laboratory (MSL), Tokyo Institute of Technology, Mailbox R3-4, 4259 Nagatsuta, Midori-ku, Yokohama 226-0026 (Japan); Materials Research Center for Element Strategy (MCES), Mailbox S2-13, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-0026 (Japan); Hosono, Hideo [Materials and Structures Laboratory (MSL), Tokyo Institute of Technology, Mailbox R3-4, 4259 Nagatsuta, Midori-ku, Yokohama 226-0026 (Japan) [Materials and Structures Laboratory (MSL), Tokyo Institute of Technology, Mailbox R3-4, 4259 Nagatsuta, Midori-ku, Yokohama 226-0026 (Japan); Frontier Research Center, Tokyo Institute of Technology, Mailbox S2-13, 4259 Nagatsuta, Midori-ku, Yokohama 226-0026 (Japan); Materials Research Center for Element Strategy (MCES), Mailbox S2-13, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-0026 (Japan); Ohashi, Naoki, E-mail: Ohashi.Naoki@nims.go.jp [Optical and Electronic Materials Unit, NIMS, 1-1 Namiki, Tsukuba 305-0044 (Japan) [Optical and Electronic Materials Unit, NIMS, 1-1 Namiki, Tsukuba 305-0044 (Japan); Materials Research Center for Element Strategy (MCES), Mailbox S2-13, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-0026 (Japan)

2013-11-11T23:59:59.000Z

33

Process Modeling of Global Soil Nitrous Oxide Emissions  

E-Print Network [OSTI]

Nitrous oxide is an important greenhouse gas and is a major ozone-depleting substance. To understand and

Saikawa, E.

2011-09-01T23:59:59.000Z

34

Robust Nitrogen Oxide/Ammonia Sensors for Vehicle On-board Emissions...  

Broader source: Energy.gov (indexed) [DOE]

ace079mukundan2012o.pdf More Documents & Publications Robust Nitrogen OxideAmmonia Sensors for Vehicle On-board Emissions Control Vehicle Technologies Office Merit Review 2014:...

35

Robust Nitrogen Oxide/Ammonia Sensors for Vehicle On-board Emissions...  

Broader source: Energy.gov (indexed) [DOE]

2014: Robust Nitrogen oxideAmmonia Sensors for Vehicle on-board Emissions Control CumminsORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines...

36

Kudzu (Pueraria montana) invasion doubles emissions of nitric oxide and increases ozone pollution  

E-Print Network [OSTI]

Kudzu (Pueraria montana) invasion doubles emissions of nitric oxide and increases ozone pollution) The nitrogen-fixing legume kudzu (Pueraria montana) is a wide- spread invasive plant in the southeastern United the effects of kudzu invasions on soils and trace N gas emissions at three sites in Madison County, Georgia

Mickley, Loretta J.

37

Reactivity of biogenic manganese oxide for metal sequestration and photochemistry: Computational solid state physics study  

SciTech Connect (OSTI)

Many microbes, including both bacteria and fungi, produce manganese (Mn) oxides by oxidizing soluble Mn(II) to form insoluble Mn(IV) oxide minerals, a kinetically much faster process than abiotic oxidation. These biogenic Mn oxides drive the Mn cycle, coupling it with diverse biogeochemical cycles and determining the bioavailability of environmental contaminants, mainly through strong adsorption and redox reactions. This mini review introduces recent findings based on quantum mechanical density functional theory that reveal the detailed mechanisms of toxic metal adsorption at Mn oxide surfaces and the remarkable role of Mn vacancies in the photochemistry of these minerals.

Kwon, K.D.; Sposito, G.

2010-02-01T23:59:59.000Z

38

Impact of California Reformulated Gasoline on Motor Vehicle Emissions. 2. Volatile Organic Compound Speciation and Reactivity  

E-Print Network [OSTI]

California Reformulated Gasoline On Motor Vehicle EmissionsCalifornia Reformulated Gasoline on Motor Vehicle EmmissionsBerkeley Environ. ScLTechnoL gasoline Impact California of

Kirchstetter, Thomas; Singer, Brett; Harley, Robert

1999-01-01T23:59:59.000Z

39

Influence of reduced carbon emissions and oxidation on the distribution of atmospheric CO2: Implications for inversion analyses  

E-Print Network [OSTI]

Influence of reduced carbon emissions and oxidation on the distribution of atmospheric CO2 carbon emissions. We used TransCom3 annual mean simulations from three transport models to evaluate carbon emission and oxidation processes in deriving inversion estimates of CO2 surface fluxes. Citation

Krakauer, Nir Y.

40

Principal ComponentAnalysisof Optical EmissionSpectroscopy and MassSpectrometry:Applicationto Reactive Ion Etch  

E-Print Network [OSTI]

of process parameters (i.e., pressure, RF power, and gas mixture) on the optical emission and mass spectra.g., chamber pressure, RF power, and gas flow, while others are internal to the condition of the chamber, e

Shadmehr, Reza

Note: This page contains sample records for the topic "oxide emissions reactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Development and Application of a ReaxFF Reactive Force Field for Oxidative Dehydrogenation on Vanadium Oxide Catalysts  

E-Print Network [OSTI]

oxidize or ammoxidize pro- pane, with the most promising MMO catalysts containing Mo, V, Te, Ta, and Nb.3 pertinent to this paper is the use of QM to elucidate the mechanism for propane ODH using QM

Goddard III, William A.

42

Regional-Scale Assessment of Nitrous Oxide Emissions within the US Corn Belt: The Impact of Precipitation and Agricultural Drainage on Indirect Emissions  

E-Print Network [OSTI]

Regional-Scale Assessment of Nitrous Oxide Emissions within the US Corn Belt: The Impact of Precipitation and Agricultural Drainage on Indirect Emissions Tim Griffis1, Xuhui Lee2, John Baker3, Peter, but mitigation strategies have been limited by the large uncertainties in both direct and indirect emission

Minnesota, University of

43

Electronic structure of perovskite oxide surfaces at elevated temperatures and its correlation with oxygen reduction reactivity  

E-Print Network [OSTI]

The objective is to understand the origin of the local oxygen reduction reaction (ORR) activity on the basis of the local electronic structure at the surface of transition metal oxides at elevated temperatures and in oxygen ...

Chen, Yan, Ph. D. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

44

The detection of nitric oxide and its reactivity with transition metal thiolate complexes  

E-Print Network [OSTI]

Nitric oxide (NO) is a molecule that is essential for life and regulates both beneficial and harmful processes. Because this gaseous radical influences many aspects of health and disease, we wish to explore the relationship ...

Tennyson, Andrew Gregory

2008-01-01T23:59:59.000Z

45

Design of Inherently Safer Complex Reactive Processes: Application on the N-Oxidation of Alkylpyridines  

E-Print Network [OSTI]

environment, with the additional potential to overpressurize the reaction vessel and/or trigger secondary decompositions of the product. The decomposition of hydrogen peroxide is exacerbated during the N-oxidation of higher order alkylpyridines due to the mass...

Pineda Solano, Alba Lucia

2014-04-18T23:59:59.000Z

46

Assessment of soil nitrogen oxides emissions and implementation in LOTOS-EUROS  

E-Print Network [OSTI]

the formation and transport of nitrogen dioxide, ozone, particulate matter and other species throughout EuropeAssessment of soil nitrogen oxides emissions and implementation in LOTOS-EUROS Date 18 March 2013, climate and nitrogen availability. Nitrogen availability is in turn determined by N-deposition from

Haak, Hein

47

CARBON SEQUESTRATION IN ARABLE SOILS IS LIKELY TO INCREASE NITROUS OXIDE EMISSIONS, OFFSETTING  

E-Print Network [OSTI]

CARBON SEQUESTRATION IN ARABLE SOILS IS LIKELY TO INCREASE NITROUS OXIDE EMISSIONS, OFFSETTING in strategies for climate protection. 1. Introduction Carbon sequestration has been highlighted recently concentration of carbon dioxide (CO2) in the atmo- sphere include sequestering carbon (C) in soils

48

Methane Oxidation to Methanol without CO2 Emission: Catalysis by Atomic Negative Ions  

E-Print Network [OSTI]

The catalytic activities of the atomic Y-, Ru-, At-, In-, Pd-, Ag-, Pt-, and Os- ions have been investigated theoretically using the atomic Au- ion as the benchmark for the selective partial oxidation of methane to methanol without CO2 emission. Dispersion-corrected density-functional theory has been used for the investigation. From the energy barrier calculations and the thermodynamics of the reactions, we conclude that the catalytic effect of the atomic Ag-, At-, Ru-, and Os- ions is higher than that of the atomic Au- ion catalysis of CH4 conversion to methanol. By controlling the temperature around 290K (Os-), 300K (Ag-), 310K (At-), 320K (Ru-) and 325K (Au-) methane can be completely oxidized to methanol without the emission of CO2. We conclude by recommending the investigation of the catalytic activities of combinations of the above negative ions for significant enhancement of the selective partial oxidation of methane to methanol.

Tesfamichael, Aron; Felfli, Zineb; Msezane, Alfred Z

2014-01-01T23:59:59.000Z

49

TITLE: Emissions of Nitrous Oxide from Three Different Turfgrass Species and from Perennial Ryegrass under Different Irrigation Regimes  

E-Print Network [OSTI]

80 TITLE: Emissions of Nitrous Oxide from Three Different Turfgrass Species and from Perennial). effects of irrigation on N2 O emissions from perennial ryegrass AUTHOR: Jason Lewis and Dale Bremer and frequencies, and irrigated with different amounts of water, all of which may affect N2 O emissions

50

Inverse modeling of emissions for local photo-oxidant pollution : Testing a new methodology with kriging constraints  

E-Print Network [OSTI]

Inverse modeling of emissions for local photo-oxidant pollution : Testing a new methodology. Abstract For chemistry-transport models operating at regional scales, surface emissions are the input data a methodology to optimize surface emissions at local scale i.e. to compute correction factors for the available

Menut, Laurent

51

Manganese Doping of Magnetic Iron Oxide Nanoparticles: Tailoring Surface Reactivity for a Regenerable Heavy Metal Sorbent  

SciTech Connect (OSTI)

A method for tuning the analyte affinity of magnetic, inorganic nanostructured sorbents for heavy metal contaminants is described. The manganese-doped iron oxide nanoparticle sorbents have a remarkably high affinity compared to the precursor material. Sorbent affinity can be tuned toward an analyte of interest simply by adjustment of the dopant quantity. The results show that following the Mn doping process there is a large increase in affinity and capacity for heavy metals (i.e., Co, Ni, Zn, As, Ag, Cd, Hg, and Tl). Capacity measurements were carried out for the removal of cadmium from river water and showed significantly higher loading than the relevant commercial sorbents tested for comparison. The reduction in Cd concentration from 100 ppb spiked river water to 1 ppb (less than the EPA drinking water limit of 5 ppb for Cd) was achieved following treatment with the Mn-doped iron oxide nanoparticles. The Mn-doped iron oxide nanoparticles were able to load 1 ppm of Cd followed by complete stripping and recovery of the Cd with a mild acid wash. The Cd loading and stripping is shown to be consistent through multiple cycles with no loss of sorbent performance.

Warner, Cynthia L.; Chouyyok, Wilaiwan; Mackie, Katherine E.; Neiner, Doinita; Saraf, Laxmikant; Droubay, Timothy C.; Warner, Marvin G.; Addleman, Raymond S.

2012-02-28T23:59:59.000Z

52

Reactive oxygen species and oxidative DNA damage mediate the cytotoxicity of tungsten-nickel-cobalt alloys in vitro  

SciTech Connect (OSTI)

Tungsten alloys (WA) have been introduced in an attempt to find safer alternatives to depleted uranium and lead munitions. However, it is known that at least one alloy, 91% tungsten-6% nickel-3% cobalt (WNC-91-6-3), causes rhabdomyosarcomas when fragments are implanted in rat muscle. This raises concerns that shrapnel, if not surgically removable, may result in similar tumours in humans. There is therefore a clear need to develop rapid and robust in vitro methods to characterise the toxicity of different WAs in order to identify those that are most likely to be harmful to human health and to guide development of new materials in the future. In the current study we have developed a rapid visual in vitro assay to detect toxicity mediated by individual WA particles in cultured L6-C11 rat muscle cells. Using a variety of techniques (histology, comet assay, caspase-3 activity, oxidation of 2'7'-dichlorofluorescin to measure the production of reactive oxygen species and whole-genome microarrays) we show that, in agreement with the in vivo rat carcinogenicity studies, WNC-91-6-3 was the most toxic of the alloys tested. On dissolution, it produces large amounts of reactive oxygen species, causes significant amounts of DNA damage, inhibits caspase-3, triggers a severe hypoxic response and kills the cells in the immediate vicinity of the alloy particles within 24 h. By combining these in vitro data we offer a mechanistic explanation of the effect of this alloy in vivo and show that in vitro tests are a viable alternative for assessing new alloys in the future.

Harris, R.M.; Williams, T.D.; Hodges, N.J.; Waring, R.H., E-mail: R.H.Waring@bham.ac.uk

2011-01-01T23:59:59.000Z

53

Zinc Thiolate Reactivity toward Nitrogen Oxides: Insights into the Interaction of Zn[superscript 2+] with S-Nitrosothiols and Implications for Nitric Oxide Synthase  

E-Print Network [OSTI]

Zinc thiolate complexes containing N[subscript 2]S tridentate ligands were prepared to investigate their reactivity toward reactive nitrogen species, chemistry proposed to occur at the zinc tetracysteine thiolate site of ...

Kozhukh, Julia

54

Reactive magnetron sputtering of hard Si-B-C-N films with a high-temperature oxidation resistance  

SciTech Connect (OSTI)

Based on the results obtained for C-N and Si-C-N films, a systematic investigation of reactive magnetron sputtering of hard quaternary Si-B-C-N materials has been carried out. The Si-B-C-N films were deposited on p-type Si(100) substrates by dc magnetron co-sputtering using a single C-Si-B target (at a fixed 20% boron fraction in the target erosion area) in nitrogen-argon gas mixtures. Elemental compositions of the films, their surface bonding structure and mechanical properties, together with their oxidation resistance in air, were controlled by the Si fraction (5-75%) in the magnetron target erosion area, the Ar fraction (0-75%) in the gas mixture, the rf induced negative substrate bias voltage (from a floating potential to -500 V) and the substrate temperature (180-350 deg. C). The total pressure and the discharge current on the magnetron target were held constant at 0.5 Pa and 1 A, respectively. The energy and flux of ions bombarding the growing films were determined on the basis of the discharge characteristics measured for the rf discharge dominating in the deposition zone. Mass spectroscopy was used to show composition of the total ion fluxes onto the substrate and to explain differences between sputtering of carbon, silicon and boron from a composed target in nitrogen-argon discharges. The films, typically 1.0-2.4 {mu}m thick, possessing a density around 2.4 g cm{sup -3}, were found to be amorphous in nanostructure with a very smooth surface (R{sub a}{<=}0.8 nm) and good adhesion to substrates at a low compressive stress (1.0-1.6 GPa). They exhibited high hardness (up to 47 GPa) and elastic recovery (up to 88%), and extremely high oxidation resistance in air at elevated temperatures (up to a 1350 deg.C substrate limit)

Vlcek, Jaroslav; Potocky, Stepan; Cizek, Jiri; Houska, Jiri; Kormunda, Martin; Zeman, Petr; Perina, Vratislav; Zemek, Josef; Setsuhara, Yuichi; Konuma, Seiji [Department of Physics, University of West Bohemia, Univerzitni 22, 306 14 Plzen (Czech Republic); Nuclear Physics Institute, Academy of Sciences of the Czech Republic, 250 68 Rez near Prague (Czech Republic); Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, 162 53 Prague 6 (Czech Republic); Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Kanagawa High-Technology Foundation, Kanagawa Science Park, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012 (Japan)

2005-11-15T23:59:59.000Z

55

The synthesis, characterization and reactivity of high oxidation state nickel fluorides  

SciTech Connect (OSTI)

The research described in this thesis has mainly addressed the challenge of the synthesis of thermodynamically unstable nickel fluorides, which cannot be made by traditional thermal methods. A low-temperature approach towards the synthesis of such transition metal fluorides exploits the greater thermodynamic stability of high oxidation states in anions and involves the use of anhydrous hydrogen fluoride (aHF) as a solvent. The general method consists of combining an aHF soluble starting material (e.g., K{sub 2}NiF{sub 6}) with a Lewis fluoroacid (e.g., BF{sub 3}), which precipitates a neutral polymeric solid state fluoride: 2 K{sup +} + NiF{sub 6}{sup 2{minus}} + BF{sub 3} {r_arrow} NiF{sub 4} + 2 BF{sub 4}{sup {minus}} + 2 K{sup +}. At room temperature, this reaction yields a different structural phase, with composition K{sub x}NiF{sub 3} (x {approx} 0.18). This material has a pseudo-hexagonal tungsten bronze structure (H{sub 0}-K{sub x}NiF{sub 3}), and is an ionic conductor, probably due to K{sup +} ions hosted in the lattice channels. R-NiF{sub 3} is capable of fluorinating a wide range of inorganic and organic substrates. These reactions have probably shed light on the mechanism of the Simons Electrochemical Fluorination (ECF) Process, an important industrial method of fluorinating organic compounds. It has long been speculated that NiF{sub 3} plays a role in the ECF process, which uses nickel electrodes in aHF solvent. K{sub 2}NiF{sub 6} also fluorinates organic compounds in aHF, but interestingly, yields different fluorinated products. The reduction of R-NiF{sub 3} and K{sub 2}NiF{sub 6} during fluorination reactions yields NiF{sub 2}. A method has been developed to regenerate NiF{sub 6}{sup 2{minus}} from NiF{sub 2}.

Chacon, L.C. [Univ. of Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Berkeley National Lab., CA (United States). Chemical Sciences Div.

1997-12-01T23:59:59.000Z

56

DRIVE CYCLE EFFICIENCY AND EMISSIONS ESTIMATES FOR REACTIVITY CONTROLLED COMPRESSION IGNITION IN A MULTI-CYLINDER LIGHT-DUTY DIESEL ENGINE  

SciTech Connect (OSTI)

In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOx and PM emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that by varying both the percent of premixed gasoline and EGR rate, stable combustion can be extended over more of the light-duty drive cycle load range. Changing the percent premixed gasoline changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and pressure rise rate than the use of EGR alone. This paper examines the combustion and emissions performance of light-duty diesel engine using direct injected diesel fuel and port injected gasoline to carry out RCCI for steady-state engine conditions which are consistent with a light-duty drive cycle. A GM 1.9L four-cylinder engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure EGR system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline. Engine-out emissions, engine performance and combustion behavior for RCCI operation is compared against both CDC and a premixed charge compression ignition (PCCI) strategy which relies on high levels of EGR dilution. The effect of percent of premixed gasoline, EGR rate, boost level, intake mixture temperature, combustion phasing and pressure rise rate is investigated for RCCI combustion for the light-duty modal points. Engine-out emissions of NOx and PM were found to be considerably lower for RCCI operation as compared to CDC and PCCI, while HC and CO emissions were higher. Brake thermal efficiency was similar or higher for many of the modal conditions for RCCI operation. The emissions results are used to estimate hot-start FTP-75 emissions levels with RCCI and are compared against CDC and PCCI modes.

Curran, Scott [ORNL; Briggs, Thomas E [ORNL; Cho, Kukwon [ORNL; Wagner, Robert M [ORNL

2011-01-01T23:59:59.000Z

57

Mechanistic, sensitivity, and uncertainty studies of the atmospheric oxidation of dimethylsulfide  

E-Print Network [OSTI]

The global-scale emissions and reactivity of dimethylsulfide (CH3SCH3, DMS) make it an integral component in the atmospheric sulfur cycle. DMS is rapidly oxidized in the atmosphere by a complex gas-phase mechanism involving ...

Lucas, Donald David, 1969-

2003-01-01T23:59:59.000Z

58

MINIMIZING NET CO2 EMISSIONS BY OXIDATIVE CO-PYROLYSIS OF COAL / BIOMASS BLENDS  

SciTech Connect (OSTI)

This study presents a set of thermodynamic calculations on the optimal mode of solid fuel utilization considering a wide range of fuel types and processing technologies. The technologies include stand-alone combustion, biomass/coal cofiring, oxidative pyrolysis, and straight carbonization with no energy recovery but with elemental carbon storage. The results show that the thermodynamically optimal way to process solid fuels depends strongly on the specific fuels and technologies available, the local demand for heat or for electricity, and the local baseline energy-production method. Burning renewable fuels reduces anthropogenic CO{sub 2} emissions as widely recognized. In certain cases, however, other processing methods are equally or more effective, including the simple carbonization or oxidative pyrolysis of biomass fuels.

Todd Lang; Robert Hurt

2001-12-23T23:59:59.000Z

59

Process for treating ammonia and nitrite containing waters to prevent nitric oxide emissions therefrom  

SciTech Connect (OSTI)

This patent describes a process for controlling the emission of nitrogen dioxide from, and the amount of one or more organisms, selected from the group consisting of fungi, algae and bacteria, growing in a system for handling a flow of condensate of steam, the condensate containing ammonia, ammonia precursors, or a mixture thereof. It comprises contacting the condensate in a substantially continuous manner with an amount of an oxidizing biocide which substantially prevents the emission of nitrogen dioxide from the condensate handling system but which does not substantially inhibit the growth of the organisms in the condensate handling system; and periodically contacting the condensate with an amount of a second biocide which substantially reduces the amount of the organisms.

Gallup, D.L.; Featherstone, J.L.

1991-07-16T23:59:59.000Z

60

ZERO EMISSION POWER PLANTS USING SOLID OXIDE FUEL CELLS AND OXYGEN TRANSPORT MEMBRANES  

SciTech Connect (OSTI)

Over 16,700 hours of operational experience was gained for the Oxygen Transport Membrane (OTM) elements of the proposed SOFC/OTM zero-emission power generation concept. It was repeatedly demonstrated that OTMs with no additional oxidation catalysts were able to completely oxidize the remaining depleted fuel in a simulated SOFC anode exhaust at an O{sub 2} flux that met initial targets. In such cases, neither residual CO nor H{sub 2} were detected to the limits of the gas chromatograph (<10 ppm). Dried OTM afterburner exhaust streams contained up to 99.5% CO{sub 2}. Oxygen flux through modified OTMs was double or even triple that of the standard OTMs used for the majority of testing purposes. Both the standard and modified membranes in laboratory-scale and demonstration-sized formats exhibited stable performance over extended periods (2300 to 3500 hours or 3 to 5 months). Reactor contaminants, were determined to negatively impact OTM performance stability. A method of preventing OTM performance degradation was developed and proven to be effective. Information concerning OTM and seal reliability over extended periods and through various chemical and thermal shocks and cycles was also obtained. These findings were used to develop several conceptual designs for pilot (10 kWe) and commercial-scale (250 kWe) SOFC/OTM zero emission power generation systems.

G. Maxwell Christie; Troy M. Raybold

2003-06-10T23:59:59.000Z

Note: This page contains sample records for the topic "oxide emissions reactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Fundamental Study of the Oxidation Characteristics and Pollutant Emissions of Model Biodiesel Fuels  

SciTech Connect (OSTI)

In this study, the oxidation characteristics of biodiesel fuels are investigated with the goal of contributing toward the fundamental understanding of their combustion characteristics and evaluating the effect of using these alternative fuels on engine performance as well as on the environment. The focus of the study is on pure fatty acid methyl-esters (FAME,) that can serve as surrogate compounds for real biodiesels. The experiments are conducted in the stagnation-flow configuration, which allows for the systematic evaluation of fundamental combustion and emission characteristics. In this paper, the focus is primarily on the pollutant emission characteristics of two C{sub 4} FAMEs, namely, methyl-butanoate and methyl-crotonate, whose behavior is compared with that of n-butane and n-pentane. To provide insight into the mechanisms of pollutant formation for these fuels, the experimental data are compared with computed results using a model with consistent C{sub 1}?C{sub 4} oxidation and NO{sub x} formation kinetics.

Feng, Q.; Wang, Y. L.; Egolfopoulos, Fokion N.; Tsotsis, T. T.

2010-01-01T23:59:59.000Z

62

Field emission effects of nitrogenated carbon nanotubes on chlorination and oxidation  

SciTech Connect (OSTI)

With reference to our recent reports [Appl. Phys. Lett. 90, 192107 (2007); Appl. Phys. Lett. 91, 202102 (2007)] about the electronic structure of chlorine treated and oxygen-plasma treated nitrogenated carbon nanotubes (N-CNTs), here we studied the electron field emission effects on chlorination (N-CNT:Cl) and oxidation (N-CNT:O) of N-CNT. A high current density (J) of 15.0 mA/cm{sup 2} has been achieved on chlorination, whereas low J of 0.0052 mA/cm{sup 2} is observed on oxidation compared to J=1.3 mA/cm{sup 2} for untreated N-CNT at an applied electric field E{sub A} of {approx}1.9 V/{mu}m. The turn-on electric field (E{sub TO}) was {approx}0.875. The 1.25 V/{mu}m was achieved for N-CNT:Cl and N-CNT:O, respectively, with respect to E{sub TO}=1.0 V/{mu}m for untreated one. These findings are due to the formation of different bonds with carbon and nitrogen in the N-CNT during the process of chlorine (oxygen)-plasma treatment by the charge transfer, or else that changes the density of free charge carriers and hence enhances (reduces) the field emission properties of N-CNTs:Cl (N-CNTs:O)

Ray, S. C.; Palnitkar, U.; Pao, C. W.; Tsai, H. M.; Pong, W. F.; Lin, I-N. [Department of Physics, Tamkang University, Tamsui 251, Taiwan (China); Papakonstantinou, P. [NRI, School of Electrical and Mechanical Engineering, University of Ulster at Jordanstown, Newtownabbey, County Antrim BT37OQB, Northern Ireland (United Kingdom); Ganguly, Abhijit; Chen, L. C. [Center for Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan (China); Chen, K. H. [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China)

2008-09-15T23:59:59.000Z

63

Numerical investigation of CO{sub 2} emission and thermal stability of a convective and radiative stockpile of reactive material in a cylindrical pipe of variable thermal conductivity  

SciTech Connect (OSTI)

In this paper the CO{sub 2} emission and thermal stability in a long cylindrical pipe of combustible reactive material with variable thermal conductivity are investigated. It is assumed that the cylindrical pipe loses heat by both convection and radiation at the surface. The nonlinear differential equations governing the problem are tackled numerically using Runge-Kutta-Fehlberg method coupled with shooting technique method. The effects of various thermophysical parameters on the temperature and carbon dioxide fields, together with critical conditions for thermal ignition are illustrated and discussed quantitatively.

Lebelo, Ramoshweu Solomon, E-mail: sollyl@vut.ac.za [Department of Mathematics, Vaal University of Technology, Private Bag X021, Vanderbijlpark, 1911 (South Africa)

2014-10-24T23:59:59.000Z

64

Emissivity of Candidate Materials for VHTR Applicationbs: Role of Oxidation and Surface Modification Treatments  

SciTech Connect (OSTI)

The Generation IV (GEN IV) Nuclear Energy Systems Initiative was instituted by the Department of Energy (DOE) with the goal of researching and developing technologies and materials necessary for various types of future reactors. These GEN IV reactors will employ advanced fuel cycles, passive safety systems, and other innovative systems, leading to significant differences between these future reactors and current water-cooled reactors. The leading candidate for the Next Generation Nuclear Plant (NGNP) to be built at Idaho National Lab (INL) in the United States is the Very High Temperature Reactor (VHTR). Due to the high operating temperatures of the VHTR, the Reactor Pressure Vessel (RPV) will partially rely on heat transfer by radiation for cooling. Heat expulsion by radiation will become all the more important during high temperature excursions during off-normal accident scenarios. Radiant power is dictated by emissivity, a material property. The NGNP Materials Research and Development Program Plan [1] has identified emissivity and the effects of high temperature oxide formation on emissivity as an area of research towards the development of the VHTR.

Sridharan, Kumar; Allen, Todd; Anderson, Mark; Cao, Guoping; Kulcinski, Gerald

2011-07-25T23:59:59.000Z

65

Biodiesel Fuel Property Effects on Particulate Matter Reactivity  

SciTech Connect (OSTI)

Controlling diesel particulate emissions to meet the 2007 U.S. standard requires the use of a diesel particulate filter (DPF). The reactivity of soot, or the carbon fraction of particulate matter, in the DPF and the kinetics of soot oxidation are important in achieving better control of aftertreatment devices. Studies showed that biodiesel in the fuel can increase soot reactivity. This study therefore investigated which biodiesel fuel properties impact reactivity. Three fuel properties of interest included fuel oxygen content and functionality, fuel aromatic content, and the presence of alkali metals. To determine fuel effects on soot reactivity, the performance of a catalyzed DPF was measured with different test fuels through engine testing and thermo-gravimetric analysis. Results showed no dependence on the aromatic content or the presence of alkali metals in the fuel. The presence and form of fuel oxygen was the dominant contributor to faster DPF regeneration times and soot reactivity.

Williams, A.; Black, S.; McCormick, R. L.

2010-06-01T23:59:59.000Z

66

Air Quality Responses to Changes in Black Carbon and Nitrogen Oxide Emissions  

E-Print Network [OSTI]

2005). Particulate emissions from construction activities.M. S. , (2000b). In-use emissions from heavy- duty dieseland nitrogen dioxide emissions from gasoline- and diesel-

Millstein, Dev

2009-01-01T23:59:59.000Z

67

Reactive based NOx sensor  

E-Print Network [OSTI]

Diesel engines exhibit better fuel economy and emit fewer greenhouse gases than gasoline engines. Modern diesel technology has virtually eliminated carbon monoxide and particulate emissions. Sulfur oxide emissions have ...

Vassiliou, Christophoros Christou

2006-01-01T23:59:59.000Z

68

A Reactive Oxide Overlayer on Rh Nanoparticles during CO Oxidation and Its Size Dependence Studied by in Situ Ambient Pressure XPS  

SciTech Connect (OSTI)

CO oxidation is one of the most studied heterogeneous reactions, being scientifically and industrially important, particularly for removal of CO from exhaust streams and preferential oxidation for hydrogen purification in fuel cell applications. The precious metals Ru, Rh, Pd, Pt, and Au are most commonly used for this reaction because of their high activity and stability. Despite the wealth of experimental and theoretical data, it remains unclear what is the active surface for CO oxidation under catalytic conditions for these metals. In this communication, we utilize in situ synchrotron ambient pressure X-ray photoelectron spectroscopy (APXPS) to monitor the oxidation state at the surface of Rh nanoparticles during CO oxidation and demonstrate that the active catalyst is a surface oxide, the formation of which is dependent on particle size. The amount of oxide formed and the reaction rate both increase with decreasing particle size.

Grass, Michael E.; Zhang, Yawen; Butcher, Derek R.; Park, Jeong Y.; Li, Yimin; Bluhm, Hendrik; Bratlie, Kaitlin M.; Zhang, Tianfu; Somorjai, Gabor A.

2008-09-15T23:59:59.000Z

69

Global projections for anthropogenic reactive nitrogen emissions to the atmosphere: an assessment of scenarios in the scientific literature  

SciTech Connect (OSTI)

Most long-term scenarios of global N emissions are produced by Integrated Assessment Models in the context of climate change assessment. The scenarios indicate that N emissions are likely to increase in the next decades, followed by a stabilization or decline. Critical factors for future N emissions are the development of the underlying drivers (especially fertilizer use, animal husbandry, transport and power generation), air pollution control policy and climate policy. The new scenarios made for climate change assessment, the Representative Concentration Pathways - RCPs, are not representative of the range of possible N-emission projections. A more focused development of scenarios for air pollution may improve the relevance and quality of the scenarios.

Van Vuuren, Detlef; Bouwman, Lex; Smith, Steven J.; Dentener, Frank

2011-09-17T23:59:59.000Z

70

Acoustic emission analysis on tensile failure of steam-side oxide scales formed on T22 alloy superheater tubes  

SciTech Connect (OSTI)

Failure of steam-side oxide scales on boiler tubes can seriously influence the safety of coal-fired power plants. Uniaxial tensile tests employing acoustic emission (AE) monitoring were performed, in this work, to investigate the failure behavior of steam-side oxide scales on T22 alloy boiler superheater tubes. The characteristic frequency spectra of the captured AE signals were obtained by performing fast Fourier transform. Three distinct peak frequency bands, 100-170, 175-250, and 280-390 kHz, encountered in different testing stages were identified in the frequency spectra, which were confirmed to, respectively, correspond to substrate plastic deformation, oxide vertical cracking, and oxide spalling with the aid of scanning electronic microscopy observations, and can thus be used for distinguishing different oxide failure mechanisms. Finally, the critical cracking strain of the oxide scale and the interfacial shear strength of the oxide/substrate interface were estimated, which are the critical parameters urgently desired for modeling the failure behavior of steam-side oxide scales on boiler tubes of coal-fired power plants.

Huang, Jun-Lin; Zhou, Ke-Yi, E-mail: boiler@seu.edu.cn; Xu, Jian-Qun [Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, Jiangsu Province (China); Wang, Xin-Meng; Tu, Yi-You [School of Materials Science and Engineering, Southeast University, Nanjing 210096, Jiangsu Province (China)

2014-07-28T23:59:59.000Z

71

Zero Emission Power Plants Using Solid Oxide Fuel Cells and Oxygen Transport Membranes  

SciTech Connect (OSTI)

Siemens Westinghouse Power Corp. (SWPC) is engaged in the development of Solid Oxide Fuel Cell stationary power systems. SWPC has combined DOE Developmental funds with commercial customer funding to establish a record of successful SOFC field demonstration power systems of increasing size. SWPC will soon deploy the first unit of a newly developed 250 kWe Combined Heat Power System. It will generate electrical power at greater than 45% electrical efficiency. The SWPC SOFC power systems are equipped to operate on lower number hydrocarbon fuels such as pipeline natural gas, which is desulfurized within the SOFC power system. Because the system operates with a relatively high electrical efficiency, the CO2 emissions, {approx}1.0 lb CO2/ kW-hr, are low. Within the SOFC module the desulfurized fuel is utilized electrochemically and oxidized below the temperature for NOx generation. Therefore the NOx and SOx emissions for the SOFC power generation system are near negligible. The byproducts of the power generation from hydrocarbon fuels that are released into the environment are CO2 and water vapor. This forward looking DOE sponsored Vision 21 program is supporting the development of methods to capture and sequester the CO2, resulting in a Zero Emission power generation system. To accomplish this, SWPC is developing a SOFC module design, to be demonstrated in operating hardware, that will maintain separation of the fuel cell anode gas, consisting of H2, CO, H2O and CO2, from the vitiated air. That anode gas, the depleted fuel stream, containing less than 18% (H2 + CO), will be directed to an Oxygen Transport Membrane (OTM) Afterburner that is being developed by Praxair, Inc.. The OTM is supplied air and the depleted fuel. The OTM will selectively transport oxygen across the membrane to oxidize the remaining H2 and CO. The water vapor is then condensed from the totally 1.5.DOC oxidized fuel stream exiting the afterburner, leaving only the CO2 in gaseous form. That CO2 can then be compressed and sequestered, resulting in a Zero Emission power generation system operating on hydrocarbon fuel that adds only water vapor to the environment. Praxair has been developing oxygen separation systems based on dense walled, mixed electronic, oxygen ion conducting ceramics for a number of years. The oxygen separation membranes find applications in syngas production, high purity oxygen production and gas purification. In the SOFC afterburner application the chemical potential difference between the high temperature SOFC depleted fuel gas and the supplied air provides the driving force for oxygen transport. This permeated oxygen subsequently combusts the residual fuel in the SOFC exhaust. A number of experiments have been carried out in which simulated SOFC depleted fuel gas compositions and air have been supplied to either side of single OTM tubes in laboratory-scale reactors. The ceramic tubes are sealed into high temperature metallic housings which precludes mixing of the simulated SOFC depleted fuel and air streams. In early tests, although complete oxidation of the residual CO and H2 in the simulated SOFC depleted fuel was achieved, membrane performance degraded over time. The source of degradation was found to be contaminants in the simulated SOFC depleted fuel stream. Following removal of the contaminants, stable membrane performance has subsequently been demonstrated. In an ongoing test, the dried afterburner exhaust composition has been found to be stable at 99.2% CO2, 0.4% N2 and 0.6%O2 after 350 hours online. Discussion of these results is presented. A test of a longer, commercial demonstration size tube was performed in the SWPC test facility. A similar contamination of the simulated SOFC depleted fuel stream occurred and the performance degraded over time. A second test is being prepared. Siemens Westinghouse and Praxair are collaborating on the preliminary design of an OTM equipped Afterburner demonstration unit. The intent is to test the afterburner in conjunction with a reduced size SOFC test module that has the anode gas separati

Shockling, Larry A.; Huang, Keqin; Gilboy, Thomas E. (Siemens Westinghouse Power Corporation); Christie, G. Maxwell; Raybold, Troy M. (Praxair, Inc.)

2001-11-06T23:59:59.000Z

72

Current emission trends for nitrogen oxides, sulfur dioxide, and volatile organic compounds by month and state: Methodology and results  

SciTech Connect (OSTI)

This report presents estimates of monthly sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), and nonmethane voltatile organic compound (VOC) emissions by sector, region, and state in the contiguous United States for the years 1975 through 1988. This work has been funded as part of the National Acid Precipitation Assessment Program`s Emissions and Controls Task Group by the US Department of Energy (DOE) Office of Fossil Energy (FE). The DOE project officer is Edward C. Trexler, DOE/FE Office of Planning and Environment.

Kohout, E.J.; Miller, D.J.; Nieves, L.A.; Rothman, D.S.; Saricks, C.L.; Stodolsky, F.; Hanson, D.A.

1990-08-01T23:59:59.000Z

73

Current emission trends for nitrogen oxides, sulfur dioxide, and volatile organic compounds by month and state: Methodology and results  

SciTech Connect (OSTI)

This report presents estimates of monthly sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), and nonmethane voltatile organic compound (VOC) emissions by sector, region, and state in the contiguous United States for the years 1975 through 1988. This work has been funded as part of the National Acid Precipitation Assessment Program's Emissions and Controls Task Group by the US Department of Energy (DOE) Office of Fossil Energy (FE). The DOE project officer is Edward C. Trexler, DOE/FE Office of Planning and Environment.

Kohout, E.J.; Miller, D.J.; Nieves, L.A.; Rothman, D.S.; Saricks, C.L.; Stodolsky, F.; Hanson, D.A.

1990-08-01T23:59:59.000Z

74

Does the location of aircraft nitrogen oxide emissions affect their climate impact?  

E-Print Network [OSTI]

approximately balancing the IRF associated with aviation CO2 emissions (28 mWm�2 yr (TgNO2)�1 ). The overall climate impact of global aviation is often represented by a simple multiplier for CO2 emissions­3% of global anthropogenic CO2 emissions [Lee et al., 2009], yet these emissions fall outside the remit

75

Mechanism of Nitric Oxide Reactivity and Fluorescence Enhancement of the NO-Specific Probe CuFL1  

E-Print Network [OSTI]

The mechanism of the reaction of CuFL1 (FL1 = 2-{2-chloro-6-hydroxy-5-[(2-methylquinolin-8-ylamino)methyl]-3-oxo-3H-xanthen-9-yl}benzoic acid) with nitric oxide (NO) to form the N-nitrosated product FL1-NO in buffered ...

McQuade, Lindsey E.

76

Steam Oxidation of Advanced Steam Turbine Alloys  

SciTech Connect (OSTI)

Power generation from coal using ultra supercritical steam results in improved fuel efficiency and decreased greenhouse gas emissions. Results of ongoing research into the oxidation of candidate nickel-base alloys for ultra supercritical steam turbines are presented. Exposure conditions range from moist air at atmospheric pressure (650°C to 800°C) to steam at 34.5 MPa (650°C to 760°C). Parabolic scale growth coupled with internal oxidation and reactive evaporation of chromia are the primary corrosion mechanisms.

Holcomb, Gordon R.

2008-01-01T23:59:59.000Z

77

Controlling emissions from a black liquor fluidized bed evaporator (Copeland reactor) using a regenerative thermal oxidizer and a prefilter  

SciTech Connect (OSTI)

This paper reports on an intriguing pilot project developed to control air emissions from a pulp mill. Testing is complete, and the results show favorable emissions reductions. Stone Container Corporation, REECO, NCASI, the Ohio DEP, and the US EPA, have all worked together and approved the installation of control equipment, for VOC and HAP emissions under Presumptive MACT, setting the standard for the Copeland Reactor process in a semi chem pulp mill. The equipment, once operational, will reduce VOC and CO emissions by greater than 90%. This installation will be done at one seventh the cost of the significant process modifications required to accomplish the same emission reduction. In addition, increased process operating efficiency will be achieved with the use of an energy recovery system. The process is a black liquor fluidized bed boiler, which is used to generate sodium carbonate from the black liquor. The vapor emissions were high in VOCs, CO and particulate. After much study and testing, a wet electrostatic precipitator was chosen as the filter system for particulate control, followed by a regenerative thermal oxidizer for VOC and HAP control, finally an air-to-air heat exchanger is being used to preheat the combustion air entering the process.

Grzanka, R.

1997-12-31T23:59:59.000Z

78

Reactivity Controlled Compression Ignition (RCCI) Combustion on a Multi-Cylinder Light-Duty Diesel Engine  

SciTech Connect (OSTI)

Reactivity controlled compression ignition is a low-temperature combustion technique that has been shown, both in computational fluid dynamics modeling and single-cylinder experiments, to obtain diesel-like efficiency or better with ultra-low nitrogen oxide and soot emissions, while operating primarily on gasoline-like fuels. This paper investigates reactivity controlled compression ignition operation on a four-cylinder light-duty diesel engine with production-viable hardware using conventional gasoline and diesel fuel. Experimental results are presented over a wide speed and load range using a systematic approach for achieving successful steady-state reactivity controlled compression ignition combustion. The results demonstrated diesel-like efficiency or better over the operating range explored with low engine-out nitrogen oxide and soot emissions. A peak brake thermal efficiency of 39.0% was demonstrated for 2600 r/min and 6.9 bar brake mean effective pressure with nitrogen oxide emissions reduced by an order of magnitude compared to conventional diesel combustion operation. Reactivity controlled compression ignition emissions and efficiency results are compared to conventional diesel combustion operation on the same engine.

Curran, Scott [ORNL; Hanson, Reed M [ORNL; Wagner, Robert M [ORNL

2012-01-01T23:59:59.000Z

79

Air Quality Responses to Changes in Black Carbon and Nitrogen Oxide Emissions  

E-Print Network [OSTI]

D. , (2008a). Carbonyl and nitrogen dioxide emissions fromstudy of indoor nitrogen dioxide levels and respiratoryand modeled nitrogen dioxide (NO 2 ) concentrations. All

Millstein, Dev

2009-01-01T23:59:59.000Z

80

Exploring the reactivity of bacterial multicomponent monooxygenases  

E-Print Network [OSTI]

Chapter 1. Introduction: The Reactivity of Bacterial Multicomponent Monooxygenases Bacterial multicomponent monooxygenases constitute a remarkable family of enzymes that oxidize small, inert hydrocarbon substrates using ...

