Powered by Deep Web Technologies
Note: This page contains sample records for the topic "oxide conversion product" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

60: Depleted Uranium Oxide Conversion Product at the 60: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site Summary This site-specific EIS analyzes the construction, operation, maintenance, and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three alternative locations within the Portsmouth site; transportation of all cylinders (DUF6, enriched, and empty) currently stored at the East Tennessee Technology Park (ETTP) near Oak Ridge, Tennessee, to Portsmouth; construction of a new cylinder storage yard at Portsmouth (if required) for ETTP cylinders; transportation of depleted uranium conversion products and waste materials to a disposal facility; transportation and sale of the hydrogen fluoride

2

Documents: Disposal of DUF6 Conversion Products  

NLE Websites -- All DOE Office Websites (Extended Search)

DUF6 Conversion Products Search Documents: Search PDF Documents View a list of all documents Disposal of DUF6 Conversion Products PDF Icon Engineering Analysis for Disposal of...

3

Draft Supplement Analysis for Location(s) to Dispose of Depleted Uranium Oxide Conversion Product Generated from DOE'S Inventory of Depleted Uranium Hexafluoride  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DRAFT SUPPLEMENT ANALYSIS FOR LOCATION(S) TO DISPOSE OF DEPLETED DRAFT SUPPLEMENT ANALYSIS FOR LOCATION(S) TO DISPOSE OF DEPLETED URANIUM OXIDE CONVERSION PRODUCT GENERATED FROM DOE'S INVENTORY OF DEPLETED URANIUM HEXAFLUORIDE (DOE/EIS-0359-SA1 AND DOE/EIS-0360-SA1) March 2007 March 2007 i CONTENTS NOTATION........................................................................................................................... iv 1 INTRODUCTION AND BACKGROUND ................................................................. 1 1.1 Why DOE Has Prepared This Draft Supplement Analysis .............................. 1 1.2 Background ....................................................................................................... 3 1.3 Proposed Actions Considered in this Draft Supplement Analysis.................... 4

4

CRAD, Safety Basis - Y-12 Enriched Uranium Operations Oxide Conversion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Y-12 Enriched Uranium Operations Oxide Conversion Facility CRAD, Safety Basis - Y-12 Enriched Uranium Operations Oxide Conversion Facility January 2005 A section of Appendix C to...

5

CRAD, Management - Y-12 Enriched Uranium Operations Oxide Conversion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Y-12 Enriched Uranium Operations Oxide Conversion Facility CRAD, Management - Y-12 Enriched Uranium Operations Oxide Conversion Facility January 2005 A section of Appendix C to DOE...

6

CRAD, Training - Y-12 Enriched Uranium Operations Oxide Conversion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Y-12 Enriched Uranium Operations Oxide Conversion Facility CRAD, Training - Y-12 Enriched Uranium Operations Oxide Conversion Facility January 2005 A section of Appendix C to DOE G...

7

Non-oxidative conversion of methane with continuous hydorgen removal  

SciTech Connect

The objective is to overcome the restrictions of non-oxidative methane pyrolysis and oxidative coupling of methane by transferring hydrogen across a selective inorganic membrane between methane and air streams, without simultaneous transport of hydrocarbon reactants or products. This will make the overall reaction system exothermic, remove the thermodynamic barrier to high conversion, and eliminate the formation of carbon oxides. Our approach is to couple C-H bond activation and hydrogen removal by passage of hydrogen atoms through a dense ceramic membrane. In our membrane reactor, catalytic methane pyrolysis produces C2+ hydrogen carbons and aromatics on the one side of the membrane and hydrogen is removed through an oxide film and combusted with air on the opposite side. This process leads to a net reaction with the stoichiometry and thermodynamic properties of oxidative coupling, but without contact between the carbon atoms and oxygen species.

Borry, R.W. III [California Univ., Berkeley, CA (United States). Dept. of Chemical Engineering; Iglesia, E. [California Univ., Berkeley, CA (United States). Lawrence Berkeley Lab.

1997-12-31T23:59:59.000Z

8

CRAD, Management - Y-12 Enriched Uranium Operations Oxide Conversion  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Y-12 Enriched Uranium Operations Oxide Y-12 Enriched Uranium Operations Oxide Conversion Facility CRAD, Management - Y-12 Enriched Uranium Operations Oxide Conversion Facility January 2005 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of Management program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Management - Y-12 Enriched Uranium Operations Oxide Conversion Facility More Documents & Publications CRAD, DOE Oversight - Y-12 Enriched Uranium Operations Oxide Conversion

9

CRAD, Training - Y-12 Enriched Uranium Operations Oxide Conversion Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Y-12 Enriched Uranium Operations Oxide Conversion Y-12 Enriched Uranium Operations Oxide Conversion Facility CRAD, Training - Y-12 Enriched Uranium Operations Oxide Conversion Facility January 2005 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of the Training Program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Training - Y-12 Enriched Uranium Operations Oxide Conversion Facility More Documents & Publications CRAD, Conduct of Operations - Y-12 Enriched Uranium Operations Oxide

10

Simultaneous constraint and phase conversion processing of oxide superconductors  

DOE Patents (OSTI)

A method of making an oxide superconductor article includes subjecting an oxide superconductor precursor to a texturing operation to orient grains of the oxide superconductor precursor to obtain a highly textured precursor; and converting the textured oxide superconducting precursor into an oxide superconductor, while simultaneously applying a force to the precursor which at least matches the expansion force experienced by the precursor during phase conversion to the oxide superconductor. The density and the degree of texture of the oxide superconductor precursor are retained during phase conversion. The constraining force may be applied isostatically.

Li, Qi (Marlborough, MA); Thompson, Elliott D. (Coventry, RI); Riley, Jr., Gilbert N. (Marlborough, MA); Hellstrom, Eric E. (Madison, WI); Larbalestier, David C. (Madison, WI); DeMoranville, Kenneth L. (Jefferson, MA); Parrell, Jeffrey A. (Roselle Park, NJ); Reeves, Jodi L. (Madison, WI)

2003-04-29T23:59:59.000Z

11

Portsmouth DUF6 Conversion Final EIS - Appendix E: Impacts Associated with HF and CaF2 Conversion Product Sale and Use  

NLE Websites -- All DOE Office Websites (Extended Search)

Portsmouth DUF Portsmouth DUF 6 Conversion Final EIS APPENDIX E: IMPACTS ASSOCIATED WITH HF AND CaF 2 CONVERSION PRODUCT SALE AND USE HF and CaF 2 Conversion Products E-2 Portsmouth DUF 6 Conversion Final EIS HF and CaF 2 Conversion Products E-3 Portsmouth DUF 6 Conversion Final EIS APPENDIX E: IMPACTS ASSOCIATED WITH HF AND CaF 2 CONVERSION PRODUCT SALE AND USE E.1 INTRODUCTION During the conversion of the depleted uranium hexafluoride (DUF 6 ) inventory to depleted uranium oxide, products having some potential for sale to commercial users would be produced. These products would include aqueous hydrogen fluoride (HF) and calcium fluoride (CaF 2 , commonly referred to as fluorspar). These products are routinely used as commercial materials, and an investigation into their potential reuse was done; results are included as part of

12

Paducah DUF6 Conversion Final EIS - Appendix E: Impacts Associated with HF and CaF2 Conversion Product Sale and Use  

NLE Websites -- All DOE Office Websites (Extended Search)

Paducah DUF Paducah DUF 6 Conversion Final EIS APPENDIX E: IMPACTS ASSOCIATED WITH HF AND CaF 2 CONVERSION PRODUCT SALE AND USE HF and CaF 2 Conversion Products E-2 Paducah DUF 6 Conversion Final EIS HF and CaF 2 Conversion Products E-3 Paducah DUF 6 Conversion Final EIS APPENDIX E: IMPACTS ASSOCIATED WITH HF AND CaF 2 CONVERSION PRODUCT SALE AND USE E.1 INTRODUCTION During the conversion of the depleted uranium hexafluoride (DUF 6 ) inventory to depleted uranium oxide, products having some potential for sale to commercial users would be produced. These products would include aqueous hydrogen fluoride (HF) and calcium fluoride (CaF 2 , commonly referred to as fluorspar). These products are routinely used as commercial materials, and an investigation into their potential reuse was done; results are included as part of

13

CRAD, DOE Oversight - Y-12 Enriched Uranium Operations Oxide Conversion  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Oversight - Y-12 Enriched Uranium Operations Oxide DOE Oversight - Y-12 Enriched Uranium Operations Oxide Conversion Facility CRAD, DOE Oversight - Y-12 Enriched Uranium Operations Oxide Conversion Facility January 2005 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a DOE independent oversight assessment of the Y-12 Site Office's programs for oversight of its contractors at the Y-12 Enriched Uranium Operations Oxide Conversion Facility. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, DOE Oversight - Y-12 Enriched Uranium Operations Oxide Conversion Facility More Documents & Publications

14

Theoretical investigation of solar energy conversion and water oxidation catalysis  

E-Print Network (OSTI)

Solar energy conversion and water oxidation catalysis are two great scientific and engineering challenges that will play pivotal roles in a future sustainable energy economy. In this work, I apply electronic structure ...

Wang, Lee-Ping

2011-01-01T23:59:59.000Z

15

Complex oxides useful for thermoelectric energy conversion  

SciTech Connect

The invention provides for a thermoelectric system comprising a substrate comprising a first complex oxide, wherein the substrate is optionally embedded with a second complex oxide. The thermoelectric system can be used for thermoelectric power generation or thermoelectric cooling.

Majumdar, Arunava (Orinda, CA); Ramesh, Ramamoorthy (Moraga, CA); Yu, Choongho (College Station, TX); Scullin, Matthew L. (Berkeley, CA); Huijben, Mark (Enschede, NL)

2012-07-17T23:59:59.000Z

16

CHEMICAL TRAPPING OF A PRIMARY QUANTUM CONVERSION PRODUCT IN PHOTOSYNTHESIS  

E-Print Network (OSTI)

CONVERSION PRODUCT I N PHOTOSYNTHESIS G e r a l d A. C o r kthe two light acts of photosynthesis. Potassium Ecrricyanide

Corker, Gerald A.; Klein, Melvin P.; Calvin, Melvin.

2008-01-01T23:59:59.000Z

17

Conversion of mixed plutonium-uranium oxides. [COPRECAL  

SciTech Connect

Coprocessing is among the several reprocessing schemes being considered to improve the proliferation resistance of the back end of the nuclear fuel cycle. Coconversion of mixed oxides has been developed but not demonstrated on a production scale. AGNS developed a preliminary conceptual design for a production scale facility to convert mixed plutonium-uranium nitrate to the mixed oxide.

Thomas, L.L.

1980-04-01T23:59:59.000Z

18

Cholesterol and Phytosterol Oxidation Products  

Science Conference Proceedings (OSTI)

This book comprehensively reviews several aspects of cholesterol oxidation products: cholesterol oxidation mechanisms, analytical determination, origin and content of these compounds in foods and biological samples, and their biological effects, with an em

19

Conversion and Blending Facility highly enriched uranium to low enriched uranium as oxide. Revision 1  

SciTech Connect

This Conversion and Blending Facility (CBF) will have two missions: (1) convert HEU materials into pure HEU oxide and (2) blend the pure HEU oxide with depleted and natural uranium oxide to produce an LWR grade LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. To the extent practical, the chemical and isotopic concentrations of blended LEU product will be held within the specifications required for LWR fuel. Such blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry. Otherwise, blended LEU will be produced as a waste suitable for storage or disposal.

1995-07-05T23:59:59.000Z

20

Coal conversion wastewater treatment by catalytic oxidation in supercritical water  

SciTech Connect

Wastewaters from coal-conversion processes contain phenolic compounds in appreciable concentrations. These compounds need to be removed so that the water can be discharged or re-used. Catalytic oxidation in supercritical water is one potential means of treating coal-conversion wastewaters, and this project examined the reactions of phenol over different heterogeneous oxidation catalysts in supercritical water. More specifically, the authors examined the oxidation of phenol over a commercial catalyst and over bulk MnO{sub 2}, bulk TiO{sub 2}, and CuO supported on Al{sub 2}O{sub 3}. They used phenol as the model pollutant because it is ubiquitous in coal-conversion wastewaters and there is a large database for non-catalytic supercritical water oxidation (SCWO) with which they can contrast results from catalytic SCWO. The overall objective of this research project is to obtain the reaction engineering information required to evaluate the utility of catalytic supercritical water oxidation for treating wastes arising from coal conversion processes. All four materials were active for catalytic supercritical water oxidation. Indeed, all four materials produced phenol conversions and CO{sub 2} yields in excess of those obtained from purely homogeneous, uncatalyzed oxidation reactions. The commercial catalyst was so active that the authors could not reliably measure reaction rates that were not limited by pore diffusion. Therefore, they performed experiments with bulk transition metal oxides. The bulk MnO{sub 2} and TiO{sub 2} catalysts enhance both the phenol disappearance and CO{sub 2} formation rates during SCWO. MnO{sub 2} does not affect the selectivity to CO{sub 2}, or to the phenol dimers at a given phenol conversion. However, the selectivities to CO{sub 2} are increased and the selectivities to phenol dimers are decreased in the presence of TiO{sub 2}, which are desirable trends for a catalytic SCWO process. The role of the catalyst appears to be accelerating the rate of formation of phenoxy radicals, which then react in the fluid phase by the same mechanism operative for non-catalytic SCWO of phenol. The rates of phenol disappearance and CO{sub 2} formation are sensitive to the phenol and O{sub 2} concentrations, but independent of the water density. Power-law rate expressions were developed to correlate the catalytic kinetics. The catalytic kinetics were also consistent with a Langmuir-Hinshelwood rate law derived from a dual-site mechanism comprising the following steps: reversible adsorption of phenol on one type of catalytic site, reversible dissociative adsorption of oxygen on a different type of site, and irreversible, rate-determining surface reaction between adsorbed phenol and adsorbed oxygen.

Phillip E. Savage

1999-10-20T23:59:59.000Z

Note: This page contains sample records for the topic "oxide conversion product" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

COAL CONVERSION WASTEWATER TREATMENT BY CATALYTIC OXIDATION IN SUPERCRITICAL WATER  

SciTech Connect

Wastewaters from coal-conversion processes contain phenolic compounds in appreciable concentrations. These compounds need to be removed so that the water can be discharged or re-used. Catalytic oxidation in supercritical water is one potential means of treating coal-conversion wastewaters, and this project examined the reactions of phenol over different heterogeneous oxidation catalysts in supercritical water. More specifically, we examined the oxidation of phenol over a commercial catalyst and over bulk MnO{sub 2}, bulk TiO{sub 2}, and CuO supported on Al{sub 2} O{sub 3}. We used phenol as the model pollutant because it is ubiquitous in coal-conversion wastewaters and there is a large database for non-catalytic supercritical water oxidation (SCWO) with which we can contrast results from catalytic SCWO. The overall objective of this research project is to obtain the reaction engineering information required to evaluate the utility of catalytic supercritical water oxidation for treating wastes arising from coal conversion processes. All four materials were active for catalytic supercritical water oxidation. Indeed, all four materials produced phenol conversions and CO{sub 2} yields in excess of those obtained from purely homogeneous, uncatalyzed oxidation reactions. The commercial catalyst was so active that we could not reliably measure reaction rates that were not limited by pore diffusion. Therefore, we performed experiments with bulk transition metal oxides. The bulk MnO{sub 2} and TiO{sub 2} catalysts enhance both the phenol disappearance and CO{sub 2} formation rates during SCWO. MnO{sub 2} does not affect the selectivity to CO{sub 2}, or to the phenol dimers at a given phenol conversion. However, the selectivities to CO{sub 2} are increased and the selectivities to phenol dimers are decreased in the presence of TiO{sub 2} , which are desirable trends for a catalytic SCWO process. The role of the catalyst appears to be accelerating the rate of formation of phenoxy radicals, which then react in the fluid phase by the same mechanism operative for non-catalytic SCWO of phenol. The rates of phenol disappearance and CO{sub 2} formation are sensitive to the phenol and O{sub 2} concentrations, but independent of the water density. Power-law rate expressions were developed to correlate the catalytic kinetics. The catalytic kinetics were also consistent with a Langmuir-Hinshelwood rate law derived from a dual-site mechanism comprising the following steps: reversible adsorption of phenol on one type of catalytic site, reversible dissociative adsorption of oxygen on a different type of site, and irreversible, rate-determining surface reaction between adsorbed phenol and adsorbed oxygen.

Phillip E. Savage

1999-10-18T23:59:59.000Z

22

Slurry calcination process for conversion of aqueous uranium and plutonium to a mixed oxide powder  

SciTech Connect

Pilot plant studies indicate that a slurry calcination process for conversion of uranium and plutonium solutions to a mixed oxide powder can be operated at a plant scale.

Jones, M K; Jenkins, W J

1980-01-01T23:59:59.000Z

23

CONVERSION OF RUSSIAN WEAPON-GRADE PLUTONIUM INTO OXIDE FOR MIXED OXIDE (MOX) FUEL FABRICATION.  

SciTech Connect

Progress has been made in the Russian Federation towards the conversion of weapons-grade plutonium (w-Pu) into plutonium oxide (PuO{sub 2}) suitable for further manufacture into mixed oxide (MOX) fuels. This program is funded both by French Commissariat x 1'Energie Atomique (CEA) and the US National Nuclear Security Administration (NNSA). The French program was started as a way to make available their expertise gained from manufacturing MOX fuel. The US program was started in 1998 in response to US proliferation concerns and the acknowledged international need to decrease available w-Pu. Russia has selected both the conversion process and the manufacturing site. This paper discusses the present state of development towards fulfilling this mission: the demonstration plant designed to process small amounts of Pu and validate all process stages and the industrial plant that will process up to 5 metric tons of Pu per year.

Glagovski, E.; Kolotilov, Y.; Glagolenko, Y.; Zygmunt, Stanley J.; Mason, C. F. V. (Caroline F. V.); Hahn, W. K. (Wendy K.); Durrer, R. E. (Russell E.); Thomas, S.; Sicard, B.; Herlet, N.; Fraize, G.; Villa, A.

2001-01-01T23:59:59.000Z

24

CATALYTIC CONVERSION OF SOLVENT REFINED COAL TO LIQUID PRODUCTS  

E-Print Network (OSTI)

and Friedman, S. ,"Conversion of Anthraxylon - Kinetics ofiv- LBL 116807 CATALYTIC CONVERSION OF SOLVENT REFINED COALand Mechanisms of Coal Conversion to Clean Fuel,iI pre-

Tanner, K.I.

2010-01-01T23:59:59.000Z

25

Cholesterol and Phytosterol Oxidation ProductsChapter 6 Harmonization of Cholesterol Oxidation Product Analysis  

Science Conference Proceedings (OSTI)

Cholesterol and Phytosterol Oxidation Products Chapter 6 Harmonization of Cholesterol Oxidation Product Analysis Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - Biochemistry Press

26

Cholesterol and Phytosterol Oxidation ProductsChapter 14 Cholesterol Oxidation Products: Other Biological Effects  

Science Conference Proceedings (OSTI)

Cholesterol and Phytosterol Oxidation Products Chapter 14 Cholesterol Oxidation Products: Other Biological Effects Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - Biochemistry Press

27

Cholesterol and Phytosterol Oxidation ProductsChapter 13 Cholesterol Oxidation Products and Atherosclerosis  

Science Conference Proceedings (OSTI)

Cholesterol and Phytosterol Oxidation Products Chapter 13 Cholesterol Oxidation Products and Atherosclerosis Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - Biochemistry Press ...

28

AC conductivity of nanoporous metal-oxide photoanodes for solar energy conversion  

E-Print Network (OSTI)

AC conductivity of nanoporous metal-oxide photoanodes for solar energy conversion Steven J. Konezny and SnO2 play a central role in solar energy conversion applications.1­7 In fact, the discovery of low-cost high-efficiency dye-sensitized solar cells (DSSCs) (i.e., exceeding 10% solar-to-electric energy

29

Production and Handling Slide 18: Conversion of Yellow Cake to...  

NLE Websites -- All DOE Office Websites (Extended Search)

last step of the conversion process involves the chemical conversion of uranium tetrafluoride UF4 to uranium hexafluoride UF6 using fluorine F2. Slide 1...

30

HEU to LEU conversion and blending facility: Metal blending alternative to produce LEU oxide for disposal  

SciTech Connect

US DOE is examining options for disposing of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. The nuclear material is converted to a form more proliferation- resistant than the original form. Blending HEU (highly enriched uranium) with less-enriched uranium to form LEU has been proposed as a disposition option. Five technologies are being assessed for blending HEU. This document provides data to be used in environmental impact analysis for the HEU-LEU disposition option that uses metal blending with an oxide waste product. It is divided into: mission and assumptions, conversion and blending facility descriptions, process descriptions and requirements, resource needs, employment needs, waste and emissions from plant, hazards discussion, and intersite transportation.

1995-09-01T23:59:59.000Z

31

Direct Conversion of Bio-ethanol to Isobutene on Nanosized ZnxZryOz Mixed Oxides with Balanced Acid–Base Sites  

Science Conference Proceedings (OSTI)

Bio-mass conversion has attracted increasing research interests to produce bio-fuels with bio-ethanol being a major product. Development of advanced processes to further upgrade bio-ethanol to other value added fuels or chemicals are pivotal to improving the economics of biomass conversion and deversifying the utilization of biomass resources. In this paper, for the first time, we report the direct conversion of bio-ethanol to isobutene with high yield (~83%) on a multifunctional ZnxZryOz mixed oxide with a dedicated balance of surface acid-base properties. This work illustrates the significance of rational design of a multifunctional mixed oxide catalyst for one step bio-ethanol conversion to a value-added intermediate, isobutene, for chemical and fuel production. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

Sun, Junming; Zhu, Kake; Gao, Feng; Wang, Chong M.; Liu, Jun; Peden, Charles HF; Wang, Yong

2011-06-17T23:59:59.000Z

32

Cholesterol and Phytosterol Oxidation ProductsChapter 3 Determination of Cholesterol Oxidation Products by Gas Chromatography  

Science Conference Proceedings (OSTI)

Cholesterol and Phytosterol Oxidation Products Chapter 3 Determination of Cholesterol Oxidation Products by Gas Chromatography Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - Biochemi

33

Cholesterol and Phytosterol Oxidation ProductsChapter 2 Extraction and Purification of Cholesterol Oxidation Products  

Science Conference Proceedings (OSTI)

Cholesterol and Phytosterol Oxidation Products Chapter 2 Extraction and Purification of Cholesterol Oxidation Products Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - Biochemistry Pr

34

Production and Handling Slide 8: Conversion of Yellow Cake to...  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion of Yellow Cake to UF6 Skip Presentation Navigation First Slide Previous Slide Next Slide Last Presentation Table of Contents Conversion of Yellow Cake to UF6 Refer to...

35

Production and Handling Slide 10: Conversion of Yellow Cake to...  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion of Yellow Cake to UF6 Skip Presentation Navigation First Slide Previous Slide Next Slide Last Presentation Table of Contents Conversion of Yellow Cake to UF6 Refer to...

36

Production and Handling Slide 12: Conversion of Yellow Cake to...  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion of Yellow Cake to UF6 Skip Presentation Navigation First Slide Previous Slide Next Slide Last Presentation Table of Contents Conversion of Yellow Cake to UF6 Refer to...

37

Cholesterol and Phytosterol Oxidation ProductsChapter 9 Formation and Content of Cholesterol Oxidation Products in Meat and Meat Products  

Science Conference Proceedings (OSTI)

Cholesterol and Phytosterol Oxidation Products Chapter 9 Formation and Content of Cholesterol Oxidation Products in Meat and Meat Products Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutritio

38

Cholesterol and Phytosterol Oxidation ProductsChapter 8 Formation and Content of Cholesterol Oxidation Products in Milk and Dairy Products  

Science Conference Proceedings (OSTI)

Cholesterol and Phytosterol Oxidation Products Chapter 8 Formation and Content of Cholesterol Oxidation Products in Milk and Dairy Products Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutriti

39

Cholesterol and Phytosterol Oxidation ProductsChapter 10 Formation and Content of Cholesterol Oxidation Products in Seafood and Seafood Products  

Science Conference Proceedings (OSTI)

Cholesterol and Phytosterol Oxidation Products Chapter 10 Formation and Content of Cholesterol Oxidation Products in Seafood and Seafood Products Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - N

40

Cholesterol and Phytosterol Oxidation ProductsChapter 7 Formation and Content of Cholesterol Oxidation Products in Egg and Egg Products  

Science Conference Proceedings (OSTI)

Cholesterol and Phytosterol Oxidation Products Chapter 7 Formation and Content of Cholesterol Oxidation Products in Egg and Egg Products Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition

Note: This page contains sample records for the topic "oxide conversion product" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

HEU to LEU conversion and blending facility: UNH blending alternative to produce LEU oxide for disposal  

SciTech Connect

The United States Department of Energy (DOE) is examining options for the disposition of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. Disposition is a process of use or disposal of material that results in the material being converted to a form that is substantially and inherently more proliferation-resistant than is the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. This report provides data to be used in the environmental impact analysis for the uranyl nitrate hexahydrate blending option to produce oxide for disposal. This the Conversion and Blending Facility (CBF) alternative will have two missions (1) convert HEU materials into HEU uranyl nitrate (UNH) and (2) blend the HEU uranyl nitrate with depleted and natural assay uranyl nitrate to produce an oxide that can be stored until an acceptable disposal approach is available. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal.

1995-09-01T23:59:59.000Z

42

Process for chemical reaction of amino acids and amides yielding selective conversion products  

DOE Patents (OSTI)

The invention relates to processes for converting amino acids and amides to desirable conversion products including pyrrolidines, pyrrolidinones, and other N-substituted products. L-glutamic acid and L-pyroglutamic acid provide general reaction pathways to numerous and valuable selective conversion products with varied potential industrial uses.

Holladay, Jonathan E. (Kennewick, WA)

2006-05-23T23:59:59.000Z

43

Conversion of hazardous materials using supercritical water oxidation  

DOE Patents (OSTI)

A process for destruction of hazardous materials in a medium of supercritical water without the addition of an oxidant material. The hazardous material is converted to simple compounds which are relatively benign or easily treatable to yield materials which can be discharged into the environment. Treatment agents may be added to the reactants in order to bind certain materials, such as chlorine, in the form of salts or to otherwise facilitate the destruction reactions.

Rofer, C.K.; Buelow, S.J.; Dyer, R.B.; Wander, J.D.

1991-03-29T23:59:59.000Z

44

Conversion of hazardous materials using supercritical water oxidation  

DOE Patents (OSTI)

A process for destruction of hazardous materials in a medium of supercritical water without the addition of an oxidant material. The harzardous material is converted to simple compounds which are relatively benign or easily treatable to yield materials which can be discharged into the environment. Treatment agents may be added to the reactants in order to bind certain materials, such as chlorine, in the form of salts or to otherwise facilitate the destruction reactions.

Rofer, Cheryl K. (Los Alamos, NM); Buelow, Steven J. (Los Alamos, NM); Dyer, Richard B. (Los Alamos, NM); Wander, Joseph D. (Parker, FL)

1992-01-01T23:59:59.000Z

45

SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL  

DOE Green Energy (OSTI)

The objective of Phase I under this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with the option of piped-in water (Demonstration System A). Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine. This technical progress report covers work performed by Delphi from January 1, 2003 to June 30, 2003, under Department of Energy Cooperative Agreement DE-FC-02NT41246. This report highlights technical results of the work performed under the following tasks: Task 1 System Design and Integration; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant (BOP) Components; Task 5 Manufacturing Development (Privately Funded); Task 6 System Fabrication; Task 7 System Testing; Task 8 Program Management; and Task 9 Stack Testing with Coal-Based Reformate.

Steven Shaffer; Sean Kelly; Subhasish Mukerjee; David Schumann; Gail Geiger; Kevin Keegan; John Noetzel; Larry Chick

2003-12-08T23:59:59.000Z

46

SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL  

DOE Green Energy (OSTI)

The objective of this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with the option of piped-in water (Demonstration System A). Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine. This technical progress report covers work performed by Delphi from July 1, 2003 to December 31, 2003, under Department of Energy Cooperative Agreement DE-FC-02NT41246. This report highlights technical results of the work performed under the following tasks: Task 1 System Design and Integration; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant (BOP) Components; Task 5 Manufacturing Development (Privately Funded); Task 6 System Fabrication; Task 7 System Testing; Task 8 Program Management; Task 9 Stack Testing with Coal-Based Reformate; and Task 10 Technology Transfer from SECA CORE Technology Program. In this reporting period, unless otherwise noted Task 6--System Fabrication and Task 7--System Testing will be reported within Task 1 System Design and Integration. Task 8--Program Management, Task 9--Stack Testing with Coal Based Reformate, and Task 10--Technology Transfer from SECA CORE Technology Program will be reported on in the Executive Summary section of this report.

Steven Shaffer; Sean Kelly; Subhasish Mukerjee; David Schumann; Gail Geiger; Kevin Keegan; Larry Chick

2004-05-07T23:59:59.000Z

47

CRAD, Radiological Controls- Y-12 Enriched Uranium Operations Oxide Conversion Facility  

Energy.gov (U.S. Department of Energy (DOE))

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of the Radiation Protection Program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

48

Novel Solar Energy Conversion Materials by Design of Mn(II) Oxides  

Science Conference Proceedings (OSTI)

Solar energy conversion materials need to fulfill simultaneously a number of requirements in regard of their band-structure, optical properties, carrier transport, and doping. Despite their desirable chemical properties, e.g., for photo-electrocatalysis, transition-metal oxides usually do not have desirable semiconducting properties. Instead, oxides with open cation d-shells are typically Mott or charge-transfer insulators with notoriously poor transport properties, resulting from large effective electron/hole masses or from carrier self-trapping. Based on the notion that the electronic structure features (p-d interaction) supporting the p-type conductivity in d10 oxides like Cu2O and CuAlO2 occurs in a similar fashion also in the d5 (high-spin) oxides, we recently studied theoretically the band-structure and transport properties of the prototypical binary d5 oxides MnO and Fe2O3 [PRB 85, 201202(R)]. We found that MnO tends to self-trap holes by forming Mn+III, whereas Fe2O3 self-traps electrons by forming Fe+II. However, the self-trapping of holes is suppressed by when Mn is tetrahedrally coordinated, which suggests specific routes to design novel solar conversion materials by considering ternary Mn(II) oxides or oxide alloys. We are presenting theory, synthesis, and initial characterization for these novel energy materials.

Lany, S.; Peng, H.; Ndione, P.; Zakutayev, A.; Ginley, D. S.

