National Library of Energy BETA

Sample records for oxide emission caps

  1. EIA - Greenhouse Gas Emissions - Nitrous Oxide Emissions

    Gasoline and Diesel Fuel Update (EIA)

    4. Nitrous Oxide Emissions 4.1 Total emissions U.S. nitrous oxide emissions in 2009 were 4 MMTCO2e (1.7 percent) below their 2008 total (Table 22). Sources of U.S. nitrous oxide emissions include agriculture, energy use, industrial processes, and waste management (Figure 22). The largest source is agriculture (73 percent), and the majority of agricultural emissions result from nitrogen fertilization of agricultural soils (87 percent of the agriculture total) and management of animal waste (13

  2. The Role of Organic Capping Layers of Platinum Nanoparticles in Catalytic Activity of CO Oxidation

    SciTech Connect (OSTI)

    Park, Jeong Y.; Aliaga, Cesar; Renzas, J. Russell; Lee, Hyunjoo; Somorjai, Gabor A.

    2008-12-17

    We report the catalytic activity of colloid platinum nanoparticles synthesized with different organic capping layers. On the molecular scale, the porous organic layers have open spaces that permit the reactant and product molecules to reach the metal surface. We carried out CO oxidation on several platinum nanoparticle systems capped with various organic molecules to investigate the role of the capping agent on catalytic activity. Platinum colloid nanoparticles with four types of capping layer have been used: TTAB (Tetradecyltrimethylammonium Bromide), HDA (hexadecylamine), HDT (hexadecylthiol), and PVP (poly(vinylpyrrolidone)). The reactivity of the Pt nanoparticles varied by 30%, with higher activity on TTAB coated nanoparticles and lower activity on HDT, while the activation energy remained between 27-28 kcal/mol. In separate experiments, the organic capping layers were partially removed using ultraviolet light-ozone generation techniques, which resulted in increased catalytic activity due to the removal of some of the organic layers. These results indicate that the nature of chemical bonding between organic capping layers and nanoparticle surfaces plays a role in determining the catalytic activity of platinum colloid nanoparticles for carbon monoxide oxidation.

  3. Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Presents ...

  4. Effects of Diesel Exhaust Emissions on Soot Oxidation and DPF...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Exhaust Emissions on Soot Oxidation and DPF Regeneration Effects of Diesel Exhaust Emissions on Soot Oxidation and DPF Regeneration DPF regeneration experiments verified the ...

  5. Sulfur oxide adsorbents and emissions control

    DOE Patents [OSTI]

    Li, Liyu; King, David L.

    2006-12-26

    High capacity sulfur oxide absorbents utilizing manganese-based octahedral molecular sieve (Mn--OMS) materials are disclosed. An emissions reduction system for a combustion exhaust includes a scrubber 24 containing these high capacity sulfur oxide absorbents located upstream from a NOX filter 26 or particulate trap.

  6. Process for making surfactant capped metal oxide nanocrystals, and products produced by the process

    DOE Patents [OSTI]

    Alivisatos, A. Paul; Rockenberger, Joerg

    2006-01-10

    Disclosed is a process for making surfactant capped nanocrystals of metal oxides which are dispersable in organic solvents. The process comprises decomposing a metal cupferron complex of the formula MXCupX, wherein M is a metal, and Cup is a N-substituted N-Nitroso hydroxylamine, in the presence of a coordinating surfactant, the reaction being conducted at a temperature ranging from about 150 to about 400.degree. C., for a period of time sufficient to complete the reaction. Also disclosed are compounds made by the process.

  7. Effect of Organic Capping Layers over Monodisperse Platinum Nanoparticles upon Activity for Ethylene Hydrogenation and Carbon Monoxide Oxidation

    SciTech Connect (OSTI)

    Kuhn, John N.; Tsung, Chia-Kuang; Huang, Wenyu; Somorjai, Gabor A.

    2009-03-24

    The influence of oleylamine (OA), trimethyl tetradecyl ammonium bromide (TTAB), and polyvinlypyrrolidone (PVP) capping agents upon the catalytic properties of Pt/silica catalysts was evaluated. Pt nanoparticles that were 1.5 nm in size were synthesized by the same procedure (ethylene glycol reduction under basic conditions) with the various capping agents added afterward for stabilization. Before examining catalytic properties for ethylene hydrogenation and CO oxidation, the Pt NPs were deposited onto mesoporous silica (SBA-15) supports and characterized by transmission electron microscopy (TEM), H{sub 2} chemisorption, and elemental analysis (ICP-MS). PVP- and TTAB-capped Pt yielded mass-normalized reaction rates that decreased with increasing pretreatment temperature, and this trend was attributed to the partial coverage of the Pt surface with decomposition products from the organic capping agent. Once normalized to the Pt surface area, similar intrinsic activities were obtained regardless of the pretreatment temperature, which indicated no influence on the nature of the active sites. Consequently, a chemical probe technique using intrinsic activity for ethylene hydrogenation was demonstrated as an acceptable method for estimating the metallic surface areas of Pt. Amine (OA) capping exhibited a detrimental influence on the catalytic properties as severe deactivation and low activity were observed for ethylene hydrogenation and CO oxidation, respectively. These results were consistent with amine groups being strong poisons for Pt surfaces, and revealed the need to consider the effects of capping agents on the catalytic properties.

  8. Mn4+ emission in pyrochlore oxides

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Du, Mao-Hua

    2015-01-01

    For the existing Mn4+ activated red phosphors have relatively low emission energies (or long emission wavelengths) and are therefore inefficient for general lighting. Density functional calculations are performed to study Mn4+ emission in rare-earth hafnate, zirconate, and stannate pyrochlore oxides (RE2Hf2O7, RE2Zr2O7, and RE2Sn2O7). We show how the different sizes of the RE3+ cation in these pyrochlores affect the local structure of the distorted MnO6 octahedron, the Mn–O hybridization, and the Mn4+ emission energy. The Mn4+ emission energies of many pyrochlores are found to be higher than those currently known for Mn4+ doped oxides and should be closer to thatmore » of Y2O3:Eu3+ (the current commercial red phosphor for fluorescent lighting). The O–Mn–O bond angle distortion in a MnO6 octahedron is shown to play an important role in weakening Mn–O hybridization and consequently increasing the Mn4+ emission energy. Our result shows that searching for materials that allow significant O–Mn–O bond angle distortion in a MnO6 octahedron is an effective approach to find new Mn4+ activated red phosphors with potential to replace the relatively expensive Y2O3:Eu3+ phosphor.« less

  9. Nitric oxide emissions from engineered soil systems

    SciTech Connect (OSTI)

    Peirce, J.J.; Aneja, V.P.

    2000-03-01

    Sophisticated laboratory equipment and procedures are developed and used in controlled experiments to measure nitric oxide (NO) emissions ranging from 42 to 75 ng N/m{sup 2}{center_dot}s from sludge-amended soil of concern to environmental engineers because nitric oxide emitted to the troposphere is a precursor to troublesome ozone formation and also of concern to agricultural engineers because valuable nitrogen as fertilizer is lost from the soil. Water-filled pore space is confirmed to be of critical importance to NO flux, and the upper layers of soil are determined to contribute the larger portion of the NO fluxing from the soil to the troposphere. More than 42% of the total NO flux comes from the top 1 cm of soil, with NO contributions decreasing exponentially with soil depth and very little if any tropospheric NO contributed from soil at a depth of 20 cm or greater. The results are discussed in terms of microbiological, chemical, and soil transport processes that influence NO flux from sludge-amended soil.

  10. Electricity price impacts of alternative Greenhouse gas emission cap-and-trade programs

    SciTech Connect (OSTI)

    Edelston, Bruce; Armstrong, Dave; Kirsch, Laurence D.; Morey, Mathew J.

    2009-07-15

    Limits on greenhouse gas emissions would raise the prices of the goods and services that require such emissions for their production, including electricity. Looking at a variety of emission limit cases and scenarios for selling or allocating allowances to load-serving entities, the authors estimate how the burden of greenhouse gas limits are likely to be distributed among electricity consumers in different states. (author)

  11. Oxidation preventative capping layer for deep-ultra-violet and soft x-ray multilayers

    DOE Patents [OSTI]

    Prisbrey, Shon T.

    2004-07-06

    The invention uses iridium and iridium compounds as a protective capping layer on multilayers having reflectivity in the deep ultra-violet to soft x-ray regime. The iridium compounds can be formed in one of two ways: by direct deposition of the iridium compound from a prepared target or by depositing a thin layer (e.g., 5-50 angstroms) of iridium directly onto an element. The deposition energy of the incoming iridium is sufficient to activate the formation of the desired iridium compound. The compounds of most interest are iridium silicide (IrSi.sub.x) and iridium molybdenide (IrMo.sub.x).

  12. Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalysts | Department of Energy Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Presents latest progress in the development of a new type of lean NOx trapping catalyst based on heterogenous composite nanowires, which could potentially be used in gasoline and diesel engines. deer11_gao.pdf (4.18 MB) More Documents & Publications Three-Dimensional Composite

  13. Evaluation of Partial Oxidation Reformer Emissions

    SciTech Connect (OSTI)

    Unnasch, Stefan; Fable, Scott; Waterland, Larry

    2006-01-06

    In this study, a gasoline fuel processor and an ethanol fuel processor were operated under conditions simulating both startup and normal operation. Emissions were measured before and after the AGB in order to quantify the effectiveness of the burner catalyst in controlling emissions. The emissions sampling system includes CEM for O2, CO2, CO, NOx, and THC. Also, integrated gas samples are collected in evacuated canisters for hydrocarbon speciation analysis via GC. This analysis yields the concentrations of the hydrocarbon species required for the California NMOG calculation. The PM concentration in the anode burner exhaust was measured through the placement of a filter in the exhaust stream. The emissions from vehicles with fully developed on board reformer systems were estimated.

  14. Air Dispersion Modeling for the INL Application for a Synthetic Minor Sitewide Air Quality Permit to Construct with a Facility Emission Cap Component

    SciTech Connect (OSTI)

    Sondrup, Andrus Jeffrey

    2015-10-01

    The Department of Energy Idaho Operations Office (DOE-ID) is applying for a synthetic minor, Sitewide, air quality permit to construct (PTC) with a facility emission cap (FEC) component from the Idaho Department of Environmental Quality (DEQ) for Idaho National Laboratory (INL) to limit its potential to emit to less than major facility limits for criteria air pollutants (CAPs) and hazardous air pollutants (HAPs) regulated under the Clean Air Act. This document is supplied as an appendix to the application, Idaho National Laboratory Application for a Synthetic Minor Sitewide Air Quality Permit to Construct with a Facility Emissions Cap Component, hereafter referred to as “permit application” (DOE-ID 2015). Air dispersion modeling was performed as part of the permit application process to demonstrate pollutant emissions from the INL will not cause a violation of any ambient air quality standards. This report documents the modeling methodology and results for the air dispersion impact analysis. All CAPs regulated under Section 109 of the Clean Air Act were modeled with the exception of lead (Pb) and ozone, which are not required to be modeled by DEQ. Modeling was not performed for toxic air pollutants (TAPs) as uncontrolled emissions did not exceed screening emission levels for carcinogenic and non-carcinogenic TAPs. Modeling for CAPs was performed with the EPA approved AERMOD dispersion modeling system (Version 14134) (EPA 2004a) and five years (2000-2004) of meteorological data. The meteorological data set was produced with the companion AERMET model (Version 14134) (EPA 2004b) using surface data from the Idaho Falls airport, and upper-air data from Boise International Airport supplied by DEQ. Onsite meteorological data from the Grid 3 Mesonet tower located near the center of the INL (north of INTEC) and supplied by the local National Oceanic and Atmospheric Administration (NOAA) office was used for surface wind directions and wind speeds. Surface data (i

  15. Reporting central tendencies of chamber measured surface emission and oxidation

    SciTech Connect (OSTI)

    Abichou, Tarek; Clark, Jeremy; Chanton, Jeffery

    2011-05-15

    Methane emissions, concentrations, and oxidation were measured on eleven MSW landfills in eleven states spanning from California to Pennsylvania during the three year study. The flux measurements were performed using a static chamber technique. Initial concentration samples were collected immediately after placement of the flux chamber. Oxidation of the emitted methane was evaluated using stable isotope techniques. When reporting overall surface emissions and percent oxidation for a landfill cover, central tendencies are typically used to report 'averages' of the collected data. The objective of this study was to determine the best way to determine and report central tendencies. Results showed that 89% of the data sets of collected surface flux have lognormal distributions, 83% of the surface concentration data sets are also lognormal. Sixty seven percent (67%) of the isotope measured percent oxidation data sets are normally distributed. The distribution of data for all eleven landfills provides insight of the central tendencies of emissions, concentrations, and percent oxidation. When reporting the 'average' measurement for both flux and concentration data collected at the surface of a landfill, statistical analyses provided insight supporting the use of the geometric mean. But the arithmetic mean can accurately represent the percent oxidation, as measured with the stable isotope technique. We examined correlations between surface CH{sub 4} emissions and surface air CH{sub 4} concentrations. Correlation of the concentration and flux values using the geometric mean proved to be a good fit (R{sup 2} = 0.86), indicating that surface scans are a good way of identifying locations of high emissions.

  16. Robust Nitrogen Oxide/Ammonia Sensors for Vehicle On-board Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Robust Nitrogen OxideAmmonia Sensors for Vehicle On-board Emissions Control Robust Nitrogen OxideAmmonia Sensors for Vehicle On-board Emissions Control 2012 DOE Hydrogen and Fuel ...

  17. Effects of Diesel Exhaust Emissions on Soot Oxidation and DPF Regeneration

    Broader source: Energy.gov [DOE]

    DPF regeneration experiments verified the effects of NO2 and O2 emissions found from the thermogravimetric analyzer soot oxidation.

  18. Mn4+ emission in pyrochlore oxides

    SciTech Connect (OSTI)

    Du, Mao-Hua

    2015-01-01

    For the existing Mn4+ activated red phosphors have relatively low emission energies (or long emission wavelengths) and are therefore inefficient for general lighting. Density functional calculations are performed to study Mn4+ emission in rare-earth hafnate, zirconate, and stannate pyrochlore oxides (RE2Hf2O7, RE2Zr2O7, and RE2Sn2O7). We show how the different sizes of the RE3+ cation in these pyrochlores affect the local structure of the distorted MnO6 octahedron, the Mn–O hybridization, and the Mn4+ emission energy. The Mn4+ emission energies of many pyrochlores are found to be higher than those currently known for Mn4+ doped oxides and should be closer to that of Y2O3:Eu3+ (the current commercial red phosphor for fluorescent lighting). The O–Mn–O bond angle distortion in a MnO6 octahedron is shown to play an important role in weakening Mn–O hybridization and consequently increasing the Mn4+ emission energy. Our result shows that searching for materials that allow significant O–Mn–O bond angle distortion in a MnO6 octahedron is an effective approach to find new Mn4+ activated red phosphors with potential to replace the relatively expensive Y2O3:Eu3+ phosphor.

  19. Reduction of Nitrogen Oxide Emissions for lean Burn Engine Technology

    SciTech Connect (OSTI)

    McGill, R.N.

    1998-08-04

    Lean-burn engines offer the potential for significant fuel economy improvements in cars and trucks, perhaps the next great breakthrough in automotive technology that will enable greater savings in imported petroleum. The development of lean-burn engines, however, has been an elusive goal among automakers because of the emissions challenges associated with lead-burn engine technology. Presently, cars operate with sophisticated emissions control systems that require the engine's air-fuel ratio to be carefully controlled around the stoichiometric point (chemically correct mixture). Catalysts in these systems are called "three-way" catalysts because they can reduce hydrocarbon, carbon monoxide, and nitrogen oxide emissions simultaneously, but only because of the tight control of the air-fuel ratio. The purpose of this cooperative effort is to develop advanced catalyst systems, materials, and necessary engine control algorithms for reducing NOX emissions in oxygen-rich automotive exhaust (as with lean-burn engine technology) to meet current and near-future mandated Clean Air Act standards. These developments will represent a breakthrough in both emission control technology and automobile efficiency. The total project is a joint effort among five national laboratories, together with US CAR. The role of Lockheed-Martin Energy Systems in the total project is two fold: characterization of catalyst performance through laboratory evaluations from bench-scale flow reactor tests to engine laboratory tests of full-scale prototype catalysts, and microstructural characterization of catalyst material before and after test stand and/or engine testing.

  20. Table 11.4 Nitrous Oxide Emissions, 1980-2009 (Thousand Metric Tons of Nitrous Oxide)

    U.S. Energy Information Administration (EIA) Indexed Site

    Nitrous Oxide Emissions, 1980-2009 (Thousand Metric Tons of Nitrous Oxide) Year Energy Sources Waste Management Agricultural Sources Industrial Processes 3 Total Mobile Combustion 1 Stationary Combustion 2 Total Waste Combustion Human Sewage in Wastewater Total Nitrogen Fertilization of Soils Crop Residue Burning Solid Waste of Domesticated Animals Total 1980 60 44 104 1 10 11 364 1 75 440 88 642 1981 63 44 106 1 10 11 364 2 74 440 84 641 1982 67 42 108 1 10 11 339 2 74 414 80 614 1983 71 43 114

  1. Low-Temperature Hydrocarbon/CO Oxidation Catalysis in Support of HCCI Emission Control

    Broader source: Energy.gov [DOE]

    Development of catalyst materials to facilitate the low-temperature oxidation of hydrocarbons and CO in homogeneous charge compression ignition (HCCI) emissions.

  2. Rotary regenerative catalytic oxidizer for VOC emission control

    SciTech Connect (OSTI)

    Fu, J.C.; Chen, J.M.

    1998-12-31

    Thermal or catalytic oxidation has been widely accepted in industries as one of the most effective technologies for the control of VOC emissions. To reduce energy cost, this technology normally incorporates heat exchanger to recover waste heat from hot combustion exhaust. Among various heat recovery methods, it is known that the regenerative system has the highest thermal efficiency (> 90%). The normal regenerative heat exchanger design is to use ceramic heat sink material packed in a fixed-bed configuration to capture excess heat from outgoing hot combustion exhaust and use it later to preheat incoming cold VOC laden gas stream by periodically switching gas streams using valves. This paper presents a novel design of the regenerative catalytic oxidizer. This design uses a honeycomb rotor with discrete parallel channels as the heat transfer media on which catalyst is coated to promote oxidation reaction. Heat recovery of this unit is accomplished by rotating the rotor between cold and hot flow streams. The thermal efficiency of the unit can be controlled by the rotation speed. Because it can rotate between hot and cold streams at higher rate than that can be achieved by valve switching, the rotary regenerative catalytic oxidizer uses much less heat transfer media than that is normally required for the fixed-bed design for the same thermal efficiency. This leads to a more compact and less costly unit design. The continuous rotation mechanism also eliminates the pressure fluctuation that is experienced by the fixed-bed design using valves for flow switching. The advantages of this new design are demonstrated by the data collected from a laboratory scale test unit.

  3. Temperature estimates from the zircaloy oxidation kinetics in the. cap alpha. plus. beta. phase region. [PWR; BWR

    SciTech Connect (OSTI)

    Olsen, C.S.

    1981-01-01

    Oxidation rates of zircaloy in steam were measured at temperatures between 961 and 1264 K and for duration times between 25 and 1900 seconds in order to calculate, in conjunction with measurements from postirradiation metallographic examination, the prior peak temperatures of zircaloy fuel rod cladding. These temperature estimates will be used in light water reactor research programs to assess (a) the accuracy of temperature measurements of fuel rod cladding peak temperatures from thermocouples attached to the surface during loss-of-coolant experiments (LOCEs), (b) the perturbation of the fuel rod cladding LOCE temperature history caused by the presence of thermocouples, and (c) the measurements of cladding azimuthal temperature gradients near thermocouple locations.

  4. Experimental estimation of oxidation-induced Si atoms emission on Si(001) surfaces

    SciTech Connect (OSTI)

    Ogawa, Shuichi Tang, Jiayi; Takakuwa, Yuji

    2015-08-15

    Kinetics of Si atoms emission during the oxidation of Si(001) surfaces have been investigated using reflection high energy electron diffraction combined with Auger electron spectroscopy. The area ratio of the 1 × 2 and the 2 × 1 domains on a clean Si(001) surface changed with the oxidation of the surface by Langmuir-type adsorption. This change in the domain ratio is attributed to the emission of Si atoms. We can describe the changes in the domain ratio using the Si emission kinetics model, which states that (1) the emission rate is proportional to the oxide coverage, and (2) the emitted Si atoms migrate on the surface and are trapped at S{sub B} steps. Based on our model, we find experimentally that up to 0.4 ML of Si atoms are emitted during the oxidation of a Si(001) surface at 576 °C.

  5. Temperature estimates from the Zircaloy oxidation kinetics in the. cap alpha. plus. beta. phase region. [PWR; BWR

    SciTech Connect (OSTI)

    Olsen, C.S.

    1981-01-01

    Oxidation rates of Zircaloy in steam were measured at temperatures between 961 and 1264 K and for duration times between 25 and 1900 seconds in order to calculate, in conjunction with measurements from postirradiation metallographic examination, the prior peak temperatures of Zircaloy fuel rod cladding. These temperature estimates will be used in light water reactor research programs to assess (a) the accuracy of temperature measurements of fuel rod cladding peak temperatures from thermocouples attached to the surface during loss-of-coolant experiments (LOCEs), (b) the perturbation of the fuel rod cladding LOCE temperature history caused by the presence of thermocouples, and (c) the measurements of cladding azimuthal temperature gradients near the thermocouple locations.

  6. Effectiveness of Diesel Oxidation Catalyst in Reducing HC and CO Emissions from Reactivity Controlled Compression Ignition

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y; Curran, Scott; Parks, II, James E; Wagner, Robert M

    2013-01-01

    Reactivity Controlled Compression Ignition (RCCI) has been shown to allow for diesel-like or better brake thermal efficiency with significant reductions in nitrogen oxide (NOX) particulate matter (PM) emissions. Hydrocarbon (HC) and carbon monoxide (CO) emission levels, on the other hand, are similar to those of port fuel injected gasoline engines. The higher HC and CO emissions combined with the lower exhaust temperatures with RCCI operation present a challenge for current exhaust aftertreatments. The reduction of HC and CO emissions in a lean environment is typically achieved with an oxidation catalyst. In this work, several diesel oxidation catalysts (DOC) with different precious metal loadings were evaluated for effectiveness to control HC and CO emissions from RCCI combustion in a light-duty multi-cylinder engine operating on gasoline and diesel fuels. Each catalyst was evaluated in a steady-state engine operation with temperatures ranging from 160 to 260 C. A shift to a higher light-off temperature was observed during the RCCI operation. In addition to the steady-state experiments, the performances of the DOCs were evaluated during multi-mode engine operation by switching from diesel-like combustion at higher exhaust temperature and low HC/CO emissions to RCCI combustion at lower temperature and higher HC/CO emissions. High CO and HC emissions from RCCI generated an exotherm keeping the catalyst above the light-off temperature.

  7. Reducing Nitrogen Oxide Emissions: 1996 Compliance with Title IV Limits

    Reports and Publications (EIA)

    1998-01-01

    The purpose of this article is to summarize the existing federal nitrogen oxide (Nox) regulations and the 1996 performance of the 239 Title IV generating units. It also reviews the basics of low-Nox burner technology and presents cost and performance data for retrofits at Title IV units.

  8. Nitrous oxide and methane emissions and nitrous oxide isotopic composition from waste incineration in Switzerland

    SciTech Connect (OSTI)

    Harris, Eliza; Zeyer, Kerstin; Kegel, Rainer; Müller, Beat; Emmenegger, Lukas; Mohn, Joachim

    2015-01-15

    Highlights: • N{sub 2}O emissions from waste incineration with SNCR NO{sub x} removal are 51.5 ± 10.6 g t{sup −1}. • This is significantly lower than the reported Swiss emission factor of 120 g t{sup −1} (FOEN, 2013). • N{sub 2}O contributes <0.3% and ≈2.5% of GHG emissions from SCR and SNCR plants. • Measured isotopic SP of 17.7‰ is likely characteristic for N{sub 2}O emissions from SNCR. • CH{sub 4} emitted by waste incineration is negligible, contributing <0.01% to total GHGs. - Abstract: Solid waste incineration accounts for a growing proportion of waste disposal in both developed and developing countries, therefore it is important to constrain emissions of greenhouse gases from these facilities. At five Swiss waste incineration facilities with grate firing, emission factors for N{sub 2}O and CH{sub 4} were determined based on measurements of representative flue gas samples, which were collected in Tedlar bags over a one year period (September 2010–August 2011) and analysed with FTIR spectroscopy. All five plants burn a mixture of household and industrial waste, and two of the plants employ NO{sub x} removal through selective non-catalytic reduction (SNCR) while three plants use selective catalytic reduction (SCR) for NO{sub x} removal. N{sub 2}O emissions from incineration plants with NO{sub x} removal through selective catalytic reduction were 4.3 ± 4.0 g N{sub 2}O tonne{sup −1} waste (wet) (hereafter abbreviated as t{sup −1}) (0.4 ± 0.4 g N{sub 2}O GJ{sup −1}), ten times lower than from plants with selective non-catalytic reduction (51.5 ± 10.6 g N{sub 2}O t{sup −1}; 4.5 ± 0.9 g N{sub 2}O GJ{sup −1}). These emission factors, which are much lower than the value of 120 g N{sub 2}O t{sup −1} (10.4 g N{sub 2}O GJ{sup −1}) used in the 2013 Swiss national greenhouse gas emission inventory, have been implemented in the most recent Swiss emission inventory. In addition, the isotopic composition of N{sub 2}O emitted from the two

  9. Combustion process and nitrogen oxides emission of Shenmu coal added with sodium acetate

    SciTech Connect (OSTI)

    Yang Weijuan; Zhou Junhu; Liu Maosheng; Zhou Zhijun; Liu Jianzhong; Cen Kefa

    2007-09-15

    Shenmu bituminous coal with 4% sodium acetate added was used to investigate the characteristics of combustion and nitrogen oxide (NOx) release in a fixed bed reactor heated by a tube furnace. The composition of the flue gas was analyzed to investigate the effects of sodium acetate on the combustion process and NOx emission. The experiments were carried out in a partial reductive atmosphere and a strong oxidative atmosphere. The O{sub 2} valley value in the partial reductive atmosphere was reduced by the added sodium acetate. Sodium acetate accelerated the combustion and shortened the combustion process. The experimental results showed that the emissions of NO, NO{sub 2}, and N{sub 2}O were affected by the reacting atmosphere and the combustion temperature. In the strong oxidative atmosphere, sodium acetate resulted in a slight NOx reduction. In the partial reductive atmosphere, sodium acetate reduced both the peak value of NO concentration and the total NO emission significantly. An over 30% NOx reduction efficiency was achieved at 900{sup o}C in the partial reductive atmosphere, which decreased with the increase in temperature. Sodium acetate was decomposed into hydrocarbon radicals and sodium hydroxide, which can both reduce NOx emissions due to their special reactions with the nitrogen component. 17 refs., 11 figs., 2 tabs.

  10. Comparison of a regenerative thermal oxidizer to a rotary concentrator for gravure printer ketone emissions

    SciTech Connect (OSTI)

    Blocki, S.W.

    1996-12-31

    A large gravure printer was faced with choosing a control system to reduce ketone emissions. The volume of exhaust air requiring treatment was very large, making any system expensive to operate. The large system magnified the need to find the most cost-effective system including capital cost, operating cost, and periodic replacement cost. Future expandability and very high efficiency were required. Several proven control technologies were evaluated, including a recuperative oxidizer, a catalytic oxidizer, a stand-alone regenerative oxidizer, a rotary solvent concentrator, and a solvent recovery system. The most cost-effective system meeting the destruction requirements was achieved by integrating two technologies - a rotary solvent concentrator following by a small regenerative thermal oxidizer - into one unique and very flexible system. Operating costs used to evaluate each option are presented. Destruction and removal efficiency of the final system is presented. 3 figs., 4 tabs.

  11. Incorporating Wind Generation in Cap and Trade Programs

    SciTech Connect (OSTI)

    Bluestein, J.; Salerno, E.; Bird, L.; Vimmerstedt, L.

    2006-07-01

    Cap and trade programs are increasingly being used to reduce emissions from electricity generation in the United States. Cap and trade programs primarily target emitting generators, but programs have also included renewable generators, such as wind generators. States cite several reasons why they have considered the policy option of including renewable generators in cap and trade programs: to provide an incentive for lower-emitting generation, to achieve emissions reductions in non-capped pollutants, and to gain local economic benefits associated with renewable energy projects. The U.S. Environmental Protection Agency also notes these rationales for considering this policy alternative, and the National Association of Regulatory Commissioners (NARUC) passed a resolution supporting the inclusion of renewable energy in cap and trade programs. This report explores why states consider this policy option, what participation could mean for wind generators, and how wind generation can most effectively be included in state, federal, and regional cap and trade programs.

  12. TV picture-tube manufacturer uses regenerative catalytic oxidizer to reduce VOC emissions

    SciTech Connect (OSTI)

    1995-11-01

    Toshiba Display Services, a television picture-tube manufacturer in Horseheads, NY, recently was able to meet stringent state regulations to reduce emissions from two of its film applications lines by installing a regenerative catalytic oxidation system. Toshiba officials initially evaluated several technologies to control volatile organic compounds. After deciding that oxidation was the best technology for its facility, the company invited a number of suppliers to submit proposals. Because all of the oxidation technologies considered by Toshiba had the capability to achieve the destruction and removal efficiency requirement, the company combined the second and third decision elements and conducted an in-depth comparison of the initial capital and ongoing operating costs for each proposal. Officials narrowed the field to two systems--the lowest-cost regenerative thermal oxidation system on the market and a regenerative catalytic oxidation system. The company selected St. Louis, Mo.-based Monsanto Enviro-Chem Systems Inc., to install its DynaCycle{reg_sign} regenerative catalytic oxidation system, marking the first Dyna-Cycle installation in a US television picture-tube facility.

  13. Relating adatom emission to improved durability of Pt-Pd diesel oxidation catalysts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Johns, Tyne Richele; Goeke, Ronald S.; Ashbacher, Valerie; Thune, Peter C.; Niemantsverdriet, J. W.; Kiefer, Boris; Kim, Chang H.; Balogh, Michael P.; Datye, Abhaya K.

    2015-06-05

    Sintering of nanoparticles is an important contributor to loss of activity in heterogeneous catalysts, such as those used for controlling harmful emissions from automobiles. But mechanistic details, such as the rates of atom emission or the nature of the mobile species, remain poorly understood. Herein we report a novel approach that allows direct measurement of atom emission from nanoparticles. We use model catalyst samples and a novel reactor that allows the same region of the sample to be observed after short-term heat treatments (seconds) under conditions relevant to diesel oxidation catalysts (DOCs). Monometallic Pd is very stable and does notmore » sinter when heated in air (T ≤ 800 °C). Pt sinters readily in air, and at high temperatures (≥800 °C) mobile Pt species emitted to the vapor phase cause the formation of large, faceted particles. In Pt–Pd nanoparticles, Pd slows the rate of emission of atoms to the vapor phase due to the formation of an alloy. However, the role of Pd in Pt DOCs in air is quite complex: at low temperatures, Pt enhances the rate of Pd sintering (which otherwise would be stable as an oxide), while at higher temperature Pd helps to slow the rate of Pt sintering. DFT calculations show that the barrier for atom emission to the vapor phase is much greater than the barrier for emitting atoms to the support. Thus, vapor-phase transport becomes significant only at high temperatures while diffusion of adatoms on the support dominates at lower temperatures.« less

  14. Relating adatom emission to improved durability of Pt-Pd diesel oxidation catalysts

    SciTech Connect (OSTI)

    Johns, Tyne Richele; Goeke, Ronald S.; Ashbacher, Valerie; Thune, Peter C.; Niemantsverdriet, J. W.; Kiefer, Boris; Kim, Chang H.; Balogh, Michael P.; Datye, Abhaya K.

    2015-06-05

    Sintering of nanoparticles is an important contributor to loss of activity in heterogeneous catalysts, such as those used for controlling harmful emissions from automobiles. But mechanistic details, such as the rates of atom emission or the nature of the mobile species, remain poorly understood. Herein we report a novel approach that allows direct measurement of atom emission from nanoparticles. We use model catalyst samples and a novel reactor that allows the same region of the sample to be observed after short-term heat treatments (seconds) under conditions relevant to diesel oxidation catalysts (DOCs). Monometallic Pd is very stable and does not sinter when heated in air (T ≤ 800 °C). Pt sinters readily in air, and at high temperatures (≥800 °C) mobile Pt species emitted to the vapor phase cause the formation of large, faceted particles. In Pt–Pd nanoparticles, Pd slows the rate of emission of atoms to the vapor phase due to the formation of an alloy. However, the role of Pd in Pt DOCs in air is quite complex: at low temperatures, Pt enhances the rate of Pd sintering (which otherwise would be stable as an oxide), while at higher temperature Pd helps to slow the rate of Pt sintering. DFT calculations show that the barrier for atom emission to the vapor phase is much greater than the barrier for emitting atoms to the support. Thus, vapor-phase transport becomes significant only at high temperatures while diffusion of adatoms on the support dominates at lower temperatures.

  15. CENTRIFUGE END CAP

    DOE Patents [OSTI]

    Beams, J.W.; Snoddy, L.B.

    1960-08-01

    An end cap for ultra-gas centrifuges is designed to impart or remove angular momentum to or from the gas and to bring the entering gas to the temperature of the gas inside the centrifuge. The end cap is provided with slots or fins for adjusting the temperature and the angular momentum of the entering gas to the temperature and momentum of the gas in the centrifuge and is constructed to introduce both the inner and the peripheral stream into the centrifuge.

  16. Photoluminescence emission at room temperature in zinc oxide nano-columns

    SciTech Connect (OSTI)

    Rocha, L.S.R.; Deus, R.C.; Foschini, C.R.; Simes, A.Z.

    2014-02-01

    Highlights: ZnO nanoparticles were obtained by microwave-hydrothermal method. X-ray diffraction reveals a hexagonal structure. Photoluminescence emission evidenced two absorption peaks, at around 480 nm and 590 nm wavelengths. - Abstract: Hydrothermal microwave method (HTMW) was used to synthesize crystalline zinc oxide (ZnO) nano-columns at the temperature of 120 C with a soaking time of 8 min. ZnO nano-columns were characterized by using X-ray analyses (XRD), infrared spectroscopy (FT-IR), thermogravimetric analyses (TG-DTA), field emission gun and transmission electron microscopy (FEG-SEM and TEM) and photoluminescence properties (PL). XRD results indicated that the ZnO nano-columns are free of any impurity phase and crystallize in the hexagonal structure. Typical FT-IR spectra for ZnO nano-columns presented well defined bands, indicating a substantial short-range order in the system. PL spectra consist of a broad band at 590 nm and narrow band at 480 nm corresponding to a near-band edge emission related to the recombination of excitons and level emission related to structural defects. These results show that the HTMW synthesis route is rapid, cost effective, and could be used as an alternative to obtain ZnO nano-columns in the temperature of 120 C for 8 min.

  17. Nitrogen oxides emission control options for coal-fired electric utility boilers

    SciTech Connect (OSTI)

    Ravi K. Srivastava; Robert E. Hall; Sikander Khan; Kevin Culligan; Bruce W. Lani

    2005-09-01

    Recent regulations have required reductions in emissions of nitrogen oxides (NOx) from electric utility boilers. To comply with these regulatory requirements, it is increasingly important to implement state-of-the-art NOx control technologies on coal-fired utility boilers. This paper reviews NOx control options for these boilers. It discusses the established commercial primary and secondary control technologies and examines what is being done to use them more effectively. Furthermore, the paper discusses recent developments in NOx controls. The popular primary control technologies in use in the United States are low-NOx burners and overfire air. Data reflect that average NOx reductions for specific primary controls have ranged from 35% to 63% from 1995 emissions levels. The secondary NOx control technologies applied on U.S. coal-fired utility boilers include reburning, selective noncatalytic reduction (SNCR), and selective catalytic reduction (SCR). Thirty-six U.S. coal-fired utility boilers have installed SNCR, and reported NOx reductions achieved at these applications ranged from 15% to 66%. Recently, SCR has been installed at 150 U.S. coal-fired utility boilers. Data on the performance of 20 SCR systems operating in the United States with low-NOx emissions reflect that in 2003, these units achieved NOx emission rates between 0.04 and 0.07 lb/106 Btu. 106 refs., 6 figs., 6 tabs.

  18. MINIMIZING NET CO2 EMISSIONS BY OXIDATIVE CO-PYROLYSIS OF COAL / BIOMASS BLENDS

    SciTech Connect (OSTI)

    Todd Lang; Robert Hurt

    2001-12-23

    This study presents a set of thermodynamic calculations on the optimal mode of solid fuel utilization considering a wide range of fuel types and processing technologies. The technologies include stand-alone combustion, biomass/coal cofiring, oxidative pyrolysis, and straight carbonization with no energy recovery but with elemental carbon storage. The results show that the thermodynamically optimal way to process solid fuels depends strongly on the specific fuels and technologies available, the local demand for heat or for electricity, and the local baseline energy-production method. Burning renewable fuels reduces anthropogenic CO{sub 2} emissions as widely recognized. In certain cases, however, other processing methods are equally or more effective, including the simple carbonization or oxidative pyrolysis of biomass fuels.

  19. Oxidation catalyst systems for emission control of LPG-powered forklift trucks

    SciTech Connect (OSTI)

    Majewski, W.A.; Martin, E.P.; Pietrasz, E.

    1994-10-01

    An oxidation catalyst was installed on an industrial LPG-powered forklift truck. For high conversion efficiency in an oxidation system on a rich burning engine a secondary air supply to the catalyst is necessary. Two simple and cost-effective ways of secondary air supply were tested: an air valve and a venturi type injector. The amount of secondary air supplied by both devices was measured under a variety of conditions - different engine speed, load and exhaust system pressure. Carbon monoxide emissions and the catalyst performance were measured and evaluated in terms of the secondary air flow. Advantages and drawbacks of the air valve and venturi injector systems are discussed and compared. 1 refs., 11 figs., 3 tabs.

  20. MINIMIZING NET CARBON DIOXIDE EMISSIONS BY OXIDATIVE CO-PYROLYSIS OF COAL/BIOMASS BLENDS

    SciTech Connect (OSTI)

    Robert Hurt; Todd Lang

    2001-06-25

    Solid fuels vary significantly with respect to the amount of CO{sub 2} directly produced per unit heating value. Elemental carbon is notably worse than other solid fuels in this regard, and since carbon (char) is an intermediate product of the combustion of almost all solid fuels, there is an opportunity to reduce specific CO{sub 2} emissions by reconfiguring processes to avoid char combustion wholly or in part. The primary goal of this one-year Innovative Concepts project is to make a fundamental thermodynamic assessment of three modes of solid fuel use: (1) combustion, (2) carbonization, and (3) oxidative pyrolysis, for a wide range of coal and alternative solid fuels. This period a large set of thermodynamic calculations were carried out to assess the potential of the three processes. The results show that the net carbon dioxide emissions and the relative ranking of the different processes depends greatly on the particular baseline fossil fuel being displaced by the new technology. As an example, in a baseline natural gas environment, it is thermodynamically more advantageous to carbonize biomass than to combust it, and even more advantageous to oxidatively pyrolyze the biomass.

  1. Fundamental Study of the Oxidation Characteristics and Pollutant Emissions of Model Biodiesel Fuels

    SciTech Connect (OSTI)

    Feng, Q.; Wang, Y. L.; Egolfopoulos, Fokion N.; Tsotsis, T. T.

    2010-07-18

    In this study, the oxidation characteristics of biodiesel fuels are investigated with the goal of contributing toward the fundamental understanding of their combustion characteristics and evaluating the effect of using these alternative fuels on engine performance as well as on the environment. The focus of the study is on pure fatty acid methyl-esters (FAME,) that can serve as surrogate compounds for real biodiesels. The experiments are conducted in the stagnation-flow configuration, which allows for the systematic evaluation of fundamental combustion and emission characteristics. In this paper, the focus is primarily on the pollutant emission characteristics of two C{sub 4} FAMEs, namely, methyl-butanoate and methyl-crotonate, whose behavior is compared with that of n-butane and n-pentane. To provide insight into the mechanisms of pollutant formation for these fuels, the experimental data are compared with computed results using a model with consistent C1-C4 oxidation and NOx formation kinetics.

  2. ZERO EMISSION POWER PLANTS USING SOLID OXIDE FUEL CELLS AND OXYGEN TRANSPORT MEMBRANES

    SciTech Connect (OSTI)

    G. Maxwell Christie; Troy M. Raybold

    2003-06-10

    Over 16,700 hours of operational experience was gained for the Oxygen Transport Membrane (OTM) elements of the proposed SOFC/OTM zero-emission power generation concept. It was repeatedly demonstrated that OTMs with no additional oxidation catalysts were able to completely oxidize the remaining depleted fuel in a simulated SOFC anode exhaust at an O{sub 2} flux that met initial targets. In such cases, neither residual CO nor H{sub 2} were detected to the limits of the gas chromatograph (<10 ppm). Dried OTM afterburner exhaust streams contained up to 99.5% CO{sub 2}. Oxygen flux through modified OTMs was double or even triple that of the standard OTMs used for the majority of testing purposes. Both the standard and modified membranes in laboratory-scale and demonstration-sized formats exhibited stable performance over extended periods (2300 to 3500 hours or 3 to 5 months). Reactor contaminants, were determined to negatively impact OTM performance stability. A method of preventing OTM performance degradation was developed and proven to be effective. Information concerning OTM and seal reliability over extended periods and through various chemical and thermal shocks and cycles was also obtained. These findings were used to develop several conceptual designs for pilot (10 kWe) and commercial-scale (250 kWe) SOFC/OTM zero emission power generation systems.

  3. Emissivity of Candidate Materials for VHTR Applicationbs: Role of Oxidation and Surface Modification Treatments

    SciTech Connect (OSTI)

    Sridharan, Kumar; Allen, Todd; Anderson, Mark; Cao, Guoping; Kulcinski, Gerald

    2011-07-25

    The Generation IV (GEN IV) Nuclear Energy Systems Initiative was instituted by the Department of Energy (DOE) with the goal of researching and developing technologies and materials necessary for various types of future reactors. These GEN IV reactors will employ advanced fuel cycles, passive safety systems, and other innovative systems, leading to significant differences between these future reactors and current water-cooled reactors. The leading candidate for the Next Generation Nuclear Plant (NGNP) to be built at Idaho National Lab (INL) in the United States is the Very High Temperature Reactor (VHTR). Due to the high operating temperatures of the VHTR, the Reactor Pressure Vessel (RPV) will partially rely on heat transfer by radiation for cooling. Heat expulsion by radiation will become all the more important during high temperature excursions during off-normal accident scenarios. Radiant power is dictated by emissivity, a material property. The NGNP Materials Research and Development Program Plan [1] has identified emissivity and the effects of high temperature oxide formation on emissivity as an area of research towards the development of the VHTR.

  4. Oxidation-reduction and the major type of ionic disorder in. cap alpha. -Al/sub 2/O/sub 3/

    SciTech Connect (OSTI)

    Kroger, F.A.

    1983-10-01

    The oxidation-reduction constants of Al/sub 2/O/sub 3/:Ti and Al/sub 2/O/sub 3/ are derived from experimental data on the basis of models with aluminum vacancies or oxygen interstitials as dominant species. Reasonable agreement between the experimental values of the enthalpies involved and published theoretical values are found in both cases. Combination with the enthalpies of oxidation determined from acceptor-doped Al/sub 2/O/sub 3/ leads to values of the enthalpy of disorder for the four possible mechanisms. All agree equally well with computed values. Published microstructure studies point to Frenkel disorder of oxygen as the dominant ionic disorder mechanism. Empirical potentials used in theoretical computations appear to be preferable to nonempirical ones, at least for computations related to oxygen defects.

  5. Neutron Emission Characteristics of Two Mixed-Oxide Fuels: Simulations and Initial Experiments

    SciTech Connect (OSTI)

    D. L. Chichester; S. A. Pozzi; J. L. Dolan; M. Flaska; J. T. Johnson; E. H. Seabury; E. M. Gantz

    2009-07-01

    Simulations and experiments have been carried out to investigate the neutron emission characteristics of two mixed-oxide (MOX) fuels at Idaho National Laboratory (INL). These activities are part of a project studying advanced instrumentation techniques in support of the U.S. Department of Energy's Fuel Cycle Research and Development program and it's Materials Protection, Accounting, and Control for Transmutation (MPACT) campaign. This analysis used the MCNP-PoliMi Monte Carlo simulation tool to determine the relative strength and energy spectra of the different neutron source terms within these fuels, and then used this data to simulate the detection and measurement of these emissions using an array of liquid scintillator neutron spectrometers. These calculations accounted for neutrons generated from the spontaneous fission of the actinides in the MOX fuel as well as neutrons created via (alpha,n) reactions with oxygen in the MOX fuel. The analysis was carried out to allow for characterization of both neutron energy as well as neutron coincidences between multiple detectors. Coincidences between prompt gamma rays and neutrons were also analyzed. Experiments were performed at INL with the same materials used in the simulations to benchmark and begin validation tests of the simulations. Data was collected in these experiments using an array of four liquid scintillators and a high-speed waveform digitizer. Advanced digital pulse-shape discrimination algorithms were developed and used to collect this data. Results of the simulation and modeling studies are presented together with preliminary results from the experimental campaign.

  6. Zero Emission Power Plants Using Solid Oxide Fuel Cells and Oxygen Transport Membranes

    SciTech Connect (OSTI)

    Shockling, Larry A.; Huang, Keqin; Gilboy, Thomas E.; Christie, G. Maxwell; Raybold, Troy M.

    2001-11-06

    Siemens Westinghouse Power Corp. (SWPC) is engaged in the development of Solid Oxide Fuel Cell stationary power systems. SWPC has combined DOE Developmental funds with commercial customer funding to establish a record of successful SOFC field demonstration power systems of increasing size. SWPC will soon deploy the first unit of a newly developed 250 kWe Combined Heat Power System. It will generate electrical power at greater than 45% electrical efficiency. The SWPC SOFC power systems are equipped to operate on lower number hydrocarbon fuels such as pipeline natural gas, which is desulfurized within the SOFC power system. Because the system operates with a relatively high electrical efficiency, the CO2 emissions, {approx}1.0 lb CO2/ kW-hr, are low. Within the SOFC module the desulfurized fuel is utilized electrochemically and oxidized below the temperature for NOx generation. Therefore the NOx and SOx emissions for the SOFC power generation system are near negligible. The byproducts of the power generation from hydrocarbon fuels that are released into the environment are CO2 and water vapor. This forward looking DOE sponsored Vision 21 program is supporting the development of methods to capture and sequester the CO2, resulting in a Zero Emission power generation system. To accomplish this, SWPC is developing a SOFC module design, to be demonstrated in operating hardware, that will maintain separation of the fuel cell anode gas, consisting of H2, CO, H2O and CO2, from the vitiated air. That anode gas, the depleted fuel stream, containing less than 18% (H2 + CO), will be directed to an Oxygen Transport Membrane (OTM) Afterburner that is being developed by Praxair, Inc.. The OTM is supplied air and the depleted fuel. The OTM will selectively transport oxygen across the membrane to oxidize the remaining H2 and CO. The water vapor is then condensed from the totally 1.5.DOC oxidized fuel stream exiting the afterburner, leaving only the CO2 in gaseous form. That CO2 can

  7. Acoustic emission analysis on tensile failure of steam-side oxide scales formed on T22 alloy superheater tubes

    SciTech Connect (OSTI)

    Huang, Jun-Lin; Zhou, Ke-Yi Xu, Jian-Qun; Wang, Xin-Meng; Tu, Yi-You

    2014-07-28

    Failure of steam-side oxide scales on boiler tubes can seriously influence the safety of coal-fired power plants. Uniaxial tensile tests employing acoustic emission (AE) monitoring were performed, in this work, to investigate the failure behavior of steam-side oxide scales on T22 alloy boiler superheater tubes. The characteristic frequency spectra of the captured AE signals were obtained by performing fast Fourier transform. Three distinct peak frequency bands, 100-170, 175-250, and 280-390 kHz, encountered in different testing stages were identified in the frequency spectra, which were confirmed to, respectively, correspond to substrate plastic deformation, oxide vertical cracking, and oxide spalling with the aid of scanning electronic microscopy observations, and can thus be used for distinguishing different oxide failure mechanisms. Finally, the critical cracking strain of the oxide scale and the interfacial shear strength of the oxide/substrate interface were estimated, which are the critical parameters urgently desired for modeling the failure behavior of steam-side oxide scales on boiler tubes of coal-fired power plants.

  8. Current emission trends for nitrogen oxides, sulfur dioxide, and volatile organic compounds by month and state: Methodology and results

    SciTech Connect (OSTI)

    Kohout, E.J.; Miller, D.J.; Nieves, L.A.; Rothman, D.S.; Saricks, C.L.; Stodolsky, F.; Hanson, D.A.

    1990-08-01

    This report presents estimates of monthly sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), and nonmethane voltatile organic compound (VOC) emissions by sector, region, and state in the contiguous United States for the years 1975 through 1988. This work has been funded as part of the National Acid Precipitation Assessment Program`s Emissions and Controls Task Group by the US Department of Energy (DOE) Office of Fossil Energy (FE). The DOE project officer is Edward C. Trexler, DOE/FE Office of Planning and Environment.

  9. Current emission trends for nitrogen oxides, sulfur dioxide, and volatile organic compounds by month and state: Methodology and results

    SciTech Connect (OSTI)

    Kohout, E.J.; Miller, D.J.; Nieves, L.A.; Rothman, D.S.; Saricks, C.L.; Stodolsky, F.; Hanson, D.A.

    1990-08-01

    This report presents estimates of monthly sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), and nonmethane voltatile organic compound (VOC) emissions by sector, region, and state in the contiguous United States for the years 1975 through 1988. This work has been funded as part of the National Acid Precipitation Assessment Program's Emissions and Controls Task Group by the US Department of Energy (DOE) Office of Fossil Energy (FE). The DOE project officer is Edward C. Trexler, DOE/FE Office of Planning and Environment.

  10. ARM - Instrument - caps-pmex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentscaps-pmex Documentation CAPS-PMEX : Handbook ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Cavity Attenuated Phase Shift Extinction Monitor (CAPS-PMEX) Instrument Categories Airborne Observations, Aerosols The CAPS PMex monitor is a cavity attenuated phase shift extinction instrument. It operates as an optical extinction spectrometer, using a visible-light-emitting diode (LED) as the

  11. Effect of. cap alpha. -ketobutyrate on the metabolism of pyruvate and palmitate in isolated rat hepatocytes

    SciTech Connect (OSTI)

    Brass, E.P.

    1986-05-01

    Alpha-ketobutyrate (..cap alpha..KB), an intermediate in the catabolism of threonine and methionine, is decarboxylated to propionyl-CoA. The authors have reported that propionate (PROP) inhibits oxidative metabolism in rate hepatocytes. Based on these observations, the present study examined the effects of ..cap alpha..KB on pyruvate and palmitate metabolism in hepatocytes isolated from fed rats. Similar to PROP, ..cap alpha..KB (10mM) inhibited palmitate oxidation and this inhibition was diminished when 10mM carnitine (CN) was added (35 +/- 6% inhibition without CN, 22 +/- 8% with CN). ..cap alpha..KB inhibited the conversion of 3-/sup 14/C-pyruvate to glucose and CO/sub 2/. Inhibition of pyruvate metabolism by ..cap alpha..KB was concentration-dependent. At equal concentrations, ..cap alpha..KB inhibited pyruvate metabolism to a greater extent than PROP. Addition of CN partially reversed the effects of PROP on pyruvate metabolism, but not those of ..cap alpha..KB despite the generation of propionylcarnitine when ..cap alpha..KB and CN were included in the incubation. These results demonstrate that accumulation of ..cap alpha..KB can impair normal hepatocyte metabolism. While some of the effects of ..cap alpha..KB can be explained on the basis of propionyl-CoA formation, ..cap alpha..KB has effects on pyruvate metabolism not explainable by this mechanism.

  12. Nuclear waste vitrification efficiency: cold cap reactions

    SciTech Connect (OSTI)

    Hrma, Pavel R.; Kruger, Albert A.; Pokorny, Richard

    2012-12-15

    The cost and schedule of nuclear waste treatment and immobilization are greatly affected by the rate of glass production. Various factors influence the performance of a waste-glass melter. One of the most significant, and also one of the least understood, is the process of batch melting. Studies are being conducted to gain fundamental understanding of the batch reactions, particularly those that influence the rate of melting, and models are being developed to link batch makeup and melter operation to the melting rate. Batch melting takes place within the cold cap, i.e., a batch layer floating on the surface of molten glass. The conversion of batch to glass consists of various chemical reactions, phase transitions, and diffusion-controlled processes. These include water evaporation (slurry feed contains as high as 60% water), gas evolution, the melting of salts, the formation of borate melt, reactions of borate melt with molten salts and with amorphous oxides (Fe2O3 and Al2O3), the formation of intermediate crystalline phases, the formation of a continuous glass-forming melt, the growth and collapse of primary foam, and the dissolution of residual solids. To this list we also need to add the formation of secondary foam that originates from molten glass but accumulates on the bottom of the cold cap. This study presents relevant data obtained for a high-level-waste melter feed and introduces a one-dimensional (1D) mathematical model of the cold cap as a step toward an advanced three-dimensional (3D) version for a complete model of the waste glass melter. The 1D model describes the batch-to-glass conversion within the cold cap as it progresses in a vertical direction. With constitutive equations and key parameters based on measured data, and simplified boundary conditions on the cold-cap interfaces with the glass melt and the plenum space of the melter, the model provides sensitivity analysis of the response of the cold cap to the batch makeup and melter conditions

  13. NUCLEAR WASTE VITRIFICATION EFFICIENCY COLD CAP REACTIONS

    SciTech Connect (OSTI)

    KRUGER AA; HRMA PR; POKORNY R

    2011-07-29

    The cost and schedule of nuclear waste treatment and immobilization are greatly affected by the rate of glass production. Various factors influence the performance of a waste-glass melter. One of the most significant, and also one of the least understood, is the process of batch melting. Studies are being conducted to gain fundamental understanding of the batch reactions, particularly those that influence the rate of melting, and models are being developed to link batch makeup and melter operation to the melting rate. Batch melting takes place within the cold cap, i.e., a batch layer floating on the surface of molten glass. The conversion of batch to glass consists of various chemical reactions, phase transitions, and diffusion-controlled processes. These include water evaporation (slurry feed contains as high as 60% water), gas evolution, the melting of salts, the formation of borate melt, reactions of borate melt with molten salts and with amorphous oxides (Fe{sub 2}O{sub 3} and Al{sub 2}O{sub 3}), the formation of intermediate crystalline phases, the formation of a continuous glass-forming melt, the growth and collapse of primary foam, and the dissolution of residual solids. To this list we also need to add the formation of secondary foam that originates from molten glass but accumulates on the bottom of the cold cap. This study presents relevant data obtained for a high-level-waste melter feed and introduces a one-dimensional (1D) mathematical model of the cold cap as a step toward an advanced three-dimensional (3D) version for a complete model of the waste glass melter. The 1D model describes the batch-to-glass conversion within the cold cap as it progresses in a vertical direction. With constitutive equations and key parameters based on measured data, and simplified boundary conditions on the cold-cap interfaces with the glass melt and the plenum space of the melter, the model provides sensitivity analysis of the response of the cold cap to the batch makeup

  14. Controlling emissions from a black liquor fluidized bed evaporator (Copeland reactor) using a regenerative thermal oxidizer and a prefilter

    SciTech Connect (OSTI)

    Grzanka, R.