Tinberg, Christine Elaine

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxide emissions reactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Cryogenic CO2 Formation on Oxidized Gold Clusters Synthesized...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cryogenic CO2 Formation on Oxidized Gold Clusters Synthesized via Reactive Layer Assisted Deposition. Cryogenic CO2 Formation on Oxidized Gold Clusters Synthesized via Reactive...

82

Electronic structure and reactivity in water splitting of the iron oxide dimers and their hexacarbonyls: A density functional study  

SciTech Connect (OSTI)

The iron oxide dimers (FeO){sub 2} and their peroxide isomers are studied with the B3LYP density functional as bare clusters and as hexacarbonyls. Among the bare clusters the planar four-member ring structures are more stable than the non-planar ones and the rhombic dioxide Fe{sub 2}O{sub 2} with antiferromagnetically ordered electrons on iron centers is the global minimum. Water adsorption on the bare diiron dioxide is exothermic, but dissociation does not occur. Carbonylation favors a non-planar Fe{sub 2}O{sub 2} ring for both the dioxides and the peroxides and high electron density at the Fe centers is induced, evidenced by the natural charge distribution, the high proton affinity, and the values of global electronegativity and hardness. The iron dioxide hexacarbonyl Fe{sub 2}O{sub 2}(CO){sub 6} is diamagnetic in the state of the global minimum. It is separated from the next low-lying triplet state by a small energy gap of 0.22 eV. Time-dependent density functional theory methods were applied to examine electron excitations from the ground state to the low-lying triplet states in the hexacarbonyls and their adsorption complexes with water. Singlet-to-triplet state excitations occur via ligand-to-metal charge transfer in the hexacarbonyls; in the adsorption complexes excitations from the oxygen lone pairs to the adsorption center also occur and they appear in the IR-visible region. The lowest energy singlet and triplet state reaction paths for water splitting were followed. On the singlet potential energy surface (PES), water splitting is spontaneous, while for the triplet PES an activation barrier of 14.1 kJ mol{sup ?1} was determined.

Uzunova, Ellie L., E-mail: ellie@svr.igic.bas.bg [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113 (Bulgaria); Mikosch, Hans [Institute for Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/E164-EC, 1060 Vienna (Austria)] [Institute for Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/E164-EC, 1060 Vienna (Austria)

2014-01-14T23:59:59.000Z

83

EMISSIONS OF NITROUS OXIDE AND METHANE FROM CONVENTIONAL AND ALTERNATIVE FUEL MOTOR VEHICLES  

E-Print Network [OSTI]

-produced electricity for battery electric vehicles. Already, vehicles powered by compressed natural gas, propane. LIPMAN AND MARK A. DELUCCHI example, promising strategies for powering motor vehicles with reduced GHGEMISSIONS OF NITROUS OXIDE AND METHANE FROM CONVENTIONAL AND ALTERNATIVE FUEL MOTOR VEHICLES

Kammen, Daniel M.

84

Influence of solid fuel on the carbon-monoxide and nitrogen-oxide emissions on sintering  

SciTech Connect (OSTI)

Laboratory and industrial research now underway at the sintering plant of AO Mittal Steel Temirtau is focusing on the preparation of fuel of optimal granulometric composition, the replacement of coke fines, and the adaptation of fuel-input technology so as to reduce fuel consumption and toxic emissions without loss of sinter quality.

M.F. Vitushchenko; N.L. Tatarkin; A.I. Kuznetsov; A.E. Vilkov [AO Mittal Steel Temirtau, Temirtau (Kazakhstan)

2007-07-01T23:59:59.000Z

85

Nitrous oxide emissions. Topical report, July 1, 1990--June 30, 1993  

SciTech Connect (OSTI)

Published N{sub 2}O emissions data for experimental studies examining large numbers of coals are generally scarce at the pilot-scale fluidized-bed combustion (FBC) level, although some data are available at the laboratory scale. The primary objective of this study was to determine the atmospheric contribution of N{sub 2}O derived from coal combustion. Additionally, the goal was to establish a comprehensive engineering model to assist in the prediction of N{sub 2}O emissions based upon operating and design considerations. To meet the overall objectives of determining the overall contribution of N{sub 2}O derived from FBC and developing an engineering model seven tasks were originally proposed. The objective of each task as originally proposed and finally executed is presented in this topical report. The seven tasks were: (1) literature survey; (2) equipment design and test plan development; (3) experimental techniques; (4) pilot-scale determination of the impacts of coal properties and operating conditions on N{sub 2}O emissions; (5) role of coal char on N{sub 2}O formation and destruction; (6) homogeneous versus heterogeneous reactions; and (7) modeling of N{sub 2}O emissions.

Collings, M.E.; Mann, M.D.

1993-12-01T23:59:59.000Z

86

Enhancement in light emission and electrical efficiencies of a silicon nanocrystal light-emitting diode by indium tin oxide nanowires  

SciTech Connect (OSTI)

We report an enhancement in light emission and electrical efficiencies of a Si nanocrystal (NC) light-emitting diode (LED) by employing indium tin oxide (ITO) nanowires (NWs). The formed ITO NWs (diameter?

Huh, Chul, E-mail: chuh@etri.re.kr; Kim, Bong Kyu; Ahn, Chang-Geun; Kim, Sang-Hyeob [IT Convergence Technology Research Laboratory, Electronics and Telecommunications Research Institute, Daejeon 305-350 (Korea, Republic of); Choi, Chel-Jong [Department of BIN Fusion Technology, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

2014-07-21T23:59:59.000Z

87

Enhanced UV and suppressed defect related emission in yttrium doped zinc oxide  

SciTech Connect (OSTI)

Yttrium doped ZnO (YZO) synthesized through conventional solid state reaction method using ZnO and Y{sub 2}O{sub 3} as starting material. The formation of YZO compounds were confirmed by X-ray diffraction and Raman spectroscopy. Photoluminescence measurements revealed an enhanced ultra-violet (UV) and suppressed defect related emission in YZO which is due to reduction in the concentration of the defects related to oxygen interstitials (O{sub i}) and zinc vacancy (V{sub Zn}) of ZnO.

Sharma, Vikas; Vyas, Rishi; Sachdev, K. [Department of Physics, Malaviya National Institute of Technology, Jaipur - 302017 (India); Kumar, Parmod, E-mail: parmodphysics@gmail.com; Malik, Hitendra K. [Department of Physics, Indian Institute of Technology Delhi, New Delhi - 110016 (India); Rana, Geeta [Department of Physics, G. B. Pant University of Agriculture and Technology, Pantnagar - 263145 (India); Asokan, K. [Material Science Division, Inter University Accelerator Centre, New Delhi - 110067 (India)

2014-04-24T23:59:59.000Z

88

Linker-Induced Anomalous Emission of Organic-Molecule Conjugated Metal-Oxide Nanoparticles  

SciTech Connect (OSTI)

Semiconductor nanoparticles conjugated with organic- and dye-molecules to yield high efficiency visible photoluminescence (PL) hold great potential for many future technological applications. We show that folic acid (FA)-conjugated to nanosize TiO2 and CeO2 particles demonstrates a dramatic increase of photoemission intensity at wavelengths between 500 and 700 nm when derivatized using aminopropyl trimethoxysilane (APTMS) as spacer-linker molecules between the metal oxide and FA. Using density-functional theory (DFT) and time-dependent DFT calculations we demonstrate that the strong increase of the PL can be explained by electronic transitions between the titania surface oxygen vacancy (OV) states and the low-energy excited states of the FA/APTMS molecule anchored onto the surface oxygen bridge sites in close proximity to the OVs. We suggest this scenario to be a universal feature for a wide class of metal oxide nanoparticles, including nanoceria, possessing a similar band gap (3 eV) and with a large surface-vacancy-related density of electronic states. We demonstrate that the molecule-nanoparticle linker can play a crucial role in tuning the electronic and optical properties of nanosystems by bringing optically active parts of the molecule and of the surface close to each other.

Turkowski, Volodymyr; Babu, Suresh; Le, Duy; Kumar, Amit; Haldar, Manas K.; Wagh, Anil V.; Hu, Zhongjian; Karakoti, Ajay S.; Gesquiere, Andre J.; Law, Benedict; Mallik, Sanku; Rahman, Talat S.; Leuenberger, Michael N.; Seal, Sudipta

2012-06-26T23:59:59.000Z

89

Reactive Maintenance  

Broader source: Energy.gov [DOE]

Reactive maintenance follows a run-it-until-it-breaks strategy where no actions or efforts are taken to maintain equipment as intended by the manufacturer. Studies indicate this is still the predominant mode of maintenance for Federal facilities.

90

HIGH EFFICIENCY, LOW EMISSIONS, SOLID OXIDE FUEL CELL SYSTEMS FOR MULTIPLE APPLICATIONS  

SciTech Connect (OSTI)

Technology Management Inc. (TMI), teamed with the Ohio Office of Energy Efficiency and Renewable Energy, has engineered, constructed, and demonstrated a stationary, low power, multi-module solid oxide fuel cell (SOFC) prototype system operating on propane and natural gas. Under Phase I, TMI successfully operated two systems in parallel, in conjunction with a single DC-AC inverter and battery bus, and produced net AC electricity. Phase II testing expanded to include alternative and renewable fuels typically available in rural regions of Ohio. The commercial system is expected to have ultra-low pollution, high efficiency, and low noise. The TMI SOFC uses a solid ceramic electrolyte operating at high temperature (800-1000 C) which electrochemically converts gaseous fuels (hydrogen or mixed gases) and oxygen into electricity. The TMI system design oxidizes fuel primarily via electrochemical reactions and uses no burners (which pollute and consume fuel)--resulting in extremely clean exhaust. The use of proprietary sulfur tolerant materials developed by TMI allows system operation without additional fuel pre-processing or sulfur removal. Further, the combination of high operating temperatures and solid state operation increases the potential for higher reliability and efficiencies compared to other types of fuel cells. Applications for the TMI SOFC system cover a wide range of transportation, building, industrial, and military market sectors. A generic technology, fuel cells have the potential to be embodied into multiple products specific to Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) program areas including: Fuel Cells and Microturbines, School Buildings, Transportation, and Bioenergy. This program focused on low power stationary applications using a multi-module system operating on a range of common fuels. By producing clean electricity more efficiently (thus using less fuel), fuel cells have the triple effect of cleaning up the environment, reducing the amount of fuel consumed and, for energy intensive manufacturers, boosting their profits (by reducing energy expenses). Compared to conventional power generation technologies such as internal combustion engines, gas turbines, and coal plants, fuel cells are extremely clean and more efficient, particularly at smaller scales.

Sara Ward; Michael A. Petrik

2004-07-28T23:59:59.000Z

91

Reactive Gliosis Reactive Oxygen Species: Superoxide  

E-Print Network [OSTI]

. By sensing the electric signals generated by other 3368 Reactive Gliosis #12;individuals, mormyrids are alsoReactive Gliosis Glial Scar Reactive Oxygen Species: Superoxide Anions Neuroinflammation motor output. Reafferent Control in Electric Communication Reafferent Control in Electric Communication

92

Greenhouse gas emissions in biogas production systems  

E-Print Network [OSTI]

Cameron KC. Nitrous oxide emissions from two dairy pastureand land use on N 2 O emissions from an imperfectly drainedoptions for N 2 O emissions from differently managed

Dittert, Klaus; Senbayram, Mehmet; Wienforth, Babette; Kage, Henning; Muehling, Karl H

2009-01-01T23:59:59.000Z

93

Sulfur dioxide and nitrogen oxides emissions from U.S. pulp and paper mills, 1980-2005  

SciTech Connect (OSTI)

Estimates of total SO{sub 2} and NOx emissions from U.S. pulp and paper mills were developed from industry-wide surveys conducted at 5-yr intervals from 1980 to 2005. The following conclusions were drawn from these estimates: (1) Total SO{sub 2} emissions from pulp and paper mills were 340,000 t in 2005. Since 1980, SO{sub 2} emissions have decreased steadily. The decline over the 25-yr period was over 60%. Paper production increased by 50% over the same period. (2) Boilers burning coal and oil are the primary source of SO{sub 2} emissions, with minor contributions from black liquor combustion in kraft recovery furnaces and the burning of noncondensable gases in boilers at kraft pulp mills. Factors contributing to the decline in boiler SO{sub 2} emissions include large reductions in residual oil use, recent decreases in coal use, declines in the average sulfur content of residual oil and coal being burned, and increasing use of flue gas desulfurization systems.(3) NOx emissions from pulp and paper mills were 230,000 t in 2005. NOx emissions were fairly constant through 1995, but then declined by 12% in 2000 and an additional 17% between 2000 and 2005. (4) In 2005, boilers accounted for two-thirds of the NOx emissions, and kraft mill sources approximately 30%. Boiler NOx emissions exhibited very little change through 1995, but decreased by one third in the next 10 yr. The lower emissions resulted from declines in fossil fuel use, a reduction in the EPA emission factors for natural gas combustion in boilers without NOx controls, and more widespread use of combustion modifications and add-on NOx control technologies, particularly on coal-fired boilers subject to EPA's NOx SIP call. Total NOx emissions from kraft mill sources changed little over the 25-yr period. 7 refs., 4 figs., 3 tabs.

John E. Pinkerton [National Council of the Paper Industry for Air and Stream Improvement Inc., Research Triangle Park, NC (United States). Air Quality Program

2007-08-15T23:59:59.000Z

94

Development of the ReaxFF reactive force field for mechanistic studies of catalytic selective oxidation processes on BiMoOx  

E-Print Network [OSTI]

report the use of ReaxFF to study the activation and conversion of propene to acrolein by various metal acrolein. The propene reations on V2O5 occur at lower temperatures than on Bi2O3 or Bi2Mo3O12. The results-metal­ oxide (MMO) catalysts, accounts for the majority of the 8 billion pounds of acrolein produced annually

van Duin, Adri

95

High Temperature Oxidation Behavior of gamma-Ni+gamma'-Ni3Al Alloys and Coatings Modified with Pt and Reactive Elements  

SciTech Connect (OSTI)

Materials for high-pressure turbine blades must be able to operate in the high-temperature gases (above 1000 C) emerging from the combustion chamber. Accordingly, the development of nickel-based superalloys has been constantly motivated by the need to have improved engine efficiency, reliability and service lifetime under the harsh conditions imposed by the turbine environment. However, the melting point of nickel (1455 C) provides a natural ceiling for the temperature capability of nickel-based superalloys. Thus, surface-engineered turbine components with modified diffusion coatings and overlay coatings are used. Theses coatings are capable of forming a compact and adherent oxide scale, which greatly impedes the further transport of reactants between the high-temperature gases and the underlying metal and thus reducing attack by the atmosphere. Typically, these coatings contain {beta}-NiAl as a principal constituent phase in order to have sufficient aluminum content to form an Al{sub 2}O{sub 3} scale at elevated temperatures. The drawbacks to the currently-used {beta}-based coatings, such as phase instabilities, associated stresses induced by such phase instabilities, and extensive coating/substrate interdiffusion, are major motivations in this study to seek next-generation coatings. The high-temperature oxidation resistance of novel Pt + Hf-modified {gamma}-Ni + {gamma}-Ni{sub 3}Al-based alloys and coatings were investigated in this study. Both early-stage and 4-days isothermal oxidation behavior of single-phase {gamma}-Ni and {gamma}{prime}-Ni{sub 3}Al alloys were assessed by examining the weight changes, oxide-scale structures, and elemental concentration profiles through the scales and subsurface alloy regions. It was found that Pt promotes Al{sub 2}O{sub 3} formation by suppressing the NiO growth on both {gamma}-Ni and {gamma}{prime}Ni{sub 3}Al single-phase alloys. This effect increases with increasing Pt content. Moreover, Pt exhibits this effect even at lower temperatures ({approx}970 C) in the very early stage of oxidation. It was also inferred that Pt enhances the diffusive flux of aluminum from the substrate to the scale/alloy interface. Relatively low levels of hafnium addition to Pt-free {gamma}{prime}-Ni{sub 3}Al increased the extent of external NiO formation due to non-protective HfO{sub 2} formation. Accordingly, this effect intensified with increasing Hf content from 0.2 to 0.5 at.%.

Nan Mu

2007-12-01T23:59:59.000Z

96

Similarity of the Surface Reactivity of Hydrous Ferric Oxide and Hematite: Sorption and Redox of U(VI) and Fe(II)  

SciTech Connect (OSTI)

Hydrous Ferric Oxide (HFO) vs. Hematite--Thermodynamically distinctive bulk phases, but the surfaces could be similar due to hydration of the interface. Hypothesis--The surface of HFO is energetically similar to the surface of hematite. Objective--Compare the reactions of HFO and hematite with U(VI) and Fe(II). Experimental--The reactions of interests were (1) preparation of sub-micron hematite, (2) sorption of U(VI), and (3) redox of U(VI) and Fe(II) with HFO or hematite.

Je-Hun Jang; Dempsey, Brian A.; Burgos, William D.; Yeh, George; Roden, Eric

2004-03-17T23:59:59.000Z

97

E-Print Network 3.0 - actual nitric oxide Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

combustion are nitric oxide (NO) and nitrogen... of the nitric oxide is oxidized to nitrogen dioxide, so the environmental effects of emissions of both... O emissions at coal...

98

E-Print Network 3.0 - affects nitric oxide Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

combustion are nitric oxide (NO) and nitrogen... of the nitric oxide is oxidized to nitrogen dioxide, so the environmental effects of emissions of both... O emissions at coal...

99

Heterogeneous-phase reactions of nitrogen dioxide with vermiculite-supported magnesium oxide (as applied to the control of jet engine test cell emissions). Doctoral thesis  

SciTech Connect (OSTI)

Controlling nitrogen oxides (NOx) from a non-steady-state stationary source like a jet engine test cell (JETC) requires a method that is effective over a wide range of conditions. A heterogeneous, porous, high surface area sorbent material comprised of magnesium oxide powder attached to a vermiculite substrate has been commercially developed for this purpose. Data from extensive laboratory testing of this material in a packed-bed flow system are presented. NO2 removal efficiencies, kinetics, and proposed NO2 removal mechanisms over a range of representative JETC exhaust gas characteristics are described. Exhaust gas variables evaluated included: NO2 concentration, temperature, flow rate (retention time), oxygen content, and moisture content. Availability of water and oxygen were found to be important variables. It is probable that water is necessary for the conversion of MgO to Mg(OH)2, which is a more reactive compound having thermal stability over the range of temperatures evaluated. Gaseous oxygen serves to oxidize NO to NO2, the latter being more readily removed from the gas stream. The presence of oxygen also serves to offset thermal decomposition of NO2 or surface nitrite/nitrate. Effective `lifetime` and regenerability of the exposed sorbent material were also evaluated. NO2 removal efficiencies were found to greatly exceed those for NO, with a maximum value greater than 90 percent. The effective conversion of NO to NO2 is a crucial requirement for removal of the former. The reaction between NO2 and MgO-vermiculite is first-order with respect to NO2.

Kimm, L.T.

1995-11-01T23:59:59.000Z

100

Up-regulation of cytosolic phospholipase A{sub 2}{alpha} expression by N,N-diethyldithiocarbamate in PC12 cells; involvement of reactive oxygen species and nitric oxide  

SciTech Connect (OSTI)

Disulfiram (an alcohol-aversive drug) and related compounds are known to provoke several side effects involving behavioral and neurological complications. N,N-diethyldithiocarbamate (DDC) is considered as one of the main toxic species of disulfiram and acts as an inhibitor of superoxide dismutase. Since arachidonic acid (AA) formation is regulated by reactive oxygen species (ROS) and related to toxicity in neuronal cells, we investigated the effects of DDC on AA release and expression of the {alpha} type of cytosolic phospholipase A{sub 2} (cPLA{sub 2}{alpha}) in PC12 cells. Treatment with 80-120 {mu}M DDC that causes a moderate increase in ROS levels without cell toxicity stimulated cPLA{sub 2}{alpha} mRNA and its protein expression. The expression was mediated by extracellular-signal-regulated kinase (ERK1/2), one of the mitogen-activated protein kinases. Treatment with N {sup G} nitro-L-arginine methyl ester (an inhibitor of nitric oxide synthase, 1 mM) and oxy-hemoglobin (a scavenger of nitric oxide, 2 mg/mL) abolished the DDC-induced responses (ERK1/2 phosphorylation and cPLA{sub 2}{alpha} expression). We also showed DDC-induced up-regulation of the mRNA expression of lipocortin 1, an inhibitor of PLA{sub 2}. Furthermore, DDC treatment of the cells enhanced Ca{sup 2+}-ionophore-induced AA release in 30 min, although the effect was limited. Changes in AA metabolism in DDC-treated cells may have a potential role in mediating neurotoxic actions of disulfiram. In this study, we show the first to demonstrate the up-regulation of cPLA{sub 2}{alpha} expression by DDC treatment in neuronal cells.

Akiyama, Nobuteru [Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675 (Japan); Nabemoto, Maiko [Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675 (Japan); Hatori, Yoshio [Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675 (Japan); Nakamura, Hiroyuki [Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675 (Japan); Hirabayashi, Tetsuya [Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675 (Japan); Fujino, Hiromichi [Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675 (Japan); Saito, Takeshi [Department of Health Sciences, Hokkaido University School of Medicine, Sapporo 060-0812 (Japan); Murayama, Toshihiko [Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675 (Japan)]. E-mail: murayama@p.chiba-u.ac.jp

2006-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxide emissions reactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Growth and field-emission property of tungsten oxide nanotip arrays Jun Zhou, Li Gong, Shao Zhi Deng,a  

E-Print Network [OSTI]

and Engineering, SunYat-Sen (Zhongshan) University, Guangzhou, 510275, China Rusen Yang and Zhong Lin Wangb School in the threshold field.14­16 Tungsten oxide is a very important semiconductor. It has been found to be of great- tion deposition process. The experimental setup consists of a vacuum chamber 300 mm 400 mm , two copper

Wang, Zhong L.

102

Guidance Document Reactive Chemicals  

E-Print Network [OSTI]

showers and chillers. Health Hazards: The reactive chemicals are grouped primarily because of the physical

103

REDUCTION OF INHERENT MERCURY EMISSIONS IN PC COMBUSTION  

SciTech Connect (OSTI)

Mercury emission compliance presents one of the major potential challenges raised by the 1990 Clean Air Act Amendments. Simple ways of controlling emissions have not been identified. The variability in the field data suggest that inherent mercury emissions may be reduced if the source of this inherent capture can be identified and controlled. The key mechanisms appear to involve the oxidation of mercury to Hg{sup 2}, generally producing the more reactive HgCl{sub 2}, followed by its capture by certain components of the fly ash or char, or in the air pollution control equipment. This research focuses on identifying the rate-limiting steps associated with the oxidation step. Work in this reporting period focused on testing of the kinetic mechanism reported in the previous semiannual report, and the interpretation of data (both ours and literature). This model yields good qualitative agreement with the data and indicates that mercury oxidation occurs during the thermal quench of the combustion gases. The model also suggests that atomic chlorine is the key oxidizing species. The oxidation is limited to a temperature window between 700-400 C that is defined by the overlap of (1) a region of significant superequilibrium Cl concentration, and (2) a region where oxidized mercury is favored by equilibrium. Above 700 C reverse reactions effectively limit oxidized mercury concentrations. Below 400 C, atomic chlorine concentrations are too low to support further oxidation. The implication of these results are that homogeneous oxidation is governed primarily by (1) HCl concentration, (2) quench rate, and (3) background gas composition. Work conducted under the present grant has been the subject of one journal paper that was accepted for publication during the reporting period (Sliger et al., 1999).

John C. Kramlich; Rebecca N. Sliger; David J. Going

1999-08-06T23:59:59.000Z

104

REDUCTION OF INHERENT MERCURY EMISSIONS IN PC COMBUSTION  

SciTech Connect (OSTI)

Mercury emission compliance presents one of the major potential challenges raised by the 1990 Clean Air Act Amendments. Simple ways of controlling emissions have not been identified. The variability in the field data suggest that inherent mercury emissions may be reduced if the source of this inherent capture can be identified and controlled. The key mechanisms appear to involve the oxidation of mercury to Hg{sup 2}, generally producing the more reactive HgCl{sub 2}, followed by its capture by certain components of the fly ash or char, or in the air pollution control equipment. This research focuses on identifying the rate-limiting steps associated with the oxidation step. Work in this reporting period focused on the refinement of the rate constants used in the kinetic mechanism for mercury oxidation. The possible reactions leading to mercury oxidation are reviewed. Rate constants for these reactions are discussed, using both literature sources and detailed estimates. The resulting mechanism represents the best present picture of the overall chlorine homogeneous oxidation chemistry. Application of this mechanism to the data will be explored in the subsequent reporting period. Work conducted under the present grant has been the subject of two meeting papers presented during the reporting period (Sliger et al., 1998a,b).

John C. Kramlich; Rebecca N. Sliger; David J. Going

1999-08-06T23:59:59.000Z

105

Reactivity of the Quinone Methide of Butylated hydroxytoluene in Solution  

E-Print Network [OSTI]

BHT is a common antioxidant in pharmaceutical formulations and when oxidized it forms a quinone methide (QM). QM is a highly reactive electrophilic species which can undergo nucleophilic addition. This research investigated ...

Willcockson, Maren Gulsrud

2011-08-31T23:59:59.000Z

106

Enhanced stimulated emission in ZnO thin films using microdisk top-down structuring  

SciTech Connect (OSTI)

Microdisks were fabricated in zinc oxide (ZnO) thin films using a top-down approach combining electron beam lithography and reactive ion etching. These microdisk structured thin films exhibit a stimulated surface emission between 3 and 7 times higher than that from a reference film depending on the excitation power density. Emission peak narrowing, reduction in lasing threshold and blue-shifting of the emission wavelength were observed along with enhancement in the emitted intensity. Results indicate that this enhancement is due to an increase in the internal quantum efficiency combined with an amplification of the stimulated emission. An analysis in terms of waveguiding is presented in order to explain these effects. These results demonstrate that very significant gains in emission can be obtained through conventional microstructuration without the need for more onerous top-down nanostructuration techniques.

Nomenyo, K.; Kostcheev, S.; Lérondel, G. [Laboratoire de Nanotechnologie et d'Instrumentation Optique, Institut Charles Delaunay, CNRS UMR 6281, Université de Technologie de Troyes, 12 rue Marie Curie, CS 42060, 10004 Troyes Cedex (France); Gadallah, A.-S. [Laboratoire de Nanotechnologie et d'Instrumentation Optique, Institut Charles Delaunay, CNRS UMR 6281, Université de Technologie de Troyes, 12 rue Marie Curie, CS 42060, 10004 Troyes Cedex (France); Department of Laser Sciences and Interactions, National Institute of Laser Enhanced Sciences, Cairo University, Giza (Egypt); Rogers, D. J. [Nanovation, 8, route de Chevreuse, 78117 Châteaufort (France)

2014-05-05T23:59:59.000Z

107

Tropospheric Reactive Nitrogen Speciation, Deposition, and Chemistry at Harvard Forest  

E-Print Network [OSTI]

and absolute contributions of nitric acid (HNO3) and NOx (nitric oxide (NO) + nitrogen dioxide (NO2)) to totalTropospheric Reactive Nitrogen Speciation, Deposition, and Chemistry at Harvard Forest A thesis. Steven C. Wofsy Cassandra Volpe Horii Tropospheric Reactive Nitrogen Speciation, Deposition

108

Effects of Biodiesel on NOx Emissions  

SciTech Connect (OSTI)

A presentation about the effects of biodiesel on nitrogen oxide emissions presented at the ARB Biodiesel Workshop June 8, 2005.

McCormick, R.

2005-06-01T23:59:59.000Z

109

S-nitrosothiols and reactive oxygen species in plant disease resistance and development   

E-Print Network [OSTI]

Nitric oxide (NO) as well as reactive oxygen species (ROS) play an important role in defence signalling in plants. After successful recognition of an invading pathogen, an increase in ROS occurs, the ’oxidative burst’; ...

Brzezek, Kerstin

2014-06-28T23:59:59.000Z

110

Clean coal technology: selective catalytic reduction (SCR) technology for the control of nitrogen oxide emissions from coal-fired boilers  

SciTech Connect (OSTI)

The report discusses a project carried out under the US Clean Coal Technology (CCT) Demonstration Program which demonstrated selective catalytic reduction (SCR) technology for the control of NOx emissions from high-sulphur coal-fired boilers under typical boilers conditions in the United States. The project was conducted by Southern Company Services, Inc., who served as a co-funder and as the host at Gulf Power Company's Plant Crist. The SCR process consists of injecting ammonia (NH{sub 3}) into boiler flue gas and passing the flue gas through a catalyst bed where the Nox and NH{sub 3} react to form nitrogen and water vapor. The results of the CCTDP project confirmed the applicability of SCR for US coal-fired power plants. In part as a result of the success of this project, a significant number of commercial SCR units have been installed and are operating successfully in the United States. By 2007, the total installed SCR capacity on US coal-fired units will number about 200, representing about 100,000 MWe of electric generating capacity. This report summarizes the status of SCR technology. 21 refs., 3 figs., 2 tabs., 10 photos.

NONE

2005-05-01T23:59:59.000Z

111

Biodiesel and Pollutant Emissions (Presentation)  

SciTech Connect (OSTI)

Presents the results from three methods of testing--engine, chassis, and PEM--for testing nitrogen oxide (NOx) emissions from B20.

McCormick, R.; Williams, A.; Ireland, J.; Hayes, B.

2006-09-28T23:59:59.000Z

112

E-Print Network 3.0 - ambient nitric oxide Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

oxides (NOx)." Other nitrogen oxides include nitrous acid and nitric acid. While... . Nitrogen Dioxide: Nitrogen dioxide (NO2) is one of a group of highly reactive gasses known...

113

Fluorescence-based detection methodologies for nitric oxide using transition metal scaffolds  

E-Print Network [OSTI]

Chapter 1. Fluorescence-Based Detection Methodologies for Nitric Oxide: A Review. Chapter 2. Cobalt Chemistry with Mixed Aminotroponimine Salicylaldimine Ligands: Synthesis, Characterization, and Nitric Oxide Reactivity. ...

Hilderbrand, Scott A. (Scott Alan), 1976-

2004-01-01T23:59:59.000Z

114

Using Environmental Emissions Permit Prices to Raise Electricity Prices: Evidence from the California Electricity Market  

E-Print Network [OSTI]

Environmental Emissions Permit Prices to Raise ElectricityEnvironmental Emissions Permit Prices to Raise Electricitythe conditions in the emissions permit market for oxides of

Kolstad, Jonathan; Wolak, Frank

2003-01-01T23:59:59.000Z

115

Nitrogen Oxide Emission Statements (Ohio)  

Broader source: Energy.gov [DOE]

This chapter of the law establishes that the Ohio Environmental Protection Agency requires any facility that emits 25 tons or more of NOx and/or 25 tons or more of VOC during the calendar year and...

116

Estimated monthly emissions of sulfur dioxide, oxides of nitrogen, and volatile organic compounds for the 48 contiguous states, 1985-1986: Volume 2, Sectoral emissions by month for states  

SciTech Connect (OSTI)

A listing by source of sulfur dioxide, nitrogen oxides and volatile organic compounds emitted in 48 states of the US is provided. (CBS)

Kohout, E.J.; Knudson, D.A.; Saricks, C.L.; Miller, D.J.

1987-11-01T23:59:59.000Z

117

aldehyde oxidation level: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

gas phase oxidation of alkenes as propene to unsaturated aldehydes or ketones such as acrolein. A 19 Cu20 catalyst was used and periodically reactivated... Billingsley, David...

118

autotrophic feiii oxide: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

gas phase oxidation of alkenes as propene to unsaturated aldehydes or ketones such as acrolein. A 19 Cu20 catalyst was used and periodically reactivated... Billingsley, David...

119

astaxanthin decreased oxidative: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

gas phase oxidation of alkenes as propene to unsaturated aldehydes or ketones such as acrolein. A 19 Cu20 catalyst was used and periodically reactivated... Billingsley, David...

120

amide decreases oxidative: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

gas phase oxidation of alkenes as propene to unsaturated aldehydes or ketones such as acrolein. A 19 Cu20 catalyst was used and periodically reactivated... Billingsley, David...

Note: This page contains sample records for the topic "oxide emissions reactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Low-Temperature Hydrocarbon/CO Oxidation Catalysis in Support...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Publications Low-Temperature HydrocarbonCO Oxidation Catalysis in Support of HCCI Emission Control Low-Temperature HydrocarbonCO Oxidation Catalysis in Support of HCCI...

122

Rational Catalyst Design Applied to Development of Advanced Oxidation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Catalyst Design Applied to Development of Advanced Oxidation Catalysts for Diesel Emission Control Rational Catalyst Design Applied to Development of Advanced Oxidation...

123

Method for Determining Performance of Sulfur Oxide Adsorbents...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Method for Determining Performance of Sulfur Oxide Adsorbents for Diesel Emission Control Using Online Measurement of SO2 and Method for Determining Performance of Sulfur Oxide...

124

Reactive power compensator  

DOE Patents [OSTI]

A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation.

El-Sharkawi, Mohamed A. (Renton, WA); Venkata, Subrahmanyam S. (Woodinville, WA); Chen, Mingliang (Kirkland, WA); Andexler, George (Everett, WA); Huang, Tony (Seattle, WA)

1992-01-01T23:59:59.000Z

125

Reactive Power Compensator.  

DOE Patents [OSTI]

A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation. 26 figs.

El-Sharkawi, M.A.; Venkata, S.S.; Chen, M.; Andexler, G.; Huang, T.

1992-07-28T23:59:59.000Z

126

Stabilized chromium oxide film  

DOE Patents [OSTI]

Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150A are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

Nyaiesh, A.R.; Garwin, E.L.

1986-08-04T23:59:59.000Z

127

Stabilized chromium oxide film  

DOE Patents [OSTI]

Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150.ANG. are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

Garwin, Edward L. (Los Altos, CA); Nyaiesh, Ali R. (Palo Alto, CA)

1988-01-01T23:59:59.000Z

128

Excitation mechanism and thermal emission quenching of Tb ions in silicon rich silicon oxide thin films grown by plasma-enhanced chemical vapour deposition—Do we need silicon nanoclusters?  

SciTech Connect (OSTI)

In this work, we will discuss the excitation and emission properties of Tb ions in a Silicon Rich Silicon Oxide (SRSO) matrix obtained at different technological conditions. By means of electron cyclotron resonance plasma-enhanced chemical vapour deposition, undoped and doped SRSO films have been obtained with different Si content (33, 35, 39, 50 at. %) and were annealed at different temperatures (600, 900, 1100?°C). The samples were characterized optically and structurally using photoluminescence (PL), PL excitation, time resolved PL, absorption, cathodoluminescence, temperature dependent PL, Rutherford backscattering spectrometry, Fourier transform infrared spectroscopy and positron annihilation lifetime spectroscopy. Based on the obtained results, we discuss how the matrix modifications influence excitation and emission properties of Tb ions.

Podhorodecki, A., E-mail: artur.p.podhorodecki@pwr.wroc.pl; Golacki, L. W.; Zatryb, G.; Misiewicz, J. [Institute of Physics, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Wang, J.; Jadwisienczak, W. [School of EECS, Ohio University, Stocker Center 363, Athens, Ohio 45701 (United States); Fedus, K. [Institute of Physics, Nicholas Copernicus University, Grudziadzka 5/7, 87-100 Torun (Poland); Wojcik, J.; Wilson, P. R. J.; Mascher, P. [Department of Engineering Physics and Centre for Emerging Device Technologies, McMaster University, 1280 Main St. W, Hamilton, Ontario L8S4L7 (Canada)

2014-04-14T23:59:59.000Z

129

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, third quarter 1991  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project.

Not Available

1992-02-03T23:59:59.000Z

130

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO sub x ) emissions from coal-fired boilers  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company's Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project.

Not Available

1992-02-03T23:59:59.000Z

131

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Fourth quarterly technical progress report, [October--December, 1992  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of a U. S. Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NOx combustion technologies on NOx emissions and boiler performance. A target of achieving fifty percent NOx reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NOx control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NOx concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NOx reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. During this quarter, tests of the LNCFS Level III system were conducted to determine the effect that fuel fineness has on NOx emissions and unburned carbon levels. Results showed that changing the fineness of the fuel has almost no effect on NOx emissions; however, unburned carbon levels can be reduced significantly by increasing fuel fineness.

Not Available

1992-12-31T23:59:59.000Z

132

Air emissions inventory for the Idaho National Engineering Laboratory -- 1995 emissions report  

SciTech Connect (OSTI)

This report presents the 1995 update of the Air Emission Inventory for the Idaho National Engineering Laboratory (INEL). The INEL Air Emission Inventory documents sources and emissions of non-radionuclide pollutants from operations at the INEL. The report describes the emission inventory process and all of the sources at the INEL, and provides non-radionuclide emissions estimates for stationary sources. The air contaminants reported include nitrogen oxides, sulfur oxides, carbon monoxide, volatile organic compounds, particulates, and hazardous air pollutants (HAPs).

NONE

1996-06-01T23:59:59.000Z

133

Reducing the contribution of the power sector to ground-level ozone pollution : an assessment of time-differentiated pricing of nitrogen oxide emissions  

E-Print Network [OSTI]

Nitrogen oxide (NOx) is a prevalent air pollutant across the United States and a requisite precursor for tropospheric (ground-level) ozone formation. Both pollutants significantly impact human health and welfare, so National ...

Craig, Michael T. (Michael Timothy)

2014-01-01T23:59:59.000Z

134

The effects of cycle-to-cycle variations on nitric oxide (NO) emissions for a spark-ignition engine: Numerical results  

E-Print Network [OSTI]

. To carry out the proposed study, an engine simulation model was used. The simulation determines engine performance and NO emissions as functions of engine operating conditions, engine design parameters, and combustion parameters. An automotive, spark-ignition...

Villarroel, Milivoy

2004-11-15T23:59:59.000Z

135

Reactive Power Compensating System.  

DOE Patents [OSTI]

The circuit was designed for the specific application of wind-driven induction generators. It has great potential for application in any situation where a varying reactive power load is present, such as with induction motors or generators, or for transmission network compensation.

Williams, Timothy J.; El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.

1985-01-04T23:59:59.000Z

136

Reactive species and DNA damage in chronic inflammation: Reconciling chemical mechanisms and biological fates  

E-Print Network [OSTI]

Chronic inflammation has long been recognized as a risk factor for many human cancers. One mechanistic link between inflammation and cancer involves the generation of nitric oxide, superoxide and other reactive oxygen and ...

Lonkar, Pallavi

137

Nitrogen oxide delivery systems for biological media  

E-Print Network [OSTI]

Elevated levels of nitric oxide (NO) in vivo are associated with a variety of cellular modifications thought to be mutagenic or carcinogenic. These processes are likely mediated by reactive nitrogen species (RNS) such as ...

Skinn, Brian Thomas

2012-01-01T23:59:59.000Z

138

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from coal-fired boilers  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company's Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO[sub x] combustion technologies on NO[sub x] emissions and boiler performance. A target of achieving fifty percent NO[sub x] reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO[sub x] control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO[sub x] concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO[sub x] reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progress report presents the LNCFS Level I short-term data collected during this quarter. In addition, a comparison of all the long-term emissions data that have been collected to date is included.

Not Available

1992-11-25T23:59:59.000Z

139

500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from coal-fired boilers  

SciTech Connect (OSTI)

The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO[sub x] burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO[sub x] reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulatecharacteristics and boiler efficiency. Baseline, AOFA, and LNB without AOFA test segments have been completed. Analysis of the 94 days of LNB long-term data collected show the full-load NO[sub x] emission levels to be approximately 0.65 lb/MBtu. Flyash LOI values for the LNB configuration are approximately 8 percent at full-load. Corresponding values for the AOFA configuration are 0.94 lb/MBtu and approximately 10 percent. Abbreviated diagnostic tests for the LNB+AOFA configuration indicate that at 500 MWe, NO[sub x] emissions are approximately 0.55 lb/MBtu with corresponding flyash LOI values of approximately 11 percent. For comparison, the long-term full-load, baseline NO[sub x] emission level was approximately 1.24 lb/MBtu at 5.2 percent LOI. Comprehensive testing of the LNB+AOFA configuration will be performed when the stackparticulate emissions issue is resolved. Testing of a process optimization package on Plant Hammond Unit 4 was performed during this quarter. The software was configured to minimize NO[sub x] emissions using total combustion air flow and advanced overfire air distribution as the controlled parameters. Preliminary results from this testing indicate that this package shows promise in reducing NO[sub x] emissions while maintaining or improving other boiler performance parameters.

Not Available

1992-01-01T23:59:59.000Z

140

IAEA sodium void reactivity benchmark calculations  

SciTech Connect (OSTI)

In this paper, the IAEA-1 992 ``Benchmark Calculation of Sodium Void Reactivity Effect in Fast Reactor Core`` problem is evaluated. The proposed design is a large axially heterogeneous oxide-fueled fast reactor as described in Section 2; the core utilizes a sodium plenum above the core to enhance leakage effects. The calculation methods used in this benchmark evaluation are described in Section 3. In Section 4, the calculated core performance results for the benchmark reactor model are presented; and in Section 5, the influence of steel and interstitial sodium heterogeneity effects is estimated.

Hill, R.N.; Finck, P.J.

1992-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxide emissions reactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

IAEA sodium void reactivity benchmark calculations  

SciTech Connect (OSTI)

In this paper, the IAEA-1 992 Benchmark Calculation of Sodium Void Reactivity Effect in Fast Reactor Core'' problem is evaluated. The proposed design is a large axially heterogeneous oxide-fueled fast reactor as described in Section 2; the core utilizes a sodium plenum above the core to enhance leakage effects. The calculation methods used in this benchmark evaluation are described in Section 3. In Section 4, the calculated core performance results for the benchmark reactor model are presented; and in Section 5, the influence of steel and interstitial sodium heterogeneity effects is estimated.

Hill, R.N.; Finck, P.J.

1992-01-01T23:59:59.000Z

142

Turn-on fluorescent probes for detecting nitric oxide in biology  

E-Print Network [OSTI]

Chapter 1. Investigating the Biological Roles of Nitric Oxide and Other Reactive Nitrogen Species Using Fluorescent Probes: This chapter presents an overview of recent progress in the field of reactive nitrogen species ...

McQuade, Lindsey Elizabeth, 1981-

2010-01-01T23:59:59.000Z

143

Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending  

SciTech Connect (OSTI)

Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOx) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity- controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection system to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline to diesel fuel that gave the highest engine efficiency and lowest emissions. Engine-out emissions for aldehydes, ketones and PM were compared with emissions from conventional diesel combustion. Sampling and analysis was carried out following micro-tunnel dilution of the exhaust. Particle geometric mean diameter, number-size distribution, and total number concentration were measured by a scanning mobility particle sizer (SMPS). For the particle mass measurements, samples were collected on Teflon-coated quartz-fiber filters and analyzed gravimetrically. Gaseous aldehydes and ketones were sampled using dinitrophenylhydrazine-coated solid phase extraction cartridges and the extracts were analyzed by liquid chromatography/mass spectrometry (LC/MS). In addition, emissions after a diesel oxidation catalyst (DOC) were also measured to investigate the destruction of CO, HC and formaldehydes by the catalyst.