2013-01-01T23:59:59.000Z

49

Oxidation of Mercury in Products of Coal Combustion  

SciTech Connect

Laboratory measurements of mercury oxidation during selective catalytic reduction (SCR) of nitric oxide, simulation of pilot-scale measurements of mercury oxidation and adsorption by unburned carbon and fly ash, and synthesis of new materials for simultaneous oxidation and adsorption of mercury, were performed in support of the development of technology for control of mercury emissions from coal-fired boilers and furnaces. Conversion of gas-phase mercury from the elemental state to water-soluble oxidized form (HgCl{sub 2}) enables removal of mercury during wet flue gas desulfurization. The increase in mercury oxidation in a monolithic V{sub 2}O{sub 5}-WO{sub 3}/TiO{sub 2} SCR catalyst with increasing HCl at low levels of HCl (< 10 ppmv) and decrease in mercury oxidation with increasing NH{sub 3}/NO ratio during SCR were consistent with results of previous work by others. The most significant finding of the present work was the inhibition of mercury oxidation in the presence of CO during SCR of NO at low levels of HCl. In the presence of 2 ppmv HCl, expected in combustion products from some Powder River Basin coals, an increase in CO from 0 to 50 ppmv reduced the extent of mercury oxidation from 24 {+-} 3 to 1 {+-} 4%. Further increase in CO to 100 ppmv completely suppressed mercury oxidation. In the presence of 11-12 ppmv HCl, increasing CO from 0 to {approx}120 ppmv reduced mercury oxidation from {approx}70% to 50%. Conversion of SO{sub 2} to sulfate also decreased with increasing NH{sub 3}/NO ratio, but the effects of HCl and CO in flue gas on SO{sub 2} oxidation were unclear. Oxidation and adsorption of mercury by unburned carbon and fly ash enables mercury removal in a particulate control device. A chemical kinetic mechanism consisting of nine homogeneous and heterogeneous reactions for mercury oxidation and removal was developed to interpret pilot-scale measurements of mercury oxidation and adsorption by unburned carbon and fly ash in experiments at pilot scale, burning bituminous coals (Gale, 2006) and blends of bituminous coals with Powder River Basin coal (Gale, 2005). The removal of mercury by fly ash and unburned carbon in the flue gas from combustion of the bituminous coals and blends was reproduced with satisfactory accuracy by the model. The enhancement of mercury capture in the presence of calcium (Gale, 2005) explained a synergistic effect of blending on mercury removal across the baghouse. The extent of mercury oxidation, on the other hand, was not so well described by the simulation, because of oversensitivity of the oxidation process in the model to the concentration of unburned carbon. Combined catalysts and sorbents for oxidation and removal of mercury from flue gas at low temperature were based on surfactant-templated silicas containing a transition metal and an organic functional group. The presence of both metal ions and organic groups within the pore structure of the materials is expected to impart to them the ability to simultaneously oxidize elemental mercury and adsorb the resulting oxidized mercury. Twelve mesoporous organosilicate catalysts/sorbents were synthesized, with and without metals (manganese, titanium, vanadium) and organic functional groups (aminopropyl, chloropropyl, mercaptopropyl). Measurement of mercury oxidation and adsorption by the candidate materials remains for future work.

Peter Walsh; Giang Tong; Neeles Bhopatkar; Thomas Gale; George Blankenship; Conrad Ingram; Selasi Blavo Tesfamariam Mehreteab; Victor Banjoko; Yohannes Ghirmazion; Heng Ban; April Sibley

2009-09-14T23:59:59.000Z

50

Production and Handling Slide 14: Conversion of Yellow Cake to...  

NLE Websites -- All DOE Office Websites (Extended Search)

Uranium dioxide UO2, called "brown oxide," is formed by reducing ammonium diuranate (NH4)2U2O7 by the addition of hydrogen. Slide 14...

51

Integrated Biomass Gasification with Catalytic Partial Oxidation for Selective Tar Conversion  

SciTech Connect

Biomass gasification is a flexible and efficient way of utilizing widely available domestic renewable resources. Syngas from biomass has the potential for biofuels production, which will enhance energy security and environmental benefits. Additionally, with the successful development of low Btu fuel engines (e.g. GE Jenbacher engines), syngas from biomass can be efficiently used for power/heat co-generation. However, biomass gasification has not been widely commercialized because of a number of technical/economic issues related to gasifier design and syngas cleanup. Biomass gasification, due to its scale limitation, cannot afford to use pure oxygen as the gasification agent that used in coal gasification. Because, it uses air instead of oxygen, the biomass gasification temperature is much lower than well-understood coal gasification. The low temperature leads to a lot of tar formation and the tar can gum up the downstream equipment. Thus, the biomass gasification tar removal is a critical technology challenge for all types of biomass gasifiers. This USDA/DOE funded program (award number: DE-FG36-O8GO18085) aims to develop an advanced catalytic tar conversion system that can economically and efficiently convert tar into useful light gases (such as syngas) for downstream fuel synthesis or power generation. This program has been executed by GE Global Research in Irvine, CA, in collaboration with Professor Lanny Schmidt's group at the University of Minnesota (UoMn). Biomass gasification produces a raw syngas stream containing H2, CO, CO2, H2O, CH4 and other hydrocarbons, tars, char, and ash. Tars are defined as organic compounds that are condensable at room temperature and are assumed to be largely aromatic. Downstream units in biomass gasification such as gas engine, turbine or fuel synthesis reactors require stringent control in syngas quality, especially tar content to avoid plugging (gum) of downstream equipment. Tar- and ash-free syngas streams are a critical requirement for commercial deployment of biomass-based power/heat co-generation and biofuels production. There are several commonly used syngas clean-up technologies: (1) Syngas cooling and water scrubbing has been commercially proven but efficiency is low and it is only effective at small scales. This route is accompanied with troublesome wastewater treatment. (2) The tar filtration method requires frequent filter replacement and solid residue treatment, leading to high operation and capital costs. (3) Thermal destruction typically operates at temperatures higher than 1000oC. It has slow kinetics and potential soot formation issues. The system is expensive and materials are not reliable at high temperatures. (4) In-bed cracking catalysts show rapid deactivation, with durability to be demonstrated. (5) External catalytic cracking or steam reforming has low thermal efficiency and is faced with problematic catalyst coking. Under this program, catalytic partial oxidation (CPO) is being evaluated for syngas tar clean-up in biomass gasification. The CPO reaction is exothermic, implying that no external heat is needed and the system is of high thermal efficiency. CPO is capable of processing large gas volume, indicating a very compact catalyst bed and a low reactor cost. Instead of traditional physical removal of tar, the CPO concept converts tar into useful light gases (eg. CO, H2, CH4). This eliminates waste treatment and disposal requirements. All those advantages make the CPO catalytic tar conversion system a viable solution for biomass gasification downstream gas clean-up. This program was conducted from October 1 2008 to February 28 2011 and divided into five major tasks. - Task A: Perform conceptual design and conduct preliminary system and economic analysis (Q1 2009 ~ Q2 2009) - Task B: Biomass gasification tests, product characterization, and CPO tar conversion catalyst preparation. This task will be conducted after completing process design and system economics analysis. Major milestones include identification of syngas cleaning requirements for proposed system

Zhang, Lingzhi; Wei, Wei; Manke, Jeff; Vazquez, Arturo; Thompson, Jeff; Thompson, Mark

2011-05-28T23:59:59.000Z

52

Coordinated safeguards for materials management in a nitrate-to-oxide conversion facility  

SciTech Connect

The conceptual design of a materials management system for safeguarding special nuclear materials in a plutonium nitrate-to-oxide conversion facility is developed and evaluated. Dynamic material balances are drawn from information provided by nondestructive-analysis techniques, process-control instrumentation, and conventional chemical analyses augmented by process-monitoring devices. Powerful statistical methods, cast in the framework of decision analysis and applied to unit-process accounting areas, ensure adequate spatial and temporal quantification of possible diversion with minimal process disruption. Modeling and simulation techniques assist in evaluating the sensitivity of the system to various diversion schemes and in comparing safeguards strategies. Features that would improve the safeguardability of the conversion process are discussed.

Dayem, H.A.; Cobb, D.D.; Dietz, R.J.; Hakkila, E.A.; Kern, E.A.; Shipley, J.P.; Smith, D.B.; Bowersox, D.F.

1977-09-01T23:59:59.000Z

53

Cholesterol and Phytosterol Oxidation ProductsChapter 1 Cholesterol Oxidation Mechanisms  

Science Conference Proceedings (OSTI)

Cholesterol and Phytosterol Oxidation Products Chapter 1 Cholesterol Oxidation Mechanisms Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - Biochemistry Press   ...

54

Removal of NOx or its conversion into harmless gases by charcoals and composites of metal oxides  

SciTech Connect

In recent years, much attention has been devoted to environmental problems such as acid rain, photochemical smog and water pollution. In particular, NOx emissions from factories, auto mobiles, etc. in urban areas have become worse. To solve these problems on environmental pollution on a global scale, the use of activated charcoal to reduce air pollutants is increasing. However, the capability of wood-based charcoal materials is not yet fully known. The removal of NOx or its conversion into harmless gases such as N{sub 2} should be described. In this study, the adsorption of NO over wood charcoal or metal oxide-dispersed wood charcoal was investigated. In particular, carbonized wood powder of Sugi (Cryptomeria japonica D. Don) was used to study the effectivity of using these materials in adsorbing NOx. Since wood charcoal is chemically stable, metal oxide with the ability of photocatalysis was dispersed into wood charcoal to improve its adsorption and capability to use the light energy effectively.

Ishihara, Shigehisa; Furutsuka, Takeshi [Kyoto Univ. (Japan)

1996-12-31T23:59:59.000Z

55

SOLID STATE ENERGY CONVERSION ALLIANCE (SECA) SOLID OXIDE FUEL CELL PROGRAM  

DOE Green Energy (OSTI)

This report summarizes the work performed for April 2003--September 2003 reporting period under Cooperative Agreement DE-FC26-01NT41245 for the U.S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid State Energy Conversion Alliance (SECA) Solid oxide Fuel Cell Program''. During this reporting period, the conceptual system design activity was completed. The system design, including strategies for startup, normal operation and shutdown, was defined. Sealant and stack materials for the solid oxide fuel cell (SOFC) stack were identified which are capable of meeting the thermal cycling and degradation requirements. A cell module was tested which achieved a stable performance of 0.238 W/cm{sup 2} at 95% fuel utilization. The external fuel processor design was completed and fabrication begun. Several other advances were made on various aspects of the SOFC system, which are detailed in this report.

Nguyen Minh; Jim Powers

2003-10-01T23:59:59.000Z

56

SOLID STATE ENERGY CONVERSION ALLIANCE (SECA) SOLID OXIDE FUEL CELL PROGRAM  

DOE Green Energy (OSTI)

This report summarizes the progress made during the September 2001-March 2002 reporting period under Cooperative Agreement DE-FC26-01NT41245 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program''. The program focuses on the development of a low-cost, high-performance 3-to-10-kW solid oxide fuel cell (SOFC) system suitable for a broad spectrum of power-generation applications. The overall objective of the program is to demonstrate a modular SOFC system that can be configured to create highly efficient, cost-competitive, and environmentally benign power plants tailored to specific markets. When fully developed, the system will meet the efficiency, performance, life, and cost goals for future commercial power plants.

Unknown

2003-06-01T23:59:59.000Z

57

Recovery of C/sub 3/. sqrt. hydrocarbon conversion products and net excess hydrogen in a catalytic reforming process  

Science Conference Proceedings (OSTI)

This invention relates to a hydrocarbon conversion process effected in the presence of hydrogen, especially a hydrogenproducing hydrocarbon conversion process. More particularly, this invention relates to the catalytic reforming of a naphtha feedstock, and is especially directed to an improved recovery of the net excess hydrogen, and to an improved recovery of a C/sub 3/..sqrt.. normally gaseous hydrocarbon conversion product and a C/sub 5/..sqrt.. hydrocarbon conversion product boiling in the gasoline range.

Degraff, R.R.; Peters, K.D.

1982-12-21T23:59:59.000Z

58

Conversion of geothermal waste to commercial products including silica  

DOE Patents (OSTI)

A process for the treatment of geothermal residue includes contacting the pigmented amorphous silica-containing component with a depigmenting reagent one or more times to depigment the silica and produce a mixture containing depigmented amorphous silica and depigmenting reagent containing pigment material; separating the depigmented amorphous silica and from the depigmenting reagent to yield depigmented amorphous silica. Before or after the depigmenting contacting, the geothermal residue or depigmented silica can be treated with a metal solubilizing agent to produce another mixture containing pigmented or unpigmented amorphous silica-containing component and a solubilized metal-containing component; separating these components from each other to produce an amorphous silica product substantially devoid of metals and at least partially devoid of pigment. The amorphous silica product can be neutralized and thereafter dried at a temperature from about 25.degree. C. to 300.degree. C. The morphology of the silica product can be varied through the process conditions including sequence contacting steps, pH of depigmenting reagent, neutralization and drying conditions to tailor the amorphous silica for commercial use in products including filler for paint, paper, rubber and polymers, and chromatographic material.

Premuzic, Eugene T. (East Moriches, NY); Lin, Mow S. (Rocky Point, NY)

2003-01-01T23:59:59.000Z

59

Engineering Thermotolerant Biocatalysts for Biomass Conversion to Products  

DOE Green Energy (OSTI)

Lignocellulosic biomass is a promising feedstock for producing renewable chemicals and transportation fuels as petroleum substitutes. Fermentation of the cellulose in biomass in an SSF process requires that the properties of the microbial biocatalyst match the fungal cellulase activity optima for cost-effective production of products. Fermentation of the pentose sugars derived from hemicellulose in biomass is an additional asset of an ideal biocatalyst. The microbial biocatalyst used by the industry, yeast, lacks the ability to ferment pentose sugars. The optimum temperature for growth and fermentation of yeast is about 35°C. The optimum temperature for commercially available cellulase enzymes for depolymerization of cellulose in biomass to glucose for fermentation is 50-55 °C. Because of the mismatch in the temperature optima for the enzyme and yeast, SSF of cellulose to ethanol (cellulosic ethanol) with yeast is conducted at a temperature that is close to the optimum for yeast. We have shown that by increasing the temperature of SSF to 50-55 °C using thermotolerant B. coagulans, the amount of cellulase required for SSF of cellulose to products can be reduced by 3-4 –fold compared to yeast-based SSF at 35°C with a significant cost savings due to lower enzyme loading. Thermotolerant Bacillus coagulans strains ferment hemicellulose-derived pentose sugars completely to L(+)-lactic acid, the primary product of fermentation. We have developed genetic tools to engineer B. coagulans for fermentation of all the sugars in biomass to ethanol. Using these tools, we have altered the fermentation properties of B. coagulans to produce ethanol as the primary product. The thermotolerant property of B. coagulans has been shown to also lower the cellulase requirement and associated cost in SSF of cellulose to lactic acid compared to lactic acid bacteria. Lactic acid is a potential petroleum substitute for bio-based renewable plastics production. This study has led to the development of B. coagulans as a thermotolerant microbial biocatalyst for production of ethanol as a transportation fuel and lactic acid as a starting material for bio-based plastics in a cost-effective manner from renewable biomass.

K. T. Shanmugam, L. O. Ingram and J. A. Maupin-Furlow

2010-05-20T23:59:59.000Z

60

Public Involvement Opportunities for the DUF6 Conversion Facility...  

NLE Websites -- All DOE Office Websites (Extended Search)

Public Comment Form The public comment period for the Supplement Analysis for Disposal of Depleted Uranium Oxide Conversion Product Generated from DOE's Inventory of Depleted...

Note: This page contains sample records for the topic "oxide conversion product" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Analysis of Lipid OxidationChapter 1 Lipid Oxidation Products and Methods Used for Their Analysis  

Science Conference Proceedings (OSTI)

Analysis of Lipid Oxidation Chapter 1 Lipid Oxidation Products and Methods Used for Their Analysis Methods and Analyses eChapters Methods - Analyses Books AOCS Press Downloadable pdf of Chapter 1 Lipid Oxidation P

62

Cholesterol and Phytosterol Oxidation ProductsChapter 11 Formation and Content of Cholesterol Oxidation Products in Other Foods  

Science Conference Proceedings (OSTI)

Cholesterol and Phytosterol Oxidation Products Chapter 11 Formation and Content of Cholesterol Oxidation Products in Other Foods Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - Bioche

63

Cholesterol and Phytosterol Oxidation ProductsChapter 15 Formation and Content of Phytosterol Oxidation Products in Foods  

Science Conference Proceedings (OSTI)

Cholesterol and Phytosterol Oxidation Products Chapter 15 Formation and Content of Phytosterol Oxidation Products in Foods Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - Biochemistry

64

Cholesterol and Phytosterol Oxidation ProductsChapter 12 Origin and Content of Cholesterol Oxidation Products in Biological Samples  

Science Conference Proceedings (OSTI)

Cholesterol and Phytosterol Oxidation Products Chapter 12 Origin and Content of Cholesterol Oxidation Products in Biological Samples Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - Bi

65

Cholesterol and Phytosterol Oxidation ProductsChapter 16 Determination of Phytosterol Oxidation Products in Foods and Biological Samples  

Science Conference Proceedings (OSTI)

Cholesterol and Phytosterol Oxidation Products Chapter 16 Determination of Phytosterol Oxidation Products in Foods and Biological Samples Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition

66

Cholesterol and Phytosterol Oxidation ProductsChapter 5 Determination of Cholesterol Oxidation Products by Thin-Layer Chromatography  

Science Conference Proceedings (OSTI)

Cholesterol and Phytosterol Oxidation Products Chapter 5 Determination of Cholesterol Oxidation Products by Thin-Layer Chromatography Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - B

67

Cholesterol and Phytosterol Oxidation ProductsChapter 4 Determination of Cholesterol Oxidation Products by High-Performance Liquid Chromatography  

Science Conference Proceedings (OSTI)

Cholesterol and Phytosterol Oxidation Products Chapter 4 Determination of Cholesterol Oxidation Products by High-Performance Liquid Chromatography Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health -

68

Cholesterol and Phytosterol Oxidation ProductsChapter 17 Biological Effects of Phytosterol Oxidation Products, Future Research Areas and Concluding Remarks  

Science Conference Proceedings (OSTI)

Cholesterol and Phytosterol Oxidation Products Chapter 17 Biological Effects of Phytosterol Oxidation Products, Future Research Areas and Concluding Remarks Food Science Health Nutrition Biochemistry eChapters Food Science & Technology

69

Sequencing of Multiple Clostridial Genomes Related to Biomass Conversion and Biofuel Production  

SciTech Connect

Modern methods to develop microbe-based biomass conversion processes require a system-level understanding of the microbes involved. Clostridium species have long been recognized as ideal candidates for processes involving biomass conversion and production of various biofuels and other industrial products. To expand the knowledge base for clostridial species relevant to current biofuel production efforts, we have sequenced the genomes of 20 species spanning multiple genera. The majority of species sequenced fall within the class III cellulosome-encoding Clostridium and the class V saccharolytic Thermoanaerobacteraceae. Species were chosen based on representation in the experimental literature as model organisms, ability to degrade cellulosic biomass either by free enzymes or by cellulosomes, ability to rapidly ferment hexose and pentose sugars to ethanol, and ability to ferment synthesis gas to ethanol. The sequenced strains significantly increase the number of noncommensal/nonpathogenic clostridial species and provide a key foundation for future studies of biomass conversion, cellulosome composition, and clostridial systems biology.

Hemme, Christopher [University of Oklahoma; Mouttaki, Housna [University of Oklahoma; Lee, Yong-Jin [University of Oklahoma, Norman; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; He, Zhili [University of Oklahoma; Wu, Liyou [University of Oklahoma, Norman; Van Nostrand, Joy [University of Oklahoma, Norman; Henrissat, Bernard [Universite d' Aix-Marseille I & II; HE, Qiang [ORNL; Lawson, Paul A. [University of Oklahoma, Norman; Tanner, Ralph S. [University of Oklahoma, Norman; Lynd, Lee R [Thayer School of Engineering at Dartmouth; Wiegel, Juergen [University of Georgia, Athens, GA; Fields, Dr. Matthew Wayne [Montana State University; Arkin, Adam [Lawrence Berkeley National Laboratory (LBNL); Schadt, Christopher Warren [ORNL; Stevenson, Bradley S. [University of Oklahoma, Norman; McInerney, Michael J. [University of Oklahoma, Norman; Yang, Yunfeng [ORNL; Dong, Hailiang [Miami University, Oxford, OH; Xing, Defeng [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology; Ren, Nanqi [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology; Wang, Aijie [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology; Ding, Shi-You [National Energy Renewable Laboratory; Himmel, Michael E [National Renewable Energy Laboratory (NREL); Taghavi, Safiyh [Brookhaven National Laboratory (BNL)/U.S. Department of Energy; Van Der Lelie, Daniel [Brookhaven National Laboratory (BNL); Rubin, Edward M. [U.S. Department of Energy, Joint Genome Institute; Zhou, Jizhong [University of Oklahoma

2010-01-01T23:59:59.000Z

70

Photobiological production of hydrogen: a solar energy conversion option  

DOE Green Energy (OSTI)

This literature survey of photobiological hydrogen production covers the period from its discovery in relatively pure cultures during the early 1930s to the present. The focus is hydrogen production by phototrophic organisms (and their components) which occurs at the expense of light energy and electron-donating substrates. The survey covers the major contributions in the area; however, in many cases, space has limited the degree of detail provided. Among the topics included is a brief historical overview of hydrogen metabolism in photosynthetic bacteria, eucaryotic algae, and cyanobacteria (blue--green algae). The primary enzyme systems, including hydrogenase and nitrogenase, are discussed along with the manner in which they are coupled to electron transport and the primary photochemistry of photosynthesis. A number of in vivo and in vitro photobiological hydrogen evolving schemes including photosynthetic bacterial, green algal, cyanobacterial, two-stage, and cell-free systems are examined in some detail. The remainder of the review discusses specific technical problem areas that currently limit the yield and duration of many of the systems and research that might lead to progress in these specific areas. The final section outlines, in broadest terms, future research directions necessary to develop practical photobiological hydrogen-producing systems. Both whole cell (near- to mid-term) and cell-free (long-term) systems should be emphasized. Photosynthetic bacteria currently show the most promise for near-term applied systems.

Weaver, P.; Lien, S.; Seibert, M.

1979-01-01T23:59:59.000Z

71

Impacts on Regenerated Catalyst on Mercury Oxidation, DeNOX Activity, and SO2-to-SO3 Conversion - Addendum  

Science Conference Proceedings (OSTI)

This report includes NOX activity, SO2 conversion, and chemical analysis bench-scale results for 24 different catalyst samples. The sample set analyzed in the test program represents one of the largest ever assembled constituting both regenerated and new catalyst exposed at full scale. This report is an addendum to EPRI Report 1012657, Impacts on Regenerated Catalyst on Mercury Oxidation, DeNOX Activity, and SO2-to-SO3 Conversion.

2007-07-19T23:59:59.000Z

72

Perennial grass production for biofuels: Soil conversion considerations  

DOE Green Energy (OSTI)

The increased use of renewable fuels for energy offers the United States a mechanism for significantly reducing national dependency on imported oil, reducing greenhouse gas emissions, and improving regional agricultural economies. As mandated by law, a wide range of issues have been raised regarding the net environmental impacts of implementation of these new technologies. While uncertainties regarding both positive and negative environmental influences still exist in many areas of this new technology, it is now possible to address with substantial certainty the positive aspects of perennial herbaceous energy crops on several important soil conservation issues. Past experience with forage grasses and recent research with switchgrass. A warm season perennial forage grass selected as one of the model bioenergy species, indicates that important benefits will be gained in the area of soil conservation as grasses replace energy-intensive annual row crops. These include reduced erosion, improved conservation of water and nutrients, and increased productivity of soils by the deep and vigorous rooting systems of perennial warm-season gasses.

McLaughlin, S.B. [Oak Ridge National Lab., TN (United States); Bransby, D.I. [Auburn Univ., AL (United States). Dept. of Agronomy and Soils; Parrish, D. [Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States). Dept. of Crop, Soil, and Environmental Sciences

1994-10-01T23:59:59.000Z

73

Conversion of plutonium-containing materials into borosilicate glass using the glass material oxidation and dissolution system  

SciTech Connect

The end of the cold war has resulted in excess plutonium-containing materials (PCMs) in multiple chemical forms. Major problems are associated with the long-term management of these materials: safeguards and nonproliferation issues; health, environment, and safety concerns; waste management requirements; and high storage costs. These issues can be addressed by conversion of the PCMs to glass: however, conventional glass processes require oxide-like feed materials. Conversion of PCMs to oxide-like materials followed by vitrification is a complex and expensive process. A new vitrification process has been invented, the Glass Material Oxidation and Dissolution System (GMODS) to allow direct conversion of PCMs to glass. GMODS directly converts metals, ceramics, and amorphous solids to glass; oxidizes organics with the residue converted to glass; and converts chlorides to borosilicate glass and a secondary sodium chloride stream. Laboratory work has demonstrated the conversion of cerium (a plutonium surrogate), uranium (a plutonium surrogate), Zircaloy, stainless steel, multiple oxides, and other materials to glass. Equipment options have been identified for processing rates between 1 and 100,000 t/y. Significant work, including a pilot plant, is required to develop GMODS for applications at an industrial scale.

Forsberg, C.W.; Beahm, E.C.; Parker, G.W. [and others

1996-01-27T23:59:59.000Z

74

Structured catalyst bed and method for conversion of feed materials to chemical products and liquid fuels  

Science Conference Proceedings (OSTI)

The present invention is a structured monolith reactor and method that provides for controlled Fischer-Tropsch (FT) synthesis. The invention controls mass transport limitations leading to higher CO conversion and lower methane selectivity. Over 95 wt % of the total product liquid hydrocarbons obtained from the monolithic catalyst are in the carbon range of C.sub.5-C.sub.18. The reactor controls readsorption of olefins leading to desired products with a preselected chain length distribution and enhanced overall reaction rate. And, liquid product analysis shows readsorption of olefins is reduced, achieving a narrower FT product distribution.

Wang, Yong (Richland, WA), Liu; Wei (Richland, WA)

2012-01-24T23:59:59.000Z

75

Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program  

DOE Green Energy (OSTI)

This report summarizes the work performed for Phase I (October 2001 - August 2006) under Cooperative Agreement DE-FC26-01NT41245 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled 'Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program'. The program focuses on the development of a low-cost, high-performance 3-to-10-kW solid oxide fuel cell (SOFC) system suitable for a broad spectrum of power-generation applications. During Phase I of the program significant progress has been made in the area of SOFC technology. A high-efficiency low-cost system was designed and supporting technology developed such as fuel processing, controls, thermal management, and power electronics. Phase I culminated in the successful demonstration of a prototype system that achieved a peak efficiency of 41%, a high-volume cost of $724/kW, a peak power of 5.4 kW, and a degradation rate of 1.8% per 500 hours. . An improved prototype system was designed, assembled, and delivered to DOE/NETL at the end of the program. This prototype achieved an extraordinary peak efficiency of 49.6%.

Nguyen Minh

2006-07-31T23:59:59.000Z

76

Direct Carbon Conversion: Review of Production and Electrochemical Conversion of Reactive Carbons, Economics and Potential Impact on the Carbon Cycle  

SciTech Connect

Concerns over global warning have motivated the search for more efficient technologies for electric power generation from fossil fuels. Today, 90% of electric power is produced from coal, petroleum or natural gas. Higher efficiency reduces the carbon dioxide emissions per unit of electric energy. Exercising an option of deep geologic or ocean sequestration for the CO{sub 2} byproduct would reduce emissions further and partially forestall global warming. We introduce an innovative concept for conversion of fossil fuels to electricity at efficiencies in the range of 70-85% (based on standard enthalpy of the combustion reaction). These levels exceed the performance of common utility plants by up to a factor of two. These levels are also in excess of the efficiencies of combined cycle plants and of advanced fuel cells now operated on the pilot scale. The core of the concept is direct carbon conversion a process that is similar to that a fuel cell but differs in that synthesized forms of carbon, not hydrogen, are used as fuel. The cell sustains the reaction, C + O{sub 2} = CO{sub 2} (E {approx} 1.0 V, T = 800 C). The fuel is in the form of fine particulates ({approx}100 nm) distributed by entrainment in a flow of CO{sub 2} to the cells to form a slurry of carbon in the melt. The byproduct stream of CO{sub 2} is pure. It affords the option of sequestration without additional separation costs, or can be reused in secondary oil or gas recovery. Our experimental program has discovered carbon materials with orders of magnitude spreads in anode reactivity reflected in cell power density. One class of materials yields energy at about 1 kW/m{sup 2} sufficiently high to make practical the use of the cell in electric utility applications. The carbons used in such cells are highly disordered on the nanometer scale (2-30 nm), relative to graphite. Such disordered or turbostratic carbons can be produced by controlled pyrolysis (thermal decomposition) of hydrocarbons extracted from coal, petroleum or natural gas. For coal and lignite, such hydrocarbons may be produced by cyclic hydrogenation (hydropyrolysis), with the recycle of the hydrogen intermediate following pyrolysis. Starting with common CH{sub x} feedstock for carbon black manufacture, the ash entrained into the carbon (<0.03%) does not jeopardize cell life or enter into the economic estimates for power generation. The value of carbon (relative to hydrogen) as an electrochemical fuel derives from thermodynamic aspects of the C/O{sub 2} reaction. First, the entropy change of the C/O{sub 2} reaction is nearly zero, allowing theoretical efficiencies ({Delta}G(T)/{Delta}H{sub i298}) of 100% (cf. H{sub 2}/O{sub 2} theoretical efficiency of 70%). Second, the thermodynamic activity of the carbon fuel and the CO{sub 2} product are spatially and temporally invariant. This allows 100% utilization of the carbon fuel in single pass (cf. hydrogen utilizations of 75-85%). The carbodmelt slurry is non-explosive at operating temperatures. The total energy efficiency for the C/O{sub 2} is roughly 80% for cell operation at practical rates. In summary, what gives this route its fundamental advantage in energy conversion is that it derives the greatest possible fraction of energy of the fossil resource from an electrochemical reaction (C+O{sub 2} = CO{sub 2}) that is comparatively simple to operate at efficiencies of 80%, in a single-pass cell configuration without bottoming turbine cycles.

Cooper, J F; Cherepy, N; Upadhye, R; Pasternak, A; Steinberg, M

2000-12-12T23:59:59.000Z

77

Recent Progress in Molten Oxide Electrolysis for Iron Production  

Science Conference Proceedings (OSTI)

Presentation Title, Recent Progress in Molten Oxide Electrolysis for Iron Production ... Concentrated Solar Power for Producing Liquid Fuels from CO2 and H2O.

78

Selective Oxidation of Organic Substrates to Partially Oxidized Products  

controlled rate of catalysis, utilizing ozone for oxidation of alcohols to ketones or aldehydes, is made possible with this environmentally friendly and versatile technology.

79

Analysis of Lipid OxidationChapter 5 Analysis of Lipid Oxidation Products by NMR Spectroscopy  

Science Conference Proceedings (OSTI)

Analysis of Lipid Oxidation Chapter 5 Analysis of Lipid Oxidation Products by NMR Spectroscopy Methods and Analyses eChapters Methods - Analyses Books AOCS Press Downloadable pdf of Chapter 5 Analysis of Lipid Oxi

80

High Conversion of Coal to Transportation Fuels for the Future With Low HC Gas Production  

DOE Green Energy (OSTI)

An announced objective of the Department of Energy in funding this work, and other current research in coal liquefaction, is to produce a synthetic crude from coal at a cost lower than $30.00 per barrel (Task A). A second objective, reflecting a recent change in direction in the synthetic fuels effort of DOE, is to produce a fuel which is low in aromatics, yet of sufficiently high octane number for use in the gasoline- burning transportation vehicles of today. To meet this second objective, research was proposed, and funding awarded, for conversion of the highly-aromatic liquid product from coal conversion to a product high in isoparaffins, which compounds in the gasoline range exhibit a high octane number (Task B).