    1997-12-31

    This paper reports on an intriguing pilot project developed to control air emissions from a pulp mill. Testing is complete, and the results show favorable emissions reductions. Stone Container Corporation, REECO, NCASI, the Ohio DEP, and the US EPA, have all worked together and approved the installation of control equipment, for VOC and HAP emissions under Presumptive MACT, setting the standard for the Copeland Reactor process in a semi chem pulp mill. The equipment, once operational, will reduce VOC and CO emissions by greater than 90%. This installation will be done at one seventh the cost of the significant process modifications required to accomplish the same emission reduction. In addition, increased process operating efficiency will be achieved with the use of an energy recovery system. The process is a black liquor fluidized bed boiler, which is used to generate sodium carbonate from the black liquor. The vapor emissions were high in VOCs, CO and particulate. After much study and testing, a wet electrostatic precipitator was chosen as the filter system for particulate control, followed by a regenerative thermal oxidizer for VOC and HAP control, finally an air-to-air heat exchanger is being used to preheat the combustion air entering the process.

  15. Note: Ion-induced secondary electron emission from oxidized metal surfaces measured in a particle beam reactor

    SciTech Connect (OSTI)

    Marcak, Adrian; Corbella, Carles Keudell, Achim von; Arcos, Teresa de los

    2015-10-15

    The secondary electron emission of metals induced by slow ions is characterized in a beam chamber by means of two coaxial semi-cylindrical electrodes with different apertures. The voltages of the outer electrode (screening), inner electrode (collector), and sample holder (target) were set independently in order to measure the effective yield of potential and kinetic electron emissions during ion bombardment. Aluminum samples were exposed to quantified beams of argon ions up to 2000 eV and to oxygen atoms and molecules in order to mimic the plasma-surface interactions on metallic targets during reactive sputtering. The variation of electron emission yield was correlated to the ion energy and to the oxidation state of Al surfaces. This system provides reliable measurements of the electron yields in real time and is of great utility to explore the fundamental surface processes during target poisoning occurring in reactive magnetron sputtering applications.

  16. Emission

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emission intensities and line ratios from a fast neutral helium beam J-W. Ahn a͒ Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA D. Craig, b͒ G. Fiksel, and D. J. Den Hartog Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA and Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, Madison, Wisconsin 53706, USA J. K. Anderson Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA M. G.

  17. Reducing Emissions of Sulfur Dioxide, Nitrogen Oxides, and Mercury from Electric Power Plants

    Reports and Publications (EIA)

    2001-01-01

    This analysis responds to a request from Senators Bob Smith, George Voinovich, and Sam Brownback to examine the costs of specific multi-emission reduction strategies.

  18. CAP Program Guidance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CAP Program Guidance CAP Program Guidance In 2002, the Department of Energy signed an interagency agreement with the Department of Defense's Computer/Electronic Accommodations Program (CAP) program to provide assistive/adaptive technology free of charge to DOE employees with disabilities. The following information regarding CAP is being provided to assist federal employees, managers and on- site disability coordinators with the CAP application process. CAP Program Guidance (40.26 KB) Responsible

  19. Stuck fuel rod capping sleeve

    DOE Patents [OSTI]

    Gorscak, Donald A.; Maringo, John J.; Nilsen, Roy J.

    1988-01-01

    A stuck fuel rod capping sleeve to be used during derodding of spent fuel assemblies if a fuel rod becomes stuck in a partially withdrawn position and, thus, has to be severed. The capping sleeve has an inner sleeve made of a lower work hardening highly ductile material (e.g., Inconel 600) and an outer sleeve made of a moderately ductile material (e.g., 304 stainless steel). The inner sleeve may be made of an epoxy filler. The capping sleeve is placed on a fuel rod which is then severed by using a bolt cutter device. Upon cutting, the capping sleeve deforms in such a manner as to prevent the gross release of radioactive fuel material

  20. Demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide emissions from coal-fired boilers

    SciTech Connect (OSTI)

    Hardman, R.R.; Wilson, S.M. ); Smith, L.L.; Larsen, L. )

    1991-01-01

    This paper discusses the progress of a US Department of Energy Innovative Clean Coal Technology Project demonstrating advanced tangentially fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The primary objective of the demonstration is to determine the performance of four low NO{sub x} combustion technologies applied in a stepwise fashion to a 180 MW boiler. A target of achieving fifty percent NO{sub x} reduction has been established for the project. Details of the required instrumentation including acoustic pyrometers and continuous emissions and monitoring systems are given. Results from a 1/12 scale model of the demonstration boiler outfitted with the retrofit technology are presented. Finally, preliminary baseline results are presented. 4 figs.

  1. Emissions of nitrogen oxides from US urban areas: estimation from Ozone Monitoring Instrument retrievals for 2005-2014

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lu, Z.; Streets, D. G.; de Foy, B.; Lamsal, L. N.; Duncan, B. N.; Xing, J.

    2015-05-28

    Satellite remote sensing of tropospheric nitrogen dioxide (NO2) can provide valuable information for estimating surface nitrogen oxides (NOx) emissions. Using an exponentially-modified Gaussian (EMG) method and taking into account the effect of wind on observed NO2 distributions, we estimate three-year moving-average emissions of summertime NOx from 35 US urban areas directly from NO2 retrievals of the Ozone Monitoring Instrument (OMI) during 2005–2014. Following the conclusions of previous studies that the EMG method provides robust and accurate emission estimates under strong-wind conditions, we derive top-down NOx emissions from each urban area by applying the EMG method to OMI data with windmore » speeds greater than 3–5 m s-1. Meanwhile, we find that OMI NO2 observations under weak-wind conditions (i.e., < 3 m s-1) are qualitatively better correlated with the surface NOx source strength in comparison to all-wind OMI maps; and therefore we use them to calculate the satellite-observed NO2 burdens of urban areas and compare with NOx emission estimates. The EMG results show that OMI-derived NOx emissions are highly correlated (R > 0.93) with weak-wind OMI NO2 burdens as well as bottom-up NOx emission estimates over 35 urban areas, implying a linear response of the OMI observations to surface emissions under weak-wind conditions. The simultaneous, EMG-obtained, effective NO2 lifetimes (~3.5 ± 1.3 h), however, are biased low in comparison to the summertime NO2 chemical lifetimes. In general, isolated urban areas with NOx emission intensities greater than ~ 2 Mg h-1 produce statistically significant weak-wind signals in three-year average OMI data. From 2005 to 2014, we estimate that total OMI-derived NOx emissions over all selected US urban areas decreased by 49%, consistent with reductions of 43, 47, 49, and 44% in the total bottom-up NOx emissions, the sum of weak-wind OMI NO2 columns, the total weak-wind OMI NO2 burdens, and the averaged NO2 concentrations

  2. Low-Temperature Hydrocarbon/CO Oxidation Catalysis in Support of HCCI Emission Control

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  3. Greenhouse gas emissions trading in U.S. States: observations and lessons from the OTC NOx Budget Program

    SciTech Connect (OSTI)

    Andrew Aulisi; Alexander E. Farrell; Jonathan Pershing; Stacy VanDeveer

    2005-07-01

    A number of U.S. states are considering market-based policies to reduce emissions of greenhouse gases (GHGs). The experience gained from emissions trading for sulfur dioxide and oxides of nitrogen (NOx) offers a useful body of information and data to draw on to design a GHG emissions trading system. This report examines NOx trading under the Ozone Transport Commission (OTC) NOx Budget Program, which resulted principally from the leadership, decisions, and actions by a group of states, ultimately becoming the first multilateral cap-and-trade system for emissions of air pollutants. 72 refs.

  4. Power Plant Emission Reductions Using a Generation Performance Standard

    Reports and Publications (EIA)

    2001-01-01

    In an earlier analysis completed in response to a request received from Representative David McIntosh, Chairman of the Subcommittee on National Economic Growth, Natural Resources, and Regulatory Affairs, the Energy Information Administration analyzed the impacts of power sector caps on nitrogen oxides, sulfur dioxide, and carbon dioxide emissions, assuming a policy instrument patterned after the sulfur dioxide allowance program created in the Clean Air Act Amendments of 1990. This paper compares the results of that work with the results of an analysis that assumes the use of a dynamic generation performance standard as an instrument for reducing carbon dioxide emissions.

  5. Metallic nanoparticle shape and size effects on aluminum oxide-induced enhancement of exciton-plasmon coupling and quantum dot emission

    SciTech Connect (OSTI)

    Wing, Waylin J.; Sadeghi, Seyed M. Gutha, Rithvik R.; Campbell, Quinn; Mao, Chuanbin

    2015-09-28

    We investigate the shape and size effects of gold metallic nanoparticles on the enhancement of exciton-plasmon coupling and emission of semiconductor quantum dots induced via the simultaneous impact of metal-oxide and plasmonic effects. This enhancement occurs when metallic nanoparticle arrays are separated from the quantum dots by a layered thin film consisting of a high index dielectric material (silicon) and aluminum oxide. Our results show that adding the aluminum oxide layer can increase the degree of polarization of quantum dot emission induced by metallic nanorods by nearly two times, when these nanorods have large aspect ratios. We show when the aspect ratio of these nanorods is reduced to half, the aluminum oxide loses its impact, leading to no improvement in the degree of polarization. These results suggest that a silicon/aluminum oxide layer can significantly enhance exciton-plasmon coupling when quantum dots are in the vicinity of metallic nanoantennas with high aspect ratios.

  6. Modeling global atmospheric CO2 with improved emission inventories and CO2 production from the oxidation of other carbon species

    SciTech Connect (OSTI)

    Nassar, Ray; Jones, DBA; Suntharalingam, P; Chen, j.; Andres, Robert Joseph; Wecht, K. J.; Yantosca, R. M.; Kulawik, SS; Bowman, K; Worden, JR; Machida, T; Matsueda, H

    2010-01-01

    The use of global three-dimensional (3-D) models with satellite observations of CO2 in inverse modeling studies is an area of growing importance for understanding Earth s carbon cycle. Here we use the GEOS-Chem model (version 8-02-01) CO2 mode with multiple modifications in order to assess their impact on CO2 forward simulations. Modifications include CO2 surface emissions from shipping (0.19 PgC yr 1), 3-D spatially-distributed emissions from aviation (0.16 PgC yr 1), and 3-D chemical production of CO2 (1.05 PgC yr 1). Although CO2 chemical production from the oxidation of CO, CH4 and other carbon gases is recognized as an important contribution to global CO2, it is typically accounted for by conversion from its precursors at the surface rather than in the free troposphere. We base our model 3-D spatial distribution of CO2 chemical production on monthly-averaged loss rates of CO (a key precursor and intermediate in the oxidation of organic carbon) and apply an associated surface correction for inventories that have counted emissions of CO2 precursors as CO2. We also explore the benefit of assimilating satellite observations of CO into GEOS-Chem to obtain an observation-based estimate of the CO2 chemical source. The CO assimilation corrects for an underestimate of atmospheric CO abundances in the model, resulting in increases of as much as 24% in the chemical source during May June 2006, and increasing the global annual estimate of CO2 chemical production from 1.05 to 1.18 Pg C. Comparisons of model CO2 with measurements are carried out in order to investigate the spatial and temporal distributions that result when these new sources are added. Inclusion of CO2 emissions from shipping and aviation are shown to increase the global CO2 latitudinal gradient by just over 0.10 ppm (3%), while the inclusion of CO2 chemical production (and the surface correction) is shown to decrease the latitudinal gradient by about 0.40 ppm (10%) with a complex spatial structure

  7. Low power zinc-oxide based charge trapping memory with embedded silicon nanoparticles via poole-frenkel hole emission

    SciTech Connect (OSTI)

    El-Atab, Nazek; Nayfeh, Ammar; Ozcan, Ayse; Alkis, Sabri; Okyay, Ali K.; Department of Electrical and Electronics Engineering, Bilkent University, 06800 Ankara

    2014-01-06

    A low power zinc-oxide (ZnO) charge trapping memory with embedded silicon (Si) nanoparticles is demonstrated. The charge trapping layer is formed by spin coating 2?nm silicon nanoparticles between Atomic Layer Deposited ZnO steps. The threshold voltage shift (?V{sub t}) vs. programming voltage is studied with and without the silicon nanoparticles. Applying ?1?V for 5?s at the gate of the memory with nanoparticles results in a ?V{sub t} of 3.4?V, and the memory window can be up to 8?V with an excellent retention characteristic (>10 yr). Without nanoparticles, at ?1?V programming voltage, the ?V{sub t} is negligible. In order to get ?V{sub t} of 3.4?V without nanoparticles, programming voltage in excess of 10?V is required. The negative voltage on the gate programs the memory indicating that holes are being trapped in the charge trapping layer. In addition, at 1?V the electric field across the 3.6?nm tunnel oxide is calculated to be 0.36 MV/cm, which is too small for significant tunneling. Moreover, the ?V{sub t} vs. electric field across the tunnel oxide shows square root dependence at low fields (E??2.7 MV/cm). This indicates that Poole-Frenkel Effect is the main mechanism for holes emission at low fields and Phonon Assisted Tunneling at higher fields.

  8. Influence of solid fuel on the carbon-monoxide and nitrogen-oxide emissions on sintering

    SciTech Connect (OSTI)

    M.F. Vitushchenko; N.L. Tatarkin; A.I. Kuznetsov; A.E. Vilkov

    2007-07-01

    Laboratory and industrial research now underway at the sintering plant of AO Mittal Steel Temirtau is focusing on the preparation of fuel of optimal granulometric composition, the replacement of coke fines, and the adaptation of fuel-input technology so as to reduce fuel consumption and toxic emissions without loss of sinter quality.

  9. Evaluating Renewable Portfolio Standards and Carbon Cap Scenarios in the U.S. Electric Sector

    SciTech Connect (OSTI)

    Bird, Lori; Chapman, Caroline; Logan, Jeff; Sumner, Jenny; Short, Walter

    2010-05-01

    This report examines the impact of various renewable portfolio standards (RPS) and cap-and-trade policy options on the U.S. electricity sector, focusing mainly on renewable energy generation. The analysis uses the National Renewable Energy Laboratory's Regional Energy Deployment System (ReEDS) model that simulates the least-cost expansion of electricity generation capacity and transmission in the United States to examine the impact of an emissions cap--similar to that proposed in the Waxman-Markey bill (H.R. 2454)--as well as lower and higher cap scenarios. It also examines the effects of combining various RPS targets with the emissions caps. The generation mix, carbon emissions, and electricity price are examined for various policy combinations to simulate the effect of implementing policies simultaneously.

  10. Oxide

    SciTech Connect (OSTI)

    2014-07-15

    Oxide is a modular framework for feature extraction and analysis of executable files. Oxide is useful in a variety of reverse engineering and categorization tasks relating to executable content.

  11. Removing mercury from coal emissions: options for ash-friendly technologies

    SciTech Connect (OSTI)

    Sager, J.

    2009-07-01

    The article gives a brief description of techniques to remove mercury emitted from coal-fired power plants and discusses environmental considerations associated with the effect of emission controls on coal fly ash. Techniques covered include use of injected mercury sorbents (activated carbon, metal oxide catalysts, MerCAP{trademark} and MercScreen{trademark}) and fuel cleaning. Technologies currently being researched are mentioned. 8 refs.

  12. Reduction of nitrogen oxide emissions from fossil fuels. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect (OSTI)

    1997-05-01

    The bibliography contains citations concerning the removal of nitrogen compounds from fossil fuels and their post-combustion emissions. Removal methods include biological denitrification, fluidized bed combustion, and flue gas denitrification. Applications to utilities, petroleum refineries, and other industries are presented. The design of nitrogen control systems and process optimization are described. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  13. Reduction of nitrogen oxide emissions from fossil fuels. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect (OSTI)

    1996-01-01

    The bibliography contains citations concerning the removal of nitrogen compounds from fossil fuels and their post-combustion emissions. Removal methods include biological denitrification, fluidized bed combustion, and flue gas denitrification. Applications to utilities, petroleum refineries, and other industries are presented. The design of nitrogen control systems and process optimization are described. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  14. The regenerable trap oxidizer-An emission control technique for diesel engines

    SciTech Connect (OSTI)

    Abthoff, J.; Schuster, H.D.; Langer, H.J.; Loose, G.

    1985-01-01

    Daimler-Benz made an early start with the development of systems for the aftertreatment of the exhaust gas emitted by diesel engines. The more important limiting conditions could best be met by the provision of a ceramic, selfcleaning trap oxidizer (TO). In such filters, self-regeneration is effected continuously while driving without any external control. Either partial or complete regeneration is effected, depending on the temperature, oxygen content and rate of flow of the exhaust gas, the amount of soot in the filter and the period for which a given operating condition is maintained. Such a trap oxidizer was developed for a 3.0 liter turbocharged diesel engine to the extent necessary for series production and has been fitted to type 300 SD and 300 D turbocharged diesel of model year 1985 in California.

  15. Optimized capping layers for EUV multilayers

    DOE Patents [OSTI]

    Bajt, Sasa; Folta, James A.; Spiller, Eberhard A.

    2004-08-24

    A new capping multilayer structure for EUV-reflective Mo/Si multilayers consists of two layers: A top layer that protects the multilayer structure from the environment and a bottom layer that acts as a diffusion barrier between the top layer and the structure beneath. One embodiment combines a first layer of Ru with a second layer of B.sub.4 C. Another embodiment combines a first layer of Ru with a second layer of Mo. These embodiments have the additional advantage that the reflectivity is also enhanced. Ru has the best oxidation resistance of all materials investigated so far. B.sub.4 C is an excellent barrier against silicide formation while the silicide layer formed at the Si boundary is well controlled.

  16. Enhancement in light emission and electrical efficiencies of a silicon nanocrystal light-emitting diode by indium tin oxide nanowires

    SciTech Connect (OSTI)

    Huh, Chul, E-mail: chuh@etri.re.kr; Kim, Bong Kyu; Ahn, Chang-Geun; Kim, Sang-Hyeob [IT Convergence Technology Research Laboratory, Electronics and Telecommunications Research Institute, Daejeon 305-350 (Korea, Republic of); Choi, Chel-Jong [Department of BIN Fusion Technology, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2014-07-21

    We report an enhancement in light emission and electrical efficiencies of a Si nanocrystal (NC) light-emitting diode (LED) by employing indium tin oxide (ITO) nanowires (NWs). The formed ITO NWs (diameter?

  17. Emissions of nitrogen oxides from US urban areas: estimation from Ozone Monitoring Instrument retrievals for 2005-2014

    SciTech Connect (OSTI)

    Lu, Z.; Streets, D. G.; de Foy, B.; Lamsal, L. N.; Duncan, B. N.; Xing, J.

    2015-05-28

    Satellite remote sensing of tropospheric nitrogen dioxide (NO2) can provide valuable information for estimating surface nitrogen oxides (NOx) emissions. Using an exponentially-modified Gaussian (EMG) method and taking into account the effect of wind on observed NO2 distributions, we estimate three-year moving-average emissions of summertime NOx from 35 US urban areas directly from NO2 retrievals of the Ozone Monitoring Instrument (OMI) during 2005–2014. Following the conclusions of previous studies that the EMG method provides robust and accurate emission estimates under strong-wind conditions, we derive top-down NOx emissions from each urban area by applying the EMG method to OMI data with wind speeds greater than 3–5 m s-1. Meanwhile, we find that OMI NO2 observations under weak-wind conditions (i.e., < 3 m s-1) are qualitatively better correlated with the surface NOx source strength in comparison to all-wind OMI maps; and therefore we use them to calculate the satellite-observed NO2 burdens of urban areas and compare with NOx emission estimates. The EMG results show that OMI-derived NOx emissions are highly correlated (R > 0.93) with weak-wind OMI NO2 burdens as well as bottom-up NOx emission estimates over 35 urban areas, implying a linear response of the OMI observations to surface emissions under weak-wind conditions. The simultaneous, EMG-obtained, effective NO2 lifetimes (~3.5 ± 1.3 h), however, are biased low in comparison to the summertime NO2 chemical lifetimes. In general, isolated urban areas with NOx emission intensities greater than ~ 2 Mg h-1 produce statistically significant weak-wind signals in three-year average OMI data. From 2005 to 2014, we estimate that total OMI

  18. Long-Term Engineered Cap Performance

    Broader source: Energy.gov [DOE]

    Summary Notes from 22 July 2008 Generic Technical Issue Discussion on Long-Term Engineered Cap Performance

  19. Response of fine particulate matter to emission changes of oxides of nitrogen and anthropogenic volatile organic compounds in the eastern United States

    SciTech Connect (OSTI)

    Alexandra P. Tsimpidi; Vlassis A. Karydis; Spyros N. Pandis

    2008-11-15

    A three-dimensional chemical transport model (Particulate Matter Comprehensive Air Quality Model with Extensions) is used to investigate changes in fine particle (PM2.5) concentrations in response to 50% emissions changes of oxides of nitrogen (NOx) and anthropogenic volatile organic compounds (VOCs) during July 2001 and January 2002 in the eastern United States. The reduction of NOx emissions by 50% during the summer results in lower average oxidant levels and lowers PM2.5 (8% on average), mainly because of reductions of sulfate (9-11%), nitrate (45-58%), and ammonium (7-11%). The organic particulate matter (PM) slightly decreases in rural areas, whereas it increases in cities by a few percent when NOx is reduced. Reduction of NOx during winter causes an increase of the oxidant levels and a rather complicated response of the PM components, leading to small net changes. Sulfate increases (8-17%), nitrate decreases (18-42%), organic PM slightly increases, and ammonium either increases or decreases a little. The reduction of VOC emissions during the summer causes on average a small increase of the oxidant levels and a marginal increase in PM2.5. This small net change is due to increases in the inorganic components and decreases of the organic ones. Reduction of VOC emissions during winter results in a decrease of the oxidant levels and a 5-10% reduction of PM2.5 because of reductions in nitrate (4-19%), ammonium (4-10%), organic PM (12-14%), and small reductions in sulfate. Although sulfur dioxide (SO{sub 2}) reduction is the single most effective approach for sulfate control, the coupled decrease of SO{sub 2} and NOx emissions in both seasons is more effective in reducing total PM2.5 mass than the SO{sub 2} reduction alone. 34 refs., 7 figs., 1 tab.

  20. HIGH EFFICIENCY, LOW EMISSIONS, SOLID OXIDE FUEL CELL SYSTEMS FOR MULTIPLE APPLICATIONS

    SciTech Connect (OSTI)

    Sara Ward; Michael A. Petrik

    2004-07-28

    Technology Management Inc. (TMI), teamed with the Ohio Office of Energy Efficiency and Renewable Energy, has engineered, constructed, and demonstrated a stationary, low power, multi-module solid oxide fuel cell (SOFC) prototype system operating on propane and natural gas. Under Phase I, TMI successfully operated two systems in parallel, in conjunction with a single DC-AC inverter and battery bus, and produced net AC electricity. Phase II testing expanded to include alternative and renewable fuels typically available in rural regions of Ohio. The commercial system is expected to have ultra-low pollution, high efficiency, and low noise. The TMI SOFC uses a solid ceramic electrolyte operating at high temperature (800-1000 C) which electrochemically converts gaseous fuels (hydrogen or mixed gases) and oxygen into electricity. The TMI system design oxidizes fuel primarily via electrochemical reactions and uses no burners (which pollute and consume fuel)--resulting in extremely clean exhaust. The use of proprietary sulfur tolerant materials developed by TMI allows system operation without additional fuel pre-processing or sulfur removal. Further, the combination of high operating temperatures and solid state operation increases the potential for higher reliability and efficiencies compared to other types of fuel cells. Applications for the TMI SOFC system cover a wide range of transportation, building, industrial, and military market sectors. A generic technology, fuel cells have the potential to be embodied into multiple products specific to Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) program areas including: Fuel Cells and Microturbines, School Buildings, Transportation, and Bioenergy. This program focused on low power stationary applications using a multi-module system operating on a range of common fuels. By producing clean electricity more efficiently (thus using less fuel), fuel cells have the triple effect of cleaning up the

  1. Modeling analyses of the effects of changes in nitrogen oxides emissions from the electric power sector on ozone levels in the eastern United States

    SciTech Connect (OSTI)

    Edith Gego; Alice Gilliland; James Godowitch

    2008-04-15

    In this paper, we examine the changes in ambient ozone concentrations simulated by the Community Multiscale Air Quality (CMAQ) model for summer 2002 under three different nitrogen oxides (NOx) emission scenarios. Two emission scenarios represent best estimates of 2002 and 2004 emissions; they allow assessment of the impact of the NOx emissions reductions imposed on the utility sector by the NOx State Implementation Plan (SIP) Call. The third scenario represents a hypothetical rendering of what NOx emissions would have been in 2002 if no emission controls had been imposed on the utility sector. Examination of the modeled median and 95th percentile daily maximum 8-hr average ozone concentrations reveals that median ozone levels estimated for the 2004 emission scenario were less than those modeled for 2002 in the region most affected by the NOx SIP Call. Comparison of the 'no-control' with the '2002' scenario revealed that ozone concentrations would have been much higher in much of the eastern United States if the utility sector had not implemented NOx emission controls; exceptions occurred in the immediate vicinity of major point sources where increased NO titration tends to lower ozone levels. 13 refs., 8 figs., 2 tabs.

  2. Pair creation above pulsar polar caps: geometrical structure and energetics of slot caps

    SciTech Connect (OSTI)

    Arons, J.

    1983-03-01

    A theory of pair creation over the polar caps of isolated, magnetized, rotating neutron stars with magnetic axis oblique to the rotation is developed, when steady, space charge limited flow occurs within a narrow polar flux tube bounded by regions of high conductivity and negligible flow. A quantitative calculation is given of the structure of the pair formation front which divides the low altitude, charge separated region of strong acceleration from the dense pair plasma flowing outward along the polar flux tube, including the structure and energetics of the slot gap formed between the pair plasma and the closed regions of the magnetosphere. Both the electron emission and the ion emission cases are incorporated in the electrodynamical theory. In short period objects with simple magnetic structure near the star, the particle acceleration power generated is found to be on the order of a few tenths of a percent of the total spin-down energy loss, more than enough to explain all the photon emission from the Crab and Vela pulsars. Most of this energy is generated in the slot gap. In dipole geometry, the energy is concentrated into two or three ''beams'' of accelerated particles with the regions of highest energy density filling only a small fraction of the polar flux tube. In long period objects with complex surface fields, the power generated in particle acceleration is comparable to the total spin-down energy loss rate, and is mostly created in the low altitude gap region between the star and the pair plasma. Some implications of this local particle acceleration theory for the beaming morphology of pulsars' photon emission are discussed, especially the possibility of observationally distinguishing the electron emission and the ion emission cases.

  3. Energy Market and Economic Impacts Proposal to Reduce Greenhouse Gas Intensity with a Cap and Trade System

    Reports and Publications (EIA)

    2007-01-01

    This report was prepared by the Energy Information Administration (EIA), in response to a September 27, 2006, request from Senators Bingaman, Landrieu, Murkowski, Specter, Salazar, and Lugar. The Senators requested that EIA assess the impacts of a proposal that would regulate emissions of greenhouse gases (GHGs) through an allowance cap-and-trade system. The program would set the cap to achieve a reduction in emissions relative to economic output, or greenhouse gas intensity.

  4. Improved Model of Isoprene Emissions in Africa using Ozone Monitoring Instrument (OMI) Satellite Observations of Formaldehyde: Implications for Oxidants and Particulate Matter

    SciTech Connect (OSTI)

    Marais, E. A.; Jacob, D.; Guenther, Alex B.; Chance, K.; Kurosu, T. P.; Murphy, J. G.; Reeves, C. E.; Pye, H.

    2014-08-01

    We use a 2005-2009 record of isoprene emissions over Africa derived from OMI satellite observations of formaldehyde (HCHO) to better understand the factors controlling isoprene emission on the scale of the continent and evaluate the impact of isoprene emissions on atmospheric composition in Africa. OMI-derived isoprene emissions show large seasonality over savannas driven by temperature and leaf area index (LAI), and much weaker seasonality over equatorial forests driven by temperature. The commonly used MEGAN (version 2.1) global 31 isoprene emission model reproduces this seasonality but is biased high, particularly for 32 equatorial forests, when compared to OMI and relaxed-eddy accumulation measurements. 33 Isoprene emissions in MEGAN are computed as the product of an emission factor Eo, LAI, and 34 activity factors dependent on environmental variables. We use the OMI-derived emissions to 35 provide improved estimates of Eo that are in good agreement with direct leaf measurements from 36 field campaigns (r = 0.55, bias = -19%). The largest downward corrections to MEGAN Eo values are for equatorial forests and semi-arid environments, and this is consistent with latitudinal transects of isoprene over West Africa from the AMMA aircraft campaign. Total emission of isoprene in Africa is estimated to be 77 Tg C a-1, compared to 104 Tg C a-1 in MEGAN. Simulations with the GEOS-Chem oxidant-aerosol model suggest that isoprene emissions increase mean surface ozone in West Africa by up to 8 ppbv, and particulate matter by up to 1.5 42 μg m-3, due to coupling with anthropogenic influences.

  5. Measurement and analysis of. cap alpha. particles emitted in reactions of /sup 12/C bombarding /sup 12/C, /sup 27/Al, and /sup nat/Ca

    SciTech Connect (OSTI)

    XIE Yuan-xiang; WU Guo-hua; ZHU Yong-tai; MIAO Rong-zhi; FONG En-pu; YIN Xu; MIAO He-bing; CAI Jing-xiang; SHEN Wen-qing; SUN Shu-ming

    1985-10-01

    The energy spectra and angular distributions of the ..cap alpha.. particles emitted in the reactions of 69.5 MeV /sup 12/C bombarding /sup 12/C, /sup 27/Al, and /sup nat/Ca have been measured and analyzed using the fast-particle exciton model. The contribution from the equilibrium and pre-equilibrium ..cap alpha.. emissions is calculated to be 89%, 81%, and 83% of the total ..cap alpha.. yields for the three reactions, respectively, where the pre-equilibrium ..cap alpha.. emissions are 11%, 14%, and 16%, respectively. A small contribution comes from other reaction mechanisms.

  6. A cheap and effective CO{sub 2} cap-and-trade for electricity

    SciTech Connect (OSTI)

    Michel, Steven

    2009-10-15

    Now that debate has shifted from regional toward federal cap-and-trade policy, it's time to reintroduce the idea of using reduction credits rather than allowances to drive emission reductions. A credit system appears to work well to reduce CO{sub 2} emissions with minimal compliance cost - and without windfall, wealth transfer, or market power concerns. It also provides a strong incentive for renewable energy and energy efficiency, and a ready means to harmonize a federal cap-and-trade with state and federal renewable energy portfolio requirements. (author)

  7. APowerCap Technologies | Open Energy Information

    Open Energy Info (EERE)

    Technologies Jump to: navigation, search Name: APowerCap Technologies Place: Chaiki, Ukraine Zip: 8130 Product: APCT develops breakthrough ultracapacitor-based power modules for...

  8. Effect of temperature and O{sub 2} concentration on N-containing emissions during oxidative regeneration of hydroprocessing catalysts

    SciTech Connect (OSTI)

    Furimsky, E.; Siukola, A.; Turenne, A.

    1996-12-01

    The effect of temperature and O{sub 2} concentration on the formation of NO, N{sub 2}O, HCN, and NH{sub 3} was studied during oxidative regeneration of the spent CoMo/Al{sub 2}O{sub 3} and NiMo/Al{sub 2}O{sub 3} hydroprocessing catalysts. The experiments were performed isothermally in successive steps lasting 6 h each at 350, 450, and 500 C. Helium and 2 and 4% O{sub 2} were used as the media. For both catalysts, the amount of N-containing emissions accounted for about one-third of the total nitrogen in the coke. Most of the N{sub 2}O, HCN, and NH{sub 3} formation occurred in the same temperature range as that of CO and CO{sub 2}, whereas the NO formation persisted until the very end of every burning step. The amount of coke on the catalyst influenced burning patterns. For the spent NiMo/Al{sub 2}O{sub 3} catalyst, the chemically controlled burn was much more evident than that for the CoMo/Al{sub 2}O{sub 3} catalyst. The deposits of metals such as vanadium and nickel present in the former have contributed to the difference. The availability of O{sub 2} was a much more important factor during burn of the CoMo/Al{sub 2}O{sub 3} catalyst than during that of the NiMo/Al{sub 2}O{sub 3} catalyst.

  9. Enhanced thermal stability of Ag nanorods through capping

    SciTech Connect (OSTI)

    Bachenheimer, Lou; Elliott, Paul; Stagon, Stephen; Huang, Hanchen

    2014-11-24

    Ag nanorods may serve as sensors in the detection of trace amounts of chemical agents, even single molecules, through surface enhanced Raman spectroscopy (SERS). However, thermal coarsening of Ag nanorods near room temperature limits their applications. This letter proposes the use of a thin oxide capping layer to enhance the thermal stability of Ag nanorods beyond 100?C. Using electron microscopy characterization and SERS tests, the authors show that the proposed method is effective in stabilizing both morphology and sensitivity of Ag nanorods. The results of this work extend the applicability of Ag nanorods as chemical sensors to higher temperatures.

  10. Sulfur dioxide and nitrogen oxides emissions from U.S. pulp and paper mills, 1980-2005

    SciTech Connect (OSTI)

    John E. Pinkerton

    2007-08-15

    Estimates of total SO{sub 2} and NOx emissions from U.S. pulp and paper mills were developed from industry-wide surveys conducted at 5-yr intervals from 1980 to 2005. The following conclusions were drawn from these estimates: (1) Total SO{sub 2} emissions from pulp and paper mills were 340,000 t in 2005. Since 1980, SO{sub 2} emissions have decreased steadily. The decline over the 25-yr period was over 60%. Paper production increased by 50% over the same period. (2) Boilers burning coal and oil are the primary source of SO{sub 2} emissions, with minor contributions from black liquor combustion in kraft recovery furnaces and the burning of noncondensable gases in boilers at kraft pulp mills. Factors contributing to the decline in boiler SO{sub 2} emissions include large reductions in residual oil use, recent decreases in coal use, declines in the average sulfur content of residual oil and coal being burned, and increasing use of flue gas desulfurization systems.(3) NOx emissions from pulp and paper mills were 230,000 t in 2005. NOx emissions were fairly constant through 1995, but then declined by 12% in 2000 and an additional 17% between 2000 and 2005. (4) In 2005, boilers accounted for two-thirds of the NOx emissions, and kraft mill sources approximately 30%. Boiler NOx emissions exhibited very little change through 1995, but decreased by one third in the next 10 yr. The lower emissions resulted from declines in fossil fuel use, a reduction in the EPA emission factors for natural gas combustion in boilers without NOx controls, and more widespread use of combustion modifications and add-on NOx control technologies, particularly on coal-fired boilers subject to EPA's NOx SIP call. Total NOx emissions from kraft mill sources changed little over the 25-yr period. 7 refs., 4 figs., 3 tabs.

  11. Photodegradation of luminescence in organic-ligand-capped Eu{sup 3+}:LaF{sub 3} nano-particles

    SciTech Connect (OSTI)

    King, Gavin G. G.; Taylor, Luke R.; Longdell, Jevon J.; Clarke, David J.; Quilty, J. W.

    2014-01-28

    The luminescence from europium doped lanthanum trifluoride (Eu{sup 3+}:LaF{sub 3}) nano-crystals can be greatly enhanced by capping with β-diketonate organic ligands. Here, we report on photo-stability measurements for the case of nano-crystals capped with thenoyltrifluroacetone (TTA) and compared with those capped with an inactive ligand, oleic acid. With exposure to UV pump light, we observed significant decrease in fluorescence and change in emission spectrum of the TTA-capped nano-particles whilst the fluorescence lifetime remained approximately constant. After a dose of order 70 kJ cm{sup −2}, the luminescence level was similar to that of oleic acid capped nano-crystals. We discuss possible mechanisms.

  12. Spatial variability of nitrous oxide and methane emissions from an MBT landfill in operation: Strong N{sub 2}O hotspots at the working face

    SciTech Connect (OSTI)

    Harborth, Peter; Fu, Roland; Mnnich, Kai; Flessa, Heinz; Fricke, Klaus

    2013-10-15

    Highlights: ? First measurements of N{sub 2}O and CH{sub 4} emissions from an MBT landfill. ? High N{sub 2}O emissions from recently deposited material. ? N{sub 2}O emissions associated with aeration and the occurrence of nitrite and nitrate. ? Strong negative correlation between CH{sub 4} and N{sub 2}O production activity. - Abstract: Mechanical biological treatment (MBT) is an effective technique, which removes organic carbon from municipal solid waste (MSW) prior to deposition. Thereby, methane (CH{sub 4}) production in the landfill is strongly mitigated. However, direct measurements of greenhouse gas emissions from full-scale MBT landfills have not been conducted so far. Thus, CH{sub 4} and nitrous oxide (N{sub 2}O) emissions from a German MBT landfill in operation as well as their concentrations in the landfill gas (LFG) were measured. High N{sub 2}O emissions of 20200 g CO{sub 2} eq. m{sup ?2} h{sup ?1} magnitude (up to 428 mg N m{sup ?2} h{sup ?1}) were observed within 20 m of the working face. CH{sub 4} emissions were highest at the landfill zone located at a distance of 3040 m from the working face, where they reached about 10 g CO{sub 2} eq. m{sup ?2} h{sup ?1}. The MBT material in this area has been deposited several weeks earlier. Maximum LFG concentration for N{sub 2}O was 24.000 ppmv in material below the emission hotspot. At a depth of 50 cm from the landfill surface a strong negative correlation between N{sub 2}O and CH{sub 4} concentrations was observed. From this and from the distribution pattern of extractable ammonium, nitrite, and nitrate it has been concluded that strong N{sub 2}O production is associated with nitrification activity and the occurrence of nitrite and nitrate, which is initiated by oxygen input during waste deposition. Therefore, CH{sub 4} mitigation measures, which often employ aeration, could result in a net increase of GHG emissions due to increased N{sub 2}O emissions, especially at MBT landfills.

  13. Life cycle inventory analysis of regenerative thermal oxidation of air emissions from oriented strand board facilities in Minnesota - a perspective of global climate change

    SciTech Connect (OSTI)

    Nicholson, W.J.

    1997-12-31

    Life cycle inventory analysis has been applied to the prospective operation of regenerative thermal oxidation (RTO) technology at oriented strand board plants at Bemidji (Line 1) and Cook, Minnesota. The net system destruction of VOC`s and carbon monoxide, and at Cook a small quantity of particulate, has a very high environmental price in terms of energy and water use, global warming potential, sulfur and nitrogen oxide emissions, solids discharged to water, and solid waste deposited in landfills. The benefit of VOC destruction is identified as minor in terms of ground level ozone at best and possibly slightly detrimental. Recognition of environmental tradeoffs associated with proposed system changes is critical to sound decision-making. There are more conventional ways to address carbon monoxide emissions than combustion in RTO`s. In an environment in which global warming is a concern, fuel supplemental combustion for environmental control does not appear warranted. Consideration of non-combustion approaches to address air emission issues at the two operations is recommended. 1 ref., 5 tabs.

  14. Cap May County Municipal Utilities Authority | Open Energy Information

    Open Energy Info (EERE)

    Cap May County Municipal Utilities Authority Jump to: navigation, search Name: Cap May County Municipal Utilities Authority Place: Cape May Court House, New Jersey Zip: 8210...

  15. Capping methane leaks a win-win

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capping methane leaks a win-win Capping methane leaks a win-win As special correspondent Kathleen McCleery explains, that's why both environmentalists and the energy industry are trying to find ways to capture leaks from oil and gas facilities. November 13, 2015 Capping methane leaks a win-win Methane, the primary component of natural gas, is also a potent greenhouse gas, trapping energy in the atmosphere. Last year NASA released satellite images showing a hot spot in the area where New Mexico,

  16. The bumpy road to federal CO{sub 2} caps

    SciTech Connect (OSTI)

    Gannett, C.; Adamson, D.

    2007-07-15

    In January and February 2007 members of the US Congress introduced a number of carbon capture and trade bills that compete with each other to impose the most stringent standards possible. Soon after, the Speaker of the House, Nancy Pelosi, called for consideration of a bill by the full House by the summer. Two issues have been resolved so far: any greenhouse gas reduction program almost certainly will be mandatory, and it appears likely that regulation of the electric power sector's CO{sub 2} emissions will be via a cap and trade system. Many other issues remain. Eight of these are discussed in the article. They include: where in the energy supply chain should greenhouse gas emissions be regulated? and, How should the burden of greenhouse gas reduction be shared with the electricity industry?

  17. Tip cap for a turbine rotor blade

    SciTech Connect (OSTI)

    Kimmel, Keith D

    2014-03-25

    A turbine rotor blade with a spar and shell construction, and a tip cap that includes a row of lugs extending from a bottom side that form dovetail grooves that engage with similar shaped lugs and grooves on a tip end of the spar to secure the tip cap to the spar against radial displacement. The lug on the trailing edge end of the tip cap is aligned perpendicular to a chordwise line of the blade in the trailing edge region in order to minimize stress due to the lugs wanting to bend under high centrifugal loads. A two piece tip cap with lugs at different angles will reduce the bending stress even more.

  18. Perfluorocarbon vapor tagging of blasting cap detonators

    DOE Patents [OSTI]

    Dietz, Russell N.; Senum, Gunnar I.

    1981-01-01

    A plug for a blasting cap is made of an elastomer in which is dissolved a perfluorocarbon. The perfluorocarbon is released as a vapor into the ambient over a long period of time to serve as a detectable taggant.

  19. Subsea tree cap well choke system

    SciTech Connect (OSTI)

    Bednar, J.M.

    1991-04-30

    This patent describes an apparatus useful in subsea well completions requiring a subsea choke. It comprises: a wellhead connector; a tree flow passage; a tree annulus passage; a tree cap; a choke; and a production line.

  20. CeCap LLP | Open Energy Information

    Open Energy Info (EERE)

    Name: CeCap LLP Place: London, United Kingdom Zip: W1S 2LQ Product: London-based investment boutique which provides investment advice to, and invests in, small to mediun size...

  1. Perfluorocarbon vapor tagging of blasting cap detonators

    DOE Patents [OSTI]

    Dietz, R.N.; Senum, G.I.

    A plug for a blasting cap is made of an elastomer in which is dissolved a perfluorocarbon. The perfluorocarbon is released as a vapor into the ambient over a long period of time to serve as a detectable taggant.

  2. CAP XX Pty Ltd | Open Energy Information

    Open Energy Info (EERE)

    Zip: NSW 2066 Product: Australia-based designer and manufacturer of high power density supercapacitors. References: CAP-XX Pty Ltd1 This article is a stub. You can help...

  3. Emission Market Opportunities for Federal Energy Projects

    SciTech Connect (OSTI)

    Vimmerstedt, L.; Shah, C.

    2005-06-01

    This document assists federal agencies in incorporating emissions market opportunities in their energy projects, including emission reduction credit markets and cap and trade. It looks at how potential emissions costs/revenues can be incorporated into project proposals, how groups can apply for emissions allowances, and how agencies can sell emissions allowances and receive the financial benefit. The fact sheet also outlines how FEMP can provide assistance throughout the process.

  4. Cellulosic emissions (kg of pollutant per km2 county area) -...

    Open Energy Info (EERE)

    Cellulosic emissions (kg of pollutant per km2 county area) Data reflects projected air emissions of nitrogen oxides (NOX), ammonia (NH3), carbon monoxide (CO), sulfur oxide (SOX),...

  5. Valve Cap For An Electric Storage Cell

    DOE Patents [OSTI]

    Verhoog, Roelof; Genton, Alain

    2000-04-18

    The valve cap for an electric storage cell includes a central annular valve seat (23) and a membrane (5) fixed by its peripheral edge and urged against the seat by a piston (10) bearing thereagainst by means of a spring (12), the rear end of said spring (12) bearing on the endwall (8) of a chamber (20) formed in the cap and containing the piston (10) and the spring. A vent (19) puts the chamber (20) into communication with the atmosphere. A central orifice (26, 28) through the piston (10) and the membrane (5), enables gas from within the cell to escape via the top vent (19) when the valve opens.

  6. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide emissions from coal-fired boilers

    SciTech Connect (OSTI)

    Sorge, J.N.; Larrimore, C.L.; Slatsky, M.D.; Menzies, W.R.; Smouse, S.M.; Stallings, J.W.

    1997-12-31

    This paper discusses the technical progress of a US Department of Energy Innovative Clean Coal Technology project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The primary objectives of the demonstration is to determine the long-term NOx reduction performance of advanced overfire air (AOFA), low NOx burners (LNB), and advanced digital control optimization methodologies applied in a stepwise fashion to a 500 MW boiler. The focus of this paper is to report (1) on the installation of three on-line carbon-in-ash monitors and (2) the design and results to date from the advanced digital control/optimization phase of the project.

  7. TOPO-capped silver selenide nanoparticles and their incorporation into polymer nanofibers using electrospinning technique

    SciTech Connect (OSTI)

    More, D.S.; Moloto, M.J.; Moloto, N.; Matabola, K.P.

    2015-05-15

    Highlights: • Ag{sub 2}Se nanoparticles produced spherical particles with sizes 12 nm (180 °C) and 27 nm (200 °C). • Higher temperature produced increased particle size (∼75 nm) and changed in shape. • Ag{sub 2}Se nanoparticles (0.2–0.6%) added into PVP (35–45%) to yield reduced fiber beading. • Polymer nanofibers electrospun at 11–20 kV produced fiber diameters of 425–461 nm. • Optical properties in the fibers were observed due to the Ag{sub 2}Se nanoparticles loaded. - Abstract: Electrospinning is the most common technique for fabricating polymer fibers as well as nanoparticles embedded polymer fibers. Silver selenide nanoparticles were synthesized using tri-n-octylphosphine (TOP) as solvent and tri-n-octylphosphine oxide (TOPO) as capping environment. Silver selenide was prepared by reacting silver nitrate and selenium with tri-n-octylphosphine (TOP) to form TOP–Ag and TOP–Se solutions. Both absorption and emission spectra signify the formation of nanoparticles as well as the TEM which revealed spherical particles with an average particle size of 22 nm. The polymer, PVP used was prepared at concentrations ranging from (35 to 45 wt%) and the TOPO-capped silver selenide nanoparticles (0.2 and 0.6 wt%) were incorporated into them and electrospun by varying the voltage from 11 to 20 kV. The SEM images of the Ag{sub 2}Se/PVP composite fibers revealed the fibers of diameters with average values of 425 and 461 nm. The X-ray diffraction results show peaks which were identified due to α-Ag{sub 2}Se body centered cubic compound. The sharp peak observed for all the samples at 2θ = 44.5 suggest the presence of Ag in the face centered cubic which can be attributed to higher concentration of silver nitrate used with molar ratio of selenium to silver and the abundance of silver in the silver selenide crystal. Fourier transform infrared spectroscopy, thermogravimetric analysis (TGA) and ultraviolet–visible spectroscopy were used to characterize the

  8. Capping blowouts from Iran's 8-year war

    SciTech Connect (OSTI)

    Sayers, B. )

    1991-07-01

    Control well blown up by the Iraqi military were a 2 1/2 year legacy left the National Iranian Oil Co. at the end of this long conflict. This final installment of a 2-part series describes capping of the largest wind oil well.

  9. Elimination of surface band bending on N-polar InN with thin GaN capping

    SciTech Connect (OSTI)

    Kuzmík, J. Haščík, Š.; Kučera, M.; Kúdela, R.; Dobročka, E.; Adikimenakis, A.; Mičušík, M.; Gregor, M.; Plecenik, A.; Georgakilas, A.

    2015-11-09

    0.5–1 μm thick InN (0001) films grown by molecular-beam epitaxy with N- or In-polarity are investigated for the presence of native oxide, surface energy band bending, and effects introduced by 2 to 4 monolayers of GaN capping. Ex situ angle-resolved x-ray photo-electron spectroscopy is used to construct near-surface (GaN)/InN energy profiles, which is combined with deconvolution of In3d signal to trace the presence of InN native oxide for different types of polarity and capping. Downwards surface energy band bending was observed on bare samples with native oxide, regardless of the polarity. It was found that the In-polar InN surface is most readily oxidized, however, with only slightly less band bending if compared with the N-polar sample. On the other hand, InN surface oxidation was effectively mitigated by GaN capping. Still, as confirmed by ultra-violet photo-electron spectroscopy and by energy band diagram calculations, thin GaN cap layer may provide negative piezoelectric polarization charge at the GaN/InN hetero-interface of the N-polar sample, in addition to the passivation effect. These effects raised the band diagram up by about 0.65 eV, reaching a flat-band profile.

  10. Potential for savings in compliance costs for reducing ground-level ozone possible by instituting seasonal versus annual nitric oxide emission limits

    SciTech Connect (OSTI)

    Lookman, A.A.

    1996-12-31

    Ground-level ozone is formed in the atmosphere from its precursor emissions, namely nitric oxide (NO{sub x}) and volatile organic compounds (VOC), with its rate of formation dependent on atmospheric conditions. Since ozone levels tend to be highest during the summer months, seasonal controls of precursors have been suggested as a means of reducing the costs of decreasing ozone concentrations to acceptable levels. This paper attempts to quantify what the potential savings if seasonal control were instituted for coal-fired power plants, assuming that only commercially available NO{sub x} control technologies are used. Cost savings through seasonal control is measured by calculating the total annualized cost of NO{sub x} removal at a given amount of seasonal control for different target levels of annual control. For this study, it is assumed that trading of NO{sub x} emissions will be allowed, as has been proposed by the Ozone Transportation Commission (OTC). The problem has been posed as a binary integer linear programming problem, with decision variables being which control to use at each power plant. The results indicate that requiring annual limits which are lower than seasonal limits can substantially reduce compliance costs. These savings occur because requiring stringent compliance only on a seasonal basis allows power plants to use control methods for which the variable costs are paid for only part of the year, and through the use of gas-based controls, which are much cheaper to operate in the summer months.

  11. Low flammability cap-sensitive flexible explosive composition

    DOE Patents [OSTI]

    Wagner, Martin G.

    1992-01-14

    A cap-sensitive flexible explosive composition of reduced flammability is provided by incorporating a finely divided, cap-sensitive explosive in a flame resistant polymeric binder system which contains a compatible flame retardant material.

  12. Thermally enhanced perpendicular magnetic anisotropy behaviors of ultrathin [Co/Pd]{sub n} multilayers via NiO{sub x} capping layer

    SciTech Connect (OSTI)

    Chung, Woo Seong; Lee, Ja Bin; An, Gwang Guk; Yang, Seung Mo; Kim, Jae Hong; Hong, Jin Pyo

    2015-06-01

    We report the enhanced perpendicular magnetic anisotropy (PMA) features of ultrathin [Co/Pd]{sub 3} multilayers (MLs) employing a NiO{sub x} insertion layer at high annealing temperatures. Thermally enhanced PMA in [Co/Pd]{sub 3}/NiO{sub x} (capping layer) MLs were achieved at a specific capping layer thickness, while no PMA responses were observed for a NiO{sub x} (buffer layer)/[Co/Pd]{sub 3} ML, regardless of NiO{sub x} thickness. X-ray diffraction observations, including rocking curves, identified the relatively different crystalline characteristics of the NiO{sub x} capping and buffer layers. Origin of the enhanced PMAs of [Co/Pd]{sub 3} MLs containing a NiO{sub x} capping layer is described based on the NiO{sub x} capping effect possibly providing additional Co/Oxide i-PMA under high-temperature annealing.

  13. Removing Strongly Adsorbed Surfactants and Capping Agents from

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanostructures - Energy Innovation Portal Industrial Technologies Industrial Technologies Advanced Materials Advanced Materials Find More Like This Return to Search Removing Strongly Adsorbed Surfactants and Capping Agents from Nanostructures Brookhaven National Laboratory Contact BNL About This Technology Technology Marketing Summary During production, nanostructures are often capped by surfactants or other capping agents to keep them from agglomerating. These moieties often interfere with

  14. Effects of Biodiesel on NOx Emissions

    SciTech Connect (OSTI)

    McCormick, R.

    2005-06-01

    A presentation about the effects of biodiesel on nitrogen oxide emissions presented at the ARB Biodiesel Workshop June 8, 2005.