Prikhodko, Vitaly Y [ORNL; Curran, Scott [ORNL; Barone, Teresa L [ORNL; Lewis Sr, Samuel Arthur [ORNL; Storey, John Morse [ORNL; Cho, Kukwon [ORNL; Wagner, Robert M [ORNL; Parks, II, James E [ORNL

2010-01-01T23:59:59.000Z

144

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, first quarter 1992  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO{sub x} control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO{sub x} concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progess report presents the LNCFS Level III long-term data collected during this quarter. NO{sub x} emissions for each day of long-term testing are presented. The average NO{sub x} emission during long-term testing was 0.39 lb/MBtu at an average load of 155 MW. The effect of the low NO{sub x} combustion system on other combustion parameters such as carbon monoxide, excess oxygen level, and carbon carryover are also included.

Not Available

1992-05-20T23:59:59.000Z

145

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from coal-fired boilers  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company's Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO[sub x] combustion technologies on NO[sub x] emissions and boiler performance. A target of achieving fifty percent NO[sub x] reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO[sub x] control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO[sub x] concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO[sub x] reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progess report presents the LNCFS Level III long-term data collected during this quarter. NO[sub x] emissions for each day of long-term testing are presented. The average NO[sub x] emission during long-term testing was 0.39 lb/MBtu at an average load of 155 MW. The effect of the low NO[sub x] combustion system on other combustion parameters such as carbon monoxide, excess oxygen level, and carbon carryover are also included.

Not Available

1992-05-20T23:59:59.000Z

146

180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO sub x ) emissions from coal-fired boilers  

SciTech Connect (OSTI)

ABB CE's Low NOx Bulk Furnace Staging (LNBFS) System and Low NOx Concentric Firing System (LNCFS) are demonstrated in stepwise fashion. These systems incorporate the concept of advanced overfire air (AOFA), clustered coal nozzles, and offset air. A complete description of the installed technologies is provided in the following section. The primary objective of the Plant Lansing Smith demonstration is to determine the long-term effects of commercially available tangentially-fired low NOx combustion technologies on NOx emissions and boiler performance. Short-term tests of each technology are also being performed to provide engineering information about emissions and performance trends. A target of achieving fifty percent NOx reduction using combustion modifications has been established for the project.

Not Available

1991-01-01T23:59:59.000Z

147

Effect of thermal treatment on coke reactivity and catalytic iron mineralogy  

SciTech Connect (OSTI)

Iron minerals in coke can catalyze its gasification and may affect coke behavior in the blast furnace. The catalytic behavior of iron depends largely upon the nature of the iron-bearing minerals. To determine the mineralogical changes that iron could undergo in the blast furnace, cokes made from three coals containing iron present in different mineral forms (clays, carbonates, and pyrite) were examined. All coke samples were heat-treated in a horizontal furnace at 1373, 1573, and 1773 K and then gasified with CO{sub 2} at 1173 K in a fixed bed reactor (FBR). Coke mineralogy was characterized using quantitative X-ray diffraction (XRD) analysis of coke mineral matter prepared by low-temperature ashing (LTA) and field emission scanning electron microscopy combined with energy dispersive X-ray analysis (FESEM/EDS). The mineralogy of the three cokes was most notably distinguished by differing proportions of iron-bearing phases. During heat treatment and subsequent gasification, iron-containing minerals transformed to a range of minerals but predominantly iron-silicides and iron oxides, the relative amounts of which varied with heat treatment temperature and gasification conditions. The relationship between initial apparent reaction rate and the amount of catalytic iron minerals - pyrrhotite, metallic iron, and iron oxides - was linear and independent of heat treatment temperature at total catalyst levels below 1 wt %. The study showed that the coke reactivity decreased with increasing temperature of heat treatment due to decreased levels of catalytic iron minerals (largely due to formation of iron silicides) as well as increased ordering of the carbon structure. The study also showed that the importance of catalytic mineral matter in determining reactivity declines as gasification proceeds. 37 refs., 13 figs., 7 tabs.

Byong-chul Kim; Sushil Gupta; David French; Richard Sakurovs; Veena Sahajwalla [University of New South Wales, Sydney, NSW (Australia). Centre for Sustainable Materials Research and Technology

2009-07-15T23:59:59.000Z

148

Three-Dimensional Composite Nanostructures for Lean NOx Emission Control  

SciTech Connect (OSTI)

This final report to the Department of Energy (DOE) and National Energy Technology Laboratory (NETL) for DE-EE0000210 covers the period from October 1, 2009 to July 31, 2013. Under this project, DOE awarded UConn about $1,248,242 to conduct the research and development on a new class of 3D composite nanostructure based catalysts for lean NOx emission control. Much of the material presented here has already been submitted to DOE/NETL in quarterly technical reports. In this project, through a scalable solution process, we have successfully fabricated a new class of catalytic reactors, i.e., the composite nanostructure array (nano-array) based catalytic converters. These nanocatalysts, distinct from traditional powder washcoat based catalytic converters, directly integrate monolithic substrates together with nanostructures with well-defined size and shape during the scalable hydrothermal process. The new monolithic nanocatalysts are demonstrated to be able to save raw materials including Pt-group metals and support metal oxides by an order of magnitude, while perform well at various oxidation (e.g., CO oxidation and NO oxidation) and reduction reactions (H{sub 2} reduction of NOx) involved in the lean NOx emissions. The size, shape and arrangement of the composite nanostructures within the monolithic substrates are found to be the key in enabling the drastically reduced materials usage while maintaining the good catalytic reactivity in the enabled devices. The further understanding of the reaction kinetics associated with the unique mass transport and surface chemistry behind is needed for further optimizing the design and fabrication of good nanostructure array based catalytic converters. On the other hand, the high temperature stability, hydrothermal aging stability, as well as S-poisoning resistance have been investigated in this project on the nanocatalysts, which revealed promising results toward good chemical and mechanical robustness, as well as S-poisoning resistance. Further investigation is needed for unraveling the understanding, design and selection principles of this new class of nanostructure based monolithic catalysts.

Gao, Pu-Xian

2013-07-31T23:59:59.000Z

149

Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO sub x ) emissions from coal-fired boilers  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company's Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an Advanced Overfire Air (AOFA) system followed by Low NO{sub x} Burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

Not Available

1992-02-03T23:59:59.000Z

150

Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, third quarter 1991  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an Advanced Overfire Air (AOFA) system followed by Low NO{sub x} Burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

Not Available

1992-02-03T23:59:59.000Z

151

Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NOx) emissions from high-sulfur coal-fired boilers  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor.

Not Available

1991-11-01T23:59:59.000Z

152

ac-type microarc oxidation: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

gas phase oxidation of alkenes as propene to unsaturated aldehydes or ketones such as acrolein. A 19 Cu20 catalyst was used and periodically reactivated... Billingsley, David...

153

Innovative clean coal technology: 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Final report, Phases 1 - 3B  

SciTech Connect (OSTI)

This report presents the results of a U.S. Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The project was conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The technologies demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NOx burner. The primary objective of the demonstration at Hammond Unit 4 was to determine the long-term effects of commercially available wall-fired low NOx combustion technologies on NOx emissions and boiler performance. Short-term tests of each technology were also performed to provide engineering information about emissions and performance trends. A target of achieving fifty percent NOx reduction using combustion modifications was established for the project. Short-term and long-term baseline testing was conducted in an {open_quotes}as-found{close_quotes} condition from November 1989 through March 1990. Following retrofit of the AOFA system during a four-week outage in spring 1990, the AOFA configuration was tested from August 1990 through March 1991. The FWEC CF/SF low NOx burners were then installed during a seven-week outage starting on March 8, 1991 and continuing to May 5, 1991. Following optimization of the LNBs and ancillary combustion equipment by FWEC personnel, LNB testing commenced during July 1991 and continued until January 1992. Testing in the LNB+AOFA configuration was completed during August 1993. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NOx burners and advanced overfire systems.

NONE

1998-01-01T23:59:59.000Z

154

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, second quarter 1992  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO{sub x} control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO{sub x} concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progress report presents the LNCFS Level I short-term data collected during this quarter. In addition, a comparison of all the long-term emissions data that have been collected to date is included.

Not Available

1992-11-25T23:59:59.000Z

155

Oxidative stress and oxidative damage in chemical carcinogenesis  

SciTech Connect (OSTI)

Reactive oxygen species (ROS) are induced through a variety of endogenous and exogenous sources. Overwhelming of antioxidant and DNA repair mechanisms in the cell by ROS may result in oxidative stress and oxidative damage to the cell. This resulting oxidative stress can damage critical cellular macromolecules and/or modulate gene expression pathways. Cancer induction by chemical and physical agents involves a multi-step process. This process includes multiple molecular and cellular events to transform a normal cell to a malignant neoplastic cell. Oxidative damage resulting from ROS generation can participate in all stages of the cancer process. An association of ROS generation and human cancer induction has been shown. It appears that oxidative stress may both cause as well as modify the cancer process. Recently association between polymorphisms in oxidative DNA repair genes and antioxidant genes (single nucleotide polymorphisms) and human cancer susceptibility has been shown.

Klaunig, James E., E-mail: jklauni@indiana.edu; Wang Zemin; Pu Xinzhu; Zhou Shaoyu

2011-07-15T23:59:59.000Z

156

Dielectric covered hairpin probe for its application in reactive plasmas  

SciTech Connect (OSTI)

The hairpin probe is a well known technique for measuring local electron density in low temperature plasmas. In reactive plasmas, the probe characteristics are affected by surface sputtering, contamination, and secondary electron emission. At higher densities, the plasma absorbs the entire electromagnetic energy of hairpin and hence limits the density measurements. These issues can be resolved by covering the hairpin surface with a thin layer of dielectric. In this letter, the dielectric contribution to the probe characteristics is incorporated in a theory which is experimentally verified. The dielectric covering improves the performance of probe and also allows the hairpin tip to survive in reactive plasma where classical electrical probes are easily damaged.

Gogna, G. S.; Gaman, C.; Turner, M. M. [NCPST, School of Physical Sciences, Dublin City University, Dublin 9 (Ireland); Karkari, S. K. [Institute for Plasma Research Center, Bhat Gandhinagar, Gujarat 382428 (India)

2012-07-23T23:59:59.000Z

157

High-Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty...  

Broader source: Energy.gov (indexed) [DOE]

High-Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty Engine via Fuel Reactivity Control High-Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty Engine via Fuel...

158

Increased oxidative stress in barn swallows from the Chernobyl region Andrea Bonisoli-Alquati a,  

E-Print Network [OSTI]

Increased oxidative stress in barn swallows from the Chernobyl region Andrea Bonisoli-Alquati a Available online 5 November 2009 Keywords: Antioxidant capacity Barn swallow Chernobyl Oxidative stress Radioactive contamination Reactive oxygen species The Chernobyl nuclear accident produced the largest

Mousseau, Timothy A.

159

Volatile organometallic complexes suitable for use in chemical vapor depositions on metal oxide films  

DOE Patents [OSTI]

Novel ligated compounds of tin, titanium, and zinc are useful as metal oxide CVD precursor compounds without the detriments of extreme reactivity yet maintaining the ability to produce high quality metal oxide coating by contact with heated substrates.

Giolando, Dean M.

2003-09-30T23:59:59.000Z

160

Metal-based turn-on fluorescent probes for nitric oxide sensing  

E-Print Network [OSTI]

Chapter 1. Metal-Based Turn-On Fluorescent Probes for Sensing Nitric Oxide. Nitric oxide, a reactive free radical, regulates a variety of biological processes. The absence of tools to detect NO directly, rapidly, specifically ...

Lim, Mi Hee

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxide emissions reactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Doped tantalum oxide high K dielectric thin films  

E-Print Network [OSTI]

, it was doped with varying amounts of titanium oxide, aluminum oxide and silicon dioxide. The composite oxide films were deposited by reactive radio frequency (RF) cc-sputtering of two targets in a variety of oxygen and argon feed gas mixtures. The targets used...

Donnelly, Joseph Patrick

2000-01-01T23:59:59.000Z

162

A Tariff for Reactive Power  

SciTech Connect (OSTI)

Two kinds of power are required to operate an electric power system: real power, measured in watts, and reactive power, measured in volt-amperes reactive or VARs. Reactive power supply is one of a class of power system reliability services collectively known as ancillary services, and is essential for the reliable operation of the bulk power system. Reactive power flows when current leads or lags behind voltage. Typically, the current in a distribution system lags behind voltage because of inductive loads such as motors. Reactive power flow wastes energy and capacity and causes voltage droop. To correct lagging power flow, leading reactive power (current leading voltage) is supplied to bring the current into phase with voltage. When the current is in phase with voltage, there is a reduction in system losses, an increase in system capacity, and a rise in voltage. Reactive power can be supplied from either static or dynamic VAR sources. Static sources are typically transmission and distribution equipment, such as capacitors at substations, and their cost has historically been included in the revenue requirement of the transmission operator (TO), and recovered through cost-of-service rates. By contrast, dynamic sources are typically generators capable of producing variable levels of reactive power by automatically controlling the generator to regulate voltage. Transmission system devices such as synchronous condensers can also provide dynamic reactive power. A class of solid state devices (called flexible AC transmission system devices or FACTs) can provide dynamic reactive power. One specific device has the unfortunate name of static VAR compensator (SVC), where 'static' refers to the solid state nature of the device (it does not include rotating equipment) and not to the production of static reactive power. Dynamic sources at the distribution level, while more costly would be very useful in helping to regulate local voltage. Local voltage regulation would reduce system losses, increase circuit capacity, increase reliability, and improve efficiency. Reactive power is theoretically available from any inverter-based equipment such as photovoltaic (PV) systems, fuel cells, microturbines, and adjustable-speed drives. However, the installation is usually only economical if reactive power supply is considered during the design and construction phase. In this report, we find that if the inverters of PV systems or the generators of combined heat and power (CHP) systems were designed with capability to supply dynamic reactive power, they could do this quite economically. In fact, on an annualized basis, these inverters and generators may be able to supply dynamic reactive power for about $5 or $6 per kVAR. The savings from the local supply of dynamic reactive power would be in reduced losses, increased capacity, and decreased transmission congestion. The net savings are estimated to be about $7 per kVAR on an annualized basis for a hypothetical circuit. Thus the distribution company could economically purchase a dynamic reactive power service from customers for perhaps $6/kVAR. This practice would provide for better voltage regulation in the distribution system and would provide an alternate revenue source to help amortize the cost of PV and CHP installations. As distribution and transmission systems are operated under rising levels of stress, the value of local dynamic reactive supply is expected to grow. Also, large power inverters, in the range of 500 kW to 1 MW, are expected to decrease in cost as they become mass produced. This report provides one data point which shows that the local supply of dynamic reactive power is marginally profitable at present for a hypothetical circuit. We expect that the trends of growing power flow on the existing system and mass production of inverters for distributed energy devices will make the dynamic supply of reactive power from customers an integral component of economical and reliable system operation in the future.

Kueck, John D [ORNL; Kirby, Brendan J [ORNL; Li, Fangxing [ORNL; Tufon, Christopher [Pacific Gas and Electric Company; Isemonger, Alan [California Independent System Operator

2008-07-01T23:59:59.000Z

163

Reactivity impact of delayed neutron spectra on MCNP calculations  

SciTech Connect (OSTI)

The new features in MCNP4C, the latest version of the MCNP Monte Carlo code, include the capability to sample from delayed as well as prompt fission emission spectra. Previous versions of MCNP all have sampled exclusively from prompt spectra. Delayed neutrons typically account for <1% of all neutrons emitted from fission, but the emission spectra for delayed neutrons are somewhat softer than those for prompt neutrons. Because of the softer spectrum, delayed neutrons are less likely to leak from the system, and they also are less likely to cause fission in isotopes that have an effective threshold for fission (e.g., {sup 238}U and {sup 240}Pu). Consequently, the inclusion of delayed neutron spectra can have a small but significant effect on reactivity calculations. This study performs MCNP4C calculations for a series of established benchmarks and quantifies the reactivity impact of the delayed neutron spectra.

Mosteller, R.D.; Werner, C.J.

2000-07-01T23:59:59.000Z

164

The use of onboard diagnostics to reduce emissions in automobiles  

E-Print Network [OSTI]

The emissions from automobiles are very harmful and include gases such as Carbon Dioxide, Nitrous Oxide, and Sulfur Dioxide. One of the main reasons OBD was created was to control emissions however it currently only monitors ...

Perez, Alberto, Jr

2009-01-01T23:59:59.000Z

165

Electrocatalytic Reactivity for Oxygen Reduction of Palladium...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reactivity for Oxygen Reduction of Palladium-Modified Carbon Nanotubes Synthesized in Supercritical Fluid. Electrocatalytic Reactivity for Oxygen Reduction of Palladium-Modified...

166

Formation, characterization and reactivity of adsorbed oxygen...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Formation, characterization and reactivity of adsorbed oxygen on BaOPt(111). Formation, characterization and reactivity of adsorbed oxygen on BaOPt(111). Abstract: The formation...

167

Conservation of reactive electromagnetic energy in reactive time  

E-Print Network [OSTI]

The complex Poynting theorem (CPT) is extended to a canonical time-scale domain $(t,s)$. Time-harmonic phasors are replaced by the positive-frequency parts of general fields, which extend analytically to complex time $t+is$, with $s>0$ interpreted as a time resolution scale. The real part of the extended CPT gives conservation in $t$ of a time-averaged field energy, and its imaginary part gives conservation in $s$ of a time-averaged reactive energy. In both cases, the averaging windows are determined by a Cauchy kernel of width $\\Delta t\\sim \\pm s$. This completes the time-harmonic CPT, whose imaginary part is generally supposed to be vaguely `related to' reactive energy without giving a conservation law, or even an expression, for the latter. The interpretation of $s$ as reactive time, tracking the leads and lags associated with stored capacitative and inductive energy, gives a simple explanation of the volt-ampere reactive (var) unit measuring reactive power: a var is simply one Joule per reactive second. The related 'complex radiation impedance density' is introduced to represent the field's local reluctance to radiate.

Gerald Kaiser

2015-01-05T23:59:59.000Z

168

Conservation of reactive electromagnetic energy in reactive time  

E-Print Network [OSTI]

The complex Poynting theorem (CPT) is extended to a canonical time-scale domain $(t,s)$. Time-harmonic phasors are replaced by the positive-frequency parts of general fields, which extend analytically to complex time $t+is$, with $s>0$ interpreted as a time resolution scale. The real part of the extended CPT gives conservation in $t$ of a time-averaged field energy, and its imaginary part gives conservation in $s$ of a time-averaged reactive energy. In both cases, the averaging windows are determined by a Cauchy kernel of width $\\Delta t\\sim \\pm s$. This completes the time-harmonic CPT, whose imaginary part is generally supposed to be vaguely `related to' reactive energy without giving a conservation law, or even an expression, for the latter. The interpretation of $s$ as reactive time, tracking the leads and lags associated with stored capacitative and inductive energy, gives a simple explanation of the volt-ampere reactive (var) unit measuring reactive power: a var is simply one Joule per reactive second. T...

Kaiser, Gerald

2015-01-01T23:59:59.000Z

169

Fuel Temperature Coefficient of Reactivity  

SciTech Connect (OSTI)

A method for measuring the fuel temperature coefficient of reactivity in a heterogeneous nuclear reactor is presented. The method, which is used during normal operation, requires that calibrated control rods be oscillated in a special way at a high reactor power level. The value of the fuel temperature coefficient of reactivity is found from the measured flux responses to these oscillations. Application of the method in a Savannah River reactor charged with natural uranium is discussed.

Loewe, W.E.

2001-07-31T23:59:59.000Z

170

Diesel Particulate Oxidation Model: Combined Effects of Fixed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Volatile Carbon Diesel Particulate Oxidation Model: Combined Effects of Fixed & Volatile Carbon Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research...

171

Emissions Of Greenhouse Gases From Rice Agriculture  

SciTech Connect (OSTI)

This project produced detailed data on the processes that affect methane and nitrous oxide emissions from rice agriculture and their inter-relationships. It defines the shifting roles and potential future of these gases in causing global warming and the benefits and tradeoffs of reducing emissions. The major results include: 1). Mechanisms and Processes Leading to Methane Emissions are Delineated. Our experiments have tested the standard model of methane emissions from rice fields and found new results on the processes that control the flux. A mathematical mass balance model was used to unravel the production, oxidation and transport of methane from rice. The results suggested that when large amounts of organic matter are applied, the additional flux that is observed is due to both greater production and reduced oxidation of methane. 2). Methane Emissions From China Have Been Decreasing Over the Last Two Decades. We have calculated that methane emissions from rice fields have been falling in recent decades. This decrease is particularly large in China. While some of this is due to reduced area of rice agriculture, the bigger effect is from the reduction in the emission factor which is the annual amount of methane emitted per hectare of rice. The two most important changes that cause this decreasing emission from China are the reduced use of organic amendments which have been replaced by commercial nitrogen fertilizers, and the increased practice of intermittent flooding as greater demands are placed on water resources. 3). Global Methane Emissions Have Been Constant For More Than 20 Years. While the concentrations of methane in the atmosphere have been leveling off in recent years, our studies show that this is caused by a near constant total global source of methane for the last 20 years or more. This is probably because as some anthropogenic sources have increased, others, such as the rice agriculture source, have fallen. Changes in natural emissions appear small. 4). Nitrous Oxide Emissions From Rice Fields Increase as Methane Emissions Drop. Inundated conditions favor anaerobic methane production with high emission rates and de-nitrification resulting in modest nitrous oxide emissions. Under drier conditions such as intermittent flooding, methane emissions fall and nitrous oxide emissions increase. Increased nitrogen fertilizer use increases nitrous oxide emissions and is usually accompanied by reduced organic matter applications which decreases methane emissions. These mechanisms cause a generally inverse relationship between methane and nitrous oxide emissions. Reduction of methane from rice agriculture to control global warming comes with tradeoffs with increased nitrous oxide emissions. 5). High Spatial Resolution Maps of Emissions Produced. Maps of methane and nitrous oxide emissions at a resolution of 5 min × 5 min have been produced based on the composite results of this research. These maps are necessary for both scientific and policy uses.

M. Aslam K. Khalil

2009-07-16T23:59:59.000Z

172

Reactive MD Simulations of Electrochemical Oxide Interfaces at...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

protection, ranging from electrochemical energy conversionstorage systems to corrosion surfaces. The goal of this project is to understand the growth mechanisms and...

173

Bioinspired Synthesis and Reactivity Studies of Nitric Oxide Iron Complexes  

E-Print Network [OSTI]

and better understand the formation and function of biological DNICs, the scope of donor ligands that might coexist with Fe(NO)2 units, the redox levels of bio-DNICs, and establish other spectroscopic techniques appropriate for characterization. A series of N...

Hess, Jennifer

2012-02-14T23:59:59.000Z

174

Analyzing the status of oxide surface photochemical reactivity | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmes Laboratory Site| Department SeptemberSignificant76

175

Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions  

DOE Patents [OSTI]

A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

Biruduganti, Munidhar S. (Naperville, IL); Gupta, Sreenath Borra (Naperville, IL); Sekar, R. Raj (Naperville, IL); McConnell, Steven S. (Shorewood, IL)

2008-11-25T23:59:59.000Z

176

Zero emission coal  

SciTech Connect (OSTI)

We discuss a novel, emission-free process for producing hydrogen or electricity from coal. Even though we focus on coal, the basic design is compatible with any carbonaceous fuel. The process uses cyclical carbonation of calcium oxide to promote the production of hydrogen from carbon and water. The carbonation of the calcium oxide removes carbon dioxide from the reaction products and provides the additional energy necessary to complete hydrogen production without additional combustion of carbon. The calcination of the resulting calcium carbonate is accomplished using the high temperature waste heat from solid oxide fuel cells (SOFC), which generate electricity from hydrogen fuel. Converting waste heat back to useful chemical energy allows the process to achieve very high conversion efficiency from fuel energy to electrical energy. As the process is essentially closed-loop, the process is able to achieve zero emissions if the concentrated exhaust stream of CO{sub 2} is sequestered. Carbon dioxide disposal is accomplished by the production of magnesium carbonate from ultramafic rock. The end products of the sequestration process are stable naturally occurring minerals. Sufficient rich ultramafic deposits exist to easily handle all the world's coal.

Ziock, H.; Lackner, K.

2000-08-01T23:59:59.000Z

177

Millisecond Oxidation of Alkanes  

Broader source: Energy.gov [DOE]

This factsheet describes a project whose goal is to commercialize a production process for propylene and acrylic acid from propane using a catalytic auto-thermal oxydehydrogenation process operating at short contact times. Auto-thermal oxidation for conversion of propane to propylene and acrylic acid promises energy savings of 20 trillion Btu per year by 2020. In addition to reducing energy consumption, this technology can reduce manufacturing costs by up to 25 percent, and reduce a variety of greenhouse gas emissions.

178

Using Section 111 of the Clean Air Act for Cap-and-Trade of Greenhouse Gas Emissions: Obstacles and Solutions  

E-Print Network [OSTI]

focused nitro- gen oxide emissions-trading program for largeNSPS program could use emissions trading, including cap-and-regulations that allow emissions trading, to achieve GHG

Enion, Rhead M.

2012-01-01T23:59:59.000Z

179

EMSL - oxides  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

oxides en Influence of Adsorption Site and Wavelength on the Photodesorption of NO from the (Fe,Cr)3O4(111) Mixed Oxide Surface. http:www.emsl.pnl.govemslwebpublications...

180

Particle Swarm Optimization Based Reactive Power Optimization  

E-Print Network [OSTI]

Reactive power plays an important role in supporting the real power transfer by maintaining voltage stability and system reliability. It is a critical element for a transmission operator to ensure the reliability of an electric system while minimizing the cost associated with it. The traditional objectives of reactive power dispatch are focused on the technical side of reactive support such as minimization of transmission losses. Reactive power cost compensation to a generator is based on the incurred cost of its reactive power contribution less the cost of its obligation to support the active power delivery. In this paper an efficient Particle Swarm Optimization (PSO) based reactive power optimization approach is presented. The optimal reactive power dispatch problem is a nonlinear optimization problem with several constraints. The objective of the proposed PSO is to minimize the total support cost from generators and reactive compensators. It is achieved by maintaining the whole system power loss as minimum...

Sujin, P R; Linda, M Mary

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxide emissions reactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Reactive Power Support Services in Electricity Markets  

E-Print Network [OSTI]

Reactive Power Support Services in Electricity Markets Costing and Pricing of Ancillary Services Final Project Report Power Systems Engineering Research Center A National Science Foundation Industry Reactive Power Support Services in Electricity Markets Costing and Pricing of Ancillary Services Project

182

Engine combustion control via fuel reactivity stratification  

DOE Patents [OSTI]

A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choose the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

2013-12-31T23:59:59.000Z

183

Mitochondrial reactive oxygen species and cancer  

E-Print Network [OSTI]

Mitochondria produce reactive oxygen species (mROS) as a natural by-product of electron transport chain activity. While initial studies focused on the damaging effects of reactive oxygen species, a recent paradigm shift ...

Chandel, Navdeep S

184

Method for preparing hydride configurations and reactive metal surfaces  

DOE Patents [OSTI]

A method for preparing highly hydrogen-reactive surfaces on metals which normally require substantial heating, high pressures, or an extended induction period, which involves pretreatment of said surfaces with either a non-oxidizing acid or hydrogen gas to form a hydrogen-bearing coating on said surfaces, and subsequently heating said coated metal in the absence of moisture and oxygen for a period sufficient to decompose said coating and cooling said metal to room temperature. Surfaces so treated will react almost instantaneously with hydrogen gas at room temperature and low pressure. The method is particularly applicable to uranium, thorium, and lanthanide metals.

Silver, Gary L. (Centerville, OH)

1988-08-16T23:59:59.000Z

185

HOT SPOT ANALYSIS OF REAL WORLD VEHICLE EMISSIONS BASED UPON A PORTABLE ON-BOARD  

E-Print Network [OSTI]

emissions of carbon monoxide (CO), nitric oxide (NO), hydrocarbons (HC), and carbon dioxide (CO2, and open loop/closed loop flag were also recorded using the OEM-2100TM . This paper presents examples percent of nitrogen oxides (NOx) emissions, 77 percent of carbon monoxide (CO) emissions, and 25 percent

Frey, H. Christopher

186

Emissions and Air Quality Impacts of Freight Transportation Erica Bickford  

E-Print Network [OSTI]

Emissions and Air Quality Impacts of Freight Transportation by Erica Bickford A dissertation rights reserved. #12;Abstract Emissions and Air Quality Impacts of Freight Transportation Erica Bickford.S. transportation is the largest source of national nitrogen oxide (NOx) emissions and the third largest source

Wisconsin at Madison, University of

187

MEASURING GASEOUS EMISSIONS FROM STORED PIG SLURRY S. Espagnol1  

E-Print Network [OSTI]

2 MEASURING GASEOUS EMISSIONS FROM STORED PIG SLURRY S. Espagnol1 , L. Loyon2 , F. Guiziou2 , P to measure emissions factors of ammonia (NH3), nitrous oxide (N2O) methane (CH4) and carbon dioxide (CO2) from stored pig slurry and measured the variations of the emissions in time and space. In 2006, dynamic

Boyer, Edmond

188

CSEM WP 113 Using Environmental Emissions Permit Prices to Raise  

E-Print Network [OSTI]

CSEM WP 113 Using Environmental Emissions Permit Prices to Raise Electricity Prices: Evidence from Emissions Permit Prices to Raise Electricity Prices: Evidence from the California Electricity Market analyzes the extent to which the conditions in the emissions permit market for oxides of nitrogen (NOx

California at Berkeley. University of

189

Emissions of greenhouse gases in the United States 1995  

SciTech Connect (OSTI)

This is the fourth Energy Information Administration (EIA) annual report on US emissions of greenhouse gases. This report presents estimates of US anthropogenic (human-caused) emissions of carbon dioxide, methane, nitrous oxide, and several other greenhouse gases for 1988 through 1994. Estimates of 1995 carbon dioxide, nitrous oxide, and halocarbon emissions are also provided, although complete 1995 estimates for methane are not yet available. Emissions of carbon dioxide increased by 1.9% from 1993 to 1994 and by an additional 0.8% from 1994 to 1995. Most carbon dioxide emissions are caused by the burning of fossil fuels for energy consumption, which is strongly related to economic growth, energy prices, and weather. The US economy grew rapidly in 1994 and slowed in 1995. Estimated emissions of methane increased slightly in 1994, as a result of a rise in emissions from energy and agricultural sources. Estimated nitrous oxide emissions increased by 1.8% in 1995, primarily due to increased use of nitrogen fertilizers and higher output of chemicals linked to nitrous oxide emissions. Estimated emissions of hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs), which are known to contribute to global warming, increased by nearly 11% in 1995, primarily as a result of increasing substitution for chlorofluorocarbons (CFCs). With the exception of methane, the historical emissions estimates presented in this report are only slightly revised from those in last year`s report.

NONE

1996-10-01T23:59:59.000Z

190

Reductions in ozone concentrations due to controls on variability in industrial flare emissions in Houston, Texas  

E-Print Network [OSTI]

High concentrations of ozone in the Houston/Galveston area are associated with industrial plumes of highly reactive hydrocarbons, mixed with NOx. The emissions leading to these plumes can have significant temporal variability, ...

Nam, Junsang

2007-01-01T23:59:59.000Z

191

Deep Reactive Ion Etching | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOffice ofINL isSeparationsRelevantDeep Reactive Ion

192

The Control of NOx Emissions from Combustion and Incinerators  

E-Print Network [OSTI]

of combustion modifications, including staged combustion and reburning, for the control of nitrogen oxide emissions from coal fired combustors is most often limited by problems due to carbon burnout or flame impingement. This paper presents new data... emissions from waste incineration facilities. The major focus has been on minimizing emissions of potentially toxic organics and trace metals. There is growing concern over emissions of NO x from these facilities as well. However, traditional NO x...

Heap, M. P.; Chen, S. L.; Seeker, W. R.; Pershing, D. W.

193

Tuning Reactivity and Electronic Properties through Ligand Reorganization within a Cerium Heterobimetallic Framework  

SciTech Connect (OSTI)

Cerium compounds have played vital roles in organic, inorganic, and materials chemistry due to their reversible redox chemistry between trivalent and tetravalent oxidation states. However, attempts to rationally access molecular cerium complexes in both oxidation states have been frustrated by unpredictable reactivity in cerium(III) oxidation chemistry. Such oxidation reactions are limited by steric saturation at the metal ion, which can result in high energy activation barriers for electron transfer. An alternative approach has been realized using a rare earth/alkali metal/1,1'-BINOLate (REMB) heterobimetallic framework, which uses redox-inactive metals within the secondary coordination sphere to control ligand reorganization. The rational syntheses of functionalized cerium(IV) products and a mechanistic examination of the role of ligand reorganization in cerium(III) oxidation are presented.

Robinson, Jerome R.; Gordon, Zachary; Booth, Corwin H.; Carroll, Patrick J.; Walsh, Patrick J.; Schelter, Eric J.

2014-06-24T23:59:59.000Z

194

Layered reactive particles with controlled geometries, energies, and reactivities, and methods for making the same  

DOE Patents [OSTI]

An energetic composite having a plurality of reactive particles each having a reactive multilayer construction formed by successively depositing reactive layers on a rod-shaped substrate having a longitudinal axis, dividing the reactive-layer-deposited rod-shaped substrate into a plurality of substantially uniform longitudinal segments, and removing the rod-shaped substrate from the longitudinal segments, so that the reactive particles have a controlled, substantially uniform, cylindrically curved or otherwise rod-contoured geometry which facilitates handling and improves its packing fraction, while the reactant multilayer construction controls the stability, reactivity and energy density of the energetic composite.

Fritz, Gregory M; Knepper, Robert Allen; Weihs, Timothy P; Gash, Alexander E; Sze, John S

2013-04-30T23:59:59.000Z

195

Experimental Investigation of Fuel-Reactivity Controlled Compression Ignition (RCCI) Combustion Mode in a Multi-Cylinder, Light-Duty Diesel Engine  

SciTech Connect (OSTI)

An experimental study was performed to provide the combustion and emission characteristics resulting from fuel-reactivity controlled compression ignition (RCCI) combustion mode utilizing dual-fuel approach in a light-duty, multi-cylinder diesel engine. In-cylinder fuel blending using port fuel injection of gasoline before intake valve opening (IVO) and early-cycle, direct injection of diesel fuel was used as the charge preparation and fuel blending strategy. In order to achieve the desired auto-ignition quality through the stratification of the fuel-air equivalence ratio ( ), blends of commercially available gasoline and diesel fuel were used. Engine experiments were performed at an engine speed of 2300rpm and an engine load of 4.3bar brake mean effective pressure (BMEP). It was found that significant reduction in both nitrogen oxide (NOx) and particulate matter (PM) was realized successfully through the RCCI combustion mode even without applying exhaust gas recirculation (EGR). However, high carbon monoxide (CO) and hydrocarbon (HC) emissions were observed. The low combustion gas temperature during the expansion and exhaust processes seemed to be the dominant source of high CO emissions in the RCCI combustion mode. The high HC emissions during the RCCI combustion mode could be due to the increased combustion quenching layer thickness as well as the -stratification at the periphery of the combustion chamber. The slightly higher brake thermal efficiency (BTE) of the RCCI combustion mode was observed than the other combustion modes, such as the conventional diesel combustion (CDC) mode, and single-fuel, premixed charge compression ignition (PCCI) combustion mode. The parametric study of the RCCI combustion mode revealed that the combustion phasing and/or the peak cylinder pressure rise rate of the RCCI combustion mode could be controlled by several physical parameters premixed ratio (rp), intake swirl intensity, and start of injection (SOI) timing of directly injected fuel unlike other low temperature combustion (LTC) strategies.

Cho, Kukwon [ORNL] [ORNL; Curran, Scott [ORNL] [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL; Sluder, Scott [ORNL] [ORNL; Parks, II, James E [ORNL; Wagner, Robert M [ORNL] [ORNL

2011-01-01T23:59:59.000Z

196

Non-Incineration Treatment to Reduce Benzene and VOC Emissions from Green Sand Molding Systems  

SciTech Connect (OSTI)

Final report describing laboratory, pilot scale and production scale evaluation of advanced oxidation systems for emissions and cost reduction in metal casting green sand systems.

Fred S. Cannon; Robert C. Voigt

2002-06-28T23:59:59.000Z

197

Anisotropic reactive ion etching of vanadium dioxide  

E-Print Network [OSTI]

. Weichold Vanadium dioxide (V02) was anisotropically reactive ion etched using carbon tetrafluoride (CF4) . CF4, as an etch gas, provided the chemistry along with the control needed to achieve an anisotropic etch. This chemistry was practically inert... with vanadium quite easily. This leads to interest in using a fluorine- based chemistry. The goal of this research is to produce a selective anisotropic reactive ion etch for VO2 /photoresist using only carbon tetrafluoride (CFq) . Reactive ion etching...

Radle, Byron K

1990-01-01T23:59:59.000Z

198

Asian emissions of CO and NOx: Constraints from aircraft and Chinese station data  

E-Print Network [OSTI]

and chemistry; KEYWORDS: inversion, Asian emissions, carbon monoxide, nitrogen oxides Citation: Wang, Y. X., MAsian emissions of CO and NOx: Constraints from aircraft and Chinese station data Yuxuan X. Wang to constrain estimates of Asian emissions of CO and NOx. A priori emissions are based on a detailed bottom

Palmer, Paul

199

Mitigating greenhouse gas emissions: Voluntary reporting  

SciTech Connect (OSTI)

The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report on their emissions of greenhouse gases, and on actions taken that have reduced or avoided emissions or sequestered carbon, to the Energy Information Administration (EIA). This, the second annual report of the Voluntary Reporting Program, describes information provided by the participating organizations on their aggregate emissions and emissions reductions, as well as their emissions reduction or avoidance projects, through 1995. This information has been compiled into a database that includes reports from 142 organizations and descriptions of 967 projects that either reduced greenhouse gas emissions or sequestered carbon. Fifty-one reporters also provided estimates of emissions, and emissions reductions achieved, for their entire organizations. The projects described actions taken to reduce emissions of carbon dioxide from energy production and use; to reduce methane and nitrous oxide emissions from energy use, waste management, and agricultural processes; to reduce emissions of halocarbons, such as CFCs and their replacements; and to increase carbon sequestration.

NONE

1997-10-01T23:59:59.000Z

200

Rejuvenating Permeable Reactive Barriers by Chemical Flushing  

Broader source: Energy.gov [DOE]

Final Report:Rejuvenating Permeable Reactive Barriers by Chemical Flushing,U.S. Environmental Protection Agency, Region 8 Support.August 2004

Note: This page contains sample records for the topic "oxide emissions reactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Permeable Reactive Barriers | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

react with a contaminant plume in ground water. Typically, PRBs are emplaced by replacing soils with reactive material in a trench cut through a contaminated ground water aquifer....

202

Exhaust emission control and diagnostics  

DOE Patents [OSTI]

A diesel engine emission control system uses an upstream oxidation catalyst and a downstream SCR catalyst to reduce NOx in a lean exhaust gas environment. The engine and upstream oxidation catalyst are configured to provide approximately a 1:1 ratio of NO to NO2 entering the downstream catalyst. In this way, the downstream catalyst is insensitive to sulfur contamination, and also has improved overall catalyst NOx conversion efficiency. Degradation of the system is determined when the ratio provided is no longer near the desired 1:1 ratio. This condition is detected using measurements of engine operating conditions such as from a NOx sensor located downstream of the catalysts. Finally, control action to adjust an injected amount of reductant in the exhaust gas based on the actual NO to NO2 ratio upstream of the SCR catalyst and downstream of the oxidation catalyst.

Mazur, Christopher John; Upadhyay, Devesh

2006-11-14T23:59:59.000Z

203

Method for reactivating catalysts and a method for recycling supercritical fluids used to reactivate the catalysts  

DOE Patents [OSTI]

A method of reactivating a catalyst, such as a solid catalyst or a liquid catalyst. The method comprises providing a catalyst that is at least partially deactivated by fouling agents. The catalyst is contacted with a fluid reactivating agent that is at or above a critical point of the fluid reactivating agent and is of sufficient density to dissolve impurities. The fluid reactivating agent reacts with at least one fouling agent, releasing the at least one fouling agent from the catalyst. The at least one fouling agent becomes dissolved in the fluid reactivating agent and is subsequently separated or removed from the fluid reactivating agent so that the fluid reactivating agent may be reused. A system for reactivating a catalyst is also disclosed.

Ginosar, Daniel M. (Idaho Falls, ID); Thompson, David N. (Idaho Falls, ID); Anderson, Raymond P. (Idaho Falls, ID)

2008-08-05T23:59:59.000Z

204

Ethanol oxidation on metal oxide-supported platinum catalysts  

SciTech Connect (OSTI)

Ethanol is a renewable fuel that can be used as an additive to gasoline (or its substitute) with the advantage of octane enhancement and reduced carbon monoxide exhaust emissions. However, on Ethanol is a renewable fuel that can be used as an additive to gasoline (or its substitute) with the advantage of octane enhancement and reduced carbon monoxide exhaust emissions. However, on the standard three-way catalysts, the conversion of unburned ethanol is low because both ethanol and some of its partially oxidized derivatives are highly resistant to oxidation. A combination of first-principles density-functional theory (DFT) based calculations and in-situ diffuse reflectance infrared spectroscopy (DRIFTS) analysis was applied to uncover some of the fundamental phenomena associated with ethanol oxidation on Pt containing catalysts. In particular, the objective was to analyze the role of the oxide (i.e., ?-Al2O3 or SiO2) substrate on the ethanol oxidation activity. The results showed that Pt nanoparticles trap and accumulate oxygen at their surface and perimeter sites and play the role of “stoves” that burn ethanol molecules and their partially oxidized derivatives to the “final” products. The ?-Al2O3 surfaces provided higher mobility of the fragments of ethanol molecules than the SiO2 surface and hence increased the supply rate of these objects to the Pt particles. This will in turn produce a higher conversion rate of unburned ethanol.and some of its partially oxidized derivatives are highly resistant to oxidation. A combination of first-principles density-functional theory (DFT) based calculations and in-situ diffuse reflectance infrared spectroscopy (DRIFTS) analysis was applied to uncover some of the fundamental phenomena associated with ethanol oxidation on Pt containing catalysts. In particular, the objective was to analyze the role of the oxide (i.e., ?-Al2O3 or SiO2) substrate on the ethanol oxidation activity. The results showed that Pt nanoparticles trap and accumulate oxygen at their surface and perimeter sites and play the role of “stoves” that burn ethanol molecules and their partially oxidized derivatives to the “final” products. The ?-Al2O3 surfaces provided higher mobility of the fragments of ethanol molecules than the SiO2 surface and hence increased the supply rate of these objects to the Pt particles. This will in turn produce a higher conversion rate of unburned ethanol.