Alex G. Oblad; Wendell H. Wiser

1996-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxide conversion product" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Method for conversion of carbohydrate polymers to value-added chemical products  

DOE Patents (OSTI)

Methods are described for conversion of carbohydrate polymers in ionic liquids, including cellulose, that yield value-added chemicals including, e.g., glucose and 5-hydroxylmethylfurfural (HMF) at temperatures below 120.degree. C. Catalyst compositions that include various mixed metal halides are described that are selective for specified products with yields, e.g., of up to about 56% in a single step process.

Zhang, Zongchao C. (Norwood, NJ); Brown, Heather M. (Kennewick, WA); Su, Yu (Richland, WA)

2012-02-07T23:59:59.000Z

82

Conversion Factor  

Gasoline and Diesel Fuel Update (EIA)

Conversion Factor (Btu per cubic foot) Production Marketed... 1,110 1,106 1,105 1,106 1,109 Extraction Loss ......

83

Recent developments in the production of liquid fuels via catalytic conversion of microalgae: experiments and simulations  

Science Conference Proceedings (OSTI)

Due to continuing high demand, depletion of non-renewable resources and increasing concerns about climate change, the use of fossil fuel-derived transportation fuels faces relentless challenges both from a world markets and an environmental perspective. The production of renewable transportation fuel from microalgae continues to attract much attention because of its potential for fast growth rates, high oil content, ability to grow in unconventional scenarios, and inherent carbon neutrality. Moreover, the use of microalgae would minimize ‘‘food versus fuel’’ concerns associated with several biomass strategies, as microalgae do not compete with food crops in the food chain. This paper reviews the progress of recent research on the production of transportation fuels via homogeneous and heterogeneous catalytic conversions of microalgae. This review also describes the development of tools that may allow for a more fundamental understanding of catalyst selection and conversion processes using computational modelling. The catalytic conversion reaction pathways that have been investigated are fully discussed based on both experimental and theoretical approaches. Finally, this work makes several projections for the potential of various thermocatalytic pathways to produce alternative transportation fuels from algae, and identifies key areas where the authors feel that computational modelling should be directed to elucidate key information to optimize the process.

Shi,Fan; Wang, Pin; Duan, Yuhua; Link, Dirk; Morreale, Bryan

2012-01-01T23:59:59.000Z

84

Recent Developments on the Production of Transportation Fuels via Catalytic Conversion of Microalgae: Experiments and Simulations  

SciTech Connect

Due to continuing high demand, depletion of non-renewable resources and increasing concerns about climate change, the use of fossil fuel-derived transportation fuels faces relentless challenges both from a world markets and an environmental perspective. The production of renewable transportation fuel from microalgae continues to attract much attention because of its potential for fast growth rates, high oil content, ability to grow in unconventional scenarios, and inherent carbon neutrality. Moreover, the use of microalgae would minimize “food versus fuel” concerns associated with several biomass strategies, as microalgae do not compete with food crops in the food chain. This paper reviews the progress of recent research on the production of transportation fuels via homogeneous and heterogeneous catalytic conversions of microalgae. This review also describes the development of tools that may allow for a more fundamental understanding of catalyst selection and conversion processes using computational modelling. The catalytic conversion reaction pathways that have been investigated are fully discussed based on both experimental and theoretical approaches. Finally, this work makes several projections for the potential of various thermocatalytic pathways to produce alternative transportation fuels from algae, and identifies key areas where the authors feel that computational modelling should be directed to elucidate key information to optimize the process.

Shi, Fan; Wang, Ping; Duan, Yuhua; Link, Dirk; Morreale, Bryan

2012-08-02T23:59:59.000Z

85

Thermal conversion of municipal solid waste via hydrothermal carbonization: Comparison of carbonization products to products from current waste management techniques  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Hydrothermal carbonization (HTC) is a novel thermal conversion process. Black-Right-Pointing-Pointer HTC converts wastes into value-added resources. Black-Right-Pointing-Pointer Carbonization integrates majority of carbon into solid-phase. Black-Right-Pointing-Pointer Carbonization results in a hydrochar with high energy density. Black-Right-Pointing-Pointer Using hydrochar as an energy source may be beneficial. - Abstract: Hydrothermal carbonization (HTC) is a novel thermal conversion process that may be a viable means for managing solid waste streams while minimizing greenhouse gas production and producing residual material with intrinsic value. HTC is a wet, relatively low temperature (180-350 Degree-Sign C) thermal conversion process that has been shown to convert biomass to a carbonaceous residue referred to as hydrochar. Results from batch experiments indicate HTC of representative waste materials is feasible, and results in the majority of carbon (45-75% of the initially present carbon) remaining within the hydrochar. Gas production during the batch experiments suggests that longer reaction periods may be desirable to maximize the production of energy-favorable products. If using the hydrochar for applications in which the carbon will remain stored, results suggest that the gaseous products from HTC result in fewer g CO{sub 2}-equivalent emissions than the gases associated with landfilling, composting, and incineration. When considering the use of hydrochar as a solid fuel, more energy can be derived from the hydrochar than from the gases resulting from waste degradation during landfilling and anaerobic digestion, and from incineration of food waste. Carbon emissions resulting from the use of the hydrochar as a fuel source are smaller than those associated with incineration, suggesting HTC may serve as an environmentally beneficial alternative to incineration. The type and extent of environmental benefits derived from HTC will be dependent on hydrochar use/the purpose for HTC (e.g., energy generation or carbon storage).

Lu Xiaowei; Jordan, Beth [Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208 (United States); Berge, Nicole D., E-mail: berge@cec.sc.edu [Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208 (United States)

2012-07-15T23:59:59.000Z

86

Evaluation of Ultra-Violet Photocatalytic Oxidation (UVPCO) forIndoor Air Applications: Conversion of Volatile Organic Compounds at LowPart-per-Billion Concentrations  

SciTech Connect

Efficient removal of indoor generated airborne particles and volatile organic compounds (VOCs) in office buildings and other large buildings may allow for a reduction in outdoor air supply rates with concomitant energy savings while still maintaining acceptable indoor air quality in these buildings. Ultra-Violet Photocatalytic Oxidation (UVPCO) air cleaners have the potential to achieve the necessary reductions in indoor VOC concentrations at relatively low cost. In this study, laboratory experiments were conducted with a scaled, prototype UVPCO device designed for use in a duct system. The experimental UVPCO contained two 30 by 30-cm honeycomb monoliths coated with titanium dioxide and 3% by weight tungsten oxide. The monoliths were irradiated with 12 UVC lamps arranged in four banks. The UVPCO was challenged with four mixtures of VOCs typical of mixtures encountered in indoor air. A synthetic office mixture contained 27 VOCs commonly measured in office buildings. A cleaning product mixture contained three cleaning products with high market shares. A building product mixture was created by combining sources including painted wallboard, composite wood products, carpet systems, and vinyl flooring. A fourth mixture contained formaldehyde and acetaldehyde. Steady-state concentrations were produced in a classroom laboratory or a 20-m{sup 3} environmental chamber. Air was drawn through the UVPCO, and single pass conversion efficiencies were measured from replicate air samples collected upstream and downstream of the reactor section. Concentrations of the mixtures were manipulated, with concentrations of individual VOCs mostly maintained below 10 ppb. Device flow rates were varied between 165 and 580 m{sup 3}/h. Production of formaldehyde, acetaldehyde, acetone, formic acid, and acetic acid as reaction products was investigated. Conversion efficiency data were generated for 48 individual VOCs or groups of closely related compounds. Alcohols and glycol ethers were the most reactive chemical classes with conversion efficiencies often near or above 70% at the low flow rate and near 40% at the high flow rate. Ketones and terpene hydrocarbons were somewhat less reactive. The relative VOC conversion rates are generally favorable for treatment of indoor air since many contemporary products used in buildings employ oxygenated solvents. A commercial UVPCO device likely would be installed in the supply air stream of a building and operated to treat both outdoor and recirculated air. Assuming a recirculation rate comparable to three times the normal outdoor air supply rate, simple mass-balance modeling suggests that a device with similar characteristics to the study unit has sufficient conversion efficiencies for most VOCs to compensate for a 50% reduction in outdoor air supply without substantially impacting indoor VOC concentrations. Formaldehyde, acetaldehyde, acetone, formic acid, and acetic acid were produced in these experiments as reaction byproducts. No other significant byproducts were observed. A coupled steady-state mass balance model is presented and applied to VOC data from a study of a single office building. For the operating assumptions described above, the model estimated a three-fold increase in indoor formaldehyde and acetaldehyde concentrations. The outcome of this limited assessment suggests that evaluation of the potential effects of the operation of a UVPCO device on indoor concentrations of these contaminants is warranted. Other suggested studies include determining VOC conversion efficiencies in actual buildings and evaluating changes in VOC conversion efficiency as monoliths age with long-term operation.

Hodgson, Alfred T.; Sullivan, Douglas P.; Fisk, William J.

2005-09-30T23:59:59.000Z

87

Heavy quark production from jet conversions in a quark-gluon plasma  

E-Print Network (OSTI)

Recently, it has been demonstrated that the chemical composition of jets in heavy ion collisions is significantly altered compared to the jets in the vacuum. This signal can be used to probe the medium formed in nuclear collisions. In this study we investigate the possibility that fast light quarks and gluons can convert to heavy quarks when passing through a quark-gluon plasma. We study the rate of light to heavy jet conversions in a consistent Fokker-Planck framework and investigate their impact on the production of high-p(T) charm and bottom quarks at the Relativistic Heavy Ion Collider and the Large Hadron Collider.

Liu, W.; Fries, Rainer J.

2008-01-01T23:59:59.000Z

88

Candidate anode materials for iron production by molten oxide electrolysis  

E-Print Network (OSTI)

Molten oxide electrolysis (MOE) has been identified by the American Iron and Steel Institute (AISI) as one of four possible breakthrough technologies to alleviate the environmental impact of iron and steel production. This ...

Paramore, James D

2010-01-01T23:59:59.000Z

89

Bacterial Production of Mixed Metal Oxide Nanoparticles ...  

... on the selection and tailoring of bacterial strains Applications and Industries • Production of fine particulates of ceramic powders used by indus ...

90

Bacterial Production of Mixed Metal Oxide Nanoparticles  

Production of fine particulates of ceramic powders used by industry and in chemical processing applications Patent Tommy J. Phelps, Robert J. Lauf, ...

91

Energy Basics: Biofuel Conversion Processes  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biodiesel Biofuel Conversion Processes Biopower Bio-Based Products Biomass Resources Geothermal Hydrogen Hydropower Ocean Solar Wind Biofuel Conversion Processes The conversion of...

92

Final LDRD report : metal oxide films, nanostructures, and heterostructures for solar hydrogen production.  

Science Conference Proceedings (OSTI)

The distinction between electricity and fuel use in analyses of global power consumption statistics highlights the critical importance of establishing efficient synthesis techniques for solar fuels-those chemicals whose bond energies are obtained through conversion processes driven by solar energy. Photoelectrochemical (PEC) processes show potential for the production of solar fuels because of their demonstrated versatility in facilitating optoelectronic and chemical conversion processes. Tandem PEC-photovoltaic modular configurations for the generation of hydrogen from water and sunlight (solar water splitting) provide an opportunity to develop a low-cost and efficient energy conversion scheme. The critical component in devices of this type is the PEC photoelectrode, which must be optically absorptive, chemically stable, and possess the required electronic band alignment with the electrochemical scale for its charge carriers to have sufficient potential to drive the hydrogen and oxygen evolution reactions. After many decades of investigation, the primary technological obstacle remains the development of photoelectrode structures capable of efficient conversion of light with visible frequencies, which is abundant in the solar spectrum. Metal oxides represent one of the few material classes that can be made photoactive and remain stable to perform the required functions.

Kronawitter, Coleman X. [Lawrence Berkeley National Laboratory, Berkeley, CA; Antoun, Bonnie R.; Mao, Samuel S. [Lawrence Berkeley National Laboratory, Berkeley, CA

2012-01-01T23:59:59.000Z

93

Nanoparticles as Reactive Precursors: Synthesis of Alloys, Intermetallic Compounds, and Multi-Metal Oxides Through Low-Temperature Annealing and Conversion Chemistry  

E-Print Network (OSTI)

Alloys, intermetallic compounds and multi-metal oxides are generally made by traditional solid-state methods that often require melting or grinding/pressing powders followed by high temperature annealing (> 1000 degrees C) for days or weeks. The research presented here takes advantage of the fact that nanoparticles have a large fraction of their atoms on the surface making them highly reactive and their small size virtually eliminates the solid-solid diffusion process as the rate limiting step. Materials that normally require high temperatures and long annealing times become more accessible at relatively low-temperatures because of the increased interfacial contact between the nanoparticle reactants. Metal nanoparticles, formed via reduction of metal salts in an aqueous solution and stabilized by PVP (polyvinylpyrrolidone), were mixed into nanoparticle composites in stoichometric proportions. The composite mixtures were then annealed at relatively low temperatures to form alloy and intermetallic compounds at or below 600 degrees C. This method was further extended to synthesizing multi-metal oxide systems by annealing metal oxide nanoparticle composites hundreds of degrees lower than more traditional methods. Nanoparticles of Pt (supported or unsupported) were added to a metal salt solution of tetraethylene glycol and heated to obtain alloy and intermetallic nanoparticles. The supported intermetallic nanoparticles were tested as catalysts and PtPb/Vulcan XC-72 showed enhanced catalytic activity for formic acid oxidation while Pt3Sn/Vulcan XC-72 and Cu3Pt/y-Al2O3 catalyzed CO oxidiation at lower temperatures than supported Pt. Intermetallic nanoparticles of Pd were synthesized by conversion chemistry methods previously mentioned and were supported on carbon and alumina. These nanoparticles were tested for Suzuki cross-coupling reactions. However; the homocoupled product was generally favored. The catalytic activity of Pd3Pb/y-Al2O3 was tested for the Heck reaction and gave results comparable to Pd/y-Al2O3 with a slightly better selectivity. Conversion chemistry techniques were used to convert Pt nanocubes into Ptbased intermetallic nanocrystals in solution. It was discovered that aggregated clusters of Pt nanoparticles were capable of converting to FePt3; however, when Pt nanocubes were used the intermetallic phase did not form. Alternatively, it was possible to form PtSn nanocubes by a conversion reaction with SnCl2.

Bauer, John C.

2009-05-01T23:59:59.000Z

94

Synthesis gas production by mixed conducting membranes with integrated conversion into liquid products  

DOE Patents (OSTI)

Natural gas or other methane-containing feed gas is converted to a C.sub.5 -C.sub.19 hydrocarbon liquid in an integrated system comprising an oxygenative synthesis gas generator, a non-oxygenative synthesis gas generator, and a hydrocarbon synthesis process such as the Fischer-Tropsch process. The oxygenative synthesis gas generator is a mixed conducting membrane reactor system and the non-oxygenative synthesis gas generator is preferably a heat exchange reformer wherein heat is provided by hot synthesis gas product from the mixed conducting membrane reactor system. Offgas and water from the Fischer-Tropsch process can be recycled to the synthesis gas generation system individually or in combination.

Nataraj, Shankar (Allentown, PA); Russek, Steven Lee (Allentown, PA); Dyer, Paul Nigel (Allentown, PA)

2000-01-01T23:59:59.000Z

95

METHOD FOR SEPARATING PLUTONIUM AND FISSION PRODUCTS EMPLOYING AN OXIDE AS A CARRIER FOR FISSION PRODUCTS  

DOE Patents (OSTI)

Carrier precipitation processes for separating plutonium values from uranium fission products are described. Silicon dioxide or titanium dioxide in a finely divided state is added to an acidic aqueous solution containing hexavalent plutonium ions together with ions of uranium fission products. The supernatant solution containing plutonium ions is then separated from the oxide and the fission products associated therewith.

Davies, T.H.

1961-07-18T23:59:59.000Z

96

2011 Final Report - Nano-Oxide Photocatalysis for Solar Energy Conversion  

Science Conference Proceedings (OSTI)

We have very recently discovered a new hydrogen-producing photocatalyst is BiNbO4. BiNbO4 powders prepared by solid state reaction were tested for photocatalytic activity in methanol solutions under UV irradiation. When the material is tested without the presence of a Pt co-catalyst, photocatalytic activity for H2 evolution is superior to that of TiO2. It was also found that BiNbO4 photodegrades into metallic Bi and reduced Nb oxides after use; materials were characterized by SEM, XRD, and XPS. Adding Pt to the surface of the photocatalyst increases photocatalytic activity and importantly, helps to prevent photodegradation of the oxide material. With 1 wt. % Pt loading, photodegradation is essentially absent. BiNbO4 photodegrades into metallic Bi and reduced Nb oxides after use; materials were characterized by SEM, XRD, and XPS. Adding Pt to the surface of the photocatalyst increases photocatalytic activity and importantly, helps to prevent photodegradation of the oxide material. With 1 wt. % Pt loading, photodegradation is essentially absent.

Eckstein, James N.; Suslick, Kenneth S.

2011-10-19T23:59:59.000Z

97

Conversion of high carbon refinery by-products. Quarterly report, October 1--December 31, 1995  

SciTech Connect

The overall objective of the project is to demonstrate that a partial oxidation system, which utilizes a transport reactor, is a viable means of converting refinery wastes, byproducts, and other low value materials into valuable products. The primary product would be a high quality fuel gas, which could also be used as a source of hydrogen. The concept involves subjecting the hydrocarbon feed to pyrolysis and steam gasification in a circulating bed of solids. Carbon residue formed during pyrolysis, as well as metals in the feed, are captured by the circulating solids which are returned to the bottom of the transport reactor. Air or oxygen is introduced in this lower zone and sufficient carbon is burned, sub-stoichiometrically, to provide the necessary heat for the endothermic pyrolysis and gasification reactions. The hot solids and gases leaving this zone pass upward to contact the feed material and continue the partial oxidation process. Studies were conducted in the Transport Reactor Test Unit (TRTU) to pyrolyze naphtha with untreated as well as potassium-impregnated spent FCC (Fluid Catalytic Cracker) catalyst as the circulating medium over a temperature range of 1,400 to 1,600 F. The results from these studies are presented and discussed here. Studies were also performed in the Bench Scale Reactor Unit (BRU) in an effort to develop suitable catalyst formulations and to study the steam reforming of methane and propane in support of the experiments conducted in the TRTU. The results from these studies are also presented here. A Cold Flow Simulator (CFS) was designed and built to investigate the flow problems experienced in the TRTU.

O`Donnell, J.; Katta, S.; Henningsen, G.; Lin, Y.Y.

1996-01-19T23:59:59.000Z

98

Enzymes and microorganisms in food industry waste processing and conversion to useful products: a review of the literature  

DOE Green Energy (OSTI)

Bioconversion of food processing wastes is receiving increased attention with the realization that waste components represent an available and utilizable resource for conversion to useful products. Liquid wastes are characterized as dilute streams containing sugars, starches, proteins, and fats. Solid wastes are generally cellulosic, but may contain other biopolymers. The greatest potential for economic bioconversion is represented by processes to convert cellulose to glucose, glucose to alcohol and protein, starch to invert sugar, and dilute waste streams to methane by anaerobic digestion. Microbial or enzymatic processes to accomplish these conversions are described.

Carroad, P.A.; Wilke, C.R.

1976-12-01T23:59:59.000Z

99

Development of vanadium-phosphate catalysts for methanol production by selective oxidation of methane. Quarterly technical progress report 11, October--December 1995  

DOE Green Energy (OSTI)

Activities during this report period focused on testing of additional modified and promoted catalysts and characterization of these materials. Methanol oxidation studies were performed as a method of acid site characterization. Improvements to the product gas analysis system continued to be developed. These results are reported. Specific accomplishments include: (1) Obtaining and interpreting infrared spectra of modified catalysts prepared to enhance surface acidity. (2) Testing of these catalysts in methanol oxidation as a method of acid site characterization and to determine catalytic activity for conversion of this desired product. Catalysts were quite active for methanol conversion to dimethyl ether. Two of the modified catalysts prepared in this work exhibited the highest activity for this reaction, presumably because of their higher surface areas. (3) Determination that acidity modifications had no effect on activity for methane conversion.

McCormick, R.L.

1996-04-16T23:59:59.000Z

100

HEU to LEU conversion and blending facility: Oxide blending alternative to produce LEU oxide for commercial use  

SciTech Connect

The United States Department of Energy (DOE) is examining options for the disposition of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. Disposition is a process of use or disposal of material that results in the material being converted to a form that is substantially and inherently more proliferation-resistant than the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. This document provides data to be used in the environmental impact analysis for the oxide blending HEU disposition option. This option provides for a yearly HEU throughput of 1 0 metric tons (MT) of uranium metal with an average U235 assay of 50% blended with 165 MT of natural assay triuranium octoxide (U{sub 3} O{sub 8}) per year to produce 177 MT of 4% U235 assay U{sub 3} O{sub 8}, for LWR fuel. Since HEU exists in a variety of forms and not necessarily in the form to be blended, worst case scenarios for preprocessing prior to blending will be assumed for HEU feed streams.

1995-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxide conversion product" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Development of vanadium-phosphate catalysts for methanol production by selective oxidation of methane. Quarterly report, July - September 1996  

DOE Green Energy (OSTI)

This document covers the period July-September, 1996. Activities included studies of the oxidation of dimethyl ether over vanadyl pyrophosphate and synthesis of all previously acquired kinetic data. This synthesis revealed the need for additional data on methane and methanol oxidation and these experiments were performed. A further series of methanol oxidation/dehydration experiments was conducted on samples with varying surface acidity that have been described in earlier reports. Oxidation of methane over Cr- promoted VPO was also reinvestigated. The kinetic studies performed to date allow us to determine optimum conditions for methanol and formaldehyde production from methane using VPO catalysts, and in particular determine the effect of lean conditions (excess oxygen), oxygen deficient conditions (used in most other methane oxidation studies), and the potential of using the catalyst as a stoichiometric oxidant or oxygen carrier. However, unpromoted VPO yields only CO as the primary oxidation product. Studies of promoters have shown improvements in the formaldehyde selectivity but no methanol has been observed. The best promoters tested have been Fe and Cr (results for Cr are described in this report). We have also examined the use of iron phosphate for the methane conversion reaction. FePO{sub 4}is a more selectivity catalyst than the promoted VPO materials. Support of this iron phosphate on silica results in further improvements in selectivity. Current work is directed at understanding the improved selectivity for promoted VPO and at obtaining a knowledge of the optimum conditions for methane conversion of iron phosphate. 15 refs., 2 figs., 1 tab.

McCormick, R.L.; Alptekin, G.O.

1996-12-01T23:59:59.000Z

102

Conversion Tables  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Information Analysis Center - Conversion Tables Carbon Dioxide Information Analysis Center - Conversion Tables Contents taken from Glossary: Carbon Dioxide and Climate, 1990. ORNL/CDIAC-39, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee. Third Edition. Edited by: Fred O'Hara Jr. 1 - International System of Units (SI) Prefixes 2 - Useful Quantities in CO2 3 - Common Conversion Factors 4 - Common Energy Unit Conversion Factors 5 - Geologic Time Scales 6 - Factors and Units for Calculating Annual CO2 Emissions Using Global Fuel Production Data Table 1. International System of Units (SI) Prefixes Prefix SI Symbol Multiplication Factor exa E 1018 peta P 1015 tera T 1012 giga G 109 mega M 106 kilo k 103 hecto h 102 deka da 10 deci d 10-1 centi c 10-2

103

Thermodynamics of the conversion of calcium and magnesium fluorides to the parent metal oxides and hydrogen fluoride  

Science Conference Proceedings (OSTI)

The authors have used thermodynamic modeling to examine the reaction of calcium fluoride (CaF{sub 2}) and magnesium fluoride (MgF{sub 2}) with water (H{sub 2}O) at elevated temperatures. The calculated, equilibrium composition corresponds to the global free-energy minimum for the system. Optimum, predicted reaction temperatures and reactant mole ratios are reported for the recovery of hydrogen fluoride (HF), a valuable industrial feedstock. Complete conversion of MgF{sub 2} is found at 1,000 C and a ratio of 40 moles of H{sub 2}O per 1 mole of MgF{sub 2}. For CaF{sub 2}, temperatures as high as 1,400 C are required for complete conversion at a corresponding mole ratio of 40 moles of H{sub 2}O per 1 mole of CaF{sub 2}. The authors discuss the presence of minor chemical constituents as well as the stability of various potential container materials for the pyrohydrolysis reactions at elevated temperatures. CaF{sub 2} and MgF{sub 2} slags are available as wastes at former uranium production facilities within the Department of Energy Complex and other facilities regulated by the Nuclear Regulatory Commission. Recovery of HF from these wastes is an example of environmental remediation at such facilities.

West, M.H.; Axler, K.M.

1997-02-01T23:59:59.000Z

104

Design and cost of near-term OTEC (Ocean Thermal Energy Conversion) plants for the production of desalinated water and electric power. [Ocean Thermal Energy Conversion (OTEC)  

DOE Green Energy (OSTI)

There currently is an increasing need for both potable water and power for many islands in the Pacific and Caribbean. The Ocean Thermal Energy Conversion (OTEC) technology fills these needs and is a viable option because of the unlimited supply of ocean thermal energy for the production of both desalinated water and electricity. The OTEC plant design must be flexible to meet the product-mix demands that can be very different from site to site. This paper describes different OTEC plants that can supply various mixes of desalinated water and vapor -- the extremes being either all water and no power or no water and all power. The economics for these plants are also presented. The same flow rates and pipe sizes for both the warm and cold seawater streams are used for different plant designs. The OTEC plant designs are characterized as near-term because no major technical issues need to be resolved or demonstrated. The plant concepts are based on DOE-sponsored experiments dealing with power systems, advanced heat exchanger designs, corrosion and fouling of heat exchange surfaces, and flash evaporation and moisture removal from the vapor using multiple spouts. In addition, the mature multistage flash evaporator technology is incorporated into the plant designs were appropriate. For the supply and discharge warm and cold uncertainties do exist because the required pipe sizes are larger than the maximum currently deployed -- 40-inch high-density polyethylene pipe at Keahole Point in Hawaii. 30 refs., 6 figs., 8 tabs.

Rabas, T.; Panchal, C.; Genens, L.

1990-01-01T23:59:59.000Z

105

U.S. transparency monitoring of HEU oxide conversion and blending to LEU hexafluoride at three Russian blending plants  

SciTech Connect

The down-blending of Russian highly enriched uranium (HEU) takes place at three Russian gaseous centrifuge enrichment plants. The fluorination of HEU oxide and down-blending of HEU hexafluoride began in 1994, and shipments of low enriched uranium (LEU) hexafluoride product to the United States Enrichment Corporation (USEC) began in 1995 US transparency monitoring under the HEU Purchase Agreement began in 1996 and includes a permanent monitoring presence US transparency monitoring at these facilities is intended to provide confidence that HEU is received and down-blended to LEU for shipment to USEC The monitoring begins with observation of the receipt of HEU oxide shipments, including confirmation of enrichment using US nondestructive assay equipment The feeding of HEU oxide to the fluorination process and the withdrawal of HEU hexafluoride are monitored Monitoring is also conducted where the blending takes place and where shipping cylinders are filled with LEU product. A series of process and material accountancy documents are provided to US monitors.

Leich, D., LLNL

1998-07-27T23:59:59.000Z

106

Oxidation of Mercury in Products of Coal Combustion  

NLE Websites -- All DOE Office Websites (Extended Search)

Heng Ban Heng Ban Principal Investigator University of Alabama at Birmingham 1150 10th Avenue South Birmingham, AL 35294-4461 205-934-0011 hban@uab.edu Environmental and Water Resources OxidatiOn Of Mercury in PrOducts Of cOal cOMbustiOn Background The 2005 Clean Air Mercury Rule will require significant reductions in mercury emissions from coal-fired power plants. A variety of mercury reduction technologies are under commercial development, but an improved understanding of the fundamental chemical mechanisms that control the transformations and capture of mercury in boilers and pollution control devices is required to achieve necessary performance and cost reduction levels. Oxidized mercury is more easily captured by pollution control devices, such as Selective

107

ANL progress in minimizing effects of LEU conversion on calcination of fission-product {sup 99}Mo acid waste solution.  

SciTech Connect

A partnership between Argonne National Laboratory (ANL), MDS Nordion (MDSN), Atomic Energy Canada Limited (AECL) and SGN (France) has addressed the conversion of the MAPLE Reactor 99Mo production process from high-enriched uranium (HEU) targets to low-enriched uranium (LEU) targets. One effect of the conversion would be to increase the amount of solid uranium waste five-fold; we have worked to minimize the effect of the additional waste on the overall production process and, in particular, solid waste storage. Two processes were investigated for the treatment of the uranium-rich acidic waste solution: direct calcination, and oxalate precipitation as a prelude to calcination. Direct calcination generates a dense UO3 solid that should allow a significantly greater amount of uranium in one waste container than is planned for the HEU process, but doing so results in undesirable sputtering. These results suggest that direct calcination could be adapted for use with LEU targets without a large effect on the uranium waste treatment procedures. The oxalate-calcination generates a lower-density granular U3O8 product; sputtering is not significant during calcination of the uranyl oxalate precipitate. A physical means to densify the product would need to be developed to increase the amount of uranium in each waste container. Future work will focus on the specific chemical reactions that occur during the direct and oxalate calcination processes.

Bakel, A.; Vandegrift, G.; Quigley, K.; Aase, S.; Neylon, M.; Carney, K.

2003-01-01T23:59:59.000Z

108

Corrosion Problems in Coal-Fired Boiler Superheater and Reheater Tubes: Steamside Oxidation and Exfoliation--Development of a Chroma te-Conversion Treatment  

Science Conference Proceedings (OSTI)

This report describes a chromate conversion treatment for preventing steam-side scale exfoliation in superheater and reheater tubes. The performance of scaled tubes that were first chemically cleaned by three techniques and then chromate-treated and tested in steam is evaluated. Test results on oxide growth rate reduction, improved scale stability, reduction of exfoliated scale, and compatibility of dissimilar metal welds are presented, and recommendations for further work are made.

1981-04-01T23:59:59.000Z

109

Light alkane conversion processes - Suprabiotic catalyst systems for selective oxidation of light alkane gases to fuel oxygenates  

DOE Green Energy (OSTI)

The objective of the work presented in this paper is to develop new, efficient catalysts for the selective transformation of the light alkanes in natural gas to alcohols for use as liquid transportation fuels, fuel precursors and chemical products. There currently exists no DIRECT one-step catalytic air-oxidation process to convert these substrates to alcohols. Such a one-step route would represent superior useful technology for the utilization of natural gas and similar refinery-derived light hydrocarbon streams. Processes for converting natural gas or its components (methane, ethane, propane, and the butanes) to alcohols for use as motor fuels, fuel additives or fuel precursors will not only add a valuable alternative to crude oil but will produce a clean-burning, high octane alternative to conventional gasoline.

Lyons, J.E.

1992-01-01T23:59:59.000Z

110

Light alkane conversion processes - Suprabiotic catalyst systems for selective oxidation of light alkane gases to fuel oxygenates.  

DOE Green Energy (OSTI)

The objective of the work presented in this paper is to develop new, efficient catalysts for the selective transformation of the light alkanes in natural gas to alcohols for use as liquid transportation fuels, fuel precursors and chemical products. There currently exists no DIRECT one-step catalytic air-oxidation process to convert these substrates to alcohols. Such a one-step route would represent superior useful technology for the utilization of natural gas and similar refinery-derived light hydrocarbon streams. Processes for converting natural gas or its components (methane, ethane, propane, and the butanes) to alcohols for use as motor fuels, fuel additives or fuel precursors will not only add a valuable alternative to crude oil but will produce a clean-burning, high octane alternative to conventional gasoline.