  15. ARM - Campaign Instrument - caps-pmex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentscaps-pmex Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Cavity Attenuated Phase Shift Extinction Monitor (CAPS-PMEX) Instrument Categories Aerosols, Airborne Observations Primary Measurements Taken The following measurements are those considered scientifically relevant. Refer to the datastream (netcdf) file headers for the list of all available measurements, including those recorded for diagnostic or quality

  16. Clean coal technology: selective catalytic reduction (SCR) technology for the control of nitrogen oxide emissions from coal-fired boilers

    SciTech Connect (OSTI)

    2005-05-01

    The report discusses a project carried out under the US Clean Coal Technology (CCT) Demonstration Program which demonstrated selective catalytic reduction (SCR) technology for the control of NOx emissions from high-sulphur coal-fired boilers under typical boilers conditions in the United States. The project was conducted by Southern Company Services, Inc., who served as a co-funder and as the host at Gulf Power Company's Plant Crist. The SCR process consists of injecting ammonia (NH{sub 3}) into boiler flue gas and passing the flue gas through a catalyst bed where the Nox and NH{sub 3} react to form nitrogen and water vapor. The results of the CCTDP project confirmed the applicability of SCR for US coal-fired power plants. In part as a result of the success of this project, a significant number of commercial SCR units have been installed and are operating successfully in the United States. By 2007, the total installed SCR capacity on US coal-fired units will number about 200, representing about 100,000 MWe of electric generating capacity. This report summarizes the status of SCR technology. 21 refs., 3 figs., 2 tabs., 10 photos.

  17. Biodiesel and Pollutant Emissions (Presentation)

    SciTech Connect (OSTI)

    McCormick, R.; Williams, A.; Ireland, J.; Hayes, B.

    2006-09-28

    Presents the results from three methods of testing--engine, chassis, and PEM--for testing nitrogen oxide (NOx) emissions from B20.

  18. Chemical stability of highly (0001) textured Sm(CoCu){sub 5} thin films with a thin Ta capping layer

    SciTech Connect (OSTI)

    Zhao Haibao; Wang Hao; Liu Xiaoqi; Wang Jianping; Zhang Tao

    2011-04-01

    With the highest magnetocrystalline anisotropy constant (Ku) among practical magnetic materials, SmCo{sub 5} could be a very attractive candidate for future high areal density magnetic recording. However, its corrosion resistance is always a concern in recording media applications. In this paper, the chemical stability and microstructures of highly (0001) textured Sm(CoCu){sub 5} thin films with and without a 3 nm Ta capping layer were reported. For Sm(CoCu){sub 5} thin films without a capping layer, the coercivity decreases significantly (from 8kOe to 1kOe) within one month. Sm(CoCu){sub 5} thin films capped with a thin Ta layer (3 nm) behave differently. Even exposed to a laboratory environment (25 deg. C) over 3 years, the Ta-capped Sm(CoCu){sub 5} thin films are stable in terms of structural and magnetic properties, i.e., there were no changes in X-ray diffraction peaks and vibrating sample magnetometer hysteresis loops. Microstructure of Ta-capped Sm(CoCu){sub 5} thin films showed that Sm(CoCu){sub 5} formed a domelike particle assembly structure on a smooth Ru underlayer and were well covered by partially oxidized Ta capping layer, as shown by TEM cross-section micrographs. Accelerated corrosion treatment (130 deg. C, 95% relative humidity, 6 h) was performed on Ta-capped Sm(CoCu){sub 5} thin films. X-ray photoelectron spectroscopy (XPS) results showed that no Co was detected on the sample surface before the corrosion treatment, but strong XPS signals of CoOx and Co(OH)x were observed after treatment. Therefore, none of our Sm(CoCu){sub 5} thin films can pass the accelerated corrosion test. Hcp-phased CoPt-alloys are proposed as better capping materials for Sm(CoCu){sub 5} thin films in future high-density magnetic recording applications.

  19. Temperature dependence of frequency dispersion in III–V metal-oxide-semiconductor C-V and the capture/emission process of border traps

    SciTech Connect (OSTI)

    Vais, Abhitosh Martens, Koen; DeMeyer, Kristin; Lin, Han-Chung; Ivanov, Tsvetan; Collaert, Nadine; Thean, Aaron; Dou, Chunmeng; Xie, Qi; Maes, Jan; Tang, Fu; Givens, Michael; Raskin, Jean-Pierre

    2015-08-03

    This paper presents a detailed investigation of the temperature dependence of frequency dispersion observed in capacitance-voltage (C-V) measurements of III-V metal-oxide-semiconductor (MOS) devices. The dispersion in the accumulation region of the capacitance data is found to change from 4%–9% (per decade frequency) to ∼0% when the temperature is reduced from 300 K to 4 K in a wide range of MOS capacitors with different gate dielectrics and III-V substrates. We show that such significant temperature dependence of C-V frequency dispersion cannot be due to the temperature dependence of channel electrostatics, i.e., carrier density and surface potential. We also show that the temperature dependence of frequency dispersion, and hence, the capture/emission process of border traps can be modeled by a combination of tunneling and a “temperature-activated” process described by a non-radiative multi-phonon model, instead of a widely believed single-step elastic tunneling process.

  20. MFTF-. cap alpha. + T progress report

    SciTech Connect (OSTI)

    Nelson, W.D.

    1985-04-01

    Early in FY 1983, several upgrades of the Mirror Fusion Test Facility (MFTF-B) at Lawrence Livermore National Laboratory (LLNL) were proposed to the fusion community. The one most favorably received was designated MFTF-..cap alpha..+T. The engineering design of this device, guided by LLNL, has been a principal activity of the Fusion Engineering Design Center during FY 1983. This interim progress report represents a snapshot of the device design, which was begun in FY 1983 and will continue for several years. The report is organized as a complete design description. Because it is an interim report, some parts are incomplete; they will be supplied as the design study proceeds. As described in this report, MFTF-..cap alpha..+T uses existing facilities, many MFTF-B components, and a number of innovations to improve on the physics parameters of MFTF-B. It burns deuterium-tritium and has a central-cell Q of 2, a wall loading GAMMA/sub n/ of 2 MW/m/sup 2/ (with a central-cell insert module), and an availability of 10%. The machine is fully shielded, allows hands-on maintenance of components outside the vacuum vessel 24 h after shutdown, and has provisions for repair of all operating components.

  1. Fundamentals of successful monitoring, reporting, and verification under a cap-and-trade program

    SciTech Connect (OSTI)

    John Schakenbach; Robert Vollaro; Reynaldo Forte

    2006-11-15

    The U.S. Environmental Protection Agency (EPA) developed and implemented the Acid Rain Program (ARP), and NOx Budget Trading Programs (NBTP) using several fundamental monitoring, reporting, and verification (MRV) elements: (1) compliance assurance through incentives and automatic penalties; (2) strong quality assurance (QA); (3) collaborative approach with a petition process; (4) standardized electronic reporting; (5) compliance flexibility for low-emitting sources; (6) complete emissions data record required; (7) centralized administration; (8) level playing field; (9) publicly available data; (10) performance-based approach; and (11) reducing conflicts of interest. Each of these elements is discussed in the context of the authors' experience under two U.S. cap-and-trade programs and their potential application to other cap and-trade programs. The U.S. Office of Management and Budget found that the Acid Rain Program has accounted for the largest quantified human health benefits of any federal regulatory program implemented in the last 10 yr, with annual benefits exceeding costs by {gt} 40 to 1. The authors believe that the elements described in this paper greatly contributed to this success. EPA has used the ARP fundamental elements as a model for other cap-and-trade programs, including the NBTP, which went into effect in 2003, and the recently published Clean Air Interstate Rule and Clean Air Mercury Rule. The authors believe that using these fundamental elements to develop and implement the MRV portion of their cap-and-trade programs has resulted in public confidence in the programs, highly accurate and complete emissions data, and a high compliance rate. 2 refs.

  2. Size tunable elemental copper nanoparticles: extracellular synthesis by thermoanaerobic bacteria and capping molecules

    SciTech Connect (OSTI)

    Jang, Gyoung Gug; Jacobs, Christopher B; Gresback, Ryan G; Ivanov, Ilia N; Meyer III, Harry M; Kidder, Michelle; Joshi, Pooran C; Jellison Jr, Gerald Earle; Phelps, Tommy Joe; Graham, David E; Moon, Ji Won

    2015-01-01

    Bimodal sized elemental copper (Cu) nanoparticles (NPs) were synthesized from inexpensive oxidized copper salts by an extracellular metal-reduction process using anaerobic Thermoanaerobacter sp. X513 bacteria in aqueous solution. The bacteria nucleate NPs outside of the cell, and they control the Cu2+ reduction rate to form uniform crystallites with an average diameter of 1.75 0.46 m after 3-day incubation. To control the size and enhance air stability of Cu NPs, the reaction mixtures were supplemented with nitrilotriacetic acid as a chelator, and the surfactant capping agents oleic acid, oleylamine, ascorbic acid, or L-cysteine. Time-dependent UV-visible absorption measurements and XPS studies indicated well-suspended, bimodal colloidal Cu NPs (70 150 and 5 10 nm) with extended air-stability up to 300 min and stable Cu NP films surfaces with 14% oxidation after 20 days. FTIR spectroscopy suggested that these capping agents were effectively adsorbed on the NP surface providing oxidation resistance in aqueous and dry conditions. Compared to previously reported Cu NP syntheses, this biological process substantially reduced the requirement for hazardous organic solvents and chemical reducing agents, while reducing the levels of Cu oxide impurities in the product. This process was highly reproducible and scalable from 0.01 to 1-L batches.

  3. Size tunable elemental copper nanoparticles: extracellular synthesis by thermoanaerobic bacteria and capping molecules

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jang, Gyoung Gug; Jacobs, Christopher B.; Gresback, Ryan G.; Ivanov, Ilia N.; Meyer, III, Harry M.; Kidder, Michelle; Joshi, Pooran C.; Jellison, Jr, Gerald Earle; Phelps, Tommy Joe; Graham, David E.; et al

    2014-11-10

    Bimodal sized elemental copper (Cu) nanoparticles (NPs) were synthesized from inexpensive oxidized copper salts by an extracellular metal-reduction process using anaerobic Thermoanaerobacter sp. X513 bacteria in aqueous solution. The bacteria nucleate NPs outside of the cell, and they control the Cu2+ reduction rate to form uniform crystallites with an average diameter of 1.75 0.46 m after 3-day incubation. To control the size and enhance air stability of Cu NPs, the reaction mixtures were supplemented with nitrilotriacetic acid as a chelator, and the surfactant capping agents oleic acid, oleylamine, ascorbic acid, or L-cysteine. Time-dependent UV-visible absorption measurements and XPS studies indicatedmore » well-suspended, bimodal colloidal Cu NPs (70 150 and 5 10 nm) with extended air-stability up to 300 min and stable Cu NP films surfaces with 14% oxidation after 20 days. FTIR spectroscopy suggested that these capping agents were effectively adsorbed on the NP surface providing oxidation resistance in aqueous and dry conditions. Compared to previously reported Cu NP syntheses, this biological process substantially reduced the requirement for hazardous organic solvents and chemical reducing agents, while reducing the levels of Cu oxide impurities in the product. This process was highly reproducible and scalable from 0.01 to 1-L batches.« less

  4. Preform spar cap for a wind turbine rotor blade

    DOE Patents [OSTI]

    Livingston, Jamie T.; Driver, Howard D.; van Breugel, Sjef; Jenkins, Thomas B.; Bakhuis, Jan Willem; Billen, Andrew J.; Riahi, Amir

    2011-07-12

    A spar cap for a wind turbine rotor blade. The spar cap may include multiple preform components. The multiple preform components may be planar sheets having a swept shape with a first end and a second end. The multiple preform components may be joined by mating the first end of a first preform component to the second end of a next preform component, forming the spar cap.

  5. Corrective Action Plan (CAP) 2008 | Department of Energy

    Energy Savers [EERE]

    Corrective Action Plan (CAP) 2008 Corrective Action Plan (CAP) 2008 The Root Cause Analysis Corrective Action Plan ensures that the root causes identified in the Root Cause Analysis report are addressed with meaningful and lasting solutions in order to improve contract and project management performance. Corrective Action Plan (CAP) 2008 (5.93 MB) Key Resources PMCDP EVMS PARS IIe FPD Resource Center PM Newsletter Forms and Templates More Documents & Publications National Defense

  6. Vehicle Emissions Review - 2011 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Vehicle Emissions Review - 2011 Reviews regulatory requirements and general technology approaches for heavy- and light-duty vehicle emissions control - filter technology, new catalysts, NOx control, diesel oxidation catalysts, gasoline particulate filters deer11_johnson.pdf (2.67 MB) More Documents & Publications Vehicle Emissions Review - 2012 Diesel Emission Control Review Review of Emerging Diesel Emissions and Control

  7. Cold cap subsidence for in situ vitrification and electrodes therefor

    DOE Patents [OSTI]

    Buelt, James L.; Carter, John G.; Eschbach, Eugene A.; FitzPatrick, Vincent F.; Koehmstedt, Paul L.; Morgan, William C.; Oma, Kenton H.; Timmerman, Craig L.

    1992-01-01

    An electrode for use in in situ vitrification of soil comprises a molybdenum rod received within a conductive sleeve or collar formed of graphite. Electrodes of this type are placed on either side of a region containing buried waste material and an electric current is passed therebetween for vitrifying the soil between the electrodes. The graphite collar enhances the thermal conductivity of the electrode, bringing heat to the surface, and preventing the formation of a cold cap of material above the ground surface. The annulus between the molybdenum rod electrode and the graphite collar is filled with a conductive ceramic powder of a type that sinters upon the molybdenum rod, protecting the same from oxidation as the graphite material is consumed, or a metal powder which liquifies at operating temperatures. The molybdenum rod in the former case may be coated with an oxidation protectant, e.g. of molybdenum disilicide. As insulative blanket is suitably placed on the surface of the soil during processing to promote subsidence by allowing off-gassing and reducing surface heat loss. In other embodiments, connection to vitrification electrodes is provided below ground level to avoid loss of connection due to electrodes deterioration, or a sacrificial electrode may be employed when operation is started. Outboard electrodes can be utilized to square up the vitrified area. Further, the center of the molybdenum rod can be made hollow and filled with a powdered metal, such as copper, which liquifies at operating temperatures. In one embodiment, the molybdenum rod and the graphite collar are physically joined at the bottom.

  8. Three-Dimensional Composite Nanostructures for Lean NOx Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Three-Dimensional Composite Nanostructures for Lean NOx Emission Control Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission...

  9. Fuel Mix and Emissions Disclosure | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    customers the fuel mix of its electricity production and the associated sulfur dioxide, nitrogen oxide, and carbon dioxide emissions emissions, expressed in pounds per 1000...

  10. IN SITU REMEDIATION OF CONTAMINATED SEDIMENTS - ACTIVE CAPPING TECHNOLOGY

    SciTech Connect (OSTI)

    Knox, A.; Roberts, J.; Paller, M.; Reible, D.

    2010-09-02

    Active capping is a relatively new approach for treating contaminated sediments. It involves applying chemically reactive amendments to the sediment surface. The main role of active caps is to stabilize contaminants in contaminated sediments, lower the bioavailable pool of contaminants, and reduce the release of contaminants to the water column. Metals are common contaminants in many marine and fresh water environments as a result of industrial and military activities. The mobile, soluble forms of metals are generally considered toxic. Induced chemical precipitation of these metals can shift toxic metals from the aqueous phase to a solid, precipitated phase which is often less bioavailable. This approach can be achieved through application of sequestering agents such as rock phosphates, organoclays, zeolites, clay minerals, and biopolymers (e.g., chitosan) in active capping technology. Active capping holds great potential for a more permanent solution that avoids residual risks resulting from contaminant migration through the cap or breaching of the cap. In addition to identifying superior active capping agents, research is needed to optimize application techniques, application rates, and amendment combinations that maximize sequestration of contaminants. A selected set of active capping treatment technologies has been demonstrated at a few sites, including a field demonstration at the Savannah River Site, Aiken, SC. This demonstration has provided useful information on the effects of sequestering agents on metal immobilization, bioavailability, toxicity, and resistance to mechanical disturbance.

  11. Three-Dimensional Composite Nanostructures for Lean NOx Emission...

    Broader source: Energy.gov (indexed) [DOE]

    Composite Nanostructures for Lean NOx Emission Control Vehicle Technologies Office Merit Review 2015: Metal Oxide Nano-Array Catalysts for Low Temperature Diesel Oxidation

  12. Properites of ultrathin films appropriate for optics capping layers in extreme ultraviolet lithography (EUVL)

    SciTech Connect (OSTI)

    Bajt, S; Edwards, N V; Madey, T E

    2007-06-25

    The contamination of optical surfaces by irradiation shortens optics lifetime and is one of the main concerns for optics used in conjunction with intense light sources, such as high power lasers, 3rd and 4th generation synchrotron sources or plasma sources used in extreme ultraviolet lithography (EUVL) tools. This paper focuses on properties and surface chemistry of different materials, which as thin layers, could be used as capping layers to protect and extend EUVL optics lifetime. The most promising candidates include single element materials such as ruthenium and rhodium, and oxides such as TiO{sub 2} and ZrO{sub 2}.

  13. Apparatus and method for cooling a combustor cap

    DOE Patents [OSTI]

    Zuo, Baifang; Washam, Roy Marshall; Wu, Chunyang

    2014-04-29

    A combustor includes an end cap having a perforated downstream plate and a combustion chamber downstream of the downstream plate. A plenum is in fluid communication with the downstream plate and supplies a cooling medium to the combustion chamber through the perforations in the downstream plate. A method for cooling a combustor includes flowing a cooling medium into a combustor end cap and impinging the cooling medium on a downstream plate in the combustor end cap. The method further includes flowing the cooling medium into a combustion chamber through perforations in the downstream plate.

  14. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Phase 2, Overfire air tests

    SciTech Connect (OSTI)

    Smith, L.L.; Hooper, M.P.

    1992-07-13

    This Phase 2 Test Report summarizes the testing activities and results for the second testing phase of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The second phase demonstrates the Advanced Overfire Air (AOFA) retrofit with existing Foster Wheeler (FWEC) burners. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data supported by short-term characterization data. Ultimately a fifty percent NO{sub x} reduction target using combinations of combustion modifications has been established for this project.

  15. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from coal-fired boilers

    SciTech Connect (OSTI)

    Smith, L.L.; Hooper, M.P. )

    1992-07-13

    This Phase 2 Test Report summarizes the testing activities and results for the second testing phase of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from coal-fired boilers. The second phase demonstrates the Advanced Overfire Air (AOFA) retrofit with existing Foster Wheeler (FWEC) burners. The project is being conducted at Georgia Power Company's Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO[sub x] combustion equipment through the collection and analysis of long-term emissions data supported by short-term characterization data. Ultimately a fifty percent NO[sub x] reduction target using combinations of combustion modifications has been established for this project.

  16. Vehicle Technologies Office: Emission Control | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Efficiency & Emissions » Vehicle Technologies Office: Emission Control Vehicle Technologies Office: Emission Control The Vehicle Technologies Office (VTO) supports research and development of aftertreatment technologies to control advanced combustion engine exhaust emissions. All engines that enter the vehicle market must comply with the Environmental Protection Agency's emissions regulations. Harmful pollutants in these emissions include: Carbon monoxide Nitrogen oxides Unburned

  17. Fact #825: June 16, 2014 Tier 3 Non-Methane Organic Gases Plus Nitrogen Oxide Emission Standards, Model Years 2017-2025

    Broader source: Energy.gov [DOE]

    The Environmental Protection Agency finalized Tier 3 emission standards in a rule issued in March 2014. One effect of the rule is a decrease in the combined amount of non-methane organic gases ...

  18. NessCap Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    NessCap Co Ltd Place: Kyonggi-Do, Korea (Republic) Zip: 449-901 Product: Engages in the research, development, production and sales of the family of capacitor products....

  19. Wind blade spar cap and method of making

    DOE Patents [OSTI]

    Mohamed, Mansour H.

    2008-05-27

    A wind blade spar cap for strengthening a wind blade including an integral, unitary three-dimensional woven material having a first end and a second end, corresponding to a root end of the blade and a tip end of the blade, wherein the material tapers in width from the first to the second end while maintaining a constant thickness and decreasing weight therebetween, the cap being capable of being affixed to the blade for providing increased strength with controlled variation in weight from the root end to the tip end based upon the tapered width of the material thereof. The present inventions also include the method of making the wind blade spar cap and a wind blade including the wind blade spar cap.

  20. ARM - What About Melting Polar Ice Caps and Sea Levels?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What About Melting Polar Ice Caps and Sea Levels? Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans What About Melting Polar Ice Caps and Sea Levels? As the northern polar zone warms up, sea ice could melt (very probable) and the sea/ice interface could retreat to the north. This is likely to

  1. Capping blowouts from Iran's eight-year war

    SciTech Connect (OSTI)

    Sayers, B. )

    1991-05-01

    This paper reports on capping blowouts from Iran's eight year war. Fires in three Iranian wells (two oil, one gas), started during 1987 by Iraqi sabotage, finally were extinguished during the last several months of 1990. Burning during the final months of the countries' eight-year war, plus another subsequent peaceful two years, the fires consumed millions of barrels of oil and billions of cubic feet of gas before they were capped. Ironically, bringing the wells under control took relatively little time.

  2. The Hanford Site 1000-Year Cap Design Test

    SciTech Connect (OSTI)

    Gee, Glendon W. ); Ward, Anderson L. ); Wittreich, Curtis D.

    2002-12-27

    Surface barrier or capping technology is needed to isolate buried wastes. A successful cap must prevent the intrusion of plants, animals, and man into the underlying waste, minimize wind and water erosion, require minimal maintenance, and limit water intrusion to near-zero amounts. For some sites where wastes are long-lived, caps should potentially last a thousand years or more. At the U.S. Department of Energy (DOE) Hanford Site in Washington State, a surface cap with a 1000-year design life was constructed and then tested and monitored for performance under wetting conditions that are extreme for the region. The cap was built in 1994 over an existing waste site as a part of a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) treatability test. The above-grade barrier or cap consists of a 2-m-thick silt-loam soil overlying layers (from top down) of sand, gravel, basalt rock (riprap), and a low-permeability asphalt. Two sideslope configurations, a clean-fill gravel on a 10:1 slope and a basalt riprap on a 2:1 slope were part of the overall design and testing. Design considerations included constructability; water-balance monitoring; wind and water erosion control and monitoring; surface revegetation, biointrusion control, subsidence, and sideslope stability; and durability of the asphalt layer.

  3. Oxidation of elemental mercury vapor over gamma-Al2O3 supported CuCl2 catalyst for mercury emissions control

    SciTech Connect (OSTI)

    Liu, Zhouyang; Liu, Xin; Lee, Joo-Youp; Bolin, Trudy B.

    2015-09-01

    In our previous studies, CuCl2 demonstrated excellent Hg(0) oxidation capability and holds potential for Hg(0) oxidation in coal-fired power plants. In this study, the properties and performances of CuCl2 supported onto gamma-Al2O3 with high surface area were investigated. From various characterization techniques using XPS, XAFS, XRD, TPR, SEM and TGA, the existence of multiple copper species was identified. At low CuCl2 loadings, CuCl2 forms copper aluminate species with gamma-Al2O3 and is inactive for Hg(0) oxidation. At high loadings, amorphous CuCl2 forms onto the gamma-Al2O3 surface, working as a redox catalyst for Hg(0) oxidation by consuming Cl to be converted into CuCl and then being regenerated back into CuCl2 in the presence of O-2 and HCl gases. The 10%(wt) CuCl2/gamma-Al2O3 catalyst showed excellent Hg(0) oxidation performance and SO2 resistance at 140 degrees C under simulated flue gas conditions containing 6%(v) O-2 and 10 ppmv HCl. The oxidized Hg(0) in the form of HgCl2 has a high solubility in water and can be easily captured by other air pollution control systems such as wet scrubbers in coal-fired power plants. The CuCl2/gamma-Al2O3 catalyst can be used as a low temperature Hg(0) oxidation catalyst. (C) 2015 Elsevier B.V. All rights reserved.

  4. Proceedings: In Situ Contaminated Sediment Capping Workshop: Cincinnati, Ohio, May 12-14, 2003

    SciTech Connect (OSTI)

    2004-03-01

    The In Situ Contaminated Sediment Capping Workshop was designed to provide the most current information and bring about consensus in understanding of a technology that offers one of the few options for remediation of contaminated sediments. These electronic proceedings document workshop sessions on various capping issues, such as site assessment; cap suitability, performance, and design; site monitoring; and research and development in capping.

  5. Low-Temperature Hydrocarbon/CO Oxidation Catalysis in Support...

    Broader source: Energy.gov (indexed) [DOE]

    Low-Temperature HydrocarbonCO Oxidation Catalysis in Support of HCCI Emission Control Vehicle Technologies Office Merit Review 2016: Metal Oxide Nano-Array Catalysts for Low ...

  6. Low-Temperature Hydrocarbon/CO Oxidation Catalysis in Support...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Low-Temperature HydrocarbonCO Oxidation Catalysis in Support of HCCI Emission Control Low-Temperature HydrocarbonCO Oxidation Catalysis in Support ...

  7. ARCADE 2 OBSERVATIONS OF GALACTIC RADIO EMISSION

    SciTech Connect (OSTI)

    Kogut, A.; Fixsen, D. J.; Mirel, P.; Wollack, E.; Levin, S. M.; Limon, M.; Seiffert, M.; Lubin, P. M.; Singal, J.; Villela, T.; Wuensche, C. A.

    2011-06-10

    We use absolutely calibrated data from the ARCADE 2 flight in 2006 July to model Galactic emission at frequencies 3, 8, and 10 GHz. The spatial structure in the data is consistent with a superposition of free-free and synchrotron emission. Emission with spatial morphology traced by the Haslam 408 MHz survey has spectral index {beta}{sub synch} = -2.5 {+-} 0.1, with free-free emission contributing 0.10 {+-} 0.01 of the total Galactic plane emission in the lowest ARCADE 2 band at 3.15 GHz. We estimate the total Galactic emission toward the polar caps using either a simple plane-parallel model with csc |b| dependence or a model of high-latitude radio emission traced by the COBE/FIRAS map of C II emission. Both methods are consistent with a single power law over the frequency range 22 MHz to 10 GHz, with total Galactic emission toward the north polar cap T{sub Gal} = 10.12 {+-} 0.90 K and spectral index {beta} = -2.55 {+-} 0.03 at reference frequency 0.31 GHz. Emission associated with the plane-parallel structure accounts for only 30% of the observed high-latitude sky temperature, with the residual in either a Galactic halo or an isotropic extragalactic background. The well-calibrated ARCADE 2 maps provide a new test for spinning dust emission, based on the integrated intensity of emission from the Galactic plane instead of cross-correlations with the thermal dust spatial morphology. The Galactic plane intensity measured by ARCADE 2 is fainter than predicted by models without spinning dust and is consistent with spinning dust contributing 0.4 {+-} 0.1 of the Galactic plane emission at 23 GHz.

  8. Stabilized chromium oxide film

    DOE Patents [OSTI]

    Garwin, Edward L.; Nyaiesh, Ali R.

    1988-01-01

    Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150.ANG. are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

  9. Stabilized chromium oxide film

    DOE Patents [OSTI]

    Nyaiesh, A.R.; Garwin, E.L.

    1986-08-04

    Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150A are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

  10. Generalized chemical route to develop fatty acid capped highly dispersed semiconducting metal sulphide nanocrystals

    SciTech Connect (OSTI)

    Patel, Jayesh D.; Chemical Engineering Department, University of Laval, Quebec, QC, G1K 7P4 ; Mighri, Frej; Chemical Engineering Department, University of Laval, Quebec, QC, G1K 7P4 ; Ajji, Abdellah; Chemical Engineering Department, Ecole Polytechnique, C.P. 6079, Succ. Centre-Ville Montreal, QC, H3C 3A7

    2012-08-15

    Highlights: ► Chemical route for the synthesis of OA-capped CdS, ZnS and PbS at low temperature. ► Synthesized nanocrystals via thermolysis of their metal–oleate complexes. ► Size quantized nanocrystals were highly dispersed and stable at room temperature. -- Abstract: This work deals with the synthesis of highly dispersed semiconducting nanocrystals (NCs) of cadmium sulphide (CdS), zinc sulphide (ZnS) and lead sulphide (PbS) through a simple and generalized process using oleic acid (OA) as surfactant. To synthesize these NCs, metal–oleate (M–O) complexes were obtained from the reaction at 140 °C between metal acetates and OA in hexanes media. Subsequently, M–O complexes were sulphurized using thioacetamide at the same temperature. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) characterizations show that the synthesized products are of nanoscale-size with highly crystalline cubic phase. The optical absorption of OA-capped metal sulphide NCs confirms that their size quantization induced a large shift towards visible region. Photoluminescence (PL) spectrum of CdS NCs shows a broad band-edge emission with shallow and deep-trap emissions, while PL spectrum of ZnS NCs reveals a broad emission due to defects states on the surface. The thermogravimetric analysis (TGA) and Fourier transform infrared (FTIR) spectroscopy indicate that fatty acid monolayers were bound strongly on the nanocrystal surface as a carboxylate and the two oxygen atoms of the carboxylate were coordinated symmetrically to the surface of the NCs. The strong binding between the fatty acid and the NCs surface enhances the stability of NCs colloids. In general, this generalized route has a great potential in developing nanoscale metal sulphides for opto-electronic devices.

  11. 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Final report

    SciTech Connect (OSTI)

    Tavoulareas, E.S.; Hardman, R.; Eskinazi, D.; Smith, L.

    1994-02-01

    This report provides the key findings of the Innovative Clean Coal Technology (ICCT) demonstration project at Gulf Power`s Lansing Smith Unit No. 2 and the implications for other tangentially-fired boilers. L. Smith Unit No. 2 is a 180 MW tangentially-fired boiler burning Eastern Bituminous coal, which was retrofitted with Asea Brown Boveri/Combustion Engineering Services` (ABB/CE) LNCFS I, II, and III technologies. An extensive test program was carried-out with US Department of Energy, Southern Company and Electric Power Research Institute (EPRI) funding. The LNCFS I, II, and III achieved 37 percent, 37 percent, and 45 percent average long-term NO{sub x} emission reduction at full load, respectively (see following table). Similar NO{sub x} reduction was achieved within the control range (100--200 MW). However, below the control point (100 MW), NO{sub x} emissions with the LNCFS technologies increased significantly, reaching pre-retrofit levels at 70 MW. Short-term testing proved that low load NO{sub x} emissions could be reduced further by using lower excess O{sub 2} and burner tilt, but with adversed impacts on unit performance, such as lower steam outlet temperatures and, potentially, higher CO emissions and LOI.

  12. One-dimensional cold cap model for melters with bubblers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pokorny, Richard; Hilliard, Zachary J.; Dixon, Derek R.; Schweiger, Michael J.; Guillen, Donna P.; Kruger, Albert A.; Hrma, Pavel

    2015-07-28

    The rate of glass production during vitrification in an all-electrical melter greatly impacts the cost and schedule of nuclear waste treatment and immobilization. The feed is charged to the melter on the top of the molten glass, where it forms a layer of reacting and melting material, called the cold cap. During the final stages of the batch-to-glass conversion process, gases evolved from reactions produce primary foam, the growth and collapse of which controls the glass production rate. The mathematical model of the cold cap was revised to include functional representation of primary foam behavior and to account for themore » dry cold cap surface. The melting rate is computed as a response to the dependence of the primary foam collapse temperature on the heating rate and melter operating conditions, including the effect of bubbling on the cold cap bottom and top surface temperatures. The simulation results are in good agreement with experimental data from laboratory-scale and pilot-scale melter studies. Lastly, the cold cap model will become part of the full three-dimensional mathematical model of the waste glass melter.« less

  13. ASSESSMENT OF RADIONUCLIDES DATABASES IN CAP88 MAINFRAME VERSION 1.0 AND WINDOWS-BASED VERSION 3.0

    SciTech Connect (OSTI)

    Farfan, E.; Lee, P.; Jannik, T.; Donnelly, E.

    2008-09-16

    In this study the radionuclide databases for two versions of the Clean Air Act Assessment Package-1988 (CAP88) computer model were assessed in detail. CAP88 estimates radiation dose and the risk of health effects to human populations from radionuclide emissions to air. This program is used by several Department of Energy (DOE) facilities to comply with National Emission Standards for Hazardous Air Pollutants (NESHAP) regulations. CAP88 Mainframe, referred to as Version 1.0 on the Environmental Protection Agency (EPA) website (http://www.epa.gov/radiation/assessment/CAP88/), was the very first CAP88 version released in 1988. Some DOE facilities including the Savannah River Site still employ this version (1.0) while others use the more user-friendly personal computer Windows-based Version 3.0 released in December 2007. Version 1.0 uses the program RADRISK based on International Commission on Radiological Protection (ICRP) Publication 30 as its radionuclide database. Version 3.0 uses half-life, dose and risk factor values based on Federal Guidance Report 13. Differences in these values could cause different results for the same input exposure data (same scenario), depending on which version of CAP88 is used. Consequently, the differences between the two versions are being assessed in detail at Savannah River National Laboratory. The version 1.0 and 3.0 database files contain 496 and 838 radionuclides, respectively, and though one would expect the newer version to include all the 496 radionuclides, thirty-five radionuclides are listed in version 1.0 that are not included in version 3.0. The majority of these has either extremely short or long half-lives or is no longer in production; however, some of the short-lived radionuclides might produce progeny of great interest at DOE sites. In addition, one hundred and twenty-two radionuclides were found to have different half-lives in the two versions, with 21 over 3 percent different and 12 over 10 percent different.

  14. Low-Temperature Hydrocarbon/CO Oxidation Catalysis in Support...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Temperature HydrocarbonCO Oxidation Catalysis in Support of HCCI Emission Control Low-Temperature HydrocarbonCO Oxidation Catalysis in Support of HCCI Emission Control Lean ...

  15. Economic evaluation of closure cap barrier materials study

    SciTech Connect (OSTI)

    Serrato, M.G.; Bhutani, J.S.; Mead, S.M.

    1993-09-01

    Volume II of the Economic Evaluation of the Closure Cap Barrier Materials, Revision I contains detailed cost estimates for closure cap barrier materials. The cost estimates incorporate the life cycle costs for a generic hazardous waste seepage basin closure cap under the RCRA Post Closure Period of thirty years. The economic evaluation assessed six barrier material categories. Each of these categories consists of several composite cover system configurations, which were used to develop individual cost estimates. The information contained in this report is not intended to be used as a cost estimating manual. This information provides the decision makers with the ability to screen barrier materials, cover system configurations, and identify cost-effective materials for further consideration.

  16. Correlation between speciated hydrocarbon emissions and flame ionization detector response for gasoline/alcohol blends .

    SciTech Connect (OSTI)

    Wallner, T.

    2011-08-01

    The U.S. renewable fuel standard has made it a requirement to increase the production of ethanol and advanced biofuels to 36 billion by 2022. Ethanol will be capped at 15 billion, which leaves 21 billion to come from other sources such as butanol. Butanol has a higher energy density and lower affinity for water than ethanol. Moreover, alcohol fueled engines in general have been shown to positively affect engine-out emissions of oxides of nitrogen and carbon monoxide compared with their gasoline fueled counterparts. In light of these developments, the variety and blend levels of oxygenated constituents is likely to increase in the foreseeable future. The effect on engine-out emissions for total hydrocarbons is less clear due to the relative insensitivity of the flame ionization detector (FID) toward alcohols and aldehydes. It is well documented that hydrocarbon (HC) measurement using a conventional FID in the presence of oxygenates in the engine exhaust stream can lead to a misinterpretation of HC emissions trends for alcohol fuel blends. Characterization of the exhaust stream for all expected hydrocarbon constituents is required to accurately determine the actual concentration of unburned fuel components in the exhaust. In addition to a conventional exhaust emissions bench, this characterization requires supplementary instrumentation capable of hydrocarbon speciation and response factor independent quantification. Although required for certification testing, this sort of instrumentation is not yet widely available in engine development facilities. Therefore, an attempt is made to empirically determine FID correction factors for oxygenate fuels. Exhaust emissions of an engine fueled with several blends of gasoline and ethanol, n-butanol and iso-Butanol were characterized using both a conventional FID and a Fourier transform infrared. Based on these results, a response factor predicting the actual hydrocarbon emissions based solely on FID results as a function of

  17. Integrated Modeling and Decision-Support System for Water Management in the Puget Sound Basin: Snow Caps to White Caps

    SciTech Connect (OSTI)

    Copping, Andrea E.; Yang, Zhaoqing; Voisin, Nathalie; Richey, Jeff; Wang, Taiping; Taira, Randal Y.; Constans, Michael; Wigmosta, Mark S.; Van Cleve, Frances B.; Tesfa, Teklu K.

    2013-12-31

    Final Report for the EPA-sponsored project Snow Caps to White Caps that provides data products and insight for water resource managers to support their predictions and management actions to address future changes in water resources (fresh and marine) in the Puget Sound basin. This report details the efforts of a team of scientists and engineers from Pacific Northwest National Laboratory (PNNL) and the University of Washington (UW) to examine the movement of water in the Snohomish Basin, within the watershed and the estuary, under present and future conditions, using a set of linked numerical models.

  18. Heterogeneous-phase reactions of nitrogen dioxide with vermiculite-supported magnesium oxide (as applied to the control of jet engine test cell emissions). Doctoral thesis

    SciTech Connect (OSTI)

    Kimm, L.T.

    1995-11-01

    Controlling nitrogen oxides (NOx) from a non-steady-state stationary source like a jet engine test cell (JETC) requires a method that is effective over a wide range of conditions. A heterogeneous, porous, high surface area sorbent material comprised of magnesium oxide powder attached to a vermiculite substrate has been commercially developed for this purpose. Data from extensive laboratory testing of this material in a packed-bed flow system are presented. NO2 removal efficiencies, kinetics, and proposed NO2 removal mechanisms over a range of representative JETC exhaust gas characteristics are described. Exhaust gas variables evaluated included: NO2 concentration, temperature, flow rate (retention time), oxygen content, and moisture content. Availability of water and oxygen were found to be important variables. It is probable that water is necessary for the conversion of MgO to Mg(OH)2, which is a more reactive compound having thermal stability over the range of temperatures evaluated. Gaseous oxygen serves to oxidize NO to NO2, the latter being more readily removed from the gas stream. The presence of oxygen also serves to offset thermal decomposition of NO2 or surface nitrite/nitrate. Effective `lifetime` and regenerability of the exposed sorbent material were also evaluated. NO2 removal efficiencies were found to greatly exceed those for NO, with a maximum value greater than 90 percent. The effective conversion of NO to NO2 is a crucial requirement for removal of the former. The reaction between NO2 and MgO-vermiculite is first-order with respect to NO2.

  19. Liquid-phase-deposited siloxane-based capping layers for silicon solar cells

    SciTech Connect (OSTI)

    Veith-Wolf, Boris; Wang, Jianhui; Hannu-Kuure, Milja; Chen, Ning; Hadzic, Admir; Williams, Paul; Leivo, Jarkko; Karkkainen, Ari; Schmidt, Jan

    2015-02-02

    We apply non-vacuum processing to deposit dielectric capping layers on top of ultrathin atomic-layer-deposited aluminum oxide (AlO{sub x}) films, used for the rear surface passivation of high-efficiency crystalline silicon solar cells. We examine various siloxane-based liquid-phase-deposited (LPD) materials. Our optimized AlO{sub x}/LPD stacks show an excellent thermal and chemical stability against aluminum metal paste, as demonstrated by measured surface recombination velocities below 10 cm/s on 1.3 Ωcm p-type silicon wafers after firing in a belt-line furnace with screen-printed aluminum paste on top. Implementation of the optimized LPD layers into an industrial-type screen-printing solar cell process results in energy conversion efficiencies of up to 19.8% on p-type Czochralski silicon.

  20. Optimization of Engine-out Emissions from a Diesel Engine to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from a Diesel Engine to Meet Tier 2 Bin 5 Emission Limits Drastic reduction of engine-out emissions and complicated aftertreatment system comprising of oxidation catalyst, ...

  1. Optimization of La{sub 0.7}Ba{sub 0.3}MnO{sub 3-{delta}} complex oxide laser ablation conditions by plume imaging and optical emission spectroscopy

    SciTech Connect (OSTI)

    Amoruso, S.; Bruzzese, R.; Scotti di Uccio, U.; Aruta, C.; Granozio, F. Miletto; Wang, X.; Maccariello, D.; Maritato, L.; Orgiani, P.

    2010-08-15

    The properties of thin films of complex oxides, such as La{sub 1-x}D{sub x}MnO{sub 3-{delta}} (D=Ba, Ca, Sr, etc.), produced by pulsed laser deposition depend critically on the experimental parameters in which laser ablation is carried out. Here, we report a comparative analysis of the pulsed laser ablation process of La{sub 0.7}Ba{sub 0.3}MnO{sub 3-{delta}}, in oxygen background, in the ambient pressure range from 10{sup -2} to 1 mbar, typically employed in pulsed laser deposition of manganites. The laser ablation plume was studied by using time-gated imaging and optical emission spectroscopy techniques. It was found that at a pressure of {approx_equal}10{sup -2} mbar, the plume species arriving at the substrate are characterized by hyperthermal kinetic energy ({approx_equal}10 eV), and high degree of excitation. On the contrary, at larger oxygen pressure (0.1-1 mbar), the velocity of plume species reaching the substrate, and their degree of excitation are much reduced by the confining effects of the background gas. These features explain why an appropriate choice of the experimental conditions in which the deposition process is carried out leads to better quality films, providing helpful indications to improve control over the growth process of both La{sub 1-x}D{sub x}MnO{sub 3-{delta}} and other perovskitic oxides.

  2. Sampling device with a capped body and detachable handle

    DOE Patents [OSTI]

    Jezek, Gerd-Rainer

    2000-01-01

    The apparatus is a sampling device having a pad for sample collection, a body which supports the pad, a detachable handle connected to the body and a cap which encloses and retains the pad and body to protect the integrity of the sample.

  3. The comparison of CAP88-PC version 2.0 versus CAP88-PC version 1.0

    SciTech Connect (OSTI)

    Yakubovich, B.A.; Klee, K.O.; Palmer, C.R.; Spotts, P.B.

    1997-12-01

    40 CFR Part 61 (Subpart H of the NESHAP) requires DOE facilities to use approved sampling procedures, computer models, or other approved procedures when calculating Effective Dose Equivalent (EDE) values to members of the public. Currently version 1.0 of the approved computer model CAP88-PC is used to calculate EDE values. The DOE has upgraded the CAP88-PC software to version 2.0. This version provides simplified data entry, better printing characteristics, the use of a mouse, and other features. The DOE has developed and released version 2.0 for testing and comment. This new software is a WINDOWS based application that offers a new graphical user interface with new utilities for preparing and managing population and weather data, and several new decay chains. The program also allows the user to view results before printing. This document describes a test that confirmed CAP88-PC version 2.0 generates results comparable to the original version of the CAP88-PC program.

  4. Three-Dimensional Composite Nanostructures for Lean NOx Emission Control |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy ace030_gao_2012_o.pdf (4.04 MB) More Documents & Publications Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Three-Dimensional Composite Nanostructures for Lean NOx Emission Control Vehicle Technologies Office Merit Review 2015: Metal Oxide Nano-Array Catalysts for Low Temperature Diesel Oxidation

  5. Further Sensitivity Analysis of Hypothetical Policies to Limit Energy-Related Carbon Dioxide Emissions

    Reports and Publications (EIA)

    2013-01-01

    This analysis supplements the Annual Energy Outlook 2013 alternative cases which imposed hypothetical carbon dioxide emission fees on fossil fuel consumers. It offers further cases that examine the impacts of fees placed only on the emissions from electric power facilities, impacts of returning potential revenues to consumers, and two cap-and-trade policies.

  6. Creating and maintaining a gas cap in tar sands formations

    DOE Patents [OSTI]

    Vinegar, Harold J. (Bellaire, TX); Karanikas, John Michael (Houston, TX); Dinkoruk, Deniz Sumnu (Houston, TX); Wellington, Scott Lee (Bellaire, TX)

    2010-03-16

    Methods for treating a tar sands formation are disclosed herein. Methods for treating a tar sands formation may include providing heat to at least part of a hydrocarbon layer in the formation from one or more heaters located in the formation. Pressure may be allowed to increase in an upper portion of the formation to provide a gas cap in the upper portion. At least some hydrocarbons are produced from a lower portion of the formation.

  7. VARIABLE FLOW EXHAUST VENTILATION CAP FOR LEV SYSTEMS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    VARIABLE FLOW EXHAUST VENTILATION CAP FOR LEV SYSTEMS Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-7687 M Patent Pending Technology Readiness Level: 7/8 Actual technology completed and qualified through test and demonstration TECHNOLOGY DESCRIPTION Local Exhaust

  8. Variable Flow Exhaust Ventilation Cap for Local Exhaust Ventilation Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Energy Innovation Portal Building Energy Efficiency Building Energy Efficiency Find More Like This Return to Search Variable Flow Exhaust Ventilation Cap for Local Exhaust Ventilation Systems Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (212 KB) Technology Marketing Summary Local Exhaust Ventilations (LEV) are vital engineering control systems used to prevent exposure to harmful airborne contaminants in the workplace.

  9. Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units

    SciTech Connect (OSTI)

    Cai, H.; Wang, M.; Elgowainy, A.; Han, J.

    2012-07-06

    Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors in the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life

  10. ACTIVE CAPPING TECHNOLOGY - NEW APPROACHES FOR IN SITU REMEDIATION OF CONTAMINATED SEDIMENTS

    SciTech Connect (OSTI)

    Knox, A.; Paller, M.; Roberts, J.

    2012-02-13

    This study evaluated pilot-scale active caps composed of apatite, organoclay, biopolymers, and sand for the remediation of metal-contaminated sediments. The active caps were constructed in Steel Creek, at the Savannah River Site near Aiken, South Carolina. Monitoring was conducted for 12 months. Effectiveness of the caps was based on an evaluation of contaminant bioavailability, resistance to erosion, and impacts on benthic organisms. Active caps lowered metal bioavailability in the sediment during the one-year test period. Biopolymers reduced sediment suspension during cap construction, increased the pool of carbon, and lowered the release of metals. This field validation showed that active caps can effectively treat contaminants by changing their speciation, and that caps can be constructed to include more than one type of amendment to achieve multiple goals.

  11. Evaluation of MerCAP for Power Plant Mercury Control

    SciTech Connect (OSTI)

    Carl Richardson

    2008-09-30

    This report is submitted to the U.S. Department of Energy National Energy Technology Laboratory (DOE-NETL) as part of Cooperative Agreement DE-FC26-03NT41993, 'Evaluation of EPRI's MerCAP{trademark} Technology for Power Plant Mercury Control'. This project has investigated the mercury removal performance of EPRI's Mercury Capture by Amalgamation Process (MerCAP{trademark}) technology. Test programs were conducted to evaluate gold-based MerCAP{trademark} at Great River Energy's Stanton Station Unit 10 (Site 1), which fired both North Dakota lignite (NDL) and Power River Basin (PRB) coal during the testing period, and at Georgia Power's Plant Yates Unit 1 (Site 2) [Georgia Power is a subsidiary of The Southern Company] which fires a low sulfur Eastern bituminous coal. Additional tests were carried out at Alabama Power's Plant Miller, which fires Powder River Basin Coal, to evaluate a carbon-based MerCAP{trademark} process for removing mercury from flue gas downstream of an electrostatic precipitator [Alabama Power is a subsidiary of The Southern Company]. A full-scale gold-based sorbent array was installed in the clean-air plenum of a single baghouse compartment at GRE's Stanton Station Unit 10, thereby treating 1/10th of the unit's exhaust gas flow. The substrates that were installed were electroplated gold screens oriented parallel to the flue gas flow. The sorbent array was initially installed in late August of 2004, operating continuously until its removal in July 2006, after nearly 23 months. The initial 4 months of operation were conducted while the host unit was burning North Dakota lignite (NDL). In November 2004, the host unit switched fuel to burn Powder River Basin (PRB) subbituminous coal and continued to burn the PRB fuel for the final 19 months of this program. Tests were conducted at Site 1 to evaluate the impacts of flue gas flow rate, sorbent plate spacing, sorbent pre-cleaning and regeneration, and spray dryer operation on MerCAP

  12. The Greenhouse Gas Protocol Initiative: GHG Emissions from Purchased...

    Open Energy Info (EERE)

    Outputs include: The tool outputs greenhouse gas emissions (carbon dioxide, methane, nitrous oxide, and carbon dioxide equivalent) for each facility as well as total...

  13. The Greenhouse Gas Protocol Initiative: GHG Emissions from Transport...

    Open Energy Info (EERE)

    Outputs include: The tool outputs greenhouse gas emissions (including carbon dioxide, methane, nitrous oxide, carbon dioxide equivalent, and biogenic carbon dioxide) for each...

  14. Comparison of U.S. Environmental Protection Agency’s CAP88 PC versions 3.0 and 4.0

    SciTech Connect (OSTI)

    Jannik, Tim; Farfan, Eduardo B.; Dixon, Ken; Newton, Joseph; Sailors, Christopher; Johnson, Levi; Moore, Kelsey; Stahman, Richard

    2015-08-01

    The Savannah River National Laboratory (SRNL) with the assistance of Georgia Regents University, completed a comparison of the U.S. Environmental Protection Agency's (EPA) environmental dosimetry code CAP88 PC V3.0 with the recently developed V4.0. CAP88 is a set of computer programs and databases used for estimation of dose and risk from radionuclide emissions to air. At the U.S. Department of Energy's Savannah River Site, CAP88 is used by SRNL for determining compliance with EPA's National Emission Standards for Hazardous Air Pollutants (40 CFR 61, Subpart H) regulations. Using standardized input parameters, individual runs were conducted for each radionuclide within its corresponding database. Some radioactive decay constants, human usage parameters, and dose coefficients changed between the two versions, directly causing a proportional change in the total effective 137Cs, 3H, 129I, 239Pu, and 90Sr) is provided. In general, the total effective doses will decrease for alpha/beta emitters because of reduced inhalation and ingestion rates in V4.0. However, for gamma emitters, such as 60Co and 137Cs, the total effective doses will increase because of changes EPA made in the external ground shine calculations.

  15. Comparison of U.S. Environmental Protection Agency’s CAP88 PC versions 3.0 and 4.0

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jannik, Tim; Farfan, Eduardo B.; Dixon, Ken; Newton, Joseph; Sailors, Christopher; Johnson, Levi; Moore, Kelsey; Stahman, Richard

    2015-08-01

    The Savannah River National Laboratory (SRNL) with the assistance of Georgia Regents University, completed a comparison of the U.S. Environmental Protection Agency's (EPA) environmental dosimetry code CAP88 PC V3.0 with the recently developed V4.0. CAP88 is a set of computer programs and databases used for estimation of dose and risk from radionuclide emissions to air. At the U.S. Department of Energy's Savannah River Site, CAP88 is used by SRNL for determining compliance with EPA's National Emission Standards for Hazardous Air Pollutants (40 CFR 61, Subpart H) regulations. Using standardized input parameters, individual runs were conducted for each radionuclide within itsmore » corresponding database. Some radioactive decay constants, human usage parameters, and dose coefficients changed between the two versions, directly causing a proportional change in the total effective 137Cs, 3H, 129I, 239Pu, and 90Sr) is provided. In general, the total effective doses will decrease for alpha/beta emitters because of reduced inhalation and ingestion rates in V4.0. However, for gamma emitters, such as 60Co and 137Cs, the total effective doses will increase because of changes EPA made in the external ground shine calculations.« less

  16. Highly chemoselective palladium-catalyzed conjugate reduction of. cap alpha. ,. beta. -unsaturated carbonyl compounds with silicon hydrides and zinc chloride cocatalyst

    SciTech Connect (OSTI)

    Keinan, E.; Greenspoon, N.

    1986-11-12

    A three-component system comprised of a soluble palladium catalyst, hydridosilane, and zinc chloride is capable of efficient conjugate reduction of ..cap alpha..,..beta..-unsaturated ketones and aldehydes. The optimal set of conditions includes diphenylsilane as the most effective hydride donor, any soluble palladium complex in either the O or II oxidation state, when it is stabilized by phosphine ligands, and ZnCl/sub 2/ as the best Lewis acid cocatalyst. The reaction is very general with respect to a broad range of unsaturated ketones and aldehydes, and it is highly selective for these Michael acceptors, as reduction of ..cap alpha..,..beta..-unsaturated carboxylic acid derivatives is very sluggish under these conditions. When dideuteriodiphenylsilane is used to reduce unsaturated ketones, deuterium is stereoselectivity introduced at the less-hindered fact of the substrate and regioselectively at the ..beta..-position. Conversely, when reductions are carried out in the presence of traces of D/sub 2/O, deuterium incorporation occurs at the ..cap alpha..-position. On the basis of deuterium-incorporation experiments and /sup 1/H NMR studies a catalytic cycle is postulated in which the first step involves reversible coordination of the palladium complex to the electron-deficient olefin and oxidative addition of silicon hydride to form a hydridopalladium olefin complex.

  17. Emissions Of Greenhouse Gases From Rice Agriculture

    SciTech Connect (OSTI)

    M. Aslam K. Khalil

    2009-07-16

    This project produced detailed data on the processes that affect methane and nitrous oxide emissions from rice agriculture and their inter-relationships. It defines the shifting roles and potential future of these gases in causing global warming and the benefits and tradeoffs of reducing emissions. The major results include: 1). Mechanisms and Processes Leading to Methane Emissions are Delineated. Our experiments have tested the standard model of methane emissions from rice fields and found new results on the processes that control the flux. A mathematical mass balance model was used to unravel the production, oxidation and transport of methane from rice. The results suggested that when large amounts of organic matter are applied, the additional flux that is observed is due to both greater production and reduced oxidation of methane. 2). Methane Emissions From China Have Been Decreasing Over the Last Two Decades. We have calculated that methane emissions from rice fields have been falling in recent decades. This decrease is particularly large in China. While some of this is due to reduced area of rice agriculture, the bigger effect is from the reduction in the emission factor which is the annual amount of methane emitted per hectare of rice. The two most important changes that cause this decreasing emission from China are the reduced use of organic amendments which have been replaced by commercial nitrogen fertilizers, and the increased practice of intermittent flooding as greater demands are placed on water resources. 3). Global Methane Emissions Have Been Constant For More Than 20 Years. While the concentrations of methane in the atmosphere have been leveling off in recent years, our studies show that this is caused by a near constant total global source of methane for the last 20 years or more. This is probably because as some anthropogenic sources have increased, others, such as the rice agriculture source, have fallen. Changes in natural emissions appear small

  18. Zero emission coal

    SciTech Connect (OSTI)

    Ziock, H.; Lackner, K.