L. M. Petkovic 090468; Sergey N. Rashkeev; D. M. Ginosar

2009-09-01T23:59:59.000Z

205

Saving Fuel, Reducing Emissions  

E-Print Network [OSTI]

lower greenhouse gas emissions from electricity productionAssessment of Greenhouse Gas Emissions from Plug-in Hybridof national greenhouse gas emissions. Both motor vehicle

Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

2009-01-01T23:59:59.000Z

206

E4F1 deficiency results in oxidative stress-mediated cell death of leukemic cells  

E-Print Network [OSTI]

, histiocytic sarcoma HSC, hematopoietic stem cell PET, positon emission tomography ROS, reactive oxygen species OCR, oxygen consumption rate shRNA, short hairpin RNA inserm-00610191,version1-21Jul2011 #12;Abstract

Boyer, Edmond

207

Poly(ethylene oxide) functionalization  

DOE Patents [OSTI]

A simple procedure is provided by which the hydroxyl termini of poly(ethylene oxide) can be appended with functional groups to a useful extent by reaction and precipitation. The polymer is dissolved in warmed toluene, treated with an excess of organic base and somewhat less of an excess of a reactive acylating reagent, reacted for several hours, then precipitated in isopropanol so that the product can be isolated as a solid, and salt byproducts are washed away. This procedure enables functionalization of the polymer while not requiring laborious purification steps such as solvent-solvent extraction or dialysis to remove undesirable side products.

Pratt, Russell Clayton

2014-04-08T23:59:59.000Z

208

Indoor Secondary Pollutants from Household Product Emissions inthe Presence of Ozone: A Bench-Scale Chamber Study  

SciTech Connect (OSTI)

Ozone-driven chemistry is a major source of indoor secondary pollutants of health concern. This study investigates secondary air pollutants formed from reactions between constituents of household products and ozone. Gas-phase product emissions were introduced along with ozone at constant rates into a 198-L Teflon-lined reaction chamber. Gas-phase concentrations of reactive terpenoids and oxidation products were measured. Formaldehyde was a predominant oxidation byproduct for the three studied products, with yields under most conditions of 20-30% with respect to ozone consumed. Acetaldehyde, acetone, glycolaldehyde, formic acid and acetic acid were each also detected for two or three of the products. Immediately upon mixing of reactants, a scanning mobility particle sizer detected particle nucleation events that were followed by a significant degree of ultrafine particle growth. The production of secondary gaseous pollutants and particles depended primarily on the ozone level and was influenced by other parameters such as the air-exchange rate. Hydroxyl radical concentrations in the range 0.04-200 x 10{sup 5} molecules cm{sup -3} were measured. OH concentrations were observed to vary strongly with residual ozone level in the chamber, which was in the range 1-25 ppb, as is consistent with expectations from a simplified kinetic model. In a separate test, we exposed the dry residue of two products to ozone in the chamber and observed the formation of gas-phase and particle-phase secondary oxidation products.

Destaillats, Hugo; Lunden, Melissa M.; Singer, Brett C.; Coleman,Beverly K.; Hodgson, Alfred T.; Weschler, Charles J.; Nazaroff, William W.

2005-10-01T23:59:59.000Z

209

500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Third quarterly progress report, 1992: Innovative Clean Coal Technology (ICCT)  

SciTech Connect (OSTI)

The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulatecharacteristics and boiler efficiency. Baseline, AOFA, and LNB without AOFA test segments have been completed. Analysis of the 94 days of LNB long-term data collected show the full-load NO{sub x} emission levels to be approximately 0.65 lb/MBtu. Flyash LOI values for the LNB configuration are approximately 8 percent at full-load. Corresponding values for the AOFA configuration are 0.94 lb/MBtu and approximately 10 percent. Abbreviated diagnostic tests for the LNB+AOFA configuration indicate that at 500 MWe, NO{sub x} emissions are approximately 0.55 lb/MBtu with corresponding flyash LOI values of approximately 11 percent. For comparison, the long-term full-load, baseline NO{sub x} emission level was approximately 1.24 lb/MBtu at 5.2 percent LOI. Comprehensive testing of the LNB+AOFA configuration will be performed when the stackparticulate emissions issue is resolved. Testing of a process optimization package on Plant Hammond Unit 4 was performed during this quarter. The software was configured to minimize NO{sub x} emissions using total combustion air flow and advanced overfire air distribution as the controlled parameters. Preliminary results from this testing indicate that this package shows promise in reducing NO{sub x} emissions while maintaining or improving other boiler performance parameters.

Not Available

1992-12-31T23:59:59.000Z

210

Non-Petroleum-Based Fuels: Effects on Emissions Controls (Agreement...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Non-Petroleum-Based Fuels: Effects on Emissions Controls (Agreement Number 13425)NPBF Effects on PM OxidationNPBF Effects on EGR System Performance Non-Petroleum-Based Fuels:...

211

REACTIVE LOAD MODELINGIMPACTS ONNODAL PRICESINPOOL MODELELECTRICITYMARKETS  

E-Print Network [OSTI]

REACTIVE LOAD MODELINGIMPACTS ONNODAL PRICESINPOOL MODELELECTRICITYMARKETS EttoreBompard, Enrico of the nodal prices in competitive electricity markets based on the Pool paradigm. Such prices focus of the paper is on the explicit evaluation of the impactsof the reactive load onthenodal real

Gross, George

212

REACTIVE ENVIRONMENTS AND AUGMENTED MEDIA SPACES  

E-Print Network [OSTI]

REACTIVE ENVIRONMENTS AND AUGMENTED MEDIA SPACES by Jeremy R. Cooperstock A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Electrical and Computer Engineering University of Toronto © Copyright by Jeremy R. Cooperstock, 1996 #12;ii REACTIVE

Cooperstock, Jeremy R.

213

Stack configurations for tubular solid oxide fuel cells  

DOE Patents [OSTI]

A fuel cell unit includes an array of solid oxide fuel cell tubes having porous metallic exterior surfaces, interior fuel cell layers, and interior surfaces, each of the tubes having at least one open end; and, at least one header in operable communication with the array of solid oxide fuel cell tubes for directing a first reactive gas into contact with the porous metallic exterior surfaces and for directing a second reactive gas into contact with the interior surfaces, the header further including at least one busbar disposed in electrical contact with at least one surface selected from the group consisting of the porous metallic exterior surfaces and the interior surfaces.

Armstrong, Timothy R. (Clinton, TN); Trammell, Michael P. (Clinton, TN); Marasco, Joseph A. (Kingston, TN)

2010-08-31T23:59:59.000Z

214

Oxygen Electrocatalysis on Epitaxial La[subscript 0.6]Sr[subscript 0.4]CoO[subscript 3-?] Perovskite Thin Films for Solid Oxide Fuel Cells  

E-Print Network [OSTI]

Hetero-structured interfaces of oxides, which can exhibit reactivity characteristics remarkably different from bulk oxides, are interesting systems to explore in search of highly active fuel cell catalysts for oxygen ...

Crumlin, Ethan J.

215

Saving Fuel, Reducing Emissions  

E-Print Network [OSTI]

COMPACT EMISSIONS HEV PHEV marginal power plant is a coalpower uses relatively little coal, but in other cases emissions

Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

2009-01-01T23:59:59.000Z

216

Reactive Membrane Barriers for Containment of Subsurface Contamination  

SciTech Connect (OSTI)

The overall goal of this project was to develop reactive membrane barriers--a new and flexible technique to contain and stabilize subsurface contaminants. Polymer membranes will leak once a contaminant is able to diffuse through the membrane. By incorporating a reactive material in the polymer, however, the contaminant is degraded or immobilized within the membrane. These processes increase the time for contaminants to breakthrough the barrier (i.e. the lag time) and can dramatically extend barrier lifetimes. In this work, reactive barrier membranes containing zero-valent iron (Fe{sup 0}) or crystalline silicotitanate (CST) were developed to prevent the migration of chlorinated solvents and cesium-137, respectively. These studies were complemented by the development of models quantifying the leakage/kill time of reactive membranes and describing the behavior of products produced via the reactions within the membranes. First, poly(vinyl alcohol) (PVA) membranes containing Fe{sup 0} and CST were prepared and tested. Although PVA is not useful in practical applications, it allows experiments to be performed rapidly and the results to be compared to theory. For copper ions (Cu{sup 2+}) and carbon tetrachloride, the barrier was effective, increasing the time to breakthrough over 300 times. Even better performance was expected, and the percentage of the iron used in the reaction with the contaminants was determined. For cesium, the CST laden membranes increased lag times more than 30 times, and performed better than theoretical predictions. A modified theory was developed for ion exchangers in reactive membranes to explain this result. With the PVA membranes, the effect of a groundwater matrix on barrier performance was tested. Using Hanford groundwater, the performance of Fe{sup 0} barriers decreased compared to solutions containing a pH buffer and high levels of chloride (both of which promote iron reactivity). For the CST bearing membrane, performance improved by a factor of three when groundwater was used in place of deionized water. The performance of high density polyethylene (HDPE) membranes containing Fe{sup 0} was then evaluating using carbon tetrachloride as the target contaminant. Only with a hydrophilic additive (glycerol), was the iron able to extend lag times. Lag times were increased by a factor of 15, but only 2-3% of the iron was used, likely due to formation of oxide precipitates on the iron surface, which slowed the reaction. With thicker membranes and lower carbon tetrachloride concentrations, it is expected that performance will improve. Previous models for reactive membranes were also extended. The lag time is a measurement of when the barrier is breached, but contaminants do slowly leak through prior to the lag time. Thus, two parameters, the leakage and the kill time, were developed to determine when a certain amount of pollutant has escaped (the kill time) or when a given exposure (concentration x time) occurs (the leakage). Finally, a model was developed to explain the behavior of mobile reaction products in reactive barrier membranes. Although the goal of the technology is to avoid such products, it is important to be able to predict how these products will behave. Interestingly, calculations show that for any mobile reaction products, one half of the mass will diffuse into the containment area and one half will escape, assuming that the volumes of the containment area and the surrounding environment are much larger than the barrier membrane. These parameters/models will aid in the effective design of barrier membranes.

William A. Arnold; Edward L. Cussler

2007-02-26T23:59:59.000Z

217

Reduction of spalling in mixed metal oxide desulfurization sorbents by addition of a large promoter metal oxide  

DOE Patents [OSTI]

Mixed metal oxide pellets for removing hydrogen sulfide from fuel gas mixes derived from coal are stabilized for operation over repeated cycles of desulfurization and regeneration reactions by addition of a large promoter metal oxide such as lanthanum trioxide. The pellets, which may be principally made up of a mixed metal oxide such as zinc titanate, exhibit physical stability and lack of spalling or decrepitation over repeated cycles without loss of reactivity. The lanthanum oxide is mixed with pellet-forming components in an amount of 1 to 10 weight percent.

Poston, James A. (Star City, WV)

1997-01-01T23:59:59.000Z

218

Ionic Liquids: Radiation Chemistry, Solvation Dynamics and Reactivity Patterns  

SciTech Connect (OSTI)

Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs generally have low volatilities and are combustion-resistant, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of primary radiation chemistry, charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of reactions and product distributions. We study these issues by characterization of primary radiolysis products and measurements of their yields and reactivity, quantification of electron solvation dynamics and scavenging of electrons in different states of solvation. From this knowledge we wish to learn how to predict radiolytic mechanisms and control them or mitigate their effects on the properties of materials used in nuclear fuel processing, for example, and to apply IL radiation chemistry to answer questions about general chemical reactivity in ionic liquids that will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that the slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increase the importance of pre-solvated electron reactivity and consequently alter product distributions and subsequent chemistry. This difference from conventional solvents has profound effects on predicting and controlling radiolytic yields, which need to be quantified for the successful use under radiolytic conditions. Electron solvation dynamics in ILs are measured directly when possible and estimated using proxies (e.g. coumarin-153 dynamic emission Stokes shifts or benzophenone anion solvation) in other cases. Electron reactivity is measured using ultrafast kinetics techniques for comparison with the solvation process.

Wishart, J.F.

2011-06-12T23:59:59.000Z

219

Elastic emission polishing  

SciTech Connect (OSTI)

Elastic emission polishing, also called elastic emission machining (EEM), is a process where a stream of abrasive slurry is used to remove material from a substrate and produce damage free surfaces with controlled surface form. It is a noncontacting method utilizing a thick elasto-hydrodynamic film formed between a soft rotating ball and the workpiece to control the flow of the abrasive. An apparatus was built in the Center, which consists of a stationary spindle, a two-axis table for the workpiece, and a pump to circulate the working fluid. The process is controlled by a programmable computer numerical controller (CNC), which presently can operate the spindle speed and movement of the workpiece in one axis only. This apparatus has been used to determine material removal rates on different material samples as a function of time, utilizing zirconium oxide (ZrO{sub 2}) particles suspended in distilled water as the working fluid. By continuing a study of removal rates the process should become predictable, and thus create a new, effective, yet simple tool for ultra-precision mechanical machining of surfaces.

Loewenthal, M.; Loseke, K.; Dow, T.A.; Scattergood, R.O.

1988-12-01T23:59:59.000Z

220

Reactive Support and Voltage Control Service: Key Issues and Challenges  

E-Print Network [OSTI]

reactive support and voltage control services. Keywords ­ Competitive Electricity Markets, Reactive PowerReactive Support and Voltage Control Service: Key Issues and Challenges George Gross^, Paolo Marannino° and Gianfranco Chicco* ^ Department of Electrical and Computer Engineering, University

Gross, George

Note: This page contains sample records for the topic "oxide emissions reactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Reactive Blast Waves from Composite Charges  

SciTech Connect (OSTI)

Investigated here is the performance of composite explosives - measured in terms of the blast wave they drive into the surrounding environment. The composite charge configuration studied here was a spherical booster (1/3 charge mass), surrounded by aluminum (Al) powder (2/3 charge mass) at an initial density of {rho}{sub 0} = 0.604 g/cc. The Al powder acts as a fuel but does not detonate - thereby providing an extreme example of a 'non-ideal' explosive (where 2/3 of the charge does not detonate). Detonation of the booster charge creates a blast wave that disperses the Al powder and ignites the ensuing Al-air mixture - thereby forming a two-phase combustion cloud embedded in the explosion. Afterburning of the booster detonation products with air also enhances and promotes the Al-air combustion process. Pressure waves from such reactive blast waves have been measured in bomb calorimeter experiments. Here we describe numerical simulations of those experiments. A Heterogeneous Continuum Model was used to model the dispersion and combustion of the Al particle cloud. It combines the gasdynamic conservation laws for the gas phase with a dilute continuum model for the dispersed phase, as formulated by Nigmatulin. Inter-phase mass, momentum and energy exchange are prescribed by phenomenological models of Khasainov. It incorporates a combustion model based on mass conservation laws for fuel, air and products; source/sink terms are treated in the fast-chemistry limit appropriate for such gasdynamic fields, along with a model for mass transfer from the particle phase to the gas. The model takes into account both the afterburning of the detonation products of the booster with air, and the combustion of the Al particles with air. The model equations were integrated by high-order Godunov schemes for both the gas and particle phases. Adaptive Mesh Refinement (AMR) was used to capture the energy-bearing scales of the turbulent flow on the computational grid, and to track/resolve reaction zones. Numerical simulations of the explosion fields from 1.5-g and 10-kg composite charges were performed. Computed pressure histories (red curve) are compared with measured waveforms (black curves) in Fig. 1. Comparison of these results with a waveform for a non-combustion case in nitrogen (blue curve) demonstrates that a reactive blast wave was formed. Cross-sectional views of the temperature field at various times are presented in Fig. 2, which shows that the flow is turbulent. Initially, combustion occurs at the fuel-air interface, and the energy release rate is controlled by the rate of turbulent mixing. Eventually, oxidizer becomes distributed throughout the cloud via ballistic mixing of the particles with air; energy release then occurs in a distributed combustion mode, and Al particle kinetics controls the energy release rate. Details of the Heterogeneous Continuum Model and results of the numerical simulations of composite charge explosions will be described in the paper.

Kuhl, A L; Bell, J B; Beckner, V E

2009-10-16T23:59:59.000Z

222

Exhaust emissions from two intercity passenger locomotives  

SciTech Connect (OSTI)

To enhance the effectiveness of intercity passenger rail service in mitigating exhaust emissions in California, the California Department of Transportation (Caltrans) included limits on exhaust emissions in its intercity locomotive procurement specifications. Because there were no available exhaust emission test data on which emission reduction goals could be based, Caltrans funded a test program to acquire gaseous and particulate exhaust emissions data, along with smoke opacity data, from two state-of-the-art intercity passenger locomotives. The two passenger locomotives (an EMD F59PH and a GE DASH8-32BWH) were tested at the Association of American Railroads Chicago Technical Center. The EMD locomotive was equipped with a separate Detroit Diesel Corporation (DDC) 8V-149 diesel engine used to provide 480 V AC power for the trailing passenger cars. This DDC engine was also emission tested. These data were used to quantify baseline exhaust emission levels as a challenge to locomotive manufacturers to offer new locomotives with reduced emissions. Data from the two locomotive engines were recorded at standard fuel injection timing and with the fuel injection timing retarded 4 deg in an effort to reduce NO[sub x] emissions. Results of this emissions testing were incorporated into the Caltrans locomotive procurement process by including emission performance requirements in the Caltrans intercity passenger locomotive specification, and therefore in the procurement decision. This paper contains steady-state exhaust emission test results for hydrocarbons (HC), carbon monoxide (CO), oxides of nitrogen (NO[sub x]), and particulate matter (PM) from the two locomotives. Computed sulfur dioxide (SO[sub 2]) emissions are also given, and are based on diesel fuel consumption and sulfur content. Exhaust smoke opacity is also reported.

Fritz, S.G. (Southwest Research Inst., San Antonio, TX (United States). Dept. of Emissions Research)

1994-10-01T23:59:59.000Z

223

Innovative clean coal technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO sub x ) emissions from coal-fired boilers  

SciTech Connect (OSTI)

The major objectives of the project are to: (1) demonstrate the performance of three combustion NO{sub x} control technologies; (2) determine the short-term NO{sub x} emission trends for each of the operating configurations; (3) determine the dynamic long-term NO{sub x} emission characteristics for each of the operating configurations using sophisticated statistical techniques; (4) evaluate progressive cost-effectiveness (i.e., dollars per ton of NO{sub x} removed) of the low NO{sub x} combustion technologies tested; and (5) determine the effects on other combustion parameters (e.g., CO production, carbon carry-over, particulate characteristics) of applying the low NO{sub x} combustion technologies. (VC)

Not Available

1991-09-13T23:59:59.000Z

224

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO sub x ) emissions from coal-fired boilers  

SciTech Connect (OSTI)

The primary objective of the project is to investigate the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NOx emissions and boiler performance on Unit 2 at Gulf Power Company's Plant Lansing Smith located near Lynn Haven, Florida. The project will characterize emissions and performance of a tangentially-fired boiler operating in the following configurations: Baseline as-found'' configuration: Phase 1; retrofitted low NO{sub x} concentric firing system (LNCFS) Level 2 and simulated low NO{sub x} bulk furnace staging (LNBFS): Phase 2; retrofitted low NO{sub x} concentric firing system (LNCFS) Level 3, Phase 3a and simulated LNCFS Level 1, Phase 3b.

Not Available

1992-01-01T23:59:59.000Z

225

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Phase 1, Baseline tests  

SciTech Connect (OSTI)

The primary objective of the project is to investigate the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NOx emissions and boiler performance on Unit 2 at Gulf Power Company`s Plant Lansing Smith located near Lynn Haven, Florida. The project will characterize emissions and performance of a tangentially-fired boiler operating in the following configurations: Baseline ``as-found`` configuration: Phase 1; retrofitted low NO{sub x} concentric firing system (LNCFS) Level 2 and simulated low NO{sub x} bulk furnace staging (LNBFS): Phase 2; retrofitted low NO{sub x} concentric firing system (LNCFS) Level 3, Phase 3a and simulated LNCFS Level 1, Phase 3b.

Not Available

1992-01-01T23:59:59.000Z

226

180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report second quarter, 1991  

SciTech Connect (OSTI)

ABB CE`s Low NOx Bulk Furnace Staging (LNBFS) System and Low NOx Concentric Firing System (LNCFS) are demonstrated in stepwise fashion. These systems incorporate the concept of advanced overfire air (AOFA), clustered coal nozzles, and offset air. A complete description of the installed technologies is provided in the following section. The primary objective of the Plant Lansing Smith demonstration is to determine the long-term effects of commercially available tangentially-fired low NOx combustion technologies on NOx emissions and boiler performance. Short-term tests of each technology are also being performed to provide engineering information about emissions and performance trends. A target of achieving fifty percent NOx reduction using combustion modifications has been established for the project.

Not Available

1991-12-31T23:59:59.000Z

227

Characterization of Dual-Fuel Reactivity Controlled Compression...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Dual-Fuel Reactivity Controlled Compression Ignition (RCCI) Using Hydrated Ethanol and Diesel Fuel Characterization of Dual-Fuel Reactivity Controlled Compression Ignition (RCCI)...

228

A smoothed particle hydrodynamics model for reactive transport...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A smoothed particle hydrodynamics model for reactive transport and mineral precipitation in porous and fractured porous media. A smoothed particle hydrodynamics model for reactive...

229

Oxidation catalyst  

DOE Patents [OSTI]

The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

Ceyer, Sylvia T. (Cambridge, MA); Lahr, David L. (Cambridge, MA)

2010-11-09T23:59:59.000Z

230

Kinetic Modeling of Toluene Oxidation for Surrogate Fuel Applications  

SciTech Connect (OSTI)

New environmental issues, like the effect of combustion-generated greenhouse gases, provide motivation to better characterize oxidation of hydrocarbons. Transportation, in particular, significantly contributes to energy consumption and CO{sub 2} emissions. Kinetic studies about the combustion of fuels under conditions typical of internal combustion engines provides important support to improve mechanism formulation and to eventually provide better computational tools that can be used to increase the engine performance. It is foreseeable that at least in the next 30 years the main transportation fuels will be either gasoline or diesel. Unfortunately, these fuels are very complex mixtures of many components. Moreover, their specifications and performance requirements significantly change the composition of these fuels: gasoline and diesel mixtures are different if coming from different refineries or they are different from winter to summer. At the same time a fuel with a well defined and reproducible composition is needed for both experimental and modeling work. In response to these issues, surrogate fuels are proposed. Surrogate fuels are defined as mixtures of a small number of hydrocarbons whose relative concentrations is adjusted in order to approximate the chemical and physical properties of a real fuel. Surrogate fuels are then very useful both for the design of reproducible experimental tests and also for the development of reliable kinetic models. The primary reference fuels (PRF) are a typical and old example of surrogate fuel: n-heptane and iso-octane mixtures are used to reproduce antiknock propensity of complex mixtures contained in a gasoline. PRFs are not able to surrogate gasoline in operating conditions different from standard ones and new surrogates have been recently proposed. Toluene is included in all of them as a species able to represent the behavior of aromatic compounds. On the other side, the toluene oxidation chemistry is not so well established and uncertainties still remain in the mechanism. This is especially true in the low temperature regime (< 850K). In these conditions, the toluene reactivity is too low to be conveniently investigated. Nonetheless, gasoline surrogates work in the engine at low temperatures, because of the presence of very reactive alkanes. The effect of these component interactions have to be taken into account. This work's aim is to present the model activity carried out by two different research groups, comparing the main pathways and results, matching data carried out in different devices both for pure toluene and mixtures. This is the starting point for a further activity to improve the two kinetic schemes.

Frassoldati, A; Mehl, M; Fietzek, R; Faravelli, T; Pitz, W J; Ranzi, E

2009-04-21T23:59:59.000Z

231

COAL SLAGGING AND REACTIVITY TESTING  

SciTech Connect (OSTI)

Union Fenosa's La Robla I Power Station is a 270-MW Foster Wheeler arch-fired system. The unit is located at the mine that provides a portion of the semianthracitic coal. The remaining coals used are from South Africa, Russia, Australia, and China. The challenges at the La Robla I Station stem from the various fuels used, the characteristics of which differ from the design coal. The University of North Dakota Energy & Environmental Research Center (EERC) and the Lehigh University Energy Research Center (LUERC) undertook a program to assess problematic slagging and unburned carbon issues occurring at the plant. Full-scale combustion tests were performed under baseline conditions, with elevated oxygen level and with redistribution of air during a site visit at the plant. During these tests, operating information, observations and temperature measurements, and coal, slag deposit, and fly ash samples were obtained to assess slagging and unburned carbon. The slagging in almost all cases appeared due to elevated temperatures rather than fuel chemistry. The most severe slagging occurred when the temperature at the sampling port was in excess of 1500 C, with problematic slagging where first-observed temperatures exceeded 1350 C. The presence of anorthite crystals in the bulk of the deposits analyzed indicates that the temperatures were in excess of 1350 C, consistent with temperature measurements during the sampling period. Elevated temperatures and ''hot spots'' are probably the result of poor mill performance, and a poor distribution of the coal from the mills to the specific burners causes elevated temperatures in the regions where the slag samples were extracted. A contributing cause appeared to be poor combustion air mixing and heating, resulting in oxygen stratification and increased temperatures in certain areas. Air preheater plugging was observed and reduces the temperature of the air in the windbox, which leads to poor combustion conditions, resulting in unburned carbon as well as slagging. A second phase of the project involved advanced analysis of the baseline coal along with an Australian coal fired at the plant. These analysis results were used in equilibrium thermodynamic modeling along with a coal quality model developed by the EERC to assess slagging, fouling, and opacity for the coals. Bench-scale carbon conversion testing was performed in a drop-tube furnace to assess the reactivity of the coals. The Australian coal had a higher mineral content with significantly more clay minerals present than the baseline coal. The presence of these clay minerals, which tend to melt at relatively low temperatures, indicated a higher potential for problematic slagging than the baseline coal. However, the pyritic minerals, comprising over 25% of the baseline mineral content, may form sticky iron sulfides, leading to severe slagging in the burner region if local areas with reducing conditions exist. Modeling results indicated that neither would present significant fouling problems. The Australian coal was expected to show slagging behavior much more severe than the baseline coal except at very high furnace temperatures. However, the baseline coal was predicted to exhibit opacity problems, as well as have a higher potential for problematic calcium sulfate-based low-temperature fouling. The baseline coal had a somewhat higher reactivity than the Australian coal, which was consistent with both the lower average activation energy for the baseline coal and the greater carbon conversion at a given temperature and residence time. The activation energy of the baseline coal showed some effect of oxygen on the activation energy, with E{sub a} increasing at the lower oxygen concentration, but may be due to the scatter in the baseline coal kinetic values at the higher oxygen level tested.

Donald P. McCollor; Kurt E. Eylands; Jason D. Laumb

2003-10-01T23:59:59.000Z

232

Physical properties and band structure of reactive molecular beam epitaxy grown oxygen engineered HfO{sub 2{+-}x}  

SciTech Connect (OSTI)

We have conducted a detailed thin film growth structure of oxygen engineered monoclinic HfO{sub 2{+-}x} grown by reactive molecular beam epitaxy. The oxidation conditions induce a switching between (111) and (002) texture of hafnium oxide. The band gap of oxygen deficient hafnia decreases with increasing amount of oxygen vacancies by more than 1 eV. For high oxygen vacancy concentrations, defect bands form inside the band gap that induce optical transitions and p-type conductivity. The resistivity changes by several orders of magnitude as a function of oxidation conditions. Oxygen vacancies do not give rise to ferromagnetic behavior.

Hildebrandt, Erwin; Kurian, Jose; Alff, Lambert [Institute of Materials Science, Technische Universitaet Darmstadt, 64287 Darmstadt (Germany)

2012-12-01T23:59:59.000Z

233

Reactivity control assembly for nuclear reactor  

DOE Patents [OSTI]

Reactivity control assembly for nuclear reactor comprises supports stacked above reactor core for holding control rods. Couplers associated with the supports and a vertically movable drive shaft have lugs at their lower ends for engagement with the supports.

Bollinger, Lawrence R. (Schenectady, NY)

1984-01-01T23:59:59.000Z

234

Fossil plant layup and reactivation conference: Proceedings  

SciTech Connect (OSTI)

The Fossil Plant Layup and Reactivation Conference was held in New Orleans, Louisiana on April 14--15, 1992. The Conference was sponsored by EPRI and hosted by Entergy Services, Inc. to bring together representatives from utilities, consulting firms, manufacturers and architectural engineers. Eighteen papers were presented in three sessions. These sessions were devoted to layup procedures and practices, and reactivation case studies. A panel discussion was held on the second day to interactively discuss layup and reactivation issues. More than 80 people attended the Conference. This report contains technical papers and a summary of the panel discussion. Of the eighteen papers, three are related to general, one is related to regulatory issues, three are related to specific equipment, four are related to layup procedures and practices, and seven are layup and reactivation case studies.

Not Available

1992-10-01T23:59:59.000Z

235

Groundwater well with reactive filter pack  

DOE Patents [OSTI]

A method and apparatus for the remediation of contaminated soil and ground water wherein a reactive pack material is added to the annular fill material utilized in standard well construction techniques.

Gilmore, Tyler J. (Pasco, WA); Holdren, Jr., George R. (Kennewick, WA); Kaplan, Daniel I. (Richland, WA)

1998-01-01T23:59:59.000Z

236

A Tariff for Reactive Power - IEEE  

SciTech Connect (OSTI)

This paper describes a suggested tariff or payment for the local supply of reactive power from distributed energy resources. The authors consider four sample customers, and estimate the cost of supply of reactive power for each customer. The power system savings from the local supply of reactive power are also estimated for a hypothetical circuit. It is found that reactive power for local voltage regulation could be supplied to the distribution system economically by customers when new inverters are installed. The inverter would be supplied with a power factor of 0.8, and would be capable of local voltage regulation to a schedule supplied by the utility. Inverters are now installed with photovoltaic systems, fuel cells and microturbines, and adjustable-speed motor drives.

Kueck, John D [ORNL; Tufon, Christopher [Pacific Gas and Electric Company; Isemonger, Alan [California Independent System Operator; Kirby, Brendan J [ORNL

2008-11-01T23:59:59.000Z

237

Consideration of spatial effects in reactivity measurements  

SciTech Connect (OSTI)

Various methods of considering spatial effects in reactivity measurements are presented. These methods are employed both at the critical (mainly fast-neutron) facilities and at the BN-600 reactor.

Matveenko, I. P., E-mail: matveenko@ippe.ru; Lititskii, V. A.; Shokod'ko, A. G. [Institute of Physics and Power Engineering (Russian Federation)

2010-12-15T23:59:59.000Z

238

Systematic approach for chemical reactivity evaluation  

E-Print Network [OSTI]

Screening Tool (RSST) and the Automatic Pressure Tracking Adiabatic Calorimeter (APTAC) were employed to evaluate the reactive systems experimentally. The RSST detected exothermic behavior and measured the overall liberated energy. The APTAC simulated...

Aldeeb, Abdulrehman Ahmed

2004-09-30T23:59:59.000Z

239

Groundwater well with reactive filter pack  

DOE Patents [OSTI]

A method and apparatus are disclosed for the remediation of contaminated soil and ground water wherein a reactive pack material is added to the annular fill material utilized in standard well construction techniques. 3 figs.

Gilmore, T.J.; Holdren, G.R. Jr.; Kaplan, D.I.

1998-09-08T23:59:59.000Z

240

Reactive Attachment Disorder: Concepts, Treatment, and Research  

E-Print Network [OSTI]

Reactive Attachment Disorder (RAD) is a disorder characterized by controversy, both with respect to its definition and its treatment. By definition, the RAD diagnosis attempts to characterize and explain the origin of ...

Walter, Uta M.; Petr, Chris

2004-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxide emissions reactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Reactivity of tributyl phosphate degradation products with nitric acid: Relevance to the Tomsk-7 accident  

SciTech Connect (OSTI)

The reaction of a degraded tributyl phosphate (TBP) solvent with nitric acid is thought to have caused the chemical explosion at the Tomsk-7 reprocessing plant at Tomsk, Russia in 1993. The estimated temperature of the organic layer was not high eneough to cause significant reaction of nitric acid with TBP or hydrocarbon diluent compounds. A more reactive organic compound was likely present in the organic layer that reacted with sufficient heat generation to raise the temperature to the point where an autocatalytic oxidation of the organic solvent was initiated. Two of the most likely reactive compounds that are present in degraded TBP solvents are n-butanol and n-butyl nitrate. The reactions of these compounds with nitric acid are the subject of this study. The objective of laboratory-scale tests was to identify chemical reactions that occur when n-butanol and n-butyl nitrate contact heated nitric acid solutions. Reaction products were identified and quantitified, the temperatures at which these reactions occur and heats of reaction were measured, and reaction variables (temperature, nitric acid concentration, organic concentration, and reaction time) were evaluated. Data showed that n-butyl nitrate is less reactive than n-butanol. An essentially complete oxidation reaction of n-butanol at 110-120 C produced four major reaction products. Mass spectrometry identified the major inorganic oxidation products for both n-butanol and n-butyl nitrate as nitric oxide and carbon dioxide. Calculated heats of reaction for n-butanol and n-butyl nitrate to form propionic acid, a major reaction product, are -1860 cal/g n-butanol and -953 cal/g n-butyl nitrate. These heats of reaction are significant and could have raised the temperature of the organic layer in the Tomsk-7 tank to the point where autocatalytic oxidation of other organic compounds present resulted in an explosion.

Barney, G.S.; Cooper, T.D. [Westinghouse Hanford Company, Richland, WA (United States)

1995-12-31T23:59:59.000Z

242

Relative reactivities of solid benzoic acids  

E-Print Network [OSTI]

RELATIVE REACTIVITIES OF SOLID BENZOIC ACIDS A Thesis By EDWIN J, WARWAS Submitted to the Graduate College of the Texas A8rM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE January 1967' Major... Subject: Chemistry RELATIVE REACTIVITIES OF SOLID BENZOIC ACIDS A Thesis By EDWIN J. WARWAS Submitted to the Graduate College of the Texas ASSAM University in partial fulfillment of the requirements for the degree of MAST ER OF S CIENCE January...

Warwas, Edwin James

2012-06-07T23:59:59.000Z

243

Stability of catalase and its role in lipid oxidation in beef muscle  

E-Print Network [OSTI]

lowered lipid oxidation (as measured by 2-thiobarbituric acid-reactive substances, TBARS) about 8% in the 6 days of storage. When 3-aniino-1,2,4-triazole (2.5%), a catalase inhibitor, was added to ground beef SM, lipid oxidation (peroxide values) was also...

Pradhan, Abhijeet Amar

1997-01-01T23:59:59.000Z

244

Innovative clean coal technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Quarterly report No. 3, January--March 1991  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor.

Not Available

1991-07-01T23:59:59.000Z

245

Innovative clean coal technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO sub x ) emissions from high-sulfur coal-fired boilers  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor.

Not Available

1991-07-01T23:59:59.000Z

246

Innovative Clean Coal Technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Quarterly report No. 6, October--December, 1991  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor.

Not Available

1992-02-01T23:59:59.000Z

247

Innovative Clean Coal Technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO sub x ) emissions from high-sulfur coal-fired boilers  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor.

Not Available

1992-02-01T23:59:59.000Z

248

Emissions control through dry scrubbing  

SciTech Connect (OSTI)

Concern with operating problems, and the desire for system simplicity, has resulted in the development of dry scrubbing systems for flue gas cleanup, and their acceptance by industry as an alternate to the conventional wet scrubbers. These dry scrubbing systems incorporate two commonly used pieces of equipment; spray dryers, which have been used for many years to manufacture everything from detergents to powdered milk, and a particulates removal device (either a fabric filter or an electrostatic precipitator). The first application of this technology to removal of sulfur oxides from high sulfur coal combustion gases occurred when Argonne National Laboratory installed a system in 1981 as the control device on its main coal-fired boiler. To date, this type of pollution control system has shown itself capable of meeting state emission standards and, in a special test run, of removing over 90% of the sulfur oxides produced from combustion of a coal with over 4% sulfur.

Farber, P.S.

1986-01-01T23:59:59.000Z

249

Method of producing adherent metal oxide coatings on metallic surfaces  

DOE Patents [OSTI]

Provided is a process of producing an adherent synthetic corrosion product (sludge) coating on metallic surfaces. The method involves a chemical reaction between a dry solid powder mixture of at least one reactive metal oxide with orthophosphoric acid to produce a coating in which the particles are bound together and the matrix is adherent to the metallic surface.

Lane, Michael H. (Clifton Park, NY); Varrin, Jr., Robert D. (McLean, VA)

2001-01-01T23:59:59.000Z

250

Detailed chemical kinetic oxidation mechanism for a biodiesel Olivier Herbineta  

E-Print Network [OSTI]

Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate Olivier Herbineta , William of methyl decanoate, a surrogate for biodiesel fuels. This model has been built by following the rules and biodiesel fuels to predict overall reactivity, but some kinetic details, including early CO2 production from

Paris-Sud XI, Université de

251

Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.  

SciTech Connect (OSTI)

In an attempt to mitigate the hazards associated with storing large quantities of reactive metal hydrides, polymer composite materials were synthesized and tested under simulated usage and accident conditions. The composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride. Composites with vinyl-containing siloxane oligomers were also polymerized with and without added styrene and divinyl benzene. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride reduced the inherent hydrogen storage capacity of the material. The composites were found to be initially effective at reducing the amount of heat released during oxidation. However, upon cycling the composites, the mitigating behavior was lost. While the polymer composites we investigated have mitigating potential and are physically robust, they undergo a chemical change upon cycling that makes them subsequently ineffective at mitigating heat release upon oxidation of the metal hydride. Acknowledgements The authors would like to thank the following people who participated in this project: Ned Stetson (U.S. Department of Energy) for sponsorship and support of the project. Ken Stewart (Sandia) for building the flow-through calorimeter and cycling test stations. Isidro Ruvalcaba, Jr. (Sandia) for qualitative experiments on the interaction of sodium alanate with water. Terry Johnson (Sandia) for sharing his expertise and knowledge of metal hydrides, and sodium alanate in particular. Marcina Moreno (Sandia) for programmatic assistance. John Khalil (United Technologies Research Corp) for insight into the hazards of reactive metal hydrides and real-world accident scenario experiments. Summary In an attempt to mitigate and/or manage hazards associated with storing bulk quantities of reactive metal hydrides, polymer composite materials (a mixture of a mitigating polymer and a metal hydride) were synthesized and tested under simulated usage and accident conditions. Mitigating the hazards associated with reactive metal hydrides during an accident while finding a way to keep the original capability of the active material intact during normal use has been the focus of this work. These composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride, in this case a prepared sodium alanate (chosen as a representative reactive metal hydride). It was found that the polymerization of styrene and divinyl benzene could be initiated using AIBN in toluene at 70 degC. The resulting composite materials can be either hard or brittle solids depending on the cross-linking density. Thermal decomposition of these styrene-based composite materials is lower than neat polystyrene indicating that the chemical nature of the polymer is affected by the formation of the composite. The char-forming nature of cross-linked polystyrene is low and therefore, not an ideal polymer for hazard mitigation. To obtain composite materials containing a polymer with higher char-forming potential, siloxane-based monomers were investigated. Four vinyl-containing siloxane oligomers were polymerized with and without added styrene and divinyl benzene. Like the styrene materials, these composite materials exhibited thermal decomposition behavior significantly different than the neat polymers. Specifically, the thermal decomposition temperature was shifted approximately 100 degC lower than the neat polymer signifying a major chemical change to the polymer network. Thermal analysis of the cycled samples was performed on the siloxane-based composite materials. It was found that after 30 cycles the siloxane-containing polymer composite material has similar TGA/DSC-MS traces as the virgin composite material indicating that the polymer is physically intact upon cycling. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride in the form of a composite material reduced the inherent hydrogen storage capacity of the material. This

Pratt, Joseph William; Cordaro, Joseph Gabriel; Sartor, George B.; Dedrick, Daniel E.; Reeder, Craig L.

2012-02-01T23:59:59.000Z

252

Eoeective Recognizability and Model Checking of Reactive Fioeo Automata  

E-Print Network [OSTI]

Electre. For this, we deøne a particular behavioral model for Electre programs, Reactive Fioeo Au­ tomata speciøed with the reactive language Electre [CR95]. A reactive pro­ gram is supposed to reactEoeective Recognizability and Model Checking of Reactive Fioeo Automata G. Sutre 1 , A. Finkel 1

Sutre, Grégoire

253

Ultra Supercritical Steamside Oxidation  

SciTech Connect (OSTI)

Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions, which are goals of the U.S. Department of Energy's Advanced Power Systems Initiatives. Most current coal power plants in the U.S. operate at a maximum steam temperature of 538 C. However, new supercritical plants worldwide are being brought into service with steam temperatures of up to 620 C. Current Advanced Power Systems goals include coal generation at 60% efficiency, which require steam temperatures of up to 760 C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections. Initial results of this research are presented.

Holcomb, Gordon R.; Cramer, Stephen D.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Ziomek-Moroz, Malgorzata

2005-01-01T23:59:59.000Z

254

Nitric oxide inhibition of soot oxidation by oxygen atoms at 298/sup 0/Ktiation  

SciTech Connect (OSTI)

Nitric oxide is observed to inhibit the rate of soot oxidation by oxygen atoms at 298 K. Small amounts of added NO reduce the rates of production of CO/sub 2/ and CO by up to 35%. The authors show experimentally that NO is not reducing the gas phase O atom concentration. Thermal description mass spectrometry is used to measure the small adsorption of NO on the soot; this NO adsorption corresponds to 1.5% of the carbon atoms on the surface of the individual soot spheres. This inhibition is interpreted in terms of a relatively small number of reactive sites on the soot at which soot gasification occurs and which are effectively blocked by NO. When considered together with our previously reported work on oxidation of soot by oxygen atoms at 298 K, these results allow a partial mechanism to be formulated for this soot oxidation process.

Wicke, B.G.; Grady, K.A.

1987-01-01T23:59:59.000Z

255

Effect of O sub 2 concentration on moist CO oxidation  

SciTech Connect (OSTI)

Over the temperature range of 1000-1200 K at one atmosphere pressure, the dependency of moist CO oxidation on excess oxygen concentration changes from one of inhibition below approximately 1040 K to one of acceleration above this temperature. These newly observed characteristics of moist CO oxidation will be important factors to consider in controlling CO emissions from practical devices.

Roesler, J.F.; Yetter, R.A.; Dryer, F.L.

1991-01-01T23:59:59.000Z

256

Vehicle Emissions Review - 2011  

Broader source: Energy.gov (indexed) [DOE]

Emissions Review - 2011 (so far) Tim Johnson October 4, 2011 DOE DEER Conference, Detroit JohnsonTV@Corning.com 2 Summary * California LD criteria emission regs are tightening....