Lyons, J.E.

1992-07-01T23:59:59.000Z

111

Analysis of Lipid OxidationChapter 11 Analysis of Interaction Products of Oxidized Lipids with Amino Acids, Proteins, and Carbohydrates  

Science Conference Proceedings (OSTI)

Analysis of Lipid Oxidation Chapter 11 Analysis of Interaction Products of Oxidized Lipids with Amino Acids, Proteins, and Carbohydrates Methods and Analyses eChapters Methods - Analyses Books 84DC9CA8678DDD7511E2D38554DB222B AOCS Pre

112

Catalytic conversion of biomass.  

E-Print Network (OSTI)

?? Catalytic processes for conversion of biomass to transportation fuels have gained an increasing attention in sustainable energy production. The biomass can be converted to… (more)

Calleja Aguado, Raquel

2013-01-01T23:59:59.000Z

113

Development of vanadium-phosphate catalysts for methanol production by selective oxidation of methane. Quarterly technical progress report 8, January--March, 1995  

DOE Green Energy (OSTI)

Activities during this quarter focused on fine tuning of catalyst characterization and synthesis techniques. Improvements in catalyst activity test methods were also implemented but more remains to be done. Specific accomplishments include: improved characterization of vanadyl pyrophosphate (VPO) and Si promoted VPO by FTIR and FTIR of chemisorbed bases; several minor improvements in catalyst preparation technique resulting in enhanced catalyst yield, better control of catalyst composition, and generation of less waste; preliminary pulsed reaction data on methane oxidation were also acquired. Preliminary activity measurements for methane conversion (without oxygen) in a pulsed reactor over VPO indicate that the primary reaction product is CO. Carbon dioxide is also formed but selectivity to CO{sub 2} decreases with number of pulses. These results suggest that selectivity to partially oxidized products improves with catalyst reduction and suggest that some surface modification will be required to obtain oxidized hydrocarbon products. Note that catalyst activation (conversion from the precursor to VPO) has been carried out using air. For butane oxidation catalysts VPO is activated in a 1% butane/air mixture which produces a slightly reduced catalyst.

McCormick, R.L.

1995-05-25T23:59:59.000Z

114

Solid Oxide Membrane Process for Solar Grade Silicon Production ...  

Science Conference Proceedings (OSTI)

Presentation Title, Solid Oxide Membrane Process for Solar Grade Silicon ... Polysilicon in Photovoltaics: Market Conditions & Competing PV Technologies.

115

AN INNOVATIVE INTEGRATED APPROACH TO MINIMIZING GYPSUM AND PYRITE WASTES BY CONVERSION TO MARKETABLE PRODUCTS  

Science Conference Proceedings (OSTI)

The objective of this research program is to develop a novel integrated process to eliminate millions of tons of gypsum and pyrite wastes generated annually by the U.S. energy industries and reduce the emission of millions of tons of greenhouse gas carbon dioxide. This was accomplished by converting gypsum and pyrite wastes to marketable products such as lime, direct reduced iron (DRI), and sulfur products and obviating the need to calcine millions of tons of limestone for use in utility scrubbers. Specific objectives included: (1) Develop a novel, integrated process for utilizing two major wastes generated by mining and energy industries to produce lime for recycling and other marketable products. (2) Study individual chemical reactions involved in pyrite decomposition, DRI production, and Muller-Kuhne process for lime regeneration to determine optimum process variables such as temperature, time, and reactant composition. (3) Investigate techniques for effective concentration of pyrite from tailing waste and methods for effective separation of DRI from calcium sulfide.

Daniel Tao

2000-06-27T23:59:59.000Z

116

Public Involvement Opportunities for the DUF6 Conversion Facility EISs  

NLE Websites -- All DOE Office Websites (Extended Search)

Opportunities Opportunities Public Involvement Opportunities The public comment period for the Supplement Analysis for Disposal of Depleted Uranium Oxide Conversion Product Generated from DOE's Inventory of Depleted Uranium Hexafluoride is closed. Sorry! The public comment period for the Supplement Analysis for Disposal of Depleted Uranium Oxide Conversion Product Generated from DOE's Inventory of Depleted Uranium Hexafluoride is closed. The public comment form is no longer available. For information on other public involvement opportunities, please visit Public Involvement Opportunities. Ways to Provide Comments Comments may be submitted via the Public Comment Form on this Web site. Comments can also be mailed to: DU Disposal Supplement Analysis Comment Argonne National Laboratory

117

Solar Hydrogen Conversion Background  

E-Print Network (OSTI)

Solar Hydrogen Conversion Background: The photoelectrochemical production of hydrogen has drawn properties In order to develop better materials for solar energy applications, in-depth photoelectrochemical simulated solar irradiance. Hydrogen production experiments are conducted in a sealed aluminum cell

Raftery, Dan

118

ADVANCED GASIFICATION-BASED FUEL CONVERSION AND ELECTRIC ENERGY PRODUCTION SYSTEM  

SciTech Connect

Boise Cascade Corporation and the Gas Technology Institute (GTI) are cooperating to develop, demonstrate and place in continuous operation an advanced biomass gasification-based power generation system suitable for near-term commercial deployment in the Forest Products Industry. The system will be used in conjunction with, rather than in place of, existing wood waste fired boilers and flue gas cleanup systems. The novel system will include three advanced technological components based on GTI's RENUGAS{reg_sign} and METHANE de-NOX{reg_sign} technologies, and a gas turbine-based power generation concept developed in DOE's High Performance Power System (HIPPS) program. The system has, as its objective, to avoid the major hurdles of high-pressure gasification, i.e., high-pressure fuel feeding and ash removal, and hot gas cleaning that are typical for conventional IGCC power generation. It aims to also minimize capital intensity and technology risks. The system is intended to meet the immediate needs of the forest products industry for highly efficient and environmentally friendly electricity and steam generation systems utilizing existing wood waste as fuel resources.

Joseph Rabovitser; Bruce Bryan

2002-01-01T23:59:59.000Z

119

ADVANCED GASIFICATION-BASED FUEL CONVERSION AND ELECTRIC ENERGY PRODUCTION SYSTEM  

SciTech Connect

Boise Cascade Corporation and the Gas Technology Institute (GTI) are cooperating to develop, demonstrate and place in continuous operation an advanced biomass gasification-based power generation system suitable for near-term commercial deployment in the Forest Products Industry. The system will be used in conjunction with, rather than in place of, existing wood waste fired boilers and flue gas cleanup systems. The novel system will include three advanced technological components based on GTI's RENUGAS{reg_sign} and three-stage stoker combustion technologies, and a gas turbine-based power generation concept developed in DOE's High Performance Power System (HIPPS) program. The system has, as its objective, to avoid the major hurdles of high-pressure gasification, i.e., high-pressure fuel feeding and ash removal, and hot gas cleaning that are typical for conventional IGCC power generation. It aims to also minimize capital intensity and technology risks. The system is intended to meet the immediate needs of the forest products industry for highly efficient and environmentally friendly electricity and steam generation systems utilizing existing wood waste as fuel resources.

Joseph Rabovitser; Bruce Bryan

2002-07-01T23:59:59.000Z

120

ADVANCED GASIFICATION-BASED FUEL CONVERSION AND ELECTRIC ENERGY PRODUCTION SYSTEM  

SciTech Connect

Boise Paper Solutions and the Gas Technology Institute (GTI) are cooperating to develop, demonstrate and place in continuous operation an advanced biomass gasification-based power generation system suitable for near-term commercial deployment in the Forest Products Industry. The system will be used in conjunction with, rather than in place of, existing wood waste fired boilers and flue gas cleanup systems. The novel system will include three advanced technological components based on GTI's RENUGAS{reg_sign} and three-stage stoker combustion technologies, and a gas turbine-based power generation concept developed in DOE's High Performance Power System (HIPPS) program. The system has, as its objective, to avoid the major hurdles of high-pressure gasification, i.e., high-pressure fuel feeding and ash removal, and hot gas cleaning that are typical for conventional IGCC power generation. It aims to also minimize capital intensity and technology risks. The system is intended to meet the immediate needs of the forest products industry for highly efficient and environmentally friendly electricity and steam generation systems utilizing existing wood waste as fuel resources. The overall objective of this project is to demonstrate the commercial applicability of an advanced biomass gasification-based power generation system at Boise Paper Solutions' pulp and paper mill located at DeRidder, Louisiana.

Joseph Rabovitser; Bruce Bryan

2002-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxide conversion product" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

ADVANCED GASIFICATION-BASED FUEL CONVERSION AND ELECTRIC ENERGY PRODUCTION SYSTEM  

DOE Green Energy (OSTI)

Boise Paper Solutions and the Gas Technology Institute (GTI) are cooperating to develop, demonstrate and place in continuous operation an advanced biomass gasification-based power generation system suitable for near-term commercial deployment in the Forest Products Industry. The system will be used in conjunction with, rather than in place of, existing wood waste fired boilers and flue gas cleanup systems. The novel system will include three advanced technological components based on GTI's RENUGAS{reg_sign} and three-stage stoker combustion technologies, and a gas turbine-based power generation concept developed in DOE's High Performance Power System (HIPPS) program. The system has, as its objective, to avoid the major hurdles of high-pressure gasification, i.e., high-pressure fuel feeding and ash removal, and hot gas cleaning that are typical for conventional IGCC power generation. It aims to also minimize capital intensity and technology risks. The system is intended to meet the immediate needs of the forest products industry for highly efficient and environmentally friendly electricity and steam generation systems utilizing existing wood waste as fuel resources. The overall objective of this project is to demonstrate the commercial applicability of an advanced biomass gasification-based power generation system at Boise Paper Solutions' pulp and paper mill located at DeRidder, Louisiana.

Joseph Rabovitser; Bruce Bryan

2002-10-01T23:59:59.000Z

122

ADVANCED GASIFICATION-BASED FUEL CONVERSION AND ELECTRIC ENERGY PRODUCTION SYSTEM  

DOE Green Energy (OSTI)

Boise Cascade Corporation and the Gas Technology Institute (GTI) are cooperating to develop, demonstrate and place in continuous operation an advanced biomass gasification-based power generation system suitable for near-term commercial deployment in the Forest Products Industry. The system will be used in conjunction with, rather than in place of, existing wood waste fired boilers and flue gas cleanup systems. The novel system will include three advanced technological components based on GTI's RENUGAS{reg_sign} and three-stage stoker combustion technologies, and a gas turbine-based power generation concept developed in DOE's High Performance Power System (HIPPS) program. The system has, as its objective, to avoid the major hurdles of high-pressure gasification, i.e., high-pressure fuel feeding and ash removal, and hot gas cleaning that are typical for conventional IGCC power generation. It aims to also minimize capital intensity and technology risks. The system is intended to meet the immediate needs of the forest products industry for highly efficient and environmentally friendly electricity and steam generation systems utilizing existing wood waste as fuel resources.

Joseph Rabovitser; Bruce Bryan

2002-07-01T23:59:59.000Z

123

ADVANCED GASIFICATION-BASED FUEL CONVERSION AND ELECTRIC ENERGY PRODUCTION SYSTEM  

DOE Green Energy (OSTI)

Boise Cascade Corporation and the Gas Technology Institute (GTI) are cooperating to develop, demonstrate and place in continuous operation an advanced biomass gasification-based power generation system suitable for near-term commercial deployment in the Forest Products Industry. The system will be used in conjunction with, rather than in place of, existing wood waste fired boilers and flue gas cleanup systems. The novel system will include three advanced technological components based on GTI's RENUGAS{reg_sign} and METHANE de-NOX{reg_sign} technologies, and a gas turbine-based power generation concept developed in DOE's High Performance Power System (HIPPS) program. The system has, as its objective, to avoid the major hurdles of high-pressure gasification, i.e., high-pressure fuel feeding and ash removal, and hot gas cleaning that are typical for conventional IGCC power generation. It aims to also minimize capital intensity and technology risks. The system is intended to meet the immediate needs of the forest products industry for highly efficient and environmentally friendly electricity and steam generation systems utilizing existing wood waste as fuel resources.

Joseph Rabovitser; Bruce Bryan

2002-01-01T23:59:59.000Z

124

Solar Thermal Electrolytic Production of Metals from Their Oxides  

Science Conference Proceedings (OSTI)

Symposium, Alternative Energy Resources for Metals and Materials Production Symposium. Presentation Title, Solar Thermal Electrolytic Production of Metals ...

125

Modified lithium vanadium oxide electrode materials products and methods  

DOE Patents (OSTI)

A method of improving certain vanadium oxide formulations is presented. The method concerns fluorine doping formulations having a nominal formula of LiV.sub.3 O.sub.8. Preferred average formulations are provided wherein the average oxidation state of the vanadium is at least 4.6. Herein preferred fluorine doped vanadium oxide materials, electrodes using such materials, and batteries including at least one electrode therein comprising such materials are provided.

Thackeray, Michael M. (Naperville, IL); Kahaian, Arthur J. (Chicago, IL); Visser, Donald R. (Naperville, IL); Dees, Dennis W. (Downers Grove, IL); Benedek, Roy (Western Springs, IL)

1999-12-21T23:59:59.000Z

126

Simplified Production of Ni-Based Oxide Dispersion Strengthened  

Science Conference Proceedings (OSTI)

Austenitic Steel Oxidation in Steam: Alloy Composition and Surface Modification ... Ni-Base Alloys for Use as Components in Advanced-USC Steam Turbines.

127

Active Zinc Oxide Production From Waste Zinc Powder  

Science Conference Proceedings (OSTI)

In this study, various quality of active zinc oxides containing up to 98 wt. ... Comparison of Microstructural Evolution of Nickel During Conventional and Spark ...

128

Unit Conversion  

Science Conference Proceedings (OSTI)

Unit Conversion. ... Unit Conversion Example. "If you have an amount of unit of A, how much is that in unit B?"; Dimensional Analysis; ...

2012-12-04T23:59:59.000Z

129

Lignite slime as activator in production of oxidized asphalts  

Science Conference Proceedings (OSTI)

The possibility of activation of the oxidation of straight-run resids to asphalts by the addition of lignite slimes obtained in the liquefaction of coals of the Kansk-Achinsk basin was studied on the basis of a hypothesis formulated with due regard for the principles of physicochemical mechanics of petroleum disperse systems. A reduction of the air bubble size in the oxidizing vessel should lead to an increase in the total surface of oxidation and hence to a shortening of the time required for oxidation of the feed. A straight-run vacuum resid from mixed West Siberian and Ukhta crudes was used. The resid was oxidized with and without the addition of slime.

Gureev, A.A.; Gorlov, E.G.; Leont'eva, O.B.; Zotova, O.V.

1988-03-01T23:59:59.000Z

130

Conversion of light hydrocarbon gases to metal carbides for production of liquid fuels and chemicals. Quarterly technical status report, April 1--June 30, 1993  

SciTech Connect

Previous work at MIT indicates that essentially stoichiometric, rather than catalytic, reactions with alkaline earth metal oxides offer technical and economic promise as an innovative approach to upgrading natural gas to premium products such as liquid hydrocarbon fuels and chemicals. In this approach, methane would be reacted with relatively low cost and recyclable alkaline earth metal oxides, such as CaO and MgO, at high temperatures (>1500{degrees}C) to achieve very high (i.e. approaching 100%) gas conversions to H{sub 2}, CO and the corresponding alkaline earth metal carbides. These carbides exist stably in solid form at dry ambient conditions and show promise for energy storage and long distance transport. The overall objective of the proposed research is to develop new scientific and engineering knowledge bases for further assessment of the approach by performing laboratory-scale experiments and thermodynamic and thermochemical kinetics calculations. Work on this project will be performed according to two tasks. Under Task 1 (Industrial Chemistry), a laboratory-scale electric arc discharge plasma reactor is being constructed and will be used to assess the technical feasibility of producing Mg{sub 2}C{sub 3} from MgO and methane, and to identify the operating conditions of interest for the commercial production of Mg{sub 2}C{sub 3} and/or CaC{sub 2} from MgO and/or CaO and methane. Under Task 2 (Mechanistic Foundations), preliminary thermodynamic calculations were performed for the Ca-C-H-O and Mg-C-H-O systems using the Chemkin program. A scoping run with CaO in an electrical screen heater reactor under reduced methane pressure was also conducted. No appreciable quantity of acetylene was detected upon hydrolysis of the solid residue. This can be attributed to the very small quantity of methane at the very low pressure coupled with inadequate contacting of whatever methane was present with the CaO powder.

Diaz, A.F.; Modestino, A.J.; Howard, J.B.; Peters, W.A.

1993-08-01T23:59:59.000Z

131

Amorphous semiconducting and conducting transparent metal oxide thin films and production thereof  

DOE Patents (OSTI)

Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.

Perkins, John (Boulder, CO); Van Hest, Marinus Franciscus Antonius Maria (Lakewood, CO); Ginley, David (Evergreen, CO); Taylor, Matthew (Golden, CO); Neuman, George A. (Holland, MI); Luten, Henry A. (Holland, MI); Forgette, Jeffrey A. (Hudsonville, MI); Anderson, John S. (Holland, MI)

2010-07-13T23:59:59.000Z

132

ADVANCED GASIFICATION-BASED FUEL CONVERSION AND ELECTRIC ENERGY PRODUCTION SYSTEM  

DOE Green Energy (OSTI)

The objective of this project is the development and commercial demonstration of an advanced biomass gasification-based power generation system at Boise Cascade Corporation's pulp and paper mill in DeRidder, Louisiana. The advanced power generation system is intended to meet the immediate needs of the forest products industry for highly efficient and environmentally friendly electricity and steam generation systems utilizing existing wood waste as the primary fuel resource. The novel system is based on three advanced technology components: GTI's RENUGAS{reg_sign} and 3-stage solid fuels combustion technologies coupled with one of the power generation approaches used in DOE's HIPPS program. Phase 1 of the project is a technical and economic evaluation of the system at the DeRidder site. A Continuation Application will be submitted at the conclusion of Phase 1 for authorization to proceed to testing and design in Phase 2. Phase 2 includes pilot-scale verification of selected system components and preparation of a detailed engineering design and cost estimate for retrofit of the advanced power system at the DeRidder mill. Phase 3 will complete procurement and construction of the system at the DeRidder site along with all required permitting activities. Phase 4 of the project will included plant commissioning, startup and demonstration operations. Design information for the Gasification Island was completed during the quarter. Two vendor quotations were received for the bark/hog fuel dryers. A final layout plan for the major equipment was developed and submitted to DeRidder for review and approval. The Institute of Paper Science and Technology (IPST) completed a subcontract for a laboratory study on VOC emissions from wood waste drying using bark from the DeRidder mill. Samples of DeRidder's lime mud and green liquor dregs were collected and analyzed in GTI's laboratory. It was determined that lime mud is far too fine to be utilized as inert bed material in the fluidized bed gasifier. Results for the green liquor dregs are currently being reviewed. Design analysis for the in-furnace HPHT Air Heater was completed and the external Syngas Cooler/Air Heater was begun. Materials were received for the air heater tube testing system to be installed in Boiler No. 2 at DeRidder. A refractory interference problem with the original testing system design was discovered and resolved. Analyses of the externally recuperated gas turbine cycles (air heater and booster combustor in parallel or series) were continued including the effects of steam cooling and inlet air humidification on power output and operating cost. Discussions were continued with turbine manufacturers regarding the technical, time and cost requirements for developing an externally recuperated turbine engine suitable for use in the project. A 5-month no-cost time extension was requested and received for the project to accommodate design and evaluation of externally recuperated gas turbines using HPHT air as the working fluid.

Joseph Rabovitser; Bruce Bryan

2003-04-01T23:59:59.000Z

133

Thermal conversion of biomass to valuable fuels, chemical feedstocks and chemicals  

DOE Patents (OSTI)

A continuous process for the conversion of biomass to form a chemical feedstock is described. The biomass and an exogenous metal oxide, preferably calcium oxide, or metal oxide precursor are continuously fed into a reaction chamber that is operated at a temperature of at least 1400.degree. C. to form reaction products including metal carbide. The metal oxide or metal oxide precursor is capable of forming a hydrolizable metal carbide. The reaction products are quenched to a temperature of 800.degree. C. or less. The resulting metal carbide is separated from the reaction products or, alternatively, when quenched with water, hydolyzed to provide a recoverable hydrocarbon gas feedstock.

Peters, William A. (Lexington, MA); Howard, Jack B. (Winchester, MA); Modestino, Anthony J. (Hanson, MA); Vogel, Fredreric (Villigen PSI, CH); Steffin, Carsten R. (Herne, DE)

2009-02-24T23:59:59.000Z

134

STRIPPING OF PROCESS CONDENSATES FROM SOLID FUEL CONVERSION  

E-Print Network (OSTI)

Aqueous from Fossil Fuel Conversion Processes", ~l:;_£J. _and Pollution Control in Coal Conversion Processes", U. s.By-Product Waters from Coal Conversion Processes", American

Hill, Joel David

2013-01-01T23:59:59.000Z

135

Production of Organic Oxygenates in the Partial Oxidation of Methane in a Silent Electric Discharge Reactor  

E-Print Network (OSTI)

Significant amounts of these reserves are located in remote areas. Steam reforming to synthesis gasProduction of Organic Oxygenates in the Partial Oxidation of Methane in a Silent Electric Discharge, Room T 335, Norman, Oklahoma 73019 This study on the partial oxidation of methane in a silent electric

Mallinson, Richard

136

NUCLEAR CONVERSION APPARATUS  

DOE Patents (OSTI)

A nuclear conversion apparatus is described which comprises a body of neutron moderator, tubes extending therethrough, uranium in the tubes, a fluid- circulating system associated with the tubes, a thorium-containing fluid coolant in the system and tubes, and means for withdrawing the fluid from the system and replacing it in the system whereby thorium conversion products may be recovered.

Seaborg, G.T.

1960-09-13T23:59:59.000Z

137

Development of Molecular Electrocatalysts for CO2 Reduction and H2 Production/Oxidation  

DOE Green Energy (OSTI)

The conversion of solar energy to fuels in both natural and artificial photosynthesis requires components for both light harvesting and catalysis. The light-harvesting component generates the electrochemical potentials required to drive fuel-generating reactions that would otherwise be thermodynamically uphill. This review focuses on work from our laboratories on developing molecular electrocatalysts for CO2 reduction and for hydrogen production. A true analog of natural photosynthesis will require the ability to capture CO2 from the atmosphere and reduce it to a useful fuel. Work in our laboratories has focused on both aspects of this problem. Organic compounds such as quinones and inorganic metal complexes can serve as redox active CO2 carriers for concentrating CO2. Catalysts for CO2 reduction to form CO have also been developed based on a [Pd(triphosphine)(solvent)]2+ platform. A required feature for catalytic activity is the presence of a weakly coordinating solvent molecule that can dissociate during the catalytic cycle and provide a vacant coordination site for binding water and assisting C-O bond cleavage. Participation of a second metal in CO2 binding also appears to be required for achieving very active catalysts as suggested by structures of [NiFe] CO dehydrogenase enzymes and the results of studies on complexes containing two [Pd(triphosphine)(solvent)]2+ units. Molecular electrocatalysts for H2 production and oxidation based on [Ni(diphosphine)2]2+ complexes are also described. These catalysts require the optimization of both first and second coordination spheres similar to that of the palladium CO2 reduction catalysts. In this case, structural features of the first coordination sphere can be used to optimize the hydride acceptor ability of nickel needed to achieve heterolytic cleavage of H2. The second coordination sphere can be used to incorporate pendant bases that assist in a number of important functions including H2 binding, H2 cleavage, and the transfer of protons between nickel and solution. These pendant bases or proton relays are likely to be important in the design of catalysts for a wide range of fuel production and fuel utilization reactions involving multiple electron and proton transfer steps. The work described in this review has been supported by the Chemical Sciences program of the Office of Basic Energy Sciences of the Department of Energy. The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

Rakowski DuBois, Mary; DuBois, Daniel L.

2009-12-15T23:59:59.000Z

138

Economics of large-scale thorium oxide production: assessment of domestic resources  

SciTech Connect

The supply curve illustrates that sufficient amounts of thorium exist supply a domestic thorium-reactor economy. Most likely costs of production range from $3 to $60/lb ThO/sub 2/. Near-term thorium oxide resources include the stockpiles in Ohio, Maryland, and Tennessee and the thorite deposits at Hall Mountain, Idaho. Costs are under $10/lb thorium oxide. Longer term economic deposits include Wet Mountain, Colorado; Lemhi Pass, Idaho; and Palmer, Michigan. Most likely costs are under $20/lb thorium oxide. Long-term deposits include Bald Mountain, Wyoming; Bear Lodge, Wyoming; and Conway, New Hampshire. Costs approximately equal or exceed $50/lb thorium oxide.

Young, J.K.; Bloomster, C.H.; Enderlin, W.I.; Morgenstern, M.H.; Ballinger, M.Y.; Drost, M.K.; Weakley, S.A.

1980-02-01T23:59:59.000Z

139

Electrogenerative oxidation of lower alcohols to useful products  

DOE Patents (OSTI)

In the disclosed electrogenerative process for converting alcohols such as ethanol to aldehydes such as acetaldehyde, the alcohol starting material is an aqueous solution containing more than the azeotropic amount of water. Good first-pass conversions (<40% and more typically <50%) are obtained at operating cell voltages in the range of about 80 to about 350 millivolts at ordinary temperatures and pressures by using very high flow rates of alcohol to the exposed anode surface (i.e. the "gas" side of an anode whose other surface is in contact with the electrolyte). High molar flow rates of vaporized aqueous alcohol also help to keep formation of undesired byproducts at a low level.

Meshbesher, Thomas M. (4507 Weldin Rd., Wilmington, DE 19803)

1987-01-01T23:59:59.000Z

140

PROCESS FOR PRODUCTION OF PLUTONIUM FROM ITS OXIDES  

DOE Patents (OSTI)

A method is described for obtaining a carbide of plutonium and two methods for obtaining plutonium metal from its oxides. One of the latter involves heating the oxide, in particular PuO/sub 2/, to a temperature of 1200 to 1500 deg C with the stoichiometrical amount of carbon to fornn CO in a hard vacuum (3 to 10 microns Hg), the reduced and vaporized plutonium being collected on a condensing surface above the reaction crucible. When an excess of carbon is used with the PuO/sub 2/, a carbide of plutonium is formed at a crucible temperature of 1400 to 1500 deg C. The process may be halted and the carbide removed, or the reaction temperature can be increased to 1900 to 2100 deg C at the same low pressure to dissociate the carbide, in which case the plutonium is distilled out and collected on the same condensing surface.

Weissman, S.I.; Perlman, M.L.; Lipkin, D.

1959-10-13T23:59:59.000Z

Note: This page contains sample records for the topic "oxide conversion product" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Durability of Solid Oxide Electrolysis Cells for Hydrogen Production  

E-Print Network (OSTI)

to be 71 US¢/kg H2, equivalent to 30 $/barrel crude oil using the higher heating value (HHV) [1]. The CO production cost was found to be 5.6 US¢/kg equivalent to 34 $/barrel crude oil using the HHV. Figure 1 of the SOEC technology i.e. issues such as a potential H2 production price as low as 0.71 US$/kg H2 using

142

Formation of alcohol conversion catalysts  

DOE Patents (OSTI)

The method of the present invention involves a composition containing an intimate mixture of (a) metal oxide support particles and (b) a catalytically active metal oxide from Groups VA, VIA, or VIIA, its method of manufacture, and its method of use for converting alcohols to aldehydes. During the conversion process, catalytically active metal oxide from the discrete catalytic metal oxide particles migrates to the oxide support particles and forms a monolayer of catalytically active metal oxide on the oxide support particle to form a catalyst composition having a higher specific activity than the admixed particle composition.

Wachs, Israel E. (Bridgewater, NJ); Cai, Yeping (Louisville, KY)

2001-01-01T23:59:59.000Z

143

Technical-economic assessment of the production of methanol from biomass. Conversion process analysis. Final research report  

DOE Green Energy (OSTI)

A comprehensive engineering system study was conducted to assess various thermochemical processes suitable for converting biomass to methanol. A summary of the conversion process study results is presented here, delineating the technical and economic feasibilities of producing methanol fuel from biomass utilizing the currently available technologies. (MHR)

Wan, E.I.; Simmons, J.A.; Price, J.D.; Nguyen, T.D.

1979-07-12T23:59:59.000Z

144

Localization of the production of 1-aminocyclopropane-1-carboxylic acid and its conversion to ethylene during the rhythmic production of the gas in Sorghum bicolor seedlings  

E-Print Network (OSTI)

Studies were conducted to determine where in the plant 1-aminocyclopropane-1-carboxylic acid (ACC) is made and converted to ethylene in Sorghum bicolor seedlings producing the gas in circadian rhythms. For the first time, a natural enzyme was used to convert ACC to ethylene for assay by gas chromatography. Parameters like Km and Vmax of ACC oxidase in the standard assay were well complemented in more rigorous Eddie Hofstee and Lineweaver-Burk plots. A conversion formula was derived allowing use of constants and variable product to calculate the unknown ACC concentration. The new method proved far simpler and efficient than the NaOCl and Hg?² method by eliminating slow purification steps and interference. Measuring rates of ethylene production, free and conjugated ACC contents from detached as well as intact plant organs tested the role of roots in rhythmic ethylene synthesis. Variation in ethylene synthesis in the phytochrome B mutant and its wild-type cultivar under different light regimes suggested that phytochrome regulates ethylene synthesis. Occurrence of rhythmic phenomena in detached shoots made it clear that regulation of ethylene synthesis takes place in shoots. Pulses of ethylene may be signaling the plant as the "hands" of the biological clock and may have some role in the phenotype of the mutant cultivar. Detachment did not create a significant difference in ACC levels between intact and detached shoots of either cultivar. Especially, ACC levels did not decrease in detached shoots as would be expected if their ACC originated to a major degree in roots. Similar results were found in roots, suggesting that adequate amounts of ACC to convert into ethylene are present in detached shoots. Ethylene rhythms may be controlled by a self-inhibitory mechanism taking place at the time of ACC synthesis. Conjugation of ACC (MACC) may be indirectly regulating ethylene synthesis by preventing excessive accumulation of ACC in roots and shoots. Probing of mRNA isolated during a time course with be353050 transcript gave two putative ACC synthase genes, tentatively named sbACS2 and sbACS3. Flooding and injury treatments did not induce statement of either of the transcripts. sbACS3 is expressed constitutively whereas sbACS2 is diurnally expressed. The combined effect of both the transcripts may have resulted in diurnal but weak rhythms of ACC in shoots.