    2000-08-01

    We discuss a novel, emission-free process for producing hydrogen or electricity from coal. Even though we focus on coal, the basic design is compatible with any carbonaceous fuel. The process uses cyclical carbonation of calcium oxide to promote the production of hydrogen from carbon and water. The carbonation of the calcium oxide removes carbon dioxide from the reaction products and provides the additional energy necessary to complete hydrogen production without additional combustion of carbon. The calcination of the resulting calcium carbonate is accomplished using the high temperature waste heat from solid oxide fuel cells (SOFC), which generate electricity from hydrogen fuel. Converting waste heat back to useful chemical energy allows the process to achieve very high conversion efficiency from fuel energy to electrical energy. As the process is essentially closed-loop, the process is able to achieve zero emissions if the concentrated exhaust stream of CO{sub 2} is sequestered. Carbon dioxide disposal is accomplished by the production of magnesium carbonate from ultramafic rock. The end products of the sequestration process are stable naturally occurring minerals. Sufficient rich ultramafic deposits exist to easily handle all the world's coal.

  19. National Emission Standards for Hazardous Air Pollutants submittal -- 1997

    SciTech Connect (OSTI)

    Townsend, Y.E.; Black, S.C.

    1998-06-01

    Each potential source of Nevada Test Site (NTS) emissions was characterized by one of the following methods: (1) monitoring methods and procedures previously developed at the NTS; (2) a yearly radionuclide inventory of the source, assuming that volatile radionuclide are released to the environment; (3) the measurement of tritiated water (as HTO or T{sub 2}O) concentration in liquid effluents discharged to containment ponds and assuming all the effluent evaporates over the course of the year to become an air emission; or (4) using a combination of environmental measurements and CAP88-PC to calculate emissions. The emissions for National Emission Standards for Hazardous Air Pollutants (NESHAPs) reporting are listed. They are very conservative and are used in Section 3 to calculate the EDE to the maximally exposed individual offsite. Offsite environmental surveillance data, where available, are used to confirm that calculated emissions are, indeed, conservative.

  20. Catalytic oxidizers and Title V requirements

    SciTech Connect (OSTI)

    Uberoi, M.; Rach, S.E.

    1999-07-01

    Catalytic oxidizers have been used to reduce VOC emissions from various industries including printing, chemical, paint, coatings, etc. A catalytic oxidizer uses a catalyst to reduce the operating temperature for combustion to approximately 600 F, which is substantially lower than thermal oxidation unit. Title V requirements have renewed the debate on the best methods to assure compliance of catalytic oxidizers, with some suggesting the need for continuous emission monitoring equipment. This paper will discuss the various aspects of catalytic oxidation and consider options such as monitoring inlet/outlet temperatures, delta T across the catalyst, periodic laboratory testing of catalyst samples, and preventive maintenance procedures as means of assuring continuous compliance.

  1. Laser rods with undoped, flanged end-caps for end-pumped laser applications

    DOE Patents [OSTI]

    Meissner, Helmuth E.; Beach, Raymond J.; Bibeau, Camille; Sutton, Steven B.; Mitchell, Scott; Bass, Isaac; Honea, Eric

    1999-01-01

    A method and apparatus for achieving improved performance in a solid state laser is provided. A flanged, at least partially undoped end-cap is attached to at least one end of a laserable medium. Preferably flanged, undoped end-caps are attached to both ends of the laserable medium. Due to the low scatter requirements for the interface between the end-caps and the laser rod, a non-adhesive method of bonding is utilized such as optical contacting combined with a subsequent heat treatment of the optically contacted composite. The non-bonded end surfaces of the flanged end-caps are coated with laser cavity coatings appropriate for the lasing wavelength of the laser rod. A cooling jacket, sealably coupled to the flanged end-caps, surrounds the entire length of the laserable medium. Radiation from a pump source is focussed by a lens duct and passed through at least one flanged end-cap into the laser rod.

  2. DNA 3' pp 5' G de-capping activity of aprataxin: effect of cap nucleoside analogs and structural basis for guanosine recognition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chauleau, Mathieu; Jacewicz, Agata; Shuman, Stewart

    2015-05-24

    DNA3' pp 5'G caps synthesized by the 3'-PO4/5'-OH ligase RtcB have a strong impact on enzymatic reactions at DNA 3'-OH ends. Aprataxin, an enzyme that repairs A5'pp5'DNA ends formed during abortive ligation by classic 3'-OH/5'-PO4 ligases, is also a DNA 3' de-capping enzyme, converting DNAppG to DNA3'p and GMP. By taking advantage of RtcB's ability to utilize certain GTP analogs to synthesize DNAppN caps, we show that aprataxin hydrolyzes inosine and 6-O-methylguanosine caps, but is not adept at removing a deoxyguanosine cap. We report a 1.5 Å crystal structure of aprataxin in a complex with GMP, which reveals that: (i)more » GMP binds at the same position and in the same anti nucleoside conformation as AMP; and (ii) aprataxin makes more extensive nucleobase contacts with guanine than with adenine, via a hydrogen bonding network to the guanine O6, N1, N2 base edge. Alanine mutations of catalytic residues His147 and His149 abolish DNAppG de-capping activity, suggesting that the 3' de-guanylylation and 5' de-adenylylation reactions follow the same pathway of nucleotidyl transfer through a covalent aprataxin-(His147)–NMP intermediate. Alanine mutation of Asp63, which coordinates the guanosine ribose hydroxyls, impairs DNAppG de-capping.« less

  3. Influence of temperature and precursor concentration on the synthesis of HDA-capped Ag{sub 2}Se nanoparticles

    SciTech Connect (OSTI)

    Mlambo, M.; Moloto, M.J.; Moloto, N.; Mdluli, P.S.

    2013-06-01

    Graphical abstract: The temperature effect on the growth and size of silver selenide nanoparticles with the size distribution and XRD patterns. Highlights: ► The HDA-capped Ag{sub 2}Se nanoparticles were synthesized via the colloidal route. ► Temperature and monomer concentration of the reaction were varied. ► The concentration as a factor influenced particles with a decrease observed as the amount of Ag{sup +} ion source is increased. ► Temperature has expected influence on the growth of particles resulting in increase as the temperature is increased. ► TEM images shows spherical particles and their orthorhombic phase from structural analysis by XRD. - Abstract: The size dependent of temperature and precursor concentration on the synthesis of hexadecylamine capped Ag{sub 2}Se nanoparticles via the colloidal route were studied using the combination of optical and structural analysis. The as-prepared Ag{sub 2}Se nanoparticles showed the quantum confinement with all the obtained absorption band edges blue-shifted from the bulk and their corresponding emission maxima displaying a red-shift from band edges characterised by UV–vis absorption and photoluminescence spectroscopy. The particle sizes were obtained from transmission electron microscopy analysis. The increase in precursor concentration resulted in a decrease in nanoparticle sizes. The increase in reaction temperature showed an increase in the nanoparticle sizes, when the critical temperature at 160 °C was reached, the nanoparticle sizes decreased.

  4. ALTERNATE REDUCTANT COLD CAP EVALUATION FURNACE PHASE II TESTING

    SciTech Connect (OSTI)

    Johnson, F.; Stone, M.; Miller, D.

    2014-09-03

    Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitric–formic–glycolic and nitric–formic–sugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitric–formic–glycolic flowsheet. Further research and development of this flowsheet eliminated the formic acid, and as a result, the nitric–glycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitric–glycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) to address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric-glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP):  Phase I - A nitric–formic acid flowsheet melter test (unbubbled) to baseline the CEF cold cap and vapor space data to the benchmark melter flammability models;  Phase II - A nitric–glycolic acid flowsheet melter test (unbubbled and bubbled) to: o Define new cold cap reactions and global kinetic parameters in support of the melter flammability model development; o Quantify off-gas surging potential of the feed; o Characterize off-gas condensate for complete organic and inorganic carbon species. After charging the CEF with cullet from Phase I CEF testing, the melter was slurry-fed with glycolic flowsheet based SB6-Frit 418 melter feed at 36

  5. Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions

    DOE Patents [OSTI]

    Biruduganti, Munidhar S.; Gupta, Sreenath Borra; Sekar, R. Raj; McConnell, Steven S.

    2008-11-25

    A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

  6. ALTERNATE REDUCTANT COLD CAP EVALUATION FURNACE PHASE I TESTING

    SciTech Connect (OSTI)

    Johnson, F.; Miller, D.; Zamecnik, J.; Lambert, D.

    2014-04-22

    Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitric–formic–glycolic and nitric–formic–sugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitric–formic–glycolic flowsheet. Further evaluation of this flowsheet eliminated the formic acid1, and as a result, the nitric–glycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitric–glycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) to address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP):  Phase I - A nitric–formic acid flowsheet melter test (unbubbled) to baseline the Cold Cap Evaluation Furnace (CEF) cold cap and vapor space data to the benchmark melter flammability models  Phase II - A nitric–glycolic acid flowsheet melter test (unbubbled and bubbled) to: o Define new cold cap reactions and global kinetic parameters for the melter flammability models o Quantify off-gas surging potential of the feed o Characterize off-gas condensate for complete organic and inorganic carbon species Prior to startup, a number of improvements and modifications were made to the CEF, including addition of cameras, vessel support temperature measurement, and a

  7. Mercury Emissions Control Technologies (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    The Annual Energy Outlook 2006 reference case assumes that states will comply with the requirements of the Environmental Protection Agency's new Clean Air Mercury Rule (CAMR) regulation. CAMR is a two-phase program, with a Phase I cap of 38 tons of mercury emitted from all U.S. power plants in 2010 and a Phase II cap of 15 tons in 2018. Mercury emissions in the electricity generation sector in 2003 are estimated at around 50 tons. Generators have a variety of options to meet the mercury limits, such as: switching to coal with a lower mercury content, relying on flue gas desulfurization or selective catalytic reduction equipment to reduce mercury emissions, or installing conventional activated carbon injection (ACI) technology.

  8. Diesel Particulate Oxidation Model: Combined Effects of Fixed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Particulate Oxidation Model: Combined Effects of Fixed & Volatile Carbon Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) ...

  9. Effectiveness of a Diesel Oxidation Catalyst (DOC) to control...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effectiveness of a Diesel Oxidation Catalyst (DOC) to control CO and hydrocarbon emissions from Reactivity Controlled Compression Ignition (RCCI) combustion Effectiveness of a ...

  10. Rational Catalyst Design Applied to Development of Advanced Oxidation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalysts for Diesel Emission Control | Department of Energy Rational Catalyst Design Applied to Development of Advanced Oxidation Catalysts for Diesel Emission Control Rational Catalyst Design Applied to Development of Advanced Oxidation Catalysts for Diesel Emission Control Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and

  11. Probable new type of reaction mechanism: Double. cap alpha. direct transfer process

    SciTech Connect (OSTI)

    Xu Shu-wei; Wu Guo-hua; Miao Rong-zhi; Han Fei

    1983-10-01

    It is assumed that /sup 8/Be consists of two ..cap alpha.. particles which are close to each other in configuration space. A spectroscopic density of /sup 8/Be cluster in the residue nuclei is then obtained, which is proportional to the square of the preformation probability of ..cap alpha.. particle at nuclear surface. Using the improved method of parametrization of EFR-DWBA overlap integral,/sup 1//sup en-dash//sup 2/ we calculate the double differential energy spectra and angular distributions of ..cap alpha.. particles for the reactions /sup 209/Bi (/sup 12/C, ..cap alpha..) /sup 217/Fr and extract the preformation probability of ..cap alpha.. particle at the surface of /sup 217/Fr nuclei from fitting the experimental data. The agreement within the range of calculation error between the preformation probabilities extracted from transfer reactions and ..cap alpha.. decay suggests that the reaction /sup 209/Bi(/sup 12/C, ..cap alpha..) /sup 217/Fr may be explained as a double ..cap alpha.. direct transfer process.

  12. CO{sub 2} Cap-and-Trade: should industry speak up or sign on?

    SciTech Connect (OSTI)

    Winters, Tobey

    2008-05-15

    Should the energy community support cap-and-trade and work for a common sense method of regulation? If cap-and-trade can be expected to be a major policy blunder, would the wiser course be to support a carbon tax rather than become enablers to a failure that later may be laid at the door of the energy community? (author)

  13. Effect of Feeding Rate on the Cold Cap Configuration in a Laboratory-Scale Melter - 13362

    SciTech Connect (OSTI)

    Dixon, Derek R.; Schweiger, Michael J.; Hrma, Pavel; Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, Pohang

    2013-07-01

    High-level-waste melter feed is converted into glass in a joule-heated melter, where it forms a floating layer of reacting feed, called the cold cap. After the glass-forming phase becomes connected, evolving gases produce bubbles that form a foam layer under the feed. The bubbles coalesce into cavities, from which most of the gases are released around the edges of the cold cap while gases also escape through small shafts in the reacting feed. The foam layer insulates the cold cap from the heat transferred from the molten glass below. The cold cap behavior was investigated in a laboratory-scale assembly with a fused silica crucible. A high-alumina waste simulant was fed into the crucible and the feed charging rate was varied from 3 to 7 mL min{sup -1}. After a fixed amount of time (35 min), feed charging was stopped and the crucible was removed from the furnace and quenched on a copper block to preserve the structure of the cold cap during cooling. During the rapid quenching, thermal cracking of the glass and cold cap allowed it to be broken up into sections for analysis. The effect of the charging rate on the height, area and volume of the cold cap was determined. The size of the bubbles collected in the foam layer under the feed increased as the cold cap expanded and the relationship between these bubbles and temperature will be determined for input into a mathematical model. (authors)

  14. Incorporating Cold Cap Behavior in a Joule-heated Waste Glass Melter Model

    SciTech Connect (OSTI)

    Varija Agarwal; Donna Post Guillen

    2013-08-01

    In this paper, an overview of Joule-heated waste glass melters used in the vitrification of high level waste (HLW) is presented, with a focus on the cold cap region. This region, in which feed-to-glass conversion reactions occur, is critical in determining the melting properties of any given glass melter. An existing 1D computer model of the cold cap, implemented in MATLAB, is described in detail. This model is a standalone model that calculates cold cap properties based on boundary conditions at the top and bottom of the cold cap. Efforts to couple this cold cap model with a 3D STAR-CCM+ model of a Joule-heated melter are then described. The coupling is being implemented in ModelCenter, a software integration tool. The ultimate goal of this model is to guide the specification of melter parameters that optimize glass quality and production rate.

  15. (p,. cap alpha. ) reactions on 1p, 2s-1d shell nuclei

    SciTech Connect (OSTI)

    Pellegrini, F.; Trivisonno, D.; Avon, S.; Bianchin, R.; Rui, R.

    1983-07-01

    The /sup 12/C(p,..cap alpha..)/sup 9/B and /sup 32/S(p,..cap alpha..)/sup 29/P reactions have been studied at incident energies of 42.77 and 41.9 MeV, respectively. The experimental (p,..cap alpha..) relative cross sections are well reproduced by distorted wave direct pickup calculations with a semimicroscopic form factor and current shell model wave functions. A comparison between (p,..cap alpha..) and (/sup 3/He,d) spectra on 1p and 2s-1d shell nuclei, leading to the same final nucleus, shows a clear evidence of a dominant pickup process over the knockout mechanism in the dynamics of the (p,..cap alpha..) reaction.

  16. Advanced Collaborative Emissions Study (ACES)

    SciTech Connect (OSTI)

    Greenbaum, Daniel; Costantini, Maria; Van Erp, Annemoon; Shaikh, Rashid; Bailey, Brent; Tennant, Chris; Khalek, Imad; Mauderly, Joe; McDonald, Jacob; Zielinska, Barbara; Bemis, Jeffrey; Storey, John; Hallberg, Lance; Clark, Nigel

    2013-12-31

    The objective of the Advanced Collaborative Emissions Study (ACES) was to determine before widespread commercial deployment whether or not the new, energy-efficient, heavy duty diesel engines (2007 and 2010 EPA Emissions Standards Compliant) may generate anticipated toxic emissions that could adversely affect the environment and human health. ACES was planned to take place in three phases. In Phase 1, extensive emissions characterization of four production-intent prototype engine and control systems designed to meet 2007 standards for nitrogen oxides (NOx) and particulate matter (PM) was conducted at an existing emissions characterization facility: Southwest Research Institute (SwRI). One of the tested engines was selected (at random, after careful comparison of results) for health testing in Phase 3. In Phase 2, extensive emission characterization of three production-intent prototype engine and control systems meeting the 2010 standards (including more advanced NOx controls to meet the more stringent 2010 NOx standards) was conducted at the same test facility. In Phase 3, one engine/aftertreatment system selected from Phase 1 was further characterized during health effects studies (at an existing inhalation toxicology laboratory: Lovelace Respiratory Research Institute, [LRRI]) to form the basis of the ACES safety assessment. The Department of Energy (DOE) award provided funding for emissions characterization in Phases 1 and 2 as well as exposure characterization in Phase 3. The main health analyses in Phase 3 were funded separately and are not reported here.

  17. Simulation study of HEMT structures with HfO{sub 2} cap layer for mitigating inverse piezoelectric effect related device failures

    SciTech Connect (OSTI)

    Nagulapally, Deepthi; Joshi, Ravi P.; Pradhan, Aswini

    2015-01-15

    The Inverse Piezoelectric Effect (IPE) is thought to contribute to possible device failure of GaN High Electron Mobility Transistors (HEMTs). Here we focus on a simulation study to probe the possible mitigation of the IPE by reducing the internal electric fields and related elastic energy through the use of high-k materials. Inclusion of a HfO{sub 2} “cap layer” above the AlGaN barrier particularly with a partial mesa structure is shown to have potential advantages. Simulations reveal even greater reductions in the internal electric fields by using “field plates” in concert with high-k oxides.

  18. Millisecond Oxidation of Alkanes

    Broader source: Energy.gov [DOE]

    This factsheet describes a project whose goal is to commercialize a production process for propylene and acrylic acid from propane using a catalytic auto-thermal oxydehydrogenation process operating at short contact times. Auto-thermal oxidation for conversion of propane to propylene and acrylic acid promises energy savings of 20 trillion Btu per year by 2020. In addition to reducing energy consumption, this technology can reduce manufacturing costs by up to 25 percent, and reduce a variety of greenhouse gas emissions.

  19. DNA 3' pp 5' G de-capping activity of aprataxin: effect of cap nucleoside analogs and structural basis for guanosine recognition

    SciTech Connect (OSTI)

    Chauleau, Mathieu; Jacewicz, Agata; Shuman, Stewart

    2015-05-24

    DNA3' pp 5'G caps synthesized by the 3'-PO4/5'-OH ligase RtcB have a strong impact on enzymatic reactions at DNA 3'-OH ends. Aprataxin, an enzyme that repairs A5'pp5'DNA ends formed during abortive ligation by classic 3'-OH/5'-PO4 ligases, is also a DNA 3' de-capping enzyme, converting DNAppG to DNA3'p and GMP. By taking advantage of RtcB's ability to utilize certain GTP analogs to synthesize DNAppN caps, we show that aprataxin hydrolyzes inosine and 6-O-methylguanosine caps, but is not adept at removing a deoxyguanosine cap. We report a 1.5 Å crystal structure of aprataxin in a complex with GMP, which reveals that: (i) GMP binds at the same position and in the same anti nucleoside conformation as AMP; and (ii) aprataxin makes more extensive nucleobase contacts with guanine than with adenine, via a hydrogen bonding network to the guanine O6, N1, N2 base edge. Alanine mutations of catalytic residues His147 and His149 abolish DNAppG de-capping activity, suggesting that the 3' de-guanylylation and 5' de-adenylylation reactions follow the same pathway of nucleotidyl transfer through a covalent aprataxin-(His147)–NMP intermediate. Alanine mutation of Asp63, which coordinates the guanosine ribose hydroxyls, impairs DNAppG de-capping.

  20. Preparation of water soluble L-arginine capped CdSe/ZnS QDs and their interaction with synthetic DNA: Picosecond-resolved FRET study

    SciTech Connect (OSTI)

    Giri, Anupam; Goswami, Nirmal; Lemmens, Peter; Pal, Samir Kumar

    2012-08-15

    Graphical abstract: Frster resonance energy transfer (FRET) studies on the interaction of water soluble arginine-capped CdSe/ZnS QDs with ethidium bromide (EB) labeled synthetic dodecamer DNA. Highlights: ? We have solubilized CdSe/ZnS QD in water replacing their TOPO ligand by L-arginine. ? We have studied arginine@QDDNA interaction using FRET technique. ? Arginine@QDs act as energy donor and ethidium bromide-DNA acts as energy acceptor. ? We have applied a kinetic model to understand the kinetics of energy transfer. ? Circular dichroism studies revealed negligible perturbation in the DNA B-form in the arg@QD-DNA complex. -- Abstract: We have exchanged TOPO (trioctylphosphine oxide) ligand of CdSe/ZnS core/shell quantum dots (QDs) with an amino acid L-arginine (Arg) at the toluene/water interface and eventually rendered the QDs from toluene to aqueous phase. We have studied the interaction of the water soluble Arg-capped QDs (energy donor) with ethidium (EB) labeled synthetic dodecamer DNA (energy acceptor) using picoseconds resolved Frster resonance energy transfer (FRET) technique. Furthermore, we have applied a model developed by M. Tachiya to understand the kinetics of energy transfer and the distribution of acceptor (EB-DNA) molecules around the donor QDs. Circular dichroism (CD) studies revealed a negligible perturbation in the native B-form structure of the DNA upon interaction with Arg-capped QDs. The melting and the rehybridization pathways of the DNA attached to the QDs have been monitored by the CD which reveals hydrogen bonding is the associative mechanism for interaction between Arg-capped QDs and DNA.

  1. Emissions of greenhouse gases in the United States 1995

    SciTech Connect (OSTI)

    1996-10-01

    This is the fourth Energy Information Administration (EIA) annual report on US emissions of greenhouse gases. This report presents estimates of US anthropogenic (human-caused) emissions of carbon dioxide, methane, nitrous oxide, and several other greenhouse gases for 1988 through 1994. Estimates of 1995 carbon dioxide, nitrous oxide, and halocarbon emissions are also provided, although complete 1995 estimates for methane are not yet available. Emissions of carbon dioxide increased by 1.9% from 1993 to 1994 and by an additional 0.8% from 1994 to 1995. Most carbon dioxide emissions are caused by the burning of fossil fuels for energy consumption, which is strongly related to economic growth, energy prices, and weather. The US economy grew rapidly in 1994 and slowed in 1995. Estimated emissions of methane increased slightly in 1994, as a result of a rise in emissions from energy and agricultural sources. Estimated nitrous oxide emissions increased by 1.8% in 1995, primarily due to increased use of nitrogen fertilizers and higher output of chemicals linked to nitrous oxide emissions. Estimated emissions of hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs), which are known to contribute to global warming, increased by nearly 11% in 1995, primarily as a result of increasing substitution for chlorofluorocarbons (CFCs). With the exception of methane, the historical emissions estimates presented in this report are only slightly revised from those in last year`s report.

  2. 488-4D ASH LANDFILL CLOSURE CAP HELP MODELING

    SciTech Connect (OSTI)

    Phifer, M.

    2014-11-17

    At the request of Area Completion Projects (ACP) in support of the 488-4D Landfill closure, the Savannah River National Laboratory (SRNL) has performed Hydrologic Evaluation of Landfill Performance (HELP) modeling of the planned 488-4D Ash Landfill closure cap to ensure that the South Carolina Department of Health and Environmental Control (SCDHEC) limit of no more than 12 inches of head on top of the barrier layer (saturated hydraulic conductivity of no more than 1.0E-05 cm/s) in association with a 25-year, 24-hour storm event is not projected to be exceeded. Based upon Weber 1998 a 25-year, 24-hour storm event at the Savannah River Site (SRS) is 6.1 inches. The results of the HELP modeling indicate that the greatest peak daily head on top of the barrier layer (i.e. geosynthetic clay liner (GCL) or high density polyethylene (HDPE) geomembrane) for any of the runs made was 0.079 inches associated with a peak daily precipitation of 6.16 inches. This is well below the SCDHEC limit of 12 inches.

  3. Performance of paper mill sludges as landfill capping material

    SciTech Connect (OSTI)

    Moo-Young, H.K. Jr.; Zimmie, T.F.

    1997-12-31

    The high cost of waste containment has sparked interest in low cost and effective strategies of containing wastes. Paper mill sludges have been effectively used as the impermeable barrier in landfill covers. Since paper mill sludges are viewed as a waste material, the sludge is given to the landfill owner at little or no cost. Thus, when a clay soil is not locally available to use as the impermeable barrier in a cover system, paper sludge barriers can save $20,000 to $50,000 per acre in construction costs. This study looks at the utilization and performance of blended and primary paper sludge as landfill capping material. To determine the effectiveness of paper sludge as an impermeable barrier layer, test pads were constructed to simulate a typical landfill cover with paper sludge and clay as the impermeable barrier and were monitored for infiltration rates for five years. Long-term hydraulic conductivity values estimated from the leachate generation rates of the test pads indicate that paper sludge provides an acceptable hydraulic barrier.

  4. SEQUESTERING AGENTS FOR ACTIVE CAPS - REMEDIATION OF METALS AND ORGANICS

    SciTech Connect (OSTI)

    Knox, A; Michael Paller, M; Danny D. Reible, D; Xingmao Ma, X; Ioana G. Petrisor, I

    2007-05-10

    This research evaluated organoclays, zeolites, phosphates, and a biopolymer as sequestering agents for inorganic and organic contaminants. Batch experiments were conducted to identify amendments and mixtures of amendments for metal and organic contaminants removal and retention. Contaminant removal was evaluated by calculating partitioning coefficients. Metal retention was evaluated by desorption studies in which residue from the removal studies was extracted with 1 M MgCl{sub 2} solution. The results indicated that phosphate amendments, some organoclays, and the biopolymer, chitosan, were very effective sequestering agents for metals in fresh and salt water. Organoclays were very effective sorbents for phenanthrene, pyrene, and benzo(a)pyrene. Partitioning coefficients for the organoclays were 3000-3500 ml g{sup -1} for benzo(a)pyrene, 400-450 ml g{sup -1} for pyrene, and 50-70 ml g{sup -1} for phenanthrene. Remediation of sites with a mixture of contaminants is more difficult than sites with a single contaminant because metals and organic contaminants have different fate and transport mechanisms in sediment and water. Mixtures of amendments (e.g., organoclay and rock phosphate) have high potential for remediating both organic and inorganic contaminants under a broad range of environmental conditions, and have promise as components in active caps for sediment remediation.

  5. Imaging of the Fibrous Cap in Atherosclerotic Carotid Plaque

    SciTech Connect (OSTI)

    Saba, Luca; Potters, Fons; Lugt, Aad van der; Mallarini, Giorgio

    2010-08-15

    In the last two decades, a substantial number of articles have been published to provide diagnostic solutions for patients with carotid atherosclerotic disease. These articles have resulted in a shift of opinion regarding the identification of stroke risk in patients with carotid atherosclerotic disease. In the recent past, the degree of carotid artery stenosis was the sole determinant for performing carotid intervention (carotid endarterectomy or carotid stenting) in these patients. We now know that the degree of stenosis is only one marker for future cerebrovascular events. If one wants to determine the risk of these events more accurately, other parameters must be taken into account; among these parameters are plaque composition, presence and state of the fibrous cap (FC), intraplaque haemorrhage, plaque ulceration, and plaque location. In particular, the FC is an important structure for the stability of the plaque, and its rupture is highly associated with a recent history of transient ischaemic attack or stroke. The subject of this review is imaging of the FC.

  6. MC4523 Sealed Cap: Component & characteristics development report

    SciTech Connect (OSTI)

    Begeal, D.R.

    1997-03-01

    The MC4523 Sealed Cap is a WW42C1 Percussion Primer that is pressed into a steel cylinder. Hermaticity of the input end is then provided by welding a thin steel closure disk on the input end of the MC4523. Thus, the user is provided with a component that is prequalified in terms of ignition sensitivity and hermeticity. The first customer is the Thermal Battery Department (1522). The MC4523 will be used on the MC2736A Thermal Battery which in turn will be used on the W78 JTA. Attachment of the MC4523 to the battery is with a laser weld. Combined test results of four production lots at a commercial supplier (PPI, TMS, WR1, and WR2) show an all-fire ignition sensitivity (.999 @ 50%) of approximately 60 millijoules of mechanical energy with a 2.2 gram firing pin. The firing pin had an impact tip with a radius of 0.020 inch. This firing pin is like that to be used in the W78 JTA application. Approximately 112 millijoules of mechanical energy will be supplied in the application, thus the design margin is more than adequate.

  7. Methane emissions from MBT landfills

    SciTech Connect (OSTI)

    Heyer, K.-U. Hupe, K.; Stegmann, R.

    2013-09-15

    Highlights: • Compilation of methane generation potential of mechanical biological treated (MBT) municipal solid waste. • Impacts and kinetics of landfill gas production of MBT landfills, approach with differentiated half-lives. • Methane oxidation in the waste itself and in soil covers. • Estimation of methane emissions from MBT landfills in Germany. - Abstract: Within the scope of an investigation for the German Federal Environment Agency (“Umweltbundesamt”), the basics for the estimation of the methane emissions from the landfilling of mechanically and biologically treated waste (MBT) were developed. For this purpose, topical research including monitoring results regarding the gas balance at MBT landfills was evaluated. For waste treated to the required German standards, a methane formation potential of approximately 18–24 m{sup 3} CH{sub 4}/t of total dry solids may be expected. Monitoring results from MBT landfills show that a three-phase model with differentiated half-lives describes the degradation kinetics in the best way. This is due to the fact that during the first years of disposal, the anaerobic degradation processes still proceed relatively intensively. In addition in the long term (decades), a residual gas production at a low level is still to be expected. Most of the soils used in recultivation layer systems at German landfills show a relatively high methane oxidation capacity up to 5 l CH{sub 4}/(m{sup 2} h). However, measurements at MBT disposal sites indicate that the majority of the landfill gas (in particular at non-covered areas), leaves the landfill body via preferred gas emission zones (hot spots) without significant methane oxidation. Therefore, rather low methane oxidation factors are recommended for open and temporarily covered MBT landfills. Higher methane oxidation rates can be achieved when the soil/recultivation layer is adequately designed and operated. Based on the elaborated default values, the First Order Decay (FOD

  8. H. R. 4177: A Bill to amend the Internal Revenue Code of 1986 to impose an excise tax on sulfur dioxide and nitrogen oxide emissions from utility plants. Introduced in the House of Representatives, One Hundredth First Congress, Second Session, March 5, 1990

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The tax imposed would begin in 1991 in the amount of 15 cents per pound of sulfur dioxide released and 10 cents per pound nitrogen oxide, and would increase so that the tax in 1997 and thereafter would be 45 cents per pound of sulfur dioxide and 30 cents per pound of nitrogen oxide released. An inflation adjustment is provided for years after 1997. The tax is imposed on emissions which exceed the exemption level for each pollutant, and these levels are specified herein as pounds exempted per million Btu's of fuel burned. No tax is imposed on units less than 75 megawatts, or units providing less than one-third of the electricity produced to a utility power distribution system for sale.

  9. Radionuclide Air Emission Report for 2007

    SciTech Connect (OSTI)

    Wahl, Linnea; Wahl, Linnea

    2008-06-13

    Berkeley Lab operates facilities where radionuclides are handled and stored. These facilities are subject to the U.S. Environmental Protection Agency (EPA) radioactive air emission regulations in Code of Federal Regulations (CFR) Title 40, Part 61, Subpart H (EPA 1989). The EPA regulates radionuclide emissions that may be released from stacks or vents on buildings where radionuclide production or use is authorized or that may be emitted as diffuse sources. In 2007, all Berkeley Lab sources were minor stack or building emissions sources of radionuclides (sources resulting in a potential dose of less than 0.1 mrem/yr [0.001 mSv/yr]), there were no diffuse emissions, and there were no unplanned emissions. Emissions from minor sources either were measured by sampling or monitoring or were calculated based on quantities received for use or produced during the year. Using measured and calculated emissions, and building-specific and common parameters, Laboratory personnel applied the EPA-approved computer code, CAP88-PC, Version 3.0, to calculate the effective dose equivalent to the maximally exposed individual (MEI). The effective dose equivalent from all sources at Berkeley Lab in 2007 is 1.2 x 10{sup -2} mrem/yr (1.2 x 10{sup -4} mSv/yr) to the MEI, well below the 10 mrem/yr (0.1 mSv/yr) EPA dose standard. The location of the MEI is at the University of California (UC) Lawrence Hall of Science, a public science museum about 1500 ft (460 m) east of Berkeley Lab's Building 56. The estimated collective effective dose equivalent to persons living within 50 mi (80 km) of Berkeley Lab is 3.1 x 10{sup -1} person-rem (3.1 x 10{sup -3} person-Sv) attributable to the Lab's airborne emissions in 2007.

  10. Mitigating greenhouse gas emissions: Voluntary reporting

    SciTech Connect (OSTI)

    1997-10-01

    The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report on their emissions of greenhouse gases, and on actions taken that have reduced or avoided emissions or sequestered carbon, to the Energy Information Administration (EIA). This, the second annual report of the Voluntary Reporting Program, describes information provided by the participating organizations on their aggregate emissions and emissions reductions, as well as their emissions reduction or avoidance projects, through 1995. This information has been compiled into a database that includes reports from 142 organizations and descriptions of 967 projects that either reduced greenhouse gas emissions or sequestered carbon. Fifty-one reporters also provided estimates of emissions, and emissions reductions achieved, for their entire organizations. The projects described actions taken to reduce emissions of carbon dioxide from energy production and use; to reduce methane and nitrous oxide emissions from energy use, waste management, and agricultural processes; to reduce emissions of halocarbons, such as CFCs and their replacements; and to increase carbon sequestration.

  11. Attempt to extract the preformation probability of. cap alpha. cluster at the surface of heavy nuclei by means of. cap alpha. -transfer reactions leading to the continuum states

    SciTech Connect (OSTI)

    Xu Shu-wei; Wu Guo-hua; Miao Rong-zhi; Han Fei

    1983-07-01

    The method of parametrization of an EFR-DWBA overlap integral developed by T. Udagawa and T. Tamura et al./sup 1/ is improved. Using the improved method we have fitted the experimental double differential energy spectrum of the /sup 8/Be cluster coming from the reaction /sup 208/Pb(/sup 12/C, /sup 8/Be) /sup 212/Po leading to the continuum states and extracted the preformation probability of the ..cap alpha.. cluster at the surface of the /sup 212/Po nucleus. Within the range of calculation error, the result is in agreement with that extracted from fitting the experimental data of ..cap alpha.. decay.

  12. National Emission Standards for Hazardous Air Pollutants submittal -- 1994

    SciTech Connect (OSTI)

    Townsend, Y.E.; Black, S.C.

    1995-06-01

    This report focuses on air quality at the Nevada Test Site (NTS) for 1994. A general description of the effluent sources are presented. Each potential source of NTS emissions was characterized by one of the following: (1) by monitoring methods and procedures previously developed at NTS; (2) by a yearly radionuclide inventory of the source, assuming that volatile radionuclides are released to the environment; (3) by the measurement of tritiated water concentration in liquid effluents discharged to containment ponds and assuming all the effluent evaporates over the course of the year to become an air emission; or (4) by using a combination of environmental measurements and CAP88-PC to calculate emissions. Appendices A through J describe the methods used to determine the emissions from the sources. These National Emission Standards for Hazardous Air Pollutants (NESHAP) emissions are very conservative, are used to calculate the effective dose equivalent to the Maximally Exposed Individual offsite, and exceed, in some cases, those reported in DOE`s Effluent Information System (EIS). The NESHAP`s worst-case emissions that exceed the EIS reported emissions are noted. Offsite environmental surveillance data are used to confirm that calculated emissions are, indeed, conservative.

  13. PULSAR PAIR CASCADES IN MAGNETIC FIELDS WITH OFFSET POLAR CAPS

    SciTech Connect (OSTI)

    Harding, Alice K.; Muslimov, Alex G.

    2011-12-20

    Neutron star magnetic fields may have polar caps (PCs) that are offset from the dipole axis, through field-line sweepback near the light cylinder or non-symmetric currents within the star. The effects of such offsets on electron-positron pair cascades are investigated, using simple models of dipole magnetic fields with small distortions that shift the PCs by different amounts or directions. Using a Monte Carlo pair cascade simulation, we explore the changes in the pair spectrum, multiplicity, and energy flux across the PC, as well as the trends in pair flux and pair energy flux with spin-down luminosity, L{sub sd}. We also give an estimate of the distribution of heating flux from returning positrons on the PC for different offsets. We find that even modest offsets can produce significant increases in pair multiplicity, especially for pulsars that are near or beyond the pair death lines for centered PCs, primarily because of higher accelerating fields. Pair spectra cover several decades in energy, with the spectral range of millisecond pulsars (MSPs) two orders of magnitude higher than for normal pulsars, and PC offsets allow significant extension of all spectra to lower pair energies. We find that the total PC pair luminosity L{sub pair} is proportional to L{sub sd}, with L{sub pair} {approx} 10{sup -3} L{sub sd} for normal pulsars and L{sub pair} {approx} 10{sup -2} L{sub sd} for MSPs. Remarkably, the total PC heating luminosity for even large offsets increases by less than a factor of two, even though the PC area increases by much larger factors, because most of the heating occurs near the magnetic axis.

  14. Exhaust emission control and diagnostics

    SciTech Connect (OSTI)

    Mazur, Christopher John; Upadhyay, Devesh

    2006-11-14

    A diesel engine emission control system uses an upstream oxidation catalyst and a downstream SCR catalyst to reduce NOx in a lean exhaust gas environment. The engine and upstream oxidation catalyst are configured to provide approximately a 1:1 ratio of NO to NO2 entering the downstream catalyst. In this way, the downstream catalyst is insensitive to sulfur contamination, and also has improved overall catalyst NOx conversion efficiency. Degradation of the system is determined when the ratio provided is no longer near the desired 1:1 ratio. This condition is detected using measurements of engine operating conditions such as from a NOx sensor located downstream of the catalysts. Finally, control action to adjust an injected amount of reductant in the exhaust gas based on the actual NO to NO2 ratio upstream of the SCR catalyst and downstream of the oxidation catalyst.

  15. FY 2014 Q3 RCA CAP Performance Metrics Report 2014-09-05.xlsx

    Energy Savers [EERE]

    ContractProject Management Performance Metrics FY 2014 Target FY 2014 Pre- & Post- CAP* ... TPC is Total Project Cost. No. FY 2014 Target FY 2014 3rd Qtr Actual 2 95% 92% 3 95% ...

  16. InAs quantum dot morphology after capping with In, N, Sb alloyed thin films

    SciTech Connect (OSTI)

    Keizer, J. G.; Koenraad, P. M.; Ulloa, J. M.; Utrilla, A. D.

    2014-02-03

    Using a thin capping layer to engineer the structural and optical properties of InAs/GaAs quantum dots (QDs) has become common practice in the last decade. Traditionally, the main parameter considered has been the strain in the QD/capping layer system. With the advent of more exotic alloys, it has become clear that other mechanisms significantly alter the QD size and shape as well. Larger bond strengths, surfactants, and phase separation are known to act on QD properties but are far from being fully understood. In this study, we investigate at the atomic scale the influence of these effects on the morphology of capped QDs with cross-sectional scanning tunneling microscopy. A broad range of capping materials (InGaAs, GaAsSb, GaAsN, InGaAsN, and GaAsSbN) are compared. The QD morphology is related to photoluminescence characteristics.

  17. The MuCap Experiment (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    This talk will cover the motivation for and design of the MuCap experiment, first physics results from the new measurement, and improvements toward the final precision goal. ...

  18. Nuke Watch New Mexico Perspective on MDA G Cap and Cover

    Broader source: Energy.gov [DOE]

    At the February 12, 2014 Committee meeting Scott Kovac NWNM, Provided Information pertaining to the Proposed Cap and Cover of Material Disposal Area G and NWNMs perspective on it.

  19. Selective layer disordering in III-nitrides with a capping layer

    DOE Patents [OSTI]

    Wierer, Jr., Jonathan J.; Allerman, Andrew A.

    2016-06-14

    Selective layer disordering in a doped III-nitride superlattice can be achieved by depositing a dielectric capping layer on a portion of the surface of the superlattice and annealing the superlattice to induce disorder of the layer interfaces under the uncapped portion and suppress disorder of the interfaces under the capped portion. The method can be used to create devices, such as optical waveguides, light-emitting diodes, photodetectors, solar cells, modulators, laser, and amplifiers.

  20. Damage of multilayer optics with varying capping layers induced by focused extreme ultraviolet beam

    SciTech Connect (OSTI)

    Jody Corso, Alain; Nicolosi, Piergiorgio; Nardello, Marco; Guglielmina Pelizzo, Maria; Barkusky, Frank; Mann, Klaus; Mueller, Matthias

    2013-05-28

    Extreme ultraviolet Mo/Si multilayers protected by capping layers of different materials were exposed to 13.5 nm plasma source radiation generated with a table-top laser to study the irradiation damage mechanism. Morphology of single-shot damaged areas has been analyzed by means of atomic force microscopy. Threshold fluences were evaluated for each type of sample in order to determine the capability of the capping layer to protect the structure underneath.

  1. Status of Net Metering: Assessing the Potential to Reach Program Caps

    SciTech Connect (OSTI)

    Heeter, J.; Gelman, R.; Bird, L.

    2014-09-01

    Several states are addressing the issue of net metering program caps, which limit the total amount of net metered generating capacity that can be installed in a state or utility service territory. In this analysis, we examine net metering caps to gain perspective on how long net metering will be available in various jurisdictions under current policies. We also surveyed state practices and experience to understand important policy design considerations.

  2. Status of Net Metering: Assessing the Potential to Reach Program Caps (Poster)

    SciTech Connect (OSTI)

    Heeter, J.; Bird, L.; Gelman, R.

    2014-10-01

    Several states are addressing the issue of net metering program caps, which limit the total amount of net metered generating capacity that can be installed in a state or utility service territory. In this analysis, we examine net metering caps to gain perspective on how long net metering will be available in various jurisdictions under current policies. We also surveyed state practices and experience to understand important policy design considerations.

  3. Black carbon aerosols and the third polar ice cap

    SciTech Connect (OSTI)

    Menon, Surabi; Koch, Dorothy; Beig, Gufran; Sahu, Saroj; Fasullo, John; Orlikowski, Daniel

    2010-04-15

    Recent thinning of glaciers over the Himalayas (sometimes referred to as the third polar region) have raised concern on future water supplies since these glaciers supply water to large river systems that support millions of people inhabiting the surrounding areas. Black carbon (BC) aerosols, released from incomplete combustion, have been increasingly implicated as causing large changes in the hydrology and radiative forcing over Asia and its deposition on snow is thought to increase snow melt. In India BC emissions from biofuel combustion is highly prevalent and compared to other regions, BC aerosol amounts are high. Here, we quantify the impact of BC aerosols on snow cover and precipitation from 1990 to 2010 over the Indian subcontinental region using two different BC emission inventories. New estimates indicate that Indian BC emissions from coal and biofuel are large and transport is expected to expand rapidly in coming years. We show that over the Himalayas, from 1990 to 2000, simulated snow/ice cover decreases by {approx}0.9% due to aerosols. The contribution of the enhanced Indian BC to this decline is {approx}36%, similar to that simulated for 2000 to 2010. Spatial patterns of modeled changes in snow cover and precipitation are similar to observations (from 1990 to 2000), and are mainly obtained with the newer BC estimates.

  4. EIA - Greenhouse Gas Emissions - Methane Emissions

    Gasoline and Diesel Fuel Update (EIA)

    3. Methane Emissions 3.1. Total emissions The major sources of U.S. methane emissions are energy production, distribution, and use; agriculture; and waste management (Figure 17). U.S. methane emissions in 2009 totaled 731 MMTCO2e, 0.9 percent higher than the 2008 total of 724 MMTCO2e (Table 17). Methane emissions declined steadily from 1990 to 2001, as emissions from coal mining and landfills fell, then rose from 2002 to 2009 as a result of moderate increases in emissions related to energy,

  5. Non-Incineration Treatment to Reduce Benzene and VOC Emissions from Green Sand Molding Systems

    SciTech Connect (OSTI)

    Fred S. Cannon; Robert C. Voigt

    2002-06-28

    Final report describing laboratory, pilot scale and production scale evaluation of advanced oxidation systems for emissions and cost reduction in metal casting green sand systems.

  6. Laser rods with undoped, flanged end-caps for end-pumped laser applications

    DOE Patents [OSTI]

    Meissner, H.E.; Beach, R.J.; Bibeau, C.; Sutton, S.B.; Mitchell, S.; Bass, I.; Honea, E.

    1999-08-10

    A method and apparatus for achieving improved performance in a solid state laser is provided. A flanged, at least partially undoped end-cap is attached to at least one end of a laserable medium. Preferably flanged, undoped end-caps are attached to both ends of the laserable medium. Due to the low scatter requirements for the interface between the end-caps and the laser rod, a non-adhesive method of bonding is utilized such as optical contacting combined with a subsequent heat treatment of the optically contacted composite. The non-bonded end surfaces of the flanged end-caps are coated with laser cavity coatings appropriate for the lasing wavelength of the laser rod. A cooling jacket, sealably coupled to the flanged end-caps, surrounds the entire length of the laserable medium. Radiation from a pump source is focused by a lens duct and passed through at least one flanged end-cap into the laser rod. 14 figs.

  7. Radionuclide Air Emission Report for 2009

    SciTech Connect (OSTI)

    Wahl, Linnea

    2010-06-01

    Berkeley Lab operates facilities where radionuclides are handled and stored. These facilities are subject to the EPA radioactive air emission regulations in 40CFR61, Subpart H (EPA 1989). Radionuclides may be emitted from stacks or vents on buildings where radionuclide production or use is authorized or they may be emitted as diffuse sources. In 2009, all Berkeley Lab sources were minor sources of radionuclides (sources resulting in a potential dose of less than 0.1 mrem/yr [0.001 mSv/yr]). These minor sources included more than 100 stack sources and one source of diffuse emissions. There were no unplanned emissions from the Berkeley Lab site. Emissions from minor sources (stacks and diffuse emissions) either were measured by sampling or monitoring or were calculated based on quantities used, received for use, or produced during the year. Using measured and calculated emissions, and building-specific and common parameters, Laboratory personnel applied the EPA-approved computer code, CAP88-PC, to calculate the effective dose equivalent to the maximally exposed individual (MEI). The effective dose equivalent from all sources at Berkeley Lab in 2009 is 7.0 x 10{sup -3} mrem/yr (7.0 x 10{sup -5} mSv/yr) to the MEI, well below the 10 mrem/yr (0.1 mSv/yr) dose standard. The location of the MEI is at the University of California (UC) Lawrence Hall of Science, a public science museum about 1500 ft (460 m) east of Berkeley Lab's Building 56. The estimated collective effective dose equivalent to persons living within 50 mi (80 km) of Berkeley Lab is 1.5 x 10{sup -1} person-rem (1.5 x 10{sup -3} person-Sv) attributable to the Lab's airborne emissions in 2009.

  8. Radionuclide Air Emission Report for 2008

    SciTech Connect (OSTI)

    Wahl, Linnea

    2009-05-21

    Berkeley Lab operates facilities where radionuclides are handled and stored. These facilities are subject to the U.S. Environmental Protection Agency (EPA) radioactive air emission regulations in Code of Federal Regulations (CFR) Title 40, Part 61, Subpart H (EPA 1989). Radionuclides may be emitted from stacks or vents on buildings where radionuclide production or use is authorized or they may be emitted as diffuse sources. In 2008, all Berkeley Lab sources were minor sources of radionuclides (sources resulting in a potential dose of less than 0.1 mrem/yr [0.001 mSv/yr]). These minor sources include more than 100 stack sources and one source of diffuse emissions. There were no unplanned emissions from the Berkeley Lab site. Emissions from minor sources (stacks and diffuse emissions) either were measured by sampling or monitoring or were calculated based on quantities used, received for use, or produced during the year. Using measured and calculated emissions, and building-specific and common parameters, Laboratory personnel applied the EPA-approved computer code, CAP88-PC, to calculate the effective dose equivalent to the maximally exposed individual (MEI). The effective dose equivalent from all sources at Berkeley Lab in 2008 is 5.2 x 10{sup -3} mrem/yr (5.2 x 10{sup -5} mSv/yr) to the MEI, well below the 10 mrem/yr (0.1 mSv/yr) dose standard. The location of the MEI is at the University of California (UC) Lawrence Hall of Science, a public science museum about 1500 ft (460 m) east of Berkeley Lab's Building 56. The estimated collective effective dose equivalent to persons living within 50 mi (80 km) of Berkeley Lab is 1.1 x 10{sup -1} person-rem (1.1 x 10{sup -3} person-Sv) attributable to the Lab's airborne emissions in 2008.

  9. Elastic emission polishing

    SciTech Connect (OSTI)

    Loewenthal, M.; Loseke, K.; Dow, T.A.; Scattergood, R.O.

    1988-12-01

    Elastic emission polishing, also called elastic emission machining (EEM), is a process where a stream of abrasive slurry is used to remove material from a substrate and produce damage free surfaces with controlled surface form. It is a noncontacting method utilizing a thick elasto-hydrodynamic film formed between a soft rotating ball and the workpiece to control the flow of the abrasive. An apparatus was built in the Center, which consists of a stationary spindle, a two-axis table for the workpiece, and a pump to circulate the working fluid. The process is controlled by a programmable computer numerical controller (CNC), which presently can operate the spindle speed and movement of the workpiece in one axis only. This apparatus has been used to determine material removal rates on different material samples as a function of time, utilizing zirconium oxide (ZrO{sub 2}) particles suspended in distilled water as the working fluid. By continuing a study of removal rates the process should become predictable, and thus create a new, effective, yet simple tool for ultra-precision mechanical machining of surfaces.

  10. Managing the cost of emissions for durable, carbon-containing products

    SciTech Connect (OSTI)

    Shirley, Kevin; Marland, Eric; Cantrell, Jenna; Marland, Gregg

    2011-03-01

    We recognize that carbon-containing products do not decay and release CO2 to the atmosphere instantaneously, but release that carbon over extended periods of time. For an initial production of a stock of carbon-containing product, we can treat the release as a probability distribution covering the time over which that release occurs. The probability distribution that models the carbon release predicts the amount of carbon that is released as a function of time. The use of a probability distribution in accounting for the release of carbon to the atmosphere realizes a fundamental shift from the idea that all carbon-containing products contribute to a single pool that decays in proportion to the size of the stock. Viewing the release of carbon as a continuous probabilistic process introduces some theoretical opportunities not available in the former paradigm by taking advantage of other fields where the use of probability distributions has been prevalent for many decades. In particular, theories developed in the life insurance industry can guide the development of pricing and payment structures for dealing with the costs associated with the oxidation and release of carbon. These costs can arise from a number of proposed policies (cap and trade, carbon tax, social cost of carbon, etc), but in the end they all result in there being a cost to releasing carbon to the atmosphere. If there is a cost to the emitter for CO2 emissions, payment for that cost will depend on both when the emissions actually occur and how payment is made. Here we outline some of the pricing and payment structures that are possible which result from analogous theories in the life insurance industry. This development not only provides useful constructs for valuing sequestered carbon, but highlights additional motivations for employing a probability distribution approach to unify accounting methodologies for stocks of carbon containing products.

  11. Reducing emissions from the electricity sector: the costs and benefits nationwide and for the Empire State

    SciTech Connect (OSTI)

    Karen Palmer; Dallas Butraw; Jhih-Shyang Shih

    2005-06-15

    Using four models, this study looks at EPA's Clean Air Interstate Rule (CAIR) as originally proposed, which differs in only small ways from the final rule issued in March 2005, coupled with several approaches to reducing emissions of mercury including one that differs in only small ways from the final rule also issued in March 2005. This study analyzes what costs and benefits each would incur to New York State and to the nation at large. Benefits to the nation and to New York State significantly outweigh the costs associated with reductions in SO{sub 2}, NOx and mercury, and all policies show dramatic net benefits. The manner in which mercury emissions are regulated will have important implications for the cost of the regulation and for emission levels for SO{sub 2} and NOx and where those emissions are located. Contrary to EPA's findings, CAIR as originally proposed by itself would not keep summer emissions of NOx from electricity generators in the SIP region below the current SIP seasonal NOx cap. In the final CAIR, EPA added a seasonal NOx cap to address seasonal ozone problems. The CAIR with the seasonal NOx cap produces higher net benefits. The effect of the different policies on the mix of fuels used to supply electricity is fairly modest under scenarios similar to the EPA's final rules. A maximum achievable control technology (MACT) approach, compared to a trading approach as the way to achieve tighter mercury targets (beyond EPA's proposal), would preserve the role of coal in electricity generation. The evaluation of scenarios with tighter mercury emission controls shows that the net benefits of a maximum achievable control technology (MACT) approach exceed the net benefits of a cap and trade approach. 39 refs., 10 figs., 30 figs., 5 apps.

  12. Mammalian. cap alpha. -polymerase: cloning of partial complementary DNA and immunobinding of catalytic subunit in crude homogenate protein blots

    SciTech Connect (OSTI)

    SenGupta, D.N.; Kumar, P.; Zmudzka, B.Z.; Coughlin, S.; Vishwanatha, J.K.; Robey, F.A.; Parrott, C.; Wilson, S.H.