257

Excellent oxidation endurance of boron nitride nanotube field electron emitters  

SciTech Connect (OSTI)

Boron nitride nanotubes (BNNTs) are considered as a promising cold electron emission material owing to their negative electron affinity. BNNT field emitters show excellent oxidation endurance after high temperature thermal annealing of 600?°C in air ambient. There is no damage to the BNNTs after thermal annealing at a temperature of 600?°C and also no degradation of field emission properties. The thermally annealed BNNTs exhibit a high maximum emission current density of 8.39?mA/cm{sup 2} and show very robust emission stability. The BNNTs can be a promising emitter material for field emission devices under harsh oxygen environments.

Song, Yenan [Department of Micro/Nano Systems, Korea University, Seoul 136-713 (Korea, Republic of); Sun, Yuning; Hoon Shin, Dong; Nam Yun, Ki [School of Electrical Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Song, Yoon-Ho [Nano Electron-Source Creative Research Center, Creative and Challenging Research Division, ETRI, Daejeon 305-700 (Korea, Republic of); Milne, William I. [Electrical Engineering Division, Engineering Department, Cambridge University, Cambridge CB3 0FA (United Kingdom); Jin Lee, Cheol, E-mail: cjlee@korea.ac.kr [Department of Micro/Nano Systems, Korea University, Seoul 136-713 (Korea, Republic of); School of Electrical Engineering, Korea University, Seoul 136-713 (Korea, Republic of)

2014-04-21T23:59:59.000Z

258

Partial oxidation power plant with reheating and method thereof  

DOE Patents [OSTI]

A system and method are disclosed for generating power having an air compression/partial oxidation system, a turbine, and a primary combustion system. The air compression/partial oxidation system receives a first air stream and a fuel stream and produces a first partially oxidized fuel stream and a first compressed air stream therefrom. The turbine expands the first partially oxidized fuel stream while being cooled by the first compressed air stream to produce a heated air stream. The heated air stream is injected into the expanding first partially oxidized fuel stream, thereby reheating it in the turbine. A second partially oxidized fuel stream is emitted from the turbine. The primary combustion system receives said second partially oxidized fuel stream and a second air stream, combusts said second partially oxidized fuel stream, and produces rotating shaft power and an emission stream therefrom. 2 figs.

Newby, R.A.; Yang, W.C.; Bannister, R.L.

1999-08-10T23:59:59.000Z

259

500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Public design report (preliminary and final)  

SciTech Connect (OSTI)

This Public Design Report presents the design criteria of a DOE Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of NO{sub x} emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 (500 MW) near Rome, Georgia. The technologies being demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NO{sub x} burner. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NO{sub x} burners, advanced overfire systems, and digital control system.

NONE

1996-07-01T23:59:59.000Z

260

Optical and electrical studies of cerium mixed oxides  

SciTech Connect (OSTI)

The fast development in nanotechnology makes enthusiastic interest in developing nanomaterials having tailor made properties. Cerium mixed oxide materials have received great attention due to their UV absorption property, high reactivity, stability at high temperature, good electrical property etc and these materials find wide applications in solid oxide fuel cells, solar control films, cosmetics, display units, gas sensors etc. In this study cerium mixed oxide compounds were prepared by co-precipitation method. All the samples were doped with Zn (II) and Fe (II). Preliminary characterizations such as XRD, SEM / EDS, TEM were done. UV - Vis, Diffuse reflectance, PL, FT-IR, Raman and ac conductivity studies of the samples were performed.

Sherly, T. R., E-mail: trsherly@gmail.com [Post Graduate Department of Physics, Sanathana Dharma College, Alappuzha, Kerala (India); Raveendran, R. [Nanoscience Research Laboratory, Sree Narayana College, Kollam, Kerala 691001 (India)

2014-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "oxide emissions reactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Quarterly technical progress report, [July--September 1995  

SciTech Connect (OSTI)

This project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. The project provides a stepwise evaluation of the following NO{sub x} reduction technologies: Advanced overfire air (AOFA), Low NO{sub x} burners (LNB), LNB with AOFA, and advanced digital controls and optimization strategies. The project has completed the baseline, AOFA, LNB, and LNB+AOFA test segments, fulfilling all testing originally proposed to DOE. Phase 4 of the project, demonstration of advanced control/optimization methodologies for NO{sub x} abatement, is now in progress. The methodology selected for demonstration at Hammond Unit 4 is the Generic NO{sub x} Control Intelligent System (GNOCIS), which is being developed by a consortium consisting of the Electric Power Research Institute, PowerGen, Southern Company, Radian Corporation, U.K. Department of Trade and Industry, and U.S. Department of Energy. GNOCIS is a methodology that can result in improved boiler efficiency and reduced NO{sub x} emissions from fossil fuel fired boilers. Using a numerical model of the combustion process, GNOCIS applies an optimizing procedure to identify the best set points for the plant on a continuous basis. GNOCIS is in progress at Alabama Power`s Gaston Unit 4 and PowerGen`s Kingsnorth Unit 1. The first commercial demonstration of GNOCIS will be at Hammond 4.

NONE

1995-12-31T23:59:59.000Z

262

Method for fluorination of uranium oxide  

DOE Patents [OSTI]

Highly pure uranium hexafluoride is made from uranium oxide and fluorine. The uranium oxide, which includes UO.sub.3, UO.sub.2, U.sub.3 O.sub.8 and mixtures thereof, is introduced together with a small amount of a fluorine-reactive substance, selected from alkali chlorides, silicon dioxide, silicic acid, ferric oxide, and bromine, into a constant volume reaction zone. Sufficient fluorine is charged into the zone at a temperature below approximately 0.degree. C. to provide an initial pressure of at least approximately 600 lbs/sq. in. at the ambient atmospheric temperature. The temperature is then allowed to rise in the reaction zone until reaction occurs.

Petit, George S. (Oak Ridge, TN)

1987-01-01T23:59:59.000Z

263

Waste Coal Fines Reburn for NOx and Mercury Emission Reduction  

SciTech Connect (OSTI)

Injection of coal-water slurries (CWS) made with both waste coal and bituminous coal was tested for enhanced reduction of NO{sub x} and Hg emissions at the AES Beaver Valley plant near Monaca, PA. Under this project, Breen Energy Solutions (BES) conducted field experiments on the these emission reduction technologies by mixing coal fines and/or pulverized coal, urea and water to form slurry, then injecting the slurry in the upper furnace region of a coal-fired boiler. The main focus of this project was use of waste coal fines as the carbon source; however, testing was also conducted using pulverized coal in conjunction with or instead of waste coal fines for conversion efficiency and economic comparisons. The host site for this research and development project was Unit No.2 at AES Beaver Valley cogeneration station. Unit No.2 is a 35 MW Babcock & Wilcox (B&W) front-wall fired boiler that burns eastern bituminous coal. It has low NO{sub x} burners, overfire air ports and a urea-based selective non-catalytic reduction (SNCR) system for NO{sub x} control. The back-end clean-up system includes a rotating mechanical ash particulate removal and electrostatic precipitator (ESP) and wet flue gas desulfurization (FGD) scrubber. Coal slurry injection was expected to help reduce NOx emissions in two ways: (1) Via fuel-lean reburning when the slurry is injected above the combustion zone. (2) Via enhanced SNCR reduction when urea is incorporated into the slurry. The mercury control process under research uses carbon/water slurry injection to produce reactive carbon in-situ in the upper furnace, promoting the oxidation of elemental mercury in flue gas from coal-fired power boilers. By controlling the water content of the slurry below the stoichiometric requirement for complete gasification, water activated carbon (WAC) can be generated in-situ in the upper furnace. As little as 1-2% coal/water slurry (heat input basis) can be injected and generate sufficient WAC for mercury capture. During July, August, and September 2007, BES designed, procured, installed, and tested the slurry injection system at Beaver Valley. Slurry production was performed by Penn State University using equipment that was moved from campus to the Beaver Valley site. Waste coal fines were procured from Headwaters Inc. and transported to the site in Super Sacks. In addition, bituminous coal was pulverized at Penn State and trucked to the site in 55-gallon drums. This system was operated for three weeks during August and September 2007. NO{sub x} emission data were obtained using the plant CEM system. Hg measurements were taken using EPA Method 30B (Sorbent Trap method) both downstream of the electrostatic precipitator and in the stack. Ohio Lumex Company was on site to provide rapid Hg analysis on the sorbent traps during the tests. Key results from these tests are: (1) Coal Fines reburn alone reduced NO{sub x} emissions by 0-10% with up to 4% heat input from the CWS. However, the NO{sub x} reduction was accompanied by higher CO emissions. The higher CO limited our ability to try higher reburn rates for further NO{sub x} reduction. (2) Coal Fines reburn with Urea (Carbon enhanced SNCR) decreased NO{sub x} emissions by an additional 30% compared to Urea injection only. (3) Coal slurry injection did not change Hg capture across the ESP at full load with an inlet temperature of 400-430 F. The Hg capture in the ESP averaged 40%, with or without slurry injection; low mercury particulate capture is normally expected across a higher temperature ESP because any oxidized mercury is thought to desorb from the particulate at ESP temperatures above 250 F. (4) Coal slurry injection with halogen salts added to the mixing tank increased the Hg capture in the ESP to 60%. This significant incremental mercury reduction is important to improved mercury capture with hot-side ESP operation and wherever hindrance from sulfur oxides limit mercury reduction, because the higher temperature is above sulfur oxide dew point interference.

Stephen Johnson; Chetan Chothani; Bernard Breen

2008-04-30T23:59:59.000Z

264

Nitrous Oxide Nitrous oxide (chemical formula N2O), is a trace gas in Earth's atmosphere, with a  

E-Print Network [OSTI]

fuel, biomass and biofuel, and industrial processes. Nitrous oxide emissions related to biofuel, the Global Warming Potential (GWP) is a more useful quantity. The GWP of N2O is the time- integrated radiative forcing following a 1 kg pulse emission of N2O, relative to the same quantity following a 1 kg

265

Molecular accessibility in oxidized and dried coals. Quarterly report  

SciTech Connect (OSTI)

The objective of this research project is to determine the molecular and structural changes that occur in swelled coal as a result of oxidation and moisture loss both in the presence and absence of light using the newly developed EPR spin probe method. The proposed study will make it possible to deduce the molecular accessibility distribution in swelled, oxidized APCS coal for each rank as a function of (1) size (up to 6 nm) and shape, (2) the relative acidic/basic reactive site distributions, and (3) the role of hydrogen bonding as a function of swelling solvents. The advantage of the EPR method is that it permits molecules of selected shape, size and chemical reactivity to be used as probes of molecular accessible regions of swelled coal. From such data an optimum catalyst can be designed to convert oxidized coal into a more convenient form and methods can be devised to lessen the detrimental weathering processes.

Kispert, L.D.

1995-06-01T23:59:59.000Z

266

Multiwavelength Thermal Emission  

E-Print Network [OSTI]

Multiwavelength Astronomy NASA #12;Thermal Emission #12;Thermal Emission Non-thermal p-p collisions Optical IR Radio/ Microwave sources of emission massive stars, WHIM, Ly many dust, cool objects-ray ~GeV Gamma-ray ~TeV sources of emission AGN, clusters, SNR, binaries, stars AGN (obscured), shocks

California at Santa Cruz, University of

267

Water reactive hydrogen fuel cell power system  

DOE Patents [OSTI]

A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

2014-11-25T23:59:59.000Z

268

Water reactive hydrogen fuel cell power system  

DOE Patents [OSTI]

A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

2014-01-21T23:59:59.000Z

269

Innovative clean coal technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Fourth quarterly progress report  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe, there are numerous technical uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal.

NONE

1992-12-31T23:59:59.000Z

270

Project Profile: High Performance Reduction/Oxidation Metal Oxides...  

Office of Environmental Management (EM)

High Performance ReductionOxidation Metal Oxides for Thermochemical Energy Storage Project Profile: High Performance ReductionOxidation Metal Oxides for Thermochemical Energy...

271

Properties of Reactive Oxygen Species by Quantum Monte Carlo  

E-Print Network [OSTI]

The electronic properties of the oxygen molecule, in its singlet and triplet states, and of many small oxygen-containing radicals and anions have important roles in different fields of Chemistry, Biology and Atmospheric Science. Nevertheless, the electronic structure of such species is a challenge for ab-initio computational approaches because of the difficulties to correctly describe the statical and dynamical correlation effects in presence of one or more unpaired electrons. Only the highest-level quantum chemical approaches can yield reliable characterizations of their molecular properties, such as binding energies, equilibrium structures, molecular vibrations, charge distribution and polarizabilities. In this work we use the variational Monte Carlo (VMC) and the lattice regularized Monte Carlo (LRDMC) methods to investigate the equilibrium geometries and molecular properties of oxygen and oxygen reactive species. Quantum Monte Carlo methods are used in combination with the Jastrow Antisymmetrized Geminal Power (JAGP) wave function ansatz, which has been recently shown to effectively describe the statical and dynamical correlation of different molecular systems. In particular we have studied the oxygen molecule, the superoxide anion, the nitric oxide radical and anion, the hydroxyl and hydroperoxyl radicals and their corresponding anions, and the hydrotrioxyl radical. Overall, the methodology was able to correctly describe the geometrical and electronic properties of these systems, through compact but fully-optimised basis sets and with a computational cost which scales as $N^3-N^4$, where $N$ is the number of electrons. This work is therefore opening the way to the accurate study of the energetics and of the reactivity of large and complex oxygen species by first principles.

Andrea Zen; Bernhardt L. Trout; Leonardo Guidoni

2014-03-11T23:59:59.000Z

272

Properties of reactive oxygen species by quantum Monte Carlo  

SciTech Connect (OSTI)

The electronic properties of the oxygen molecule, in its singlet and triplet states, and of many small oxygen-containing radicals and anions have important roles in different fields of chemistry, biology, and atmospheric science. Nevertheless, the electronic structure of such species is a challenge for ab initio computational approaches because of the difficulties to correctly describe the statical and dynamical correlation effects in presence of one or more unpaired electrons. Only the highest-level quantum chemical approaches can yield reliable characterizations of their molecular properties, such as binding energies, equilibrium structures, molecular vibrations, charge distribution, and polarizabilities. In this work we use the variational Monte Carlo (VMC) and the lattice regularized Monte Carlo (LRDMC) methods to investigate the equilibrium geometries and molecular properties of oxygen and oxygen reactive species. Quantum Monte Carlo methods are used in combination with the Jastrow Antisymmetrized Geminal Power (JAGP) wave function ansatz, which has been recently shown to effectively describe the statical and dynamical correlation of different molecular systems. In particular, we have studied the oxygen molecule, the superoxide anion, the nitric oxide radical and anion, the hydroxyl and hydroperoxyl radicals and their corresponding anions, and the hydrotrioxyl radical. Overall, the methodology was able to correctly describe the geometrical and electronic properties of these systems, through compact but fully-optimised basis sets and with a computational cost which scales as N{sup 3} ? N{sup 4}, where N is the number of electrons. This work is therefore opening the way to the accurate study of the energetics and of the reactivity of large and complex oxygen species by first principles.

Zen, Andrea [Dipartimento di Fisica, La Sapienza - Universitŕ di Roma, Piazzale Aldo Moro 2, 00185 Rome (Italy); Trout, Bernhardt L. [Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139 (United States); Guidoni, Leonardo, E-mail: leonardo.guidoni@univaq.it [Dipartimento di Scienze Fisiche e Chimiche, Universitŕ degli studi de L'Aquila, Via Vetoio, 67100 Coppito, L'Aquila (Italy)

2014-07-07T23:59:59.000Z

273

Method and reaction pathway for selectively oxidizing organic compounds  

DOE Patents [OSTI]

A method of selectively oxidizing an organic compound in a single vessel comprises: a) combining an organic compound, an acid solution in which the organic compound is soluble, a compound containing two oxygen atoms bonded to one another, and a metal ion reducing agent capable of reducing one of such oxygen atoms, and thereby forming a mixture; b) reducing the compound containing the two oxygen atoms by reducing one of such oxygen atoms with the metal ion reducing agent to, 1) oxidize the metal ion reducing agent to a higher valence state, and 2) produce an oxygen containing intermediate capable of oxidizing the organic compound; c) reacting the oxygen containing intermediate with the organic compound to oxidize the organic compound into an oxidized organic intermediate, the oxidized organic intermediate having an oxidized carbon atom; d) reacting the oxidized organic intermediate with the acid counter ion and higher valence state metal ion to bond the acid counter ion to the oxidized carbon atom and thereby produce a quantity of an ester incorporating the organic intermediate and acid counter ion; and e) reacting the oxidized organic intermediate with the higher valence state metal ion and water to produce a quantity of alcohol which is less than the quantity of ester, the acid counter ion incorporated in the ester rendering the carbon atom bonded to the counter ion less reactive with the oxygen containing intermediate in the mixture than is the alcohol with the oxygen containing intermediate.

Camaioni, Donald M. (Richland, WA); Lilga, Michael A. (Richland, WA)

1998-01-01T23:59:59.000Z

274

A comprehensive kinetics model for CO oxidation during char combustion  

SciTech Connect (OSTI)

The most important parameter in representing energy feedback to a particle during char combustion concerns the oxidation of CO to CO/sub 2/. If substantial oxidation of CO occurs near a particle, then the greater heat of combustion for the complete oxidation of carbon to CO/sub 2/ (94.1 kcal/mole vs. 26.4 kcal/mole for oxidation to CO) is available for energy feedback mechanisms. ''Energy feedback'' is here defined as any situation in which an individual particle receives a significant fraction of its heat of combustion directly, through the localized oxidation of emitted combustible species, i.e. CO. Conversely, if the oxidation of CO does not occur near a particle, then energy feedback will occur only indirectly, through heating of the bulk gas. The primary reaction product at the particle surface during char combustion is generally considered to be CO, and the location of the subsequent CO oxidation zone plays a very important role in determining the particle temperature. Ayling and Smith performed experimental and modeling work which indicates that CO oxidation is not of major importance under the conditions they investigated, although they noted the need for improved accuracy in measuring char reactivities, as well as for better modeling of the gas phase CO oxidation kinetics. The modeling work presented in this paper attempts to develop an improved understanding of the boundary layer oxidation of CO through the use of a comprehensive set of kinetic expressions.

Haussmann, G.; Kruger, C.

1986-04-01T23:59:59.000Z

275

Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, first and second quarters 1994  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involve injecting ammonia into the flue gas generated from coal combustion in a boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to form nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. The project is being conducted in the following three phases: permitting, environmental monitoring plan and preliminary engineering; detailed design engineering and construction; and operation, testing, disposition and final report. The project was in the operation and testing phase during this reporting period. Accomplishments for this period are described.

NONE

1995-11-01T23:59:59.000Z

276

Innovative Clean Coal Technology (ICCT): Demonstration of selective catalytic reduction technology for the control of nitrogen oxide emissions from high-sulfur coal-fired boilers. First and second quarterly technical progress reports, [January--June 1995]. Final report  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia (NH{sub 3}) into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor containing a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. (3) performance of a wide variety of SCR catalyst compositions, geometries, and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal. The demonstration is being performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW nameplate capacity) near Pensacola, Florida. The project is funded by the US Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), the Electric Power Research Institute (EPRI), and Ontario Hydro. SCS is the participant responsible for managing all aspects of this project.

NONE

1995-12-31T23:59:59.000Z

277

Innovative Clean Coal Technology (ICCT). Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers: Volume 1. Final report  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO.) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO. to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal- fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: 1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels. 2) performance of the technology and effects on the balance-of- plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. 3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacturer under typical high-sulfur coal-fired utility operating conditions. These uncertainties were explored by operating nine small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. In addition, the test facility operating experience provided a basis for an economic study investigating the implementation of SCR technology.

NONE

1996-10-01T23:59:59.000Z

278

Studies on Waterborne Pathogen Reactivation after Disinfection  

E-Print Network [OSTI]

ultraviolet (LP UV) irradiation at five titanium dioxide (TiO_(2)) concentrations (1 g/L, 0.5 g/L, 0.75 g/L, and 0.1 g/L) to achieve 5 log_(10) reduction of a laboratory E. coli K-12 strain (ATCC® 10798). Regrowth and reactivation of E. coli in dark and light...

Kaur, Jasjeet

2013-12-09T23:59:59.000Z

279

Gasification reactivities of solid biomass fuels  

SciTech Connect (OSTI)

The design and operation of the biomass based gasification processes require knowledge about the biomass feedstocks characteristics and their typical gasification behaviour in the process. In this study, the gasification reactivities of various biomasses were investigated in laboratory scale Pressurized Thermogravimetric apparatus (PTG) and in the PDU-scale (Process Development Unit) Pressurized Fluidized-Bed (PFB) gasification test facility of VTT.

Moilanen, A.; Kurkela, E.

1995-12-31T23:59:59.000Z

280

Controlling uranium reactivity March 18, 2008  

E-Print Network [OSTI]

for the last decade. Most of their work involves depleted uranium, a more common form of uraniumMarch 2008 Controlling uranium reactivity March 18, 2008 Uranium is an often misunderstood metal uranium research. In reality, uranium presents a wealth of possibilities for funda- mental chemistry. Many

Meyer, Karsten

Note: This page contains sample records for the topic "oxide emissions reactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Draft final report  

SciTech Connect (OSTI)

The primary goal of this project was to demonstrate the use of Selective Catalytic Reduction (SCR) to reduce NO{sub x} emissions from pulverized-coal utility boilers using medium- to high-sulfur US coal. The prototype SCR facility, built in and around the ductwork of Plant Crist Unit 5, consisted of three large SCR reactor units (Reactors A, B, and C), each with a design capacity of 5,000 standard cubic feet per minute (scfm) of flue gas, and six smaller reactors (Reactors D through J), each with a design capacity of 400 scfm of flue gas. The three large reactors contained commercially available SCR catalysts as offered by SCR catalyst suppliers. These reactors were coupled with small-scale air preheaters to evaluate (1) the long-term effects of SCR reaction chemistry on air preheater deposit formation and (2) the impact of these deposits on the performance of air preheaters. The small reactors were used to test additional varieties of commercially available catalysts. The demonstration project was organized into three phases: (1) Permitting, Environmental Monitoring Plan (EMP) Preparation, and Preliminary Engineering; (2) Detail Design Engineering and Construction; and (3) Operation, Testing, Disposition, and Final Report Preparation. Section 2 discusses the planned and actual EMP monitoring for gaseous, aqueous, and solid streams over the course of the SCR demonstration project; Section 3 summarizes sampling and analytical methods and discusses exceptions from the methods specified in the EMP; Section 4 presents and discusses the gas stream monitoring results; Section 5 presents and discusses the aqueous stream monitoring results; Section 6 presents and discusses the solid stream monitoring results; Section 7 discusses EMP-related quality assurance/quality control activities performed during the demonstration project; Section 8 summarizes compliance monitoring reporting activities; and Section 9 presents conclusions based on the EMP monitoring results.

NONE

1996-06-14T23:59:59.000Z

282

Multiphase flow and multicomponent reactive transport model of the ventilation experiment in Opalinus clay  

SciTech Connect (OSTI)

During the construction and operational phases of a high-level radioactive waste (HLW) repository constructed in a clay formation, ventilation of underground drifts will cause desaturation and oxidation of the rock. The Ventilation Experiment (VE) was performed in a 1.3 m diameter unlined horizontal microtunnel on Opalinus clay at Mont Terri underground research laboratory in Switzerland to evaluate the impact of desaturation on rock properties. A multiphase flow and reactive transport model of VE is presented here. The model accounts for liquid, vapor and air flow, evaporation/condensation and multicomponent reactive solute transport with kinetic dissolution of pyrite and siderite and local-equilibrium dissolution/precipitation of calcite, ferrihydrite, dolomite, gypsum and quartz. Model results reproduce measured vapor flow, liquid pressure and hydrochemical data and capture the trends of measured relative humidities, although such data are slightly overestimated near the rock interface due to uncertainties in the turbulence factor. Rock desaturation allows oxygen to diffuse into the rock and triggers pyrite oxidation, dissolution of calcite and siderite, precipitation of ferrihydrite, dolomite and gypsum and cation exchange. pH in the unsaturated rock varies from 7.8 to 8 and is buffered by calcite. Computed changes in the porosity and the permeability of Opalinus clay in the unsaturated zone caused by oxidation and mineral dissolution/precipitation are smaller than 5%. Therefore, rock properties are not expected to be affected significantly by ventilation of underground drifts during construction and operational phases of a HLW repository in clay.

Zheng, L.; Samper, J.; Montenegro, L.; Major, J.C.

2008-10-15T23:59:59.000Z

283

Multicomponent reactive transport modeling of uranium bioremediation field experiments  

SciTech Connect (OSTI)

Biostimulation field experiments with acetate amendment are being performed at a former uranium mill tailings site in Rifle, Colorado, to investigate subsurface processes controlling in situ bioremediation of uranium-contaminated groundwater. An important part of the research is identifying and quantifying field-scale models of the principal terminal electron-accepting processes (TEAPs) during biostimulation and the consequent biogeochemical impacts to the subsurface receiving environment. Integrating abiotic chemistry with the microbially mediated TEAPs in the reaction network brings into play geochemical observations (e.g., pH, alkalinity, redox potential, major ions, and secondary minerals) that the reactive transport model must recognize. These additional constraints provide for a more systematic and mechanistic interpretation of the field behaviors during biostimulation. The reaction network specification developed for the 2002 biostimulation field experiment was successfully applied without additional calibration to the 2003 and 2007 field experiments. The robustness of the model specification is significant in that 1) the 2003 biostimulation field experiment was performed with 3 times higher acetate concentrations than the previous biostimulation in the same field plot (i.e., the 2002 experiment), and 2) the 2007 field experiment was performed in a new unperturbed plot on the same site. The biogeochemical reactive transport simulations accounted for four TEAPs, two distinct functional microbial populations, two pools of bioavailable Fe(III) minerals (iron oxides and phyllosilicate iron), uranium aqueous and surface complexation, mineral precipitation, and dissolution. The conceptual model for bioavailable iron reflects recent laboratory studies with sediments from the Old Rifle Uranium Mill Tailings Remedial Action (UMTRA) site that demonstrated that the bulk (~90%) of Fe(III) bioreduction is associated with the phyllosilicates rather than the iron oxides. The uranium reaction network includes a U(VI) surface complexation model based on laboratory studies with Old Rifle UMTRA sediments and aqueous complexation reactions that include ternary complexes (e.g., calcium-uranyl-carbonate). The bioreduced U(IV), Fe(II), and sulfide components produced during the experiments are strongly associated with the solid phases and may play an important role in long-term uranium immobilization.

Fang, Yilin; Yabusaki, Steven B.; Morrison, Stan J.; Amonette, James E.; Long, Philip E.

2009-10-15T23:59:59.000Z

284

Synthesis and characterizations of graphene oxide and reduced graphene oxide nanosheets  

SciTech Connect (OSTI)

Interest in graphene on its excellent mechanical, electrical, thermal and optical properties, it’s very high specific surface area, and our ability to influence these properties through chemical functionalization. Chemical reduction of graphene oxide is one of the main routes of preparation for large quantities of graphenes. Hydrazine hydrate used as reducing agent to prepare for the reduced graphene oxide (RGO). There are a number of methods for generating graphene and chemically modified graphene from natural graphite flakes, graphite derivative (such as graphite oxide) and graphite interaction compounds (i.e. expandable graphite). Here we review the use of colloidal suspensions of reduced graphene oxide (RGO) with large scalable, and is adaptable to a wide variety of applications. The graphene oxide (GO) and the reduced material (RGO) were characterized by XRD, UV-Vis spectroscopy, Thermo-gravimetric analysis (TGA), Raman spectroscopy and Field emission Scanning electron microscopy (FESEM) etc.

Venkanna, M., E-mail: venkanna.pcu@gmail.com; Chakraborty, Amit K., E-mail: venkanna.pcu@gmail.com [Carbon Nanotechnology Laboratory, Department of Physics, National Institute of Technology Durgapur, M.G. Avenue, Durgapur - 713209 (India)

2014-04-24T23:59:59.000Z

285

Catalytic oxidation of hydrocarbons by dinuclear iron complexes  

SciTech Connect (OSTI)

Our efforts during the past eight months were directed towards characterizing synthetic complexes that model the electronic and reactivity properties of the active site of methane monooxygenase (MMO), a metalloenzyme found in methanotrophic bacteria responsible for the biological oxidation of methane to methanol. We have investigated the structural/electronic and reactivity properties of a series of dinuclear model complexes that can function as oxygen atom transfer catalysts. In particular, our studies focused on [Fe[sup 2+][sub 2](H[sub 2]Hbab)[sub 2](N-MeIm)[sub 2

Caradonna, J.P.

1992-01-01T23:59:59.000Z

286

Chemistry of Sulfur Oxides on Transition Metals I: Configurations, Energetics, Orbital Analyses, and Surface Coverage Effects of SO2 on Pt(111)  

E-Print Network [OSTI]

on understanding how SO2 promotes the oxidation of alkanes, such as propane.3-5 To understand the reactivity, Polcik et al. did not pro- pose any detailed structural information for this flat-lying configuration

Lin, Xi

287

Asphalt Oxidation Kinetics and Pavement Oxidation Modeling  

E-Print Network [OSTI]

Most paved roads in the United States are surfaced with asphalt. These asphalt pavements suffer from fatigue cracking and thermal cracking, aggravated by the oxidation and hardening of asphalt. This negative impact of asphalt oxidation on pavement...

Jin, Xin

2012-07-16T23:59:59.000Z

288

Assessment of the Economic Potential of Microgrids for Reactive Power Supply  

E-Print Network [OSTI]

Reactive Power from Distributed Energy”, The Electricityvoltage. Electricity consumers’ demand for reactive power ison electricity supply security, the costs of local reactive

Appen, Jan von

2012-01-01T23:59:59.000Z

289

Parallel Web Scripting with Reactive Constraints Thibaud Hottelier  

E-Print Network [OSTI]

Parallel Web Scripting with Reactive Constraints Thibaud Hottelier James Ide Doug Kimelman Ras Bodik Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report to lists, requires prior specific permission. #12;Parallel Web Scripting with Reactive Constraints Thibaud

Bodik, Rastisla

290

BP's Perspective on Emissions Purdue Emissions Trading Workshop  

E-Print Network [OSTI]

BP's Perspective on Emissions Trading Purdue Emissions Trading Workshop April 30, 2010 Mark - Government policies can create a carbon price via three primary mechanisms: - Emissions trading (BP's strong

291

ENVIRONMENTAL REACTIVITY OF SOLID STATE HYDRIDE MATERIALS  

SciTech Connect (OSTI)

In searching for high gravimetric and volumetric density hydrogen storage systems, it is inevitable that higher energy density materials will be used. In order to make safe and commercially acceptable condensed phase hydrogen storage systems, it is important to understand quantitatively the risks involved in using and handling these materials and to develop appropriate mitigation strategies to handle potential material exposure events. A crucial aspect of the development of risk identification and mitigation strategies is the development of rigorous environmental reactivity testing standards and procedures. This will allow for the identification of potential risks and implementation of risk mitigation strategies. Modified testing procedures for shipping air and/or water sensitive materials, as codified by the United Nations, have been used to evaluate two potential hydrogen storage materials, 2LiBH{sub 4} {center_dot} MgH{sub 2} and NH{sub 3}BH{sub 3}. The modified U.N. procedures include identification of self-reactive substances, pyrophoric substances, and gas-emitting substances with water contact. The results of these tests for air and water contact sensitivity will be compared to the pure material components where appropriate (e.g. LiBH{sub 4} and MgH{sub 2}). The water contact tests are divided into two scenarios dependent on the hydride to water mole ratio and heat transport characteristics. Air contact tests were run to determine whether a substance will spontaneously react with air in a packed or dispersed form. In the case of the 2LiBH{sub 4} {center_dot} MgH{sub 2} material, the results from the hydride mixture compared to the pure materials results showed the MgH{sub 2} to be the least reactive component and LiBH{sub 4} the more reactive. The combined 2LiBH{sub 4} {center_dot} MgH{sub 2} resulted in a material having environmental reactivity between these two materials. Relative to 2LiBH{sub 4} {center_dot} MgH{sub 2}, the chemical hydride NH{sub 3}BH{sub 3} was observed to be less environmentally reactive.

Gray, J; Donald Anton, D

2009-04-23T23:59:59.000Z

292

The Simulation of Synchronous Reactive Systems In Ptolemy II  

E-Print Network [OSTI]

The Simulation of Synchronous Reactive Systems In Ptolemy II by Paul Whitaker Submitted to the Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, in partial;_____________________________________________________________________ Simulation of Synchronous Reactive Systems in Ptolemy II ii Abstract The Synchronous Reactive (SR) domain

293

Autonomic Reactive Systems via Online Learning Sanjit A. Seshia  

E-Print Network [OSTI]

Autonomic Reactive Systems via Online Learning Sanjit A. Seshia Department of Electrical@eecs.berkeley.edu Abstract-- Reactive systems are those that maintain an ongoing interaction with their environment- covering a class of reactive systems from run-time failures. This class of systems comprises those whose

California at Irvine, University of

294

Towards Synthesis of Reactive & Robust Behavior Chains Amol D. Mali  

E-Print Network [OSTI]

Towards Synthesis of Reactive & Robust Behavior Chains Amol D. Mali Electrical Engg. & Computer robots need to be reactive and robust. Behavior-based robots that identify and repair the failures have of reactivity and robustness have been hitherto only informally used and have been loaded with var- ious

Mali, Amol D.

295

A Synchronous Approach to Reactive System Design1 Charles Andr  

E-Print Network [OSTI]

our experience teaching discrete-event reactive systems to Electrical Engineering students. The courseA Synchronous Approach to Reactive System Design1 Charles André I3S Laboratory ­ UNSA/CNRS BP 121 This paper was presented at the 12th EAEEIE Annual Conf., 14-16 May 2001, Nancy (France). Abstract Reactive

André, Charles

296

On Some Properties of Instantaneous Active and Reactive Powers  

E-Print Network [OSTI]

On Some Properties of Instantaneous Active and Reactive Powers Leszek S. CZARNECKI, Fellow IEEE Louisiana State University, USA Abstract: Some features of the instantaneous active and reactive powers p control. Also it was shown that the instantaneous reactive power q cannot be interpreted as a measure

Czarnecki, Leszek S.

297

In Situ Reactivity and TOF SIMS Analysis of Surfaces Prepared by Soft and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching.348 270 300Aptamers and Graphene OxideHighReactive

298

Excess Emissions (New Mexico)  

Broader source: Energy.gov [DOE]

This regulation establishes requirements for a source whose operation results in an excess emission and to establish criteria for a source whose operation results in an excess emission to claim an...

299

Metal oxide membranes for gas separation  

DOE Patents [OSTI]

A method for formation of a microporous ceramic membrane onto a porous support includes placing a colloidal suspension of metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane having mean pore sizes less than 30 Angstroms and useful for ultrafiltration, reverse osmosis, or gas separation. 4 figs.

Anderson, M.A.; Webster, E.T.; Xu, Q.

1994-08-30T23:59:59.000Z

300

Metal oxide membranes for gas separation  

DOE Patents [OSTI]

A method for permformation of a microporous ceramic membrane onto a porous support includes placing a colloidal suspension of metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane having mean pore sizes less than 30 Angstroms and useful for ultrafiltration, reverse osmosis, or gas separation.

Anderson, Marc A. (Madison, WI); Webster, Elizabeth T. (Madison, WI); Xu, Qunyin (Plainsboro, NJ)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxide emissions reactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Photoluminescence study in diaminobenzene functionalized graphene oxide  

SciTech Connect (OSTI)

Being an excellent electronic material graphene is a very poor candidate for optoelectronic applications. One of the major strategies to develop the optical property in GO is the functionalization of graphene oxide (GO). In the present work GO sheets are functionalized by o-phenylenediamine to achieve diaminobenzene functionalized GO composite (DAB-GO). Formation of DAB-GO composite is further characterized by FTIR, UV, Raman studies. Excellent photoluminescence is observed in DAB-GO composite via passivation of the surface reactive sites by ring-opening amination of epoxides of GO.

Gupta, Abhisek, E-mail: guptaabhisek017@gmail.com, E-mail: cnssks@iacs.res.in; Saha, Shyamal K., E-mail: guptaabhisek017@gmail.com, E-mail: cnssks@iacs.res.in [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

2014-10-15T23:59:59.000Z

302

Emissions Trading and Social Justice  

E-Print Network [OSTI]

David  M.  Driesen,  Does  Emissions  Trading  Encourage  Jason  Coburn,  Emissions  Trading   and   Environmental  Szambelan,  U.S.  Emissions  Trading  Markets  for  SO 2  

Farber, Daniel A

2011-01-01T23:59:59.000Z

303

Nuclear reactivity control using laser induced polarization  

DOE Patents [OSTI]

A control element for reactivity control of a fission source provides an atomic density of .sup.3 He in a control volume which is effective to control criticality as the .sup.3 He is spin-polarized. Spin-polarization of the .sup.3 He affects the cross section of the control volume for fission neturons and hence, the reactivity. An irradiation source is directed within the .sup.3 He for spin-polarizing the .sup.3 He. An alkali-metal vapor may be included with the .sup.3 He where a laser spin-polarizes the alkali-metal atoms which in turn, spin-couple with .sup.3 He to spin-polarize the .sup.3 He atoms.

Bowman, Charles D. (Los Alamos, NM)

1990-01-01T23:59:59.000Z

304

Nuclear reactivity control using laser induced polarization  

DOE Patents [OSTI]

A control element for reactivity control of a fission source provides an atomic density of .sup.3 He in a control volume which is effective to control criticality as the .sup.3 He is spin-polarized. Spin-polarization of the .sup.3 He affects the cross section of the control volume for fission neutrons and hence, the reactivity. An irradiation source is directed within the .sup.3 He for spin-polarizing the .sup.3 He. An alkali-metal vapor may be included with the .sup.3 He where a laser spin-polarizes the alkali-metal atoms which in turn, spin-couple with .sup.3 He to spin-polarize the .sup.3 He atoms.

Bowman, Charles D. (Los Alamos, NM)

1991-01-01T23:59:59.000Z

305

Mined land reclamation by biological reactivation  

SciTech Connect (OSTI)

A mine reclamation technique, developed in Europe, restores land to full productivity within two years without topsoil replacement. The method deliberately reestablishes within one year following mining, the required biological balance between microbes, enzymes, and trace elements in the rock spoil rather than waiting five or more years for natural processes to restore balance. The technique is called Biological Reactivation (BR). This paper discusses the feasibility of BR reclamation after surface mining operations in the US. Staff of the Ohio Mining and Mineral Resources Research Institute completed an OSM-sponsored research project on BR in which physical and chemical tests characterized 140 spoil samples obtained from 10 surface mining operations. Test results indicated that Biological Reactivation technology could be effectively applied, at least in the test areas sampled within Appalachia. Preliminary estimates make clear that the new technique reduces reclamation costs on prime farmland by approximately 95% compared to topsoil segregation and replacement methods.

Gozon, J.S.; Konya, C.J.; Lukovic, S.S.; Lundquist, R.G.; Olah, J.

1982-12-01T23:59:59.000Z

306

Reactivity control assembly for nuclear reactor. [LMFBR  

DOE Patents [OSTI]

This invention, which resulted from a contact with the United States Department of Energy, relates to a control mechanism for a nuclear reactor and, more particularly, to an assembly for selectively shifting different numbers of reactivity modifying rods into and out of the core of a nuclear reactor. It has been proposed heretofore to control the reactivity of a breeder reactor by varying the depth of insertion of control rods (e.g., rods containing a fertile material such as ThO/sub 2/) in the core of the reactor, thereby varying the amount of neutron-thermalizing coolant and the amount of neutron-capturing material in the core. This invention relates to a mechanism which can advantageously be used in this type of reactor control system.

Bollinger, L.R.

1982-03-17T23:59:59.000Z

307

Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model  

SciTech Connect (OSTI)

A California Greenhouse Gas Inventory Spreadsheet (GHGIS) model was developed to explore the impact of combinations of state policies on state greenhouse gas (GHG) and regional criteria pollutant emissions. The model included representations of all GHG- emitting sectors of the California economy (including those outside the energy sector, such as high global warming potential gases, waste treatment, agriculture and forestry) in varying degrees of detail, and was carefully calibrated using available data and projections from multiple state agencies and other sources. Starting from basic drivers such as population, numbers of households, gross state product, numbers of vehicles, etc., the model calculated energy demands by type (various types of liquid and gaseous hydrocarbon fuels, electricity and hydrogen), and finally calculated emissions of GHGs and three criteria pollutants: reactive organic gases (ROG), nitrogen oxides (NOx), and fine (2.5 ?m) particulate matter (PM2.5). Calculations were generally statewide, but in some sectors, criteria pollutants were also calculated for two regional air basins: the South Coast Air Basin (SCAB) and the San Joaquin Valley (SJV). Three scenarios were developed that attempt to model: (1) all committed policies, (2) additional, uncommitted policy targets and (3) potential technology and market futures. Each scenario received extensive input from state energy planning agencies, in particular the California Air Resources Board. Results indicate that all three scenarios are able to meet the 2020 statewide GHG targets, and by 2030, statewide GHG emissions range from between 208 and 396 MtCO2/yr. However, none of the scenarios are able to meet the 2050 GHG target of 85 MtCO2/yr, with emissions ranging from 188 to 444 MtCO2/yr, so additional policies will need to be developed for California to meet this stringent future target. A full sensitivity study of major scenario assumptions was also performed. In terms of criteria pollutants, targets were less well-defined, but while all three scenarios were able to make significant reductions in ROG, NOx and PM2.5 both statewide and in the two regional air basins, they may nonetheless fall short of what will be required by future federal standards. Specifically, in Scenario 1, regional NOx emissions are approximately three times the estimated targets for both 2023 and 2032, and in Scenarios 2 and 3, NOx emissions are approximately twice the estimated targets. Further work is required in this area, including detailed regional air quality modeling, in order to determine likely pathways for attaining these stringent targets.

Greenblatt, Jeffery B.

2013-10-10T23:59:59.000Z

308

Thermal stability and adhesion of low-emissivity electroplated Au coatings.  

SciTech Connect (OSTI)

We are developing a low-emissivity thermal management coating system to minimize radiative heat losses under a high-vacuum environment. Good adhesion, low outgassing, and good thermal stability of the coating material are essential elements for a long-life, reliable thermal management device. The system of electroplated Au coating on the adhesion-enhancing Wood's Ni strike and 304L substrate was selected due to its low emissivity and low surface chemical reactivity. The physical and chemical properties, interface bonding, thermal aging, and compatibility of the above Au/Ni/304L system were examined extensively. The study shows that the as-plated electroplated Au and Ni samples contain submicron columnar grains, stringers of nanopores, and/or H{sub 2} gas bubbles, as expected. The grain structure of Au and Ni are thermally stable up to 250 C for 63 days. The interface bonding is strong, which can be attributed to good mechanical locking among the Au, the 304L, and the porous Ni strike. However, thermal instability of the nanopore structure (i.e., pore coalescence and coarsening due to vacancy and/or entrapped gaseous phase diffusion) and Ni diffusion were observed. In addition, the study also found that prebaking 304L in the furnace at {ge} 1 x 10{sup -4} Torr promotes surface Cr-oxides on the 304L surface, which reduces the effectiveness of the intended H-removal. The extent of the pore coalescence and coarsening and their effect on the long-term system integrity and outgassing are yet to be understood. Mitigating system outgassing and improving Au adhesion require a further understanding of the process-structure-system performance relationships within the electroplated Au/Ni/304L system.