Gohil, Hemantkumar Laxmansinh

2002-01-01T23:59:59.000Z

145

Modeling global atmospheric CO2 with improved emission inventories and CO2 production from the oxidation of other carbon species  

Science Conference Proceedings (OSTI)

The use of global three-dimensional (3-D) models with satellite observations of CO2 in inverse modeling studies is an area of growing importance for understanding Earth s carbon cycle. Here we use the GEOS-Chem model (version 8-02-01) CO2 mode with multiple modifications in order to assess their impact on CO2 forward simulations. Modifications include CO2 surface emissions from shipping (0.19 PgC yr 1), 3-D spatially-distributed emissions from aviation (0.16 PgC yr 1), and 3-D chemical production of CO2 (1.05 PgC yr 1). Although CO2 chemical production from the oxidation of CO, CH4 and other carbon gases is recognized as an important contribution to global CO2, it is typically accounted for by conversion from its precursors at the surface rather than in the free troposphere. We base our model 3-D spatial distribution of CO2 chemical production on monthly-averaged loss rates of CO (a key precursor and intermediate in the oxidation of organic carbon) and apply an associated surface correction for inventories that have counted emissions of CO2 precursors as CO2. We also explore the benefit of assimilating satellite observations of CO into GEOS-Chem to obtain an observation-based estimate of the CO2 chemical source. The CO assimilation corrects for an underestimate of atmospheric CO abundances in the model, resulting in increases of as much as 24% in the chemical source during May June 2006, and increasing the global annual estimate of CO2 chemical production from 1.05 to 1.18 Pg C. Comparisons of model CO2 with measurements are carried out in order to investigate the spatial and temporal distributions that result when these new sources are added. Inclusion of CO2 emissions from shipping and aviation are shown to increase the global CO2 latitudinal gradient by just over 0.10 ppm (3%), while the inclusion of CO2 chemical production (and the surface correction) is shown to decrease the latitudinal gradient by about 0.40 ppm (10%) with a complex spatial structure generally resulting in decreased CO2 over land and increased CO2 over the oceans. Since these CO2 emissions are omitted or misrepresented in most inverse modeling work to date, their implementation in forward simulations should lead to improved inverse modeling estimates of terrestrial biospheric fluxes.

Nassar, Ray [University of Toronto; Jones, DBA [University of Toronto; Suntharalingam, P [University of East Anglia, Norwich, United Kingdom; Chen, j. [University of Toronto; Andres, Robert Joseph [ORNL; Wecht, K. J. [Harvard University; Yantosca, R. M. [Harvard University; Kulawik, SS [Jet Propulsion Laboratory, Pasadena, CA; Bowman, K [Jet Propulsion Laboratory, Pasadena, CA; Worden, JR [Jet Propulsion Laboratory, Pasadena, CA; Machida, T [National Institute for Environmental Studies, Japan; Matsueda, H [Meteorological Research Institute, Japan

2010-01-01T23:59:59.000Z

146

Synthesis Gas Production from Partial Oxidation of Methane with Air in AC Electric Gas Discharge  

E-Print Network (OSTI)

depending on the ratio of hydrogen to carbon monoxide. Most synthesis gas is produced by the steam reform reaction. Industrially, steam reforming is performed over a Ni/ Al2O3 catalyst.9 The typical problemSynthesis Gas Production from Partial Oxidation of Methane with Air in AC Electric Gas Discharge K

Mallinson, Richard

147

Preparation of oxygen-containing organic products from bed-oxidized brown coal by ozonation  

Science Conference Proceedings (OSTI)

The possibility of modifying the functional composition of humic acids by gas-phase ozonation of bed-oxidized brown coal was examined. About 90% of the organic matter of brown coal was converted to low-molecular weight soluble oxygen-containing products by stepwise liquid-phase ozonation (in chloroform and acetic acid).

Semenova, S.A.; Patrakov, Y.F.; Batina, M.V. [National Academy of Science Belarus, Minsk (Byelarus)

2009-01-15T23:59:59.000Z

148

High conversion of coal to transportation fuels for the future with low HC gas production. Progress report, October 1, 1995--December 31, 1995  

DOE Green Energy (OSTI)

Experimental coal liquefaction studies conducted in a batch microreactor in our laboratory have demonstrated potential for high conversions of coal to liquids with low yields of hydrocarbon (HC) gases, hence a small consumption of hydrogen in the primary liquefaction step. Ratios of liquids/HC gases as high as 30/1, at liquid yields as high as 82% of the coal by weight, have been achieved. The principal objective of this work is to examine how nearly we may approach these results in a continuous-flow system, at a size sufficient to evaluate the process concept for production of transportation fuels from coal.

Wiser, W.H.; Oblad, A.G.

1996-01-01T23:59:59.000Z

149

Controlled production of cellulases in plants for biomass conversion. Progress report, June 15, 1996--March 10, 1997  

DOE Green Energy (OSTI)

The goal of this project is to facilitate conversion of plant biomass to usable energy by developing transgenic plants that express genes for microbial cellulases, which can be activated after harvest of the plants. In particular, we want to determine the feasibility of targeting an endoglucanase and a cellobiohydrolase to the plant apoplast (cell wall milieu). The apoplast not only contains cellulose, the substrate for the enzymes, but also can tolerate large amounts of foreign protein. To avoid detrimental effects of cellulase expression in plants, we have chosen enzymes with high temperature optima; the genes for these enzymes are from thermophilic organisms that can use cellulose as a sole energy source.

Danna, K.J.

1997-06-01T23:59:59.000Z

150

Molecular Electrocatalysts for the Oxidation of Hydrogen and the Production of Hydrogen - The Role of Pendant Amines as Proton Relays  

DOE Green Energy (OSTI)

Electrocatalysts for efficient conversion between electricity and chemical bonds will play a vital role in future systems for storage and delivery of energy. Our research on functional models of hydrogenase enzymes uses nickel and cobalt, abundant and inexpensive metals, in contrast to platinum, a precious metal used in fuel cells. A key feature of our research is a focus on the use of pendant amines incorporated into diphosphine ligands. These pendant amines function as proton relays, lowering the barrier to proton transfers to and from the catalytically active metal site. The hydride acceptor ability of metal cations, along with the basicity of pendant amines, are key thermochemical values that determine the thermodynamics of addition of H2 to a metal complex with a pendant amine incorporated into its ligand. Nickel catalysts for oxidation of H2 have turnover frequencies up to 50 s-1 (at 1 atm H2 and room temperature). Nickel and cobalt catalysts for production of H2 by reduction of protons are studied, one of which has a turnover frequency over 1000 s-1. This material is based upon work supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences.

DuBois, Daniel L.; Bullock, R. Morris

2011-03-15T23:59:59.000Z

151

Production of hydrogen. [metals oxidation/carbon reduction process; and cyyclic electrolytic; carbon reduction  

SciTech Connect

Hydrogen is produced in a cyclic metals oxidation/carbon reduction process. In particular, elemental iron or cobalt is oxidized in an aqueous solution of an alkali metal hydroxide with the simultaneous generation of hydrogen. The iron or cobalt oxidation products of the reaction are thereafter reduced to elemental iron or cobalt by contact with a carbonaceous reducing agent at elevated temperatures and the reduced material recycled for reoxidation. In an alternate operation, hydrogen is produced in a cyclic electrolytic/carbon reduction process wherein elemental iron or cobalt is electrolytically converted to corresponding oxidation products with the simultaneous generation of hydrogen. The electrolytic cell used in this process comprises a cathode, a magnetic anode that is adapted to attract and retain iron and/or cobalt particles and an aqueous electrolyte. In the electrolytic cell, hydrogen is produced at the cathode and metal particles contained on the magnetic electrode are oxidized to a non-ferromagnetic specie, such as ferrous hydroxide. The nonferromagnetic species are recovered from the electrolytic cell and thereafter reconverted to particulate elemental iron and/or cobalt by treating the material with a carbonaceous reductant at an elevated temperature.

Batzold, J.S.; Pan, Y.

1980-05-13T23:59:59.000Z

152

Dense ceramic membranes for methane conversion  

DOE Green Energy (OSTI)

This report focuses on a mechanism for oxygen transport through mixed- oxide conductors as used in dense ceramic membrane reactors for the partial oxidation of methane to syngas (CO and H{sub 2}). The in-situ separation of O{sub 2} from air by the membrane reactor saves the costly cryogenic separation step that is required in conventional syngas production. The mixed oxide of choice is SrCo{sub 0.5}FeO{sub x}, which exhibits high oxygen permeability and has been shown in previous studies to possess high stability in both oxidizing and reducing conditions; in addition, it can be readily formed into reactor configurations such as tubes. An understanding of the electrical properties and the defect dynamics in this material is essential and will help us to find the optimal operating conditions for the conversion reactor. In this paper, we discuss the conductivities of the SrFeCo{sub 0.5}O{sub x} system that are dependent on temperature and partial pressure of oxygen. Based on the experimental results, a defect model is proposed to explain the electrical properties of this system. The oxygen permeability of SrFeCo{sub 0.5}O{sub x} is estimated by using conductivity data and is compared with that obtained from methane conversion reaction.

Balachandran, U.; Mieville, R.L.; Ma, B. [Argonne National Lab., IL (United States); Udovich, C.A. [Amoco Oil Co., Naperville, IL (United States)

1996-05-01T23:59:59.000Z

153

Nitrous oxide production from radiolysis of simulted high-level nuclear waste solutions  

DOE Green Energy (OSTI)

Nitrous oxide gas (N{sub 2}O) is produced by the radiolysis of aqueous nitrate or nitrite solutions in the presence of organic compounds. When ethylenediaminetetraacetic acid (EDTA) or N- (2-hydroxyethyl)-ethylenediaminetriacetic acid (HEDTA) is present, the G-value for hydrogen increases and N{sub 2}O become the major gaseous product (G=0.54). A survey of organic compounds indicates the amount of N{sub 2}O formed depends on the structure of the organic. With highly oxidized organics (carbonate, formate, acetate and oxalate), little or no N{sub 2}O is formed. Aromatic and aliphatic organics (sodium tetraphenylborate, benzene, phenol, n-paraffin, and tributylphosphate) produce small amounts of N{sub 2}O. Water soluble, easily oxidized organics (methanol, ethanol, isopropanol, n-butanol, acetone, and ethylene glycol) produce large amounts of N{sub 2}O relative to the previous two categories. Nitrous oxide production is not greatly affected by pH between neutral and pH=13, but increases significantly in acid solution. The G-value for N{sub 2}O production in 10 wt% potassium tetraphenylborate slurries has been measured under process conditions important at the Savannah River Site.

Walker, D.D.; Hobbs, D.T.; Tiffany, J.B.; Bibler, N.E. [Westinghouse Savannah River Co., Aiken, SC (United States); Meisel, D. [Argonne National Lab., IL (United States)

1992-07-01T23:59:59.000Z

154

Nitrous oxide production from radiolysis of simulted high-level nuclear waste solutions  

DOE Green Energy (OSTI)

Nitrous oxide gas (N{sub 2}O) is produced by the radiolysis of aqueous nitrate or nitrite solutions in the presence of organic compounds. When ethylenediaminetetraacetic acid (EDTA) or N- (2-hydroxyethyl)-ethylenediaminetriacetic acid (HEDTA) is present, the G-value for hydrogen increases and N{sub 2}O become the major gaseous product (G=0.54). A survey of organic compounds indicates the amount of N{sub 2}O formed depends on the structure of the organic. With highly oxidized organics (carbonate, formate, acetate and oxalate), little or no N{sub 2}O is formed. Aromatic and aliphatic organics (sodium tetraphenylborate, benzene, phenol, n-paraffin, and tributylphosphate) produce small amounts of N{sub 2}O. Water soluble, easily oxidized organics (methanol, ethanol, isopropanol, n-butanol, acetone, and ethylene glycol) produce large amounts of N{sub 2}O relative to the previous two categories. Nitrous oxide production is not greatly affected by pH between neutral and pH=13, but increases significantly in acid solution. The G-value for N{sub 2}O production in 10 wt% potassium tetraphenylborate slurries has been measured under process conditions important at the Savannah River Site.

Walker, D.D.; Hobbs, D.T.; Tiffany, J.B.; Bibler, N.E. (Westinghouse Savannah River Co., Aiken, SC (United States)); Meisel, D. (Argonne National Lab., IL (United States))

1992-01-01T23:59:59.000Z

155

Production of cerium oxide microsheres by an internal gelation sol-gel process  

E-Print Network (OSTI)

The experiments performed for this research were completed to produce solid cerium oxide microspheres by an internal gelation sol-gel process. The motivation for this work was to develop a process that would enable the fabrication of a storage or transmutation form for the plutonium and transuranics (TRU) from the Uranium Extraction Plus (UREX ) used fuel reprocessing process. This process is being investigated by the Department of Energy (DOE) and the Advanced Fuel Cycles Initiative (AFCI) through the Nuclear Energy Research Initiative. The internal gelation production of cerium oxide involves the combination of hexamethylenetetramine (HMTA), urea, and cerium nitrate solutions at ~100oC. Microspheres were produced by injection of a broth solution into a flowing stream of hot silicone oil. The captured microspheres were aged, washed, and then underwent Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), and XRay Diffraction (XRD) analysis. The process variables examined in this study include the concentrations of HMTA, urea and cerium nitrate, the process temperature, the postgelation aging time, and the product washing conditions. Over a series of 70 experiments, it was determined that a broth solution containing a mixture of 1.45 M cerium nitrate and 1.65 M HMTA and urea (1:1 ratio) solutions produced the best cerium oxide microspheres. The spheres were aged for 30 to 60 minutes and then washed in hexane to remove the silicone oil and a subsequent series of ammonium hydroxide washes to remove unreacted product and to fully gel the microspheres. Through DSC analysis it was determined that excess wash or unreacted product may be removed by an exothermic reaction at approximately 200oC. The XRD analysis of unheated spheres showed the presence of cerium oxide with additional cerium-bearing organics. Following heating, the microspheres were completely converted to cerium oxide.

Wegener, Jeffrey J.

2008-12-01T23:59:59.000Z

156

Solar decomposition of cadmium oxide for hydrogen production. Final subcontract report  

DOE Green Energy (OSTI)

The reactor developed for this study performed satisfactorily in establishing the feasibility of cadmium oxide decomposition under the realistic conditions of the solar-furnace environment. The solar-furnace environment is very appropriate for the evaluation of design concepts. However, the solar furnace probably cannot give precise rate data. The flux is too nonuniform, so temperatures of reactant and corresponding reaction rates are also nonuniform. One of the most important results of this project was the recovery of samples from the quench heat exchanger that contained a surprisingly large amount of metallic cadmium. The fact that the sample taken from the quench heat exchanger was metallic in appearance and contained between 67% and 84% metallic cadmium would tend to indicate recombination of cadmium vapor and oxygen can be effectively prevented by the quenching operation. It would also tend to confirm recent studies that show cadmium oxide does not sublime appreciably. Determination of the decomposition rate of cadmium oxide was severely limited by fluctuating and nonuniform reactant temperatures and baseline drift in the oxygen sensor. However, the estimated rate based on a single run seemed to follow a typical solid decomposition rate pattern with an initial acceleratory period, followed by a longer deceleratory period. From a preliminary flowsheet analysis of the cadmium-cadmium oxide cycle, it was determined that at a cadmium oxide decomposition temperature of 1400/sup 0/C and a requirement of 0.2 V in the electrolyzer the efficiency was 41%, assuming total quenching of the cadmium oxide decomposition products. This efficiency could increase to a maximum of 59% if total recovery of the latent heats of vaporization and fusion of the decomposition products is possible.

Schreiber, J. D.; Yudow, B. D.; Carty, R. H.; Whaley, T. P.; Pangborn, J. B.

1981-11-01T23:59:59.000Z

157

Gas Atomization Precursor Powder Approach for Simplified Large-Scale Production of Oxide Dispersion  

SciTech Connect

Oxide dispersion strengthened (ODS) Ni-based alloys show promise for future energy applications that require high-temperature and oxidation resistant properties. Gas atomization reaction synthesis (GARS), with a mixed (Ar/O{sub 2}) atomization gas, is being developed as a simplified route for producing ODS precursor powders. Internal oxidation studies determined Ni-Cr-Y-(Hf or Ti) containing systems are suitable for production of ODS alloys via hot consolidation, which is used to encourage oxygen exchange between the less stable surface oxide phase and reactive alloying elements, resulting in highly stable nano-metric dispersoid formation. Size control of powders is key to optimizing microstructural and strengthening features. Aspiration and, previously, water modeling experiments were used to develop atomization process parameters that encourage controlled powder production while maintaining reduced operating costs when implemented on an industrial scale. For an increase in pour tube extension: aspiration base pressure at any given operating pressure was found to decrease while wake closure pressure was found to increase. Aspiration hysteresis was observed as recorded previously in the literature. Light emission was observed above wake closure pressures.

Meyer, John; Anderson, Iver; Rieken, Joel; Byrd, David

2011-04-01T23:59:59.000Z

158

Evaluation of a dry process for conversion of U-AVLIS product to UF{sub 6}. Milestone U361  

Science Conference Proceedings (OSTI)

A technical and engineering evaluation has been completed for a dry UF{sub 6} production system to convert the product of an initial two-line U-AVLIS plant. The objective of the study has been to develop a better understanding of process design requirements, capital and operating costs, and demonstration requirements for this alternate process. This report summarizes the results of the study and presents various comparisons between the baseline and alternate processes, building on the information contained in UF{sub 6} Product Alternatives Review Committee -- Final Report. It also provides additional information on flowsheet variations for the dry route which may warrant further consideration. The information developed by this study and conceptual design information for the baseline process will be combined with information to be developed by the U-AVLIS program and by industrial participants over the next twelve months to permit a further comparison of the baseline and alternate processes in terms of cost, risk, and compatibility with U-AVLIS deployment schedules and strategies. This comparative information will be used to make a final process flowsheet selection for the initial U-AVLIS plant by March 1993. The process studied is the alternate UF{sub 6} production flowsheet. Process steps are (1) electron-beam distillation to reduce enriched product iron content from about 10 wt % or less, (2) hydrofluorination of the metal to UF{sub 4}, (3) fluorination of UF{sub 4} to UF{sub 6}, (4) cold trap collection of the UF{sub 6} product, (5) UF{sub 6} purification by distillation, and (6) final blending and packaging of the purified UF{sub 6} in cylinders. A preliminary system design has been prepared for the dry UF{sub 6} production process based on currently available technical information. For some process steps, such information is quite limited. Comparisons have been made between this alternate process and the baseline plant process for UF{sub 6} production.

NONE

1992-05-01T23:59:59.000Z

159

Reversible Electrocatalytic Production and Oxidation of Hydrogen at Low Overpotentials by a Functional Hydrogenase Mimic  

Science Conference Proceedings (OSTI)

A new bis(diphosphine) nickel(II) complex, [Ni(PPh2NR2)2](BF4)2, 1, (R = CH2CH2OCH3) is described. A {Delta}G{sup o} of 0.84 kcal/mol{sup -1} for hydrogen addition for this complex was calculated from the experimentally determined equilibrium constant. This complex displays reversible electrocatalytic activity for hydrogen production and oxidation at low overpotentials, a characteristic most commonly associated with hydrogenase enzymes.

Smith, Stuart E.; Yang, Jenny Y.; DuBois, Daniel L.; Bullock, Morris

2012-03-26T23:59:59.000Z

160

An Assessment of Land Availability and Price in the Coterminous United States for Conversion to Algal Biofuel Production  

SciTech Connect

Realistic economic assessment of land-intensive alternative energy sources (e.g., solar, wind, and biofuels) requires information on land availability and price. Accordingly, we created a comprehensive, national-scale model of these parameters for the United States. For algae-based biofuel, a minimum of 1.04E+05 km2 of land is needed to meet the 2022 EISA target of 2.1E+10 gallons year-1. We locate and quantify land types best converted. A data-driven model calculates the incentive to sell and a fair compensation value (real estate and lost future income). 1.02E+6 km2 of low slope, non-protected land is relatively available including croplands, pasture/ grazing, and forests. Within this total there is 2.64E+5 km2 of shrub and barren land available. The Federal government has 7.68E+4 km2 available for lease. Targeting unproductive lands minimizes land costs and impacts to existing industries. However, shrub and barren lands are limited by resources (water) and logistics, so land conversion requires careful consideration.

Venteris, Erik R.; Skaggs, Richard; Coleman, Andre M.; Wigmosta, Mark S.

2012-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxide conversion product" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Precious Metals Conversion Information  

Science Conference Proceedings (OSTI)

Precious Metals Conversion Information. The Office of Weights and Measures (OWM) has prepared a Conversion Factors ...

2012-11-21T23:59:59.000Z

162

University of Delaware Institute of Energy Conversion | Open...  

Open Energy Info (EERE)

Energy Conversion Jump to: navigation, search Name University of Delaware Institute of Energy Conversion Place Delaware Product String representation "University rese ... dium tin...

163

Method for conversion of .beta.-hydroxy carbonyl compounds ...  

A process is disclosed for conversion of salts of .beta.-hydroxy carbonyl compounds forming useful conversion products including, e.g., .alpha.,.beta.-unsaturated ...

164

Penrose Landfill Gas Conversion LLC | Open Energy Information  

Open Energy Info (EERE)

Penrose Landfill Gas Conversion LLC Jump to: navigation, search Name Penrose Landfill Gas Conversion LLC Place Los Angeles, California Product Owner of landfill gas plant....

165

Product liability and small wind energy conversion systems (SWECS): an analysis of selected issues and policy alternatives  

DOE Green Energy (OSTI)

An overview is presented of the various legal issues regarding SWECS performance and safety, according to when such issues may arise during the SWECS manufacturing and marketing processes. Next, the most significant issues are translated into a series of questions, followed by a legal analysis that addresses these questions within the framework of the present product litigation system. The special problems presented to SWECS by judicial treatment of design defect cases and the relevance of industry standards in product cases are emphasized. Finally, a number of policy alternatives for DOE and others to consider are examined concerning their relative advantages and disadvantages in dealing with selected issues.

Noun, R.J.

1979-12-01T23:59:59.000Z

166

Conversion of ethane and of propane to higher olefin hydrocarbons  

DOE Green Energy (OSTI)

Purely thermal reactions for the conversion of ethane were carried out in an empty and in a quartz chip filled reactor over a temperature range of 300--800{degrees}C in the absence and presence of oxygen and oxygen plus water. Ethane alone shows no conversion below 600{degrees}C and some conversion to CH{sub 4} and very little C{sub 2}H{sub 4} at 700{degrees} and 800{degrees}C. Ethane and oxygen produce CO{sub 2} as the major product above 400{degrees}C. The additional presence of water does not appreciably change this picture. Converting ethane with oxygen and water over a Ca{sub 3}Ni{sub 1}K{sub 0.1} catalyst at very low space velocity gave increasing conversion with temperature, primarily CO{sub 2} production and a small amount of C{sub 3+} hydrocarbons. The CO{sub 2} production was decreased and slightly more C{sub 3} hydrocarbons were produced when the potassium concentration of the catalyst was increased. Activation energies have been calculated for the various ethane conversion reactions. It appears that the CaNiK oxide catalyst is not suited for oxidative ethane coupling at the conditions thus far investigated. The indications are that much shorter contact times are required to prevent oxidation of intermediates. Blank runs with propane and oxygen in the absence of a catalyst have shown significant reaction at temperatures as low as 400{degrees}C. 12 figs., 3 tabs.

Heinemann, H.; Somorjai, G.A.

1991-10-01T23:59:59.000Z

167

Controlled production of cellulases in plants for biomass conversion. Annual report, March 11, 1997--March 14, 1998  

DOE Green Energy (OSTI)

The goal of this project is to facilitate conversion of plant biomass to usable energy by developing transgenic plants that express genes for microbial cellulases, which can be activated after harvest of the plants. In particular, the feasibility of targeting an endoglucanase and a cellobiohydrolase to the plant apoplast (cell wall milieu) is to be determined. To avoid detrimental effects of cellulose expression in plants, enzymes with high temperature optima were chosen; the genes for these enzymes are from thermophilic organisms that can use cellulose as a sole energy source. During the past year (year 2 of the grant), efforts have been focused on testing expression of endoglucanase E{sub 1}, from Acidothermus cellulolyticus, in the apoplast of both tobacco suspension cells and Arabidopsis thaliana plants. Using the plasmids constructed during the first year, transgenic cells and plants that contain the gene for the E{sub 1} catalytic domain fused to a signal peptide sequence were obtained. This gene was constructed so that the fusion protein will be secreted into the apoplast. The enzyme is made in large quantities and is secreted into the apoplast. More importantly, it is enzymatically active when placed under optimal reaction conditions (high temperature). Moreover, the plant cells and intact plants exhibit no obvious problems with growth and development under laboratory conditions. Work has also continued to improve binary vectors for Agrobacterium-mediated transformation, to determine activity of E{sub 1} at various temperatures, and to investigate the activity of the 35S Cauliflower Mosaic Virus promoter in E. coli. 9 figs.

Danna, K.J.

1998-06-01T23:59:59.000Z

168

Partial Oxidation Gas Turbine for Power and Hydrogen Co-Production from Coal-Derived Fuel in Industrial Applications  

SciTech Connect

The report presents a feasibility study of a new type of gas turbine. A partial oxidation gas turbine (POGT) shows potential for really high efficiency power generation and ultra low emissions. There are two main features that distinguish a POGT from a conventional gas turbine. These are associated with the design arrangement and the thermodynamic processes used in operation. A primary design difference of the POGT is utilization of a non?catalytic partial oxidation reactor (POR) in place of a conventional combustor. Another important distinction is that a much smaller compressor is required, one that typically supplies less than half of the air flow required in a conventional gas turbine. From an operational and thermodynamic point of view a key distinguishing feature is that the working fluid, fuel gas provided by the OR, has a much higher specific heat than lean combustion products and more energy per unit mass of fluid can be extracted by the POGT expander than in the conventional systems. The POGT exhaust stream contains unreacted fuel that can be combusted in different bottoming ycle or used as syngas for hydrogen or other chemicals production. POGT studies include feasibility design for conversion a conventional turbine to POGT duty, and system analyses of POGT based units for production of power solely, and combined production of power and yngas/hydrogen for different applications. Retrofit design study was completed for three engines, SGT 800, SGT 400, and SGT 100, and includes: replacing the combustor with the POR, compressor downsizing for about 50% design flow rate, generator replacement with 60 90% ower output increase, and overall unit integration, and extensive testing. POGT performances for four turbines with power output up to 350 MW in POGT mode were calculated. With a POGT as the topping cycle for power generation systems, the power output from the POGT ould be increased up to 90% compared to conventional engine keeping hot section temperatures, pressures, and volumetric flows practically identical. In POGT mode, the turbine specific power (turbine net power per lb mass flow from expander exhaust) is twice the value of the onventional turbine. POGT based IGCC plant conceptual design was developed and major components have been identified. Fuel flexible fluid bed gasifier, and novel POGT unit are the key components of the 100 MW IGCC plant for co producing electricity, hydrogen and/or yngas. Plant performances were calculated for bituminous coal and oxygen blown versions. Various POGT based, natural gas fueled systems for production of electricity only, coproduction of electricity and hydrogen, and co production of electricity and syngas for gas to liquid and hemical processes were developed and evaluated. Performance calculations for several versions of these systems were conducted. 64.6 % LHV efficiency for fuel to electricity in combined cycle was achieved. Such a high efficiency arise from using of syngas from POGT exhaust s a fuel that can provide required temperature level for superheated steam generation in HRSG, as well as combustion air preheating. Studies of POGT materials and combustion instabilities in POR were conducted and results reported. Preliminary market assessment was performed, and recommendations for POGT systems applications in oil industry were defined. POGT technology is ready to proceed to the engineering prototype stage, which is recommended.

Joseph Rabovitser

2009-06-30T23:59:59.000Z

169

Engineering Bacteria for Efficient Fuel Production: Novel Biological Conversion of Hydrogen and Carbon Dioxide Directly into Free Fatty Acids  

SciTech Connect

Electrofuels Project: OPX Biotechnologies is engineering a microorganism currently used in industrial biotechnology to directly produce a liquid fuel from hydrogen and carbon dioxide (CO2). The microorganism has the natural ability to use hydrogen and CO2 for growth. OPX Biotechnologies is modifying the microorganism to divert energy and carbon away from growth and towards the production of liquid fuels in larger, commercially viable quantities. The microbial system will produce a fuel precursor that can be chemically upgraded to various hydrocarbon fuels.

2010-07-12T23:59:59.000Z

170

Overview of coal conversion  

SciTech Connect

The structure of coal and the processes of coal gasification and coal liquefaction are reviewed. While coal conversion technology is not likely to provide a significant amount of synthetic fuel within the next several years, there is a clear interest both in government and private sectors in the development of this technology to hedge against ever-diminishing petroleum supplies, especially from foreign sources. It is evident from this rather cursory survey that there is some old technology that is highly reliable; new technology is being developed but is not ready for commercialization at the present state of development. The area of coal conversion is ripe for exploration both on the applied and basic research levels. A great deal more must be understood about the reactions of coal, the reactions of coal products, and the physics and chemistry involved in the various stages of coal conversion processes in order to make this technology economically viable.

Clark, B.R.

1981-03-27T23:59:59.000Z

171

CRAD, Criticality Safety - Y-12 Enriched Uranium Operations Oxide...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Y-12 Enriched Uranium Operations Oxide Conversion Facility CRAD, Criticality Safety - Y-12 Enriched Uranium Operations Oxide Conversion Facility January 2005 A section of Appendix...

172

CRAD, DOE Oversight - Y-12 Enriched Uranium Operations Oxide...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Y-12 Enriched Uranium Operations Oxide Conversion Facility CRAD, DOE Oversight - Y-12 Enriched Uranium Operations Oxide Conversion Facility January 2005 A section of Appendix C to...

173

The Statistical Evolution of Multiple Generations of Oxidation Products in the Photochemical Aging of Chemically Reduced Organic Aerosol  

Science Conference Proceedings (OSTI)

The heterogeneous reaction of hydroxyl radicals (OH) with squalane and bis(2-ethylhexyl) sebacate (BES) particles are used as model systems to examine how distributions of reactionproducts evolve during the oxidation of chemically reduced organic aerosol. A kinetic model of multigenerational chemistry, which is compared to previously measured (squalane) and new(BES) experimental data, reveals that it is the statistical mixtures of different generations of oxidation products that control the average particle mass and elemental composition during thereaction. The model suggests that more highly oxidized reaction products, although initially formed with low probability, play a large role in the production of gas phase reaction products.In general, these results highlight the importance of considering atmospheric oxidation as a statistical process, further suggesting that the underlying distribution of molecules could playimportant roles in aerosol formation as well as in the evolution of key physicochemical properties such as volatility and hygroscopicity.

Wilson, Kevin R.; Smith, Jared D.; Kessler, Sean; Kroll, Jesse H.

2011-10-03T23:59:59.000Z

174

Reflexion M\\"ossbauer analysis of the in situ oxidation products hydroxycarbonate green rust  

E-Print Network (OSTI)

The purpose of this study is to determine the nature of the oxidation products of FeII-III hydroxycarbonate FeII4FeIII2(OH)12CO3~3H2O (green rust GR(CO32-)) by using the miniaturised M\\"ossbauer spectrometer MIMOS II. Two M\\"ossbauer measurements methods are used: method (i) with green rust pastes coated with glycerol and spread into Plexiglas sample holders, and method (ii) with green rust pastes in the same sample holders but introduced into a gas-tight cell with a beryllium window under a continuous nitrogen flow. Method (ii) allows us to follow the continuous deprotonation of GR(CO32-) into the fully ferric deprotonated form FeIII6O4(OH)8CO3~3H2O by adding the correct amount of H2O2, without any further oxidation or degradation of the samples.

Naille, Sebastien; Louber, Didier; Jean, Paul Moulin; Ruby, Christian; 10.1088/1742-6596/217/1/012084

2010-01-01T23:59:59.000Z

175

Inert anode containing oxides of nickel, iron and zinc useful for the electrolytic production of metals  

DOE Patents (OSTI)

An inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode includes a ceramic oxide material preferably made from NiO, Fe.sub.2 O.sub.3 and ZnO. The inert anode composition may comprise the following mole fractions of NiO, Fe.sub.2 O.sub.3 and ZnO: 0.2 to 0.99 NiO; 0.0001 to 0.8 Fe.sub.2 O.sub.3 ; and 0.0001 to 0.3 ZnO. The inert anode may optionally include other oxides and/or at least one metal phase, such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. The Ni--Fe--Co--O ceramic material exhibits very low solubility in Hall cell baths used to produce aluminum.