    1987-02-10

    A new polyclonal antibody against the ..cap alpha..-polymerase catalytic polypeptide was prepared by using homogeneous HeLa cell..cap alpha..-polymerase. The antibody neutralized ..cap alpha..-polymerase activity and was strong and specific for the ..cap alpha..-polymerase catalytic polypeptide (M/sub r/ 183,000) in Western blot analysis of crude extracts of HeLa cells. The antibody was used to screen a cDNA library of newborn rat brain poly(A+) RNA in lambdagt11. A positive phage was identified and plaque purified. This phage, designated lambdapol..cap alpha..1.2, also was found to be positive with an antibody against Drosophila ..cap alpha..-polymerase. The insert in lambdapol..cap alpha..1.2 (1183 base pairs) contained a poly(A) sequence at the 3' terminus and a short in-phase open reading frame at the 5' terminus. A synthetic oligopeptide (eight amino acids) corresponding to the open reading frame was used to raise antiserum in rabbits. Antibody affinity purified from this serum was found to be immunoreactive against purified ..cap alpha..-polymerase by enzyme-linked immunosorbent assay and was capable of immunoprecipitating ..cap alpha..-polymerase. This indicated the lambdapol..cap alpha..1.2 insert encoded an ..cap alpha..-polymerase epitope and suggested that the cDNA corresponded to an ..cap alpha..-polymerase mRNA. This was confirmed in hybrid selection experiments using pUC9 containing the cDNA insert and poly(A+) RNA from newborn rat brain; the insert hybridized to mRNA capable of encoding ..cap alpha..-polymerase catalytic polypeptides. Northern blot analysis of rat brain poly(A+) RNA revealed that this mRNA is approx.5.4 kilobases.

  13. Synthesis of 3-amino-4-hydroxylaminothiazolidine-2-thiones and 2,3-dimethyl-4. cap alpha. ,5-dihydro-7-thioxothiazolo(3,4-b)-1,2,4-triazines

    SciTech Connect (OSTI)

    Epshtein, S.P.; Orlova, T.I.; Rukasov, A.F.; Tashchi, V.P.; Putsykin, Yu. G.

    1987-10-01

    The reaction of dimeric nitroso chlorides of olefins with potassium dithiocarbazate was used to synthesize 3-amino-4-hydroxylaminothiazolidine-2-thiones, which undergo rearrangement to 2-mercapto-1,3,4-thiadiazines on heating and react with butane-2,3-dione to give 2,3-dimethyl-4..cap alpha..,5-dihydro-7-thioxothiazolo(3,4-b)-1,2,4-triazine 4-oxides. The latter are reduced by sodium borohydride to the corresponding 3,4,4..cap alpha..,5-tetrahydro-7-thioxo derivatives. The IR spectra of KBr pellets of the compounds were recorded with a Perkin-Elmer spectrometer. The UV spectra of solutions in ethanol were obtained with a Specord UV spectrophotometer. The PMR spectra of solutions of the compounds in d/sub 6/-DMSO were obtained with a Varian FT-80A spectrometer with tetramethylsilane (TMS) as the internal standard.

  14. Transportable Emissions Testing Laboratory for Alternative Vehicles Emissions Testing

    SciTech Connect (OSTI)

    Clark, Nigel

    2012-01-31

    The overall objective of this project was to perform research to quantify and improve the energy efficiency and the exhaust emissions reduction from advanced technology vehicles using clean, renewable and alternative fuels. Advanced vehicle and alternative fuel fleets were to be identified, and selected vehicles characterized for emissions and efficiency. Target vehicles were to include transit buses, school buses, vocational trucks, delivery trucks, and tractor-trailers. Gaseous species measured were to include carbon monoxide, carbon dioxide, oxides of nitrogen, hydrocarbons, and particulate matter. An objective was to characterize particulate matter more deeply than by mass. Accurate characterization of efficiency and emissions was to be accomplished using a state-of-the-art portable emissions measurement system and an accompanying chassis dynamometer available at West Virginia University. These two units, combined, are termed the Transportable Laboratory. An objective was to load the vehicles in a real-world fashion, using coast down data to establish rolling resistance and wind drag, and to apply the coast down data to the dynamometer control. Test schedules created from actual vehicle operation were to be employed, and a specific objective of the research was to assess the effect of choosing a test schedule which the subject vehicle either cannot follow or can substantially outperform. In addition the vehicle loading objective was to be met better with an improved flywheel system.

  15. The European Union's emissions trading system in perspective

    SciTech Connect (OSTI)

    A. Denny Ellerman; Paul L. Joskow

    2008-05-15

    The performance of the European Union's Emissions Trading System (EU ETS) to date cannot be evaluated without recognizing that the first three years from 2005 through 2007 constituted a 'trial' period and understanding what this trial period was supposed to accomplish. Its primary goal was to develop the infrastructure and to provide the experience that would enable the successful use of a cap-and-trade system to limit European GHG emissions during a second trading period, 2008-12, corresponding to the first commitment period of the Kyoto Protocol. The trial period was a rehearsal for the later more serious engagement and it was never intended to achieve significant reductions in CO{sub 2} emissions in only three years. In light of the speed with which the program was developed, the many sovereign countries involved, the need to develop the necessary data, information dissemination, compliance and market institutions, and the lack of extensive experience with emissions trading in Europe, we think that the system has performed surprisingly well. Although there have been plenty of rough edges, a transparent and widely accepted price for tradable CO{sub 2} emission allowances emerged by January 1, 2005, a functioning market for allowances has developed quickly and effortlessly without any prodding by the Commission or member state governments, the cap-and-trade infrastructure of market institutions, registries, monitoring, reporting and verification is in place, and a significant segment of European industry is incorporating the price of CO{sub 2} emissions into their daily production decisions. The development of the EU ETS and the experience with the trial period provides a number of useful lessons for the U.S. and other countries. 27 refs., 7 figs., 5 tabs.

  16. NetCAP status report for the end of fiscal year 2010.

    SciTech Connect (OSTI)

    Hamlet, Benjamin Roger; Young, Christopher John

    2010-10-01

    Fiscal year 2010 (FY10) is the second full year of NetCAP development and the first full year devoted largely to new feature development rather than the reimplementation of existing capabilities found in NetSim (Sereno et al., 1990). Major tasks completed this year include: (1) Addition of hydroacoustic simulation; (2) Addition of event Identification simulation; and (3) Initial design and preparation for infrasound simulation. The Network Capability Assessment Program (NetCAP) is a software tool under development at Sandia National Laboratories used for studying the capabilities of nuclear explosion monitoring networks. This report discusses motivation and objectives for the NetCAP project, lists work performed prior to fiscal year 2010 (FY10) and describes FY10 accomplishments in detail.

  17. An inorganic capping strategy for the seeded growth of versatile bimetallic nanostructures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pei, Yuchen; Maligal-Ganesh, Raghu V.; Xiao, Chaoxian; Goh, Tian -Wei; Brashler, Kyle; Gustafson, Jeffrey A.; Huang, Wenyu

    2015-09-11

    Metal nanostructures have attracted great attention in various fields due to their tunable properties through precisely tailored sizes, compositions and structures. Using mesoporous silica (mSiO2) as the inorganic capping agent and encapsulated Pt nanoparticles as the seeds, we developed a robust seeded growth method to prepare uniform bimetallic nanoparticles encapsulated in mesoporous silica shells (PtM@mSiO2, M = Pd, Rh, Ni and Cu). Unexpectedly, we found that the inorganic silica shell is able to accommodate an eight-fold volume increase in the metallic core by reducing its thickness. The bimetallic nanoparticles encapsulated in mesoporous silica shells showed enhanced catalytic properties and thermalmore » stabilities compared with those prepared with organic capping agents. As a result, this inorganic capping strategy could find a broad application in the synthesis of versatile bimetallic nanostructures with exceptional structural control and enhanced catalytic properties.« less

  18. Ethanol oxidation on metal oxide-supported platinum catalysts

    SciTech Connect (OSTI)

    L. M. Petkovic 090468; Sergey N. Rashkeev; D. M. Ginosar

    2009-09-01

    Ethanol is a renewable fuel that can be used as an additive to gasoline (or its substitute) with the advantage of octane enhancement and reduced carbon monoxide exhaust emissions. However, on Ethanol is a renewable fuel that can be used as an additive to gasoline (or its substitute) with the advantage of octane enhancement and reduced carbon monoxide exhaust emissions. However, on the standard three-way catalysts, the conversion of unburned ethanol is low because both ethanol and some of its partially oxidized derivatives are highly resistant to oxidation. A combination of first-principles density-functional theory (DFT) based calculations and in-situ diffuse reflectance infrared spectroscopy (DRIFTS) analysis was applied to uncover some of the fundamental phenomena associated with ethanol oxidation on Pt containing catalysts. In particular, the objective was to analyze the role of the oxide (i.e., ?-Al2O3 or SiO2) substrate on the ethanol oxidation activity. The results showed that Pt nanoparticles trap and accumulate oxygen at their surface and perimeter sites and play the role of stoves that burn ethanol molecules and their partially oxidized derivatives to the final products. The ?-Al2O3 surfaces provided higher mobility of the fragments of ethanol molecules than the SiO2 surface and hence increased the supply rate of these objects to the Pt particles. This will in turn produce a higher conversion rate of unburned ethanol.and some of its partially oxidized derivatives are highly resistant to oxidation. A combination of first-principles density-functional theory (DFT) based calculations and in-situ diffuse reflectance infrared spectroscopy (DRIFTS) analysis was applied to uncover some of the fundamental phenomena associated with ethanol oxidation on Pt containing catalysts. In particular, the objective was to analyze the role of the oxide (i.e., ?-Al2O3 or SiO2) substrate on the ethanol oxidation activity. The results showed that Pt nanoparticles trap and

  19. ON THE ORIGIN OF RADIO EMISSION FROM MAGNETARS

    SciTech Connect (OSTI)

    Szary, Andrzej; Melikidze, George I.; Gil, Janusz

    2015-02-10

    Magnetars are the most magnetized objects in the known universe. Powered by the magnetic energy, and not by the rotational energy as in the case of radio pulsars, they have long been regarded as a completely different class of neutron stars. The discovery of pulsed radio emission from a few magnetars weakened the idea of a clean separation between magnetars and normal pulsars. We use the partially screened gap (PSG) model to explain radio emission of magnetars. The PSG model requires that the temperature of the polar cap is equal to the so-called critical value, i.e., the temperature at which the thermal ions outflowing from the stellar surface screen the acceleration gap. We show that a magnetar has to fulfill the temperature, power, and visibility conditions in order to emit radio waves. First, in order to form PSG, the residual temperature of the surface has to be lower than the critical value. Second, since the radio emission is powered by the rotational energy, it has to be high enough to enable heating of the polar cap by backstreaming particles to the critical temperature. Finally, the structure of the magnetic field has to be altered by magnetospheric currents in order to widen a radio beam and increase the probability of detection. Our approach allows us to predict whether a magnetar can emit radio waves using only its rotational period, period derivative, and surface temperature in the quiescent mode.

  20. An oleic acid-capped CdSe quantum-dot sensitized solar cell

    SciTech Connect (OSTI)

    Chen Jing; Song, J. L.; Deng, W. Q.; Sun, X. W.; Jiang, C. Y.; Lei, W.; Huang, J. H.; Liu, R. S.

    2009-04-13

    In this letter, we report an oleic acid (OA)-capped CdSe quantum-dot sensitized solar cell (QDSSC) with an improved performance. The TiO{sub 2}/OA-CdSe photoanode in a two-electrode device exhibited a photon-to-current conversion efficiency of 17.5% at 400 nm. At AM1.5G irradiation with 100 mW/cm{sup 2} light intensity, the QDSSCs based on OA-capped CdSe showed a power conversion efficiency of about 1%. The function of OA was to increase QD loading, extend the absorption range and possibly suppress the surface recombination.

  1. Cementitious building material incorporating end-capped polyethylene glycol as a phase change material

    DOE Patents [OSTI]

    Salyer, Ival O.; Griffen, Charles W.

    1986-01-01

    A cementitious composition comprising a cementitious material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the compositions are useful in making pre-formed building materials such as concrete blocks, brick, dry wall and the like or in making poured structures such as walls or floor pads; the glycols can be encapsulated to reduce their tendency to retard set.

  2. PVP capped CdS nanoparticles for UV-LED applications

    SciTech Connect (OSTI)

    Sivaram, H.; Selvakumar, D.; Jayavel, R.

    2015-06-24

    Polyvinlypyrrolidone (PVP) capped cadmium sulphide (CdS) nanoparticles are synthesized by wet chemical method. The powder X-ray diffraction (XRD) result indicates that the nanoparticles are crystallized in cubic phase. The optical properties are characterized by UV-Vis absorption. The morphology of CdS nanoparticles are studied using Scanning electron microscope (SEM). The thermal behavior of the as prepared nanoparticles has been examined by Thermo gravimetric analysis (TGA). The optical absorption study of pvp capped CdS reveal a red shift confirms the UV-LED applications.

  3. Three-Dimensional Composite Nanostructures for Lean NOx Emission Control |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace030_gao_2011_o.pdf (2.36 MB) More Documents & Publications Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Vehicle Technologies Office Merit Review 2015: Metal Oxide Nano-Array Catalysts for Low Temperature Diesel Oxidation Vehicle Technologies Office Merit Review 2016

  4. Emission mechanism of barium-containing thermionic cathodes

    SciTech Connect (OSTI)

    Enqui, Z.; Xeuque, L.

    1991-03-27

    Through the analysis and synthesis of data obtained from barium containing thermionic cathodes, especially those by modern surface analysis technique, the authors have come to a unified theory--the dynamical surface emission center model. Barium absorbed on the surface of alkaline earth metal oxides in case of oxide cathode or of aluminate, tungstate etc. in case of dispenser cathode may form the emission center. Its size should be large enough to screen off the attractive field produced by the substrate, but small enough to facilitate the transport of electrons from the substrate to the emitting center. The compositions and the dynamical characters of the surface emission center are also discussed.

  5. Diesel Emission Control Review

    Broader source: Energy.gov [DOE]

    Reviews regulatory requirements and technology approaches for diesel emission control for heavy and light duty applications

  6. Innovative Clean Coal Technology (ICCT). Demonstration of Selective Catalytic Reduction (SCR) technology for the control of Nitrogen Oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, third and fourth quarters 1995

    SciTech Connect (OSTI)

    1996-05-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese, and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor.

  7. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Phase 3B LNB AOFA tests

    SciTech Connect (OSTI)

    Smith, L.L.; Larsen, L.L.

    1993-12-13

    This Innovative Clean Coal Technology II project seeks to evaluate NO{sub x} control techniques on a 500 MW(e) utility boiler. This report is provided to document the testing performed and results achieved during Phase 3B--Low NO{sub x} Burner Retrofit with Advanced Overfire Air (AOFA). This effort began in May 1993 following completion of Phase 3A--Low-NO{sub x} Burner Testing. The primary objective of the Phase 3B test effort was to establish LNB plus AOFA retrofit NO{sub x} emission characteristics under short-term well controlled conditions and under long-term normal system load dispatch conditions. In addition, other important performance data related to the operation of the boiler in this retrofit configuration were documented for comparison to those measured during the Phase 1 baseline test effort. Protocols for data collection and instrumentation operation were established during Phase 1 (see Phase 1 Baseline Tests Report).

  8. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report: First quarter 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. During this quarter, long-term testing of the LNB + AOFA configuration continued and no parametric testing was performed. Further full-load optimization of the LNB + AOFA system began on March 30, 1993. Following completion of this optimization, comprehensive testing in this configuration will be performed including diagnostic, performance, verification, long-term, and chemical emissions testing. These tests are scheduled to start in May 1993 and continue through August 1993. Preliminary engineering and procurement are progressing on the Advanced Low NOx Digital Controls scope addition to the wall-fired project. The primary activities during this quarter include (1) refinement of the input/output lists, (2) procurement of the distributed digital control system, (3) configuration training, and (4) revision of schedule to accommodate project approval cycle and change in unit outage dates.

  9. Investigation of Mixed Oxide Catalysts for NO Oxidation

    SciTech Connect (OSTI)

    Szanyi, Janos; Karim, Ayman M.; Pederson, Larry R.; Kwak, Ja Hun; Mei, Donghai; Tran, Diana N.; Herling, Darrell R.; Muntean, George G.; Peden, Charles HF; Howden, Ken; Qi, Gongshin; Li, Wei

    2014-12-09

    The oxidation of engine-generated NO to NO2 is an important step in the reduction of NOx in lean engine exhaust because NO2 is required for the performance of the LNT technology [2], and it enhances the activities of ammonia selective catalytic reduction (SCR) catalysts [1]. In particular, for SCR catalysts an NO:NO2 ratio of 1:1 is most effective for NOx reduction, whereas for LNT catalysts, NO must be oxidized to NO2 before adsorption on the storage components. However, NO2 typically constitutes less than 10% of NOx in lean exhaust, so catalytic oxidation of NO is essential. Platinum has been found to be especially active for NO oxidation, and is widely used in DOC and LNT catalysts. However, because of the high cost and poor thermal durability of Pt-based catalysts, there is substantial interest in the development of alternatives. The objective of this project, in collaboration with partner General Motors, is to develop mixed metal oxide catalysts for NO oxidation, enabling lower precious metal usage in emission control systems. [1] M. Koebel, G. Madia, and M. Elsener, Catalysis Today 73, 239 (2002). [2] C. H. Kim, G. S. Qi, K. Dahlberg, and W. Li, Science 327, 1624 (2010).

  10. Oxidation catalyst

    DOE Patents [OSTI]

    Ceyer, Sylvia T.; Lahr, David L.

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  11. Steam Oxidation of Advanced Steam Turbine Alloys

    SciTech Connect (OSTI)

    Holcomb, Gordon R.

    2008-01-01

    Power generation from coal using ultra supercritical steam results in improved fuel efficiency and decreased greenhouse gas emissions. Results of ongoing research into the oxidation of candidate nickel-base alloys for ultra supercritical steam turbines are presented. Exposure conditions range from moist air at atmospheric pressure (650C to 800C) to steam at 34.5 MPa (650C to 760C). Parabolic scale growth coupled with internal oxidation and reactive evaporation of chromia are the primary corrosion mechanisms.

  12. Double capping of molecular beam epitaxy grown InAs/InP quantum dots studied by cross-sectional scanning tunneling microscopy

    SciTech Connect (OSTI)

    Ulloa, J. M.; Koenraad, P. M.; Gapihan, E.; Letoublon, A.; Bertru, N.

    2007-08-13

    Cross-sectional scanning tunneling microscopy was used to study at the atomic scale the double capping process of self-assembled InAs/InP quantum dots (QDs) grown by molecular beam epitaxy on a (311)B substrate. The thickness of the first capping layer is found to play a mayor role in determining the final results of the process. For first capping layers up to 3.5 nm, the height of the QDs correspond to the thickness of the first capping layer. Nevertheless, for thicknesses higher than 3.5 nm, a reduction in the dot height compared to the thickness of the first capping layer is observed. These results are interpreted in terms of a transition from a double capping to a classical capping process when the first capping layer is thick enough to completely cover the dots.

  13. Carbon Emissions: Food Industry

    U.S. Energy Information Administration (EIA) Indexed Site

    Food Industry Carbon Emissions in the Food Industry The Industry at a Glance, 1994 (SIC Code: 20) Total Energy-Related Emissions: 24.4 million metric tons of carbon (MMTC) -- Pct....

  14. Capping layer-tailored interface magnetic anisotropy in ultrathin Co{sub 2}FeAl films

    SciTech Connect (OSTI)

    Belmeguenai, M. Zighem, F.; Chérif, S. M.; Gabor, M. S. Petrisor, T.; Tiusan, C.

    2015-01-14

    Co{sub 2}FeAl (CFA) thin films of various thicknesses (2 nm ≤ d ≤ 50 nm) have been grown on (001) MgO single crystal substrates and then capped with Cr, V, and Ta. Their magnetic and structural properties have been studied by x-ray diffraction (XRD), vibrating sample magnetometry, and broadband microstrip ferromagnetic resonance (MS-FMR). The XRD revealed that the films are epitaxial with the cubic [001] CFA axis normal to the substrate plane and that the chemical order varies from the B2 phase to the A2 phase when decreasing the thickness. The deduced lattice parameters showed that the Cr-capped films exhibit a larger tetragonal distortion, as compared with the films capped with V or Ta. The presence of magnetic dead layers has been observed in CFA samples capped with V and Ta but not in the case of the Cr-capped ones. The effective magnetization, deduced from the fit of MS-FMR measurements, increases (decreases) linearly with the CFA inverse thickness (1/d) for the Cr-capped (Ta-capped) films while it is constant for the V-capped ones. This allows quantifying the perpendicular surface anisotropy coefficients of −0.46 erg/cm{sup 2} and 0.74 erg/cm{sup 2} for Cr and Ta-capped films, respectively. Moreover, the fourfold and the uniaxial anisotropy fields, measured in these films, showed different trends with a respect to the CFA inverse thickness. This allows inferring that a non-negligible part of the fourfold magnetocrystalline term is of interfacial origin.

  15. Excellent oxidation endurance of boron nitride nanotube field electron emitters

    SciTech Connect (OSTI)

    Song, Yenan; Song, Yoon-Ho; Milne, William I.; Jin Lee, Cheol

    2014-04-21

    Boron nitride nanotubes (BNNTs) are considered as a promising cold electron emission material owing to their negative electron affinity. BNNT field emitters show excellent oxidation endurance after high temperature thermal annealing of 600 °C in air ambient. There is no damage to the BNNTs after thermal annealing at a temperature of 600 °C and also no degradation of field emission properties. The thermally annealed BNNTs exhibit a high maximum emission current density of 8.39 mA/cm{sup 2} and show very robust emission stability. The BNNTs can be a promising emitter material for field emission devices under harsh oxygen environments.

  16. Ultra Supercritical Steamside Oxidation

    SciTech Connect (OSTI)

    Holcomb, Gordon R.; Cramer, Stephen D.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Ziomek-Moroz, Malgorzata

    2005-01-01

    Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions, which are goals of the U.S. Department of Energy's Advanced Power Systems Initiatives. Most current coal power plants in the U.S. operate at a maximum steam temperature of 538 C. However, new supercritical plants worldwide are being brought into service with steam temperatures of up to 620 C. Current Advanced Power Systems goals include coal generation at 60% efficiency, which require steam temperatures of up to 760 C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections. Initial results of this research are presented.

  17. Innovative Clean Coal Technology (ICCT). Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers: Volume 1. Final report

    SciTech Connect (OSTI)

    1996-10-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO.) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO. to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal- fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: 1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels. 2) performance of the technology and effects on the balance-of- plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. 3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacturer under typical high-sulfur coal-fired utility operating conditions. These uncertainties were explored by operating nine small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. In addition, the test facility operating experience provided a basis for an economic study investigating the implementation of SCR technology.

  18. Innovative Clean Coal Technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, third and fourth quarters 1994

    SciTech Connect (OSTI)

    1995-11-01

    The objective of this project is to demonstrate and evaluate commercially available selective catalytic reduction (SCR) catalysts from U.S., Japanese, and European catalyst suppliers on a high-sulfur U.S. Coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to form nitrogen and water vapor. Although SCR is widely practiced in Japan and European gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; performance of a wide variety of SCR catalyst compositions, geometries, and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small- scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. The demonstration is being performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida. The project is funded by the U.S. Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), the Electric Power Research Institute (EPRI), and Ontario Hydro. SCS is the participant responsible for managing al aspects of this project. 1 ref., 69 figs., 45 tabs.

  19. Mathematical modeling of cold cap: Effect of bubbling on melting rate

    SciTech Connect (OSTI)

    Pokorny, Richard; Kruger, Albert A.; Hrma, Pavel R.

    2014-12-31

    The rate of melting is a primary concern in the vitrification of radioactive wastes because it directly influences the life cycle of nuclear waste cleanup efforts. To increase glass melting performance, experimental and industrial all-electric waste glass melters employ various melt-rate enhancement techniques, the most prominent being the application of bubblers submerged into molten glass. This study investigates various ways in which bubbling affects melting rate in a waste glass melter. Using the recently developed cold cap model, we suggest that forced convection of molten glass, which increases the cold cap bottom temperature, is the main factor. Other effects, such as stirring the feed into molten glass or reducing the insulating effect of foaming, also play a role.

  20. Field effect on digestive ripening of thiol-capped gold nanoparticles

    SciTech Connect (OSTI)

    Lin, Meng-Lin; Peng, J. S.; Lee, Sanboh; Yang, Fuqian

    2014-02-07

    We studied the digestive ripening of thiol-capped gold nanoparticles under simultaneous action of electric field and reflux heating in a silicone oil bath at 130 °C, using transmission electron microscopy. Observation revealed that a polydispersed gold nanoparticle system reached the state of nearly monodispersity under the action of an electric field and the thiol-capped gold nanoparticles carried negative charges. The electric field caused the increase of the particle size for the nearly monodispersed gold nanoparticle system. The self-assembly of the nearly monodisperse gold nanoparticles under the action of an electric field of a high field intensity was observed. The gold nanoparticles tended to form self-assembled nanostructures of six-fold symmetry. This study provides a new route for system engineering to control the particle size of metallic nanoparticles by electric field and digestive ripening.

  1. Water balance of two earthen landfill caps in a semi-arid climate

    SciTech Connect (OSTI)

    Khire, M.V.; Benson, C.H.; Bosscher, P.J.

    1997-12-31

    Water balance data are presented that were obtained from two earthen cap test sections located in a semi-arid region. The test sections were constructed on a municipal solid waste landfill in East Wenatchee, Washington, USA. One test section represents a traditional resistive barrier, and is constructed with a compacted silty clay barrier 60 cm thick and a vegetated silty clay surface layer 15 cm thick. The other test section represents a capillary barrier and has a sand layer 75 cm thick overlain by a 15-cm-thick vegetated surface layer of silt. Extensive hydrological and meteorological data have been collected since November 1992. Unsaturated hydraulic properties of soils, hydrologic parameters, and vegetation have been extensively characterized. Results of the study show that capillary barriers can be effective caps in semi-arid and arid regions. They are also cheaper to construct and can perform better than traditional resistive barriers.

  2. Numerical evaluation of monofil and subtle-layered evapotranspiration (ET) landfill caps

    SciTech Connect (OSTI)

    Wilson, G.V.; Henley, M.; Valceschini, R.

    1998-01-01

    The US Department of Energy/Nevada Operations Office (DOE/NV) has identified the need to design a low-level waste (LLW) closure cap for the arid conditions at the Nevada Test Site (NTS). As a result of concerns for subsidence impacting the cover, DOE/NV redesigned the LLW cover from one containing a `hard` infiltration barrier that would likely fail, to a `soft` (ET) cover that is sufficiently deep to accommodate the hydrologic problems of subsidence. An ET cover is one that does not contain hydrologic barrier layers but relies on soil-water retention and sufficient thickness to store water until evapotranspiration (ET) can remove the moisture. Subtle layering within an ET cap using the native soil could be environmentally beneficial and cost effective.

  3. Mathematical Model of Cold CapPreliminary One-Dimensional Model Development

    SciTech Connect (OSTI)

    Pokorny, Richard; Hrma, Pavel R.

    2011-03-25

    The ultimate goal of batch-melting studies, laboratory-scale, large-scale, or mathematical modeling is to increase the rate of glass processing in an energy-efficient manner. Mathematical models are not merely an intermediate step between laboratory-scale and large-scale studies, but are also an important tool for assessing the responses of melters to vast combinations of process parameters. In the simplest melting situation considered in this study, a cold cap of uniform thickness rests on a pool of molten glass from which it receives a steady uniform heat flux. Thus, as the feed-to-glass conversion proceeds, the temperature, velocity, and extent of feed reactions are functions of the position along the vertical coordinate, and these functions do not vary with time. This model is used for the sensitivity analyses on the effects of key parameters on the cold-cap behavior.

  4. SEQUESTRATION OF METALS IN ACTIVE CAP MATERIALS: A LABORATORY AND NUMERICAL EVALUATION

    SciTech Connect (OSTI)

    Dixon, K.; Knox, A.

    2012-02-13

    Active capping involves the use of capping materials that react with sediment contaminants to reduce their toxicity or bioavailability. Although several amendments have been proposed for use in active capping systems, little is known about their long-term ability to sequester metals. Recent research has shown that the active amendment apatite has potential application for metals contaminated sediments. The focus of this study was to evaluate the effectiveness of apatite in the sequestration of metal contaminants through the use of short-term laboratory column studies in conjunction with predictive, numerical modeling. A breakthrough column study was conducted using North Carolina apatite as the active amendment. Under saturated conditions, a spike solution containing elemental As, Cd, Co, Se, Pb, Zn, and a non-reactive tracer was injected into the column. A sand column was tested under similar conditions as a control. Effluent water samples were periodically collected from each column for chemical analysis. Relative to the non-reactive tracer, the breakthrough of each metal was substantially delayed by the apatite. Furthermore, breakthrough of each metal was substantially delayed by the apatite compared to the sand column. Finally, a simple 1-D, numerical model was created to qualitatively predict the long-term performance of apatite based on the findings from the column study. The results of the modeling showed that apatite could delay the breakthrough of some metals for hundreds of years under typical groundwater flow velocities.

  5. Improvement of the quality of graphene-capped InAs/GaAs quantum dots

    SciTech Connect (OSTI)

    Othmen, Riadh Rezgui, Kamel; Ajlani, Hosni; Oueslati, Meherzi; Cavanna, Antonella; Madouri, Ali

    2014-06-07

    In this paper, we study the transfer of graphene onto InAs/GaAs quantum dots (QDs). The graphene is first grown on Cu foils by chemical vapor deposition and then polymer Polymethyl Methacrylate (PMMA) is deposited on the top of graphene/Cu. High quality graphene sheet has been obtained by lowering the dissolving rate of PMMA using vapor processing. Uncapped as well as capped graphene InAs/GaAs QDs have been studied using optical microscopy, scanning electron microscopy, and Raman spectroscopy. We gather from this that the average shifts ?? of QDs Raman peaks are reduced compared to those previously observed in graphene and GaAs capped QDs. The encapsulation by graphene makes the indium atomic concentration intact in the QDs by the reduction of the strain effect of graphene on QDs and the migration of In atoms towards the surface. This gives us a new hetero-structure grapheneInAs/GaAs QDs wherein the graphene plays a key role as a cap layer.

  6. Future Sulfur Dioxide Emissions

    SciTech Connect (OSTI)

    Smith, Steven J.; Pitcher, Hugh M.; Wigley, Tom M.

    2005-12-01

    The importance of sulfur dioxide emissions for climate change is now established, although substantial uncertainties remain. This paper presents projections for future sulfur dioxide emissions using the MiniCAM integrated assessment model. A new income-based parameterization for future sulfur dioxide emissions controls is developed based on purchasing power parity (PPP) income estimates and historical trends related to the implementation of sulfur emissions limitations. This parameterization is then used to produce sulfur dioxide emissions trajectories for the set of scenarios developed for the Special Report on Emission Scenarios (SRES). We use the SRES methodology to produce harmonized SRES scenarios using the latest version of the MiniCAM model. The implications, and requirements, for IA modeling of sulfur dioxide emissions are discussed. We find that sulfur emissions eventually decline over the next century under a wide set of assumptions. These emission reductions result from a combination of emission controls, the adoption of advanced electric technologies, and a shift away from the direct end use of coal with increasing income levels. Only under a scenario where incomes in developing regions increase slowly do global emission levels remain at close to present levels over the next century. Under a climate policy that limits emissions of carbon dioxide, sulfur dioxide emissions fall in a relatively narrow range. In all cases, the relative climatic effect of sulfur dioxide emissions decreases dramatically to a point where sulfur dioxide is only a minor component of climate forcing by the end of the century. Ecological effects of sulfur dioxide, however, could be significant in some developing regions for many decades to come.

  7. Optimization of Engine-out Emissions from a Diesel Engine to Meet Tier 2

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bin 5 Emission Limits | Department of Energy Engine-out Emissions from a Diesel Engine to Meet Tier 2 Bin 5 Emission Limits Optimization of Engine-out Emissions from a Diesel Engine to Meet Tier 2 Bin 5 Emission Limits Drastic reduction of engine-out emissions and complicated aftertreatment system comprising of oxidation catalyst, particulate filter, and DeNOx catalyst are implemented to meet Tier 2 Bin 5 limits for U.S. market diesel engines. deer08_yoon.pdf (1.2 MB) More Documents &

  8. Auger electron spectroscopy for the determination of sex and age related Ca/P ratio at different bone sites

    SciTech Connect (OSTI)

    Balatsoukas, Ioannis; Kourkoumelis, Nikolaos; Tzaphlidou, Margaret

    2010-10-15

    The Ca/P ratio of normal cortical and trabecular rat bone was measured by Auger electron spectroscopy (AES). Semiquantitative analysis was carried out using ratio techniques to draw conclusions on how age, sex and bone site affect the relative composition of calcium and phosphorus. Results show that Ca/P ratio is not sex dependent; quite the opposite, bone sites exhibit variations in elemental stoichiometry where femoral sections demonstrate higher Ca/P ratio than rear and front tibias. Age-related changes are more distinct for cortical bone in comparison with the trabecular bone. The latter's Ca/P ratio remains unaffected from all the parameters under study. This study confirms that AES is able to successfully quantify bone mineral main elements when certain critical points, related to the experimental conditions, are addressed effectively.

  9. Testing, Modeling, and Monitoring to Enable Simpler, Cheaper, Longer-Lived Surface Caps

    SciTech Connect (OSTI)

    Piet, Steven James; Breckenridge, Robert Paul; Burns, Douglas Edward

    2003-02-01

    Society has and will continue to generate hazardous wastes whose risks must be managed. For exceptionally toxic, long-lived, and feared waste, the solution is deep burial, e.g., deep geological disposal at Yucca Mtn. For some waste, recycle or destruction/treatment is possible. The alternative for other wastes is storage at or near the ground level (in someones back yard); most of these storage sites include a surface barrier (cap) to prevent downward water migration. Some of the hazards will persist indefinitely. As society and regulators have demanded additional proof that caps are robust against more threats and for longer time periods, the caps have become increasingly complex and expensive. As in other industries, increased complexity will eventually increase the difficulty in estimating performance, in monitoring system/component performance, and in repairing or upgrading barriers as risks are managed. An approach leading to simpler, less expensive, longer-lived, more manageable caps is needed. Our project, which started in April 2002, aims to catalyze a Barrier Improvement Cycle (iterative learning and application) and thus enable Remediation System Performance Management (doing the right maintenance neither too early nor too late). The knowledge gained and the capabilities built will help verify the adequacy of past remedial decisions, improve barrier management, and enable improved solutions for future decisions. We believe it will be possible to develop simpler, longer-lived, less expensive caps that are easier to monitor, manage, and repair. The project is planned to: a) improve the knowledge of degradation mechanisms in times shorter than service life; b) improve modeling of barrier degradation dynamics; c) develop sensor systems to identify early degradation; and d) provide a better basis for developing and testing of new barrier systems. This project combines selected exploratory studies (benchtop and field scale), coupled effects accelerated aging

  10. Testing, Modeling, and Monitoring to Enable Simpler, Cheaper, Longer-lived Surface Caps

    SciTech Connect (OSTI)

    Piet, S. J.; Breckenridge, R. P.; Burns, D. E.

    2003-02-25

    Society has and will continue to generate hazardous wastes whose risks must be managed. For exceptionally toxic, long-lived, and feared waste, the solution is deep burial, e.g., deep geological disposal at Yucca Mtn. For some waste, recycle or destruction/treatment is possible. The alternative for other wastes is storage at or near the ground level (in someone's back yard); most of these storage sites include a surface barrier (cap) to prevent downward water migration. Some of the hazards will persist indefinitely. As society and regulators have demanded additional proof that caps are robust against more threats and for longer time periods, the caps have become increasingly complex and expensive. As in other industries, increased complexity will eventually increase the difficulty in estimating performance, in monitoring system/component performance, and in repairing or upgrading barriers as risks are managed. An approach leading to simpler, less expensive, longer-lived, more manageable caps is needed. Our project, which started in April 2002, aims to catalyze a Barrier Improvement Cycle (iterative learning and application) and thus enable Remediation System Performance Management (doing the right maintenance neither too early nor too late). The knowledge gained and the capabilities built will help verify the adequacy of past remedial decisions, improve barrier management, and enable improved solutions for future decisions. We believe it will be possible to develop simpler, longer-lived, less expensive caps that are easier to monitor, manage, and repair. The project is planned to: (a) improve the knowledge of degradation mechanisms in times shorter than service life; (b) improve modeling of barrier degradation dynamics; (c) develop sensor systems to identify early degradation; and (d) provide a better basis for developing and testing of new barrier systems. This project combines selected exploratory studies (benchtop and field scale), coupled effects accelerated

  11. Short and Long-Term Perspectives: The Impact on Low-Income Consumers of Forecasted Energy Price Increases in 2008 and A Cap & Trade Carbon Policy in 2030

    SciTech Connect (OSTI)

    Eisenberg, Joel Fred

    2008-01-01

    The Department of Energy's Energy Information Administration (EIA) recently released its short-term forecast for residential energy prices for the winter of 2007-2008. The forecast indicates increases in costs for low-income consumers in the year ahead, particularly for those using fuel oil to heat their homes. In the following analysis, the Oak Ridge National Laboratory has integrated the EIA price projections with the Residential Energy Consumption Survey (RECS) for 2001 in order to project the impact of these price increases on the nation's low-income households by primary heating fuel type, nationally and by Census Region. The report provides an update of bill estimates provided in a previous study, "The Impact Of Forecasted Energy Price Increases On Low-Income Consumers" (Eisenberg, 2005). The statistics are intended for use by policymakers in the Department of Energy's Weatherization Assistance Program and elsewhere who are trying to gauge the nature and severity of the problems that will be faced by eligible low-income households during the 2008 fiscal year. In addition to providing expenditure forecasts for the year immediately ahead, this analysis uses a similar methodology to give policy makers some insight into one of the major policy debates that will impact low-income energy expenditures well into the middle decades of this century and beyond. There is now considerable discussion of employing a cap-and-trade mechanism to first limit and then reduce U.S. emissions of carbon into the atmosphere in order to combat the long-range threat of human-induced climate change. The Energy Information Administration has provided an analysis of projected energy prices in the years 2020 and 2030 for one such cap-and-trade carbon reduction proposal that, when integrated with the RECS 2001 database, provides estimates of how low-income households will be impacted over the long term by such a carbon reduction policy.

  12. Partial oxidation power plant with reheating and method thereof

    DOE Patents [OSTI]

    Newby, Richard A.; Yang, Wen-Ching; Bannister, Ronald L.

    1999-01-01

    A system and method for generating power having an air compression/partial oxidation system, a turbine, and a primary combustion system. The air compression/partial oxidation system receives a first air stream and a fuel stream and produces a first partially oxidized fuel stream and a first compressed air stream therefrom. The turbine expands the first partially oxidized fuel stream while being cooled by the first compressed air stream to produce a heated air stream. The heated air stream is injected into the expanding first partially oxidized fuel stream, thereby reheating it in the turbine. A second partially oxidized fuel stream is emitted from the turbine. The primary combustion system receives said second partially oxidized fuel stream and a second air stream, combusts said second partially oxidized fuel stream, and produces rotating shaft power and an emission stream therefrom.

  13. Partial oxidation power plant with reheating and method thereof

    DOE Patents [OSTI]

    Newby, R.A.; Yang, W.C.; Bannister, R.L.

    1999-08-10

    A system and method are disclosed for generating power having an air compression/partial oxidation system, a turbine, and a primary combustion system. The air compression/partial oxidation system receives a first air stream and a fuel stream and produces a first partially oxidized fuel stream and a first compressed air stream therefrom. The turbine expands the first partially oxidized fuel stream while being cooled by the first compressed air stream to produce a heated air stream. The heated air stream is injected into the expanding first partially oxidized fuel stream, thereby reheating it in the turbine. A second partially oxidized fuel stream is emitted from the turbine. The primary combustion system receives said second partially oxidized fuel stream and a second air stream, combusts said second partially oxidized fuel stream, and produces rotating shaft power and an emission stream therefrom. 2 figs.

  14. Air-pollutant emissions from kerosene space heaters

    SciTech Connect (OSTI)

    Leaderer, B.P.

    1982-12-10

    Air pollutant emissions from portable convective and radiant kerosene space heaters were measured in an environmental chamber. Emission factors for nitrogen oxides, sulfur dioxide, carbon monoxide, carbon dioxide, and oxygen depletion are presented. The data suggest that the use of such heaters in residences can result in exposures to air pollutants in excess of ambient air quality standards and in some cases in excess of occupational health standards.

  15. EIA - Emissions of Greenhouse Gases in the United States 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    ‹ Environment Emissions of Greenhouse Gases in the U. S. Release Date: March 31, 2011 | Next Release Date: Report Discontinued | Report Number: DOE/EIA-0573(2009) This report-the eighteenth annual report-presents the U.S. Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. Download the GHG Report Introduction For this report, activity data on coal and natural gas consumption and electricity sales and losses

  16. EIA - Emissions of Greenhouse Gases in the United States 2009

    Gasoline and Diesel Fuel Update (EIA)

    ‹ Environment Emissions of Greenhouse Gases in the U. S. Release Date: March 31, 2011 | Next Release Date: Report Discontinued | Report Number: DOE/EIA-0573(2009) This report-the eighteenth annual report-presents the U.S. Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. Download the GHG Report Introduction For this report, activity data on coal and natural gas consumption and electricity sales and losses

  17. State Regulations on Airborne Emissions: Update Through 2007 (Update) (released in AEO2008)

    Reports and Publications (EIA)

    2008-01-01

    States are moving forward with implementation plans for the Clean Air Interstate Rule (CAIR). The program, promulgated by the EPA in March 2005, is a cap-and-trade system designed to reduce emissions of SO2 and NOx. States originally had until March 2007 to submit implementation plans, but the deadline has been extended by another year. CAIR covers 28 eastern states and the District of Columbia. States have the option to participate in the cap-and trade plan or devise their own plans, which can be more stringent than the federal requirements. To date, no state has indicated an intent to form NOx and SO2 programs with emissions limits stricter than those in CAIR, and it is expected that all states will participate in the Environmental Protection Agency administered cap-and-trade program. CAIR remains on schedule for implementation, and Annual Energy Outlook 2008 includes CAIR by assuming that all required states will meet only the federal requirement and will trade credits.

  18. Fuel Sulfur Effects on a Medium-Duty Diesel Pick-Up with a NOx Adsorber, Diesel Particle Filter Emissions Control System: 2000-Hour Aging Results

    SciTech Connect (OSTI)

    Thornton, M.; Webb, C. C.; Weber, P. A.; Orban, J.; Slone, E.

    2006-05-01

    Discusses the emission results of a nitrogen oxide adsorber catalyst and a diesel particle filter in a medium-duty, diesel pick-up truck.

  19. Field emission chemical sensor

    DOE Patents [OSTI]

    Panitz, J.A.

    1983-11-22

    A field emission chemical sensor for specific detection of a chemical entity in a sample includes a closed chamber enclosing two field emission electrode sets, each field emission electrode set comprising (a) an electron emitter electrode from which field emission electrons can be emitted when an effective voltage is connected to the electrode set; and (b) a collector electrode which will capture said electrons emitted from said emitter electrode. One of the electrode sets is passive to the chemical entity and the other is active thereto and has an active emitter electrode which will bind the chemical entity when contacted therewith.

  20. Carbon Emissions: Paper Industry

    U.S. Energy Information Administration (EIA) Indexed Site

    Btu Renewable Energy Sources (no net emissions): -- Pulping liquor: 882 trillion Btu -- Wood chips and bark: 389 trillion Btu Energy Information Administration, "1994...

  1. Secondary Emission Calorimetry

    SciTech Connect (OSTI)

    Winn, David Roberts

    2015-03-24

    This report describes R&D on a new type of calorimeter using secondary emission to measure the energy of radiation, particularly high energy particles.

  2. Biological Air Emissions Control

    Office of Energy Efficiency and Renewable Energy (EERE)

    Air quality standards are becoming more stringent for the U.S. wood products industry. Emissions of volatile organic compounds (VOCs) and hazardous air pollutants (HAPs) (including methanol,...

  3. Air Emission Inventory for the INEEL -- 1999 Emission Report

    SciTech Connect (OSTI)

    Zohner, Steven K

    2000-05-01

    This report presents the 1999 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradionuclide emissions estimates for stationary sources.

  4. Advanced emissions control development project. Phase I final report appendices, November 1, 1993--February 29, 1996

    SciTech Connect (OSTI)

    Farthing, G.A.

    1996-06-01

    Appendices are presented on the Advanced Emissions Control Development Project on the following: wet scrubber sampling and analysis; DBA/lime chemical analysis; limestone forced oxidation chemical analysis; benchmarking on baghouse conditions, electrostatic precipitators, and wet scrubber conditions.

  5. Growth control of the oxidation state in vanadium oxide thin...

    Office of Scientific and Technical Information (OSTI)

    Growth control of the oxidation state in vanadium oxide thin films Prev Next Title: Growth control of the oxidation state in vanadium oxide thin films Authors: Lee, Shinbuhm ...

  6. InGaAs/GaAs quantum dot interdiffiusion induced by cap layer overgrowth

    SciTech Connect (OSTI)

    Jasinski, J.; Babinski, A.; Czeczott, M.; Bozek, R.

    2000-06-28

    The effect of thermal treatment during and after growth of InGaAs/GaAs quantum dot (QD) structures was studied. Transmission electron microscopy and atomic force microscopy confirmed the presence of interacting QDs, as was expected from analysis of temperature dependence of QD photoluminescence (PL) peak. The results indicate that the effect of post-growth annealing can be similar to the effect of elevated temperature of capping layer growth. Both, these thermal treatments can lead to a similar In and Ga interdiffiusion resulting in a similar blue-shift of QD PL peak.

  7. Status of Net Metering: Assessing the Potential to Reach Program Caps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Status of Net Metering: Assessing the Potential to Reach Program Caps J. Heeter, R. Gelman, and L. Bird National Renewable Energy Laboratory Technical Report NREL/TP-6A20-61858 September 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No.

  8. Trends in on-road vehicle emissions of ammonia

    SciTech Connect (OSTI)

    Kean, A.J.; Littlejohn, D.; Ban-Weiss, G.A.; Harley, R.A.; Kirchstetter, T.W.; Lunden, M. M.

    2008-07-15

    Motor vehicle emissions of ammonia have been measured at a California highway tunnel in the San Francisco Bay area. Between 1999 and 2006, light-duty vehicle ammonia emissions decreased by 38 {+-} 6%, from 640 {+-} 40 to 400 {+-} 20 mg kg{sup -1}. High time resolution measurements of ammonia made in summer 2001 at the same location indicate a minimum in ammonia emissions correlated with slower-speed driving conditions. Variations in ammonia emission rates track changes in carbon monoxide more closely than changes in nitrogen oxides, especially during later evening hours when traffic speeds are highest. Analysis of remote sensing data of Burgard et al. (Environ Sci. Technol. 2006, 40, 7018-7022) indicates relationships between ammonia and vehicle model year, nitrogen oxides, and carbon monoxide. Ammonia emission rates from diesel trucks were difficult to measure in the tunnel setting due to the large contribution to ammonia concentrations in a mixed-traffic bore that were assigned to light-duty vehicle emissions. Nevertheless, it is clear that heavy-duty diesel trucks are a minor source of ammonia emissions compared to light-duty gasoline vehicles.

  9. Emissions of greenhouse gases in the United States 1997

    SciTech Connect (OSTI)

    1998-10-01

    This is the sixth annual report on aggregate US national emissions of greenhouse gases. It covers emissions over the period 1990--1996, with preliminary estimates of emissions for 1997. Chapter one summarizes some background information about global climate change and the greenhouse effect. Important recent developments in global climate change activities are discussed, especially the third Conference of the Parties to the Framework Convention on Climate Change, which was held in December of 1997 in Kyoto, Japan. Chapters two through five cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons and related gases, respectively. Chapter six describes potential sequestration and emissions of greenhouse gases as a result of land use changes. Six appendices are included in the report. 96 refs., 38 tabs.

  10. Synthesis and characterizations of graphene oxide and reduced graphene oxide nanosheets

    SciTech Connect (OSTI)

    Venkanna, M. Chakraborty, Amit K.

    2014-04-24

    Interest in graphene on its excellent mechanical, electrical, thermal and optical properties, its very high specific surface area, and our ability to influence these properties through chemical functionalization. Chemical reduction of graphene oxide is one of the main routes of preparation for large quantities of graphenes. Hydrazine hydrate used as reducing agent to prepare for the reduced graphene oxide (RGO). There are a number of methods for generating graphene and chemically modified graphene from natural graphite flakes, graphite derivative (such as graphite oxide) and graphite interaction compounds (i.e. expandable graphite). Here we review the use of colloidal suspensions of reduced graphene oxide (RGO) with large scalable, and is adaptable to a wide variety of applications. The graphene oxide (GO) and the reduced material (RGO) were characterized by XRD, UV-Vis spectroscopy, Thermo-gravimetric analysis (TGA), Raman spectroscopy and Field emission Scanning electron microscopy (FESEM) etc.

  11. Advanced CIDI Emission Control System Development

    SciTech Connect (OSTI)

    Lambert, Christine

    2006-05-31

    Ford Motor Company, with ExxonMobil and FEV, participated in the Department of Energy's (DOE) Ultra-Clean Transportation Fuels Program with the goal to develop an innovative emission control system for light-duty diesel vehicles. The focus on diesel engine emissions was a direct result of the improved volumetric fuel economy (up to 50%) and lower CO2 emissions (up to 25%) over comparable gasoline engines shown in Europe. Selective Catalytic Reduction (SCR) with aqueous urea as the NOx reductant and a Catalyzed Diesel Particulate Filter (CDPF) were chosen as the primary emission control system components. The program expected to demonstrate more than 90% durable reduction in particulate matter (PM) and NOx emissions on a light-duty truck application, based on the FTP-75 drive cycle. Very low sulfur diesel fuel (<15 ppm-wt) enabled lower PM emissions, reduced fuel economy penalty due to the emission control system and improved long-term system durability. Significant progress was made toward a durable system to meet Tier 2 Bin 5 emission standards on a 6000 lbs light-duty truck. A 40% reduction in engine-out NOx emissions was achieved with a mid-size prototype diesel engine through engine recalibration and increased exhaust gas recirculation. Use of a rapid warm-up strategy and urea SCR provided over 90% further NOx reduction while the CDPF reduced tailpipe PM to gasoline vehicle levels. Development work was conducted to separately improve urea SCR and CDPF system durability, as well as improved oxidation catalyst function. Exhaust gas NOx and ammonia sensors were also developed further. While the final emission control system did not meet Tier 2 Bin 5 NOx after 120k mi of aging on the dynamometer, it did meet the standards for HC, NMOG, and PM, and an improved SCR catalyst was shown to have potential to meet the NOx standard, assuming the DOC durability could be improved further. Models of DOC and SCR function were developed to guide the study of several key design

  12. Emission Abatement System

    DOE Patents [OSTI]

    Bromberg, Leslie; Cohn, Daniel R.; Rabinovich, Alexander

    2003-05-13

    Emission abatement system. The system includes a source of emissions and a catalyst for receiving the emissions. Suitable catalysts are absorber catalysts and selective catalytic reduction catalysts. A plasma fuel converter generates a reducing gas from a fuel source and is connected to deliver the reducing gas into contact with the absorber catalyst for regenerating the catalyst. A preferred reducing gas is a hydrogen rich gas and a preferred plasma fuel converter is a plasmatron. It is also preferred that the absorber catalyst be adapted for absorbing NO.sub.x.

  13. lithium cobalt oxide cathode

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lithium cobalt oxide cathode - Sandia Energy Energy Search Icon Sandia Home Locations ... SunShot Grand Challenge: Regional Test Centers lithium cobalt oxide cathode Home...

  14. Effect of the oxide layer on current-induced spin-orbit torques in Hf|CoFeB|MgO and Hf|CoFeB|TaO{sub x} structures

    SciTech Connect (OSTI)

    Akyol, Mustafa; Alzate, Juan G.; Yu, Guoqiang; Upadhyaya, Pramey; Wong, Kin L.; Khalili Amiri, Pedram; Wang, Kang L.; Ekicibil, Ahmet

    2015-01-19

    We study the effect of the oxide layer on the current-induced spin-orbit torques (SOTs) in perpendicularly magnetized Hf|CoFeB|MgO (MgO-capped) or Hf|CoFeB|TaO{sub x} (TaO{sub x}-capped) structures. The effective fields corresponding to both the field-like and damping-like current-induced SOTs are characterized using electric transport measurements. Both torques are found to be significantly stronger in MgO-capped structures than those in TaO{sub x}-capped structures. The difference in field-like and damping-like SOTs in the different structures may be attributed to the different Rashba-like Hamiltonian, arising from the difference in the electric potential profiles across the oxide|ferromagnet interfaces in the two cases, as well as possible structural and oxidation differences in the underlying CoFeB and Hf layers. Our results show that the oxide layer in heavy-metal|ferromagnet|oxide trilayer structures has a very significant effect on the generated SOTs for manipulation of ferromagnetic layers. These findings could potentially be used to engineer SOT devices with enhanced current-induced switching efficiency.

  15. Emissions of nitrogen oxides from US urban areas: estimation...

    Office of Scientific and Technical Information (OSTI)

    the total weak-wind OMI NO2 burdens, and the averaged NO2 concentrations, respectively, reflecting the success of NOx control programs for both mobile sources and power plants. ...

  16. After the Clean Air Mercury Eule: prospects for reducing mercury emissions from coal-fired power plants

    SciTech Connect (OSTI)

    Jana B. Milford; Alison Pienciak

    2009-04-15

    Recent court decisions have affected the EPA's regulation of mercury emissions from coal burning, but some state laws are helping to clear the air. In 2005, the US EPA issued the Clean Air Mercury Rule (CAMR), setting performance standards for new coal-fired power plants and nominally capping mercury emissions form new and existing plants at 38 tons per year from 2010 to 2017 and 15 tpy in 2018 and thereafter; these down from 48.5 tpy in 1999. To implement the CAMR, 21 states with non-zero emissions adopted EPA's new source performance standards and cap and trade program with little or no modification. By December 2007, 23 other states had proposed or adopted more stringent requirements; 16 states prohibited or restricted interstate trading of mercury emissions. On February 2008, the US Court of Appeal for the District of Columbia Circuit unanimously vacated the CAMR. This article assesses the status of mercury emission control requirements for coal-fired power plants in the US in light of this decision, focusing on state actions and prospects for a new federal rule. 34 refs., 1 fig.

  17. Compilation and analyses of emissions inventories for the NOAA atmospheric chemistry project. Progress report, August 1997

    SciTech Connect (OSTI)

    Benkovitz, C.M.