Jorenby, Jeff W.; Hachman, John T., Jr.; Yang, Nancy Y. C.; Chames, Jeffrey M.; Clift, W. Miles

2010-12-01T23:59:59.000Z

309

Drop Dynamics and Speciation in Isolation of Metals from Liquid Wastes by Reactive Scavenging  

SciTech Connect (OSTI)

Computational and experimental studies of the motion and dynamics of liquid drops in gas flows were conducted with relevance to reactive scavenging of metals from atomized liquid waste. Navier-Stoke's computations of deformable drops revealed a range of conditions from which prolate drops are expected, and showed how frajectiones of deformable drops undergoing deceleration can be computed. Experimental work focused on development of emission fluorescence, and scattering diagnostics. The instrument developed was used to image drop shapes, soot, and nonaxisymmetric departures from steady flow in a 22kw combustor

Arne J. Pearlstein; Alexander Scheeline

2002-08-30T23:59:59.000Z

310

Reactive gases evolved during pyrolysis of Devonian oil shale  

SciTech Connect (OSTI)

Computer modeling of oil shale pyrolysis is an important part of the Lawrence Livermore National Laboratory (LLNL) Oil Shale Program. Models containing detailed chemistry have been derived from an investigation of Colorado oil shale. We are currently attempting to use models to treat more completely reactions of nitrogen and sulfur compounds in the retort to better understand emissions. Batch retorting work on Devonian oil shale is proving particularly useful for this study of nitrogen/sulfur chemistry. Improved analytical methods have been developed to quantitatively determine reactive volatiles at the parts-per-million level. For example, the triple quadrupole mass spectrometer (TQMS) is used in the chemical ionization (CI) mode to provide real-time analytical data on ammonia evolution as the shale is pyrolyzed. A heated transfer line and inlet ensure rapid and complete introduction of ammonia to the instrument by preventing water condensation. Ammonia and water release data suitable for calculating kinetic parameters have been obtained from a New Albany Shale sample. An MS/MS technique with the TQMS in the electron ionization (EI) mode allows hydrogen sulfide, carbonyl sulfide, and certain trace organic sulfur compounds to be monitored during oil shale pyrolysis. Sensitivity and selectivity for these compounds have been increased by applying artificial intelligence techniques to tuning of the spectrometer. Gas evolution profiles (100 to 900/sup 0/C) are reported for hydrogen sulfide, water, ammonia, and trace sulfur species formed during pyrolysis of Devonian oil shale. Implications for retorting chemistry are discussed. 18 refs., 11 figs., 3 tabs.

Coburn, T.T.; Crawford, R.W.; Gregg, H.R.; Oh, M.S.

1986-11-01T23:59:59.000Z

311

ORIGINAL PAPER Short-term effect of tillage intensity on N2O and CO2 emissions  

E-Print Network [OSTI]

ORIGINAL PAPER Short-term effect of tillage intensity on N2O and CO2 emissions Pascal Boeckx negative to positive. We studied the short-term effect of tillage intensity on N2O and CO2 emissions. We site, an intermediately aerated Luvisol in Belgium, were similar. Nitrous oxide and CO2 emissions were

Paris-Sud XI, Université de

312

Regulation of GHG emissions from transportation fuels: Emission quota versus emission intensity standard  

E-Print Network [OSTI]

Derivation of average cost of emission reduction by blending?) and ? respectively. GHG emissions per unit of blend is, ?+ ?? i Reduction in GHG emissions with respect to unblended

Rajagopal, Deepak

2010-01-01T23:59:59.000Z

313

Pollutant Emission Factors from Residential Natural Gas Appliances: A Literature Review  

E-Print Network [OSTI]

H. Bromly, Reduction of Nitrogen Dioxide Emissions from Gasthan 10 ! lm), and nitrogen dioxide ( N0 2) standards areare nitric oxide (NO) and nitrogen dioxide (N0 2); although,

Traynor, G.W.

2011-01-01T23:59:59.000Z

314

Valuing the greenhouse gas emissions from nuclear power: A critical survey Benjamin K. Sovacool  

E-Print Network [OSTI]

emissions occur through plant construction, operation, uranium mining and milling, and plant decommissioning at the University of Chicago, Enrico Fermi inserted about 50 ton of uranium oxide into 400 carefully constructed

Laughlin, Robert B.

315

Reactor process using metal oxide ceramic membranes  

DOE Patents [OSTI]

A reaction vessel for use in photoelectrochemical reactions includes as its reactive surface a metal oxide porous ceramic membrane of a catalytic metal such as titanium. The reaction vessel includes a light source and a counter electrode. A provision for applying an electrical bias between the membrane and the counter electrode permits the Fermi levels of potential reaction to be favored so that certain reactions may be favored in the vessel. The electrical biasing is also useful for the cleaning of the catalytic membrane. Also disclosed is a method regenerating a porous metal oxide ceramic membrane used in a photoelectrochemical catalytic process by periodically removing the reactants and regenerating the membrane using a variety of chemical, thermal, and electrical techniques.

Anderson, Marc A. (Madison, WI)

1994-01-01T23:59:59.000Z

316

Fracture toughness for copper oxide superconductors  

DOE Patents [OSTI]

An oxide-based strengthening and toughening agent, such as tetragonal Zro.sub.2 particles, has been added to copper oxide superconductors, such as superconducting YBa.sub.2 Cu.sub.3 O.sub.x (123) to improve its fracture toughness (K.sub.IC). A sol-gel coating which is non-reactive with the superconductor, such as Y.sub.2 BaCuO.sub.5 (211) on the ZrO.sub.2 particles minimized the deleterious reactions between the superconductor and the toughening agent dispersed therethrough. Addition of 20 mole percent ZrO.sub.2 coated with 211 yielded a 123 composite with a K.sub.IC of 4.5 MPa(m).sup.0.5.

Goretta, Kenneth C. (Downers Grove, IL); Kullberg, Marc L. (Lisle, IL)

1993-01-01T23:59:59.000Z

317

Fracture toughness for copper oxide superconductors  

DOE Patents [OSTI]

An oxide-based strengthening and toughening agent, such as tetragonal ZrO[sub 2] particles, has been added to copper oxide superconductors, such as superconducting YBa[sub 2]Cu[sub 3]O[sub x] (123) to improve its fracture toughness (K[sub IC]). A sol-gel coating which is non-reactive with the superconductor, such as Y[sub 2]BaCuO[sub 5] (211) on the ZrO[sub 2] particles minimized the deleterious reactions between the superconductor and the toughening agent dispersed therethrough. Addition of 20 mole percent ZrO[sub 2] coated with 211 yielded a 123 composite with a K[sub IC] of 4.5 MPa(m)[sup 0.5].

Goretta, K.C.; Kullberg, M.L.

1993-04-13T23:59:59.000Z

318

Reactor process using metal oxide ceramic membranes  

DOE Patents [OSTI]

A reaction vessel for use in photoelectrochemical reactions includes as its reactive surface a metal oxide porous ceramic membrane of a catalytic metal such as titanium. The reaction vessel includes a light source and a counter electrode. A provision for applying an electrical bias between the membrane and the counter electrode permits the Fermi levels of potential reaction to be favored so that certain reactions may be favored in the vessel. The electrical biasing is also useful for the cleaning of the catalytic membrane. Also disclosed is a method regenerating a porous metal oxide ceramic membrane used in a photoelectrochemical catalytic process by periodically removing the reactants and regenerating the membrane using a variety of chemical, thermal, and electrical techniques. 2 figures.

Anderson, M.A.

1994-05-03T23:59:59.000Z

319

Magnesium oxide nanoparticles on green activated carbon as efficient CO{sub 2} adsorbent  

SciTech Connect (OSTI)

This study was focused on carbon dioxide (CO{sub 2}) adsorption ability using Magnesium oxide (MgO) nanoparticles and MgO nanoparticles supported activated carbon based bamboo (BAC). The suitability of MgO as a good CO{sub 2} adsorbent was clarified using Thermodynamic considerations (Gibbs-Helmholtz relationship). The ?H and ?G of this reaction were ? 117.5 kJ?mol{sup ?1} and ? 65.4 kJ?mol{sup ?1}, respectively, at standard condition (298 K and 1 atm). The complete characterization of these adsorbent were conducted by using BET, XRD, FTIR, TEM and TPD?CO{sub 2}. The surface areas for MgO nanoparticles and MgO nanoparticles supported BAC were 297.1 m{sup 2}/g and 702.5 m{sup 2}/g, respectively. The MgO nanoparticles supported BAC shown better physical and chemical adsorption ability with 39.8 cm{sup 3}/g and 6.5 mmol/g, respectively. The combination of MgO nanoparticle and BAC which previously prepared by chemical method can reduce CO{sub 2} emissions as well as better CO{sub 2} adsorption behavior. Overall, our results indicate that nanoparticles of MgO on BAC posses unique surface chemistry and their high surface reactivity coupled with high surface area allowed them to approach the goal as an efficient CO{sub 2} adsorbent.

Wan Isahak, Wan Nor Roslam; Ramli, Zatil Amali Che; Mohamed Hisham, Mohamed Wahab; Yarmo, Mohd Ambar [Low Carbon Economy (LCE) Research Group, School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

2013-11-27T23:59:59.000Z

320

Photo-oxidation catalysts  

DOE Patents [OSTI]

Photo-oxidation catalysts and methods for cleaning a metal-based catalyst are disclosed. An exemplary catalyst system implementing a photo-oxidation catalyst may comprise a metal-based catalyst, and a photo-oxidation catalyst for cleaning the metal-based catalyst in the presence of light. The exposure to light enables the photo-oxidation catalyst to substantially oxidize absorbed contaminants and reduce accumulation of the contaminants on the metal-based catalyst. Applications are also disclosed.

Pitts, J. Roland (Lakewood, CO); Liu, Ping (Irvine, CA); Smith, R. Davis (Golden, CO)

2009-07-14T23:59:59.000Z

Note: This page contains sample records for the topic "oxide emissions reactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Apparatus and method for oxidation and stabilization of polymeric materials  

DOE Patents [OSTI]

An apparatus for treating polymeric materials comprises a treatment chamber adapted to maintain a selected atmosphere; a means for supporting the polymeric material within the chamber; and, a source of plasma-derived gas containing at least one reactive oxidative species whereby the polymer is stabilized and cross linked through exposure to the oxidative species in the chamber at a selected temperature. The polymer may be directly exposed to the plasma, or alternatively, the plasma may be established in a separate volume from which the reactive species may be extracted and introduced into the vicinity of the polymer. The apparatus may be configured for either batch-type or continuous-type processing. The apparatus and method are especially useful for preparing polymer fibers, particularly PAN fibers, for later carbonization treatments.

Paulauskas, Felix L. (Knoxville, TN) [Knoxville, TN; White, Terry L. (Knoxville, TN) [Knoxville, TN; Sherman, Daniel M. (Knoxville, TN) [Knoxville, TN

2009-05-19T23:59:59.000Z

322

Apparatus and method for oxidation and stabilization of polymeric materials  

DOE Patents [OSTI]

An apparatus for treating polymeric materials comprises a treatment chamber adapted to maintain a selected atmosphere; a means for supporting the polymeric material within the chamber; and, a source of plasma-derived gas containing at least one reactive oxidative species whereby the polymer is stabilized and cross linked through exposure to the oxidative species in the chamber at a selected temperature. The polymer may be directly exposed to the plasma, or alternatively, the plasma may be established in a separate volume from which the reactive species may be extracted and introduced into the vicinity of the polymer. The apparatus may be configured for either batch-type or continuous-type processing. The apparatus and method are especially useful for preparing polymer fibers, particularly PAN fibers, for later carbonization treatments.

Paulauskas, Felix L. (Knoxville, TN) [Knoxville, TN; White, Terry L. (Knoxville, TN) [Knoxville, TN; Sherman, Daniel M. (Knoxville, TN) [Knoxville, TN

2010-08-31T23:59:59.000Z

323

Photocatalytic oxidation of NO{sub x} using TiO{sub 2}/activated carbon  

SciTech Connect (OSTI)

This paper summarizes experimental results for a method of nitrogen oxides (NO{sub x}) emission control. NO{sub x} was oxidized photocatalytically to nitric acid (HNO{sub 3}) using different titanium dioxide (TiO{sub 2}) catalysts. The addition of ferric oxide improved the performance of the TiO{sub 2}. Of four adsorbents tested, activated carbon performed best in suppressing NO{sub 2} concentration. Optimum catalyst compositions were determined. Initial results indicated that photocatalytic oxidation of NO{sub x} offers several advantages over other emission control methods.

Wang, S.; Chen, D.H.; Li, K.Y. [Lamar Univ., Beaumont, TX (United States)] [and others

1995-12-31T23:59:59.000Z

324

A novel reactive processing technique: using telechelic polymers to reactively compatibilize polymer blends  

SciTech Connect (OSTI)

Difunctional reactive polymers, telechelics, were used to reactively form multiblock copolymers in situ when melt-blended with a blend of polystyrene and polyisoprene. To quantify the ability of the copolymer to compatibilize the blends, the time evolution of the domain size upon annealing was analyzed by SEM. It was found that the most effective parameter to quantify the ability of the copolymer to inhibit droplet coalescence is Kreltstable, the relative coarsening constant multiplied by the stabilization time. These results indicate that intermediate-molecular-weight telechelic pairs of both highly reactive Anhydride-PS-Anhydride/NH2-PI-NH2 and slower reacting Epoxy-PS-Epoxy/COOH-PI-COOH both effectively suppress coalescence, with the optimal molecular weight being slightly above the critical molecular weight of the homopolymer,Mc. The effects of telechelic loading were also investigated, where the optimal loading concentration for this system was 0.5 wt %, as higher concentrations exhibited a plasticizing effect due to the presence of unreacted low-molecular-weight telechelics present in the blend. A determination of the interfacial coverage of the copolymer shows that a conversion of 1.5-3.0% was required for 20% surface coverage at 5.0 wt % telechelic loading, indicating a large excess of telechelics in this system. At the optimal loading level of 0.5 wt %, a conversion of 15% was required for 20% surface coverage. The results of these experiments provide a clear understanding of the role of telechelic loading and molecular weight on its ability to reactively form interfacial modifiers in phase-separated polymer blends and provide guidelines for the development of similar reactive processing schemes that can use telechelic polymers to reactively compatibilize a broad range of polymer blends.

Ashcraft, Earl C [ORNL; Ji, Haining [ORNL; Mays, Jimmy [ORNL; Dadmun, Mark D [ORNL

2009-01-01T23:59:59.000Z

325

Anomalous Microwave Emission  

E-Print Network [OSTI]

Improved knowledge of diffuse Galactic emission is important to maximize the scientific return from scheduled CMB anisotropy missions. Cross-correlation of microwave maps with maps of the far-IR dust continuum show a ubiquitous microwave emission component whose spatial distribution is traced by far-IR dust emission. The spectral index of this emission, beta_{radio} = -2.2 (+0.5 -0.7) is suggestive of free-free emission but does not preclude other candidates. Comparison of H-alpha and microwave results show that both data sets have positive correlations with the far-IR dust emission. Microwave data, however, are consistently brighter than can be explained solely from free-free emission traced by H-alpha. This ``anomalous'' microwave emission can be explained as electric dipole radiation from small spinning dust grains. The anomalous component at 53 GHz is 2.5 times as bright as the free-free emission traced by H-alpha, providing an approximate normalization for models with significant spinning dust emission.

A. Kogut

1999-02-22T23:59:59.000Z

326

Oxidation of propylene over copper oxide catalysts  

E-Print Network [OSTI]

work on other phases of this project concerning cata- lytic oxidation of hydrocarbons has been described by Sanderson (59), Looney (34), Burns (11), Dunlop (17), Woodham (71), and Perkins (49). The early work of Sanderson indicated that chromia-alumina... and pro- moted chromia?alumina agents possessed the ability to catalyze the oxidation of propane by air. Subsequent work of Looney suggested that propylene was a primary product of this oxidation; hence most investigations since then have been confined...

Billingsley, David Stuart

1958-01-01T23:59:59.000Z

327

Oxidation of advanced steam turbine alloys  

SciTech Connect (OSTI)

Advanced or ultra supercritical (USC) steam power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.

Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.

2006-03-01T23:59:59.000Z

328

Dominant delayed neutron precursors to model reactivity predictions for multiple fissioning nuclides  

SciTech Connect (OSTI)

The product of cumulative yield and probability of neutron emission is used to assess the relative importance of known delayed neutron precursors. Thirteen precursors are consistently dominant. Nonlinear fits to experimental delayed neutron decay data distinguish the decay constants of the three longest-lived dominant precursors: {sup 87}Br, {sup 137}I, and {sup 88}Br. Sensitivity calculations based on a six-to seven-group transformation lead to a proposed seven-group formulation in which the group decay constants are those of dominant precursors: {sup 87}Br, {sup 137}I, {sup 88}Br, {sup 93}Rb, {sup 139}I, {sup 91}Br, and {sup 96}Rb. An alternative six-group formulation is obtained by using the mean of the {sup 137}I and {sup 88}Br decay constants for group 2. The use of the suggested dominant precursor decay constants improves the goodness of fit to experimental data compared to that obtained from nonlinear least squares in which both group yields and decay constants are determined empirically. Reactivity worth and transient analyses confirm that the positive reactivity scale is preserved in the transformation. A known bias in the negative reactivity scale is eliminated by forcing the half-life of the longest-lived group to be the 55.9-s half-life of {sup 87}Br. The proposed use of dominant precursor decay constants offers significant simplifications in data analysis and the analysis of fast, epithermal, and thermal reactors with multiple fissioning nuclides.

Loaiza, D.J.; Haskin, F.E.

2000-01-01T23:59:59.000Z

329

Cerium Oxide Coating for Oxidation Reduction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Award In order to produce power more efficiently and cleanly, the next generation of power plant boilers, turbines, solid oxide fuel cells (SOFCs) and other essential...

330

Natural Gas Variability In California: Environmental Impacts And Device Performance Combustion Modeling of Pollutant Emissions From a Residential Cooking Range  

SciTech Connect (OSTI)

As part of a larger study of liquefied natural gas impacts on device performance and pollutant emissions for existing equipment in California, this report describes a cmoputer modeling study of a partially premixed flame issueing from a single cooktop burner port. The model consisted of a reactive computational fluid dynamics three-dimensional spatial grid and a 71-species chemical mechanism with propane combustion capability. Simulations were conducted with a simplified fuel mixture containing methane, ethane, and propane in proportions that yield properties similar to fuels distributed throughout much of California now and in recent years (baseline fuel), as well as with two variations of simulated liquefied natural gas blends. A variety of simulations were conducted with baseline fuel to explore the effect of several key parameters on pollutant formation and other flame characteristics. Simulations started with fuel and air issuing through the burner port, igniting, and continuing until the flame was steady with time. Conditions at this point were analyzed to understand fuel, secondary air and reaction product flows, regions of pollutant formation, and exhaust concentrations of carbon monoxide, nitric oxide and formaldehyde. A sensitivity study was conducted, varying the inflow parameters of this baseline gs about real-world operating conditions. Flame properties responded as expected from reactive flow theory. In the simulation, carbon monoxide levels were influenced more by the mixture's inflow velocity than by the gas-to-air ratio in the mixture issuing from the inflow port. Additional simulations were executed at two inflow conditions - high heat release and medium heat release - to examine the impact of replacing the baseline gas with two mixtures representative of liquefied natural gas. Flame properties and pollutant generation rates were very similar among the three fuel mixtures.

Tonse, S. R.; Singer, B. C.

2011-07-01T23:59:59.000Z

331

Trends in on-road vehicle emissions of ammonia  

SciTech Connect (OSTI)

Motor vehicle emissions of ammonia have been measured at a California highway tunnel in the San Francisco Bay area. Between 1999 and 2006, light-duty vehicle ammonia emissions decreased by 38 {+-} 6%, from 640 {+-} 40 to 400 {+-} 20 mg kg{sup -1}. High time resolution measurements of ammonia made in summer 2001 at the same location indicate a minimum in ammonia emissions correlated with slower-speed driving conditions. Variations in ammonia emission rates track changes in carbon monoxide more closely than changes in nitrogen oxides, especially during later evening hours when traffic speeds are highest. Analysis of remote sensing data of Burgard et al. (Environ Sci. Technol. 2006, 40, 7018-7022) indicates relationships between ammonia and vehicle model year, nitrogen oxides, and carbon monoxide. Ammonia emission rates from diesel trucks were difficult to measure in the tunnel setting due to the large contribution to ammonia concentrations in a mixed-traffic bore that were assigned to light-duty vehicle emissions. Nevertheless, it is clear that heavy-duty diesel trucks are a minor source of ammonia emissions compared to light-duty gasoline vehicles.

Kean, A.J.; Littlejohn, D.; Ban-Weiss, G.A.; Harley, R.A.; Kirchstetter, T.W.; Lunden, M. M.

2008-07-15T23:59:59.000Z

332

Theoretical and Experimental Evaluation of Chemical Reactivity  

E-Print Network [OSTI]

released and the rate of energy released for a specific reactive chemical. 2.1 DSC DSC is a popular screening tool (safe and fast) and can provide an overall indication of exothermic activity of the chemical being tested. In a DSC, a sample and a... endothermic or exothermic reaction. When the rate of heat generation in the sample exceeds a particular value, the heat supply to the sample is cut off and this additional heat gain is attributed to exothermic activity within the sample.17 From the DSC...

Wang, Qingsheng

2011-10-21T23:59:59.000Z

333

Preparation of reactive beta-dicalcium silicate  

DOE Patents [OSTI]

This invention relates to the preparation of fine particles of reactive beta-dicalcium silicate by means of a solid state process which comprises firing a mixture of calcium sulfate, silica and a reducing additive selected from the group consisting of calcium sulfide, carbon, carbon monoxide, methane and hydrogen, at a temperature of about 850.degree.-1000.degree. C. A carrier gas such as nitrogen or carbon dioxide may also be added, if desired. A high concentration of sulfur dioxide is a by-product of this process.

Shen, Ming-Shing (Laramie, WY, NJ); Chen, James M. (Rahway, NJ); Yang, Ralph T. (Amherst, NY)

1982-01-01T23:59:59.000Z

334

Preparation of reactive beta-dicalcium silicate  

DOE Patents [OSTI]

This invention relates to the preparation of fine particles of reactive beta-dicalcium silicate by means of a solid state process which comprises firing a mixture of calcium sulfate, silica, and a reducing additive selected from the group consisting of calcium sulfide, carbon, carbon monoxide, methane, and hydrogen, at a temperature of about 850 to 1000/sup 0/C. A carrier gas such as nitrogen or carbon dioxide may also be added, if desired. A high concentration of sulfur dioxide is a by-product of this process.

Shen, M.S.; Chen, J.M.; Yang, R.T.

1980-02-28T23:59:59.000Z

335

Emissions of greenhouse gases in the United States 1997  

SciTech Connect (OSTI)

This is the sixth annual report on aggregate US national emissions of greenhouse gases. It covers emissions over the period 1990--1996, with preliminary estimates of emissions for 1997. Chapter one summarizes some background information about global climate change and the greenhouse effect. Important recent developments in global climate change activities are discussed, especially the third Conference of the Parties to the Framework Convention on Climate Change, which was held in December of 1997 in Kyoto, Japan. Chapters two through five cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons and related gases, respectively. Chapter six describes potential sequestration and emissions of greenhouse gases as a result of land use changes. Six appendices are included in the report. 96 refs., 38 tabs.

NONE

1998-10-01T23:59:59.000Z

336

Kinetics of dissolution and bio-availability of iron in amorphous siliceous iron oxides  

E-Print Network [OSTI]

A&M University Chair of Advisory Committee: Dr. Richard H. Loeppert Amorphous iron (Fe) oxides are of interest because of their high reactivity, surface area, and influence on Fe availability in the soil environment. These materials may have... potential utilization as slow-release Fe amendments for calcareous soils. The objective of this study was to evaluate the impact of various concentrations of silicon (Si), present during precipitation, on the dissolution kinetics of amorphous Fe oxides...

Seaman, John C.

1990-01-01T23:59:59.000Z

337

Bioreduction of Fe-bearing clay minerals and their reactivity toward pertechnetate (Tc-99)  

SciTech Connect (OSTI)

99Technetium (99Tc) is a fission product of uranium-235 and plutonium-239 and poses a high environmental hazard due to its long half-life (t1/2 = 2.13 x 105 y), abundance in nuclear wastes, and environmental mobility under oxidizing conditions [i.e., Tc(VII)]. Under reducing conditions, Tc(VII) can be reduced to insoluble Tc(IV). Ferrous iron [Fe(II)], either in aqueous form or in mineral form, has been used to reduce Tc(VII) to Tc(IV). However, the reactivity of Fe(II) from clay minerals, other than nontronite, toward immobilization of Tc(VII) and its role in retention of reduced Tc(IV) have not been investigated. In this study the reactivity of a suite of clay minerals toward Tc(VII) reduction and immobilization was evaluated. The clay minerals chosen for this study included five members in the smectite-illite (S-I) series, (montmorillonite, nontronite, rectorite, mixed layered I-S, and illite), chlorite, and palygorskite. Fe-oxides were removed from these minerals with a modified dithionite-citrate-bicarbonate (DCB) procedure. The total Fe content of these clay minerals, after Fe-oxide removal, ranged from 0.7 to 30.4% by weight, and the Fe(III)/Fe(total) ratio ranged from 44.9 to 98.5%. X-ray diffraction (XRD) and Mössbauer spectroscopy results showed that after Fe oxide removal the clay minerals were free of Fe-oxides. Scanning electron microscopy (SEM) revealed that little dissolution occurred during the DCB treatment. Bioreduction experiments were performed in bicarbonate buffer (pH-7) with Fe(III) in the clay minerals as the sole electron acceptor, lactate as the sole electron donor, and Shewanella Putrifaciens CN32 cells as mediators. In select tubes, anthraquinone-2,6-disulfate (AQDS) was added as electron shuttle to facilitate electron transfer. The extent of Fe(III) bioreduction was the highest for chlorite (~43 wt%) and the lowest for palygorskite (~4.17 wt%). In the S-I series, NAu-2 was the most reducible (~31 %) and illite the least (~0.4 %). The extent and initial rate of bioreduction were positively correlated with the percent smectite in the S-I series (i.e., layer expandability). Fe(II) in the bioreduced clay minerals subsequently was used to reduce Tc(VII) to Tc(IV) in PIPES buffer. Similar to the trend of bioreduction, in the S-I series, reduced smectite showed the highest reactivity toward Tc(VII), and reduced illite exhibited the least. The initial rate of Tc(VII) reduction, after normalization to clay and Fe(II) concentrations, was positively correlated with the percent smectite in the S-I series. Fe(II) in chlorite and palygorskite was also reactive toward Tc(VII) reduction. These data demonstrate that crystal chemical parameters (layer expandability, Fe and Fe(II) contents, and surface area etc.) play important roles in controlling the extent and rate of bioreduction and the reactivity toward Tc(VII) reduction. Reduced Tc(IV) resides within clay mineral matrix, and this association could minimize any potential of reoxidation over long term.

Bishop, Michael E.; Dong, Hailiang; Kukkadapu, Ravi K.; Liu, Chongxuan; Edelmann, Richard E.

2011-07-01T23:59:59.000Z

338

Apparatus for photocatalytic destruction of internal combustion engine emissions during cold start  

DOE Patents [OSTI]

A method and apparatus for the destruction of emissions from an internal combustion engine wherein a substrate coated with TiO.sub.2 is exposed to a light source in the exhaust system of an internal combustion engine thereby catalyzing oxidation/reduction reactions between gaseous hydrocarbons, carbon monoxide, nitrogen oxides and oxygen in the exhaust of the internal combustion engine.

Janata, Jiri (Richland, WA); McVay, Gary L. (Richland, WA); Peden, Charles H. (West Richland, WA); Exarhos, Gregory J. (Richland, WA)

1998-01-01T23:59:59.000Z

339

TECHNICAL PAPER Multispecies remote sensing measurements of vehicle emissions  

E-Print Network [OSTI]

measurements. The remote sensing mean gram per kilogram carbon monoxide (CO), hydrocarbon (HC), and oxideTECHNICAL PAPER Multispecies remote sensing measurements of vehicle emissions on Sherman Way in Van Department of Chemistry and Biochemistry, University of Denver, Denver, CO, USA 2 National Renewable Energy

Denver, University of

340

Saving Fuel, Reducing Emissions  

E-Print Network [OSTI]

would in turn lower PHEV fuel costs and make them morestretches from fossil-fuel- powered conventional vehiclesbraking, as do Saving Fuel, Reducing Emissions Making Plug-

Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxide emissions reactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Vehicle Emissions Review - 2012  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Emissions Review - 2012 Tim Johnson October 16, 2012 2 Environmental Technologies Summary * Regulations - LEVIII finalized, Tier 3? RDE in Europe developing and very...

342

Synergetic effects of mixed copper-iron oxides oxygen carriers in chemical looping combustion  

SciTech Connect (OSTI)

Chemical looping combustion (CLC) is an emerging technology for clean energy production from fuels. CLC produces sequestration-ready CO{sub 2}-streams without a significant energy penalty. Development of efficient oxygen carriers is essential to successfully operate a CLC system. Copper and iron oxides are promising candidates for CLC. Copper oxide possesses high reactivity but it has issues with particle agglomeration due to its low melting point. Even though iron oxide is an inexpensive oxygen carrier it has a slower reactivity. In this study, mixed metal oxide carriers containing iron and copper oxides were evaluated for coal and methane CLC. The components of CuO and Fe{sub 2}O{sub 3} were optimized to obtain good reactivity while maintaining physical and chemical stability during cyclic reactions for methane-CLC and solid-fuel CLC. Compared with single metal oxygen carriers, the optimized Cu–Fe mixed oxide oxygen carriers demonstrated high reaction rate, better combustion conversion, greater oxygen usage and improved physical stability. Thermodynamic calculations, XRD, TGA, flow reactor studies and TPR experiments suggested that there is a strong interaction between CuO and Fe{sub 2}O{sub 3} contributing to a synergistic effect during CLC reactions. The amount of oxygen release of the mixed oxide carrier in the absence of a fuel was similar to that of the single metal oxides. However, in the presence of fuels, the oxygen consumption and the reaction profiles of the mixed oxide carriers were significantly better than that of the single metal oxides. The nature of the fuel not only influenced the reactivity, but also the final reduction status of the oxygen carriers during chemical looping combustion. Cu oxide of the mixed oxide was fully reduced metallic copper with both coal and methane. Fe oxide of the mixed oxide was fully reduced Fe metal with methane but it was reduced to only FeO with coal. Possible mechanisms of how the presence of CuO enhances the reduction of Fe{sub 2}O{sub 3} are discussed.

Siriwardane, Ranjani; Tian, Hanjing; Simonyi, Thomas; Poston, James

2013-06-01T23:59:59.000Z

343

Section 10: Turbulence and reactive flows 1 Section 10: Turbulence and reactive flows  

E-Print Network [OSTI]

premixed combustion is recently a theme of interest in gas turbines and other industrial applications flames #12;2 Section 10: Turbulence and reactive flows for gas turbine application. In: International Gas combustion LES in- cluding thickened flame model A. Hosseinzadeh, A. Sadiki, J. Janicka (TU Darmstadt) Lean

Kohlenbach, Ulrich

344

Overview on backfill materials and permeable reactive barriers for nuclear waste disposal facilities.  

SciTech Connect (OSTI)

A great deal of money and effort has been spent on environmental restoration during the past several decades. Significant progress has been made on improving air quality, cleaning up and preventing leaching from dumps and landfills, and improving surface water quality. However, significant challenges still exist in all of these areas. Among the more difficult and expensive environmental problems, and often the primary factor limiting closure of contaminated sites following surface restoration, is contamination of ground water. The most common technology used for remediating ground water is surface treatment where the water is pumped to the surface, treated and pumped back into the ground or released at a nearby river or lake. Although still useful for certain remediation scenarios, the limitations of pump-and-treat technologies have recently been recognized, along with the need for innovative solutions to ground-water contamination. Even with the current challenges we face there is a strong need to create geological repository systems for dispose of radioactive wastes containing long-lived radionuclides. The potential contamination of groundwater is a major factor in selection of a radioactive waste disposal site, design of the facility, future scenarios such as human intrusion into the repository and possible need for retrieving the radioactive material, and the use of backfills designed to keep the radionuclides immobile. One of the most promising technologies for remediation of contaminated sites and design of radioactive waste repositories is the use of permeable reactive barriers (PRBs). PRBs are constructed of reactive material(s) to intercept and remove the radionuclides from the water and decontaminate the plumes in situ. The concept of PRBs is relatively simple. The reactive material(s) is placed in the subsurface between the waste or contaminated area and the groundwater. Reactive materials used thus far in practice and research include zero valent iron, hydroxyapatite, magnesium oxide, and others. As the contaminant moves through the reactive material, the contaminant is either sorbed by the reactive material or chemically reacts with the material to form a less harmful substance. Because of the high risk associated with failure of a geological repository for nuclear waste, most nations favor a near-field multibarrier engineered system using backfill materials to prevent release of radionuclides into the surrounding groundwater.

Moore, Robert Charles; Hasan, Ahmed Ali Mohamed; Holt, Kathleen Caroline; Hasan, Mahmoud A. (Egyptian Atomic Energy Authority, Cairo, Egypt)

2003-10-01T23:59:59.000Z

345

Mechanism of oxygen reduction reaction on transition metal oxide catalysts for high temperature fuel cells  

E-Print Network [OSTI]

The solid oxide fuel cell (SOFC) with its high energy conversion efficiency, low emissions, silent operation and its ability to utilize commercial fuels has the potential to create a large impact on the energy landscape. ...

La O', Gerardo Jose Cordova

2008-01-01T23:59:59.000Z

346

Observation of green emission from Ce3+ doped gadolinium oxide...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

freshly-prepared Gd2O3 undoped nanoparticles which is attributed to the stabilizer, polyethylene glycol biscarboxymethyl ether. Upon aging, the undoped particles show similar...

347

Abatement of Air Pollution: Control of Nitrogen Oxides Emissions  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe Office of FossilMembershipoftheManagementHasdecDioxide Budget

348

Observation of green emission from Ce3+ doped gadolinium oxide  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArmsSpeedingSpeedingUnder Well-ControlledObservation of

349

Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOE TribaltheMyMinutes Revised: October 22,Monitoring

350

Air Emission Inventory for the INEEL -- 1999 Emission Report  

SciTech Connect (OSTI)

This report presents the 1999 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradionuclide emissions estimates for stationary sources.

Zohner, Steven K

2000-05-01T23:59:59.000Z

351

Advancing Reactive Tracer Methods for Measuring Thermal Evolution...  

Open Energy Info (EERE)

Advancing Reactive Tracer Methods for Measuring Thermal Evolution in CO2- and Water-Based Geothermal Reservoirs Geothermal Lab Call Project Jump to: navigation, search Last...

352

Reactive Dehydration technology for Production of Fuels and Chemicals...  

Broader source: Energy.gov (indexed) [DOE]

Catalytic and Reactive Distillation) for compact, inexpensive production of biomass-based chemicals from complex aqueous mixtures. SeparationPurification of Biomass...

353

Comparison of Conventional Diesel and Reactivity Controlled Compressio...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Advanced Diesel Engine Combustion Strategies Effect of Compression Ratio and Piston Geometry on RCCI load limit High Efficiency Fuel Reactivity Controlled Compression...

354

Chemically Reactive Working Fluids for the Capture and Transport...  

Broader source: Energy.gov (indexed) [DOE]

Optical Waveguide Coupler Transformers for High-Power Solar Enegy Collection and Transmission Chemically Reactive Working Fluids Low-Cost Light Weigh Thin Film Solar Concentrators...

355

Chemical Analysis of Complex Organic Mixtures Using Reactive...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mass Spectrometry. Abstract: Reactive nanospray desorption electrospray ionization (nano-DESI) combined with high-resolution mass spectrometry was utilized for the analysis of...

356

Airborne measurement of OH reactivity during INTEX-B  

E-Print Network [OSTI]

plus OH sign), reactiv- propane ing different gases gases atisoprene (plus sign), propane (star) and propene (triangle).NMHC includes ethane, ethene, propane, propene, i-butane, n-

2009-01-01T23:59:59.000Z

357

Kinetics and mechanisms of reactions involving small aromatic reactive intermediates  

SciTech Connect (OSTI)

Small aromatic radicals such as C{sub 6}H{sub 5}, C{sub 6}H{sub 5}O and C{sub 6}H{sub 4} are key prototype species of their homologs. C{sub 6}H{sub 5} and its oxidation product, C{sub 6}H{sub 5}O are believed to be important intermediates which play a pivotal role in hydrocarbon combustion, particularly with regard to soot formation. Despite their fundamental importance, experimental data on the reaction mechanisms and reactivities of these species are very limited. For C{sub 6}H{sub 5}, most kinetic data except its reactions with NO and NO{sub 2}, were obtained by relative rate measurements. For C{sub 6}H{sub 5}O, the authors have earlier measured its fragmentation reaction producing C{sub 5}H{sub 5} + CO in shock waves. For C{sub 6}H{sub 4}, the only rate constant measured in the gas phase is its recombination rate at room temperature. The authors have proposed to investigate systematically the kinetics and mechanisms of this important class of molecules using two parallel laser diagnostic techniques--laser resonance absorption (LRA) and resonance enhanced multiphoton ionization mass spectrometry (REMPI/MS). In the past two years, study has been focused on the development of a new multipass adsorption technique--the {open_quotes}cavity-ring-down{close_quotes} technique for kinetic applications. The preliminary results of this study appear to be quite good and the sensitivity of the technique is at least comparable to that of the laser-induced fluorescence method.

Lin, M.C. [Emory Univ., Atlanta, GA (United States)

1993-12-01T23:59:59.000Z

358

Ammonia emission inventory for the state of Wyoming  

SciTech Connect (OSTI)

Ammonia (NH{sub 3}) is the only significant gaseous base in the atmosphere and it has a variety of impacts as an atmospheric pollutant, including the formation of secondary aerosol particles: ammonium sulfate and ammonium nitrate. NH{sub 3} preferentially forms ammonium sulfate; consequently ammonium nitrate aerosol formation may be limited by the availability of NH{sub 3}. Understanding the impact of emissions of oxides of sulfur and nitrogen on visibility, therefore, requires accurately determined ammonia emission inventories for use in air quality models, upon which regulatory and policy decisions increasingly depend. This report presents an emission inventory of NH{sub 3} for the state of Wyoming. The inventory is temporally and spatially resolved at the monthly and county level, and is comprised of emissions from individual sources in ten categories: livestock, fertilizer, domestic animals, wild animals, wildfires, soil, industry, mobile sources, humans, and publicly owned treatment works. The Wyoming NH{sub 3} inventory was developed using the Carnegie Mellon University (CMU) Ammonia Model as framework. Current Wyoming-specific activity data and emissions factors obtained from state agencies and published literature were assessed and used as inputs to the CMU Ammonia Model. Biogenic emissions from soils comprise about three-quarters of the Wyoming NH{sub 3} inventory, though emission factors from soils are highly uncertain. Published emission factors are scarce and based on limited measurements. In Wyoming, agricultural land, rangeland, and forests comprise 96% of the land area and essentially all of the estimated emissions from soils. Future research on emission rates of NH{sub 3} for these land categories may lead to a substantial change in the magnitude of soil emissions, a different inventory composition, and reduced uncertainty in the inventory. While many NH{sub 3} inventories include annual emissions, air quality modeling studies require finer temporal resolution. Published studies indicate higher emission rates from soils and animal wastes at higher temperatures, and temporal variation in fertilizer application. A recent inverse modeling study indicates temporal variation in regional NH{sub 3} emissions. Monthly allocation factors were derived to estimate monthly emissions from soils, livestock and wild animal waste based on annual emission estimates. Monthly resolution of NH{sub 3} emissions from fertilizers is based on fertilizer sales to farmers. Statewide NH{sub 3} emissions are highest in the late spring and early summer months.

Kirchstetter, Thomas W.; Maser, Colette R.; Brown, Nancy J.

2003-12-17T23:59:59.000Z

359

Nitric oxide inhibition of soot oxidation by oxygen atoms at 298K  

SciTech Connect (OSTI)

Nitric oxide is observed to inhibit the rate of soot oxidation by oxygen atoms at 298K. Small amounts of added NO reduce the rates of production of CO/sub 2/ and CO by up to 35%. The authors show experimentally that NO is not reducing the gas phase O atom concentration. Thermal desorption mass spectrometry shows a small adsorption of NO on the soot; this NO adsorption corresponds to 1.5% of the carbon atoms on the surface of the individual soot spheres. This inhibition is interpreted in terms of a relatively small number of reactive sites on the soot at which soot gasification occurs and which are effectively blocked by NO.

Wicke, B.G.; Grady, K.A.

1987-08-01T23:59:59.000Z

360

Task 1: Steam Oxidation,”  

SciTech Connect (OSTI)

Need to improve efficiency, decrease emissions (esp. CO2) associated with the continued use of coal for power generation

I. G. Wright and G. R. Holcomb

2009-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxide emissions reactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

THE MICROSTRUCTURAL LOCATION OF THE INTERGRANULAR METAL OXIDE PHASE IN A ZINC OXIDE VARISTOR  

E-Print Network [OSTI]

OXIDE PHASE IN A ZINC OXIDE VARISTOR MICROSI'RUCTIJRALMETAL OXIDE PHASE IN A ZINC OXIDE VARISTOR David R. Clarke

Clarke, D. E

2011-01-01T23:59:59.000Z

362

Metal loading and reactivity of Zeolite Y  

E-Print Network [OSTI]

. XRD pattern for calcined MoNiY 13. IR spectra for NiY 14. IR spectra for MoNiY 15. HDN product distribution, alumina based catalyst 16. HDN product distribution, zeolite based catalyst 17. Adjusted HDN product distribution, alumina based catalyst...V) are transi- tion metal oxides or sulfides on an alumina support. These catalysts were not specifically developed for hydrodenitrogenaiion but were adopted from hydrocracking or hydrodesul- furization (HDS) processes. HDN is more difficult than HDS; thus...