Ray, Siba P. (Murrysville, PA); Weirauch, Jr., Douglas A. (Murrysville, PA); Liu, Xinghua (Monroeville, PA)

2002-01-01T23:59:59.000Z

176

Inert anode containing oxides of nickel iron and cobalt useful for the electrolytic production of metals  

DOE Patents (OSTI)

An inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode includes a ceramic oxide material preferably made from NiO, Fe.sub.2 O.sub.3 and CoO. The inert anode composition may comprise the following mole fractions of NiO, Fe.sub.2 O.sub.3 and CoO: 0.15 to 0.99 NiO; 0.0001 to 0.85 Fe.sub.2 O.sub.3 ; and 0.0001 to 0.45 CoO. The inert anode may optionally include other oxides and/or at least one metal phase, such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. The Ni--Fe--Co--O ceramic material exhibits very low solubility in Hall cell baths used to produce aluminum.

Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA); Weirauch, Jr., Douglas A. (Murrysville, PA)

2002-01-01T23:59:59.000Z

177

Conversion of historic waste treatment process for production of an LDR and WIPP/WAC compliant TRU wasteform  

SciTech Connect

In support of the historic weapons production mission at the, Rocky Flats Environmental Technology Site (RFETS), several liquid waste treatment processes were designed, built and operated for treatment of plutonium-contaminated aqueous waste. Most of these @ processes ultimately resulted in the production of a cemented wasteform. One of these treatment processes was the Miscellaneous Aqueous Waste Handling and Solidification Process, commonly referred to as the Bottlebox process. Due to a lack of processing demand, Bottlebox operations were curtailed in late 1989. Starting in 1992, a treatment capability for stabilization of miscellaneous, Resource Conservation and Recovery Act (RCRA) hazardous, plutonium-nitrate solutions was identified. This treatment was required to address potentially unsafe storage conditions for these liquids. The treatment would produce a TRU wasteform. It thus became necessary to restart the Bottlebox process, but under vastly different conditions and constraints than existed prior to its curtailment. This paper provides a description of the historical Bottlebox process and process controls; and then describes, in detail, all of the process and process control changes that were implemented to convert the treatment system such that a Waste Isolation Pilot Plant (WIPP) and a Land Disposal Requirements (LDR) compliant wasteform would be produced. The rationale for imposition of LDRs on a TRU wasteform is discussed. In addition, this paper discusses the program changes implemented to meet modem criticality safety, Conduct of Operations, and Department of Energy Nuclear Facility restart requirements.

Dunn, R.P.; Wagner, R.A.

1997-03-01T23:59:59.000Z

178

Conversion of light hydrocarbon gases to metal carbides for production of liquid fuels and chemicals. Quarterly technical status report, January 1--March 31, 1993  

SciTech Connect

Work on this project will be performed according to two tasks: Task 1, Industrial Chemistry and Applied Kinetics of Light Hydrocarbon Gas Conversion to Metal Carbides H{sub 2} and CO. We are building a laboratory-scale electric are discharge reactor, in which to assess the technical feasibility of producing Mg{sub 2}C{sub 3}, H{sub 2}, and CO from methane and MgO. We will also do experimental runs with CaO as well as mixtures of CaO and MgO and measure conversions of methane, CaO and/or MgO, and yields of Mg{sub 2}C{sub 3}, and/or CaC{sub 2}, H{sub 2}, and CO to identify the operating conditions of interest for implementing these reactions on a commercial scale. Reaction conditions and parameters will be chosen based on the previous work at MIT with CaO and CH, and on results of thermodynamic and thermochemical kinetics calculations. Task 2: Mechanistic Foundations-For Convertings Light Hydrocarbon Gases to Metal Carbides-H{sub 2} and CO. We will evaluate the technical feasibility of carrying out methane reactions with CaO and MgO by thermal (e.g. 1500--2000{degrees}C) rather than under plasma conditions by performing experiments with the use of electrical screen heaters, heated tubular reactors, or other suitable apparatus. Extents and global rates of methane conversion, and yields as well as global production rates of CaC{sub 2}, Mg{sub 2}C{sub 3}, H{sub 2} and CO will be measured upon subjecting mixtures of methane and CaO and/or MgO to high temperatures and controlled residence times. We will conduct hypothesis-testing of possible mechanistic pathways with selected experiments and perform reaction modeling to better understand the underlying chemical and physical processes that could influence process scale-up possibilities.

Diaz, A.F.; Modestino, A.J.; Howard, J.B.; Peters, W.A.

1993-04-01T23:59:59.000Z

179

For cermet inert anode containing oxide and metal phases useful for the electrolytic production of metals  

DOE Patents (OSTI)

A cermet inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode comprises a ceramic phase including an oxide of Ni, Fe and M, where M is at least one metal selected from Zn, Co, Al, Li, Cu, Ti, V, Cr, Zr, Nb, Ta, W, Mo, Hf and rare earths, preferably Zn and/or Co. Preferred ceramic compositions comprise Fe.sub.2 O.sub.3, NiO and ZnO or CoO. The cermet inert anode also comprises a metal phase such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. A preferred metal phase comprises Cu and Ag. The cermet inert anodes may be used in electrolytic reduction cells for the production of commercial purity aluminum as well as other metals.

Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA); Weirauch, Douglas A. (Murrysville, PA)

2002-01-01T23:59:59.000Z

180

Session: Energy Conversion  

DOE Green Energy (OSTI)

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Hydrothermal Energy Conversion Technology'' by David Robertson and Raymond J. LaSala; ''Materials for Geothermal Production'' by Lawrence E. Kukacka; ''Supersaturated Turbine Expansions for Binary Geothermal Power Plants'' by Carl J. Bliem; ''Geothermal Waster Treatment Biotechnology: Progress and Advantages to the Utilities'' by Eugen T. Premuzic; and ''Geothermal Brine Chemistry Modeling Program'' by John H. Weare.

Robertson, David; LaSala, Raymond J.; Kukacka, Lawrence E.; Bliem, Carl J.; Premuzic, Eugene T.; Weare, John H.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxide conversion product" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Omega-3 fatty acid oxidation products prevent vascular endothelial cell activation by coplanar polychlorinated biphenyls  

SciTech Connect

Coplanar polychlorinated biphenyls (PCBs) may facilitate development of atherosclerosis by stimulating pro-inflammatory pathways in the vascular endothelium. Nutrition, including fish oil-derived long-chain omega-3 fatty acids, such as docosahexaenoic acid (DHA, 22:6{omega}-3), can reduce inflammation and thus the risk of atherosclerosis. We tested the hypothesis that cyclopentenone metabolites produced by oxidation of DHA can protect against PCB-induced endothelial cell dysfunction. Oxidized DHA (oxDHA) was prepared by incubation of the fatty acid with the free radical generator 2,2-azo-bis(2-amidinopropane) dihydrochloride (AAPH). Cellular pretreatment with oxDHA prevented production of superoxide induced by PCB77, and subsequent activation of nuclear factor-{kappa}B (NF-{kappa}B). A{sub 4}/J{sub 4}-neuroprostanes (NPs) were identified and quantitated using HPLC ESI tandem mass spectrometry. Levels of these NPs were markedly increased after DHA oxidation with AAPH. The protective actions of oxDHA were reversed by treatment with sodium borohydride (NaBH{sub 4}), which concurrently abrogated A{sub 4}/J{sub 4}-NP formation. Up-regulation of monocyte chemoattractant protein-1 (MCP-1) by PCB77 was markedly reduced by oxDHA, but not by un-oxidized DHA. These protective effects were proportional to the abundance of A{sub 4}/J{sub 4} NPs in the oxidized DHA sample. Treatment of cells with oxidized eicosapentaenoic acid (EPA, 20:5{omega}-3) also reduced MCP-1 expression, but less than oxDHA. Treatment with DHA-derived cyclopentenones also increased DNA binding of NF-E2-related factor-2 (Nrf2) and downstream expression of NAD(P)H:quinone oxidoreductase (NQO1), similarly to the Nrf-2 activator sulforaphane. Furthermore, sulforaphane prevented PCB77-induced MCP-1 expression, suggesting that activation of Nrf-2 mediates the observed protection against PCB77 toxicity. Our data implicate A{sub 4}/J{sub 4}-NPs as mediators of omega-3 fatty acid-mediated protection against the endothelial toxicity of coplanar PCBs.

Majkova, Zuzana [Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536-0200 (United States); Layne, Joseph [Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY 40536-0200 (United States); Sunkara, Manjula; Morris, Andrew J. [Division of Cardiovascular Medicine, The Gill Heart Institute, University of Kentucky, Lexington, KY 40536-0509 (United States); Toborek, Michal [Department of Neurosurgery, University of Kentucky, Lexington, KY 40536-0200 (United States); Hennig, Bernhard, E-mail: bhennig@email.uky.edu [Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536-0200 (United States); Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY 40536-0200 (United States); Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40536-0200 (United States)

2011-02-15T23:59:59.000Z

182

Biofuel Conversion Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biofuel Conversion Basics Biofuel Conversion Basics Biofuel Conversion Basics August 14, 2013 - 12:31pm Addthis The conversion of biomass solids into liquid or gaseous biofuels is a complex process. Today, the most common conversion processes are biochemical- and thermochemical-based. However, researchers are also exploring photobiological conversion processes. Biochemical Conversion Processes In biochemical conversion processes, enzymes and microorganisms are used as biocatalysts to convert biomass or biomass-derived compounds into desirable products. Cellulase and hemicellulase enzymes break down the carbohydrate fractions of biomass to five- and six-carbon sugars in a process known as hydrolysis. Yeast and bacteria then ferment the sugars into products such as ethanol. Biotechnology advances are expected to lead to dramatic

183

Context: Destruction/Conversion  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. Context: Destruction/Conversion. ... Process for Conversion of Halon 1211.. Tran, R.; Kennedy, EM; Dlugogorski, BZ; 2000. ...

2011-11-17T23:59:59.000Z

184

Share of Conversion Capacity - Energy Information Administration  

U.S. Energy Information Administration (EIA)

In the early to mid 1980’s, Atlantic Basin refiners rapidly expanded their conversion capacity as a consequence of the belief that world crude production would get ...

185

Direct conversion of light hydrocarbon gases to liquid fuel  

DOE Green Energy (OSTI)

The objective of this program is to investigate the direct conversion of light gaseous hydrocarbons, such as those produced during Fischer-Tropsch synthesis or as a product of gasification, to liquid transportation fuels via a partial oxidation process. The process will be tested in an existing pilot plant to obtain credible mass balances. Specific objectives to be met include determination of optimal process conditions, investigation of various processing options (e.g. feed injection, product quench, and recycle systems), and evaluation of an enhanced yield thermal/catalytic system. Economic evaluation of the various options will be performed as experimental data become available.

Foral, M.J.

1991-01-01T23:59:59.000Z

186

Direct conversion of light hydrocarbon gases to liquid fuel  

DOE Green Energy (OSTI)

The objective of this program is to investigate the direct conversion of light gaseous hydrocarbons, such as those produced during Fischer-Tropsch synthesis or as a product of gasification, to liquid transportation fuels via a partial oxidation process. The process will be tested in an existing pilot plant to obtain credible mass balances. Specific objectives to be met include determination of optimal process conditions, investigation of various processing options (e.g. feed injection, product quench, and recycle systems), and evaluation of an enhanced yield thermal/catalytic system. Economic evaluation of the various options will be performed as experimental data become available.

Foral, M.J.

1990-01-01T23:59:59.000Z

187

Catalytic conversion of canola oil over potassium-impregnated HZSM-5 catalysts: C{sub 2}-C{sub 4} olefin production and model reaction studies  

Science Conference Proceedings (OSTI)

The influence of catalyst acidity, reaction temperature, and canola oil space velocity on the conversion of canola oil was evaluated using a fixed-bed microreactor at atmospheric pressure at reaction temperatures and space velocities (WHSV) in the ranges 400--500 C and 1.8--3.6 h{sup {minus}1}, respectively, over potassium-impregnated HZSMs-5 catalysts. These catalysts were thoroughly characterized using XRD, N{sub 2} adsorption measurements, {sup 1}H NMR, TPD of NH{sub 3}, FT-IR, C{sub 2}-C{sub 4} olefins from canola oil were determined. The incorporation of potassium into HZSM-5 catalyst resulted in both the dilution and poisoning of Bronsted and total acid sites. These acidity changes only severely affected the acid catalyzed reactions, such as oligomerization and aromatization, and resulted in drastic modifications in product distribution. The maximum C{sub 2}C{sub 4} olefin yield of 25.8 wt % was obtained at 500 C and 1.8 h{sup {minus}1} space velocity with catalyst K1 of relatively low Bronsted and total acidity.

Katikaneni, S.P.R.; Adjaye, J.D.; Idem, R.O.; Bakhshi, N.N. [Univ. of Saskatchewan, Saskatoon (Canada). Catalysis and Chemical Reaction Engineering Lab.] [Univ. of Saskatchewan, Saskatoon (Canada). Catalysis and Chemical Reaction Engineering Lab.

1996-10-01T23:59:59.000Z

188

Design and economics of a lignite-to-SNG (substitute natural gas) facility using Lurgi gasifiers with in-line conversion of by-product liquids to methane. Topical report (Final), December 1985-November 1986  

SciTech Connect

A first-pass conceptual design and screening cost estimate was prepared for a hypothetical plant to convert lignite to methane using Lurgi dry-bottom gasifiers and employing a black box reactor to convert by-product liquids in the gas phase to methane. Results were compared to those from conventional and modified Lurgi-plant designs. The in-line conversion plant can potentially reduce the cost of gas from a Lurgi plant by about 20%. Due to reduced capital investment, over $200 million could be invested in the reactor before the cost of gas from the in-line conversion plant is as high as that of a Lurgi plant.

Smelser, S.C.

1986-11-01T23:59:59.000Z

189

Natural gas conversion process  

Science Conference Proceedings (OSTI)

The experimental apparatus was dismantled and transferred to a laboratory space provided by Lawrence Berkeley Laboratory (LBL) which is already equipped with a high-ventilation fume hood. This will enable us to make tests at higher gas flow rates in a safe environment. Three papers presented at the ACS meeting in San Francisco (Symposium on Natural Gas Upgrading II) April 5--10, 1992 show that the goal of direct catalytic conversion of Methane into heavier Hydrocarbons in a reducing atmosphere is actively pursued in three other different laboratories. There are similarities in their general concept with our own approach, but the temperature range of the experiments reported in these recent papers is much lower and this leads to uneconomic conversion rates. This illustrates the advantages of Methane activation by a Hydrogen plasma to reach commercial conversion rates. A preliminary process flow diagram was established for the Integrated Process, which was outlined in the previous Quarterly Report. The flow diagram also includes all the required auxiliary facilities for product separation and recycle of the unconverted feed as well as for the preparation and compression of the Syngas by-product.

Not Available

1992-01-01T23:59:59.000Z

190

Fundamental Studies of Irradiation-Induced Defect Formation and Fission Product Dynamics in Oxide Fuels  

Science Conference Proceedings (OSTI)

The objective of this research program is to address major nuclear fuels performance issues for the design and use of oxide-type fuels in the current and advanced nuclear reactor applications. Fuel performance is a major issue for extending fuel burn-up which has the added advantage of reducing the used fuel waste stream. It will also be a significant issue with respect to developing advanced fuel cycle processes where it may be possible to incorporate minor actinides in various fuel forms so that they can be 'burned' rather than join the used fuel waste stream. The potential to fission or transmute minor actinides and certain long-lived fission product isotopes would transform the high level waste storage strategy by removing the need to consider fuel storage on the millennium time scale.

Stubbins, James

2012-12-19T23:59:59.000Z

191

Catalytic conversion of light alkanes  

DOE Green Energy (OSTI)

The second Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between April 1, 1992 and June 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products that can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon uwspomdon fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE I).

Lyons, J.E.

1992-06-30T23:59:59.000Z

192

Insights into proton-coupled electron transfer mechanisms of electrocatalytic H2 oxidation and production  

SciTech Connect

The design of molecular electrocatalysts for H2 oxidation and production is important for the development of alternative renewable energy sources that are abundant, inexpensive, and environmentally benign. Recently nickel-based molecular electrocatalysts with pendant amines that act as proton relays for the nickel center were shown to effectively catalyze H2 oxidation and production. We developed a quantum mechanical approach for studying proton-coupled electron transfer processes in these types of molecular electrocatalysts. This theoretical approach is applied to a nickel-based catalyst in which phosphorous atoms are directly bonded to the nickel center and nitrogen atoms of the ligand rings act as proton relays. The cataly c step of interest involves electron transfer between the nickel complex and the electrode as well as intramolecular proton transfer between the nickel and nitrogen atoms. This process can occur sequentially, with either the electron or proton transferring first, or concertedly, with the electron and proton transferring simultaneously without a stable intermediate. The heterogeneous rate constants are calculated as functions of overpotential for the concerted electron-proton transfer reaction and the two electron transfer reactions in the sequential mechanisms. Our calculations illustrate that the concerted electron-proton transfer standard rate constant will increase as the equilibrium distance between the nickel and nitrogen atoms decreases and as the nitrogen atoms become more mobile to facilitate the contraction of this distance. This approach assists in the identification of the favored mechanisms under various experimental conditions and provides insight into the qualitative impact of substituents on the nitrogen and phosphorous atoms. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under FWP 56073.

Horvath, Samantha; Fernandez, Laura; Soudackov, Alexander V.; Hammes-Schiffer, Sharon

2012-09-25T23:59:59.000Z

193

Introduction to Solar Photon Conversion  

SciTech Connect

The efficient and cost-effective direct conversion of solar photons into solar electricity and solar fuels is one of the most important scientific and technological challenges of this century. It is estimated that at least 20 terawatts of carbon-free energy (1 and 1/2 times the total amount of all forms of energy consumed today globally), in the form of electricity and liquid and gaseous fuels, will be required by 2050 in order to avoid the most serious consequences of global climate change and to ensure adequate global energy supply that will avoid economic chaos. But in order for solar energy to contribute a major fraction of future carbon-free energy supplies, it must be priced competitively with, or perhaps even be less costly than, energy from fossil fuels and nuclear power as well as other renewable energy resources. The challenge of delivering very low-cost solar fuels and electricity will require groundbreaking advances in both fundamental and applied science. This Thematic Issue on Solar Photon Conversion will provide a review by leading researchers on the present status and prognosis of the science and technology of direct solar photoconversion to electricity and fuels. The topics covered include advanced and novel concepts for low-cost photovoltaic (PV) energy based on chemistry (dye-sensitized photoelectrodes, organic and molecular PV, multiple exciton generation in quantum dots, singlet fission), solar water splitting, redox catalysis for water oxidation and reduction, the role of nanoscience and nanocrystals in solar photoconversion, photoelectrochemical energy conversion, and photoinduced electron transfer. The direct conversion of solar photons to electricity via photovoltaic (PV) cells is a vital present-day commercial industry, with PV module production growing at about 75%/year over the past 3 years. However, the total installed yearly averaged energy capacity at the end of 2009 was about 7 GW-year (0.2% of global electricity usage). Thus, there is potential for the PV industry to grow enormously in the future (by factors of 100-300) in order for it to provide a significant fraction of total global electricity needs (currently about 3.5 TW). Such growth will be greatly facilitated by, and probably even require, major advances in the conversion efficiency and cost reduction for PV cells and modules; such advances will depend upon advances in PV science and technology, and these approaches are discussed in this Thematic Issue. Industrial and domestic electricity utilization accounts for only about 30% of the total energy consumed globally. Most ({approx}70%) of our energy consumption is in the form of liquid and gaseous fuels. Presently, solar-derived fuels are produced from biomass (labeled as biofuels) and are generated through biological photosynthesis. The global production of liquid biofuels in 2009 was about 1.6 million barrels/day, equivalent to a yearly output of about 2.5 EJ (about 1.3% of global liquid fuel utilization). The direct conversion of solar photons to fuels produces high-energy chemical products that are labeled as solar fuels; these can be produced through nonbiological approaches, generally called artificial photosynthesis. The feedstocks for artificial photosynthesis are H{sub 2}O and CO{sub 2}, either reacting as coupled oxidation-reduction reactions, as in biological photosynthesis, or by first splitting H{sub 2}O into H{sub 2} and O{sub 2} and then reacting the solar H{sub 2} with CO{sub 2} (or CO produced from CO2) in a second step to produce fuels through various well-known chemical routes involving syngas, water gas shift, and alcohol synthesis; in some applications, the generated solar H{sub 2} itself can be used as an excellent gaseous fuel, for example, in fuel cells. But at the present time, there is no solar fuels industry. Much research and development are required to create a solar fuels industry, and this Thematic Issue presents several reviews on the relevant solar fuels science and technology. The first three manuscripts relate to the daunting problem of producing

Nozik, A.; Miller, J.

2010-11-10T23:59:59.000Z

194

Combined Steam Reforming and Partial Oxidation of Methane to Synthesis Gas under Electrical Discharge  

E-Print Network (OSTI)

Combined Steam Reforming and Partial Oxidation of Methane to Synthesis Gas under Electrical production from simultaneous steam reforming and partial oxidation of methane using an ac corona discharge and steam reforming has a benefit in terms of balancing the heat load. Methane conversions can be achieved

Mallinson, Richard

195

NREL: Biomass Research - Biochemical Conversion Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Biochemical Conversion Capabilities Biochemical Conversion Capabilities NREL researchers are working to improve the efficiency and economics of the biochemical conversion process by focusing on the most challenging steps in the process. Biochemical conversion of biomass to biofuels involves three basic steps: Converting biomass to sugar or other fermentation feedstock through: Pretreatment Conditioning and enzymatic hydrolysis Enzyme development. Fermenting these biomass-derived feedstocks using: Microorganisms for fermentation. Processing the fermentation product to produce fuel-grade ethanol and other fuels, chemicals, heat, and electricity by: Integrating the bioprocess. Get the Adobe Flash Player to see this video. This video is a narrated animation that explains the biochemical conversion

196

Efficient laser-induced 6-8 keV x-ray production from iron oxide aerogel and foil-lined cavity targets  

SciTech Connect

The performance of new iron-based laser-driven x-ray sources has been tested at the OMEGA laser facility for production of x rays in the 6.5-8.5 keV range. Two types of targets were experimentally investigated: low-density iron oxide aerogels (density 6-16 mg/cm{sup 3}) and stainless steel foil-lined cavity targets (steel thickness 1-5 {mu}m). The targets were irradiated by 40 beams of the OMEGA laser (500 J/beam, 1 ns pulse, wavelength 351 nm). All targets showed good coupling with the laser, with <5% of the incident laser light backscattered by the resulting plasma in all cases (typically <2.5%). The aerogel targets produced T{sub e}=2 to 3 keV, n{sub e}=0.12-0.2 critical density plasmas yielding a 40%-60% laser-to-x-ray total conversion efficiency (CE) (1.2%-3% in the Fe K-shell range). The foil cavity targets produced T{sub e}{approx} 2 keV, n{sub e}{approx} 0.15 critical density plasmas yielding a 60%-75% conversion efficiency (1.6%-2.2% in the Fe K-shell range). Time-resolved images illustrate that the volumetric heating of low-density aerogels allow them to emit a higher K-shell x-ray yield even though they contain fewer Fe atoms. However, their challenging fabrication process leads to a larger shot-to-shot variation than cavity targets.

Perez, F.; Kay, J. J.; Patterson, J. R.; Kane, J.; May, M.; Emig, J.; Colvin, J.; Gammon, S.; Satcher, J. H. Jr.; Fournier, K. B. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Villette, B.; Girard, F.; Reverdin, C. [CEA DAM DIF, F-91297 Arpajon (France); Sorce, C. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); University of Rochester - Laboratory for Laser Energetics, 250 E. River Rd, Rochester, New York 14623-1299 (United States); Jaquez, J. [General Atomics, San Diego, California 92121 (United States)

2012-08-15T23:59:59.000Z

197

QUANTUM CONVERSION IN PHOTOSYNTHESIS  

E-Print Network (OSTI)

W _7405-eng- 4B QUANTUM CONVERSION IN PHOTOSYNTHESIS Melvint r UCRL-9 533 QUANrUM CONVERSION IN PHWOSYNTHESIS * Melvinitself. The primary quantum conversion act is an ionization

Calvin, Melvin

2008-01-01T23:59:59.000Z

198

ADVANCED OXIDATION PROCESS  

DOE Green Energy (OSTI)

The removal of recalcitrant sulfur species, dibenzothiophene and its derivatives, from automotive fuels is an integral component in the development of cleaner burning and more efficient automobile engines. Oxidative desulfurization (ODS) wherein the dibenzothiophene derivative is converted to its corresponding sulfoxide and sulfone is an attractive approach to sulfur removal because the oxidized species are easily extracted or precipitated and filtered from the hydrocarbon phase. Fe-TAML{reg_sign} activators of hydrogen peroxide (TAML is Tetra-Amido-Macrocyclic-Ligand) catalytically convert dibenzothiophene and its derivatives rapidly and effectively at moderate temperatures (50-60 C) and ambient pressure to the corresponding sulfoxides and sulfones. The oxidation process can be performed in both aqueous systems containing alcohols such as methanol, ethanol, or t-butanol, and in a two-phase hydrocarbon/aqueous system containing tert-butanol or acetonitrile. In the biphasic system, essentially complete conversion of the DBT to its oxidized products can be achieved using slightly longer reaction times than in homogeneous solution. Among the key features of the technology are the mild reaction conditions, the very high selectivity where no over oxidation of the sulfur compounds occurs, the near stoichiometric use of hydrogen peroxide, the apparent lack of degradation of sensitive fuel components, and the ease of separation of oxidized products.

Dr. Colin P. Horwitz; Dr. Terrence J. Collins

2003-11-04T23:59:59.000Z

199

Green method to produce propylene oxide  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Materials Argonne National Laboratory Center for Nanoscale Materials U.S. Department of Energy Search CNM ... Search Argonne Home > Center for Nanoscale Materials > CNM Home About CNM Research Facilities People For Users Publications News & Highlights News Research Highlights Newsletters CNM Images on Flickr Events Jobs CNM Users Organization Contact Us Other DOE Nanoscale Science Research Centers Green method to produce propylene oxide conversion of propylene to polyene oxide via silver nanoclusters Simulation of propylene to propylene oxide conversion via silver nanoclusters supported on an alumina surface. Propylene oxide is an important chemical whose current industrial production is energy intensive and environmentally unfriendly. Attempts to solve this problem by using catalysts based on bulk silver surfaces with

200

Produced Conversion Coatings  

Science Conference Proceedings (OSTI)

Chemical conversion coatings are commonly applied to Mg alloys as paint bases and in some cases as stand-alone protection. Traditional conversion coatings ...

Note: This page contains sample records for the topic "oxide conversion product" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Library Conversion Tool  

Science Conference Proceedings (OSTI)

Library Conversion Tool. ... The LIB2NIST mass spectral data conversion program consists of the following files (which are contained in a ZIP archive): ...

2013-06-24T23:59:59.000Z

202

Conversion of Legacy Data  

Science Conference Proceedings (OSTI)

... Conversion of Legacy Data. Conversion of legacy data can be one of the most difficult and challenging components in an SGML environment. ...

203

Biofuel Conversion Process  

Energy.gov (U.S. Department of Energy (DOE))

The conversion of biomass solids into liquid or gaseous biofuels is a complex process. Today, the most common conversion processes are biochemical- and thermochemical-based. However, researchers...

204

Spectroscopic Analyses of the Biofuels-Critical Phytochemical Coniferyl Alcohol and Its Enzyme-Catalyzed Oxidation Products  

SciTech Connect

Lignin composition (monolignol types of coniferyl, sinapyl or p-coumaryl alcohol) is causally related to biomass recalcitrance. We describe multiwavelength (220, 228, 240, 250, 260, 290, 295, 300, 310 or 320 nm) absorption spectroscopy of coniferyl alcohol and its laccase- or peroxidase-catalyzed products during real time kinetic, pseudo-kinetic and endpoint analyses, in optical turn on or turn off modes, under acidic or basic conditions. Reactions in microwell plates and 100 mu L volumes demonstrated assay miniaturization and high throughput screening capabilities. Bathochromic and hypsochromic shifts along with hyperchromicity or hypochromicity accompanied enzymatic oxidations by laccase or peroxidase. The limits of detection and quantitation of coniferyl alcohol averaged 2.4 and 7.1 mu M respectively, with linear trend lines over 3 to 4 orders of magnitude. Coniferyl alcohol oxidation was evident within 10 minutes or with 0.01 mu g/mL laccase and 2 minutes or 0.001 mu g/mL peroxidase. Detection limit improved to 1.0 mu M coniferyl alcohol with Km of 978.7 +/- 150.7 mu M when examined at 260 nm following 30 minutes oxidation with 1.0 mu g/mL laccase. Our assays utilized the intrinsic spectroscopic properties of coniferyl alcohol or its oxidation products for enabling detection, without requiring chemical synthesis or modification of the substrate or product(s). These studies facilitate lignin compositional analyses and augment pretreatment strategies for reducing biomass recalcitrance.

Achyuthan, Komandoor; Adams, Paul; Simmons, Blake; Singh, Anup

2011-07-13T23:59:59.000Z

205

Developing Greenhouse Gas Emissions Offsets by Reducing Nitrous Oxide (N2O) Emissions in Agricultural Crop Production  

Science Conference Proceedings (OSTI)

This Technical Update covers the first year of a three-year-long EPRI research project entitled Developing Greenhouse Gas Emissions Offsets by Reducing Nitrous Oxide (N2O) Emissions in Agricultural Crop Production. The report provides a project overview and explains the preliminary results yielded from the first year of on-farm research.

2007-10-30T23:59:59.000Z

206

Production of Oxygen Gas and Liquid Metal by Electrochemical Decomposition of Molten Iron Oxide  

E-Print Network (OSTI)

Molten oxide electrolysis (MOE) is the electrolytic decomposition of a metal oxide, most preferably into liquid metal and oxygen gas. The successful deployment of MOE hinges upon the existence of an inert anode capable of ...

Wang, Dihua

207

Environmental Risks Associated with Conversion of Depleted UF6  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion Conversion Depleted UF6 Environmental Risks line line Storage Conversion Manufacturing Disposal Conversion A general discussion of the potential environmental impacts associated with depleted UF6 conversion activities. Impacts Analyzed in the PEIS The potential environmental impacts associated with conversion activities will be evaluated in detail as part of the Depleted Uranium Hexafluoride management program after a contract is awarded for conversion services. This page discusses in general the types of impacts that might be associated with the conversion process based on the PEIS analysis. The PEIS evaluated the potential environmental impacts for representative conversion facilities. Conversion to uranium oxide and uranium metal were considered. Potential impacts were evaluated for a representative site, and

208

Conversion Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conversion Plan Conversion Plan This template is used to document the conversion plan that clearly defines the system or project's conversion procedures; outlines the installation...