    1997-09-01

    Global inventories of anthropogenic emissions of oxides of nitrogen for circa 1985 and 1990 and non-methane volatile organic compounds (NMVOCs) for circa 1990 have been compiled by this project. Work on the inventories has been carried out under the umbrella of the Global Emissions Inventory Activity of the International Global Atmospheric Chemistry program. Global emissions of NOx for 1985 are estimated to be 21 Tg N/yr, with approximately 84% originating in the Northern Hemisphere. The global emissions for 1990 are 31 Tg N/yr for NOx and 173 Gg NMVOC/yr. Ongoing research activities for this project continue to address emissions of both NOx and NMVOCs. Future tasks include: evaluation of more detailed regional emissions estimates and update of the default 1990 inventories with the appropriate estimates; derivation of quantitative uncertainty estimates for the emission values; and development of emissions estimates for 1995.

  18. GBTL Workshop GHG Emissions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    emissions relative to petroleum. * DOE is interested in ... key role in helping the United States meet its continually ... the Average of U.S. Refineries Lower Life Cycle GHG ...

  19. Photon enhanced thermionic emission

    DOE Patents [OSTI]

    Schwede, Jared; Melosh, Nicholas; Shen, Zhixun

    2014-10-07

    Photon Enhanced Thermionic Emission (PETE) is exploited to provide improved efficiency for radiant energy conversion. A hot (greater than 200.degree. C.) semiconductor cathode is illuminated such that it emits electrons. Because the cathode is hot, significantly more electrons are emitted than would be emitted from a room temperature (or colder) cathode under the same illumination conditions. As a result of this increased electron emission, the energy conversion efficiency can be significantly increased relative to a conventional photovoltaic device. In PETE, the cathode electrons can be (and typically are) thermalized with respect to the cathode. As a result, PETE does not rely on emission of non-thermalized electrons, and is significantly easier to implement than hot-carrier emission approaches.

  20. National Emission Standards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... in-growth of Rn from the decay of Th in thorium 222 230 wastes would not exceed the ... RADON EMISSIONS FROM U AND Th SOURCES 238 232 In the past, material from Mound Applied ...

  1. Systems and methods for measuring a parameter of a landfill including a barrier cap and wireless sensor systems and methods

    DOE Patents [OSTI]

    Kunerth, Dennis C.; Svoboda, John M.; Johnson, James T.

    2007-03-06

    A method of measuring a parameter of a landfill including a cap, without passing wires through the cap, includes burying a sensor apparatus in the landfill prior to closing the landfill with the cap; providing a reader capable of communicating with the sensor apparatus via radio frequency (RF); placing an antenna above the barrier, spaced apart from the sensor apparatus; coupling the antenna to the reader either before or after placing the antenna above the barrier; providing power to the sensor apparatus, via the antenna, by generating a field using the reader; accumulating and storing power in the sensor apparatus; sensing a parameter of the landfill using the sensor apparatus while using power; and transmitting the sensed parameter to the reader via a wireless response signal. A system for measuring a parameter of a landfill is also provided.

  2. Direct Chemical Oxidation. Innovative Technology Summary Report

    SciTech Connect (OSTI)

    1998-12-01

    The DOE complex has a need to demonstrate technologies that are alternatives to incineration for the destruction of organic solvents, chlorinated hydrocarbons, plastics, and organic solids. The current industry practice for the targeted waste streams is treatment by incineration. There has been increased public concern on the use of incinerators because of the potential release of products of incomplete combustion, dioxins, furans, and emission of radionuclides. Direct Chemical Oxidation is a technology for the destruction of organic solids and liquids that uses peroxydisulfate as the oxidant to destroy organics and treats residue immobilized using phosphate ceramic solidification.

  3. Field emission electron source

    DOE Patents [OSTI]

    Zettl, Alexander Karlwalter; Cohen, Marvin Lou

    2000-01-01

    A novel field emitter material, field emission electron source, and commercially feasible fabrication method is described. The inventive field emission electron source produces reliable electron currents of up to 400 mA/cm.sup.2 at 200 volts. The emitter is robust and the current it produces is not sensitive to variability of vacuum or the distance between the emitter tip and the cathode. The novel emitter has a sharp turn-on near 100 volts.

  4. Combustion and Emissions Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combustion and Emissions Modeling This email address is being protected from spambots. You need JavaScript enabled to view it. - Computational Fluid Dynamics Project Leader Background Modern transportation engines are designed to use the available fuel resources efficiently and minimize harmful emissions. Optimization of these designs is based on a wealth of practical design, construction and operating experiences, and use of modern testing facilities and sophisticated analyses of the combustion

  5. Apparatus for photocatalytic destruction of internal combustion engine emissions during cold start

    DOE Patents [OSTI]

    Janata, Jiri; McVay, Gary L.; Peden, Charles H.; Exarhos, Gregory J.

    1998-01-01

    A method and apparatus for the destruction of emissions from an internal combustion engine wherein a substrate coated with TiO.sub.2 is exposed to a light source in the exhaust system of an internal combustion engine thereby catalyzing oxidation/reduction reactions between gaseous hydrocarbons, carbon monoxide, nitrogen oxides and oxygen in the exhaust of the internal combustion engine.

  6. FETC Programs for Reducing Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Ruether, J.A.

    1998-02-01

    Mark Twain once quipped that everyone talks about the weather but no one does anything about it. With interest in global climate change on the rise, researchers in the fossil-energy sector are feeling the heat to provide new technology to permit continued use of fossil fuels but with reduced emissions of so-called `greenhouse gases.` Three important greenhouse gases, carbon dioxide, methane, and nitrous oxide, are released to the atmosphere in the course of recovering and combusting fossil fuels. Their importance for trapping radiation, called forcing, is in the order given. In this report, we briefly review how greenhouse gases cause forcing and why this has a warming effect on the Earth`s atmosphere. Then we discuss programs underway at FETC that are aimed at reducing emissions of methane and carbon dioxide.

  7. Evidence of a reduction reaction of oxidized iron/cobalt by boron atoms diffused toward naturally oxidized surface of CoFeB layer during annealing

    SciTech Connect (OSTI)

    Sato, Soshi Honjo, Hiroaki; Niwa, Masaaki; Ikeda, Shoji; Ohno, Hideo; Endoh, Tetsuo

    2015-04-06

    We have investigated the redox reaction on the surface of Ta/CoFeB/MgO/CoFeB magnetic tunnel junction stack samples after annealing at 300, 350, and 400 °C for 1 h using angle-resolved X-ray photoelectron spectroscopy for precise analysis of the chemical bonding states. At a capping tantalum layer thickness of 1 nm, both the capping tantalum layer and the surface of the underneath CoFeB layer in the as-deposited stack sample were naturally oxidized. By comparison of the Co 2p and Fe 2p spectra among the as-deposited and annealed samples, reduction of the naturally oxidized cobalt and iron atoms occurred on the surface of the CoFeB layer. The reduction reaction was more significant at higher annealing temperature. Oxidized cobalt and iron were reduced by boron atoms that diffused toward the surface of the top CoFeB layer. A single CoFeB layer was prepared on SiO{sub 2}, and a confirmatory evidence of the redox reaction with boron diffusion was obtained by angle-resolved X-ray photoelectron spectroscopy analysis of the naturally oxidized surface of the CoFeB single layer after annealing. The redox reaction is theoretically reasonable based on the Ellingham diagram.

  8. Synthesis and investigation of optical properties of TOPO-capped CuInS{sub 2} semiconductor nanocrystal in the presence of different solvent

    SciTech Connect (OSTI)

    Asgary, Saeid; Mirabbaszadeh, Kavoos; Nayebi, Payman; Emadi, Hamid

    2014-03-01

    Graphical abstract: - Highlights: • TOPO-capped CuInS{sub 2} nanoparticles were synthesized by injection method. • Pure CuInS{sub 2} nanoparticle was obtained by injection in 200 °C. • The size, shape and optical properties of products were controlled. • Nanoparticles with size smaller than 10 nm and wurtzite phase was obtained. • The absorption and PL spectra of CuInS{sub 2} nanoparticles were tunable. - Abstract: In this work, synthesis of CuInS{sub 2} semiconductor nanoparticles by thermolysis of a mixed solution of CuAc, In(Ac){sub 3} and DDT in coordinating solvent and trioctylphosphine oxide (TOPO) as ligand was developed. CuInS{sub 2} nanoparticles with size of −10 nm and nanorods were obtained and optical properties controlled by adjusting the reaction parameters such as temperature and time. Also the shape of nanoparticles was controlled by various solvents elaborately. The as-prepared nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), UV–vis absorption, and photoluminescence (PL) spectroscopy. With the use of different solvent different morphology obtained. In the presence of oleylamine/octadecene rectangle-like nanorods obtained while with the use of oleic acid sphere-like nanoparticles achieved.

  9. Emission control cost-effectiveness of alternative-fuel vehicles

    SciTech Connect (OSTI)

    Wang, Q.; Sperling, D.; Olmstead, J.

    1993-06-14

    Although various legislation and regulations have been adopted to promote the use of alternative-fuel vehicles for curbing urban air pollution problems, there is a lack of systematic comparisons of emission control cost-effectiveness among various alternative-fuel vehicle types. In this paper, life-cycle emission reductions and life-cycle costs were estimated for passenger cars fueled with methanol, ethanol, liquefied petroleum gas, compressed natural gas, and electricity. Vehicle emission estimates included both exhaust and evaporative emissions for air pollutants of hydrocarbon, carbon monoxide, nitrogen oxides, and air-toxic pollutants of benzene, formaldehyde, 1,3-butadiene, and acetaldehyde. Vehicle life-cycle cost estimates accounted for vehicle purchase prices, vehicle life, fuel costs, and vehicle maintenance costs. Emission control cost-effectiveness presented in dollars per ton of emission reduction was calculated for each alternative-fuel vehicle types from the estimated vehicle life-cycle emission reductions and costs. Among various alternative-fuel vehicle types, compressed natural gas vehicles are the most cost-effective vehicle type in controlling vehicle emissions. Dedicated methanol vehicles are the next most cost-effective vehicle type. The cost-effectiveness of electric vehicles depends on improvements in electric vehicle battery technology. With low-cost, high-performance batteries, electric vehicles are more cost-effective than methanol, ethanol, and liquified petroleum gas vehicles.

  10. Emissions Benefits of Distributed Generation in the Texas Market

    SciTech Connect (OSTI)

    Hadley, SW

    2005-06-16

    One potential benefit of distributed generation (DG) is a net reduction in air emissions. While DG will produce emissions, most notably carbon dioxide and nitrogen oxides, the power it displaces might have produced more. This study used a system dispatch model developed at Oak Ridge National Laboratory to simulate the 2012 Texas power market with and without DG. This study compares the reduction in system emissions to the emissions from the DG to determine the net savings. Some of the major findings are that 85% of the electricity displaced by DG during peak hours will be simple cycle natural gas, either steam or combustion turbine. Even with DG running as baseload, 57% of electricity displaced will be simple cycle natural gas. Despite the retirement of some gas-fired steam units and the construction of many new gas turbine and combined cycle units, the marginal emissions from the system remain quite high (1.4 lb NO{sub x}/MWh on peak and 1.1 lb NO{sub x}/MWh baseload) compared to projected DG emissions. Consequently, additions of DG capacity will reduce emissions in Texas from power generation in 2012. Using the DG exhaust heat for combined heat and power provides an even greater benefit, since it eliminates further boiler emissions while adding none over what would be produced while generating electricity. Further studies are warranted concerning the robustness of the result with changes in fuel prices, demands, and mixes of power generating technology.

  11. Patterned arrays of capped platinum nanowires with quasi-elastic mechanical response to lateral force

    SciTech Connect (OSTI)

    Hottes, M. Muench, F.; Rauber, M.; Stegmann, C.; Ensinger, W.; Dassinger, F.; Schlaak, H. F.

    2015-02-02

    In this Letter, we describe the electrodeposition of capped, micro-sized Pt nanowire arrays in ion-track etched polymer templates and measure their collective mechanical response to an external force. By using an aperture mask during the irradiation process, it was possible to restrict the creation of pores in the templates to defined areas, allowing the fabrication of small nanowire arrays in different geometries and sizes. The simultaneous and highly reliable formation of many nanowire arrays was achieved using a pulsed electrodeposition technique. After deposition, the polymer matrix was removed using a gentle, dry oxygen plasma treatment, resulting in an excellent preservation of the array nanostructure as confirmed by scanning electron microscopy. A force measuring station was set up to perform mechanical characterization series on free-standing arrays. The nanowire arrays show a high robustness and respond sensitively to the applied force, making them attractive as spring elements in miniaturized inertial sensors, for example.

  12. Alternatives Analysis Amchitka Island Mud Pit Cap Repair, Amchitka, Alaska January 2016

    SciTech Connect (OSTI)

    Darr, Paul S.

    2016-01-01

    The U.S. Department of Energy (DOE) Office of Legacy Management (LM) manages the Nevada Offsites program, which includes a series of reclaimed drilling mud impoundments on Amchitka Island, Alaska (Figure 1). Navarro Research and Engineering, Inc. is the Legacy Management Support contractor (the Contractor) for LM. The Contractor has procured Tetra Tech, Inc. to provide engineering support to the Amchitka mud pit reclamation project. The mud pit caps were damaged during a 7.9-magnitude earthquake that occurred in 2014. The goals of the current project are to investigate conditions at the mud pit impoundments, identify feasible alternatives for repair of the cover systems and the contents, and estimate relative costs of repair alternatives. This report presents descriptions of the sites and past investigations, existing conditions, summaries of various repair/mitigation alternatives, and direct, unburdened, order-of-magnitude (-15% to +50%) associated costs.

  13. Distribution of ion current density on a rotating spherical cap substrate during ion-assisted deposition

    SciTech Connect (OSTI)

    Marushka, Viktor; Zabeida, Oleg Martinu, Ludvik

    2014-11-01

    The uniformity of ion density is critical for applications relying on the ion assisted deposition technique for the fabrication of the high quality thin films. The authors propose and describe here a method allowing one to calculate the ion density distribution on spherical substrate holders under stationary and rotating conditions for different positions of the ion source. The ion beam shape was approximated by a cos{sup n} function, and the ion current density was represented by a function inversely proportional to the distance from the ion source in accordance with our experimental results. As an example, a calculation of the current density distribution on the spherical cap substrate was performed for a broad beam ion source operated with an anode current of 3?A. The authors propose an approach for process optimization with respect to the ion source position and its inclination, in terms of uniformity and absolute value of the ion current density.

  14. Emissions Tool Estimates the Impact of Emissions on Smart Grid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Investments | Department of Energy Emissions Tool Estimates the Impact of Emissions on Smart Grid Infrastructure Investments Emissions Tool Estimates the Impact of Emissions on Smart Grid Infrastructure Investments July 28, 2016 - 2:59pm Addthis In the face of extreme weather events, states, utilities, and other companies are increasingly seeking ways to boost resiliency while reducing their carbon footprint. The Emissions Quantification Tool (EQT), which was conceived of and

  15. Analysis of Factors Controlling Cell Cycle that Can Be Synchronized Nondestructively During Root Cap Development

    SciTech Connect (OSTI)

    Martha Hawes

    2011-02-04

    Publications and presentations during the final funding period, including progress in defining the substrate specificity, the primary goal of the project, are listed below. Both short-term and long-term responses mediated by PsUGT1 have been characterized in transgenic or mutant pea, alfalfa, and Arabidopsis with altered expression of PsUGT1. Additional progress includes evaluation of the relationship between control of the cell cycle by PsUGT1 and other glycosyltransferase and glycosidase enzymes that are co-regulated in the legume root cap during the onset of mitosis and differentiation. Transcriptional profiling and multidimensional protein identification technology ('MudPIT') have been used to establish the broader molecular context for the mechanism by which PsUGT1 controls cell cycle in response to environmental signals. A collaborative study with the Norwegian Forest Research Institute (who provided $10,000.00 in supplies and travel funds for collaborator Dr. Toril Eldhuset to travel to Arizona and Dr. H. H. Woo to travel to Norway) made it possible to establish that the inducible root cap system for studying carbohydrate synthesis and solubilization is expressed in gymnosperm as well as angiosperm species. This discovery provides an important tool to amplify the potential applications of the research in defining conserved cell cycle machinery across a very broad range of plant species and habitats. The final work, published during 2009, revealed an additional surprising parallel with mammalian immune responses: The cells whose production is controlled by PsUGT1 appear to function in a manner which is analogous to that of white blood cells, by trapping and killing in an extracellular manner. This may explain why mutation within the coding region of PsUGT1 and its homolog in humans (UGT1) is lethal to plants and animals. The work has been the subject of invited reviews. A postdoctoral fellow, eight undergraduate students, four M.S. students and three Ph

  16. Photo-oxidation catalysts

    DOE Patents [OSTI]

    Pitts, J. Roland; Liu, Ping; Smith, R. Davis

    2009-07-14

    Photo-oxidation catalysts and methods for cleaning a metal-based catalyst are disclosed. An exemplary catalyst system implementing a photo-oxidation catalyst may comprise a metal-based catalyst, and a photo-oxidation catalyst for cleaning the metal-based catalyst in the presence of light. The exposure to light enables the photo-oxidation catalyst to substantially oxidize absorbed contaminants and reduce accumulation of the contaminants on the metal-based catalyst. Applications are also disclosed.

  17. Method of depositing an electrically conductive oxide buffer layer on a textured substrate and articles formed therefrom

    DOE Patents [OSTI]

    Paranthaman, M. Parans; Aytug, Tolga; Christen, David K.

    2005-10-18

    An article with an improved buffer layer architecture includes a substrate having a textured metal surface, and an electrically conductive lanthanum metal oxide epitaxial buffer layer on the surface of the substrate. The article can also include an epitaxial superconducting layer deposited on the epitaxial buffer layer. An epitaxial capping layer can be placed between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article includes providing a substrate with a metal surface and depositing on the metal surface a lanthanum metal oxide epitaxial buffer layer. The method can further include depositing a superconducting layer on the epitaxial buffer layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.

  18. Method of depositing an electrically conductive oxide buffer layer on a textured substrate and articles formed therefrom

    DOE Patents [OSTI]

    Paranthaman, M. Parans; Aytug, Tolga; Christen, David K.

    2003-09-09

    An article with an improved buffer layer architecture includes a substrate having a textured metal surface, and an electrically conductive lanthanum metal oxide epitaxial buffer layer on the surface of the substrate. The article can also include an epitaxial superconducting layer deposited on the epitaxial buffer layer. An epitaxial capping layer can be placed between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article includes providing a substrate with a metal surface and depositing on the metal surface a lanthanum metal oxide epitaxial buffer layer. The method can further include depositing a superconducting layer on the epitaxial buffer layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.

  19. Oxidation of advanced steam turbine alloys

    SciTech Connect (OSTI)

    Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.

    2006-03-01

    Advanced or ultra supercritical (USC) steam power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.

  20. Oxidation of alloys for advanced steam turbines

    SciTech Connect (OSTI)

    Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Ziomek-Moroz, M.; Alman, David E.

    2005-01-01

    Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energys Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.

  1. Emissions from premixed charge compression ignition (PCCI) combustion and affect on emission control devices

    SciTech Connect (OSTI)

    Parks, II, James E; Kass, Michael D; Huff, Shean P; Barone, Teresa L; Lewis Sr, Samuel Arthur; Prikhodko, Vitaly Y; Storey, John Morse

    2010-01-01

    A light-duty diesel engine has been operated in advanced combustion modes known generally as premixed charge compression ignition (PCCI). The emissions have been characterized for several load and speed combinations. Fewer NO{sub x} and particulate matter (PM) emissions are produced by PCCI, but higher CO and hydrocarbon (HC) emissions result. In addition, the nature of the PM differs from conventional combustion; the PM is smaller and has a much higher soluble organic fraction (SOF) content (68% vs. 30% for conventional combustion). Three catalyst technologies were studied to determine the affects of HECC on catalyst performance; the technologies were a lean NO{sub x} trap (LNT), diesel oxidation catalyst (DOC), and diesel particulate filter (DPF). The LNT benefited greatly from the reduced NO{sub x} emissions associated with PCCI. NO{sub x} capacity requirements are reduced as well as overall tailpipe NO{sub x} levels particularly at low load and temperature conditions where regeneration of the LNT is difficult. The DOC performance requirements for PCCI are more stringent due to the higher CO and HC emissions; however, the DOC was effective at controlling the higher CO and HC emissions at conditions above the light-off temperature. Below light-off, CO and HC emissions are problematic. The study of DPF technology focused on the fuel penalties associated with DPF regeneration or 'desoot' due to the different PM loading rates from PCCI vs. conventional combustion. Less frequent desoot events were required from the lower PM from PCCI and, when used in conjunction with an LNT, the lower PM from less frequent LNT regeneration. The lower desoot frequency leads a {approx}3% fuel penalty for a mixture of PCCI and conventional loads vs. {approx}4% for conventional only combustion.

  2. Investigation of arsenic and antimony capping layers, and half cycle reactions during atomic layer deposition of Al{sub 2}O{sub 3} on GaSb(100)

    SciTech Connect (OSTI)

    Zhernokletov, Dmitry M.; Dong, Hong; Brennan, Barry; Kim, Jiyoung; Wallace, Robert M.; Yakimov, Michael; Tokranov, Vadim; Oktyabrsky, Serge

    2013-11-15

    In-situ monochromatic x-ray photoelectron spectroscopy, low energy electron diffraction, ion scattering spectroscopy, and transmission electron microscopy are used to examine the GaSb(100) surfaces grown by molecular beam epitaxy after thermal desorption of a protective As or Sb layer and subsequent atomic layer deposition (ALD) of Al{sub 2}O{sub 3}. An antimony protective layer is found to be more favorable compared to an arsenic capping layer as it prevents As alloys from forming with the GaSb substrate. The evolution of oxide free GaSb/Al{sub 2}O{sub 3} interface is investigated by “half-cycle” ALD reactions of trimethyl aluminum and deionized water.

  3. Systems and methods for controlling diesel engine emissions

    DOE Patents [OSTI]

    Webb, Cynthia Chaffin; Weber, Phillip Anthony; Khair, Magdi K.

    2004-06-01

    Systems and methods for controlling diesel engine emissions, including, for example, oxides of nitrogen emissions, particulate matter emissions, and the like. The emission control system according to this invention is provided in the exhaust passageway of a diesel engine and includes a catalyst-based particulate filter; and first and second lean NO.sub.x trap systems coupled to the catalyst-based particulate filter. The first and second lean NO.sub.x trap systems are arranged in a parallel flow configuration with each other. Each of the first and second lean NO.sub.x trap systems include a carbon monoxide generating catalyst device, a sulfur trap device, a lean NO.sub.x device, a supplemental fuel injector device, and a plurality of flow diverter devices.

  4. Acetone sensor based on zinc oxide hexagonal tubes

    SciTech Connect (OSTI)

    Hastir, Anita Singh, Onkar Anand, Kanika Singh, Ravi Chand

    2014-04-24

    In this work hexagonal tubes of zinc oxide have been synthesized by co-precipitation method. For structural, morphological, elemental and optical analysis synthesized powders were characterized by using x-ray diffraction, field emission scanning microscope, EDX, UV-visible and FTIR techniques. For acetone sensing thick films of zinc oxide have been deposited on alumina substrate. The fabricated sensors exhibited maximum sensing response towards acetone vapour at an optimum operating temperature of 400°C.

  5. Radioactive air emissions notice of construction for the Waste Receiving And Processing facility

    SciTech Connect (OSTI)

    Not Available

    1993-02-01

    The mission of the Waste Receiving And Processing (WRAP) Module 1 facility (also referred to as WRAP 1) includes: examining, assaying, characterizing, treating, and repackaging solid radioactive and mixed waste to enable permanent disposal of the wastes in accordance with all applicable regulations. The solid wastes to be handled in the WRAP 1 facility include low-level waste (LLW), transuranic (TRU) waste, TRU mixed wastes, and low-level mixed wastes (LLMW). Airborne releases from the WRAP 1 facility will be primarily in particulate forms (99.999 percent of total unabated emissions). The release of two volatilized radionuclides, tritium and carbon-14 will contribute less than 0.001 percent of the total unabated emissions. Table 2-1 lists the radionuclides which are anticipated to be emitted from WRAP 1 exhaust stack. The Clean Air Assessment Package 1988 (CAP-88) computer code (WHC 1991) was used to calculate effective dose equivalent (EDE) from WRAP 1 to the maximally exposed offsite individual (MEI), and thus demonstrate compliance with WAC 246-247. Table 4-1 shows the dose factors derived from the CAP-88 modeling and the EDE for each radionuclide. The source term (i.e., emissions after abatement in curies per year) are multiplied by the dose factors to obtain the EDE. The total projected EDE from controlled airborne radiological emissions to the offsite MEI is 1.31E-03 mrem/year. The dose attributable to radiological emissions from WRAP 1 will, then, constitute 0.013 percent of the WAC 246-247 EDE regulatory limit of 10 mrem/year to the offsite MEI.

  6. Emissions of Transport Refrigeration Units with CARB Diesel, Gas-to-Liquid Diesel, and Emissions Control Devices

    SciTech Connect (OSTI)

    Barnitt, R. A.; Chernich, D.; Burnitzki, M.; Oshinuga, A.; Miyasato, M.; Lucht, E.; van der Merwe, D.; Schaberg, P.

    2010-05-01

    A novel in situ method was used to measure emissions and fuel consumption of transport refrigeration units (TRUs). The test matrix included two fuels, two exhaust configurations, and two TRU engine operating speeds. Test fuels were California ultra low sulfur diesel and gas-to-liquid (GTL) diesel. Exhaust configurations were a stock muffler and a Thermo King pDPF diesel particulate filter. The TRU engine operating speeds were high and low, controlled by the TRU user interface. Results indicate that GTL diesel fuel reduces all regulated emissions at high and low engine speeds. Application of a Thermo King pDPF reduced regulated emissions, sometimes almost entirely. The application of both GTL diesel and a Thermo King pDPF reduced regulated emissions at high engine speed, but showed an increase in oxides of nitrogen at low engine speed.

  7. Enhanced control of mercury emissions through modified speciation

    SciTech Connect (OSTI)

    Livengood, C.D.; Mendelsohn, M.H.

    1997-07-01

    In anticipation of possible regulations regarding mercury emissions, research efforts sponsored by DOE, EPRI, and others are investigating the risks posed by mercury emissions, improved techniques for measuring those emissions, and possible control measures. The focus in the control research is on techniques that can be used in conjunction with existing flue-gas-cleanup (FGC) systems in order to minimize additional capital costs and operational complexity. Argonne National Laboratory has supported the DOE Fossil Energy Program for over 15 years with research on advanced environmental control technologies. The emphasis in Argonne`s work has been on integrated systems that combine control of several pollutants. Specific topics have included spray drying for sulfur dioxide and particulate-matter control with high-sulfur coal, combined sulfur dioxide and nitrogen oxides control technologies, and techniques to enhance mercury control in existing FGC systems. The latter area has focused on low-cost dry sorbents for use with fabric filters or electrostatic precipitators and techniques for improving the capture of mercury in wet flue-gas desulfurization (FGD) systems. This paper presents results from recent work that has studied the effects of several oxidizing agents in combination with typical flue-gas species (e.g., nitrogen oxides and sulfur dioxide) on the oxidation of Hg{sup 0}.

  8. Studies on supported metal oxide-oxide support interactions ...

    Office of Scientific and Technical Information (OSTI)

    Subject: 36 MATERIALS SCIENCE; 66 PHYSICS; CERIUM OXIDES; SURFACE PROPERTIES; ALUMINIUM OXIDES; COPPER OXIDES; BINDING ENERGY; X-RAY DIFFRACTION; INFRARED SPECTRA; VALENCE; ZINC ...

  9. Phase Discrimination through Oxidant Selection for Iron Oxide...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phase Discrimination through Oxidant Selection for Iron Oxide Ultrathin Films Home > Research > ANSER Research Highlights > Phase Discrimination through Oxidant Selection for Iron...

  10. Task 1: Steam Oxidation,

    SciTech Connect (OSTI)

    I. G. Wright and G. R. Holcomb

    2009-03-01

    Need to improve efficiency, decrease emissions (esp. CO2) associated with the continued use of coal for power generation

  11. Diesel Emission Control -- Sulfur Effects (DECSE) Program; Phase I Interim Date Report No. 3: Diesel Fuel Sulfur Effects on Particulate Matter Emissions

    SciTech Connect (OSTI)

    DOE; ORNL; NREL; EMA; MECA

    1999-11-15

    The Diesel Emission Control-Sulfur Effects (DECSE) is a joint government/industry program to determine the impact of diesel fuel sulfur levels on emission control systems whose use could lower emissions of nitrogen oxides (NO{sub x}) and particulate matter (PM) from on-highway trucks in the 2002--2004 model years. Phase 1 of the program was developed with the following objectives in mind: (1) evaluate the effects of varying the level of sulfur content in the fuel on the emission reduction performance of four emission control technologies; and (2) measure and compare the effects of up to 250 hours of aging on selected devices for multiple levels of fuel sulfur content. This interim report covers the effects of diesel fuel sulfur level on particulate matter emissions for four technologies.

  12. Advanced Petroleum-Based Fuels -- Diesel Emissions Control Project (APBF-DEC): Lubricants Project, Phase 2 Final Report

    SciTech Connect (OSTI)

    Not Available

    2006-06-01

    This report summarizes the results of the second phase of a lubricants project, which investigated the impact of engine oil formulation on diesel vehicle emissions and the performance of a nitrogen oxide adsorber catalyst (NAC).

  13. Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils

    SciTech Connect (OSTI)

    Jeremy Semrau; Sung-Woo Lee; Jeongdae Im; Sukhwan Yoon; Michael Barcelona

    2010-09-30

    The overall objective of this project, 'Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils' was to develop effective, efficient, and economic methodologies by which microbial production of nitrous oxide can be minimized while also maximizing microbial consumption of methane in landfill cover soils. A combination of laboratory and field site experiments found that the addition of nitrogen and phenylacetylene stimulated in situ methane oxidation while minimizing nitrous oxide production. Molecular analyses also indicated that methane-oxidizing bacteria may play a significant role in not only removing methane, but in nitrous oxide production as well, although the contribution of ammonia-oxidizing archaea to nitrous oxide production can not be excluded at this time. Future efforts to control both methane and nitrous oxide emissions from landfills as well as from other environments (e.g., agricultural soils) should consider these issues. Finally, a methanotrophic biofiltration system was designed and modeled for the promotion of methanotrophic activity in local methane 'hotspots' such as landfills. Model results as well as economic analyses of these biofilters indicate that the use of methanotrophic biofilters for controlling methane emissions is technically feasible, and provided either the costs of biofilter construction and operation are reduced or the value of CO{sub 2} credits is increased, can also be economically attractive.

  14. Appearance, temperature, and NO{sub x} emission of two inverse diffusion flames with different port design

    SciTech Connect (OSTI)

    Sze, L.K.; Cheung, C.S.; Leung, C.W.

    2006-01-01

    Experiments were carried out to investigate the appearance, temperature distribution, and NO{sub x} emission index of two inverse diffusion flames, one with circumferentially arranged ports (CAPs) and the other with co-axial (CoA) jets, both burning LPG with 70% butane and 30% propane. Flame appearances were investigated first with a fixed fueling rate at different airflow rates equivalent to air jet Reynolds numbers (Re) of 1000 to 4500; and then at a fixed airflow rate with different fueling rates equivalent to overall equivalence ratios (F) of 1.0 to 2.0. The CAP flame is found to consist of two zones: a lower entrainment zone and an upper mixing and combustion zone. The CoA flame in most cases is similar to a diffusion flame. The two-zone structure can be observed only at Re larger than 2500. The temperature distributions of the flames are similar at overall equivalence ratios of 1.0 and 1.2 for Re=2500, except that the corresponding CoA flame is longer. The flame temperature is higher in the CAP flame than the CoA flame at higher overall equivalence ratios. A measurement of centerline oxygen concentrations shows that the oxygen concentration reaches a minimum value at a flame height of 50 mm in the CAP flame but decreases more gradually in the CoA flame. It can be concluded that there is more intense air-fuel mixing in a CAP flame than the CoA flame. Investigation of the emission index of NO{sub x} (EINO{sub x}) for both flames at Re=2500 and overall equivalence ratios of 1.0 to 6.0 reveals that the EINO{sub x} curve of each flame is bell-shaped, with a maximum value of 3.2 g/kg at F=1.2 for the CAP flame and 3 g/kg at F=2.2 for the CoA flame.

  15. Technological modifications in the nitrogen oxides tradable permit program

    SciTech Connect (OSTI)

    Linn, J.

    2008-07-01

    Tradable permit programs allow firms greater flexibility in reducing emissions than command-and-control regulations and encourage firms to use low cost abatement options, including small-scale modifications to capital equipment. This paper shows that firms have extensively modified capital equipment in the Nitrogen Oxides Budget Trading Program, which covers power plants in the eastern United States. The empirical strategy uses geographic and temporal features of the program to estimate counterfactual emissions, finding that modifications have reduced emission rates by approximately 10-15 percent. The modifications would not have occurred under command-and-control regulation and have reduced regulatory costs.

  16. CONTAINMENT VESSEL TEMPERATURE FOR PU-238 HEAT SOURCE CONTAINER UNDER AMBIENT, FREE CONVECTION AND LOW EMISSIVITY COOLING CONDITIONS

    SciTech Connect (OSTI)

    Gupta, N.; Smith, A.

    2011-02-14

    The EP-61 primary containment vessel of the 5320 shipping package has been used for storage and transportation of Pu-238 plutonium oxide heat source material. For storage, the material in its convenience canister called EP-60 is placed in the EP-61 and sealed by two threaded caps with elastomer O-ring seals. When the package is shipped, the outer cap is seal welded to the body. While stored, the EP-61s are placed in a cooling water bath. In preparation for welding, several containers are removed from storage and staged to the welding booth. The significant heat generation of the contents, and resulting rapid rise in component temperature necessitates special handling practices. The test described here was performed to determine the temperature rise with time and peak temperature attained for an EP-61 with 203 watts of internal heat generation, upon its removal from the cooling water bath.

  17. Large drought-induced variations in oak leaf volatile organic compound emissions during PINOT NOIR 2012

    SciTech Connect (OSTI)

    Geron, Chris; Gu, Lianhong; Daly, Ryan; Harley, Peter; Rasmussen, Rei; Seco, Roger; Guenther, Alex; Karl, Thomas

    2015-12-17

    Here, leaf-level isoprene and monoterpene emissions were collected and analyzed from five of the most abundant oak (Quercus) species in Central Missouri's Ozarks Region in 2012 during PINOT NOIR (Particle Investigations at a Northern Ozarks Tower – NOx, Oxidants, Isoprene Research). June measurements, prior to the onset of severe drought, showed isoprene emission rates and leaf temperature responses similar to those previously reported in the literature and used in Biogenic Volatile Organic Compound (BVOC) emission models. During the peak of the drought in August, isoprene emission rates were substantially reduced, and response to temperature was dramatically altered, especially for the species in the red oak subgenus (Erythrobalanus).

  18. Mixed Acid Oxidation

    SciTech Connect (OSTI)

    Pierce, R.A.

    1999-10-26

    Several non-thermal processes have been developed to destroy organic waste compounds using chemicals with high oxidation potentials. These efforts have focused on developing technologies that work at low temperatures, relative to incineration, to overcome many of the regulatory issues associated with obtaining permits for waste incinerators. One such technique with great flexibility is mixed acid oxidation. Mixed acid oxidation, developed at the Savannah River Site, uses a mixture of an oxidant (nitric acid) and a carrier acid (phosphoric acid). The carrier acid acts as a non-volatile holding medium for the somewhat volatile oxidant. The combination of acids allows appreciable amounts of the concentrated oxidant to remain in the carrier acid well above the oxidant''s normal boiling point.

  19. Plastic cap evolution law derived from induced transverse isotropy in dilatational triaxial compression.

    SciTech Connect (OSTI)

    Macon, David James; Brannon, Rebecca Moss; Strack, Otto Eric

    2014-02-01

    Mechanical testing of porous materials generates physical data that contain contributions from more than one underlying physical phenomenon. All that is measurable is the (3z(Bensemble(3y (Bhardening modulus. This thesis is concerned with the phenomenon of dilatation in triaxial compression of porous media, which has been modeled very accurately in the literature for monotonic loading using models that predict dilatation under triaxial compression (TXC) by presuming that dilatation causes the cap to move outwards. These existing models, however, predict a counter-intuitive (and never validated) increase in hydrostatic compression strength. This work explores an alternative approach for modeling TXC dilatation based on allowing induced elastic anisotropy (which makes the material both less stiff and less strong in the lateral direction) with no increase in hydrostatic strength. Induced elastic anisotropy is introduced through the use of a distortion operator. This operator is a fourth-order tensor consisting of a combination of the undeformed stiffness and deformed compliance and has the same eigenprojectors as the elastic compliance. In the undeformed state, the distortion operator is equal to the fourth-order identity. Through the use of the distortion operator, an evolved stress tensor is introduced. When the evolved stress tensor is substituted into an isotropic yield function, a new anisotropic yield function results. In the case of the von Mises isotropic yield function (which contains only deviatoric components), it is shown that the distortion operator introduces a dilatational contribution without requiring an increase in hydrostatic strength. In the thesis, an introduction and literature review of the cap function is given. A transversely isotropic compliance is presented, based on a linear combination of natural bases constructed about a transverse-symmetry axis. Using a probabilistic distribution of cracks constructed for the case of transverse isotropy

  20. Growth control of the oxidation state in vanadium oxide thin...

    Office of Scientific and Technical Information (OSTI)

    Growth control of the oxidation state in vanadium oxide thin films Citation Details In-Document Search Title: Growth control of the oxidation state in vanadium oxide thin films ...

  1. Phase Discrimination through Oxidant Selection for Iron Oxide Ultrathin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Films | ANSER Center | Argonne-Northwestern National Laboratory Phase Discrimination through Oxidant Selection for Iron Oxide Ultrathin Films Home > Research > ANSER Research Highlights > Phase Discrimination through Oxidant Selection for Iron Oxide Ultrathin Films

  2. Kinetics of Cold-Cap Reactions for Vitrification of Nuclear Waste Glass Based on Simultaneous Differential Scanning Calorimetry - Thermogravimetry (DSC-TGA) and Evolved Gas Analysis (EGA)

    SciTech Connect (OSTI)

    Rodriguez, Carmen P.; Pierce, David A.; Schweiger, Michael J.; Kruger, Albert A.; Chun, Jaehun; Hrma, Pavel R.

    2013-12-03

    For vitrifying nuclear waste glass, the feed, a mixture of waste with glass-forming and modifying additives, is charged onto the cold cap that covers 90-100% of the melt surface. The cold cap consists of a layer of reacting molten glass floating on the surface of the melt in an all-electric, continuous glass melter. As the feed moves through the cold cap, it undergoes chemical reactions and phase transitions through which it is converted to molten glass that moves from the cold cap into the melt pool. The process involves a series of reactions that generate multiple gases and subsequent mass loss and foaming significantly influence the mass and heat transfers. The rate of glass melting, which is greatly influenced by mass and heat transfers, affects the vitrification process and the efficiency of the immobilization of nuclear waste. We studied the cold-cap reactions of a representative waste glass feed using both the simultaneous differential scanning calorimetry thermogravimetry (DSC-TGA) and the thermogravimetry coupled with gas chromatography-mass spectrometer (TGA-GC-MS) as complementary tools to perform evolved gas analysis (EGA). Analyses from DSC-TGA and EGA on the cold-cap reactions provide a key element for the development of an advanced cold-cap model. It also helps to formulate melter feeds for higher production rate.

  3. SU-E-T-59: Calculations of Collimator Scatter Factors (Sc) with and Without Custom-Made Build-Up Caps for CyberKnife

    SciTech Connect (OSTI)

    Wokoma, S; Yoon, J; Jung, J; Lee, S

    2014-06-01

    Purpose: To investigate the impact of custom-made build-up caps for a diode detector in robotic radiosurgery radiation fields with variable collimator (IRIS) for collimator scatter factor (Sc) calculation. Methods: An acrylic cap was custom-made to fit our SFD (IBA Dosimetry, Germany) diode detector. The cap has thickness of 5 cm, corresponding to a depth beyond electron contamination. IAEA phase space data was used for beam modeling and DOSRZnrc code was used to model the detector. The detector was positioned at 80 cm source-to-detector distance. Calculations were performed with the SFD, with and without the build-up cap, for clinical IRIS settings ranging from 7.5 to 60 mm. Results: The collimator scatter factors were calculated with and without 5 cm build-up cap. They were agreed within 3% difference except 15 mm cone. The Sc factor for 15 mm cone without buildup was 13.2% lower than that with buildup. Conclusion: Sc data is a critical component in advanced algorithms for treatment planning in order to calculate the dose accurately. After incorporating build-up cap, we discovered differences of up to 13.2 % in Sc factors in the SFD detector, when compared against in-air measurements without build-up caps.

  4. ELECTRON EMISSION REGULATING MEANS

    DOE Patents [OSTI]

    Brenholdt, I.R.

    1957-11-19

    >An electronic regulating system is described for controlling the electron emission of a cathode, for example, the cathode in a mass spectrometer. The system incorporates a transformer having a first secondary winding for the above-mentioned cathode and a second secondary winding for the above-mentioned cathode and a second secondary winding load by grid controlled vacuum tubes. A portion of the electron current emitted by the cathode is passed through a network which develops a feedback signal. The system arrangement is completed by using the feedback signal to control the vacuum tubes in the second secondary winding through a regulator tube. When a change in cathode emission occurs, the feedback signal acts to correct this change by adjusting the load on the transformer.

  5. Low emissions diesel fuel

    DOE Patents [OSTI]

    Compere, A.L.; Griffith, W.L.; Dorsey, G.F.; West, B.H.

    1998-05-05

    A method and matter of composition for controlling NO{sub x} emissions from existing diesel engines. The method is achieved by adding a small amount of material to the diesel fuel to decrease the amount of NO{sub x} produced during combustion. Specifically, small amounts, less than about 1%, of urea or a triazine compound (methylol melamines) are added to diesel fuel. Because urea and triazine compounds are generally insoluble in diesel fuel, microemulsion technology is used to suspend or dissolve the urea or triazine compound in the diesel fuel. A typical fuel formulation includes 5% t-butyl alcohol, 4.5% water, 0.5% urea or triazine compound, 9% oleic acid, and 1% ethanolamine. The subject invention provides improved emissions in heavy diesel engines without the need for major modifications.

  6. Low emissions diesel fuel

    DOE Patents [OSTI]

    Compere, Alicia L.; Griffith, William L.; Dorsey, George F.; West, Brian H.

    1998-01-01

    A method and matter of composition for controlling NO.sub.x emissions from existing diesel engines. The method is achieved by adding a small amount of material to the diesel fuel to decrease the amount of NO.sub.x produced during combustion. Specifically, small amounts, less than about 1%, of urea or a triazine compound (methylol melamines) are added to diesel fuel. Because urea and triazine compounds are generally insoluble in diesel fuel, microemulsion technology is used to suspend or dissolve the urea or triazine compound in the diesel fuel. A typical fuel formulation includes 5% t-butyl alcohol, 4.5% water, 0.5% urea or triazine compound, 9% oleic acid, and 1% ethanolamine. The subject invention provides improved emissions in heavy diesel engines without the need for major modifications.

  7. Power plant emissions reduction

    SciTech Connect (OSTI)

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy

    2015-10-20

    A system for improved emissions performance of a power plant generally includes an exhaust gas recirculation system having an exhaust gas compressor disposed downstream from the combustor, a condensation collection system at least partially disposed upstream from the exhaust gas compressor, and a mixing chamber in fluid communication with the exhaust gas compressor and the condensation collection system, where the mixing chamber is in fluid communication with the combustor.

  8. Particulate and Gaseous Emissions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Gaseous Emissions - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  9. Acoustic emission monitoring system

    DOE Patents [OSTI]

    Romrell, Delwin M.

    1977-07-05

    Methods and apparatus for identifying the source location of acoustic emissions generated within an acoustically conductive medium. A plurality of acoustic receivers are communicably coupled to the surface of the medium at a corresponding number of spaced locations. The differences in the reception time of the respective sensors in response to a given acoustic event are measured among various sensor combinations prescribed by the monitoring mode employed. Acoustic reception response encountered subsequent to the reception by a predetermined number of the prescribed sensor combinations are inhibited from being communicated to the processing circuitry, while the time measurements obtained from the prescribed sensor combinations are translated into a position measurement representative of the location on the surface most proximate the source of the emission. The apparatus is programmable to function in six separate and five distinct operating modes employing either two, three or four sensory locations. In its preferred arrangement the apparatus of this invention will re-initiate a monitoring interval if the predetermined number of sensors do not respond to a particular emission within a given time period.

  10. UV/oxidation providers shed technical problems, fight cost perceptions

    SciTech Connect (OSTI)

    Rapaport, D. )

    1993-05-01

    Systems combining ultraviolet light and oxidation (UV/oxidation) to remove contaminants from water were introduced in the early 1980s. Since then, improvements in the technology, a wide array of applications, educational efforts by companies offering the systems and changes in environmental regulations have accelerated acceptance of UV/oxidation technology. From the standpoint of regulatory officials, the major advantage of UV/oxidation is that it creates no secondary pollutants to treat or haul away. It is a self-contained, in situ treatment technology. This benefit has gained importance as regulations have become more stringent regarding disposal of secondary pollutants, such as saturated carbon, and concentration levels of air emissions created by air stripping. Such regulations have increased the costs of monitoring and disposal, while the costs of using UV/oxidation were decreasing.

  11. Energy-Related Carbon Emissions in Manufacturing

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Energy-Related Carbon Emissions Detailed Energy-Related Carbon Emissions All Industry Groups 1994 emissions Selected Industries Petroleum refining Chemicals Iron & Steel...

  12. GBTL Workshop GHG Emissions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GHG Emissions GBTL Workshop GHG Emissions EERE Presentation of Greenhouse Gas EmissionsResource Potential gbtlworkshopghgemissions.pdf (1.37 MB) More Documents & Publications ...

  13. Alternative Fuels Data Center: Propane Vehicle Emissions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emissions to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Emissions on ...

  14. Partial oxidation catalyst

    DOE Patents [OSTI]

    Krumpelt, Michael; Ahmed, Shabbir; Kumar, Romesh; Doshi, Rajiv

    2000-01-01

    A two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion. The dehydrogenation portion is a group VIII metal and the oxide-ion conducting portion is selected from a ceramic oxide crystallizing in the fluorite or perovskite structure. There is also disclosed a method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400.degree. C. for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide.

  15. Interfacial electron transfer dynamics of photosensitized zinc oxide nanoclusters

    SciTech Connect (OSTI)

    Murakoshi, Kei; Yanagida, Shozo; Capel, M.

    1997-06-01

    The authors have prepared and characterized photosensitized zinc oxide (ZnO) nanoclusters, dispersed in methanol, using carboxylated coumarin dyes for surface adsorption. Femtosecond time-resolved emission spectroscopy allows the authors to measure the photo-induced charge carrier injection rate constant from the adsorbed photosensitizer to the n-type semiconductor nanocluster. These results are compared with other photosensitized semiconductors.

  16. ZIRCONIUM OXIDE NANOSTRUCTURES PREPARED BY ANODIC OXIDATION

    SciTech Connect (OSTI)

    Dang, Y. Y.; Bhuiyan, M.S.; Paranthaman, M. P.

    2008-01-01

    Zirconium oxide is an advanced ceramic material highly useful for structural and electrical applications because of its high strength, fracture toughness, chemical and thermal stability, and biocompatibility. If highly-ordered porous zirconium oxide membranes can be successfully formed, this will expand its real-world applications, such as further enhancing solid-oxide fuel cell technology. Recent studies have achieved various morphologies of porous zirconium oxide via anodization, but they have yet to create a porous layer where nanoholes are formed in a highly ordered array. In this study, electrochemical methods were used for zirconium oxide synthesis due to its advantages over other coating techniques, and because the thickness and morphology of the ceramic fi lms can be easily tuned by the electrochemical parameters, such as electrolyte solutions and processing conditions, such as pH, voltage, and duration. The effects of additional steps such as pre-annealing and post-annealing were also examined. Results demonstrate the formation of anodic porous zirconium oxide with diverse morphologies, such as sponge-like layers, porous arrays with nanoholes ranging from 40 to 75 nm, and nanotube layers. X-ray powder diffraction analysis indicates a cubic crystallographic structure in the zirconium oxide. It was noted that increased voltage improved the ability of the membrane to stay adhered to the zirconium substrate, whereas lower voltages caused a propensity for the oxide fi lm to fl ake off. Further studies are needed to defi ne the parameters windows that create these morphologies and to investigate other important characteristics such as ionic conductivity.

  17. Summary Notes from 22 July 2008 Generic Technical Issue Discussion on Long-Term Engineered Cap Performance

    Office of Environmental Management (EM)

    6 Summary Notes from 22 July 2008 Generic Technical Issue Discussion on Long-Term Engineered Cap Performance Attendees: Representatives from the U.S. Department of Energy (DOE)-Headquarters and the U.S. Nuclear Regulatory Commission (NRC) staff met at the DOE offices in Germantown, Maryland on 22 July 2008. Representatives from South Carolina Department of Health and Environmental Control, DOE-Savannah River, and DOE- Office of River Protection participated in the meeting via a teleconference

  18. Emissions of greenhouse gases in the United States 1996

    SciTech Connect (OSTI)

    1997-10-01

    The Energy Information Administration (EIA) is required by the Energy Policy Act of 1992 to prepare a report on aggregate US national emissions of greenhouse gases for the period 1987--1990, with annual updates thereafter. This report is the fifth annual update, covering national emissions over the period 1989--1995, with preliminary estimates of emissions for 1996. The estimates contained in this report have been revised from those in last year`s report. Emissions estimates for carbon dioxide are reported in metric tons of carbon; estimates for other gases are reported in metric tons of gas. Chapter 1 of this report briefly recapitulates some background information about global climate change and the greenhouse effect and discusses important recent developments in global climate change activities. Chapter 2 through 6 cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons, and criteria pollutants, respectively. Chapter 7 describes potential sequestration and emissions of greenhouse gases as a result of land use changes. Five appendixes are included with this report. 216 refs., 11 figs., 38 tabs.

  19. Supported Au-CuO Catalysts for Low Temperature CO Oxidation | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Supported Au-CuO Catalysts for Low Temperature CO Oxidation Supported Au-CuO Catalysts for Low Temperature CO Oxidation Catalytic properties of Au-CuOx/SiO2 are investigated in removing pollutants from simulated automotive exhaust to meet an increasing demand for high emissions control at low temperatures. p-02_bauer.pdf (718.31 KB) More Documents & Publications Low Temperature Emission Control Vehicle Technologies Office Merit Review 2014: Low Temperature Emission Control to

  20. Oxidation Resistant Graphite Studies

    SciTech Connect (OSTI)

    W. Windes; R. Smith

    2014-07-01

    The Very High Temperature Reactor (VHTR) Graphite Research and Development Program is investigating doped nuclear graphite grades exhibiting oxidation resistance. During a oxygen ingress accident the oxidation rates of the high temperature graphite core region would be extremely high resulting in significant structural damage to the core. Reducing the oxidation rate of the graphite core material would reduce the structural effects and keep the core integrity intact during any air-ingress accident. Oxidation testing of graphite doped with oxidation resistant material is being conducted to determine the extent of oxidation rate reduction. Nuclear grade graphite doped with varying levels of Boron-Carbide (B4C) was oxidized in air at nominal 740°C at 10/90% (air/He) and 100% air. The oxidation rates of the boronated and unboronated graphite grade were compared. With increasing boron-carbide content (up to 6 vol%) the oxidation rate was observed to have a 20 fold reduction from unboronated graphite. Visual inspection and uniformity of oxidation across the surface of the specimens were conducted. Future work to determine the remaining mechanical strength as well as graphite grades with SiC doped material are discussed.

  1. Passivation of c-Si surfaces by sub-nm amorphous silicon capped with silicon nitride

    SciTech Connect (OSTI)

    Wan, Yimao Yan, Di; Bullock, James; Zhang, Xinyu; Cuevas, Andres

    2015-12-07

    A sub-nm hydrogenated amorphous silicon (a-Si:H) film capped with silicon nitride (SiN{sub x}) is shown to provide a high level passivation to crystalline silicon (c-Si) surfaces. When passivated by a 0.8 nm a-Si:H/75 nm SiN{sub x} stack, recombination current density J{sub 0} values of 9, 11, 47, and 87 fA/cm{sup 2} are obtained on 10 Ω·cm n-type, 0.8 Ω·cm p-type, 160 Ω/sq phosphorus-diffused, and 120 Ω/sq boron-diffused silicon surfaces, respectively. The J{sub 0} on n-type 10 Ω·cm wafers is further reduced to 2.5 ± 0.5 fA/cm{sup 2} when the a-Si:H film thickness exceeds 2.5 nm. The passivation by the sub-nm a-Si:H/SiN{sub x} stack is thermally stable at 400 °C in N{sub 2} for 60 min on all four c-Si surfaces. Capacitance–voltage measurements reveal a reduction in interface defect density and film charge density with an increase in a-Si:H thickness. The nearly transparent sub-nm a-Si:H/SiN{sub x} stack is thus demonstrated to be a promising surface passivation and antireflection coating suitable for all types of surfaces encountered in high efficiency c-Si solar cells.

  2. Emissions trading comes of age as a strategic tool

    SciTech Connect (OSTI)

    Pospisil, R.

    1996-03-01

    Trading of emissions credits has quickly evolved from a curiosity to a viable compliance strategy for electric utilities and power-generating industrial firms. A sure sign that emissions trading has matured is the entry of power marketers onto the scene; in bundling pollution allowances with their electricity offerings, they are making their product more attractive - and stealing a page from the coal companies` strategy book to boot. Although most current activity involves credits for sulfur dioxide (SO{sub 2}), nitrogen oxide (NO{sub x}) trading is under way in certain areas as well, although NO{sub x} markets are local and thus slower to develop. However, utilities see economic development potential in this area; some are providing NO{sub x} credits to their industrial customers to help them comply with environmental regulations - and to retain their loyalty when deregulation affords them a choice of electricity suppliers. This paper briefly discusses the issues related to emissions trading.