Sa?enz, Marc Gerard

1988-01-01T23:59:59.000Z

363

Spontaneous Emission Rate Enhancement Using Optical Antennas  

E-Print Network [OSTI]

of  Spontaneous  Emission  in  a  Semiconductor  nanoLED,”  emission  rate  enhancement  using  the  Fluorescent  Emission  by  Lattice   Resonances  in  

Kumar, Nikhil

2013-01-01T23:59:59.000Z

364

Completing the complex Poynting theorem: Conservation of reactive energy in reactive time  

E-Print Network [OSTI]

The complex Poynting theorem is extended canonically to a time-scale domain $(t, s)$ by replacing the phasors of time-harmonic fields by the analytic signals $X(r, t+is)$ of fields $X(r,t)$ with general time dependence. The imaginary time $s>0$ is shown to play the role of a time resolution scale, and the extended Poynting theorem splits into two conservation laws: its real part gives the conservation in $t$ of the scale-averaged active energy at fixed $s$, and its imaginary part gives the conservation in $s$ of the scale-averaged reactive energy at fixed $t$. At coarse scales (large $s$, slow time), where the system reduces to the circuit level, this may have applications to the theory of electric power transmission and conditioning. At fine scales (small $s$, fast time) it describes reactive energy dynamics in radiating systems.

Gerald Kaiser

2014-12-11T23:59:59.000Z

365

REFORMING PROCESSES FOR MICRO COMBINED HEAT AND POWER SYSTEM BASED ON SOLID OXIDE FUEL CELL  

E-Print Network [OSTI]

REFORMING PROCESSES FOR MICRO COMBINED HEAT AND POWER SYSTEM BASED ON SOLID OXIDE FUEL CELL University Denmark ABSTRACT Solid oxide fuel cell (SOFC) is a promising technology for decentralized power be theoretically improved through integration in power cycles; the low emissions; and the pos- sibility of using

Berning, Torsten

366

Effect of O{sub 2} concentration on moist CO oxidation  

SciTech Connect (OSTI)

Over the temperature range of 1000-1200 K at one atmosphere pressure, the dependency of moist CO oxidation on excess oxygen concentration changes from one of inhibition below approximately 1040 K to one of acceleration above this temperature. These newly observed characteristics of moist CO oxidation will be important factors to consider in controlling CO emissions from practical devices.

Roesler, J.F.; Yetter, R.A.; Dryer, F.L.

1991-12-31T23:59:59.000Z

367

Nitrous Oxide Fluxes from the Gulf of Mexico "Dead Zone" Primary Investigator: Craig Stow -NOAA GLERL  

E-Print Network [OSTI]

forecasts require accurate estimates of greenhouse gas emission rates. Currently, there are few measurements Management Research Laboratory Overview Nitrous oxide is a potent greenhouse gas with a global warming oxide is a potent greenhouse gas with a global warming potential ~300 times that of carbon dioxide

368

The Specification and Execution of Heterogeneous Synchronous Reactive Systems  

E-Print Network [OSTI]

The Specification and Execution of Heterogeneous Synchronous Reactive Systems by Stephen Anthony in Engineering---Electrical Engineering and Computer Sciences in the GRADUATE DIVISION of the UNIVERSITY of Heterogeneous Synchronous Reactive Systems Copyright ĂŁ 1997 by Stephen Anthony Edwards #12; Abstract

369

A Modified Reactive Control Framework for Cooperative Mobile Robots  

E-Print Network [OSTI]

A Modified Reactive Control Framework for Cooperative Mobile Robots J. Salido a , J.M. Dolan a , J Dept. of Electrical & Computer Engineering, Carnegie Mellon Univ. Pittsburgh, PA 15213­3890 USA. Purely reactive approaches such as that of Brooks are efficient, but lack a mechanism for global control

370

Reactive Sputtering of Bismuth Vanadate Photoanodes for Solar Water Splitting  

E-Print Network [OSTI]

Reactive Sputtering of Bismuth Vanadate Photoanodes for Solar Water Splitting Le Chen,, Esther of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, California 94720 has remained relatively underexplored. Here, we report the synthesis of BiVO4 thin films by reactive

Javey, Ali

371

Reactive Rearrangement of Parts under Sensor Inaccuracy: Particle Filter Approach  

E-Print Network [OSTI]

Reactive Rearrangement of Parts under Sensor Inaccuracy: Particle Filter Approach Hal^uk Bayram, Electrical and Electronic Engineering Bogazici University, Bebek 34342 Istanbul Turkey Abstract-- The paper will be left undisturbed, the robot is required to employ a reactive strategy. A feedback-based event

372

Reactive oxygen species deglycosilate glomerular a-dystroglycan  

E-Print Network [OSTI]

Reactive oxygen species deglycosilate glomerular a-dystroglycan NPJ Vogtla¨nder1 , WPM Tamboer1 open. Reactive oxygen species (ROS) are known to degrade and depolymerize carbohydrates, and to playDa in skeletal muscle, ranging from 120 kDa in brain to 190 kDa in the Torpedo electric organ.8

Campbell, Kevin P.

373

Towards Interactive Timing Analysis for Designing Reactive Systems  

E-Print Network [OSTI]

Towards Interactive Timing Analysis for Designing Reactive Systems Insa Fuhrmann David Broman Steven Smyth Reinhard von Hanxleden Electrical Engineering and Computer Sciences University of California Interactive Timing Analysis for Designing Reactive Systems Insa Fuhrmann1 , David Broman2,3 , Steven Smyth1

374

Reactive ion etched substrates and methods of making and using  

DOE Patents [OSTI]

Disclosed herein are substrates comprising reactive ion etched surfaces and specific binding agents immobilized thereon. The substrates may be used in methods and devices for assaying or isolating analytes in a sample. Also disclosed are methods of making the reactive ion etched surfaces.

Rucker, Victor C. (San Francisco, CA); Shediac, Rene (Oakland, CA); Simmons, Blake A. (San Francisco, CA); Havenstrite, Karen L. (New York, NY)

2007-08-07T23:59:59.000Z

375

ALUMINOSILICATE-COATED SILICA SAND FOR REACTIVE TRANSPORT EXPERIMENTS  

E-Print Network [OSTI]

ALUMINOSILICATE-COATED SILICA SAND FOR REACTIVE TRANSPORT EXPERIMENTS By JORGE ANTONIO JEREZ transport experiments; Dr. Barbara Williams and Jason Shira from University of Idaho for providing access-COATED SILICA SAND FOR REACTIVE TRANSPORT EXPERIMENTS Abstract by Jorge Antonio Jerez Briones, Ph.D. Washington

Flury, Markus

376

Emissions estimation for lignite-fired power plants in Turkey  

SciTech Connect (OSTI)

The major gaseous emissions (e.g. sulfur dioxide, nitrogen oxides, carbon dioxide, and carbon monoxide), some various organic emissions (e.g. benzene, toluene and xylenes) and some trace metals (e.g. arsenic, cobalt, chromium, manganese and nickel) generated from lignite-fired power plants in Turkey are estimated. The estimations are made separately for each one of the thirteen plants that produced electricity in 2007, because the lignite-fired thermal plants in Turkey are installed near the regions where the lignite is mined, and characteristics and composition of lignite used in each power plant are quite different from a region to another. Emission factors methodology is used for the estimations. The emission factors obtained from well-known literature are then modified depending on local moisture content of lignite. Emission rates and specific emissions (per MWh) of the pollutants from the plants without electrostatic precipitators and flue-gas desulfurization systems are found to be higher than emissions from the plants having electrostatic precipitators and flue -gas desulfurization systems. Finally a projection for the future emissions due to lignite-based power plants is given. Predicted demand for the increasing generation capacity based on the lignite-fired thermal power plant, from 2008 to 2017 is around 30%. 39 refs., 13 figs., 10 tabs.

Nurten Vardar; Zehra Yumurtaci [Yildiz Technical University Mechanical Engineering Faculty, Istanbul (Turkey)

2010-01-15T23:59:59.000Z

377

Emissions Benefits of Distributed Generation in the Texas Market  

SciTech Connect (OSTI)

One potential benefit of distributed generation (DG) is a net reduction in air emissions. While DG will produce emissions, most notably carbon dioxide and nitrogen oxides, the power it displaces might have produced more. This study used a system dispatch model developed at Oak Ridge National Laboratory to simulate the 2012 Texas power market with and without DG. This study compares the reduction in system emissions to the emissions from the DG to determine the net savings. Some of the major findings are that 85% of the electricity displaced by DG during peak hours will be simple cycle natural gas, either steam or combustion turbine. Even with DG running as baseload, 57% of electricity displaced will be simple cycle natural gas. Despite the retirement of some gas-fired steam units and the construction of many new gas turbine and combined cycle units, the marginal emissions from the system remain quite high (1.4 lb NO{sub x}/MWh on peak and 1.1 lb NO{sub x}/MWh baseload) compared to projected DG emissions. Consequently, additions of DG capacity will reduce emissions in Texas from power generation in 2012. Using the DG exhaust heat for combined heat and power provides an even greater benefit, since it eliminates further boiler emissions while adding none over what would be produced while generating electricity. Further studies are warranted concerning the robustness of the result with changes in fuel prices, demands, and mixes of power generating technology.

Hadley, SW

2005-06-16T23:59:59.000Z

378

Contraction & Convergence: UK carbon emissions and the  

E-Print Network [OSTI]

the EU's emissions trading scheme will do little to mitigate carbon emissions 4) Aviation growth must emissions. Keywords Contraction & Convergence; aviation; emissions trading; passengers; carbon dioxide #12

Watson, Andrew

379

Emission Abatement System  

DOE Patents [OSTI]

Emission abatement system. The system includes a source of emissions and a catalyst for receiving the emissions. Suitable catalysts are absorber catalysts and selective catalytic reduction catalysts. A plasma fuel converter generates a reducing gas from a fuel source and is connected to deliver the reducing gas into contact with the absorber catalyst for regenerating the catalyst. A preferred reducing gas is a hydrogen rich gas and a preferred plasma fuel converter is a plasmatron. It is also preferred that the absorber catalyst be adapted for absorbing NO.sub.x.

Bromberg, Leslie (Sharon, MA); Cohn, Daniel R. (Chestnut Hill, MA); Rabinovich, Alexander (Swampscott, MA)

2003-05-13T23:59:59.000Z

380

Comparison of the Catalytic Oxidation Reaction on Graphene Oxide and Reduced Graphene Oxide  

E-Print Network [OSTI]

Comparison of the Catalytic Oxidation Reaction on Graphene Oxide and Reduced Graphene Oxide Laboratory (PAL), Pohang 790-784, Republic of Korea ABSTRACT: The capacities of graphene oxide (GO) and reduced graphene oxide (rGO) films grown on silicon substrate to cause the aniline to azobenzene oxidation

Kim, Sehun

Note: This page contains sample records for the topic "oxide emissions reactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Rapid and transient stimulation of intracellular reactive oxygen species by melatonin in normal and tumor leukocytes  

SciTech Connect (OSTI)

Melatonin is a modified tryptophan with potent biological activity, exerted by stimulation of specific plasma membrane (MT1/MT2) receptors, by lower affinity intracellular enzymatic targets (quinone reductase, calmodulin), or through its strong anti-oxidant ability. Scattered studies also report a perplexing pro-oxidant activity, showing that melatonin is able to stimulate production of intracellular reactive oxygen species (ROS). Here we show that on U937 human monocytes melatonin promotes intracellular ROS in a fast (< 1 min) and transient (up to 5-6 h) way. Melatonin equally elicits its pro-radical effect on a set of normal or tumor leukocytes; intriguingly, ROS production does not lead to oxidative stress, as shown by absence of protein carbonylation, maintenance of free thiols, preservation of viability and regular proliferation rate. ROS production is independent from MT1/MT2 receptor interaction, since a) requires micromolar (as opposed to nanomolar) doses of melatonin; b) is not contrasted by the specific MT1/MT2 antagonist luzindole; c) is not mimicked by a set of MT1/MT2 high affinity melatonin analogues. Instead, chlorpromazine, the calmodulin inhibitor shown to prevent melatonin-calmodulin interaction, also prevents melatonin pro-radical effect, suggesting that the low affinity binding to calmodulin (in the micromolar range) may promote ROS production.

Radogna, Flavia [Dipartimento di Biologia, Universita di Roma Tor Vergata, via Ricerca Scientifica, 1, 00133 Roma (Italy); Paternoster, Laura [Dipartimento di Biologia, Universita di Roma Tor Vergata, via Ricerca Scientifica, 1, 00133 Roma (Italy); Istitututo di Chimica Biologica, Universita di Urbino Carlo Bo (Italy); De Nicola, Milena; Cerella, Claudia [Dipartimento di Biologia, Universita di Roma Tor Vergata, via Ricerca Scientifica, 1, 00133 Roma (Italy); Ammendola, Sergio [Ambiotec (Italy); Bedini, Annalida; Tarzia, Giorgio [Istituto di Chimica Farmaceutica, Universita di Urbino Carlo Bo (Italy); Aquilano, Katia; Ciriolo, Maria [Dipartimento di Biologia, Universita di Roma Tor Vergata, via Ricerca Scientifica, 1, 00133 Roma (Italy); Ghibelli, Lina [Dipartimento di Biologia, Universita di Roma Tor Vergata, via Ricerca Scientifica, 1, 00133 Roma (Italy)], E-mail: ghibelli@uniroma2.it

2009-08-15T23:59:59.000Z

382

Oxidation in Environments with Elevated CO2 Levels  

SciTech Connect (OSTI)

Efforts to reduce greenhouse gas emissions from fossil energy power productions focus primarily on either pre- or post-combustion removal of CO2. The research presented here examines corrosion and oxidation issues associated with two types of post-combustion CO2 removal processes—oxyfuel combustion in refit boilers and oxyfuel turbines.

Gordon H. Holcomb

2009-05-01T23:59:59.000Z

383

Role of Moisture in Adsorption, Photocatalytic Oxidation, and  

E-Print Network [OSTI]

various Hg emission sources. A novel low-cost methodology using titanium dioxide (TiO2) nanoparticlesRole of Moisture in Adsorption, Photocatalytic Oxidation, and Reemission of Elemental Mercury gas. Without UV irradiation, Hg0 adsorption was found to be insignificant, but it could be enhanced

Li, Ying

384

Long-Term Trends in Motor Vehicle Emissions in U.S. Urban Areas Brian C. McDonald and Drew R. Gentner  

E-Print Network [OSTI]

suggest rates of reduction in NMHC versus CO emissions may differ somewhat. Emission ratios of CO), nitrogen oxides (NOx = NO + NO2), and carbon monoxide (CO) are coemitted with carbon dioxide (CO2) during which are mostly diesel powered. Emission reduction measures in the U.S. have been implemented over

Cohen, Ronald C.

385

Emission Standards for Contaminants (Iowa)  

Broader source: Energy.gov [DOE]

These regulations list emissions standards for various contaminants, and contain special requirements for anaerobic lagoons. These regulations also describe alternative emissions limits, which may...

386

A Computational Approach to Understanding Aerosol Formation and Oxidant Chemistry in the Troposphere  

SciTech Connect (OSTI)

An understanding of the mechanisms and kinetics of aerosol formation and ozone production in the troposphere is currently a high priority because these phenomena are recognized as two major effects of energy-related air pollution. Atmospheric aerosols are of concern because of their effect on visibility, climate, and human health. Equally important, aerosols can change the chemistry of the atmosphere, in dramatic fashion, by providing new chemical pathways (in the condensed phase) unavailable in the gas phase. The oxidation of volatile organic compounds (VOCs) and inorganic compounds (e.g., sulfuric acid, ammonia, nitric acid, ions, and mineral) can produce precursor molecules that act as nucleation seeds. The U.S. Department of Energy (DOE) Atmospheric Chemistry Program (ACP) has identified the need to evaluate the causes of variations in tropospheric aerosol chemical composition and concentrations, including determining the sources of aerosol particles and the fraction of such that are of primary and secondary origin. In particular, the ACP has called for a deeper understanding into aerosol formation because nucleation creates substantial concentrations of fresh particles that, via growth and coagulation, influence the Earth's radiation budget. Tropospheric ozone is also of concern primarily because of its impact on human health. Ozone levels are controlled by NOx and by VOCs in the lower troposphere. The VOCs can be either from natural emissions from such sources as vegetation and phytoplankton or from anthropogenic sources such as automobiles and oil-fueled power production plants. The major oxidant for VOCs in the atmosphere is the OH radical. With the increase in VOC emissions, there is rising concern regarding the available abundance of HOx species needed to initiate oxidation. Over the last five years, there have been four field studies aimed at initial measurements of HOx species (OH and HO? radicals). These measurements revealed HOx levels that are two to four times higher than expected from the commonly assumed primary sources. Such elevated abundances of HOx imply a more photochemically active troposphere than previously thought. This implies that rates of ozone formation in the lower region of the atmosphere and the oxidation of SO? can be enhanced, thus promoting the formation of new aerosol properties. Central to unraveling this chemistry is the ability to assess the photochemical product distributions resulting from the photodissociation of by-products of VOC oxidation. We propose to use state-of-the-art theoretical techniques to develop a detailed understanding of the mechanisms of aerosol formation in multicomponent (mixed chemical) systems and the photochemistry of atmospheric organic species. The aerosol studies involve an approach that determines homogeneous gas-particle nucleation rates from knowledge of the molecular interactions that are used to define properties of molecular clusters. Over the past several years we developed Dynamical Nucleation Theory (DNT), a novel advance in the theoretical description of homogeneous gas-liquid nucleation, and applied it to gas-liquid nucleation of a single component system (e.g., water). The goal of the present research is to build upon these advances by extending the theory to multicomponent systems important in the atmosphere (such as clusters containing sulfuric acid, water, ions, ammonia, and organics). In addition, high-level ab initio electronic structure calculations will be used to unravel the chemical reactivity of the OH radical and water clusters.

Francisco, Joseph S.; Kathmann, Shawn M.; Schenter, Gregory K.; Dang, Liem X.; Xantheas, Sotiris S.; Garrett, Bruce C.; Du, Shiyu; Dixon, David A.; Bianco, Roberto; Wang, Shuzhi; Hynes, James T.; Morita, Akihiro; Peterson, Kirk A.

2006-04-18T23:59:59.000Z

387

Oxidation Resistant Graphite Studies  

SciTech Connect (OSTI)

The Very High Temperature Reactor (VHTR) Graphite Research and Development Program is investigating doped nuclear graphite grades exhibiting oxidation resistance. During a oxygen ingress accident the oxidation rates of the high temperature graphite core region would be extremely high resulting in significant structural damage to the core. Reducing the oxidation rate of the graphite core material would reduce the structural effects and keep the core integrity intact during any air-ingress accident. Oxidation testing of graphite doped with oxidation resistant material is being conducted to determine the extent of oxidation rate reduction. Nuclear grade graphite doped with varying levels of Boron-Carbide (B4C) was oxidized in air at nominal 740°C at 10/90% (air/He) and 100% air. The oxidation rates of the boronated and unboronated graphite grade were compared. With increasing boron-carbide content (up to 6 vol%) the oxidation rate was observed to have a 20 fold reduction from unboronated graphite. Visual inspection and uniformity of oxidation across the surface of the specimens were conducted. Future work to determine the remaining mechanical strength as well as graphite grades with SiC doped material are discussed.

W. Windes; R. Smith

2014-07-01T23:59:59.000Z

388

Intelligent field emission arrays  

E-Print Network [OSTI]

Field emission arrays (FEAs) have been studied extensively as potential electron sources for a number of vacuum microelectronic device applications. For most applications, temporal current stability and spatial current ...

Hong, Ching-yin, 1973-

2003-01-01T23:59:59.000Z

389

Photon enhanced thermionic emission  

DOE Patents [OSTI]

Photon Enhanced Thermionic Emission (PETE) is exploited to provide improved efficiency for radiant energy conversion. A hot (greater than 200.degree. C.) semiconductor cathode is illuminated such that it emits electrons. Because the cathode is hot, significantly more electrons are emitted than would be emitted from a room temperature (or colder) cathode under the same illumination conditions. As a result of this increased electron emission, the energy conversion efficiency can be significantly increased relative to a conventional photovoltaic device. In PETE, the cathode electrons can be (and typically are) thermalized with respect to the cathode. As a result, PETE does not rely on emission of non-thermalized electrons, and is significantly easier to implement than hot-carrier emission approaches.

Schwede, Jared; Melosh, Nicholas; Shen, Zhixun

2014-10-07T23:59:59.000Z

390

Greenhouse Gas Emissions (Minnesota)  

Broader source: Energy.gov [DOE]

This statute sets goals for the reduction of statewide greenhouse gas emissions by at least 15 percent by 2015, 30 percent by 2025, and 80 percent by 2050, calculated relative to 2005 levels. These...

391

Advanced Petroleum-Based Fuels -- Diesel Emissions Control Project (APBF-DEC): Lubricants Project, Phase 2 Final Report  

SciTech Connect (OSTI)

This report summarizes the results of the second phase of a lubricants project, which investigated the impact of engine oil formulation on diesel vehicle emissions and the performance of a nitrogen oxide adsorber catalyst (NAC).

Not Available

2006-06-01T23:59:59.000Z

392

Physical properties of erbium implanted tungsten oxide films deposited by reactive dual magnetron sputtering  

E-Print Network [OSTI]

Handbook of Inorganic Electrochromic Materials. Amsterdam:electrodes in electrochromic devices [4]. Particularly,optical, electrical and electrochromic properties [6-8],

Mohamed, Sodky H.; Anders, Andre

2006-01-01T23:59:59.000Z

393

Modulation of the response to cisplatin by nitric oxide and reactive oxygen species in melanoma cells  

E-Print Network [OSTI]

Malignant melanoma causes the highest mortality rate in skin cancers. Although cisplatin has proved efficacious in the treatment of various solid tumors, melanoma seems particularly resistant to this chemotherapeutic drug. ...

Anderson, Chase Thaddeus Maceo

2013-01-01T23:59:59.000Z

394

Advective and diffusive contributions to reactive gas transport during pyrite oxidation in the unsaturated  

E-Print Network [OSTI]

in the unsaturated zone P. J. Binning,1 D. Postma,1 T. F. Russell,2 J. A. Wesselingh,3 and P. F. Boulin1 Received 29. F. Russell, J. A. Wesselingh, and P. F. Boulin (2007), Advective and diffusive contributions

Russell, Thomas F.

395

Cryogenic CO2 Formation on Oxidized Gold Clusters Synthesized via Reactive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases on &gamma;-Al2O3.Winter (Part267,273CondensateLayer Assisted

396

Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils  

SciTech Connect (OSTI)

The overall objective of this project, 'Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils' was to develop effective, efficient, and economic methodologies by which microbial production of nitrous oxide can be minimized while also maximizing microbial consumption of methane in landfill cover soils. A combination of laboratory and field site experiments found that the addition of nitrogen and phenylacetylene stimulated in situ methane oxidation while minimizing nitrous oxide production. Molecular analyses also indicated that methane-oxidizing bacteria may play a significant role in not only removing methane, but in nitrous oxide production as well, although the contribution of ammonia-oxidizing archaea to nitrous oxide production can not be excluded at this time. Future efforts to control both methane and nitrous oxide emissions from landfills as well as from other environments (e.g., agricultural soils) should consider these issues. Finally, a methanotrophic biofiltration system was designed and modeled for the promotion of methanotrophic activity in local methane 'hotspots' such as landfills. Model results as well as economic analyses of these biofilters indicate that the use of methanotrophic biofilters for controlling methane emissions is technically feasible, and provided either the costs of biofilter construction and operation are reduced or the value of CO{sub 2} credits is increased, can also be economically attractive.

Jeremy Semrau; Sung-Woo Lee; Jeongdae Im; Sukhwan Yoon; Michael Barcelona

2010-09-30T23:59:59.000Z

397

Field emission electron source  

DOE Patents [OSTI]

A novel field emitter material, field emission electron source, and commercially feasible fabrication method is described. The inventive field emission electron source produces reliable electron currents of up to 400 mA/cm.sup.2 at 200 volts. The emitter is robust and the current it produces is not sensitive to variability of vacuum or the distance between the emitter tip and the cathode. The novel emitter has a sharp turn-on near 100 volts.

Zettl, Alexander Karlwalter (Kensington, CA); Cohen, Marvin Lou (Berkeley, CA)

2000-01-01T23:59:59.000Z

398

Systems and methods for controlling diesel engine emissions  

DOE Patents [OSTI]

Systems and methods for controlling diesel engine emissions, including, for example, oxides of nitrogen emissions, particulate matter emissions, and the like. The emission control system according to this invention is provided in the exhaust passageway of a diesel engine and includes a catalyst-based particulate filter; and first and second lean NO.sub.x trap systems coupled to the catalyst-based particulate filter. The first and second lean NO.sub.x trap systems are arranged in a parallel flow configuration with each other. Each of the first and second lean NO.sub.x trap systems include a carbon monoxide generating catalyst device, a sulfur trap device, a lean NO.sub.x device, a supplemental fuel injector device, and a plurality of flow diverter devices.

Webb, Cynthia Chaffin; Weber, Phillip Anthony; Khair, Magdi K.

2004-06-01T23:59:59.000Z

399

Diesel Emission Control -- Sulfur Effects (DECSE) Program; Phase I Interim Data Report No. 1  

SciTech Connect (OSTI)

The Diesel Emission Control-Sulfur Effects (DECSE) is a joint government/industry program to determine the impact of diesel fuel sulfur levels on emission control systems whose use could lower emissions of nitrogen oxides (NO{sub x}) and particulate matter (PM) from on-highway trucks in the 2002--2004 model years. Phase 1 of the program was developed with the following objectives in mind: (1) evaluate the effects of varying the level of sulfur content in the fuel on the emission reduction performance of four emission control technologies; and (2) measure and compare the effects of up to 250 hours of aging on selected devices for multiple levels of fuel sulfur content. This interim data report summarizes results as of August, 1999, on the status of the test programs being conducted on three technologies: lean-NO{sub x} catalysts, diesel particulate filters and diesel oxidation catalysts.

DOE; ORNL; NREL; EMA; MECA

1999-08-15T23:59:59.000Z

400

Wildland fire emissions, carbon, and climate: Emission factors Shawn Urbanski  

E-Print Network [OSTI]

Wildland fire emissions, carbon, and climate: Emission factors Shawn Urbanski Missoula Fire burning Greenhouse gases Emission factors a b s t r a c t While the vast majority of carbon emitted wildland fire greenhouse gas and aerosol (organic aerosol (OA) and black carbon (BC)) emission inventories

Note: This page contains sample records for the topic "oxide emissions reactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Quercitrin protects skin from UVB-induced oxidative damage  

SciTech Connect (OSTI)

Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidative damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin. - Highlights: • Oxidative stress plays a key role in UV-induced cell and tissue injuries. • Quercitrin decreases ROS generation and restores antioxidants irradiated by UVB. • Quercitrin reduces UVB-irradiated oxidative DNA damage, apoptosis, and inflammation. • Quercitrin functions as an antioxidant against UVB-induced skin injuries.

Yin, Yuanqin [Cancer Institute, The First Affiliated Hospital, China Medical University, Shenyang (China); Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY (United States); Li, Wenqi; Son, Young-Ok; Sun, Lijuan; Lu, Jian; Kim, Donghern; Wang, Xin [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY (United States); Yao, Hua [Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang (China); Wang, Lei; Pratheeshkumar, Poyil; Hitron, Andrew J. [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY (United States); Luo, Jia [Department of Internal Medicine, University of Kentucky, 800 Rose Street, Lexington, KY (United States); Gao, Ning [Department of Pharmacognos, College of Pharmacy, 3rd Military Medical University, Chongqing (China); Shi, Xianglin [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY (United States); Zhang, Zhuo, E-mail: zhuo.zhang@uky.edu [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY (United States)

2013-06-01T23:59:59.000Z

402

Emissions of Transport Refrigeration Units with CARB Diesel, Gas-to-Liquid Diesel, and Emissions Control Devices  

SciTech Connect (OSTI)

A novel in situ method was used to measure emissions and fuel consumption of transport refrigeration units (TRUs). The test matrix included two fuels, two exhaust configurations, and two TRU engine operating speeds. Test fuels were California ultra low sulfur diesel and gas-to-liquid (GTL) diesel. Exhaust configurations were a stock muffler and a Thermo King pDPF diesel particulate filter. The TRU engine operating speeds were high and low, controlled by the TRU user interface. Results indicate that GTL diesel fuel reduces all regulated emissions at high and low engine speeds. Application of a Thermo King pDPF reduced regulated emissions, sometimes almost entirely. The application of both GTL diesel and a Thermo King pDPF reduced regulated emissions at high engine speed, but showed an increase in oxides of nitrogen at low engine speed.

Barnitt, R. A.; Chernich, D.; Burnitzki, M.; Oshinuga, A.; Miyasato, M.; Lucht, E.; van der Merwe, D.; Schaberg, P.

2010-05-01T23:59:59.000Z

403

Barium oxide, calcium oxide, magnesia, and alkali oxide free glass  

DOE Patents [OSTI]

A glass composition consisting essentially of about 10-45 mole percent of SrO; about 35-75 mole percent SiO.sub.2; one or more compounds from the group of compounds consisting of La.sub.2O.sub.3, Al.sub.2O.sub.3, B.sub.2O.sub.3, and Ni; the La.sub.2O.sub.3 less than about 20 mole percent; the Al.sub.2O.sub.3 less than about 25 mole percent; the B.sub.2O.sub.3 less than about 15 mole percent; and the Ni less than about 5 mole percent. Preferably, the glass is substantially free of barium oxide, calcium oxide, magnesia, and alkali oxide. Preferably, the glass is used as a seal in a solid oxide fuel/electrolyzer cell (SOFC) stack. The SOFC stack comprises a plurality of SOFCs connected by one or more interconnect and manifold materials and sealed by the glass. Preferably, each SOFC comprises an anode, a cathode, and a solid electrolyte.

Lu, Peizhen Kathy; Mahapatra, Manoj Kumar

2013-09-24T23:59:59.000Z

404

METAL OXIDE NANOPARTICLES  

SciTech Connect (OSTI)

This chapter covers the fundamental science, synthesis, characterization, physicochemical properties and applications of oxide nanomaterials. Explains fundamental aspects that determine the growth and behavior of these systems, briefly examines synthetic procedures using bottom-up and top-down fabrication technologies, discusses the sophisticated experimental techniques and state of the art theory results used to characterize the physico-chemical properties of oxide solids and describe the current knowledge concerning key oxide materials with important technological applications.

FERNANDEZ-GARCIA,M.; RODGRIGUEZ, J.A.

2007-10-01T23:59:59.000Z

405

Mixed oxide solid solutions  

DOE Patents [OSTI]

The present invention is a mixed oxide solid solution containing a tetravalent and a pentavalent cation that can be used as a support for a metal combustion catalyst. The invention is furthermore a combustion catalyst containing the mixed oxide solid solution and a method of making the mixed oxide solid solution. The tetravalent cation is zirconium(+4), hafnium(+4) or thorium(+4). In one embodiment, the pentavalent cation is tantalum(+5), niobium(+5) or bismuth(+5). Mixed oxide solid solutions of the present invention exhibit enhanced thermal stability, maintaining relatively high surface areas at high temperatures in the presence of water vapor.

Magno, Scott (Dublin, CA); Wang, Ruiping (Fremont, CA); Derouane, Eric (Liverpool, GB)

2003-01-01T23:59:59.000Z

406

Diesel Emission Control -- Sulfur Effects (DECSE) Program; Phase I Interim Date Report No. 3: Diesel Fuel Sulfur Effects on Particulate Matter Emissions  

SciTech Connect (OSTI)

The Diesel Emission Control-Sulfur Effects (DECSE) is a joint government/industry program to determine the impact of diesel fuel sulfur levels on emission control systems whose use could lower emissions of nitrogen oxides (NO{sub x}) and particulate matter (PM) from on-highway trucks in the 2002--2004 model years. Phase 1 of the program was developed with the following objectives in mind: (1) evaluate the effects of varying the level of sulfur content in the fuel on the emission reduction performance of four emission control technologies; and (2) measure and compare the effects of up to 250 hours of aging on selected devices for multiple levels of fuel sulfur content. This interim report covers the effects of diesel fuel sulfur level on particulate matter emissions for four technologies.

DOE; ORNL; NREL; EMA; MECA

1999-11-15T23:59:59.000Z

407

Pyrolysis process for producing condensed stabilized hydrocarbons utilizing a beneficially reactive gas  

DOE Patents [OSTI]

In a process for recovery of values contained in solid carbonaceous material, the solid carbonaceous material is comminuted and then subjected to pyrolysis, in the presence of a carbon containing solid particulate source of heat and a beneficially reactive transport gas in a transport flash pyrolysis reactor, to form a pyrolysis product stream. The pyrolysis product stream contains a gaseous mixture and particulate solids. The solids are separated from the gaseous mixture to form a substantially solids-free gaseous stream which comprises volatilized hydrocarbon free radicals newly formed by pyrolysis. Preferably the solid particulate source of heat is formed by oxidizing part of the separated particulate solids. The beneficially reactive transport gas inhibits the reactivity of the char product and the carbon-containing solid particulate source of heat. Condensed stabilized hydrocarbons are obtained by quenching the gaseous mixture stream with a quench fluid which contains a capping agent for stabilizing and terminating newly formed volatilized hydrocarbon free radicals. The capping agent is partially depleted of hydrogen by the stabilization and termination reaction. Hydrocarbons of four or more carbon atoms in the gaseous mixture stream are condensed. A liquid stream containing the stabilized liquid product is then treated or separated into various fractions. A liquid containing the hydrogen depleted capping agent is hydrogenated to form a regenerated capping agent. At least a portion of the regenerated capping agent is recycled to the quench zone as the quench fluid. In another embodiment capping agent is produced by the process, separated from the liquid product mixture, and recycled.

Durai-Swamy, Kandaswamy (Culver City, CA)

1982-01-01T23:59:59.000Z

408

Organic/inorganic nanocomposites, methods of making, and uses as a permeable reactive barrier  

DOE Patents [OSTI]

Nanocomposite materials having a composition including an inorganic constituent, a preformed organic polymer constituent, and a metal ion sequestration constituent are disclosed. The nanocomposites are characterized by being single phase, substantially homogeneous materials wherein the preformed polymer constituent and the inorganic constituent form an interpenetrating network with each other. The inorganic constituent may be an inorganic oxide, such as silicon dioxide, formed by the in situ catalyzed condensation of an inorganic precursor in the presence of the solvated polymer and metal ion sequestration constituent. The polymer constituent may be any hydrophilic polymer capable of forming a type I nanocomposite such as, polyacrylonitrile (PAN), polyethyleneoxide (PEO), polyethylene glycol (PEG), polyvinyl acetate (PVAc), polyvinyl alcohol (PVA), and combinations thereof. Nanocomposite materials of the present invention may be used as permeable reactive barriers (PRBs) to remediate contaminated groundwater. Methods for making nanocomposite materials, PRB systems, and methods of treating groundwater are also disclosed.

Harrup, Mason K. (Idaho Falls, ID); Stewart, Frederick F. (Idaho Falls, ID)

2007-05-15T23:59:59.000Z

409

E-Print Network 3.0 - ameliorating reactive oxygen Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

structure and surface relaxation Summary: reactivity of each type of oxygen the adsorption of hydrogen over different oxygen sites is studied. Full... oxygen is the reactive...

410

Metal-Pyrrolide Complexes in Three-fold Symmetry: Synthesis, Structure, Reactivity and Magnetism  

E-Print Network [OSTI]

Structure, Reactivity and Magnetism by William Hill Harman AStructure, Reactivity and Magnetism by William Hill Harmanlost time. Dave taught me magnetism and what it takes to win

Harman, William Hill

2010-01-01T23:59:59.000Z

411

Synthesis, characterization, and reactivity studies of iridium complexes bearing the ligand diphenylphosphidoboratabenzene  

E-Print Network [OSTI]

The synthesis, structure, and reactivity properties of three iridium square planar complexes bearing the anionic phosphine ligand diphenylphosphidoboratabenzene (DPB) are described. Reactivity studies show a rate enhancement ...

Arizpe, Luis (Luis Alfredo)

2011-01-01T23:59:59.000Z

412

Aging Enhances the Production of Reactive Oxygen Species andBactericid...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enhances the Production of Reactive Oxygen Species andBactericidal Activity in Peritoneal Macrophages by Aging Enhances the Production of Reactive Oxygen Species andBactericidal...

413

E-Print Network 3.0 - accumulate reactive oxygen Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

reactive oxygen Search Powered by Explorit Topic List Advanced Search Sample search results for: accumulate reactive oxygen Page: << < 1 2 3 4 5 > >> 1 CLINICAL CONCEPTS AND...

414

Reactivity of iron-bearing minerals and CO2 sequestration: A...  

Office of Scientific and Technical Information (OSTI)

Reactivity of iron-bearing minerals and CO2 sequestration: A multi-disciplinary experimental approach Re-direct Destination: The reactivity of sandstones was studied under...

415

Transformation of carbon monoxide dimer surface structures on yttrium oxide modified by silver  

SciTech Connect (OSTI)

It has been established that introducing ions of silver(II) in yttrium(III) oxide leads to the formation of a significant concentration of a paramagnetic dimer species (CO)/sub 2/-in the course of the adsorption of carbon monoxide, and that these dimers exhibit high thermal stability and reactivity. Reactions are proposed for the formation of the dimer species (CO)/sub 2//sup 2 -/ and (CO)/sub 2//sup -/ on the surface of the Ag/Y/sub 2/O/sub 3/ catalyst that involve the reduction of the anion vacancies and a change in the oxidation state of the silver ions. Modifying the yttrium oxide with ionic silver leads to a marked decrease in the strength of the oxidative ability of the surface of the catalyst for CO, while the nature of the active sites of the yttrium oxide, which adsorbs CO in three forms, remains unchanged.

Vydrin, S.N.; Bobolev, A.V.; Loginov, A.Yu.

1987-09-10T23:59:59.000Z

416

Impact of Biodiesel on the Oxidation Kinetics and Morphology of Diesel Particulate  

SciTech Connect (OSTI)

We compare the oxidation characteristics of four different diesel particulates generated with a modern light-duty engine. The four particulates represent engine fueling with conventional ultra-low sulfur diesel (ULSD), biodiesel, and two intermediate blends of these fuels. The comparisons discussed here are based on complementary measurements implemented in a laboratory micro-reactor, including temperature programmed desorption and oxidation, pulsed isothermal oxidation, and BET surface area. From these measurements we have derived models that are consistent with the observed oxidation reactivity differences. When accessible surface area effects are properly accounted for, the oxidation kinetics of the fixed carbon components were found to consistently exhibit an Arrhenius activation energy of 113 6 kJ/mol. Release of volatile carbon from the as-collected particulate appears to follow a temperaturedependent rate law.

Strzelec, Andrea [ORNL] [ORNL; Toops, Todd J [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL

2011-01-01T23:59:59.000Z

417

Reducible oxide based catalysts  

DOE Patents [OSTI]

A catalyst is disclosed herein. The catalyst includes a reducible oxide support and at least one noble metal fixed on the reducible oxide support. The noble metal(s) is loaded on the support at a substantially constant temperature and pH.

Thompson, Levi T.; Kim, Chang Hwan; Bej, Shyamal K.

2010-04-06T23:59:59.000Z

418

Investigation on Nitric Oxide and Soot of Biodiesel and Conventional Diesel using a Medium Duty Diesel Engine  

E-Print Network [OSTI]

Biodiesel has been suggested as an alternative fuel to the petroleum diesel fuel. It beneficially reduces regulated emission gases, but increases NOx (nitric oxide and nitrogen dioxide) Thus, the increase in NOx is the barrier for potential growth...

Song, Hoseok

2012-07-16T23:59:59.000Z

419

The Safe Storage Study for Autocatalytic Reactive Chemicals  

E-Print Network [OSTI]

In the U.S. Chemical Safety and Hazard Investigation Board (CSB) report, Improving Reactive Hazard Management, there are 37 out of 167 accidents, which occurred in a storage tank or a storage area. This fact demonstrates that thermal runaway...

Liu, Lijun

2010-10-12T23:59:59.000Z

420

Evaluation of Methods to Predict Reactivity of Gold Nanoparticles...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

relationship to the concept of frontier molecular orbital theory. The d-band theory of Hammer and Nřrskov is perhaps the most widely used predictor of reactivity on metallic...

Note: This page contains sample records for the topic "oxide emissions reactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Pre-plated reactive diffusion-bonded battery electrode plaques  

DOE Patents [OSTI]

A high strength, metallic fiber battery plaque is made using reactive diffusion bonding techniques, where a substantial amount of the fibers are bonded together by an iron-nickel alloy.

Maskalick, Nicholas J. (Pittsburgh, PA)

1984-01-01T23:59:59.000Z

422

Dynamic Reactive Power Control of Isolated Power Systems  

E-Print Network [OSTI]

This dissertation presents dynamic reactive power control of isolated power systems. Isolated systems include MicroGrids in islanded mode, shipboard power systems operating offshore, or any other power system operating in islanded mode intentionally...

Falahi, Milad

2012-10-03T23:59:59.000Z

423

Mechanical properties of amorphous Lix Si alloys: a reactive...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

was downloaded on 08102013 at 15:46 Please note that terms and conditions apply. Mechanical properties of amorphous Li x Si alloys: a reactive force field study View the table...

424

Reactive oxygen species: a breath of life or death?  

E-Print Network [OSTI]

AP1, activator protein-1; ODD, oxygen-dependent degradationSignaling response when oxygen levels decrease (Fig. 1C;3. Halliwell B. Reactive oxygen species in living sys- tems:

Fruehauf, John P; Meyskens, Frank L Jr

2007-01-01T23:59:59.000Z

425

Local Control of Reactive Power by Distributed Photovoltaic Generators  

E-Print Network [OSTI]

High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the re...

Turitsyn, Konstantin S; Backhaus, Scott; Chertkov, Misha

2010-01-01T23:59:59.000Z

426

Nitrogen oxides storage catalysts containing cobalt  

DOE Patents [OSTI]

Nitrogen oxides (NO.sub.x) storage catalysts comprising cobalt and barium with a lean NO.sub.x storage ratio of 1.3 or greater. The NO.sub.x storage catalysts can be used to reduce NO.sub.x emissions from diesel or gas combustion engines by contacting the catalysts with the exhaust gas from the engines. The NO.sub.x storage catalysts can be one of the active components of a catalytic converter, which is used to treat exhaust gas from such engines.

Lauterbach, Jochen (Newark, DE); Snively, Christopher M. (Clarks Summit, PA); Vijay, Rohit (Annandale, NJ); Hendershot, Reed (Breinigsville, PA); Feist, Ben (Newark, DE)

2010-10-12T23:59:59.000Z

427

Solid Oxide Fuel Cell Auxiliary Power Unit  

SciTech Connect (OSTI)

Solid Oxide Fuel Cell (SOFC) is an attractive, efficient, clean source of power for transportation, military, and stationary applications. Delphi has pioneered its application as an auxiliary Power Unit (APU) for transportation. Delphi is also interested in marketing this technology for stationary applications. Its key advantages are high efficiency and compatibility with gasoline, natural gas and diesel fuel. It's consistent with mechanizations that support the trend to low emissions. Delphi is committed to working with customers and partners to bring this novel technology to market.