209

A Reversible Planar Solid Oxide Fuel-Fed Electrolysis Cell and Solid Oxide Fuel Cell for Hydrogen and Electricity Production Operating on Natural Gas/Biomass Fuels  

DOE Green Energy (OSTI)

A solid oxide fuel-assisted electrolysis technique was developed to co-generate hydrogen and electricity directly from a fuel at a reduced cost of electricity. Solid oxide fuel-assisted electrolysis cells (SOFECs), which were comprised of 8YSZ electrolytes sandwiched between thick anode supports and thin cathodes, were constructed and experimentally evaluated at various operation conditions on lab-level button cells with 2 cm2 per-cell active areas as well as on bench-scale stacks with 30 cm2 and 100 cm2 per-cell active areas. To reduce the concentration overpotentials, pore former systems were developed and engineered to optimize the microstructure and morphology of the Ni+8YSZ-based anodes. Chemically stable cathode materials, which possess good electronic and ionic conductivity and exhibit good electrocatalytic properties in both oxidizing and reducing gas atmospheres, were developed and materials properties were investigated. In order to increase the specific hydrogen production rate and thereby reduce the system volume and capital cost for commercial applications, a hybrid system that integrates the technologies of the SOFEC and the solid-oxide fuel cell (SOFC), was developed and successfully demonstrated at a 1kW scale, co-generating hydrogen and electricity directly from chemical fuels.

Tao, Greg, G.

2007-03-31T23:59:59.000Z

210

Biomass Thermochemical Conversion Program: 1986 annual report  

DOE Green Energy (OSTI)

Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. Thermochemical conversion processes can generate a variety of products such as gasoline hydrocarbon fuels, natural gas substitutes, or heat energy for electric power generation. The US Department of Energy is sponsoring research on biomass conversion technologies through its Biomass Thermochemical Conversion Program. Pacific Northwest Laboratory has been designated the Technical Field Management Office for the Biomass Thermochemical Conversion Program with overall responsibility for the Program. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1986. 88 refs., 31 figs., 5 tabs.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1987-01-01T23:59:59.000Z

211

Hydrogen production from the steam-iron process with direct reduction of iron oxide by chemical looping combustion of coal char  

SciTech Connect

Experimental results performed with a fluidized-bed reactor supported the feasibility of the three processes including direct reduction of iron oxide by char, H{sub 2} production by the steam-iron process, and the oxidation of Fe{sub 3}O{sub 4} resulting from the steam-iron process to the original Fe{sub 2}O{sub 3} by air. Chars resulting from a Chinese lignite loaded with K{sub 2}CO{sub 3} were used successfully as a reducing material, leading to the reduction of Fe{sub 2}O{sub 3} to FeO and Fe for the steam-iron process, which was confirmed by both the off-gases concentrations and X-ray diffractometer analysis. The reduction of Fe{sub 2}O{sub 3} by K-10-char at 1073 K is desirable from the perspective of the carbon conversion rate and high concentration of CO{sub 2}. The carbon in char was completely converted to CO{sub 2} when the mass ratio of Fe{sub 2}O{sub 3}/K-10-char was increased to 10/0.3. The oxidation rate of K-10-char by Fe{sub 2}O{sub 3} without a gasifying agent was comparable to the K-10-char steam gasification rate. The fractions of FeO and Fe in the reduced residue were 43 and 57%, respectively, in the case of 3 g of Fe{sub 2}O{sub 3} and 0.5 g of K-10-char, which was verified by the total H{sub 2} yield equaling 1000 mL/g K-10-char from the steam-iron process. The time that it took to achieve complete oxidation of Fe{sub 3}O{sub 4} to Fe{sub 2}O{sub 3} by air with an 8.7% O{sub 2} concentration at 1073 K was about 15 min. 53 refs., 19 figs., 5 tabs.

Jing-biao Yang; Ning-sheng Cai; Zhen-shan Li [Tsinghua University, Beijing (China). Key Laboratory of Thermal Science and Power Engineering of Ministry of Education

2008-07-15T23:59:59.000Z

212

Ethanol oxidation on metal oxide-supported platinum catalysts  

SciTech Connect

Ethanol is a renewable fuel that can be used as an additive to gasoline (or its substitute) with the advantage of octane enhancement and reduced carbon monoxide exhaust emissions. However, on Ethanol is a renewable fuel that can be used as an additive to gasoline (or its substitute) with the advantage of octane enhancement and reduced carbon monoxide exhaust emissions. However, on the standard three-way catalysts, the conversion of unburned ethanol is low because both ethanol and some of its partially oxidized derivatives are highly resistant to oxidation. A combination of first-principles density-functional theory (DFT) based calculations and in-situ diffuse reflectance infrared spectroscopy (DRIFTS) analysis was applied to uncover some of the fundamental phenomena associated with ethanol oxidation on Pt containing catalysts. In particular, the objective was to analyze the role of the oxide (i.e., ?-Al2O3 or SiO2) substrate on the ethanol oxidation activity. The results showed that Pt nanoparticles trap and accumulate oxygen at their surface and perimeter sites and play the role of “stoves” that burn ethanol molecules and their partially oxidized derivatives to the “final” products. The ?-Al2O3 surfaces provided higher mobility of the fragments of ethanol molecules than the SiO2 surface and hence increased the supply rate of these objects to the Pt particles. This will in turn produce a higher conversion rate of unburned ethanol.and some of its partially oxidized derivatives are highly resistant to oxidation. A combination of first-principles density-functional theory (DFT) based calculations and in-situ diffuse reflectance infrared spectroscopy (DRIFTS) analysis was applied to uncover some of the fundamental phenomena associated with ethanol oxidation on Pt containing catalysts. In particular, the objective was to analyze the role of the oxide (i.e., ?-Al2O3 or SiO2) substrate on the ethanol oxidation activity. The results showed that Pt nanoparticles trap and accumulate oxygen at their surface and perimeter sites and play the role of “stoves” that burn ethanol molecules and their partially oxidized derivatives to the “final” products. The ?-Al2O3 surfaces provided higher mobility of the fragments of ethanol molecules than the SiO2 surface and hence increased the supply rate of these objects to the Pt particles. This will in turn produce a higher conversion rate of unburned ethanol.

L. M. Petkovic 090468; Sergey N. Rashkeev; D. M. Ginosar

2009-09-01T23:59:59.000Z

213

Heat removal from high temperature tubular solid oxide fuel cells utilizing product gas from coal gasifiers.  

DOE Green Energy (OSTI)

In this work we describe the results of a computer study used to investigate the practicality of several heat exchanger configurations that could be used to extract heat from tubular solid oxide fuel cells (SOFCs) . Two SOFC feed gas compositions were used in this study. They represent product gases from two different coal gasifier designs from the Zero Emission Coal study at Los Alamos National Laboratory . Both plant designs rely on the efficient use of the heat produced by the SOFCs . Both feed streams are relatively rich in hydrogen with a very small hydrocarbon content . One feed stream has a significant carbon monoxide content with a bit less hydrogen . Since neither stream has a significant hydrocarbon content, the common use of the endothermic reforming reaction to reduce the process heat is not possible for these feed streams . The process, the method, the computer code, and the results are presented as well as a discussion of the pros and cons of each configuration for each process .

Parkinson, W. J. (William Jerry),

2003-01-01T23:59:59.000Z

214

Vapor phase modifiers for oxidative coupling  

DOE Patents (OSTI)

Volatilized metal compounds retard vapor phase alkane conversion reactions in oxidative coupling processes that convert lower alkanes to higher hydrocarbons.

Warren, Barbara K. (Charleston, WV)

1991-01-01T23:59:59.000Z

215

Methane conversion to methanol  

DOE Green Energy (OSTI)

The objective of this research study is to demonstrate the effectiveness of a catalytic membrane reactor for the partial oxidation of methane. The specific goals are to demonstrate that we can improve product yield, demonstrate the optimal conditions for membrane reactor operation, determine the transport properties of the membrane, and provide demonstration of the process at the pilot plant scale. The last goal will be performed by Unocal, Inc., our industrial partner, upon successful completion of this study.

Noble, R.D.; Falconer, J.L.

1992-06-01T23:59:59.000Z

216

Methane to methanol conversion  

DOE Green Energy (OSTI)

The purpose of this project is to develop a novel process by which natural gas or methane from coal gasification products can be converted to a transportable liquid fuel. It is proposed that methanol can be produced by the direct, partial oxidation of methane utilizing air or oxygen. It is anticipated that, compared to present technologies, the new process might offer significant economic advantages with respect to capital investment and methane feedstock purity requirements. Results to date are discussed. 6 refs.

Finch, F.T.; Danen, W.C.; Lyman, J.L.; Oldenborg, R.C.; Rofer, C.K.; Ferris, M.J.

1990-01-01T23:59:59.000Z

217

Method for conversion of .beta.-hydroxy carbonyl compounds  

DOE Patents (OSTI)

A process is disclosed for conversion of salts of .beta.-hydroxy carbonyl compounds forming useful conversion products including, e.g., .alpha.,.beta.-unsaturated carbonyl compounds and/or salts of .alpha.,.beta.-unsaturated carbonyl compounds. Conversion products find use, e.g., as feedstock and/or end-use chemicals.

Lilga, Michael A. (Richland, WA); White, James F. (Richland, WA); Holladay, Johnathan E. (Kennewick, WA); Zacher, Alan H. (Kennewick, WA); Muzatko, Danielle S. (Kennewick, WA); Orth, Rick J. (Kennewick, WA)

2010-03-30T23:59:59.000Z

218

Arsenic alters monocyte superoxide anion and nitric oxide production in environmentally exposed children  

Science Conference Proceedings (OSTI)

Arsenic (As) exposure has been associated with alterations in the immune system, studies in experimental models and adults have shown that these effects involve macrophage function; however, limited information is available on what type of effects could be induced in children. The aim of this study was to evaluate effects of As exposure, through the association of inorganic As (iAs) and its metabolites [monomethylated arsenic (MMA) and dimethylated arsenic (DMA)] with basal levels of nitric oxide (NO{sup {center_dot}-}) and superoxide anion (O{sub 2}{sup {center_dot}-}), in peripheral blood mononuclear cells (PBMC) and monocytes, and NO{sup {center_dot}-} and O{sub 2}{sup {center_dot}-} produced by activated monocytes. Hence, a cross-sectional study was conducted in 87 children (6-10 years old) who had been environmentally exposed to As through drinking water. Levels of urinary As species (iAs, MMA and DMA) were determined by hydride generation atomic absorption spectrometry, total As (tAs) represents the sum of iAs and its species; tAs urine levels ranged from 12.3 to 1411 {mu}g/g creatinine. Using multiple linear regression models, iAs presented a positive and statistical association with basal NO{sup {center_dot}-} in PBMC ({beta} = 0.0048, p = 0.049) and monocytes ({beta} = 0.0044, p = 0.044), while basal O{sub 2}{sup {center_dot}-} had a significant positive association with DMA ({beta} = 0.0025, p = 0.046). In activated monocytes, O{sub 2}{sup {center_dot}-} showed a statistical and positive association with iAs ({beta} = 0.0108, p = 0.023), MMA ({beta} = 0.0066, p = 0.022), DMA ({beta} = 0.0018, p = 0.015), and tAs ({beta} = 0.0013, p = 0.015). We conclude that As exposure in the studied children was positively associated with basal levels of NO{sup {center_dot}-} and O{sub 2}{sup {center_dot}-} in PBMC and monocytes, suggesting that As induces oxidative stress in circulating blood cells. Additionally, this study showed a positive association of O{sub 2}{sup {center_dot}-} production with iAs and its metabolites in stimulated monocytes, supporting previous data that suggests that these cells, and particularly the O{sub 2}{sup {center_dot}-} activation pathway, are relevant targets for As toxicity.

Luna, Ana L.; Acosta-Saavedra, Leonor C. [Toxicologia, Cinvestav, PO Box: 14-740, Mexico, D.F., 07360 (Mexico); Lopez-Carrillo, Lizbeth [Centro de Investigacion en Salud Poblacional, Instituto Nacional de Salud Publica, Cuernavaca, Morelos (Mexico); Conde, Patricia; Vera, Eunice; De Vizcaya-Ruiz, Andrea [Toxicologia, Cinvestav, PO Box: 14-740, Mexico, D.F., 07360 (Mexico); Bastida, Mariana [Coordinacion de Investigacion de la Secretaria de Salud del Estado de Hidalgo (Mexico); Cebrian, Mariano E. [Toxicologia, Cinvestav, PO Box: 14-740, Mexico, D.F., 07360 (Mexico); Calderon-Aranda, Emma S., E-mail: scalder@cinvestav.m [Toxicologia, Cinvestav, PO Box: 14-740, Mexico, D.F., 07360 (Mexico)

2010-06-01T23:59:59.000Z

219

Development of vanidum-phosphate catalysts for methanol production by selective oxidation of methane. Quarterly technical progress report, 1996  

DOE Green Energy (OSTI)

Activities this past quarter, focused on acquisition of kinetic data for oxidation of formaldehyde and methanol on these catalysts. In the next quarter these results will be used to propose a simple reaction network and kinetic model. To date we have completed Task 1: Laboratory Setup and Task 2: Process Variable Study. Activities in the current quarter focused on finalizing these tasks and on Task 3: Promoters and Supports, this task is approximately 50% completed. Task 4: Advanced Catalysts is to be initiated in the next quarter. Specific accomplishments this quarter include: finalizing and calibrating a new reaction product analytical system with markedly improved precision and accuracy relative to older. approaches; development of procedures for accurately feeding formaldehyde to the reactor; examination of formaldehyde and methanol oxidation kinetics over vanadyl pyrophosphate at a range of temperatures; and preliminary studies of methane oxidation over a silica support.

McCormick, R.L.; Alptekin, G.O.

1996-06-01T23:59:59.000Z

220

Production of crystalline refractory metal oxides containing colloidal metal precipitates and useful as solar-effective absorbers  

DOE Patents (OSTI)

This invention is a new process for producing refractory crystalline oxides having improved or unusual properties. The process comprises the steps of forming a doped-metal crystal of the oxide; exposing the doped crystal in a bomb to a reducing atmosphere at superatmospheric pressure and a temperature effecting precipitation of the dopant metal in the crystal lattice of the oxide but insufficient to effect net diffusion of the metal out of the lattice; and then cooling the crystal. Preferably, the cooling step is effected by quenching. The process forms colloidal precipitates of the metal in the oxide lattice. The process may be used, for example, to produce thermally stable black MgO crystalline bodies containing magnetic colloidal precipitates consisting of about 99% Ni. The Ni-containing bodies are solar-selective absorbers, having a room-temperature absorptivity of about 0.96 over virtually all of the solar-energy spectrum and exhibiting an absorption edge in the region of 2 .mu.m. The process parameters can be varied to control the average size of the precipitates. The process can produce a black MgO crystalline body containing colloidal Ni precipitates, some of which have the face-centered-cubic structure and others of which have the body-centered cubic structure. The products of the process are metal-precipitate-containing refractory crystalline oxides which have improved or unique optical, mechanical, magnetic, and/or electronic properties.

Narayan, Jagdish (Knoxville, TN); Chen, Yok (Oak Ridge, TN)

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxide conversion product" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

A Phenomenological Study of the Metal-Oxide Interface: The Role of Catalysis in Hydrogen Production from Renewable Resources  

SciTech Connect

The truth about Cats: The metal-oxide interface of a Pd-Rh/CeO{sub 2} catalyst was studied in the context of developing active, selective and durable solid catalytic materials for the production of hydrogen from renewables. The presence of a stable contact between finely dispersed transition-metal clusters (Pd and Rh) on the nanoparticles of the CeO{sub 2} support leads to a highly active and stable catalyst for the steam reforming of ethanol.

Idriss, H.; Llorca, J; Chan, S; Blackford, M; Pas, S; Hill, A; Alamgir, F; Rettew, R; Petersburg, C; Barteau, M

2008-01-01T23:59:59.000Z

222

Integrating Safeguards into the Pit Disassembly and Conversion Facility  

SciTech Connect

In September 2000, the United States and the Russian Federation entered into an agreement which stipulates each country will irreversibly transform 34 metric tons of weapons-grade plutonium into material which could not be used for weapon purposes. Supporting the Department of Energy's (DOE) program to dispose of excess nuclear materials, the Pit Disassembly and Conversion Facility (PDCF) is being designed and constructed to disassemble the weapon ''pits'' and convert the nuclear material to an oxide form for fabrication into reactor fuel at the separate Mixed Oxide Fuel Fabrication Facility. The PDCF design incorporates automation to the maximum extent possible to facilitate material safeguards, reduce worker dose, and improve processing efficiency. This includes provisions for automated guided vehicle movements for shipping containers, material transport via automated conveyor between processes, remote process control monitoring, and automated Nondestructive Assay product systems.

Clark, T.G.

2002-05-28T23:59:59.000Z

223

DUF6 Conversion Facility EIS Alternatives  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternatives Alternatives Depleted UF6 Conversion Facility EIS Alternatives Alternatives included in the Depleted UF6 Conversion Facility EISs. Proposed Action The proposed action evaluated in each EIS is to construct and operate a conversion facility at each site for conversion of the DOE DUF6 inventory. The time period considered is a construction period of approximately 2 years, an operational period of 25 years at Paducah and 18 years at Portsmouth, and the decontamination and decommissioning (D&D) of the facility of about 3 years. The EISs assess the potential environmental impacts from the following proposed activities: Construction, operation, maintenance, and D&D of the proposed DUF6 conversion facility at each site; Transportation of uranium conversion products and waste materials to a disposal facility;

224

Thermal catalytic conversion of the used isobutyl isoprene rubber into valuable hydrocarbons  

E-Print Network (OSTI)

Jan MR, Mabood F. Catalytic conversion of waste tyres intoJ, Jan MR, Mabood F. Conversion of waste tires into liquidbest method for maximum conversion into useful product, and

Rasul Jan, M.; Jabeen, Farah; Shah, Jasmin; Mabood, Fazal

2010-01-01T23:59:59.000Z

225

Assessment of ocean thermal energy conversion  

E-Print Network (OSTI)

Ocean thermal energy conversion (OTEC) is a promising renewable energy technology to generate electricity and has other applications such as production of freshwater, seawater air-conditioning, marine culture and chilled-soil ...

Muralidharan, Shylesh

2012-01-01T23:59:59.000Z

226

Conversion Between Implicit - CECM  

E-Print Network (OSTI)

Conversion Between Implicit and Parametric Representation of Differential Varieties. Xiao-Shan Gao, Institute of Systems Science, Chinese Academy of ...

227

Ocean Thermal Energy Conversion  

Energy.gov (U.S. Department of Energy (DOE))

A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity.

228

Purification of uranium alloys by differential solubility of oxides and production of purified fuel precursors  

DOE Patents (OSTI)

A method is described for purifying metallic alloys of uranium for use as nuclear reactor fuels in which the metal alloy is first converted to an oxide and then dissolved in nitric acid. Initial removal of metal oxide impurities not soluble in nitric acid is accomplished by filtration or other physical means. Further purification can be accomplished by carbonate leaching of uranyl ions from the partially purified solution or using traditional methods such as solvent extraction. 3 figs.

McLean, W. II; Miller, P.E.

1997-12-16T23:59:59.000Z

229

Argonne Chemical Sciences & Engineering - Catalysis & Energy Conversion -  

NLE Websites -- All DOE Office Websites (Extended Search)

Ceramic Electrochemistry Ceramic Electrochemistry * Members * Contact * Publications * Overview * Solid Oxide Fuel Cells * Steam Electrolysis Catalysis & Energy Conversion Home Ceramic Electrochemistry Dave Carter and solid oxide fuel cell Materials scientist John David Carter prepares a solid oxide electrochemical cell for high temperature testing. Research activities in the Ceramic Electrochemistry Group are focused on the development of ceramic-based electrochemical devices and components, such as Solid Oxide Fuel Cells (SOFC) and High Temperature Steam Electrolyzers (HTSE). This extends to materials synthesis, fabrication, and characterization. Solid Oxide Fuel Cell Research As part of the Solid State Energy Conversion Alliance (SECA) Core Technology Program, the goal of this research is the development of solid

230

Production  

E-Print Network (OSTI)

There are serious concerns about the greenhouse gas (GHG) emissions, energy and nutrient and water use efficiency of large-scale, first generation bio-energy feedstocks currently in use. A major question is whether biofuels obtained from these feedstocks are effective in combating climate change and what impact they will have on soil and water resources. Another fundamental issue relates to the magnitude and nature of their impact on food prices and ultimately on the livelihoods of the poor. A possible solution to overcome the current potentially large negative effects of large-scale biofuel production is developing second and third generation conversion techniques from agricultural residues and wastes and step up the scientific research efforts to achieve sustainable biofuel production practices. Until such sustainable techniques are available governments should scale back their support for and promotion of biofuels. Multipurpose feedstocks should be investigated making use of the bio-refinery concept (bio-based economy). At the same time, the further development of non-commercial, small scale

Science Council Secretariat

2008-01-01T23:59:59.000Z

231

Enhancement of methane conversion using electric fields. Quarterly report, October 1--December 31, 1996  

DOE Green Energy (OSTI)

The goal of this project is the development of novel, economical, processes for the conversion of natural gas to more valuable projects such as methanol, ethylene and other organic oxygenates or higher hydrocarbons. The methodologies of the project are to investigate and develop low temperature electric discharges and electric field-enhanced catalysis for carrying out these conversions. In the case of low temperature discharges, the conversion is carried out at ambient temperature which in effect trades high temperature thermal energy for electric energy as the driving force for conversion. The low operating temperatures relax the thermodynamic constraints on the product distribution found at high temperature and also removes the requirements of large thermal masses required for current technologies. With the electric field-enhanced conversion, the operating temperatures are expected to be below those currently required for such processes as oxidative coupling, thereby allowing for a higher degree of catalytic selectivity while maintaining high activity. During this quarter the authors worked on some kinetics experiments and also did some catalyst screening, particularly looking for correlations with surface OH and oxygen groups to help determine the manner in which these surfaces alter the selectivities. On the dielectric systems they looked at power versus frequency and conversions relationships, worked on oxygen utilization and started building a short residence time reactor for studying intermediate formation and destruction.

NONE

1996-12-31T23:59:59.000Z

232

Analysis of the Effects of Compositional and Configurational Assumptions on Product Costs for the Thermochemical Conversion of Lignocellulosic Biomass to Mixed Alcohols -- FY 2007 Progress Report  

DOE Green Energy (OSTI)

The purpose of this study was to examine alternative biomass-to-ethanol conversion process assumptions and configuration options to determine their relative effects on overall process economics. A process-flow-sheet computer model was used to determine the heat and material balance for each configuration that was studied. The heat and material balance was then fed to a costing spreadsheet to determine the impact on the ethanol selling price. By examining a number of operational and configuration alternatives and comparing the results to the base flow sheet, alternatives having the greatest impact the performance and cost of the overall system were identified and used to make decisions on research priorities.

Zhu, Yunhua; Gerber, Mark A.; Jones, Susanne B.; Stevens, Don J.

2008-12-05T23:59:59.000Z

233

Beneficial Conversion Features or Contingently Adjustable Conversion  

E-Print Network (OSTI)

1. An entity may issue convertible debt with an embedded conversion option that is required to be bifurcated under Statement 133 if all of the conditions in paragraph 12 of that Statement are met. An embedded conversion option that initially requires separate Copyright © 2008, Financial Accounting Standards Board Not for redistribution Page 1accounting as a derivative under Statement 133 may subsequently no longer meet the conditions that would require separate accounting as a derivative. A reassessment of whether an embedded conversion option must be bifurcated under Statement 133 is required each reporting period. When an entity is no longer required to bifurcate a conversion option pursuant to Statement 133, there are differing views on how an entity should recognize that change.

Bifurcation Criteria; Fasb Statement No; Stock Purchase Warrants

2006-01-01T23:59:59.000Z

234

Iterated multidimensional wave conversion  

Science Conference Proceedings (OSTI)

Mode conversion can occur repeatedly in a two-dimensional cavity (e.g., the poloidal cross section of an axisymmetric tokamak). We report on two novel concepts that allow for a complete and global visualization of the ray evolution under iterated conversions. First, iterated conversion is discussed in terms of ray-induced maps from the two-dimensional conversion surface to itself (which can be visualized in terms of three-dimensional rooms). Second, the two-dimensional conversion surface is shown to possess a symplectic structure derived from Dirac constraints associated with the two dispersion surfaces of the interacting waves.

Brizard, A. J. [Dept. Physics, Saint Michael's College, Colchester, VT 05439 (United States); Tracy, E. R.; Johnston, D. [Dept. Physics, College of William and Mary, Williamsburg, VA 23187-8795 (United States); Kaufman, A. N. [LBNL and Physics Dept., UC Berkeley, Berkeley, CA 94720 (United States); Richardson, A. S. [T-5, LANL, Los Alamos, NM 87545 (United States); Zobin, N. [Dept. Mathematics, College of William and Mary, Williamsburg, VA 23187-8795 (United States)

2011-12-23T23:59:59.000Z

235

Advance concepts for conversion of syngas to liquids. Quarterly progress report No. 4, July 30, 1995--October 29, 1995  

Science Conference Proceedings (OSTI)

Substitution of transition metals for either aluminum and/or phosphorus in the AlPO{sub 4}-11 framework is found to afford novel heterogeneous catalysts for liquid phase hydroxylation of phenol with hydrogen peroxide. AlPO{sub 4}-11 is more active than SAPO-11 and MgAPO-11 for phenol conversion to hydroquinone. The Bronsted acid sites of SAPO-11 and MgAPO-11 may promote the decomposition of hydrogen peroxide to water and oxygen, thus leading to lower phenol conversions. Substitution of divalent and trivalent metal cations, such as Fe, Co and Mn appears to significantly improve the conversion of phenol. The activity follows the order of FeAPO-11>FeMnAPO-11>CoAPO-11>MnAPO-11{much_gt}ALPO{sub 4}-11. FeAPO-11, FeMnAPO-11 and AlPO{sub 4}-11 give similar product selectivities of about 1:1 hydroquitione (HQ) to catechol (CT). MnAPO-11 and CoAPO-11 favor the production of catechol, particularly at low conversions. FeAPO-11 and TS-1 (titanium silicate with MFI topology) are comparable for the phenol conversions with TS-1 giving higher selectivities toward hydroquinone. The external surfaces of the catalysts plays a significant role in these oxidation reactions. MeAPO molecular sieves may be complementary to the metal silicalite catalysts for the catalytic oxidations in the manufacture of fine chemicals.

Pei-Shing Eugene Dai; Petty, R.H. [Texaco R& D, Port Arthur, TX (United States); Ingram, C.; Szostak, R. [Clark Atlanta Univ., GA (United States)

1996-02-01T23:59:59.000Z

236

Topical report on a preconceptual design for the Spallation-Induced Lithium Conversion (SILC) target for the accelerator production of tritium (APT)  

Science Conference Proceedings (OSTI)

The preconceptual design of the APT Li-Al target system, also referred to as the Spallation-Induced Lithium Conversion (SILC), target system, is summarized in this report. The system has been designed to produce a ``3/8 Goal`` quantity of tritium using the 200-mA, 1.0 GeV proton beam emerging from the LANL-designed LINAC. The SILC target system consists of a beam expander, a heavy-water-cooled lead spallation neutron source assembly surrounded by light-water-cooled Li-Al blankets, a target window, heat removal systems, and related safety systems. The preconceptual design of each of these major components is described. Descriptions are also provided for the target fabrication, tritium extraction, and waste-steam processes. Performance characteristics are presented and discussed.

Van Tuyle, G.J.; Cokinos, D.M.; Czajkowski, C.; Franz, E.M.; Kroeger, P.; Todosow, M.; Youngblood, R.; Zucker, M.

1993-09-30T23:59:59.000Z

237

Use of Spray Dryer Absorber Product in Agriculture – Sulfite Oxidation Kinetics  

Science Conference Proceedings (OSTI)

A laboratory study evaluated the rate of sulfite oxidation and the chemical quality of water extracts when spray dryer absorber (SDA) material was added to soil at rates of 0, 100, 1000, 5000, and 10,000 lb acre-1.* Water was then added to the soil on 10 occasions beginning at day 0 and ending at day 98 after the addition of ...

2013-08-29T23:59:59.000Z

238

Method for conversion of beta-hydroxy carbonyl compounds - Energy ...  

Conversion products find use, e.g., ... United States Patent ... as operator of Pacific Northwest National Laboratory under U.S. Department of Energy Contract DE ...

239

Process Design and Economics for Biochemical Conversion of Lignocellul...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

conversion, and sustainability. As part of its involvement in the program, the National Renewable Energy Laboratory (NREL) investigates the production economics of these...

240

A Process for the Conversion of Cyclic Amines Into Lactams ...  

Ames Laboratory researchers have developed a process for the conversion of cyclic amines into lactams, which may have utility for the production of nylons and other ...

Note: This page contains sample records for the topic "oxide conversion product" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Advanced Energy Conversion LLC AEC | Open Energy Information  

Open Energy Info (EERE)

Energy Conversion LLC (AEC) Place New York Zip 12020 Product R&D company focused on power electronics, motion control systems and embedded control. References Advanced Energy...

242

Final Technical Report - High-Performance, Oxide-Dispersion-Strengthened Tubes for Production of Ethylene adn Other Industrial Chemicals  

SciTech Connect

This project was undertaken by Michigan Technological University and Special Metals Corporation to develop creep-resistant, coking-resistant oxide-dispersion-strengthened (ODS) tubes for use in industrial-scale ethylene pyrolysis and steam methane reforming operations. Ethylene pyrolysis tubes are exposed to some of the most severe service conditions for metallic materials found anywhere in the chemical process industries, including elevated temperatures, oxidizing atmospheres and high carbon potentials. During service, hard deposits of carbon (coke) build up on the inner wall of the tube, reducing heat transfer and restricting the flow of the hydrocarbon feedstocks. About every 20 to 60 days, the reactor must be taken off-line and decoked by burning out the accumulated carbon. This decoking costs on the order of $9 million per year per ethylene plant, accelerates tube degradation, and requires that tubes be replaced about every 5 years. The technology developed under this program seeks to reduce the energy and economic cost of coking by creating novel bimetallic tubes offering a combination of improved coking resistance, creep resistance and fabricability not available in current single-alloy tubes. The inner core of this tube consists of Incoloy(R) MA956, a commercial ferritic Fe-Cr-Al alloy offering a 50% reduction in coke buildup combined with improved carburization resistance. The outer sheath consists of a new material - oxide dispersion strengthened (ODS) Alloy 803(R) developed under the program. This new alloy retains the good fireside environmental resistance of Alloy 803, a commercial wrought alloy currently used for ethylene production, and provides an austenitic casing to alleviate the inherently-limited fabricability of the ferritic Incoloy(R) MA956 core. To provide mechanical compatibility between the two alloys and maximize creep resistance of the bimetallic tube, both the inner Incoloy(R) MA956 and the outer ODS Alloy 803 are oxide dispersion strengthened materials produced using mechanical alloying technology. To minimize cost, the bimetallic tube is produced by direct powder co-extrusion. This technology has potential for domestic energy savings of up to 4.1 trillion BTU/year (4.3 x 1015J/year) and a reduction of 370,000 tons (340,000 tonnes) of CO2 emissions in short-residence-time ethylene furnaces. This represents an energy savings and CO2 emissions reduction of about 3.3%. If the technology is also applied to other types of ethylene pyrolysis furnaces, total energy savings and CO2 emissions reductions could increase by up to five times. The work involved: Developing powder and consolidation processing protocols to produce an oxide-dispersion strengthened variant of Alloy 803 exhibiting creep strength comparable to Incoloy? Alloy MA956, Developing a direct powder co-extrusion protocol for fabricating co-extruded bimetallic Incoloy? Alloy MA956 / ODS Alloy 803 tubes, Characterizing the properties of the ODS Alloy 803 material, the welding characteristics of the bimetallic tubes, and the coking characteristics of the Incoloy? MA956 alloy, and Documenting the potential energy savings and user requirements for these bimetallic pyrolysis furnace tubes. The project demonstrated that oxide dispersion strengthened Alloy 803 can be produced successfully using conventional mechanical alloying technology. The oxide dispersion strengthened bimetallic radiant coil technology explored under this program has significant potential for energy savings and productivity improvements for domestic ethylene producers. In today's competitive market, however, domestic furnace manufacturers and ethylene producers appear reluctant to pay any cost premium for higher-performance coil materials offering either higher temperature capabilities or longer service life. Interest in oxide dispersion strengthened radiant coils is likely to increase if furnace and ethylene producers begin to focus more on increasing tube wall temperatures to improve productivity.