  3. Catalytic effects of minerals on NOx emission from coal combustion

    SciTech Connect (OSTI)

    Yao, M.Y.; Che, D.F.

    2007-07-01

    The catalytic effects of inherent mineral matters on NOx emissions from coal combustion have been investigated by a thermo-gravimetric analyzer (TGA) equipped with a gas analyzer. The effect of demineralization and the individual effect of Na, K, Ca, Mg, and Fe on the formation of NOx are studied as well as the combined catalytic effects of Ca + Na and Ca + Ti. Demineralization causes more Fuel-N to retain in the char, and reduction of NOx mostly. But the mechanistic effect on NOx formation varies from coal to coal. Ca and Mg promote NOx emission. Na, K, Fe suppress NOx formation to different extents. The effect of transition element Fe is the most obvious. The combination of Ca + Na and Ca + Ti can realize the simultaneous control of sulfur dioxide and nitrogen oxides emissions.

  4. Positron Emission Tomography (PET)

    DOE R&D Accomplishments [OSTI]

    Welch, M. J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET.

  5. Acoustic emission intrusion detector

    DOE Patents [OSTI]

    Carver, Donald W.; Whittaker, Jerry W.

    1980-01-01

    An intrusion detector is provided for detecting a forcible entry into a secured structure while minimizing false alarms. The detector uses a piezoelectric crystal transducer to sense acoustic emissions. The transducer output is amplified by a selectable gain amplifier to control the sensitivity. The rectified output of the amplifier is applied to a Schmitt trigger circuit having a preselected threshold level to provide amplitude discrimination. Timing circuitry is provided which is activated by successive pulses from the Schmitt trigger which lie within a selected time frame for frequency discrimination. Detected signals having proper amplitude and frequency trigger an alarm within the first complete cycle time of a detected acoustical disturbance signal.

  6. Magnetic tunnel junctions for magnetic field sensor by using CoFeB sensing layer capped with MgO film

    SciTech Connect (OSTI)

    Takenaga, Takashi Tsuzaki, Yosuke; Yoshida, Chikako; Yamazaki, Yuichi; Hatada, Akiyoshi; Nakabayashi, Masaaki; Iba, Yoshihisa; Takahashi, Atsushi; Noshiro, Hideyuki; Tsunoda, Koji; Aoki, Masaki; Furukawa, Taisuke; Fukumoto, Hiroshi; Sugii, Toshihiro

    2014-05-07

    We evaluated MgO-based magnetic tunnel junctions (MTJs) for magnetic field sensors with spin-valve-type structures in the CoFeB sensing layer capped by an MgO film in order to obtain both top and bottom interfaces of MgO/CoFeB exhibiting interfacial perpendicular magnetic anisotropy (PMA). Hysteresis of the CoFeB sensing layer in these MTJs annealed at 275?C was suppressed at a thickness of the sensing layer below 1.2?nm by interfacial PMA. We confirmed that the CoFeB sensing layers capped with MgO suppress the thickness dependences of both the magnetoresistance ratio and the magnetic behaviors of the CoFeB sensing layer more than that of the MTJ with a Ta capping layer. MgO-based MTJs with MgO capping layers can improve the controllability of the characteristics for magnetic field sensors.

  7. Photoluminescence spectroscopy and Rutherford backscattering channeling evaluation of various capping techniques for rapid thermal annealing of ion-implanted ZnSe

    SciTech Connect (OSTI)

    Allen, E.L.; Zach, F.X.; Yu, K.M.; Bourret, E.D.

    1994-05-01

    We report on the effectiveness of proximity caps and PECVD Si{sub 3}N{sub 4}caps during annealing of implanted ZnSe films. OMVPE ZnSe films were grown using diisopropylselenide (DIPSe) and diethylzinc (DEZn) precursors, then ion-implanted with 1 {times} 10{sup 14} cm{sup {minus}2} N (33 keV) or Ne (45 keV) at room temperature and liquid nitrogen temperature, and rapid thermal annealed at temperatures between 200C and 850C. Rutherford backscattering spectrometry in the channeling orientation was used to investigate damage recovery, and photoluminescence spectroscopy was used to investigate crystal quality and the formation of point defects. Low temperature implants were found to have better luminescence properties than room temperature implants, and results show that annealing, time and temperature may be more important than capping material in determining the optical properties. Effects of various caps, implant and annealing temperature are discussed in terms of photoluminescence spectra.

  8. Sum frequency generation and catalytic reaction studies of the removal of the organic capping agents from Pt nanoparticles by UV-ozone treatment

    SciTech Connect (OSTI)

    Aliaga, Cesar; Park, Jeong Y.; Yamada, Yusuke; Lee, Hyun Sook; Tsung, Chia-Kuang; Yang, Peidong; Somorjai, Gabor A.

    2009-12-10

    We report the structure of the organic capping layers of platinum colloid nanoparticles and their removal by UV-ozone exposure. Sum frequency generation vibrational spectroscopy (SFGVS) studies identify the carbon-hydrogen stretching modes on poly(vinylpyrrolidone) (PVP) and tetradecyl tributylammonium bromide (TTAB)-capped platinum nanoparticles. We found that the UV-ozone treatment technique effectively removes the capping layer on the basis of several analytical measurements including SFGVS, X-ray photoelectron spectroscopy, and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The overall shape of the nanoparticles was preserved after the removal of capping layers, as confirmed by transmission electron microscopy (TEM). SFGVS of ethylene hydrogenation on the clean platinum nanoparticles demonstrates the existence of ethylidyne and di-{sigma}-bonded species, indicating the similarity between single-crystal and nanoparticle systems.

  9. Measurement and Characterization of Unregulated Emissions from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Ethanol Effects on Lean-Burn and Stoichiometric GDI Emissions Measurement and Characterization of Unregulated Emissions from Advanced Technologies...

  10. Barium oxide, calcium oxide, magnesia, and alkali oxide free glass

    DOE Patents [OSTI]

    Lu, Peizhen Kathy; Mahapatra, Manoj Kumar

    2013-09-24

    A glass composition consisting essentially of about 10-45 mole percent of SrO; about 35-75 mole percent SiO.sub.2; one or more compounds from the group of compounds consisting of La.sub.2O.sub.3, Al.sub.2O.sub.3, B.sub.2O.sub.3, and Ni; the La.sub.2O.sub.3 less than about 20 mole percent; the Al.sub.2O.sub.3 less than about 25 mole percent; the B.sub.2O.sub.3 less than about 15 mole percent; and the Ni less than about 5 mole percent. Preferably, the glass is substantially free of barium oxide, calcium oxide, magnesia, and alkali oxide. Preferably, the glass is used as a seal in a solid oxide fuel/electrolyzer cell (SOFC) stack. The SOFC stack comprises a plurality of SOFCs connected by one or more interconnect and manifold materials and sealed by the glass. Preferably, each SOFC comprises an anode, a cathode, and a solid electrolyte.

  11. In situ capping for size control of monochalcogenides (ZnS, CdS, and SnS) nanocrystals produced by anaerobic metal-reducing bacteria

    SciTech Connect (OSTI)

    Jang, Gyoung Gug; Jacobs, Christopher B; Ivanov, Ilia N; Joshi, Pooran C; Meyer III, Harry M; Kidder, Michelle; Armstrong, Beth L; Datskos, Panos G; Graham, David E; Moon, Ji Won

    2015-01-01

    Metal monochalcogenide quantum dot nanocrystals of ZnS, CdS and SnS were prepared by anaerobic, metal-reducing bacteria using in situ capping by oleic acid or oleylamine. The capping agent preferentially adsorbs on the surface of the nanocrystal, suppressing the growth process in the early stages, thus leading to production of nanocrystals with a diameter of less than 5 nm.

  12. In situ capping for size control of monochalcogenides (ZnS, CdS, and SnS) nanocrystals produced by anaerobic metal-reducing bacteria

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jang, Gyoung Gug; Jacobs, Christopher B.; Ivanov, Ilia N.; Joshi, Pooran C.; Meyer, III, Harry M.; Kidder, Michelle; Armstrong, Beth L.; Datskos, Panos G.; Graham, David E.; Moon, Ji -Won

    2015-07-24

    Metal monochalcogenide quantum dot nanocrystals of ZnS, CdS and SnS were prepared by anaerobic, metal-reducing bacteria using in situ capping by oleic acid or oleylamine. Furthermore, the capping agent preferentially adsorbs on the surface of the nanocrystal, suppressing the growth process in the early stages, thus leading to production of nanocrystals with a diameter of less than 5 nm.

  13. Clouds, Aerosols and Precipitation in the Marine Boundary Layer (CAP-MBL) AMF Deployment Graciosa Island, Azores, NE Atlantic Ocean May 2009-December 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Marine Boundary Layer (CAP-MBL) Graciosa Island, Azores, NE Atlantic Ocean May 2009-December 2010 Rob Wood, University of Washington CAP-MBL Proposal Team AMF Deployment Team Thanks to Mark Miller: AMF Site Scientist Kim Nitschke: AMF Site Manager Importance of Low-Clouds for Climate Imperative that we understand the processes controlling the formation, maintenance and dissipation of low clouds in order to improve their representation in climate models. Which clouds matter for climate

  14. METAL OXIDE NANOPARTICLES

    SciTech Connect (OSTI)

    FERNANDEZ-GARCIA,M.; RODGRIGUEZ, J.A.

    2007-10-01

    This chapter covers the fundamental science, synthesis, characterization, physicochemical properties and applications of oxide nanomaterials. Explains fundamental aspects that determine the growth and behavior of these systems, briefly examines synthetic procedures using bottom-up and top-down fabrication technologies, discusses the sophisticated experimental techniques and state of the art theory results used to characterize the physico-chemical properties of oxide solids and describe the current knowledge concerning key oxide materials with important technological applications.

  15. ARM - Oxides of Nitrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oxides of Nitrogen Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Oxides of Nitrogen Oxides of nitrogen, chlorofluorocarbons (CFCs), and ozone have a lesser effect on the atmosphere than carbon dioxide and methane, but as you will see they are important contributors to the greenhouse

  16. Superconductive ceramic oxide combination

    SciTech Connect (OSTI)

    Chatterjee, D.K.; Mehrotra, A.K.; Mir, J.M.

    1991-03-05

    This patent describes the combination of a superconductive ceramic oxide which degrades in conductivity upon contact of ambient air with its surface and, interposed between the ceramic oxide surface and ambient air in the amount of at least 1 mg per square meter of surface area of the superconductive ceramic oxide, a passivant polymer selected from the group consisting of a polyester ionomer and an alkyl cellulose.

  17. OXIDATION OF TRANSURANIC ELEMENTS

    DOE Patents [OSTI]

    Moore, R.L.

    1959-02-17

    A method is reported for oxidizing neptunium or plutonium in the presence of cerous values without also oxidizing the cerous values. The method consists in treating an aqueous 1N nitric acid solution, containing such cerous values together with the trivalent transuranic elements, with a quantity of hydrogen peroxide stoichiometrically sufficient to oxidize the transuranic values to the hexavalent state, and digesting the solution at room temperature.

  18. Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    National Lab Directors, . .

    2001-04-05

    The rise in greenhouse gas emissions from fossil fuel combustion and industrial and agricultural activities has aroused international concern about the possible impacts of these emissions on climate. Greenhouse gases--mostly carbon dioxide, some methane, nitrous oxide and other trace gases--are emitted to the atmosphere, enhancing an effect in which heat reflected from the earth's surface is kept from escaping into space, as in a greenhouse. Thus, there is concern that the earth's surface temperature may rise enough to cause global climate change. Approximately 90% of U.S. greenhouse gas emissions from anthropogenic sources come from energy production and use, most of which are a byproduct of the combustion of fossil fuels. On a per capita basis, the United States is one of the world's largest sources of greenhouse gas emissions, comprising 4% of the world's population, yet emitting 23% of the world's greenhouse gases. Emissions in the United States are increasing at around 1.2% annually, and the Energy Information Administration forecasts that emissions levels will continue to increase at this rate in the years ahead if we proceed down the business-as-usual path. President Clinton has presented a two-part challenge for the United States: reduce greenhouse gas emissions and grow the economy. Meeting the challenge will mean that in doing tomorrow's work, we must use energy more efficiently and emit less carbon for the energy expended than we do today. To accomplish these goals, President Clinton proposed on June 26, 1997, that the United States ''invest more in the technologies of the future''. In this report to Secretary of Energy Pena, 47 technology pathways are described that have significant potential to reduce carbon dioxide emissions. The present study was completed before the December 1997 United Nations Framework Convention on Climate Change and is intended to provide a basis to evaluate technology feasibility and options to reduce greenhouse gas emissions

  19. Emissions Inventory Report Summary for Los Alamos National Laboratory for Calendar Year 2006

    SciTech Connect (OSTI)

    Ecology and Air Quality Group

    2007-09-28

    Los Alamos National Laboratory (LANL) is subject to annual emissions reporting requirements for regulated air pollutants under Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73 (20.2.73 NMAC), Notice of Intent and Emissions Inventory Requirements. The applicability of the requirements is based on the Laboratory's potential to emit 100 tons per year of suspended particulate matter, nitrogen oxides, carbon monoxide, sulfur oxides, or volatile organic compounds. Additionally, on April 30, 2004, LANL was issued a Title V Operating Permit from the New Mexico Environment Department, Air Quality Bureau, under 20.2.70 NMAC. Modification Number 1 to this Title V Operating Permit was issued on June 15, 2006 (Permit No P-100M1) and includes emission limits and operating limits for all regulated sources of air pollution at LANL. The Title V Operating Permit also requires semi-annual emissions reporting for all sources included in the permit. This report summarizes both the annual emissions inventory reporting and the semi-annual emissions reporting for LANL for calendar year 2006. LANL's 2006 emissions are well below the emission limits in the Title V Operating Permit.

  20. Emissions inventory report summary for Los Alamos National Laboratory for calendar year 2008

    SciTech Connect (OSTI)

    Ecology and Air Quality Group

    2009-10-01

    Los Alamos National Laboratory (LANL) is subject to annual emissions reporting requirements for regulated air pollutants under Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73 (20.2.73 NMAC), Notice of Intent and Emissions Inventory Requirements. The applicability of the requirements is based on the Laboratory’s potential to emit 100 tons per year of suspended particulate matter, nitrogen oxides, carbon monoxide, sulfur oxides, or volatile organic compounds. Additionally, on April 30, 2004, LANL was issued a Title V Operating Permit from the New Mexico Environment Department/Air Quality Bureau, under 20.2.70 NMAC. This permit was modified and reissued on July 16, 2007. This Title V Operating Permit (Permit No. P-100M2) includes emission limits and operating limits for all regulated sources of air pollution at LANL. The Title V Operating Permit also requires semiannual emissions reporting for all sources included in the permit. This report summarizes both the annual emissions inventory reporting and the semiannual emissions reporting for LANL for calendar year 2008. LANL’s 2008 emissions are well below the emission limits in the Title V Operating Permit.

  1. Emissions Inventory Report Summary for Los Alamos National Laboratory for Calendar Year 2009

    SciTech Connect (OSTI)

    Environmental Stewardship Group

    2010-10-01

    Los Alamos National Laboratory (LANL) is subject to annual emissions reporting requirements for regulated air pollutants under Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73 (20.2.73 NMAC), Notice of Intent and Emissions Inventory Requirements. The applicability of the requirements is based on the Laboratory's potential to emit 100 tons per year of suspended particulate matter, nitrogen oxides, carbon monoxide, sulfur oxides, or volatile organic compounds. Additionally, on April 30, 2004, LANL was issued a Title V Operating Permit from the New Mexico Environment Department/Air Quality Bureau, under 20.2.70 NMAC. This permit was modified and reissued on July 16, 2007. This Title V Operating Permit (Permit No. P-100M2) includes emission limits and operating limits for all regulated sources of air pollution at LANL. The Title V Operating Permit also requires semiannual emissions reporting for all sources included in the permit. This report summarizes both the annual emissions inventory reporting and the semiannual emissions reporting for LANL for calendar year 2009. LANL's 2009 emissions are well below the emission limits in the Title V Operating Permit.

  2. Emissions Inventory Report Summary for Los Alamos National Laboratory for Calendar Year 2004

    SciTech Connect (OSTI)

    M. Stockton

    2005-10-01

    Los Alamos National Laboratory (LANL) is subject to annual emissions reporting requirements for regulated air pollutants under Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73 (20.2.73 NMAC), ''Notice of Intent and Emissions Inventory Requirements''. The applicability of the requirements is based on the Laboratory's potential to emit 100 tons per year of suspended particulate matter, nitrogen oxides, carbon monoxide, sulfur oxides, or volatile organic compounds. Additionally, on April 30, 2004, LANL was issued a Title V Operating Permit from the New Mexico Environment Department, Air Quality Bureau, under 20.2.70 NMAC. This Title V Operating Permit (Permit No. P-100) includes emission limits and operating limits for all regulated sources of air pollution at LANL. The Title V Operating Permit also requires semi-annual emissions reporting for all sources included in the permit. This report summarizes both the annual emissions inventory reporting and the semi-annual emissions reporting for LANL for calendar year 2004. LANL's 2004 emissions are well below the emission limits in the Title V Operating Permit.

  3. MODELING TRITIUM TRANSPORT, DEPOSITION AND RE-EMISSION

    SciTech Connect (OSTI)

    Viner, B.

    2012-04-03

    The atmospheric release of tritium oxide (HTO) potentially impacts human health, typically through inhalation or absorption. Due to HTO's similarity to water, vegetation will absorb HTO by solution in the leaf water and then re-emit it, creating a number of secondary sources of HTO. Currently, models used for emergency response at Savannah River Site incorporate the transport and deposition of HTO but do not provide estimates for its potential re-emission from vegetation or soil surface though re-emission could result in prolonged exposure and greater than predicted dose for an individual downwind. A simple model of HTO transport, deposition and re-emission has been developed to examine the potential increase in exposure and dose. The model simulates an initial release of HTO that moves with a mean wind and expands through diffusion as a Gaussian puff. Deposition is modeled using previous estimates of deposition velocity for HTO and re-emission is modeled using a time constant that describes how quickly HTO is transferred between the surface and atmosphere. Additional puffs are created to simulate re-emission of HTO as well as horizontal diffusion across model grid cells. An evaluation of field data indicates that the use of a re-emission module tends to improve model predictions through improved prediction of peak concentration magnitude and location. When considering dose, nearly all of the released material is included in the dose calculation when re-emission is included. Although exposure to HTO through re-emission occurs over a few hours, the incremental increase in dose is relatively small because the atmospheric concentration of re-emitted HTO is much lower than the initial release.

  4. Mixed oxide solid solutions

    DOE Patents [OSTI]

    Magno, Scott; Wang, Ruiping; Derouane, Eric

    2003-01-01

    The present invention is a mixed oxide solid solution containing a tetravalent and a pentavalent cation that can be used as a support for a metal combustion catalyst. The invention is furthermore a combustion catalyst containing the mixed oxide solid solution and a method of making the mixed oxide solid solution. The tetravalent cation is zirconium(+4), hafnium(+4) or thorium(+4). In one embodiment, the pentavalent cation is tantalum(+5), niobium(+5) or bismuth(+5). Mixed oxide solid solutions of the present invention exhibit enhanced thermal stability, maintaining relatively high surface areas at high temperatures in the presence of water vapor.

  5. A Community Emissions Data System (CEDS) for Historical Emissions

    SciTech Connect (OSTI)

    Smith, Steven J.; Zhou, Yuyu; Kyle, G. Page; Wang, Hailong; Yu, Hongbin

    2015-04-21

    Historical emission estimates for anthropogenic aerosol and precursor compounds are key data needed for Earth system models, climate models, and atmospheric chemistry and transport models; both for general analysis and assessment and also for model validation through comparisons with observations. Current global emission data sets have a number of shortcomings, including timeliness and transparency. Satellite and other earth-system data are increasingly available in near real-time, but global emission estimates lag by 5-10 years. The CEDS project will construct a data-driven, open source framework to produce annually updated emission estimates. The basic methodologies to be used for this system have been used for SO2 (Smith et al. 2011, Klimont, Smith and Cofala 2013), and are designed to complement existing inventory efforts. The goal of this system is to consistently extend current emission estimates both forward in time to recent years and also back over the entire industrial era. The project will produce improved datasets for global and (potentially) regional model, allow analysis of trends across time, countries, and sectors of emissions and emission factors, and facilitate improved scientific analysis in general. Consistent estimation of uncertainty will be an integral part of this system. This effort will facilitate community evaluation of emissions and further emission-related research more generally.

  6. Flexible CHP System with Low NOx, CO and VOC Emissions | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Flexible CHP System with Low NOx, CO and VOC Emissions Flexible CHP System with Low NOx, CO and VOC Emissions Introduction A combined heat and power (CHP) system can be a financially attractive energy option for many industrial and commercial facilities. This is particularly the case in areas of the country with high electricity rates. However, regions with air quality concerns often have strict limits on criteria pollutants, such as nitrogen oxide (NOx), carbon monoxide (CO), and

  7. Fast-regenerable sulfur dioxide adsorbents for diesel engine emission control

    DOE Patents [OSTI]

    Li, Liyu [Richland, WA; King, David L [Richland, WA

    2011-03-15

    Disclosed herein are sorbents and devices for controlling sulfur oxides emissions as well as systems including such sorbents and devices. Also disclosed are methods for making and using the disclosed sorbents, devices and systems. In one embodiment the disclosed sorbents can be conveniently regenerated, such as under normal exhaust stream from a combustion engine, particularly a diesel engine. Accordingly, also disclosed are combustion vehicles equipped with sulfur dioxide emission control devices.

  8. Apparatus for photocatalytic destruction of internal combustion engine emissions during cold start

    DOE Patents [OSTI]

    Janata, J.; McVay, G.L.; Peden, C.H.; Exarhos, G.J.

    1998-07-14

    A method and apparatus are disclosed for the destruction of emissions from an internal combustion engine wherein a substrate coated with TiO{sub 2} is exposed to a light source in the exhaust system of an internal combustion engine thereby catalyzing oxidation/reduction reactions between gaseous hydrocarbons, carbon monoxide, nitrogen oxides and oxygen in the exhaust of the internal combustion engine. 4 figs.

  9. Nitrogen oxides storage catalysts containing cobalt

    DOE Patents [OSTI]

    Lauterbach, Jochen; Snively, Christopher M.; Vijay, Rohit; Hendershot, Reed; Feist, Ben

    2010-10-12

    Nitrogen oxides (NO.sub.x) storage catalysts comprising cobalt and barium with a lean NO.sub.x storage ratio of 1.3 or greater. The NO.sub.x storage catalysts can be used to reduce NO.sub.x emissions from diesel or gas combustion engines by contacting the catalysts with the exhaust gas from the engines. The NO.sub.x storage catalysts can be one of the active components of a catalytic converter, which is used to treat exhaust gas from such engines.

  10. Oxidation and crystal field effects in uranium

    SciTech Connect (OSTI)

    Tobin, J. G.; Booth, C. H.; Shuh, D. K.; van der Laan, G.; Sokaras, D.; Weng, T. -C.; Yu, S. W.; Bagus, P. S.; Tyliszczak, T.; Nordlund, D.

    2015-07-06

    An extensive investigation of oxidation in uranium has been pursued. This includes the utilization of soft x-ray absorption spectroscopy, hard x-ray absorption near-edge structure, resonant (hard) x-ray emission spectroscopy, cluster calculations, and a branching ratio analysis founded on atomic theory. The samples utilized were uranium dioxide (UO2), uranium trioxide (UO3), and uranium tetrafluoride (UF4). As a result, a discussion of the role of non-spherical perturbations, i.e., crystal or ligand field effects, will be presented.

  11. Suspension Hydrogen Reduction of Iron Oxide Concentrates

    SciTech Connect (OSTI)

    H.Y. Sohn

    2008-03-31

    The objective of the project is to develop a new ironmaking technology based on hydrogen and fine iron oxide concentrates in a suspension reduction process. The ultimate objective of the new technology is to replace the blast furnace and to drastically reduce CO2 emissions in the steel industry. The goals of this phase of development are; the performance of detailed material and energy balances, thermochemical and equilibrium calculations for sulfur and phosphorus impurities, the determination of the complete kinetics of hydrogen reduction and bench-scale testing of the suspension reduction process using a large laboratory flash reactor.

  12. Fuel Mix and Emissions Disclosure

    Broader source: Energy.gov [DOE]

    Electricity suppliers and electricity companies must also provide a fuel mix report to customers twice annually, within the June and December billing cycles. Emissions information must be disclos...

  13. Fuel Mix and Emissions Disclosure

    Broader source: Energy.gov [DOE]

    Fuel Disclosure: Virginia’s 1999 electric industry restructuring law requires the state's electricity providers to disclose -- "to the extent feasible" -- fuel mix and emissions data regarding...

  14. ADVANCED EMISSIONS CONTROL DEVELOPMENT PROGRAM

    SciTech Connect (OSTI)

    G.A. Farthing

    2001-02-06

    The primary objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (HAPs, or air toxics) from coal-fired boilers. The project goal is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPs), fabric filters (baghouses), and wet flue gas desulfurization (WFGD) systems. Development work initially concentrated on the capture of trace metals, fine particulate, hydrogen chloride, and hydrogen fluoride. Recent work has focused almost exclusively on the control of mercury emissions.

  15. Advanced Emissions Control Development Program

    SciTech Connect (OSTI)

    G. A. Farthing; G. T. Amrhein; G. A. Kudlac; D. A. Yurchison; D. K. McDonald; M. G. Milobowski

    2001-03-31

    The primary objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (HAPs, or air toxics) from coal-fired boilers. This objective is being met by identifying ways to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPs), fabric filters (fabric filters), and wet flue gas desulfurization (wet FGD) systems. Development work initially concentrated on the capture of trace metals, hydrogen chloride, and hydrogen fluoride. Recent work has focused almost exclusively on the control of mercury emissions.

  16. Fugitive Emissions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fugitive emissions refers to the release of greenhouse gases (GHGs) from pressurized ... substitutes for high-impact fugitive greenhouse gases (GHGs) among the DOE sites. ...

  17. CHEMICAL SOLUTION DEPOSITION BASED OXIDE BUFFERS AND YBCO COATED CONDUCTORS

    SciTech Connect (OSTI)

    Paranthaman, Mariappan Parans

    2011-01-01

    We have reviewed briefly the growth of buffer and high temperature superconducting oxide thin films using a chemical solution deposition (CSD) method. In the Rolling-Assisted Biaxially Textured Substrates (RABiTS) process, developed at Oak Ridge National Laboratory, utilizes the thermo mechanical processing to obtain the flexible, biaxially oriented copper, nickel or nickel-alloy substrates. Buffers and Rare Earth Barium Copper Oxide (REBCO) superconductors have been deposited epitaxially on the textured nickel alloy substrates. The starting substrate serves as a template for the REBCO layer, which has substantially fewer weak links. Buffer layers play a major role in fabricating the second generation REBCO wire technology. The main purpose of the buffer layers is to provide a smooth, continuous and chemically inert surface for the growth of the REBCO film, while transferring the texture from the substrate to the superconductor layer. To achieve this, the buffer layers need to be epitaxial to the substrate, i.e. they have to nucleate and grow in the same bi-axial texture provided by the textured metal foil. The most commonly used RABiTS multi-layer architectures consist of a starting template of biaxially textured Ni-5 at.% W (Ni-W) substrate with a seed (first) layer of Yttrium Oxide (Y2O3), a barrier (second) layer of Yttria Stabilized Zirconia (YSZ), and a Cerium Oxide (CeO2) cap (third) layer. These three buffer layers are generally deposited using physical vapor deposition (PVD) techniques such as reactive sputtering. On top of the PVD template, REBCO film is then grown by a chemical solution deposition. This article reviews in detail about the list of oxide buffers and superconductor REBCO films grown epitaxially on single crystal and/or biaxially textured Ni-W substrates using a CSD method.

  18. Reducible oxide based catalysts

    DOE Patents [OSTI]

    Thompson, Levi T.; Kim, Chang Hwan; Bej, Shyamal K.

    2010-04-06

    A catalyst is disclosed herein. The catalyst includes a reducible oxide support and at least one noble metal fixed on the reducible oxide support. The noble metal(s) is loaded on the support at a substantially constant temperature and pH.

  19. ZERO EMISSION COAL POWER, A NEW CONCEPT

    SciTech Connect (OSTI)

    H. -J. ZIOCK; K. S. LACKNER; D. P. HARRISON

    2001-04-01

    The Zero Emission Coal Alliance (ZECA) is developing an integrated zero emission process that generates clean energy carriers (electricity or hydrogen) from coal. The process exothermically gasifies coal using hydrogen to produce a methane rich intermediate state. The methane is subsequently reformed using water and a CaO based sorbent. The sorbent supplies the energy needed to drive the reforming reaction and simultaneously removes the generated CO{sub 2} by producing CaCO{sub 3}. The resulting hydrogen product stream is split, approximately 1/2 going to gasify the next unit of coal, and the other half being the product. This product stream could then be split a second time, part being cleaned up with a high temperature hydrogen separation membrane to produce pure hydrogen, and the remainder used to generate electricity via a solid oxide fuel cell (SOFC). The inevitable high temperature waste heat produced by the SOFC would in turn be used to regenerate the CaO by calcining the CaCO{sub 3} product of the reforming stage thereby generating a pure stream of CO{sub 2}. The CO{sub 2} will be dealt with a mineral sequestration process discussed in other papers presented at this conference. The SOFC has the added advantage of doubling as an oxygen separation membrane, thereby keeping its exhaust stream, which is predominantly steam, free of any air. This exhaust stream is largely recycled back to the reforming stage to generate more hydrogen, with a slipstream being extracted and condensed. The slipstream carries with it the other initial contaminants present in the starting coal. Overall the process is effectively closed loop with zero gaseous emissions to the atmosphere. The process also achieves very high conversion efficiency from coal energy to electrical energy ({approximately} 70%) and naturally generates a pure stream of CO{sub 2} ready for disposal via the mineral sequestration process.

  20. Impact of laser-contaminant interaction on the performance of the protective capping layer of 1w high-reflection mirror coatings

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Qiu, S. R.; Norton, M. A.; Raman, R. N.; Rubenchik, A. M.; Boley, C. D.; Rigatti, A.; Mirkarimi, P. B.; Stolz, C. J.; Matthews, M. J.

    2015-10-02

    In this paper, high dielectric constant multilayer coatings are commonly used on high-reflection mirrors for high-peak-power laser systems because of their high laser-damage resistance. However, surface contaminants often lead to damage upon laser exposure, thus limiting the mirror’s lifetime and performance. One plausible approach to improve the overall mirror resistance against laser damage, including that induced by laser-contaminant coupling, is to coat the multilayers with a thin protective capping (absentee) layer on top of the multilayer coatings. An understanding of the underlying mechanism by which laser-particle interaction leads to capping layer damage is important for the rational design and selectionmore » of capping materials of high-reflection multilayer coatings. In this paper, we examine the responses of two candidate capping layer materials, made of SiO2 and Al2O3, over silica-hafnia multilayer coatings. These are exposed to a single oblique shot of a 1053 nm laser beam (fluence ~10 J/cm2, pulse length 14 ns), in the presence of Ti particles on the surface. We find that the two capping layers show markedly different responses to the laser-particle interaction. The Al2O3 cap layer exhibits severe damage, with the capping layer becoming completely delaminated at the particle locations. The SiO2 capping layer, on the other hand, is only mildly modified by a shallow depression. Combining the observations with optical modeling and thermal/mechanical calculations, we argue that a high-temperature thermal field from plasma generated by the laser-particle interaction above a critical fluence is responsible for the surface modification of each capping layer. The great difference in damage behavior is mainly attributed to the large disparity in the thermal expansion coefficient of the two capping materials, with that of Al2O3 layer being about 15 times greater than that of SiO2.« less

  1. Impact of laser-contaminant interaction on the performance of the protective capping layer of 1w high-reflection mirror coatings

    SciTech Connect (OSTI)

    Qiu, S. R.; Norton, M. A.; Raman, R. N.; Rubenchik, A. M.; Boley, C. D.; Rigatti, A.; Mirkarimi, P. B.; Stolz, C. J.; Matthews, M. J.

    2015-10-02

    In this paper, high dielectric constant multilayer coatings are commonly used on high-reflection mirrors for high-peak-power laser systems because of their high laser-damage resistance. However, surface contaminants often lead to damage upon laser exposure, thus limiting the mirror’s lifetime and performance. One plausible approach to improve the overall mirror resistance against laser damage, including that induced by laser-contaminant coupling, is to coat the multilayers with a thin protective capping (absentee) layer on top of the multilayer coatings. An understanding of the underlying mechanism by which laser-particle interaction leads to capping layer damage is important for the rational design and selection of capping materials of high-reflection multilayer coatings. In this paper, we examine the responses of two candidate capping layer materials, made of SiO2 and Al2O3, over silica-hafnia multilayer coatings. These are exposed to a single oblique shot of a 1053 nm laser beam (fluence ~10 J/cm2, pulse length 14 ns), in the presence of Ti particles on the surface. We find that the two capping layers show markedly different responses to the laser-particle interaction. The Al2O3 cap layer exhibits severe damage, with the capping layer becoming completely delaminated at the particle locations. The SiO2 capping layer, on the other hand, is only mildly modified by a shallow depression. Combining the observations with optical modeling and thermal/mechanical calculations, we argue that a high-temperature thermal field from plasma generated by the laser-particle interaction above a critical fluence is responsible for the surface modification of each capping layer. The great difference in damage behavior is mainly attributed to the large disparity in the thermal expansion coefficient of the two capping materials, with that of Al2O3 layer being about 15 times greater

  2. Characterization of emissions from advanced automotive power plant concepts

    SciTech Connect (OSTI)

    Montalvo, D.A.; Hare, C.T.

    1984-11-01

    Emissions from three diesel cars using two fuel formulations were assessed. The three diesel cars included a prototype naturally-aspirated Fiat 131, a prototype turbocharged Fiat 131, and a 1981 Oldsmobile Cutlass Supreme. Each Fiat was tested with and without a prototype catalytic trap. Vehicle operating procedures used for test purposes included the 1981 Federal Test Procedures as well as the Highway Fuel Economy Test, the New York City Cycle, and an 85 km/hr steady-state cruise. Both regulated and unregulated gaseous and particulate emissions were measured. Organic solubles in particulate were analyzed for various constituents and characteristics including fractionation by relative polarity, benzo(a)pyrene (BaP), and mutagenic activity by Ames bioassay. Application of the catalytic trap oxidizer system to the Fiat prototypes resulted in significant reductions of organic and carbon monoxide emissions under all transient driving conditions examined. Total particulate emissions were reduced an average of 55 percent with the turbocharged engine and 65 percent with the naturally-aspirated engine. The Ames assay mutagenic response (revertants/microgram) of the particulate-phase organics was elevated by the catalytic exhaust aftertreatment device, however the emission rates (revertants/km) were reduced an average of 66 percent with the turbocharged and 73 percent with the naturally-aspirated engines.

  3. TESTING AND ANALYSIS OF CAP CONCRETE STRESS AND STRAIN DUE TO SHRINKAGE, CREEP, AND EXPANSION FINAL REPORT

    SciTech Connect (OSTI)

    Guerrero, H.; Restivo, M.

    2011-08-01

    In-situ decommissioning of Reactors P- and R- at the Savannah River Site will require filling the reactor vessels with a special concrete based on materials such as magnesium phosphate, calcium aluminate or silica fume. Then the reactor vessels will be overlain with an 8 ft. thick layer of Ordinary Portland Cement (OPC) steel reinforced concrete, called the 'Cap Concrete'. The integrity of this protective layer must be assured to last for a sufficiently long period of time to avoid ingress of water into the reactor vessel and possible movement of radioactive contamination into the environment. During drying of this Cap Concrete however, shrinkage strains are set up in the concrete as a result of diffusion and evaporation of water from the top surface. This shrinkage varies with depth in the poured slab due to a non-uniform moisture distribution. This differential shrinkage results in restraint of the upper layers with larger shrinkage by lower layers with lesser displacements. Tensile stresses can develop at the surface from the strain gradients in the bulk slab, which can lead to surface cracking. Further, a mechanism called creep occurs during the curing period or early age produces strains under the action of restraining forces. To investigate the potential for surface cracking, an experimental and analytical program was started under TTQAP SRNL-RP-2009-01184. Slab sections made of Cap Concrete mixture were instrumented with embedded strain gages and relative humidity sensors and tested under controlled environmental conditions of 23 C and relative humidities (RH) of 40% and 80% over a period of 50 days. Calculation methods were also developed for predictions of stress development in the full-scale concrete placement over the reactor vessels. These methods were evaluated by simulating conditions for the test specimens and the calculation results compared to the experimental data. A closely similar test with strain gages was performed by Kim and Lee for a

  4. Control of SOx emission in tail gas of the Claus Plant at Kwangyang Steel Works

    SciTech Connect (OSTI)

    Kang, H.S.; Park, J.W.; Hyun, H.D.; Lee, D.S.; Paik, S.C.; Chung, J.S.

    1995-12-01

    Pilot and/or laboratory studies were conducted in order to find methods for reducing the SOx emission in the Claus tail gas of the cokes unit. The TGT process which is based on the complete hydrogenation of the sulfur-containing compounds (SO{sub 2}, S) into H{sub 2}S and returning to the COG main line can reduce the SOx emission to zero. In case the return to the COG main is impossible, the SPOR process (Sulfur removal based on Partial Oxidation and Reduction) can be successfully applied to reduce the SOx emission.

  5. The transportable heavy-duty engine emissions testing laboratory

    SciTech Connect (OSTI)

    Not Available

    1991-05-01

    West Virginia University has designed and constructed a Transportable Emissions Testing Laboratory for measuring emissions from heavy duty vehicles, such as buses and trucks operating on conventional and alternative fuels. The laboratory facility can be transported to a test site located at, or nearby, the home base of the vehicles to be tested. The laboratory has the capability of measuring vehicle emissions as the vehicle is operated under either transient or steady state loads and speeds. The exhaust emissions from the vehicle is sampled and the levels of the constituents of the emission are measured. The laboratory consists of two major units; a power absorber unit and an emissions measurement unit. A power absorber unit allows for the connection of a dynamic load to the drive train of the vehicle so that the vehicle can be driven'' through a test cycle while actually mounted on a stationary test bed. The emissions unit contains instrumentation and equipment which allows for the dilution of the vehicle's exhaust with air. The diluteed exhaust is sampled and analyzed to measure the level of concentration of those constituents which have been identified to have impact on the clean environment. Sampling probes withdraw diluted exhaust which is supplied to a number of different exhaust gas analysis instruments. The exhaust gas analysis instruments have the capability to measure the levels of the following exhaust gas constituents: carbon monoxide (CO), carbon dioxide (CO{sub 2}), oxides of nitrogen (NO{sub x}), unburned hydrocarbons (HC), formaldehyde (HCHO), methane and particulate matter. Additional instruments or sampling devices can be installed whenever measurements of additional constituents are desired. A computer based, data acquisition system is used to continuously monitor a wide range of parameters important to the operation of the test and to record the test results.

  6. Greenhouse gas emissions in Sub-Saharan Africa

    SciTech Connect (OSTI)

    Graham, R.L.; Perlack, R.D.; Prasad, A.M.G.; Ranney, J.W.; Waddle, D.B.

    1990-11-01

    Current and future carbon emissions from land-use change and energy consumption were analyzed for Sub-Saharan Africa. The energy sector analysis was based on UN energy data tapes while the land-use analysis was based on a spatially-explicit land-use model developed specifically for this project. The impacts of different energy and land-use strategies on future carbon emissions were considered. (A review of anthropogenic emissions of methane, nitrous oxides, and chlorofluorocarbons in Sub-Saharan Africa indicated that they were probably minor in both a global and a regional context. The study therefore was focused on emissions of carbon dioxide.) The land-use model predicts carbon emissions from land use change and the amount of carbon stored in vegetation (carbon inventory) on a yearly basis between 1985 and 2001. Emissions and inventory are modeled at 9000 regularly-spaced point locations in Sub-Saharan Africa using location-specific information on vegetation type, soils, climate and deforestation. Vegetation, soils, and climate information were derived from continental-scale maps while relative deforestation rates(% of forest land lost each year) were developed from country-specific forest and deforestation statistics (FAO Tropical Forest Resources Assessment for Africa, 1980). The carbon emissions under different land use strategies in Sub-Saharan Africa were analyzed by modifying deforestation rates and altering the amount of carbon stored under different land uses. The considered strategies were: preservation of existing forests, implementation of agroforestry, and establishment of industrial tree plantations. 82 refs., 16 figs., 25 tabs.

  7. Magnetic interactions in manganese oxide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manganese oxide Magnetic interactions in manganese oxide Revealing the mechanism of 'superexchange' May 24, 2016 manganese oxide Manganese oxide Revealing the Nature of Magnetic Interactions in Manganese Oxide For nearly 60 years, scientists have been trying to determine how manganese oxide (MnO) achieves its long-range magnetic order of alternating up and down electron spins. Now, a team of scientists has used their recently developed mathematical approach to study the short-range magnetic

  8. NEPTUNIUM OXIDE PROCESSING

    SciTech Connect (OSTI)

    Jordan, J; Watkins, R; Hensel, S

    2009-05-27

    The Savannah River Site's HB-Line Facility completed a campaign in which fifty nine cans of neptunium oxide were produced and shipped to the Idaho National Laboratory in the 9975 shipping container. The neptunium campaign was divided into two parts: Part 1 which consisted of oxide made from H-Canyon neptunium solution which did not require any processing prior to conversion into an oxide, and Part 2 which consisted of oxide made from additional H-Canyon neptunium solutions which required processing to purify the solution prior to conversion into an oxide. The neptunium was received as a nitrate solution and converted to oxide through ion-exchange column extraction, precipitation, and calcination. Numerous processing challenges were encountered in order make a final neptunium oxide product that could be shipped in a 9975 shipping container. Among the challenges overcome was the issue of scale: translating lab scale production into full facility production. The balance between processing efficiency and product quality assurance was addressed during this campaign. Lessons learned from these challenges are applicable to other processing projects.

  9. Emissions of greenhouse gases from the use of transportation fuels and electricity. Volume 2: Appendixes A--S

    SciTech Connect (OSTI)

    DeLuchi, M.A. |

    1993-11-01

    This volume contains the appendices to the report on Emission of Greenhouse Gases from the Use of Transportation Fuels and Electricity. Emissions of methane, nitrous oxide, carbon monoxide, and other greenhouse gases are discussed. Sources of emission including vehicles, natural gas operations, oil production, coal mines, and power plants are covered. The various energy industries are examined in terms of greenhouse gas production and emissions. Those industries include electricity generation, transport of goods via trains, trucks, ships and pipelines, coal, natural gas and natural gas liquids, petroleum, nuclear energy, and biofuels.

  10. Mixed Oxide Fuel Fabrication Facility

    National Nuclear Security Administration (NNSA)

    0%2A en Mixed Oxide (MOX) Fuel Fabrication Facility http:nnsa.energy.govfieldofficessavannah-river-field-officemixed-oxide-mox-fuel-fabrication-facility

  11. Enhanced stimulated emission in ZnO thin films using microdisk top-down structuring

    SciTech Connect (OSTI)

    Nomenyo, K.; Kostcheev, S.; Lérondel, G.; Gadallah, A.-S.; Rogers, D. J.

    2014-05-05

    Microdisks were fabricated in zinc oxide (ZnO) thin films using a top-down approach combining electron beam lithography and reactive ion etching. These microdisk structured thin films exhibit a stimulated surface emission between 3 and 7 times higher than that from a reference film depending on the excitation power density. Emission peak narrowing, reduction in lasing threshold and blue-shifting of the emission wavelength were observed along with enhancement in the emitted intensity. Results indicate that this enhancement is due to an increase in the internal quantum efficiency combined with an amplification of the stimulated emission. An analysis in terms of waveguiding is presented in order to explain these effects. These results demonstrate that very significant gains in emission can be obtained through conventional microstructuration without the need for more onerous top-down nanostructuration techniques.

  12. Generalized local emission tomography

    DOE Patents [OSTI]

    Katsevich, Alexander J.

    1998-01-01

    Emission tomography enables locations and values of internal isotope density distributions to be determined from radiation emitted from the whole object. In the method for locating the values of discontinuities, the intensities of radiation emitted from either the whole object or a region of the object containing the discontinuities are inputted to a local tomography function .function..sub..LAMBDA..sup.(.PHI.) to define the location S of the isotope density discontinuity. The asymptotic behavior of .function..sub..LAMBDA..sup.(.PHI.) is determined in a neighborhood of S, and the value for the discontinuity is estimated from the asymptotic behavior of .function..sub..LAMBDA..sup.(.PHI.) knowing pointwise values of the attenuation coefficient within the object. In the method for determining the location of the discontinuity, the intensities of radiation emitted from an object are inputted to a local tomography function .function..sub..LAMBDA..sup.(.PHI.) to define the location S of the density discontinuity and the location .GAMMA. of the attenuation coefficient discontinuity. Pointwise values of the attenuation coefficient within the object need not be known in this case.

  13. Vehicle Emissions Review - 2012 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Vehicle Emissions Review - 2012 Reviews vehicle emission control highlighting representative studies that illustrate the state-of-the-art deer12_johnson.pdf (4.79 MB) More Documents & Publications Diesel Emission Control Review Review of Emerging Diesel Emissions and Control Diesel Emission Control Technology in Review

  14. Emissions of greenhouse gases in the United States, 1987--1994

    SciTech Connect (OSTI)

    1995-09-25

    The Energy Information Administration (EIA) is required by the Energy Policy Act of 1992 to prepare a report on aggregate US national emissions of greenhouse gases for the period 1987--1992, with annual updates thereafter. This is the third annual update report,covering national emissions over the period 1987--1993, with preliminary estimates of US carbon dioxide and halocarbon emissions for 1994. Calculating national aggregate emissions(or ``national inventories``) of greenhouse gases is a recently developed form of intellectual endeavor. Greenhouse gas emissions are rarely measured directly or reported to statistical agencies. Thus, to prepare emissions inventories usually requires inferring emissions indirectly from information collected for other purposes. Both the available information and the inferences drawn may be of varying reliability. Chapter 1 of this report briefly recapitulates some background information about global climate change and the greenhouse effect and discusses important recent developments in global climate change activities. Chapters 2 through 6 cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons, and criteria pollutants, respectively. Chapter 7 describes potential sequestration and emissions of greenhouse gases as a result of land use changes.

  15. General quantitative model for coal liquefaction kinetics: the thermal cleavage/hydrogen donor capping mechanism. [59 references

    SciTech Connect (OSTI)

    Gangwer, T

    1980-01-01

    A mechanism for coal liquefaction, based on the concept of thermal cleavage-hydrogen capping donor complexes, is proposed and the quantitative agreement between the derived rate laws and the kinetic data obtained from fifteen publications is presented. The mechanism provides rate laws which describe the preasphaltene, asphaltene, oil and gas time/yield curves for the coal liquefaction process. A simplistic dissolution model is presented and used to relate the proposed mechanism to the experimentally observed products. Based on the quality of the mechanistic fit to the reported coal liquefaction systems, which cover a diverse range of reaction conditions, coal types and donor solvent compositions, it is proposed that the donor solvent/thermal bond cleavage/hydrogen capping mechanism provides a good, quantitative description of the rate limiting process. Interpretation of the rate constant/temperature dependencies in terms of transition state theory indicates formation of the activated complex can involve either physically or chemically controlled steps. A uniform free energy of activation of 52 kcal was found for the diverse liquefaction systems indicating a common transition state describes the reactions. Thus the proposed mechanism unifies the diverse liquefaction kinetic data by using a set of uniform reaction sequences, which have a common transition state, to describe the conversion chemistry. The mechanism thereby creates a common base for intercomparison, interpretation and evaluation of coal conversion for the broad range of processes currently being investigated in the liquefaction field.

  16. Emissions trading programs, making sense of the options

    SciTech Connect (OSTI)

    Fahrer, S.

    1996-03-01

    In an attempt to move away from the traditional command-and-control approach to regulation, the US Environmental Protection Agency has begun to develop economic incentive programs. These programs encourage compliance with nationwide pollution-reduction goals, but seek industry action based on market or profit incentives, rather than fear of retribution or penalty. The 1990 Clean Air Act Amendments (CAAA) require that stringent means be taken to reduce NOx pollution in so-called ozone-nonattainment areas. Under CAAA Title IV, the SO{sub 2} trading program went into effect in 1993 to reduce acid rain. For NO{sub x}, several programs are either already in operation, or are under development. These include the Cap and Trade program, the Open Market trading program and New Source Review Offset Trading program. These 3 programs are described. To obtain a Title V operating permit, issues to consider are operation, job descriptions, certification process, value, estimating future emissions, confidentiality, permits, inter-media coordination, costs, and publicity.

  17. OVERVIEW OF THE ZECA (ZERO EMISSION COAL ALLIANCE) TECHNOLOGY

    SciTech Connect (OSTI)

    H. ZIOCK; K. LACKNER

    2000-12-01

    We discuss a novel, emission-free process for producing hydrogen or electricity from coal. Although we focus on coal, the basic approach is compatible with any carbonaceous fuel. The process uses cyclical carbonation of calcium oxide to promote the production of hydrogen from carbon and water. The carbonation of the calcium oxide removes carbon dioxide from the reaction products and provides the additional energy necessary to complete hydrogen production without the need for the combustion of carbon. The calcination of the resulting calcium carbonate is accomplished using the high temperature waste heat from solid oxide fuel cells, which generate electricity from hydrogen fuel. Converting waste heat back to useful chemical energy allows the process to achieve very high conversion efficiency from fuel energy to electrical energy. As the process is essentially closed-loop, the process is able to achieve zero emissions if the concentrated exhaust stream of CO{sub 2} is sequestered. Carbon dioxide disposal is accomplished by the production of magnesium carbonate from ultramafic rock. The end-products of the sequestration process are stable, naturally-occurring minerals. Sufficient high quality ultramafic deposits exist to easily handle all the world's coal.

  18. Secondary electron emission from lithium and lithium compounds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Capece, A. M.; Patino, M. I.; Raitses, Y.; Koel, B. E.

    2016-07-06

    In this work, measurements of electron-induced secondary electron emission ( SEE) yields of lithium as a function of composition are presented. The results are particularly relevant for magnetic fusion devices such as tokamaks, field-reversed configurations, and stellarators that consider Li as a plasma-facing material for improved plasma confinement. SEE can reduce the sheath potential at the wall and cool electrons at the plasma edge, resulting in large power losses. These effects become significant as the SEE coefficient, γe, approaches one, making it imperative to maintain a low yield surface. This work demonstrates that the yield from Li strongly depends onmore » chemical composition and substantially increases after exposure to oxygen and water vapor. The total yield was measured using a retarding field analyzer in ultrahigh vacuum for primary electron energies of 20-600 eV. The effect of Li composition was determined by introducing controlled amounts of O2 and H2O vapor while monitoring film composition with Auger electron spectroscopy and temperature programmed desorption. The results show that the energy at which γe = 1 decreases with oxygen content and is 145 eV for a Li film that is 17% oxidized and drops to less than 25 eV for a fully oxidized film. This work has important implications for laboratory plasmas operating under realistic vacuum conditions in which oxidation significantly alters the electron emission properties of Li walls. Published by AIP Publishing.« less

  19. Technical progress in the development of zero emission coal technologies.

    SciTech Connect (OSTI)

    Ziock, H. J.; Anthony, E. J.; Brosha, E. L.; Garzon, F. H.; Guthrie, G. D.; Johnson, A. A.; Kramer, A.; Lackner, K. S.; Lau, Francis,; Mukundan, R.; Robison, Thomas W.; Roop, B. J.; Ruby, J. D.; Smith, B. F.; Wang, J.

    2002-01-01

    We present an update on the development of technologies required for the Zero Emission Carbon (ZEC) concept being pursued by ZECA Corporation. The concept has a highly integrated design involving hydrogasification, a calcium oxide driven reforming step that includes simultaneous C02 separation, coal compatible fuel cells for electricity production and heat recovery, and a closed loop gas system in which coal contaminants are removed either as liquids or solids. The process does not involve any combustion and as such has neither smokestack nor air emissions. An independent assessment of the concept by Nexant, a Bcchtel affiliated company, suggests a net efficiency of approximately 70% for conversion of the higher heat value fuel energy into electrical output. This is even after the penalties of carbon dioxide separation and pressurization to 1000 psi are taken into account. For carbon dioxide sequestration a variety of options are being considered, which include enhanced oil recovery in the near-term and mineral carbonation as a long-term approach. We report on our early results in the development of sulfur tolerant anode materials for solid oxide fuel cells; a critical analysis of the calcium oxide - calcium carbonate cycle; trace element removal; and the recent results of hydrogasification tests.

  20. Structure of graphene oxide dispersed with ZnO nanoparticles

    SciTech Connect (OSTI)

    Yadav, Rishikesh Pandey, Devendra K.; Khare, P. S.

    2014-10-15

    Graphene has been proposed as a promising two-dimensional nanomaterial with outstanding electronic, optical, thermal and mechanical properties for many applications. In present work a process of dispersion of graphene oxide with ZnO nanoparticles in ethanol solution with different pH values, have been studied. Samples have been characterized by XRD, SEM, PL, UV-visible spectroscopy and particles size measurement. The results analysis indicates overall improved emission spectrum. It has been observed that the average diameter of RGO (Reduced Graphene Oxide) decreases in presence of ZnO nanoparticles from 3.8?m to 0.41?m.

  1. Oxidative Tritium Decontamination System

    DOE Patents [OSTI]

    Gentile, Charles A. , Guttadora, Gregory L. , Parker, John J.

    2006-02-07

    The Oxidative Tritium Decontamination System, OTDS, provides a method and apparatus for reduction of tritium surface contamination on various items. The OTDS employs ozone gas as oxidizing agent to convert elemental tritium to tritium oxide. Tritium oxide vapor and excess ozone gas is purged from the OTDS, for discharge to atmosphere or transport to further process. An effluent stream is subjected to a catalytic process for the decomposition of excess ozone to diatomic oxygen. One of two configurations of the OTDS is employed: dynamic apparatus equipped with agitation mechanism and large volumetric capacity for decontamination of light items, or static apparatus equipped with pressurization and evacuation capability for decontamination of heavier, delicate, and/or valuable items.