J. Weber

2001-12-12T23:59:59.000Z

428

Suspension Hydrogen Reduction of Iron Oxide Concentrates  

SciTech Connect (OSTI)

The objective of the project is to develop a new ironmaking technology based on hydrogen and fine iron oxide concentrates in a suspension reduction process. The ultimate objective of the new technology is to replace the blast furnace and to drastically reduce CO2 emissions in the steel industry. The goals of this phase of development are; the performance of detailed material and energy balances, thermochemical and equilibrium calculations for sulfur and phosphorus impurities, the determination of the complete kinetics of hydrogen reduction and bench-scale testing of the suspension reduction process using a large laboratory flash reactor.

H.Y. Sohn

2008-03-31T23:59:59.000Z

429

Photocatalytic destruction of automobile exhaust emissions  

SciTech Connect (OSTI)

Hydrocarbons, carbon monoxide, and nitrogen oxides contained in automobile exhaust emissions are among the major atmospheric air pollutants. During the first few minutes of a cold start of the engine, the emission levels of unburned hydrocarbon and CO pollutants are very high due to the inefficiency of the cold engine and the poor activity of the catalysts lower temperatures. Therefore, it is necessary to provide an alternative approach to deal with this specific problem in order to meet near-term regulatory requirements. Our approach has been to use known photocatalytic reactions obtainable on semiconducting powders such as titanium dioxide. In this presentation we describe our recent studies aimed at the photocatalytic reduction of unburned hydrocarbons and carbon monoxide in automobile exhaust emissions. Our results demonstrate the effective destruction of propylene into water and carbon dioxide. The conversion was found to be dependent on the propylene flow rate. The reaction rate was studied as a function of time, humidity and temperature. The effect of the power of the UV source on conversion will also be presented.

Kaviranta, P.D.; Peden, C.H.F. [Pacific Northwest National Lab., Richland, WA (United States)

1996-10-01T23:59:59.000Z

430

Optimal irreversible stimulated emission  

E-Print Network [OSTI]

We studied the dynamics of an initially inverted atom in a semi-infinite waveguide, in the presence of a single propagating photon. We show that atomic relaxation is enhanced by a factor of 2, leading to maximal bunching in the output field. This optimal irreversible stimulated emission is a novel phenomenon that can be observed with state-of-the-art solid-state atoms and waveguides. When the atom interacts with two one-dimensional electromagnetic environments, the preferential emission in the stimulated field can be exploited to efficiently amplify a classical or a quantum state.

D Valente; Y Li; J P Poizat; J M Gerard; L C Kwek; M F Santos; A Auffeves

2012-08-28T23:59:59.000Z

431

Controlled spontaneous emission  

E-Print Network [OSTI]

The problem of spontaneous emission is studied by a direct computer simulation of the dynamics of a combined system: atom + radiation field. The parameters of the discrete finite model, including up to 20k field oscillators, have been optimized by a comparison with the exact solution for the case when the oscillators have equidistant frequencies and equal coupling constants. Simulation of the effect of multi-pulse sequence of phase kicks and emission by a pair of atoms shows that both the frequency and the linewidth of the emitted spectrum could be controlled.

Jae-Seung Lee; Mary A. Rohrdanz; A. K. Khitrin

2007-07-03T23:59:59.000Z

432

(Electronic structure and reactivities of transition metal clusters)  

SciTech Connect (OSTI)

The following are reported: theoretical calculations (configuration interaction, relativistic effective core potentials, polyatomics, CASSCF); proposed theoretical studies (clusters of Cu, Ag, Au, Ni, Pt, Pd, Rh, Ir, Os, Ru; transition metal cluster ions; transition metal carbide clusters; bimetallic mixed transition metal clusters); reactivity studies on transition metal clusters (reactivity with H{sub 2}, C{sub 2}H{sub 4}, hydrocarbons; NO and CO chemisorption on surfaces). Computer facilities and codes to be used, are described. 192 refs, 13 figs.

Not Available

1992-01-01T23:59:59.000Z

433

Volcanic gas emissions and their effect on ambient air character  

SciTech Connect (OSTI)

This bibliography was assembled to service an agreement between Department of Energy and the USGS to provide a body of references and useful annotations for understanding background gas emissions from Kilauea volcano. The current East Rift Zone (ERZ) eruption of Kilauea releases as much as 500,000 metric tonnes of SO{sub 2} annually, along with lesser amounts of other chemically and radiatively active species including H{sub 2}S, HCl, and HF. Primary degassing locations on Kilauea are located in the summit caldera and along the middle ERZ. The effects of these emissions on ambient air character are a complex function of chemical reactivity, source geometry and effusivity, and local meteorology. Because of this complexity, we organized the bibliography into three main sections: (1) characterizing gases as they leave the edifice; (2) characterizing gases and chemical reaction products away from degassing sources; and (3) Hawaii Island meteorology.

Sutton, A.J. [Geological Survey, Menlo Park, CA (United States); Elias, T. [Geological Survey, Hawaii National Park, HI (United States). Hawaiian Volcano Observatory

1994-01-01T23:59:59.000Z

434

Improved Wetting of Mixed Ionic/Electronic Conductors Used in Electrochemical Devices with Ternary Reactive Air Braze Filler Metals  

SciTech Connect (OSTI)

This paper reports on the wetting behavior, reactivity, and long-term electrical conductance of a series of ternary filler metals being considered for brazing lanthanum strontium cobalt ferrite (LSCF) based oxygen separation membranes. Mixed ionic/electronic conducting perovskite oxides such as LSCF and various doped barium cerates are currently being considered for use in high-temperature electrochemical devices such as oxygen and hydrogen concentrators and solid oxide fuel cells. However to take full advantage of the unique properties of these materials, reliable joining techniques need to be developed. Furthermore, if the proposed joining technique were to yield a hermetic ceramic-to-metal junction that was also electrically conductive, it would additionally benefit the device by allowing current to be drawn from or carried to the electrochemically active mixed conducting oxide component without requiring an separate current collector. A newly developed brazing technique known as air brazing is one such method of joining. In its present form, air brazing uses a silver-copper oxide based filler metal that can be melted directly in air to form a compliant joint that is electrically conductive. Recently, it has been shown that the addition of titania can enhance the wetting behavior of Ag-CuO filler metals on alumina. Here the effect of this wetting agent on the surface wettability, long-term electrical resistance at 750°C, and reactivity with La0.6Sr0.4Co0.2Fe0.8O3-? (LSCF-6428 or LSCF) substrates is discussed.

Hardy, John S.; Kim, Jin Yong Y.; Thomsen, Ed C.; Weil, K. Scott

2007-01-19T23:59:59.000Z

435

Application of the ''reactivity constraint approach'' to automatic reactor control  

SciTech Connect (OSTI)

The ''reactivity constraint approach'' is described and demonstrated to be an effective and reliable means for the automatic control of power in nuclear reactors. This approach functions by restricting the effect of the delayed neutron populations to that which can be balanced by an induced change in the prompt population. This is done by limiting the net reactivity to the amount that can be offset by reversing the direction of motion of the automated control mechanism. The necessary reactivity constraints are obtained from the dynamic period equation, which gives the instantaneous reactor period as a function of the reactivity and the rate of change of reactivity. The derivation of this equation is described with emphasis on the recently obtained ''alternate'' formulation. Following a discussion of the behavior of each term of this alternate equation as a function of reactivity, its use in the design and operation of a nonlinear, closed-loop, digital controller for reactor power is in the design and operation of a nonlinear, closed-loop, digital controller for reactor power is described. Details of the initial experimental trials of the resulting controller are given.

Bernard, J.A.; Henry, A.F.; Lanning, D.D.

1988-02-01T23:59:59.000Z

436

Proceedings of Healthy Buildings 2009 Paper 336 Time-Scale Analysis for Reactive Deposition of Ozone via Passive Reactive  

E-Print Network [OSTI]

Proceedings of Healthy Buildings 2009 Paper 336 Time-Scale Analysis for Reactive Deposition) homogeneous reactions with indoor pollutants. The #12;Proceedings of Healthy Buildings 2009 Paper 336 latter

Siegel, Jeffrey

437

Emissions Trading and Air Toxics Emissions: RECLAIM and Toxics Regulation in the South Coast Air Basin  

E-Print Network [OSTI]

fugitive emissions in an emissions trading program, as theexists between an emissions trading program that allows aircreation of other ROC emissions trading programs. JOURNAL OF

Cohen, Nancy J.

1993-01-01T23:59:59.000Z

438

Reduction of iron-oxide-carbon composites: part I. Estimation of the rate constants  

SciTech Connect (OSTI)

A new ironmaking concept using iron-oxide-carbon composite pellets has been proposed, which involves the combination of a rotary hearth furnace (RHF) and an iron bath smelter. This part of the research focuses on studying the two primary chemical kinetic steps. Efforts have been made to experimentally measure the kinetics of the carbon gasification by CO{sub 2} and wustite reduction by CO by isolating them from the influence of heat- and mass-transport steps. A combined reaction model was used to interpret the experimental data and determine the rate constants. Results showed that the reduction is likely to be influenced by the chemical kinetics of both carbon oxidation and wustite reduction at the temperatures of interest. Devolatilized wood-charcoal was observed to be a far more reactive form of carbon in comparison to coal-char. Sintering of the iron-oxide at the high temperatures of interest was found to exert a considerable influence on the reactivity of wustite by virtue of altering the internal pore surface area available for the reaction. Sintering was found to be predominant for highly porous oxides and less of an influence on the denser ores. It was found using an indirect measurement technique that the rate constants for wustite reduction were higher for the porous iron-oxide than dense hematite ore at higher temperatures (> 1423 K). Such an indirect mode of measurement was used to minimize the influence of sintering of the porous oxide at these temperatures.

Halder, S.; Fruehan, R.J. [Praxair Inc., Tonawanda, NY (United States). Technological Center

2008-12-15T23:59:59.000Z

439

Secondary emission gas chamber  

E-Print Network [OSTI]

For a hadron calorimeter active element there is considered a gaseous secondary emis-sion detector (150 micron gap, 50 kV/cm). Such one-stage parallel plate chamber must be a radiation hard, fast and simple. A model of such detector has been produced, tested and some characteristics are presented.

V. In'shakov; V. Kryshkin; V. Skvortsov

2014-12-10T23:59:59.000Z

440

CARBON DIOXIDE EMISSION REDUCTION  

E-Print Network [OSTI]

.5 Primary Energy Use and Carbon Dioxide Emissions for Selected US Chemical Subsectors in 1994 ...............................................................................................................16 Table 2.7 1999 Energy Consumption and Specific Energy Consumption (SEC) in the U.S. Cement Efficiency Technologies and Measures in Cement Industry.................22 Table 2.9 Energy Consumption

Delaware, University of

Note: This page contains sample records for the topic "oxide emissions reactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Graphene Coating Coupled Emission  

E-Print Network [OSTI]

Graphene Coating Coupled Emission A COMSET, A single sheet of sp2-hybridized carbon atoms, called of graphene and its unique properties, I will present amplification of surface graphene-Ag hybrid films which when graphene is used as the spacer layer in a conventional Ag- harnessed the nonlinear properties

Shyamasundar, R.K.

442

Manipulation of in vivo iron levels can alter resistance to oxidative stress without affecting ageing in the nematode C. elegans  

E-Print Network [OSTI]

by reactive oxygen species (ROS) (Harman, 1956; Sohal and Weindruch, 1996). Thus, far, extensive experimental.2. Iron as a generator of oxidative damage Iron plays a central role in many essential cellular processes including oxygen transport, xenobiotic detoxification, and mito- chondrial energy metabolism. Iron

Gems, David

443

Variably Saturated Flow and Multicomponent Biogeochemical Reactive Transport Modeling of a Uranium Bioremediation Field Experiment  

SciTech Connect (OSTI)

Field experiments at a former uranium mill tailings site have identified the potential for stimulating indigenous bacteria to catalyze the conversion of aqueous uranium in the +6 oxidation state to immobile solid-associated uranium in the +4 oxidation state. This effectively removes uranium from solution resulting in groundwater concentrations below actionable standards. Three-dimensional, coupled variably-saturated flow and biogeochemical reactive transport modeling of a 2008 in situ uranium bioremediation field experiment is used to better understand the interplay of transport rates and biogeochemical reaction rates that determine the location and magnitude of key reaction products. A comprehensive reaction network, developed largely through previous 1-D modeling studies, was used to simulate the impacts on uranium behavior of pulsed acetate amendment, seasonal water table variation, spatially-variable physical (hydraulic conductivity, porosity) and geochemical (reactive surface area) material properties. A principal challenge is the mechanistic representation of biologically-mediated terminal electron acceptor process (TEAP) reactions whose products significantly alter geochemical controls on uranium mobility through increases in pH, alkalinity, exchangeable cations, and highly reactive reduction products. In general, these simulations of the 2008 Big Rusty acetate biostimulation field experiment in Rifle, Colorado confirmed previously identified behaviors including (1) initial dominance by iron reducing bacteria that concomitantly reduce aqueous U(VI), (2) sulfate reducing bacteria that become dominant after {approx}30 days and outcompete iron reducers for the acetate electron donor, (3) continuing iron-reducer activity and U(VI) bioreduction during dominantly sulfate reducing conditions, and (4) lower apparent U(VI) removal from groundwater during dominantly sulfate reducing conditions. New knowledge on simultaneously active metal and sulfate reducers has been incorporated into the modeling. In this case, an initially small population of slow growing sulfate reducers is active from the initiation of biostimulation. Three-dimensional, variably saturated flow modeling was used to address impacts of a falling water table during acetate injection. These impacts included a significant reduction in aquifer saturated thickness and isolation of residual reactants and products, as well as unmitigated uranium, in the newly unsaturated vadose zone. High permeability sandy gravel structures resulted in locally high flow rates in the vicinity of injection wells that increased acetate dilution. In downgradient locations, these structures created preferential flow paths for acetate delivery that enhanced local zones of TEAP reactivity and subsidiary reactions. Conversely, smaller transport rates associated with the lower permeability lithofacies (e.g., fine) and vadose zone were shown to limit acetate access and reaction. Once accessed by acetate, however, these same zones limited subsequent acetate dilution and provided longer residence times that resulted in higher concentrations of TEAP products when terminal electron donors and acceptors were not limiting. Finally, facies-based porosity and reactive surface area variations were shown to affect aqueous uranium concentration distributions; however, the ranges were sufficiently small to preserve general trends. Large computer memory and high computational performance were required to simulate the detailed coupled process models for multiple biogeochemical components in highly resolved heterogeneous materials for the 110-day field experiment and 50 days of post-biostimulation behavior. In this case, a highly-scalable subsurface simulator operating on 128 processor cores for 12 hours was used to simulate each realization. An equivalent simulation without parallel processing would have taken 60 days, assuming sufficient memory was available.

Yabusaki, Steven B.; Fang, Yilin; Williams, Kenneth H.; Murray, Christopher J.; Ward, Anderson L.; Dayvault, Richard; Waichler, Scott R.; Newcomer, Darrell R.; Spane, Frank A.; Long, Philip E.

2011-11-01T23:59:59.000Z

444

Application of Partial-Order Methods to Reactive Programs with Event Memorization  

E-Print Network [OSTI]

with event memorization. The reactive systems are specified with an asynchronous reactive language Electre, 3 (2001) 287-316" #12;2 Electre: an Asynchronous Reactive Language with Event Memorization 3 2 of a semantic model of an asyn- chronous reactive language: Electre [PRH92, CR95]. Indeed, this language

Paris-Sud XI, Université de

445

Development and Evaluation of a State-of-the-Science Reactive Plume  

E-Print Network [OSTI]

for plume rise, plume visibility, and stack opacity (5). Examples of other reactive plume models include

Zhang, Yang

446

Process for combined control of mercury and nitric oxide.  

SciTech Connect (OSTI)

Continuing concern about the effects of mercury in the environment may lead to requirements for the control of mercury emissions from coal-fired power plants. If such controls are mandated, the use of existing flue-gas cleanup systems, such as wet scrubbers currently employed for flue-gas desulfurization, would be desirable, Such scrubbers have been shown to be effective for capturing oxidized forms of mercury, but cannot capture the very insoluble elemental mercury (Hg{sup 0}) that can form a significant fraction of the total emissions. At Argonne National Laboratory, we have proposed and tested a concept for enhancing removal of Hg{sup 0}, as well as nitric oxide, through introduction of an oxidizing agent into the flue gas upstream of a scrubber, which readily absorbs the soluble reaction products. Recently, we developed a new method for introducing the oxidizing agent into the flue-gas stream that dramatically improved reactant utilization. The oxidizing agent employed was NOXSORB{trademark}, which is a commercial product containing chloric acid and sodium chlorate. When a dilute solution of this agent was introduced into a gas stream containing Hg{sup 0} and other typical flue-gas species at 300 F, we found that about 100% of the mercury was removed from the gas phase and recovered in process liquids. At the same time, approximately 80% of the nitric oxide was removed. The effect of sulfur dioxide on this process was also investigated and the results showed that it slightly decreased the amount of Hg{sup 0} oxidized while appearing to increase the removal of nitric oxide from the gas phase. We are currently testing the effects of variations in NOXSORB{trademark} concentration, sulfur dioxide concentration, nitric oxide concentration, and reaction time (residence time). Preliminary economic projections based on the results to date indicate that the chemical cost for nitric oxide oxidation could be less than $5,000/ton removed, while for Hg{sup 0} oxidation it would be about $20,000/lb removed.

Livengood, C. D.; Mendelsohn, M. H.

1999-11-03T23:59:59.000Z

447

Allocation of emission rights Economic incentives for emission  

E-Print Network [OSTI]

for all countries High cost effectiviness:High cost effectiviness: International Emission trading Fairness NAM Department of Physical Resource Theory #12;Financial flows from emissions trading 450 ppmGDP SAS CPA WEU NAM Department of Physical Resource Theory #12;Financial flows from emissions trading 450

448

In Situ Formation Of Reactive Barriers For Pollution Control  

DOE Patents [OSTI]

A method of treating soil contamination by forming one or more zones of oxidized material in the path of percolating groundwater is disclosed. The zone or barrier region is formed by delivering an oxidizing agent into the ground for reaction with an existing soil component. The oxidizing agent modifies the existing soil component creating the oxidized zone. Subsequently when soil contaminates migrate into the zone, the oxidized material is available to react with the contaminates and degrade them into benign products. The existing soil component can be an oxidizable mineral such as manganese, and the oxidizing agent can be ozone gas or hydrogen peroxide. Soil contaminates can be volatile organic compounds. Oxidized barriers can be used single or in combination with other barriers.

Gilmore, Tyler J. (Pasco, WA); Riley, Robert G. (West Richland, WA)

2004-04-27T23:59:59.000Z

449

Emissions of greenhouse gases in the United States 1996  

SciTech Connect (OSTI)

The Energy Information Administration (EIA) is required by the Energy Policy Act of 1992 to prepare a report on aggregate US national emissions of greenhouse gases for the period 1987--1990, with annual updates thereafter. This report is the fifth annual update, covering national emissions over the period 1989--1995, with preliminary estimates of emissions for 1996. The estimates contained in this report have been revised from those in last year`s report. Emissions estimates for carbon dioxide are reported in metric tons of carbon; estimates for other gases are reported in metric tons of gas. Chapter 1 of this report briefly recapitulates some background information about global climate change and the greenhouse effect and discusses important recent developments in global climate change activities. Chapter 2 through 6 cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons, and criteria pollutants, respectively. Chapter 7 describes potential sequestration and emissions of greenhouse gases as a result of land use changes. Five appendixes are included with this report. 216 refs., 11 figs., 38 tabs.

NONE

1997-10-01T23:59:59.000Z

450

Field emission from organic materials  

E-Print Network [OSTI]

Field emission displays (FEDs) show great promise as high performance flat panel displays. The light emission process is efficient, long lifetimes are possible with high brightness, and bright passive matrix displays can ...

Kymissis, Ioannis, 1977-

2003-01-01T23:59:59.000Z

451

Oxidative Tritium Decontamination System  

DOE Patents [OSTI]

The Oxidative Tritium Decontamination System, OTDS, provides a method and apparatus for reduction of tritium surface contamination on various items. The OTDS employs ozone gas as oxidizing agent to convert elemental tritium to tritium oxide. Tritium oxide vapor and excess ozone gas is purged from the OTDS, for discharge to atmosphere or transport to further process. An effluent stream is subjected to a catalytic process for the decomposition of excess ozone to diatomic oxygen. One of two configurations of the OTDS is employed: dynamic apparatus equipped with agitation mechanism and large volumetric capacity for decontamination of light items, or static apparatus equipped with pressurization and evacuation capability for decontamination of heavier, delicate, and/or valuable items.

Gentile, Charles A. (Plainsboro, NJ), Guttadora, Gregory L. (Highland Park, NJ), Parker, John J. (Medford, NJ)

2006-02-07T23:59:59.000Z

452

Early maturation processes in coal. Part 2: Reactive dynamics simulations using the ReaxFF reactive force field on Morwell Brown coal structures  

E-Print Network [OSTI]

for each source rock. This allowed the bulk rate of oil and gas generation for a source rockEarly maturation processes in coal. Part 2: Reactive dynamics simulations using the ReaxFF reactive

Goddard III, William A.

453

Isolation of Metals from Liquid Wastes: Reactive Scavenging in Turbulent Thermal Reactors  

SciTech Connect (OSTI)

Sorption of cesium and strontium on kaolinite powders was investigated as a means to minimize the emissions of these metals during certain high temperature processes currently being developed to isolate and dispose of radiological and mixed wastes. In this work, non-radioactive aqueous cesium acetate or strontium acetate was atomized down the center of a natural gas flame supported on a variable-swirl burner in a refractory-lined laboratory-scale combustion facility. Kaolinite powder was injected at a post-flame location in the combustor. Cesium readily vaporizes in the high temperature regions of the combustor, but was reactively scavenged onto dispersed kaolinite. Global sorption mechanisms of cesium vapor on kaolinite were quantified, and are related to those available in the literature for sodium and lead. Both metal adsorption and substrate deactivation steps are important, and so there is an optimum temperature, between 1400 and 1500 K, at which maximum sorption occurs. The presence of chlorine inhibits cesium sorption. In contrast to cesium, and in the absence of chlorine, strontium was only partially vaporized and was, therefore, only partially scavengeable. The strontium data did not allow quantification of global kinetic mechanisms of interaction, although equilibrium arguments provided insight into the effects of chlorine on strontium sorption. These results have implications for the use of sorbents to control cesium and strontium emissions during high temperature waste processing including incineration and vitrification.

William Linak

2004-12-16T23:59:59.000Z

454

Controlled CO preferential oxidation  

DOE Patents [OSTI]

Method is described for controlling the supply of air to a PROX (PReferential OXidation for CO cleanup) reactor for the preferential oxidation in the presence of hydrogen wherein the concentration of the hydrogen entering and exiting the PROX reactor is monitored, the difference there between correlated to the amount of air needed to minimize such difference, and based thereon the air supply to the PROX reactor adjusted to provide such amount and minimize such difference. 2 figs.

Meltser, M.A.; Hoch, M.M.

1997-06-10T23:59:59.000Z

455

Structure of graphene oxide dispersed with ZnO nanoparticles  

SciTech Connect (OSTI)

Graphene has been proposed as a promising two-dimensional nanomaterial with outstanding electronic, optical, thermal and mechanical properties for many applications. In present work a process of dispersion of graphene oxide with ZnO nanoparticles in ethanol solution with different pH values, have been studied. Samples have been characterized by XRD, SEM, PL, UV-visible spectroscopy and particles size measurement. The results analysis indicates overall improved emission spectrum. It has been observed that the average diameter of RGO (Reduced Graphene Oxide) decreases in presence of ZnO nanoparticles from 3.8?m to 0.41?m.

Yadav, Rishikesh, E-mail: rishikesh.yadav62@gmail.com; Pandey, Devendra K., E-mail: devendrakphy@gmail.com [School of Nanotechnology, Rajiv Gandhi Proudyogiki Vishwavidalaya, Bhopal, M.P. (India); Khare, P. S., E-mail: purnimaswarup@hotmail.com [Department of Physics, Rajiv Gandhi Proudyogiki Vishwavidalaya, Bhopal M.P. (India)

2014-10-15T23:59:59.000Z

456

Emission altitude in radio pulsars  

E-Print Network [OSTI]

This paper presents a method of estimation of emission altitudes using observational data - precise measurements of pulse profile widths at low intensity level. The analysis of emission altitudes obtained using this method for a large number of pulsars gives constraints that should be useful for theory of coherent pulsar emission. It seems that radio emission originates at altitudes of about few percent of the light cylinder and that they depend on frequency, pulsar period and period derivative.

J. Kijak

2002-08-30T23:59:59.000Z

457

6, 57735796, 2006 Vehicular emissions  

E-Print Network [OSTI]

be partly responsible for lower CO2 and higher CO and NO emission factors. Also, a fast reduction the emission (in g/km) of key and non-regulated pollutants, such as CO2, CO, NO, SO2, NH3, HCHO, NMHC, dur-10 of pollutants, even from a super ultra-low emission vehicle (SULEV). The emissions of HC's, NOx, CO20 and CO2

Paris-Sud XI, Université de

458

Emission Controls for Heavy-Duty Trucks  

Broader source: Energy.gov (indexed) [DOE]

DEER Conference Emission Controls for Heavy-Duty Trucks Overview Emission Standards - US and Worldwide Technology Options for Meeting Emissions System Integration ...

459

Radionuclide Air Emission Report for 2011  

E-Print Network [OSTI]

470E-20Ě1 Radionuclide Air Emission Report for Prepared by:Environmental Protection Agency, National Emission Standardsfor Emissions of Radionuclides Other Than Radon From

Wahl, Linnea

2012-01-01T23:59:59.000Z

460

Distributed Energy Resources for Carbon Emissions Mitigation  

E-Print Network [OSTI]

Energy Resources for Carbon Emissions Mitigation RyanEnergy Resources for Carbon Emissions Mitigation Ryanand/or site-attributable carbon emissions at commercial and

Firestone, Ryan; Marnay, Chris

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxide emissions reactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Apparatus for photocatalytic destruction of internal combustion engine emissions during cold start  

DOE Patents [OSTI]

A method and apparatus are disclosed for the destruction of emissions from an internal combustion engine wherein a substrate coated with TiO{sub 2} is exposed to a light source in the exhaust system of an internal combustion engine thereby catalyzing oxidation/reduction reactions between gaseous hydrocarbons, carbon monoxide, nitrogen oxides and oxygen in the exhaust of the internal combustion engine. 4 figs.

Janata, J.; McVay, G.L.; Peden, C.H.; Exarhos, G.J.

1998-07-14T23:59:59.000Z

462

ADVANCED OXIDATION PROCESS  

SciTech Connect (OSTI)

The removal of recalcitrant sulfur species, dibenzothiophene and its derivatives, from automotive fuels is an integral component in the development of cleaner burning and more efficient automobile engines. Oxidative desulfurization (ODS) wherein the dibenzothiophene derivative is converted to its corresponding sulfoxide and sulfone is an attractive approach to sulfur removal because the oxidized species are easily extracted or precipitated and filtered from the hydrocarbon phase. Fe-TAML{reg_sign} activators of hydrogen peroxide (TAML is Tetra-Amido-Macrocyclic-Ligand) catalytically convert dibenzothiophene and its derivatives rapidly and effectively at moderate temperatures (50-60 C) and ambient pressure to the corresponding sulfoxides and sulfones. The oxidation process can be performed in both aqueous systems containing alcohols such as methanol, ethanol, or t-butanol, and in a two-phase hydrocarbon/aqueous system containing tert-butanol or acetonitrile. In the biphasic system, essentially complete conversion of the DBT to its oxidized products can be achieved using slightly longer reaction times than in homogeneous solution. Among the key features of the technology are the mild reaction conditions, the very high selectivity where no over oxidation of the sulfur compounds occurs, the near stoichiometric use of hydrogen peroxide, the apparent lack of degradation of sensitive fuel components, and the ease of separation of oxidized products.

Dr. Colin P. Horwitz; Dr. Terrence J. Collins

2003-11-04T23:59:59.000Z

463

Low emissions diesel fuel  

DOE Patents [OSTI]

A method and matter of composition for controlling NO.sub.x emissions from existing diesel engines. The method is achieved by adding a small amount of material to the diesel fuel to decrease the amount of NO.sub.x produced during combustion. Specifically, small amounts, less than about 1%, of urea or a triazine compound (methylol melamines) are added to diesel fuel. Because urea and triazine compounds are generally insoluble in diesel fuel, microemulsion technology is used to suspend or dissolve the urea or triazine compound in the diesel fuel. A typical fuel formulation includes 5% t-butyl alcohol, 4.5% water, 0.5% urea or triazine compound, 9% oleic acid, and 1% ethanolamine. The subject invention provides improved emissions in heavy diesel engines without the need for major modifications.

Compere, Alicia L. (Knoxville, TN); Griffith, William L. (Oak Ridge, TN); Dorsey, George F. (Farragut, TN); West, Brian H. (Kingston, TN)

1998-01-01T23:59:59.000Z

464

Low emissions diesel fuel  

DOE Patents [OSTI]

A method and matter of composition for controlling NO{sub x} emissions from existing diesel engines. The method is achieved by adding a small amount of material to the diesel fuel to decrease the amount of NO{sub x} produced during combustion. Specifically, small amounts, less than about 1%, of urea or a triazine compound (methylol melamines) are added to diesel fuel. Because urea and triazine compounds are generally insoluble in diesel fuel, microemulsion technology is used to suspend or dissolve the urea or triazine compound in the diesel fuel. A typical fuel formulation includes 5% t-butyl alcohol, 4.5% water, 0.5% urea or triazine compound, 9% oleic acid, and 1% ethanolamine. The subject invention provides improved emissions in heavy diesel engines without the need for major modifications.

Compere, A.L.; Griffith, W.L.; Dorsey, G.F.; West, B.H.

1998-05-05T23:59:59.000Z

465

Emissions Inventory Report Summary for Los Alamos National Laboratory for Calendar Year 2004  

SciTech Connect (OSTI)

Los Alamos National Laboratory (LANL) is subject to annual emissions reporting requirements for regulated air pollutants under Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73 (20.2.73 NMAC), ''Notice of Intent and Emissions Inventory Requirements''. The applicability of the requirements is based on the Laboratory's potential to emit 100 tons per year of suspended particulate matter, nitrogen oxides, carbon monoxide, sulfur oxides, or volatile organic compounds. Additionally, on April 30, 2004, LANL was issued a Title V Operating Permit from the New Mexico Environment Department, Air Quality Bureau, under 20.2.70 NMAC. This Title V Operating Permit (Permit No. P-100) includes emission limits and operating limits for all regulated sources of air pollution at LANL. The Title V Operating Permit also requires semi-annual emissions reporting for all sources included in the permit. This report summarizes both the annual emissions inventory reporting and the semi-annual emissions reporting for LANL for calendar year 2004. LANL's 2004 emissions are well below the emission limits in the Title V Operating Permit.

M. Stockton

2005-10-01T23:59:59.000Z

466

Emissions inventory report summary for Los Alamos National Laboratory for calendar year 2008  

SciTech Connect (OSTI)

Los Alamos National Laboratory (LANL) is subject to annual emissions reporting requirements for regulated air pollutants under Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73 (20.2.73 NMAC), Notice of Intent and Emissions Inventory Requirements. The applicability of the requirements is based on the Laboratory’s potential to emit 100 tons per year of suspended particulate matter, nitrogen oxides, carbon monoxide, sulfur oxides, or volatile organic compounds. Additionally, on April 30, 2004, LANL was issued a Title V Operating Permit from the New Mexico Environment Department/Air Quality Bureau, under 20.2.70 NMAC. This permit was modified and reissued on July 16, 2007. This Title V Operating Permit (Permit No. P-100M2) includes emission limits and operating limits for all regulated sources of air pollution at LANL. The Title V Operating Permit also requires semiannual emissions reporting for all sources included in the permit. This report summarizes both the annual emissions inventory reporting and the semiannual emissions reporting for LANL for calendar year 2008. LANL’s 2008 emissions are well below the emission limits in the Title V Operating Permit.

Ecology and Air Quality Group

2009-10-01T23:59:59.000Z

467

Emissions Inventory Report Summary for Los Alamos National Laboratory for Calendar Year 2009  

SciTech Connect (OSTI)

Los Alamos National Laboratory (LANL) is subject to annual emissions reporting requirements for regulated air pollutants under Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73 (20.2.73 NMAC), Notice of Intent and Emissions Inventory Requirements. The applicability of the requirements is based on the Laboratory's potential to emit 100 tons per year of suspended particulate matter, nitrogen oxides, carbon monoxide, sulfur oxides, or volatile organic compounds. Additionally, on April 30, 2004, LANL was issued a Title V Operating Permit from the New Mexico Environment Department/Air Quality Bureau, under 20.2.70 NMAC. This permit was modified and reissued on July 16, 2007. This Title V Operating Permit (Permit No. P-100M2) includes emission limits and operating limits for all regulated sources of air pollution at LANL. The Title V Operating Permit also requires semiannual emissions reporting for all sources included in the permit. This report summarizes both the annual emissions inventory reporting and the semiannual emissions reporting for LANL for calendar year 2009. LANL's 2009 emissions are well below the emission limits in the Title V Operating Permit.

Environmental Stewardship Group

2010-10-01T23:59:59.000Z

468

Emissions Inventory Report Summary for Los Alamos National Laboratory for Calendar Year 2006  

SciTech Connect (OSTI)

Los Alamos National Laboratory (LANL) is subject to annual emissions reporting requirements for regulated air pollutants under Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73 (20.2.73 NMAC), Notice of Intent and Emissions Inventory Requirements. The applicability of the requirements is based on the Laboratory's potential to emit 100 tons per year of suspended particulate matter, nitrogen oxides, carbon monoxide, sulfur oxides, or volatile organic compounds. Additionally, on April 30, 2004, LANL was issued a Title V Operating Permit from the New Mexico Environment Department, Air Quality Bureau, under 20.2.70 NMAC. Modification Number 1 to this Title V Operating Permit was issued on June 15, 2006 (Permit No P-100M1) and includes emission limits and operating limits for all regulated sources of air pollution at LANL. The Title V Operating Permit also requires semi-annual emissions reporting for all sources included in the permit. This report summarizes both the annual emissions inventory reporting and the semi-annual emissions reporting for LANL for calendar year 2006. LANL's 2006 emissions are well below the emission limits in the Title V Operating Permit.

Ecology and Air Quality Group

2007-09-28T23:59:59.000Z

469

4, 507532, 2004 Emission uncertainty  

E-Print Network [OSTI]

and Physics Discussions Impact of different emission inventories on simulated tropospheric ozone over China The importance of emission inventory uncertainty on the simulation of summertime tro- pospheric Ozone over China has been analyzed using a regional chemical transport model. Three independent emissions inventories

Boyer, Edmond

470

5, 94059445, 2005 Methane emissions  

E-Print Network [OSTI]

ACPD 5, 9405­9445, 2005 Methane emissions from SCIAMACHY observations J. F. Meirink et al. Title and Physics Discussions Sensitivity analysis of methane emissions derived from SCIAMACHY observations through, 9405­9445, 2005 Methane emissions from SCIAMACHY observations J. F. Meirink et al. Title Page Abstract

Paris-Sud XI, Université de

471

5, 243270, 2008 Methane emissions  

E-Print Network [OSTI]

BGD 5, 243­270, 2008 Methane emissions from plant biomass I. Vigano et al. Title Page Abstract and temperature on the emission of methane from plant biomass and structural components I. Vigano 1 , H. van.roeckmann@phys.uu.nl) 243 #12;BGD 5, 243­270, 2008 Methane emissions from plant biomass I. Vigano et al. Title Page Abstract

Paris-Sud XI, Université de

472

6, 68416852, 2006 Methane emission  

E-Print Network [OSTI]

ACPD 6, 6841­6852, 2006 Methane emission from savanna grasses E. Sanhueza and L. Donoso Title Page Chemistry and Physics Discussions Methane emission from tropical savanna Trachypogon sp. grasses E. Sanhueza;ACPD 6, 6841­6852, 2006 Methane emission from savanna grasses E. Sanhueza and L. Donoso Title Page

Boyer, Edmond

473

Coronal emission lines as thermometers  

E-Print Network [OSTI]

Coronal emission line intensities are commonly used to measure electron temperatures using emission measure and/or line ratio methods. In the presence of systematic errors in atomic excitation calculations and data noise, the information on underlying temperature distributions is fundamentally limited. Increasing the number of emission lines used does not necessarily improve the ability to discriminate between different kinds of temperature distributions.

Judge, Philip G

2009-01-01T23:59:59.000Z

474

A Highly Reactive Mononuclear Non-Heme Manganese(IV)?Oxo Complex That Can Activate the Strong C?H Bonds of Alkanes  

SciTech Connect (OSTI)

A mononuclear non-heme manganese(IV)-oxo complex has been synthesized and characterized using various spectroscopic methods. The Mn(IV)-oxo complex shows high reactivity in oxidation reactions, such as C-H bond activation, oxidations of olefins, alcohols, sulfides, and aromatic compounds, and N-dealkylation. In C-H bond activation, the Mn(IV)-oxo complex can activate C-H bonds as strong as those in cyclohexane. It is proposed that C-H bond activation by the non-heme Mn(IV)-oxo complex does not occur via an oxygen-rebound mechanism. The electrophilic character of the non-heme Mn(IV)-oxo complex is demonstrated by a large negative {rho} value of {approx}4.4 in the oxidation of para-substituted thioanisoles.

Wu, Xiujuan; Seo, Mi Sook; Davis, Katherine M.; Lee, Yong-Min; Chen, Junying; Cho, Kyung-Bin; Pushkar, Yulia N.; Nam, Wonwoo (Ewha); (Purdue)

2012-03-15T23:59:59.000Z

475

In-Cylinder Fuel Blending of Gasoline/Diesel for Improved Efficiency and Lowest Possible Emissions on a Multi-Cylinder Light-Duty Diesel Engine  

SciTech Connect (OSTI)

In-cylinder fuel blending of gasoline/diesel fuel is investigated on a multi-cylinder light-duty diesel engine as a potential strategy to control in-cylinder fuel reactivity for improved efficiency and lowest possible emissions. This approach was developed and demonstrated at the University of Wisconsin through modeling and single-cylinder engine experiments. The objective of this study is to better understand the potential and challenges of this method on a multi-cylinder engine. More specifically, the effect of cylinder-to-cylinder imbalances, heat rejection, and in-cylinder charge motion as well as the potential limitations imposed by real-world turbo-machinery were investigated on a 1.9-liter four-cylinder engine. This investigation focused on one engine condition, 2300 rpm, 4.2 bar brake mean effective pressure (BMEP). Gasoline was introduced with a port-fuel-injection system. Parameter sweeps included gasoline-to-diesel fuel ratio, intake air mixture temperature, in-cylinder swirl number, and diesel start-of-injection phasing. In addition, engine parameters were trimmed for each cylinder to balance the combustion process for maximum efficiency and lowest emissions. An important observation was the strong influence of intake charge temperature on cylinder pressure rise rate. Experiments were able to show increased thermal efficiency along with dramatic decreases in oxides of nitrogen (NOX) and particulate matter (PM). However, indicated thermal efficiency for the multi-cylinder experiments were less than expected based on modeling and single-cylinder results. The lower indicated thermal efficiency is believed to be due increased heat transfer as compared to the model predictions and suggest a need for improved cylinder-to-cylinder control and increased heat transfer control.

Curran, Scott [ORNL] [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL; Wagner, Robert M [ORNL] [ORNL; Parks, II, James E [ORNL; Cho, Kukwon [ORNL] [ORNL; Sluder, Scott [ORNL] [ORNL; Kokjohn, Sage [University of Wisconsin, Madison] [University of Wisconsin, Madison; Reitz, Rolf [University of Wisconsin] [University of Wisconsin

2010-01-01T23:59:59.000Z

476

Fast-regenerable sulfur dioxide adsorbents for diesel engine emission control  

DOE Patents [OSTI]

Disclosed herein are sorbents and devices for controlling sulfur oxides emissions as well as systems including such sorbents and devices. Also disclosed are methods for making and using the disclosed sorbents, devices and systems. In one embodiment the disclosed sorbents can be conveniently regenerated, such as under normal exhaust stream from a combustion engine, particularly a diesel engine. Accordingly, also disclosed are combustion vehicles equipped with sulfur dioxide emission control devices.

Li, Liyu [Richland, WA; King, David L [Richland, WA

2011-03-15T23:59:59.000Z

477

Gas Turbine Emissions  

E-Print Network [OSTI]

technology developers and electric utilities will share emissions reductions in the coming era of pollution allowance trading is becoming prominent on the agendas of strategic planners at technology vendors and the electric power industry ??? ? (1...., "Authority to Construct for Badger Creek Limited," Kern County Air Pollution Control District, Bakersfield.. Ca., June 20, 1989. 3) Wark, K. and Warner, C. F., Air Pollution - Its Origin and Control, Harper and Row, New York, New York, 1976, pp. 453...

Frederick, J. D.

478

Analysis of Emission Shapes  

E-Print Network [OSTI]

Shapes of relative emission sources can be accessed by expanding shapes of correlations at low relative velocities in pair center of mass in Cartesian harmonics. Coefficients of expansion for correlations are related to the respective coefficients of expansion for the sources through one dimensional integral transforms involving properties of pair relative wavefunctions. The methodology is illustrated with analyses of NA49 and PHENIX correlation data.

P. Danielewicz

2007-07-03T23:59:59.000Z

479

Analysis of Emission Shapes  

E-Print Network [OSTI]

Shapes of relative emission sources can be accessed by expanding shapes of correlations at low relative velocities in pair center of mass in Cartesian harmonics. Coefficients of expansion for correlations are related to the respective coefficients of expansion for the sources through one dimensional integral transforms involving properties of pair relative wavefunctions. The methodology is illustrated with analyses of NA49 and PHENIX correlation data.

Danielewicz, P

2007-01-01T23:59:59.000Z

480

Oxidation of zirconium alloys in 2.5 kPa water vapor for tritium readiness.  

SciTech Connect (OSTI)

A more reactive liner material is needed for use as liner and cruciform material in tritium producing burnable absorber rods (TPBAR) in commercial light water nuclear reactors (CLWR). The function of these components is to convert any water that is released from the Li-6 enriched lithium aluminate breeder material to oxide and hydrogen that can be gettered, thus minimizing the permeation of tritium into the reactor coolant. Fourteen zirconium alloys were exposed to 2.5 kPa water vapor in a helium stream at 300 C over a period of up to 35 days. Experimental alloys with aluminum, yttrium, vanadium, titanium, and scandium, some of which also included ternaries with nickel, were included along with a high nitrogen impurity alloy and the commercial alloy Zircaloy-2. They displayed a reactivity range of almost 500, with Zircaloy-2 being the least reactive.

Mills, Bernice E.

2007-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxide emissions reactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.