  2. Project Profile: High Performance Reduction/Oxidation Metal Oxides for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermochemical Energy Storage | Department of Energy Project Profile: High Performance Reduction/Oxidation Metal Oxides for Thermochemical Energy Storage Project Profile: High Performance Reduction/Oxidation Metal Oxides for Thermochemical Energy Storage Sandia National Laboratory Logo Sandia National Lab (Sandia), through the Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage (CSP: ELEMENTS) funding program, is systematically

  3. Metal atom oxidation laser

    DOE Patents [OSTI]

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-10-28

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides. (auth)

  4. Metal atom oxidation laser

    DOE Patents [OSTI]

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-10-28

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides.

  5. Controlled CO preferential oxidation

    DOE Patents [OSTI]

    Meltser, M.A.; Hoch, M.M.

    1997-06-10

    Method is described for controlling the supply of air to a PROX (PReferential OXidation for CO cleanup) reactor for the preferential oxidation in the presence of hydrogen wherein the concentration of the hydrogen entering and exiting the PROX reactor is monitored, the difference there between correlated to the amount of air needed to minimize such difference, and based thereon the air supply to the PROX reactor adjusted to provide such amount and minimize such difference. 2 figs.

  6. Emissions Tool Estimates the Impact of Emissions on Smart Grid...

    Energy Savers [EERE]

    The free, web-based calculator aims to estimate the impact of NOx, SO2 and CO2 emissions on smart grid infrastructure investments, taking into account specific context and project ...

  7. Metal tritides helium emission

    SciTech Connect (OSTI)

    Beavis, L.C.

    1980-02-01

    Over the past several years, we have been measuring the release of helium from metal tritides (primarily erbium tritide). We find that qualitatively all tritides of interest to us behave the same. When they are first formed, the helium is released at a low rate that appears to be related to the amount of surface area which has access to the outside of the material (either film or bulk). For example, erbium tritide films initially release about 0.3% of the helium generated. Most tritide films emit helium at about this rate initially. At some later time, which depends upon the amount of helium generated, the parent occluding element and the degree of tritium saturation of the dihydride phase the helium emission changes to a new mode in which it is released at approximately the rate at which it is generated (for example, we measure this value to be approx. = .31 He/Er for ErT/sub 1/./sub 9/ films). If erbium ditritide is saturated beyond 1.9 T/Er, the critical helium/metal ratio decreases. For example, in bulk powders ErT/sub 2/./sub 15/ reaches critical release concentration at approx. = 0.03. Moderate elevation of temperature above room temperature has little impact on the helium release rate. It appears that the process may have approx. = 2 kcal/mol activation energy. The first helium formed is well bound. As the tritide ages, the helium is found in higher energy sites. Similar but less extensive measurements on scandium, titanium, and zirconium tritides are also described. Finally, the thermal desorption of erbium tritides of various ages from 50 days to 3154 days is discussed. Significant helium is desorbed along with the tritium in all but the youngest samples during thermodesorption.

  8. Analysis of Strategies for Reducing Multiple Emissions from Electric Power Plants with Advanced Technology

    Reports and Publications (EIA)

    2001-01-01

    This analysis responds to a request of Senators James M. Jeffords and Joseph I. Lieberman. This report describes the impacts of technology improvements and other market-based opportunities on the costs of emissions reductions from electricity generators, including nitrogen oxides, sulfur dioxide, mercury, and carbon dioxide.

  9. Analysis of Strategies for Reducing Multiple Emissions from Electric Power Plants: SO2, Nox, CO2

    Reports and Publications (EIA)

    2001-01-01

    This report responds to a request received from Senator David McIntosh on June 29, 2000 to analyze the impacts on energy consumers and producers of coordinated strategies to reduce emissions of sulfur dioxide, nitrogen oxides, and carbon dioxide at U.S. power plants.

  10. Trading Emissions PLC | Open Energy Information

    Open Energy Info (EERE)

    Trading Emissions PLC Jump to: navigation, search Name: Trading Emissions PLC Place: London, United Kingdom Zip: EC2N 4AW Product: Trading Emissions PLC is an investment fund...

  11. Active Diesel Emission Control Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Active Diesel Emission Control Systems 2004 Diesel Engine Emissions Reduction (DEER) Conferencen Presentation: RYPOS Active Diesel Emission Control Systems ...

  12. Advanced regenerative thermal oxidation (RTO) technology for air toxics control - selected case histories

    SciTech Connect (OSTI)

    Seiwert, J.J. Jr.

    1997-12-31

    Advanced design regenerative thermal oxidation (RTO) systems have been developed and are in commercial scale use for control of process emissions containing air toxics (HAPs) and VOCs. High operating temperatures coupled with high thermal energy recovery efficiencies inherent with RTO technology provide for high destruction efficiencies while minimizing formation of objectionable combustion byproducts. These results are achieved with low system operating costs. This paper covers development of advanced design commercial RTO systems for control of air emissions from several important commercial processes: total reduced sulfur (TRS) and other HAPs/VOC emissions from pulp mill processes. Chlorinated organics and other HAPs/VOC emissions from pharmaceutical manufacturing operations. The data presented represent the first commercial scale application of RTO technology to abate emissions from these processes. Particular design features required for each specific process, in order to provide reliable, safe and effective systems, are reviewed. Emissions abatement performance, as well as operational data, are presented for the systems.

  13. Alternative Fuels Data Center: Ethanol Vehicle Emissions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Vehicle Emissions to someone by E-mail Share Alternative Fuels Data Center: Ethanol Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Ethanol Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Ethanol Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Ethanol Vehicle Emissions on Delicious Rank Alternative Fuels Data Center: Ethanol Vehicle Emissions on Digg Find More places to share Alternative Fuels Data Center: Ethanol Vehicle

  14. Hydrogen production and delivery analysis in US markets : cost, energy and greenhouse gas emissions.

    SciTech Connect (OSTI)

    Mintz, M.; Gillette, J.; Elgowainy, A.

    2009-01-01

    Hydrogen production cost conclusions are: (1) Steam Methane Reforming (SMR) is the least-cost production option at current natural gas prices and for initial hydrogen vehicle penetration rates, at high production rates, SMR may not be the least-cost option; (2) Unlike coal and nuclear technologies, the cost of natural gas feedstock is the largest contributor to SMR production cost; (3) Coal- and nuclear-based hydrogen production have significant penalties at small production rates (and benefits at large rates); (4) Nuclear production of hydrogen is likely to have large economies of scale, but because fixed O&M costs are uncertain, the magnitude of these effects may be understated; and (5) Given H2A default assumptions for fuel prices, process efficiencies and labor costs, nuclear-based hydrogen is likely to be more expensive to produce than coal-based hydrogen. Carbon taxes and caps can narrow the gap. Hydrogen delivery cost conclusions are: (1) For smaller urban markets, compressed gas delivery appears most economic, although cost inputs for high-pressure gas trucks are uncertain; (2) For larger urban markets, pipeline delivery is least costly; (3) Distance from hydrogen production plant to city gate may change relative costs (all results shown assume 100 km); (4) Pipeline costs may be reduced with system 'rationalization', primarily reductions in service pipeline mileage; and (5) Liquefier and pipeline capital costs are a hurdle, particularly at small market sizes. Some energy and greenhouse gas Observations: (1) Energy use (per kg of H2) declines slightly with increasing production or delivery rate for most components (unless energy efficiency varies appreciably with scale, e.g., liquefaction); (2) Energy use is a strong function of production technology and delivery mode; (3) GHG emissions reflect the energy efficiency and carbon content of each component in a production-delivery pathway; (4) Coal and natural gas production pathways have high energy consumption

  15. Internal attachment of laser beam welded stainless steel sheathed thermocouples into stainless steel upper end caps in nuclear fuel rods for the LOFT Reactor

    SciTech Connect (OSTI)

    Welty, R.K.; Reid, R.D.

    1980-01-01

    The Exxon Nuclear Company, Inc., acting as a subcontractor to EG and G Idaho Inc., Idaho National Engineering Laboratory, Idaho Falls, Idaho, conducted a laser beam welding study to attach internal stainless steel thermocouples into stainless steel upper end caps in nuclear fuel rods. The objective of this study was to determine the feasibility of laser welding a single 0.063 inch diameter stainless steel (304) sheathed thermocouple into a stainless steel (316) upper end cap for nuclear fuel rods. A laser beam was selected because of the extremely high energy input in unit volume that can be achieved allowing local fusion of a small area irrespective of the difference in material thickness to be joined. A special weld fixture was designed and fabricated to hold the end cap and the thermocouple with angular and rotational adjustment under the laser beam. A commercial pulsed laser and energy control system was used to make the welds.

  16. REDUCTION OF EMISSIONS FROM A HIGH SPEED FERRY

    SciTech Connect (OSTI)

    Thompson,G.; Gautam, M; Clark, N; Lyons, D; Carder, D; Riddle, W; Barnett, R; Rapp, B; George, S

    2003-08-24

    Emissions from marine vessels are being scrutinized as a major contributor to the total particulate matter (TPM), oxides of sulfur (SOx) and oxides of nitrogen (NOx) environmental loading. Fuel sulfur control is the key to SOx reduction. Significant reductions in the emissions from on-road vehicles have been achieved in the last decade and the emissions from these vehicles will be reduced by another order of magnitude in the next five years: these improvements have served to emphasize the need to reduce emissions from other mobile sources, including off road equipment, locomotives, and marine vessels. Diesel-powered vessels of interest include ocean going vessels with low- and medium-speed engines, as well as ferries with high speed engines, as discussed below. A recent study examined the use of intake water injection (WIS) and ultra low sulfur diesel (ULSD) to reduce the emissions from a high-speed passenger ferry in southern California. One of the four Detroit Diesel 12V92 two-stroke high speed engines that power the Waverider (operated by SCX, inc.) was instrumented to collect intake airflow, fuel flow, shaft torque, and shaft speed. Engine speed and shaft torque were uniquely linked for given vessel draft and prevailing wind and sea conditions. A raw exhaust gas sampling system was utilized to measure the concentration of NOx, carbon dioxide (CO2), and oxygen (O2) and a mini dilution tunnel sampling a slipstream from the raw exhaust was used to collect TPM on 70 mm filters. The emissions data were processed to yield brake-specific mass results. The system that was employed allowed for redundant data to be collected for quality assurance and quality control. To acquire the data, the Waverider was operated at five different steady state speeds. Three modes were in the open sea off Oceanside, CA, and idle and harbor modes were also used. Data have showed that the use of ULSD along with water injection (WIS) could significantly reduce the emissions of NOx and PM

  17. Evaluation of methane emissions from Palermo municipal landfill: Comparison between field measurements and models

    SciTech Connect (OSTI)

    Di Bella, Gaetano; Di Trapani, Daniele; Viviani, Gaspare

    2011-08-15

    Methane (CH{sub 4}) diffuse emissions from Municipal Solid Waste (MSW) landfills represent one of the most important anthropogenic sources of greenhouse gas. CH{sub 4} is produced by anaerobic biodegradation of organic matter in landfilled MSW and constitutes a major component of landfill gas (LFG). Gas recovery is a suitable method to effectively control CH{sub 4} emissions from landfill sites and the quantification of CH{sub 4} emissions represents a good tool to evaluate the effectiveness of a gas recovery system in reducing LFG emissions. In particular, LFG emissions can indirectly be evaluated from mass balance equations between LFG production, recovery and oxidation in the landfill, as well as by a direct approach based on LFG emission measurements from the landfill surface. However, up to now few direct measurements of landfill CH{sub 4} diffuse emissions have been reported in the technical literature. In the present study, both modeling and direct emission measuring methodologies have been applied to the case study of Bellolampo landfill located in Palermo, Italy. The main aim of the present study was to evaluate CH{sub 4} diffuse emissions, based on direct measurements carried out with the flux accumulation chamber (static, non-stationary) method, as well as to obtain the CH{sub 4} contoured flux map of the landfill. Such emissions were compared with the estimate achieved by means of CH{sub 4} mass balance equations. The results showed that the emissions obtained by applying the flux chamber method are in good agreement with the ones derived by the application of the mass balance equation, and that the evaluated contoured flux maps represent a reliable tool to locate areas with abnormal emissions in order to optimize the gas recovery system efficiency.

  18. Fuel-cycle energy and emissions impacts of tripled fuel economy vehicles

    SciTech Connect (OSTI)

    Mintz, M.M.; Wang, M.Q.; Vyas, A.D.

    1998-12-31

    This paper presents estimates of the full cycle energy and emissions impacts of light-duty vehicles with tripled fuel economy (3X vehicles) as currently being developed by the Partnership for a New Generation of Vehicles (PNGV). Seven engine and fuel combinations were analyzed: reformulated gasoline, methanol, and ethanol in spark-ignition, direct-injection engines; low sulfur diesel and dimethyl ether in compression-ignition, direct-injection engines; and hydrogen and methanol in fuel-cell vehicles. The fuel efficiency gain by 3X vehicles translated directly into reductions in total energy demand, petroleum demand, and carbon dioxide emissions. The combination of fuel substitution and fuel efficiency resulted in substantial reductions in emissions of nitrogen oxide, carbon monoxide, volatile organic compounds, sulfur oxide, and particulate matter smaller than 10 microns, particularly under the High Market Share Scenario.

  19. Acoustic emission linear pulse holography

    DOE Patents [OSTI]

    Collins, H.D.; Busse, L.J.; Lemon, D.K.

    1983-10-25

    This device relates to the concept of and means for performing Acoustic Emission Linear Pulse Holography, which combines the advantages of linear holographic imaging and Acoustic Emission into a single non-destructive inspection system. This unique system produces a chronological, linear holographic image of a flaw by utilizing the acoustic energy emitted during crack growth. The innovation is the concept of utilizing the crack-generated acoustic emission energy to generate a chronological series of images of a growing crack by applying linear, pulse holographic processing to the acoustic emission data. The process is implemented by placing on a structure an array of piezoelectric sensors (typically 16 or 32 of them) near the defect location. A reference sensor is placed between the defect and the array.

  20. emissions | OpenEI Community

    Open Energy Info (EERE)

    cities CO2 emissions OpenEI suburbs US New research from the University of California-Berkeley shows that those who live in cities in the United States have significantly smaller...

  1. Advanced Collaborative Emissions Study (ACES)

    Broader source: Energy.gov [DOE]

    ACES is a cooperative multi-party effort to characterize emissions and possible health effects of new, advanced heavy duty engine and control systems and fuels in the market 2007 - 2010.

  2. Advanced Emissions Control Development Program

    SciTech Connect (OSTI)

    A.P.Evans; K.E. Redinger; M.J. Holmes

    1998-04-01

    The objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. Ideally, the project aim is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPS), fabric filters (baghouse), and wet flue gas desulfurization. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate and hydrogen chloride. Following the construction and evaluation of a representative air toxics test facility in Phase I, Phase II focused on the evaluation of mercury and several other air toxics emissions. The AECDP is jointly funded by the United States Department of Energy's Federal Energy Technology Center (DOE), the Ohio Coal Development Office within the Ohio Department of Development (oCDO), and Babcock& Wilcox-a McDermott company (B&W).

  3. EIA - Greenhouse Gas Emissions Overview

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    grasslands 34 Net carbon dioxide sequestration in U.S. urban trees, yard trimmings, and food scraps 35 Emissions of carbon dioxide from biofuelbioenergy use by sector and fuel

  4. Diesel Emission Control in Review

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  5. Dielectric Resonator Metamasurfaces: Optical Magnetism Emission...

    Office of Scientific and Technical Information (OSTI)

    Optical Magnetism Emission and Optical Devices. Citation Details In-Document Search Title: Dielectric Resonator Metamasurfaces: Optical Magnetism Emission and Optical Devices. ...

  6. IPCC Emission Factor Database | Open Energy Information

    Open Energy Info (EERE)

    Emission Factor Database Jump to: navigation, search Tool Summary LAUNCH TOOL Name: IPCC Emission Factor Database AgencyCompany Organization: World Meteorological Organization,...

  7. Steinbeis Technology Transfer Centre for Emissions Trading |...

    Open Energy Info (EERE)

    Steinbeis Technology Transfer Centre for Emissions Trading Jump to: navigation, search Name: Steinbeis Technology Transfer Centre for Emissions Trading Place: Augsburg, Bavaria,...

  8. IGES GHG Emissions Data | Open Energy Information

    Open Energy Info (EERE)

    GHG inventory Resource Type: Dataset Website: www.iges.or.jpencdmreportkyoto.html References: IGES GHG Emissions Data1 Summary "IGES GHG Emissions Data is aimed at...

  9. Energy-Related Carbon Emissions in Manufacturing

    Reports and Publications (EIA)

    2000-01-01

    Energy-related carbon emissions in manufacturing analysis and issues related to the energy use, energy efficiency, and carbon emission indicators.

  10. Low Emissions Asian Development (LEAD) Program - Bangladesh ...

    Open Energy Info (EERE)

    Low Emissions Asian Development (LEAD) Program - Bangladesh Redirect page Jump to: navigation, search REDIRECT Low Emissions Asian Development (LEAD) Program Retrieved from...

  11. Zero Emissions Leasing LLC | Open Energy Information

    Open Energy Info (EERE)

    Zero Emissions Leasing LLC Jump to: navigation, search Name: Zero Emissions Leasing LLC Place: Honolulu, Hawaii Zip: 96822 Sector: Solar Product: Honolulu-based developer of solar...

  12. How the Carbon Emissions Were Estimated

    U.S. Energy Information Administration (EIA) Indexed Site

    dioxide emissions are the main component of greenhouse gas emissions caused by human activity. Carbon dioxide is emitted mostly as a byproduct of the combustion of fossil fuels...

  13. Emission Factors (EMFAC) | Open Energy Information

    Open Energy Info (EERE)

    The EMission FACtors (EMFAC) model is used to calculate emission rates from all motor vehicles, such as passenger cars to heavy-duty trucks, operating on highways, freeways...

  14. Measurement and Characterization of Unregulated Emissions from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ethanol Effects on Lean-Burn and Stoichiometric GDI Emissions Measurement and Characterization of Unregulated Emissions from Advanced Technologies Measurement and Characterization ...

  15. Oxidation of alloys targeted for advanced steam turbines

    SciTech Connect (OSTI)

    Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.; Alman, D.E.

    2006-03-12

    Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energys Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760C. This research examines the steamside oxidation of alloys for use in USC systems, with emphasis placed on applications in high- and intermediate-pressure turbines.

  16. Oxidation State Optimization for Maximum Efficiency of NOx Adsorber

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalysts | Department of Energy State Optimization for Maximum Efficiency of NOx Adsorber Catalysts Oxidation State Optimization for Maximum Efficiency of NOx Adsorber Catalysts Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. deer10_li.pdf (1.68 MB) More Documents & Publications Lean NOx Trap Regeneration Selectivity Towards N2O -- Similarities and Differences Between H2, CO and C3H6

  17. PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE BROOKHAVEN GRAPHITE RESEARCH REACTOR ENGINEERED CAP, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK DCN 5098-SR-07-0

    SciTech Connect (OSTI)

    Evan Harpenau

    2011-07-15

    The Oak Ridge Institute for Science and Education (ORISE) has reviewed the project documentation and data for the Brookhaven Graphite Research Reactor (BGRR) Engineered Cap at Brookhaven National Laboratory (BNL) in Upton, New York. The Brookhaven Science Associates (BSA) have completed removal of affected soils and performed as-left surveys by BSA associated with the BGRR Engineered Cap. Sample results have been submitted, as required, to demonstrate that remediation efforts comply with the cleanup goal of {approx}15 mrem/yr above background to a resident in 50 years (BNL 2011a).

  18. CNG and Diesel Transit Bus Emissions in Review

    SciTech Connect (OSTI)

    Ayala, A.; Kado, N.; Okamoto, R.; Gebel, M. Rieger, P.; Kobayashi, R.; Kuzmicky, P.

    2003-08-24

    Over the past three years, the California Air Resources Board (CARB), in collaboration with the University of California and other entities, has investigated the tailpipe emissions from three different latemodel, in-use heavy-duty transit buses in five different configurations. The study has focused on the measurement of regulated emissions (NOX, HC, CO, total PM), other gaseous emissions (CO2, NO2, CH4, NMHC), a number of pollutants of toxic risk significance (aromatics, carbonyls, PAHs, elements), composition (elemental and organic carbon), and the physical characterization (size-segregated number count and mass) of the particles in the exhaust aerosol. Emission samples are also tested in a modified Ames assay. The impact of oxidation catalyst control for both diesel and compressed natural gas (CNG) buses and a passive diesel particulate filter (DPF) were evaluated over multiple driving cycles (idle, 55 mph cruise, CBD, UDDS, NYBC) using a chassis dynamometer. For brevity, only CBD results are discussed in this paper and particle sizing results are omitted. The database of results is large and some findings have been reported already at various forums including last year's DEER conference. The goal of this paper is to offer an overview of the lessons learned and attempt to draw overall conclusions and interpretations based on key findings to date.

  19. Soft X-ray Spectroscopy Study of the Electronic Structure of Oxidized and Partially Oxidized Magnetite Nanoparticles

    SciTech Connect (OSTI)

    Gilbert, Benjamin; Katz, Jordan E.; Denlinger, Jonathan D.; Yin, Yadong; Falcone, Roger; Waychunas, Glenn A.

    2010-10-24

    The crystal structure of magnetite nanoparticles may be transformed to maghemite by complete oxidation, but under many relevant conditions the oxidation is partial, creating a mixed-valence material with structural and electronic properties that are poorly characterized. We used X-ray diffraction, Fe K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy, and soft X-ray absorption and emission spectroscopy to characterize the products of oxidizing uncoated and oleic acid-coated magnetite nanoparticles in air. The oxidization of uncoated magnetite nanoparticles creates a material that is structurally and electronically indistinguishable from maghemite. By contrast, while oxidized oleic acid-coated nanoparticles are also structurally indistinguishable from maghemite, Fe L-edge spectroscopy revealed the presence of interior reduced iron sites even after a 2-year period. We used X-ray emission spectroscopy at the O K-edge to study the valence bands (VB) of the iron oxide nanoparticles, using resonant excitation to remove the contributions from oxygen atoms in the ligands and from low-energy excitations that obscured the VB edge. The bonding in all nanoparticles was typical of maghemite, with no detectable VB states introduced by the long-lived, reduced-iron sites in the oleic acid-coated sample. However, O K-edge absorption spectroscopy observed a 0.2 eV shift in the position of the lowest unoccupied states in the coated sample, indicating an increase in the semiconductor band gap relative to bulk stoichiometric maghemite that was also observed by optical absorption spectroscopy. The results show that the ferrous iron sites within ferric iron oxide nanoparticles coated by an organic ligand can persist under ambient conditions with no evidence of a distinct interior phase and can exert an effect on the global electronic and optical properties of the material. This phenomenon resembles the band gap enlargement caused by electron accumulation in the

  20. Closing the Gaps in the Budgets of Methane and Nitrous Oxide

    SciTech Connect (OSTI)

    Khalil, Aslam; Rice, Andrew; Rasmussen, Reinhold

    2013-11-22

    Together methane and nitrous oxide contribute almost 40% of the estimated increase in radiative forcing caused by the buildup of greenhouse gases during the last 250 years (IPCC, 2007). These increases are attributed to human activities. Since the emissions of these gases are from biogenic sources and closely associated with living things in the major terrestrial ecosystems of the world, climate change is expected to cause feedbacks that may further increase emissions even from systems normally classified as natural. Our results support the idea that while past increases of methane were driven by direct emissions from human activities, some of these have reached their limits and that the future of methane changes may be determined by feedbacks from warming temperatures. The greatly increased current focus on the arctic and the fate of the carbon frozen in its permafrost is an example of such a feedback that could exceed the direct increases caused by future human activities (Zimov et al. 2006). Our research was aimed at three broad areas to address open questions about the global budgets of methane and nitrous oxide. These areas of inquiry were: The processes by which methane and nitrous oxide are emitted, new sources such as trees and plants, and integration of results to refine the global budgets both at present and of the past decades. For the process studies the main research was to quantify the effect of changes in the ambient temperature on the emissions of methane and nitrous oxide from rice agriculture. Additionally, the emissions of methane and nitrous oxide under present conditions were estimated using the experimental data on how fertilizer applications and water management affect emissions. Rice was chosen for detailed study because it is a prototype system of the wider terrestrial source, its role in methane emissions is well established, it is easy to cultivate and it represents a major anthropogenic source. Here we will discuss the highlights of the

  1. Three-Dimensional Composite Nanostructures for Lean NOx Emission Control

    SciTech Connect (OSTI)

    Gao, Pu-Xian

    2013-07-31

    This final report to the Department of Energy (DOE) and National Energy Technology Laboratory (NETL) for DE-EE0000210 covers the period from October 1, 2009 to July 31, 2013. Under this project, DOE awarded UConn about $1,248,242 to conduct the research and development on a new class of 3D composite nanostructure based catalysts for lean NOx emission control. Much of the material presented here has already been submitted to DOE/NETL in quarterly technical reports. In this project, through a scalable solution process, we have successfully fabricated a new class of catalytic reactors, i.e., the composite nanostructure array (nano-array) based catalytic converters. These nanocatalysts, distinct from traditional powder washcoat based catalytic converters, directly integrate monolithic substrates together with nanostructures with well-defined size and shape during the scalable hydrothermal process. The new monolithic nanocatalysts are demonstrated to be able to save raw materials including Pt-group metals and support metal oxides by an order of magnitude, while perform well at various oxidation (e.g., CO oxidation and NO oxidation) and reduction reactions (H{sub 2} reduction of NOx) involved in the lean NOx emissions. The size, shape and arrangement of the composite nanostructures within the monolithic substrates are found to be the key in enabling the drastically reduced materials usage while maintaining the good catalytic reactivity in the enabled devices. The further understanding of the reaction kinetics associated with the unique mass transport and surface chemistry behind is needed for further optimizing the design and fabrication of good nanostructure array based catalytic converters. On the other hand, the high temperature stability, hydrothermal aging stability, as well as S-poisoning resistance have been investigated in this project on the nanocatalysts, which revealed promising results toward good chemical and mechanical robustness, as well as S

  2. Oxidation of Mercury in Products of Coal Combustion

    SciTech Connect (OSTI)

    Peter Walsh; Giang Tong; Neeles Bhopatkar; Thomas Gale; George Blankenship; Conrad Ingram; Selasi Blavo Tesfamariam Mehreteab; Victor Banjoko; Yohannes Ghirmazion; Heng Ban; April Sibley

    2009-09-14

    Laboratory measurements of mercury oxidation during selective catalytic reduction (SCR) of nitric oxide, simulation of pilot-scale measurements of mercury oxidation and adsorption by unburned carbon and fly ash, and synthesis of new materials for simultaneous oxidation and adsorption of mercury, were performed in support of the development of technology for control of mercury emissions from coal-fired boilers and furnaces. Conversion of gas-phase mercury from the elemental state to water-soluble oxidized form (HgCl{sub 2}) enables removal of mercury during wet flue gas desulfurization. The increase in mercury oxidation in a monolithic V{sub 2}O{sub 5}-WO{sub 3}/TiO{sub 2} SCR catalyst with increasing HCl at low levels of HCl (< 10 ppmv) and decrease in mercury oxidation with increasing NH{sub 3}/NO ratio during SCR were consistent with results of previous work by others. The most significant finding of the present work was the inhibition of mercury oxidation in the presence of CO during SCR of NO at low levels of HCl. In the presence of 2 ppmv HCl, expected in combustion products from some Powder River Basin coals, an increase in CO from 0 to 50 ppmv reduced the extent of mercury oxidation from 24 {+-} 3 to 1 {+-} 4%. Further increase in CO to 100 ppmv completely suppressed mercury oxidation. In the presence of 11-12 ppmv HCl, increasing CO from 0 to {approx}120 ppmv reduced mercury oxidation from {approx}70% to 50%. Conversion of SO{sub 2} to sulfate also decreased with increasing NH{sub 3}/NO ratio, but the effects of HCl and CO in flue gas on SO{sub 2} oxidation were unclear. Oxidation and adsorption of mercury by unburned carbon and fly ash enables mercury removal in a particulate control device. A chemical kinetic mechanism consisting of nine homogeneous and heterogeneous reactions for mercury oxidation and removal was developed to interpret pilot-scale measurements of mercury oxidation and adsorption by unburned carbon and fly ash in experiments at pilot

  3. SEQUESTERING AGENTS FOR METAL IMMOBILIZATION APPLICATION TO THE DEVELOPMENT OF ACTIVE CAPS IN FRESH AND SALT WATER SEDIMENTS

    SciTech Connect (OSTI)

    Knox, A; Michael Paller, M

    2006-11-17

    This research evaluated the removal of inorganic contaminants by a variety of amendments and mixtures of amendments in fresh and salt water. A series of removal and retention batch experiments was conducted to identify the best treatment for metal removal. Metal removal by the amendments was evaluated by calculating the partition coefficient and percent removal. Retention of metals by the amendments was evaluated in retention (desorption) studies in which residue from the removal studies was extracted with 1 M MgCl{sub 2} solution. The results indicated that phosphate amendments, some organoclays (e.g., OCB-750), and the biopolymer, chitosan, are very effective in removal and retention of metals in both fresh and salt water. These amendments are being evaluated further as components in the development of active caps for sediment remediation.

  4. Methanol partial oxidation reformer

    DOE Patents [OSTI]

    Ahmed, S.; Kumar, R.; Krumpelt, M.

    1999-08-24

    A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

  5. Methanol partial oxidation reformer

    DOE Patents [OSTI]

    Ahmed, Shabbir; Kumar, Romesh; Krumpelt, Michael

    1999-01-01

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  6. Methanol partial oxidation reformer

    DOE Patents [OSTI]

    Ahmed, S.; Kumar, R.; Krumpelt, M.

    1999-08-17

    A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

  7. Methanol partial oxidation reformer

    DOE Patents [OSTI]

    Ahmed, Shabbir; Kumar, Romesh; Krumpelt, Michael

    2001-01-01

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  8. The green bank northern celestial cap pulsar survey. I. Survey description, data analysis, and initial results

    SciTech Connect (OSTI)

    Stovall, K.; Dartez, L. P.; Ford, A. J.; Garcia, A.; Hinojosa, J.; Jenet, F. A.; Leake, S.; Lynch, R. S.; Archibald, A. M.; Karako-Argaman, C.; Kaspi, V. M.; Ransom, S. M.; Banaszak, S.; Biwer, C. M.; Day, D.; Flanigan, J.; Kaplan, D. L.; Boyles, J.; Hessels, J. W. T.; Kondratiev, V. I.; and others

    2014-08-10

    We describe an ongoing search for pulsars and dispersed pulses of radio emission, such as those from rotating radio transients (RRATs) and fast radio bursts, at 350 MHz using the Green Bank Telescope. With the Green Bank Ultimate Pulsar Processing Instrument, we record 100 MHz of bandwidth divided into 4096 channels every 81.92 μs. This survey will cover the entire sky visible to the Green Bank Telescope (δ > –40°, or 82% of the sky) and outside of the Galactic Plane will be sensitive enough to detect slow pulsars and low dispersion measure (<30 pc cm{sup –3}) millisecond pulsars (MSPs) with a 0.08 duty cycle down to 1.1 mJy. For pulsars with a spectral index of –1.6, we will be 2.5 times more sensitive than previous and ongoing surveys over much of our survey region. Here we describe the survey, the data analysis pipeline, initial discovery parameters for 62 pulsars, and timing solutions for 5 new pulsars. PSR J0214+5222 is an MSP in a long-period (512 days) orbit and has an optical counterpart identified in archival data. PSR J0636+5129 is an MSP in a very short-period (96 minutes) orbit with a very low mass companion (8 M{sub J}). PSR J0645+5158 is an isolated MSP with a timing residual RMS of 500 ns and has been added to pulsar timing array experiments. PSR J1434+7257 is an isolated, intermediate-period pulsar that has been partially recycled. PSR J1816+4510 is an eclipsing MSP in a short-period orbit (8.7 hr) and may have recently completed its spin-up phase.

  9. Mercury Emission Measurement at a CFB Plant

    SciTech Connect (OSTI)

    John Pavlish; Jeffrey Thompson; Lucinda Hamre

    2009-02-28

    In response to pending regulation to control mercury emissions in the United States and Canada, several projects have been conducted to perform accurate mass balances at pulverized coal (pc)-fired utilities. Part of the mercury mass balance always includes total gaseous mercury as well as a determination of the speciation of the mercury emissions and a concentration bound to the particulate matter. This information then becomes useful in applying mercury control strategies, since the elemental mercury has traditionally been difficult to control by most technologies. In this instance, oxidation technologies have proven most beneficial for increased capture. Despite many years of mercury measurement and control projects at pc-fired units, far less work has been done on circulating fluidized-bed (CFB) units, which are able to combust a variety of feedstocks, including cofiring coal with biomass. Indeed, these units have proven to be more problematic because it is very difficult to obtain a reliable mercury mass balance. These units tend to have very different temperature profiles than pc-fired utility boilers. The flexibility of CFB units also tends to be an issue when a mercury balance is determined, since the mercury inputs to the system come from the bed material and a variety of fuels, which can have quite variable chemistry, especially for mercury. In addition, as an integral part of the CFB operation, the system employs a feedback loop to circulate the bed material through the combustor and the solids collection system (the primary cyclone), thereby subjecting particulate-bound metals to higher temperatures again. Despite these issues, CFB boilers generally emit very little mercury and show good native capture. The Energy & Environmental Research Center is carrying out this project for Metso Power in order to characterize the fate of mercury across the unit at Rosebud Plant, an industrial user of CFB technology from Metso. Appropriate solids were collected, and

  10. Tetraalykylammonium polyoxoanionic oxidation catalysts

    DOE Patents [OSTI]

    Ellis, Paul E. (Downingtown, PA); Lyons, James E. (Wallingford, PA); Myers, Jr., Harry K. (Cochranville, PA); Shaikh, Shahid N. (Media, PA)

    1998-01-01

    Alkanes are catalytically oxidized in air or oxygen using iron-substituted polyoxoanions (POAs) of the formula: H.sub.e-z (n-C.sub.4 H.sub.9).sub.4 N!.sub.z (XM.sub.11 M'O.sub.39).sup.-e The M' (e.g., iron(III)/iron(II)) reduction potential of the POAs is affected by selection of the central atom X and the framework metal M, and by the number of tetrabutyl-ammonium groups. Decreased Fe(III)/Fe(II) reduction potential has been found to correlate to increased oxidation activity.

  11. Tetraalklylammonium polyoxoanionic oxidation catalysts

    DOE Patents [OSTI]

    Ellis, P.E.; Lyons, J.E.; Myers, H.K. Jr.; Shaikh, S.N.

    1998-10-06

    Alkanes are catalytically oxidized in air or oxygen using iron-substituted polyoxoanions (POAs) of the formula: H{sub e{minus}z}[(n-C{sub 4}H{sub 9}){sub 4}N]{sub z}(XM{sub 11}M{prime}O{sub 39}){sup {minus}e}. The M{prime} (e.g., iron(III)/iron(II)) reduction potential of the POAs is affected by selection of the central atom X and the framework metal M, and by the number of tetrabutyl-ammonium groups. Decreased Fe(III)/Fe(II) reduction potential has been found to correlate to increased oxidation activity.

  12. Tetraalykylammonium polyoxoanionic oxidation catalysts

    DOE Patents [OSTI]

    Ellis, Paul E.; Lyons, James E.; Myers, Jr., Harry K.; Shaikh, Shahid N.

    1998-01-01

    Alkanes are catalytically oxidized in air or oxygen using iron-substituted polyoxoanions (POAs) of the formula: H.sub.e-z ›(n-C.sub.4 H.sub.9).sub.4 N!.sub.z (XM.sub.11 M'O.sub.39).sup.-e The M' (e.g., iron(III)/iron(II)) reduction potential of the POAs is affected by selection of the central atom X and the framework metal M, and by the number of tetrabutyl-ammonium groups. Decreased Fe(III)/Fe(II) reduction potential has been found to correlate to increased oxidation activity.

  13. Thermally Oxidized Silicon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Anneli Munkholm (Lumileds Lighting) and Sean Brennan (SSRL) Illustration of the silicon positions near the Si-SiO2 interface for a 4° miscut projected onto the ( ) plane. The silicon atoms in the substrate are blue and those in the oxide are red. The small black spots represent the translated silicon positions in the absence of static disorder. The silicon atoms in the oxide have been randomly assigned a magnitude and direction based on the static disorder value at that position in the

  14. Molecular water oxidation catalyst

    DOE Patents [OSTI]

    Gratzel, Michael; Munavalli, Shekhar; Pern, Fu-Jann; Frank, Arthur J.

    1993-01-01

    A dimeric composition of the formula: ##STR1## wherein L', L", L'", and L"" are each a bidentate ligand having at least one functional substituent, the ligand selected from bipyridine, phenanthroline, 2-phenylpyridine, bipyrimidine, and bipyrazyl and the functional substituent selected from carboxylic acid, ester, amide, halogenide, anhydride, acyl ketone, alkyl ketone, acid chloride, sulfonic acid, phosphonic acid, and nitro and nitroso groups. An electrochemical oxidation process for the production of the above functionally substituted bidentate ligand diaqua oxo-bridged ruthenium dimers and their use as water oxidation catalysts is described.

  15. Magnetism of cuprate oxides

    SciTech Connect (OSTI)

    Shirane, G.

    1996-11-01

    A review is given of current neutron scattering experiments on cuprate oxides. We first discuss the extensive neutron measurements on high-Tc oxides: La{sub 2-x}Sr{sub x}CuO{sub 4} and related (La{sub 1.6-x}Nd{sub 0.4})Sr{sub x}CuO{sub 4}. The second topic is the spin- Peierls system Cu{sub 1-x}Zn{sub x}GeO{sub 3}, where a new type of antiferromagnetic phase has been discovered. 17 refs, 8 figs.

  16. Burning Modes and Oxidation Rates of Soot: Relevance to Diesel Particulate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Traps | Department of Energy Burning Modes and Oxidation Rates of Soot: Relevance to Diesel Particulate Traps Burning Modes and Oxidation Rates of Soot: Relevance to Diesel Particulate Traps Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). deer07_vanderwal.pdf (5.41 MB) More Documents &

  17. Advanced Emission Control Development Program.

    SciTech Connect (OSTI)

    Evans, A.P.

    1997-12-31

    Babcock & Wilcox (B&W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B&W`s new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species hydrogen chloride and hydrogen fluoride.

  18. Advanced Emissions Control Development Program

    SciTech Connect (OSTI)

    A. P. Evans

    1998-12-03

    McDermott Technology, Inc. (MTI) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using the Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species, hydrogen chloride and hydrogen fluoride.

  19. Advanced Emissions Control Development Program

    SciTech Connect (OSTI)

    Evans, A P

    1998-12-03

    Babcock & Wilcox (B&W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B&W's new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species hydrogen chloride and hydrogen fluoride.

  20. Advanced Emissions Control Development Program

    SciTech Connect (OSTI)

    M. J. Holmes

    1998-12-03

    McDermott Technology, Inc. (MTI) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using the Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and hydrogen chloride and hydrogen fluoride.

  1. Annual emissions and air-quality impacts of an urban area district-heating system: Boston case study

    SciTech Connect (OSTI)

    Bernow, S.S.; McAnulty, D.R.; Buchsbaum, S.; Levine, E.

    1980-02-01

    A district-heating system, based on thermal energy from power plants retrofitted to operate in the cogeneration mode, is expected to improve local air quality. This possibility has been examined by comparing the emissions of five major atmospheric pollutants, i.e., particulates, sulfur oxides, carbon monoxide, hydrocarbons, and nitrogen oxides, from the existing heating and electric system in the City of Boston with those from a proposed district heating system. Detailed, spatial distribution of existing heating load and fuel mix is developed to specify emissions associated with existing heating systems. Actual electric-power-plant parameters and generation for the base year are specified. Additional plant fuel consumption and emissions resulting from cogeneration operation have been estimated. Six alternative fuel-emissions-control scenarios are considered. The average annual ground-level concentrations of sulfur oxides are calculated using a modified form of the EPA's Climatological Dispersion Model. This report describes the methodology, the results and their implications, and the areas for extended investigation. The initial results confirm expectations. Average sulfur oxides concentrations at various points within and near the city drop by up to 85% in the existing fuels scenarios and by 95% in scenarios in which different fuels and more-stringent emissions controls at the plants are used. These reductions are relative to concentrations caused by fuel combustion for heating and large commercial and industrial process uses within the city and Boston Edison Co. electric generation.

  2. A Porphyrin-Stabilized Iridium Oxide Water Oxidation Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Authors: Sherman, B. D., Pillai, S., Kodis, G., Bergkamp, J., Mallouk, T. E., Gust, D., Moore, T. A., and Moore, A. L. Title: A Porphyrin-Stabilized Iridium Oxide Water Oxidation...

  3. Doped zinc oxide microspheres

    DOE Patents [OSTI]

    Arnold, Jr., Wesley D.; Bond, Walter D.; Lauf, Robert J.

    1993-01-01

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel.

  4. Doped zinc oxide microspheres

    DOE Patents [OSTI]

    Arnold, W.D. Jr.; Bond, W.D.; Lauf, R.J.

    1993-12-14

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel. 4 figures.

  5. Highly oxidized superconductors

    DOE Patents [OSTI]

    Morris, Donald E.

    1994-01-01

    Novel superconducting materials in the form of compounds, structures or phases are formed by performing otherwise known syntheses in a highly oxidizing atmosphere rather than that created by molecular oxygen at atmospheric pressure or below. This leads to the successful synthesis of novel superconducting compounds which are thermodynamically stable at the conditions under which they are formed.

  6. Highly oxidized superconductors

    DOE Patents [OSTI]

    Morris, D.E.

    1994-09-20

    Novel superconducting materials in the form of compounds, structures or phases are formed by performing otherwise known synthesis in a highly oxidizing atmosphere rather than that created by molecular oxygen at atmospheric pressure or below. This leads to the successful synthesis of novel superconducting compounds which are thermodynamically stable at the conditions under which they are formed. 16 figs.

  7. Conformations of organophosphine oxides

    SciTech Connect (OSTI)

    De Silva, Nuwan; Zahariev, Federico; Hay, Benjamin P.; Gordon, Mark S.; Windus, Theresa L.

    2015-07-17

    The conformations of a series of organophosphine oxides, OP(CH3)2R, where R = methyl, ethyl, isopropyl, tert-butyl, vinyl, and phenyl, are predicted using the MP2/cc-pVTZ level of theory. Comparison of potential energy surfaces for rotation about P–C bonds with crystal structure data reveals a strong correlation between predicted location and energetics of minima and histograms of dihedral angle distributions observed in the solid state. In addition, the most stable conformers are those that minimize the extent of steric repulsion between adjacent rotor substituents, and the torsional barriers tend to increase with the steric bulk of the rotating alkyl group. MM3 force field parameters were adjusted to fit the MP2 results, providing a fast and accurate model for predicting organophosphine oxides shapes—an essential part of understanding the chemistry of these compounds. As a result, the predictive power of the modified MM3 model was tested against MP2/cc-pVTZ conformations for triethylphosphine oxide, OP(CH2CH3)3, and triphenylphosphine oxide, OP(Ph)3.

  8. Conformations of organophosphine oxides

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    De Silva, Nuwan; Zahariev, Federico; Hay, Benjamin P.; Gordon, Mark S.; Windus, Theresa L.

    2015-07-17

    The conformations of a series of organophosphine oxides, OP(CH3)2R, where R = methyl, ethyl, isopropyl, tert-butyl, vinyl, and phenyl, are predicted using the MP2/cc-pVTZ level of theory. Comparison of potential energy surfaces for rotation about P–C bonds with crystal structure data reveals a strong correlation between predicted location and energetics of minima and histograms of dihedral angle distributions observed in the solid state. In addition, the most stable conformers are those that minimize the extent of steric repulsion between adjacent rotor substituents, and the torsional barriers tend to increase with the steric bulk of the rotating alkyl group. MM3 forcemore » field parameters were adjusted to fit the MP2 results, providing a fast and accurate model for predicting organophosphine oxides shapes—an essential part of understanding the chemistry of these compounds. As a result, the predictive power of the modified MM3 model was tested against MP2/cc-pVTZ conformations for triethylphosphine oxide, OP(CH2CH3)3, and triphenylphosphine oxide, OP(Ph)3.« less

  9. Large drought-induced variations in oak leaf volatile organic compound emissions during PINOT NOIR 2012

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Geron, Chris; Gu, Lianhong; Daly, Ryan; Harley, Peter; Rasmussen, Rei; Seco, Roger; Guenther, Alex; Karl, Thomas

    2016-12-17

    Here, leaf-level isoprene and monoterpene emissions were collected and analyzed from five of the most abundant oak (Quercus) species in Central Missouri's Ozarks Region in 2012 during PINOT NOIR (Particle Investigations at a Northern Ozarks Tower – NOx, Oxidants, Isoprene Research). June measurements, prior to the onset of severe drought, showed isoprene emission rates and leaf temperature responses similar to those previously reported in the literature and used in Biogenic Volatile Organic Compound (BVOC) emission models. During the peak of the drought in August, isoprene emission rates were substantially reduced, and response to temperature was dramatically altered, especially for themore » species in the red oak subgenus (Erythrobalanus).« less

  10. Software solutions for emission monitoring

    SciTech Connect (OSTI)

    DeFriez, H.; Schillinger, S.; Seraji, H.

    1996-12-31

    Industry and state and federal environmental regulatory agencies are becoming ever more conciliatory due to the high cost of implementing the Clean Air Act Amendments of 1990 (CAAA) for the operation of Continuous Emissions Monitoring Systems (CEMS). In many cases the modifications do nothing to reduce emissions or even to measure the pollution, but simply let the source owner or operator and the permitting authority agree on a monitoring method and/or program. The EPA methods and standards developed under the Code of Federal Regulations (CFRs) have proven to be extremely costly and burdensome. Now, the USEPA and state agencies are making efforts to assure that emissions data has a strong technical basis to demonstrate compliance with regulations such as Title V.

  11. Nanostructured transition metal oxides useful for water oxidation catalysis

    DOE Patents [OSTI]

    Frei, Heinz M; Jiao, Feng

    2013-12-24

    The present invention provides for a composition comprising a nanostructured transition metal oxide capable of oxidizing two H.sub.2O molecules to obtain four protons. In some embodiments of the invention, the composition further comprises a porous matrix wherein the nanocluster of the transition metal oxide is embedded on and/or in the porous matrix.

  12. Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory - Calendar Year 1999 Emission Report

    SciTech Connect (OSTI)

    Zohner, S.K.

    2000-05-30

    This report presents the 1999 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradionuclide emissions estimates for stationary sources.

  13. Air emission inventory for the Idaho National Engineering Laboratory: 1994 emissions report

    SciTech Connect (OSTI)

    1995-07-01

    This report Presents the 1994 update of the Air Emission inventory for the Idaho National Engineering Laboratory (INEL). The INEL Air Emission Inventory documents sources and emissions of non-radionuclide pollutants from operations at the INEL. The report describes the emission inventory process and all of the sources at the INEL, and provides non-radionuclide emissions estimates for stationary sources.

  14. Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory - Calendar Year 1998 Emissions Report

    SciTech Connect (OSTI)

    S. K. Zohner

    1999-10-01

    This report presents the 1998 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradiological emissions estimates for stationary sources.

  15. Low emission internal combustion engine

    DOE Patents [OSTI]

    Karaba, Albert M.

    1979-01-01

    A low emission, internal combustion compression ignition engine having a cylinder, a piston movable in the cylinder and a pre-combustion chamber communicating with the cylinder near the top thereof and in which low emissions of NO.sub.x are achieved by constructing the pre-combustion chamber to have a volume of between 70% and 85% of the combined pre-chamber and main combustion chamber volume when the piston is at top dead center and by variably controlling the initiation of fuel injection into the pre-combustion chamber.

  16. Nano Catalysts for Diesel Engine Emission Remediation

    SciTech Connect (OSTI)

    Narula, Chaitanya Kumar; Yang, Xiaofan; Debusk, Melanie Moses; Mullins, David R; Mahurin, Shannon Mark; Wu, Zili

    2012-06-01

    The objective of this project was to develop durable zeolite nanocatalysts with broader operating temperature windows to treat diesel engine emissions to enable diesel engine based equipment and vehicles to meet future regulatory requirements. A second objective was to improve hydrothermal durability of zeolite catalysts to at least 675 C. The results presented in this report show that we have successfully achieved both objectives. Since it is accepted that the first step in NO{sub x} conversion under SCR (selective catalytic reduction) conditions involves NO oxidation to NO{sub 2}, we reasoned that catalyst modification that can enhance NO oxidation at low-temperatures should facilitate NO{sub x} reduction at low temperatures. Considering that Cu-ZSM-5 is a more efficient catalyst than Fe-ZSM-5 at low-temperature, we chose to modify Cu-ZSM-5. It is important to point out that the poor low-temperature efficiency of Fe-ZSM-5 has been shown to be due to selective absorption of NH{sub 3} at low-temperatures rather than poor NO oxidation activity. In view of this, we also reasoned that an increased electron density on copper in Cu-ZSM-5 would inhibit any bonding with NH{sub 3} at low-temperatures. In addition to modified Cu-ZSM-5, we synthesized a series of new heterobimetallic zeolites, by incorporating a secondary metal cation M (Sc{sup 3+}, Fe{sup 3+}, In{sup 3+}, and La{sup 3+}) in Cu exchanged ZSM-5, zeolite-beta, and SSZ-13 zeolites under carefully controlled experimental conditions. Characterization by diffuse-reflectance ultra-violet-visible spectroscopy (UV-Vis), X-ray powder diffraction (XRD), extended X-ray absorption fine structure spectroscopy (EXAFS) and electron paramagnetic resonance spectroscopy (EPR) does not permit conclusive structural determination but supports the proposal that M{sup 3+} has been incorporated in the vicinity of Cu(II). The protocols for degreening catalysts, testing under various operating conditions, and accelerated aging

  17. Greenhouse gases, Regulated Emissions, and Energy use in Transportation fuel-cyl

    SciTech Connect (OSTI)

    Wang, Michael

    2000-06-20

    The GREET model estimates the full fuel-cycle energy use and emissions associated with various transportation fuels and advanced vehile technologies applied to motor vehicles. GREET 1.5 includes the following cycles: petroleum to conventional gasoline, reformulated gasoline, conventional diesel, reformulated diesel, liquefied petroleum gas, and electricity via residual oil; natural gas to compressed natural gas, liquefied natural gas, liquefied petroleum gas, methanol, Fischer-Tropsch diesel, dimethyl ether, hydrogen, and electricity; coal to electricity; corn, woody biomass, and herbaceous biomass to ethanol; soybeans to biodiesel; flared gas to methanol, Fischer-Tropsch diesel, and dimethyl ether; and landfill gases to methanol. For a given fuel/transportation technology combination, GREET 1.5 calculates (1) the fuel-cycle consumption of total energy (all energy sources), fossil fuels (petroleum, natural gas, and coal), and petroleum; (2) the fuel-cycle emissions of GHGs -- primarily carbon dioxide (CO2), methane (CH4), and nitrous oxide (N20); and (3) the fuel-cycle emissions of five criteria pollutants: volatile organic compounds (VOCs), carbon monoxide (C0), nitrogen oxides (N0x), sulfur oxides (S0x), and particulate matter with a diameter measuring 10 micrometers or less (PM10). The model is designed to readily allow researchers to input their own assumptions and generate fuel-cycle energy and emission results for specified fuel/technology combinations.

  18. Greenhouse gases, Regulated Emissions, and Energy use in Transportation fuel-cyl

    Energy Science and Technology Software Center (OSTI)

    2000-06-20

    The GREET model estimates the full fuel-cycle energy use and emissions associated with various transportation fuels and advanced vehile technologies applied to motor vehicles. GREET 1.5 includes the following cycles: petroleum to conventional gasoline, reformulated gasoline, conventional diesel, reformulated diesel, liquefied petroleum gas, and electricity via residual oil; natural gas to compressed natural gas, liquefied natural gas, liquefied petroleum gas, methanol, Fischer-Tropsch diesel, dimethyl ether, hydrogen, and electricity; coal to electricity; corn, woody biomass, andmore » herbaceous biomass to ethanol; soybeans to biodiesel; flared gas to methanol, Fischer-Tropsch diesel, and dimethyl ether; and landfill gases to methanol. For a given fuel/transportation technology combination, GREET 1.5 calculates (1) the fuel-cycle consumption of total energy (all energy sources), fossil fuels (petroleum, natural gas, and coal), and petroleum; (2) the fuel-cycle emissions of GHGs -- primarily carbon dioxide (CO2), methane (CH4), and nitrous oxide (N20); and (3) the fuel-cycle emissions of five criteria pollutants: volatile organic compounds (VOCs), carbon monoxide (C0), nitrogen oxides (N0x), sulfur oxides (S0x), and particulate matter with a diameter measuring 10 micrometers or less (PM10). The model is designed to readily allow researchers to input their own assumptions and generate fuel-cycle energy and emission results for specified fuel/technology combinations.« less

  19. Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y; Curran, Scott; Barone, Teresa L; Lewis Sr, Samuel Arthur; Storey, John Morse; Cho, Kukwon; Wagner, Robert M; Parks, II, James E

    2010-01-01

    Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOx) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity- controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection system to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline to diesel fuel that gave the highest engine efficiency and lowest emissions. Engine-out emissions for aldehydes, ketones and PM were compared with emissions from conventional diesel combustion. Sampling and analysis was carried out following micro-tunnel dilution of the exhaust. Particle geometric mean diameter, number-size distribution, and total number concentration were measured by a scanning mobility particle sizer (SMPS). For the particle mass measurements, samples were collected on Teflon-coated quartz-fiber filters and analyzed gravimetrically. Gaseous aldehydes and ketones were sampled using dinitrophenylhydrazine-coated solid phase extraction cartridges and the extracts were analyzed by liquid chromatography/mass spectrometry (LC/MS). In addition, emissions after a diesel oxidation catalyst (DOC) were also measured to investigate the destruction of CO, HC and formaldehydes by the catalyst.

  20. Staged membrane oxidation reactor system

    DOE Patents [OSTI]

    Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

    2012-09-11

    Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.