McKimpson, Marvin G.

2006-04-06T23:59:59.000Z

243

Energy Conversion and Storage Program  

DOE Green Energy (OSTI)

The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

Cairns, E.J.

1992-03-01T23:59:59.000Z

244

Polymeric and Conversion Coatings  

Science Conference Proceedings (OSTI)

Oct 19, 2011 ... Ongoing research reveals that the search for appropriate conversion ... of the coated alloy was ~ 250 mV more noble compared to bare alloy.

245

QUANTUM CONVERSION IN PHOTOSYNTHESIS  

E-Print Network (OSTI)

QUANTUM CONVERSION IN PHOTOSYNTHESIS Melvin Calvin Januaryas it occurs in modern photosynthesis can only take place inof the problem or photosynthesis, or any specific aspect of

Calvin, Melvin

2008-01-01T23:59:59.000Z

246

A Modular Approach to the Development of Molecular Electrocatalysts for H2 Oxidation and Production Based on Inexpensive Metals  

DOE Green Energy (OSTI)

The development of inexpensive electrocatalysts for the production and oxidation of hydrogen will play a vital role in future energy storage and delivery systems. The generation of hydrogen from non-fossil energy sources such as solar, wind, geothermal, and nuclear energy is one approach being considered for storing the electrical energy generated by these sources for transportation and other uses that are not temporally matched to electrical energy production. In the reverse process, in which fuels are used to produce electricity, it is recognized that fuel cells have significant thermodynamic advantages in terms of energy efficiency compared to internal combustion engines and other Carnot processes. Both fuel generation and fuel utilization require electrocatalysts for efficient interconversion of electrical energy and chemical energy. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

Rakowski DuBois, Mary; DuBois, Daniel L.

2010-11-01T23:59:59.000Z

247

Production of high density fuel through low temperature devolatilization of fossil fuels with hydrogen and iron oxides  

DOE Patents (OSTI)

A method is provided for producing high-energy high-density fuels and valuable co-products from fossil fuel sources which comprises the low temperature devolatilization of a fossil fuel such as coal in a moving fluid-bed reactor at a temperature of about 450-650C in the presence of hydrogen and iron oxides. The method is advantageous in that high quality liquid fuels are obtained in addition to valuable co-products such as elemental iron, elemental sulfur and carbon black, and the process is carried out efficiently with a large number of recyclable steps. In addition, the hydropyrolysis of the present invention can produce a highly reactive low-sulfur char which is convertible into a slurry fuel. 1 fig.

Khan, M.R.

1990-01-29T23:59:59.000Z

248

Analysis of the Effects of Compositional and Configurational Assumptions on Product Costs for the Thermochemical Conversion of Lignocellulosic Biomass to Mixed Alcohols – FY 2007 Progress Report  

DOE Green Energy (OSTI)

The purpose of this study was to examine alternative biomass-to-ethanol conversion process assumptions and configuration options to determine their relative effects on overall process economics. A process-flow-sheet computer model was used to determine the heat and material balance for each configuration that was studied. The heat and material balance was then fed to a costing spreadsheet to determine the impact on the ethanol selling price. By examining a number of operational and configuration alternatives and comparing the results to the base flow sheet, alternatives having the greatest impact the performance and cost of the overall system were identified and used to make decisions on research priorities. This report, which was originally published in December 2008, has been revised primarily to correct information presented in Appendix B -- Base Case Flow Sheets and Model Results. The corrections to Appendix B include replacement of several pages in Table B.1 that duplicated previous pages of the table. Other changes were made in Appendix B to correct inconsistencies between stream labels presented in the tables and the stream labels in the figures.

Zhu, Yunhua; Gerber, Mark A.; Jones, Susanne B.; Stevens, Don J.

2009-02-01T23:59:59.000Z

249

1982 annual report: Biomass Thermochemical Conversion Program  

DOE Green Energy (OSTI)

This report provides a brief overview of the Thermochemical Conversion Program's activities and major accomplishments during fiscal year 1982. The objective of the Biomass Thermochemical Conversion Program is to generate scientific data and fundamental biomass converison process information that, in the long term, could lead to establishment of cost effective processes for conversion of biomass resources into clean fuels and petrochemical substitutes. The goal of the program is to improve the data base for biomass conversion by investigating the fundamental aspects of conversion technologies and exploring those parameters which are critical to these conversion processes. To achieve this objective and goal, the Thermochemical Conversion Program is sponsoring high-risk, long-term research with high payoff potential which industry is not currently sponsoring, nor is likely to support. Thermochemical conversion processes employ elevated temperatures to convert biomass materials into energy. Process examples include: combustion to produce heat, steam, electricity, direct mechanical power; gasification to produce fuel gas or synthesis gases for the production of methanol and hydrocarbon fuels; direct liquefaction to produce heavy oils or distillates; and pyrolysis to produce a mixture of oils, fuel gases, and char. A bibliography of publications for 1982 is included.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1983-01-01T23:59:59.000Z

250

1982 annual report: Biomass Thermochemical Conversion Program  

SciTech Connect

This report provides a brief overview of the Thermochemical Conversion Program's activities and major accomplishments during fiscal year 1982. The objective of the Biomass Thermochemical Conversion Program is to generate scientific data and fundamental biomass converison process information that, in the long term, could lead to establishment of cost effective processes for conversion of biomass resources into clean fuels and petrochemical substitutes. The goal of the program is to improve the data base for biomass conversion by investigating the fundamental aspects of conversion technologies and exploring those parameters which are critical to these conversion processes. To achieve this objective and goal, the Thermochemical Conversion Program is sponsoring high-risk, long-term research with high payoff potential which industry is not currently sponsoring, nor is likely to support. Thermochemical conversion processes employ elevated temperatures to convert biomass materials into energy. Process examples include: combustion to produce heat, steam, electricity, direct mechanical power; gasification to produce fuel gas or synthesis gases for the production of methanol and hydrocarbon fuels; direct liquefaction to produce heavy oils or distillates; and pyrolysis to produce a mixture of oils, fuel gases, and char. A bibliography of publications for 1982 is included.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1983-01-01T23:59:59.000Z

251

Energy Conversion & Storage Program, 1993 annual report  

DOE Green Energy (OSTI)

The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in: production of new synthetic fuels; development of high-performance rechargeable batteries and fuel cells; development of high-efficiency thermochemical processes for energy conversion; characterization of complex chemical processes and chemical species; and the study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

Cairns, E.J.

1994-06-01T23:59:59.000Z

252

Chemical Conversion Coating  

Science Conference Proceedings (OSTI)

Table 16   Applications of aluminum using chemical conversion coatings...doors 6063 Acrylic paint (b) Cans 3004 Sanitary lacquer Fencing 6061 None applied Chromate conversion coatings Aircraft fuselage skins 7075 clad with 7072 Zinc chromate primer Electronic chassis 6061-T4 None applied Cast missile bulkhead 356-T6 None applied Screen 5056 clad with 6253 Clear varnish...

253

Conversion of ethane and of propane to higher olefin hydrocarbons. Quarterly report, July 1--September 30, 1991  

DOE Green Energy (OSTI)

Purely thermal reactions for the conversion of ethane were carried out in an empty and in a quartz chip filled reactor over a temperature range of 300--800{degrees}C in the absence and presence of oxygen and oxygen plus water. Ethane alone shows no conversion below 600{degrees}C and some conversion to CH{sub 4} and very little C{sub 2}H{sub 4} at 700{degrees} and 800{degrees}C. Ethane and oxygen produce CO{sub 2} as the major product above 400{degrees}C. The additional presence of water does not appreciably change this picture. Converting ethane with oxygen and water over a Ca{sub 3}Ni{sub 1}K{sub 0.1} catalyst at very low space velocity gave increasing conversion with temperature, primarily CO{sub 2} production and a small amount of C{sub 3+} hydrocarbons. The CO{sub 2} production was decreased and slightly more C{sub 3} hydrocarbons were produced when the potassium concentration of the catalyst was increased. Activation energies have been calculated for the various ethane conversion reactions. It appears that the CaNiK oxide catalyst is not suited for oxidative ethane coupling at the conditions thus far investigated. The indications are that much shorter contact times are required to prevent oxidation of intermediates. Blank runs with propane and oxygen in the absence of a catalyst have shown significant reaction at temperatures as low as 400{degrees}C. 12 figs., 3 tabs.

Heinemann, H.; Somorjai, G.A.

1991-10-01T23:59:59.000Z

254

Ris Energy Report 2 Bioenergy conversion  

E-Print Network (OSTI)

Electricity production by SOFC fuel cells is one road to obtain a high efficiency in electricity production. In order to meet this demand in a sustainable way, gasifica- tion and SOFC fuel cell conversion systems gasfication gas has the potential to be used directly in SOFC cells or alternatively steam- reformed

255

Implications of Fast Reactor Transuranic Conversion Ratio  

SciTech Connect

Theoretically, the transuranic conversion ratio (CR), i.e. the transuranic production divided by transuranic destruction, in a fast reactor can range from near zero to about 1.9, which is the average neutron yield from Pu239 minus 1. In practice, the possible range will be somewhat less. We have studied the implications of transuranic conversion ratio of 0.0 to 1.7 using the fresh and discharge fuel compositions calculated elsewhere. The corresponding fissile breeding ratio ranges from 0.2 to 1.6. The cases below CR=1 (“burners”) do not have blankets; the cases above CR=1 (“breeders”) have breeding blankets. The burnup was allowed to float while holding the maximum fluence to the cladding constant. We graph the fuel burnup and composition change. As a function of transuranic conversion ratio, we calculate and graph the heat, gamma, and neutron emission of fresh fuel; whether the material is “attractive” for direct weapon use using published criteria; the uranium utilization and rate of consumption of natural uranium; and the long-term radiotoxicity after fuel discharge. For context, other cases and analyses are included, primarily once-through light water reactor (LWR) uranium oxide fuel at 51 MWth-day/kg-iHM burnup (UOX-51). For CR<1, the heat, gamma, and neutron emission increase as material is recycled. The uranium utilization is at or below 1%, just as it is in thermal reactors as both types of reactors require continuing fissile support. For CR>1, heat, gamma, and neutron emission decrease with recycling. The uranium utilization exceeds 1%, especially as all the transuranic elements are recycled. exceeds 1%, especially as all the transuranic elements are recycled. At the system equilibrium, heat and gamma vary by somewhat over an order of magnitude as a function of CR. Isotopes that dominate heat and gamma emission are scattered throughout the actinide chain, so the modest impact of CR is unsurprising. Neutron emitters are preferentially found among the higher actinides, so the neutron emission varies much stronger with CR, about three orders of magnitude.

Steven J. Piet; Edward A. Hoffman; Samuel E. Bays

2010-11-01T23:59:59.000Z

256

CONVERSION EXTRACTION DESULFURIZATION (CED) PHASE III  

DOE Green Energy (OSTI)

This project was undertaken to refine the Conversion Extraction Desulfurization (CED) technology to efficiently and economically remove sulfur from diesel fuel to levels below 15-ppm. CED is considered a generic term covering all desulfurization processes that involve oxidation and extraction. The CED process first extracts a fraction of the sulfur from the diesel, then selectively oxidizes the remaining sulfur compounds, and finally extracts these oxidized materials. The Department of Energy (DOE) awarded Petro Star Inc. a contract to fund Phase III of the CED process development. Phase III consisted of testing a continuous-flow process, optimization of the process steps, design of a pilot plant, and completion of a market study for licensing the process. Petro Star and the Degussa Corporation in coordination with Koch Modular Process Systems (KMPS) tested six key process steps in a 7.6-centimeter (cm) (3.0-inch) inside diameter (ID) column at gas oil feed rates of 7.8 to 93.3 liters per hour (l/h) (2.1 to 24.6 gallons per hour). The team verified the technical feasibility with respect to hydraulics for each unit operation tested and successfully demonstrated pre-extraction and solvent recovery distillation. Test operations conducted at KMPS demonstrated that the oxidation reaction converted a maximum of 97% of the thiophenes. The CED Process Development Team demonstrated that CED technology is capable of reducing the sulfur content of light atmospheric gas oil from 5,000-ppm to less than 15-ppm within the laboratory scale. In continuous flow trials, the CED process consistently produced fuel with approximately 20-ppm of sulfur. The process economics study calculated an estimated process cost of $5.70 per product barrel. The Kline Company performed a marketing study to evaluate the possibility of licensing the CED technology. Kline concluded that only 13 refineries harbored opportunity for the CED process. The Kline study and the research team's discussions with prospective refineries led to the conclusion that there were not likely prospects for the licensing of the CED process.

James Boltz

2005-03-01T23:59:59.000Z

257

ADEPT: Efficient Power Conversion  

SciTech Connect

ADEPT Project: In today’s increasingly electrified world, power conversion—the process of converting electricity between different currents, voltage levels, and frequencies—forms a vital link between the electronic devices we use every day and the sources of power required to run them. The 14 projects that make up ARPA-E’s ADEPT Project, short for “Agile Delivery of Electrical Power Technology,” are paving the way for more energy efficient power conversion and advancing the basic building blocks of power conversion: circuits, transistors, inductors, transformers, and capacitors.

None

2011-01-01T23:59:59.000Z

258

Direct energy conversion systems  

SciTech Connect

The potential importance of direct energy conversion to the long-term development of fusion power is discussed with stress on the possibility of alleviating waste heat problems. This is envisioned to be crucial for any central power station in the 21st century. Two approaches to direct conversion, i.e., direct collection and magnetic expansion, are reviewed. While other techniques may be possible, none have received sufficient study to allow evaluation. It is stressed that, due to the intimate connection between the type of fusion fuel, the confinement scheme, direct conversion, and the coupling technique, all four element must be optimized simultaneously for high overall efficiency.

Miley, G.H.

1978-01-01T23:59:59.000Z

259

Solar Thermal Conversion  

DOE Green Energy (OSTI)

The thermal conversion process of solar energy is based on well-known phenomena of heat transfer (Kreith 1976). In all thermal conversion processes, solar radiation is absorbed at the surface of a receiver, which contains or is in contact with flow passages through which a working fluid passes. As the receiver heats up, heat is transferred to the working fluid which may be air, water, oil, or a molten salt. The upper temperature that can be achieved in solar thermal conversion depends on the insolation, the degree to which the sunlight is concentrated, and the measures taken to reduce heat losses from the working fluid.

Kreith, F.; Meyer, R. T.

1982-11-01T23:59:59.000Z

260

Portsmouth DUF6 Conversion Final EIS - Cover Page  

NLE Websites -- All DOE Office Websites (Extended Search)

hydrogen fluoride (HF) produced as a conversion co- product; and neutralization of HF to calcium fluoride (CaF 2 ) and its sale or disposal in the event that the HF product is not...

Note: This page contains sample records for the topic "oxide conversion product" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Paducah DUF6 Conversion Final EIS - Cover Page  

NLE Websites -- All DOE Office Websites (Extended Search)

hydrogen fluoride (HF) produced as a conversion co-product; and neutralization of HF to calcium fluoride (CaF 2 ) and its sale or disposal in the event that the HF product is not...

262

Published on Web 10/28/2008 Gas-Phase, Bulk Production of Metal Oxide Nanowires and Nanoparticles Using a Microwave Plasma Jet Reactor  

E-Print Network (OSTI)

We report gas-phase production of metal oxide nanowires (NWs) and nanoparticles (NPs) using direct oxidation of micron-size metal particles in a high-throughput, atmospheric pressure microwave plasma jet reactor. We demonstrate the concept with production of SnO2, ZnO, TiO2, and Al2O3 NWs. The results suggest that the NW production primarily depends upon the starting metal particle size, microwave power, and the gas-phase composition. The resulting NW powders could be separated from the unreacted metal and metal oxide NPs by sonication in 1-methoxy 2-propanol followed by gravity sedimentation. The experiments conducted using higher microwave powers resulted in spherical, unagglomerated, metal oxide NPs. The results obtained using various metal oxides suggest that the mechanism of NW nucleation and growth in the gas phase is similar to that observed in experiments with metal particles supported on substrates. A simplified analysis suggests that the metal powders melt in the plasma primarily with the heat generated from chemical reactions, such as radical recombination and oxidation reactions on the particle surface.

Jeong H. Kim; Rashekhar Pendyala; Boris Chernomordik; Mahendra K. Sunkara

2008-01-01T23:59:59.000Z

263

Mesoporous Silica-Supported Metal Oxide-Promoted Rh Nanocatalyst for Selective Production of Ethanol from Syngas  

DOE Green Energy (OSTI)

The objective is to develop a process that will convert synthesis gas from coal into ethanol and then transform the ethanol into hydrogen. Principal investigators from Iowa State University include Dr. George Kraus, Dr. Victor Lin, Marek Pruski, and Dr. Robert Brown. Task 1 involves catalyst development and catalyst scale up. Mesoporous manganese silicate mixed oxide materials will be synthesized, characterized and evaluated. The first-and secondgeneration catalysts have been prepared and scaled up for use in Task 2. The construction of a high-pressure reactor system for producing synthetic liquid fuel from simulated synthesis gas stream has been completed as the first step in Task 2. Using the first- and second generation catalysts, the reactor has demonstrated the production of synthetic liquid fuel from a simulated synthesis gas stream.

George Kraus

2010-09-30T23:59:59.000Z

264

EIS-0359: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

59: Uranium Hexafluoride Conversion Facility at the Paducah, 59: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky Site EIS-0359: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky Site Summary This site-specific EIS considers the construction, operation, maintenance, and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three locations within the Paducah site; transportation of depleted uranium conversion products and waste materials to a disposal facility; transportation and sale of the hydrogen fluoride (HF) produced as a conversion co-product; and neutralization of HF to calcium fluoride and its sale or disposal in the event that the HF product is not sold. This EIS also considers a no action alternative that assumes continued storage of DUF6 at the Paducah site. A

265

Wave Energy Conversion Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Wave Energy Conversion Technology Wave Energy Conversion Technology Speaker(s): Mirko Previsic Date: August 2, 2001 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Julie Osborn Scientists have been working on wave power conversion for the past twenty years, but recent advances in offshore and IT technologies have made it economically competitive. Sea Power & Associates is a Berkeley-based renewable energy technology company. We have developed patented technology to generate electricity from ocean wave energy using a system of concrete buoys and highly efficient hydraulic pumps. Our mission is to provide competitively priced, non-polluting, renewable energy for coastal regions worldwide. Mirko Previsic, founder and CEO, of Sea Power & Associates will discuss ocean wave power, existing technologies for its conversion into

266

DANISHBIOETHANOLCONCEPT Biomass conversion for  

E-Print Network (OSTI)

DANISHBIOETHANOLCONCEPT Biomass conversion for transportation fuel Concept developed at RISÃ? and DTU Anne Belinda Thomsen (RISÃ?) Birgitte K. Ahring (DTU) #12;DANISHBIOETHANOLCONCEPT Biomass: Biogas #12;DANISHBIOETHANOLCONCEPT Pre-treatment Step Biomass is macerated The biomass is cut in small

267

Photovoltaic Cell Conversion Efficiency  

Energy.gov (U.S. Department of Energy (DOE))

The conversion efficiency of a photovoltaic (PV) cell, or solar cell, is the percentage of the solar energy shining on a PV device that is converted into electrical energy, or electricity....

268

Structured luminescence conversion layer  

SciTech Connect

An apparatus device such as a light source is disclosed which has an OLED device and a structured luminescence conversion layer deposited on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The structured luminescence conversion layer contains regions such as color-changing and non-color-changing regions with particular shapes arranged in a particular pattern.

Berben, Dirk; Antoniadis, Homer; Jermann, Frank; Krummacher, Benjamin Claus; Von Malm, Norwin; Zachau, Martin

2012-12-11T23:59:59.000Z

269

Direct catalytic conversion of methane and light hydrocarbon gases. Quarterly report No. 5, November 16, 1987--January 15, 1988  

DOE Green Energy (OSTI)

The goal of this research is to develop catalysts that directly convert methane and light hydrocarbons to intermediates that later can be converted to either liquid fuels or value-added chemicals, as economics dictate. During this reporting period, we have synthesized and tested several novel catalysts for methane reforming (Tasks 1 and 2) and for partial oxidation of methane (Tasks 3 and 4). We started to test a mixed metal system, an FeRu{sub 3} cluster. This catalyst was supported both on zeolite and on magnesium oxide and the systems were tested for methane reforming at various reaction temperatures. We also prepared and tested a monomeric ruthenium catalyst supported on magnesium oxide. We found that methane is activated at a lower temperature with the basic magnesium oxide support than with acidic supports such as zeolite or alumina. Methane conversions increased with temperature, but the production of coke also increased. We prepared a sterically hindered ruthenium porphyrin encapsulated in a zeolite supercage for catalysis of methane oxidation. The results showed that only carbon dioxide was produced. Addition of axial base to this catalyst gave similar results. Another type of catalyst, cobalt Schiff base complexes, was also prepared and tested for methane oxidation. In this case, no methane conversion was observed at temperatures ranging from 200 to 450{degrees}C. These complexes do not appear to be stable under the reaction conditions.

Wilson, R.B. Jr.; Chan Yee Wai

1988-02-05T23:59:59.000Z

270

Proton Delivery and Removal in [Ni(PR2NR?2)2]2+ Hydrogen Production and Oxidation Catalysts  

SciTech Connect

To examine the role of proton delivery and removal in the electrocatalytic oxidation and production of hydrogen by [Ni(PR2NR´)2]2+ (where PR2NR´2 is 1,5-R´-3,7-R-1,5-diaza-3,7-diphosphacyclooctane), we report experimental and theoretical studies of the intermolecular proton exchange reactions underlying the isomerization of [Ni(PCy2NBn2H)2]2+ (Cy = cyclohexyl, Bn = benzyl) species formed during the stochiometric oxidation of H2 by [NiII(PCy2NBn2)2]2+ or the protonation of [Ni0(PCy2NBn2)2]. The three isomers formed differ by the position of the N-H bond with respect to the nickel (endo-endo, endo-exo, or exo-exo) and only the endo-endo isomer is catalytically active. We have found that the rate of isomerization is limited by proton removal from and delivery to the complex. In particular, steric hindrance disfavors the catalytically active protonation site (endo to the metal) in favor of inactive protonation (exo to the metal). The ramifications to catalysis of poor accessibility of the endo site and protonation at the exo site are discussed. In hydrogen oxidation, deprotonation of the sterically hindered endo position by an external base may lead to slow catalytic turnover. As for hydrogen production, the limited accessibility of the endo position can result in the formation of exo protonated species, which must undergo one or more isomerization steps to generate the catalytically active endo protonated species. These studies highlight the importance of precise proton delivery, and the mechanistic details described herein will guide future catalyst design. This research was carried out in the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science. WJS was funded by the DOE Office of Science Early Career Research Program through the Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle. Computational resources were provided at W. R. Wiley Environmental Molecular Science Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research located at Pacific Northwest National Laboratory; the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory; and the Jaguar supercomputer at Oak Ridge National Laboratory (INCITE 2008-2011 award supported by the Office of Science of the U.S. DOE under Contract No. DE-AC0500OR22725).

O'Hagan, Molly J.; Ho, Ming-Hsun; Yang, Jenny Y.; Appel, Aaron M.; Rakowski DuBois, Mary; Raugei, Simone; Shaw, Wendy J.; DuBois, Daniel L.; Bullock, R. Morris

2012-11-28T23:59:59.000Z

271

NREL: Biomass Research - Biochemical Conversion Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Biochemical Conversion Projects Biochemical Conversion Projects A photo of a woman looking at the underside of a clear plastic tray. The tray has a grid of small holes to hold sample tubes. An NREL researcher examines a sample tray used in the BioScreen C, an instrument used to monitor the growth of microorganisms under different conditions. NREL's projects in biochemical conversion involve three basic steps to convert biomass feedstocks to fuels: Converting biomass to sugar or other fermentation feedstock Fermenting these biomass intermediates using biocatalysts (microorganisms including yeast and bacteria) Processing the fermentation product to yield fuel-grade ethanol and other fuels. Among the current biochemical conversion RD&D projects at NREL are: Pretreatment and Enzymatic Hydrolysis

272

Atlantic Biomass Conversions Inc | Open Energy Information  

Open Energy Info (EERE)

Conversions Inc Conversions Inc Jump to: navigation, search Name Atlantic Biomass Conversions Inc Place Frederick, Maryland Sector Biomass Product Atlantic Biomass Conversions is working on a system and a genetically modified bacteria to convert sugar beet pulp waste into methanol. Coordinates 45.836395°, -98.507249° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.836395,"lon":-98.507249,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

273

Graphene to Graphane: Novel Electrochemical Conversion  

E-Print Network (OSTI)

A novel electrochemical means to generate atomic hydrogen, simplifying the synthesis and controllability of graphane formation on graphene is presented. High quality, vacuum grown epitaxial graphene (EG) was used as starting material for graphane conversion. A home-built electrochemical cell with Pt wire and exposed graphene as the anode and cathode, respectively, was used to attract H+ ions to react with the exposed graphene. Cyclic voltammetry of the cell revealed the potential of the conversion reaction as well as oxidation and reduction peaks, suggesting the possibility of electrochemically reversible hydrogenation. A sharp increase in D peak in the Raman spectra of EG, increase of D/G ratio, introduction of a peak at ~2930 cm-1 and respective peak shifts as well as a sharp increase in resistance showed the successful hydrogenation of EG. This conversion was distinguished from lattice damage by thermal reversal back to graphene at 1000{\\deg}C.

Daniels, Kevin M; Zhang, R; Chowdhury, I; Obe, A; Weidner, J; Williams, C; Sudarshan, T S; Chandrashekhar, MVS

2010-01-01T23:59:59.000Z

274

Conversion of light hydrocarbon gases to metal carbides for production of liquid fuels and chemicals. Quarterly technical progress report, January 1--March 31, 1995  

DOE Green Energy (OSTI)

The methane plasma stabilization problem was resolved with the reconfiguration of the DC power supply to give a higher open circuit voltage to enable operation of the arc at higher voltage levels and with the installation of a solenoid around the plasma reactor to magnetically rotate the are. Cathode tip erosion problems were encountered with the 1/4-inch graphite and tungsten tips which necessitated a redesign of the plasma reactor. The new plasma reactor consists of an enlarged 3/4-inch O.D. graphite tip to reduce current density and a 1-inch I.D. graphite anode. Products from MgO/CH{sub 4} scoping runs in the redesigned reactor under conditions of excess MgO gave strong indications that a breakthrough has finally been achieved i.e. that synthesis of magnesium carbides from MgO and methane in the arc discharge reactor has been demonstrated. Significant quantities of hydrocarbons, primarily C{sub 3}H{sub 4} and C{sub 2}H{sub 2}, were detected in the headspace above hydrolyzed solid samples by GC analysis. In one run, solids glowed upon exposure to the atmosphere, strongly suggesting carbide reaction with moisture in the air, exothermically forming acetylenes which ignited instantaneously in the presence of oxygen and elevated temperatures arising from localized heat-up of the specimens.

Diaz, A.F.; Modestino, A.J.; Pride, J.D.; Howard, J.B.; Tester, J.W.; Peters, W.A.

1995-05-01T23:59:59.000Z

275

Technical and economic assessment of processes for the production of butanol and acetone. Phase two: analysis of research advances. Energy Conversion and Utilization Technologies Program  

DOE Green Energy (OSTI)

The initial objective of this work was to develop a methodology for analyzing the impact of technological advances as a tool to help establish priorities for R and D options in the field of biocatalysis. As an example of a biocatalyzed process, butanol/acetone fermentation (ABE process) was selected as the specific topic of study. A base case model characterizing the technology and economics associated with the ABE process was developed in the previous first phase of study. The project objectives were broadened in this second phase of work to provide parametric estimates of the economic and energy impacts of a variety of research advances in the hydrolysis, fermentation and purification sections of the process. The research advances analyzed in this study were based on a comprehensive literature review. The six process options analyzed were: continuous ABE fermentaton; vacuum ABE fermentation; Baelene solvent extraction; HRI's Lignol process; improved prehydrolysis/dual enzyme hydrolysis; and improved microorganism tolerance to butanol toxicity. Of the six options analyzed, only improved microorganism tolerance to butanol toxicity had a significant positive effect on energy efficiency and economics. This particular process option reduced the base case production cost (including 10% DCF return) by 20% and energy consumption by 16%. Figures and tables.

None

1984-08-01T23:59:59.000Z

276

Impact of Fission Products Impurity on the Plutonium Content of Metal- and Oxide- Fuels in Sodium Cooled Fast Reactors  

Science Conference Proceedings (OSTI)

This short report presents the neutronic analysis to evaluate the impact of fission product impurity on the Pu content of Sodium-cooled Fast Reactor (SFR) metal- and oxide- fuel fabrication. The similar work has been previously done for PWR MOX fuel [1]. The analysis will be performed based on the assumption that the separation of the fission products (FP) during the reprocessing of UOX spent nuclear fuel assemblies is not perfect and that, consequently, a certain amount of FP goes into the Pu stream used to fabricate SFR fuels. Only non-gaseous FPs have been considered (see the list of 176 isotopes considered in the calculations in Appendix 1 of Reference 1). Throughout of this report, we define the mixture of Pu and FPs as PuFP. The main objective of this analysis is to quantify the increase of the Pu content of SFR fuels necessary to maintain the same average burnup at discharge independently of the amount of FP in the Pu stream, i.e. independently of the PuFP composition. The FP losses are considered element-independent, i.e., for example, 1% of FP losses mean that 1% of all non-gaseous FP leak into the Pu stream.

Hikaru Hiruta; Gilles Youinou

2013-09-01T23:59:59.000Z

277

Vapor phase modifiers for oxidative coupling  

DOE Patents (OSTI)

Volatilized metal compounds are described which are capable of retarding vapor phase alkane conversion reactions in oxidative coupling processes that convert lower alkanes to higher hydrocarbons.

Warren, B.K.

1991-12-17T23:59:59.000Z

278

Supercritical water oxidation of landfill leachate  

Science Conference Proceedings (OSTI)

Highlights: > Thermal analysis of NH{sub 3} in supercritical water oxidation reaction. > Research on the catalytic reaction of landfill leachate by using response surface method. > Kinetic research of supercritical water oxidation of NH{sub 3} with and without MnO{sub 2} catalyst. - Abstract: In this paper, ammonia as an important ingredient in landfill leachate was mainly studied. Based on Peng-Robinson formulations and Gibbs free energy minimization method, the estimation of equilibrium composition and thermodynamic analysis for supercritical water oxidation of ammonia (SCWO) was made. As equilibrium is reached, ammonia could be totally oxidized in SCW. N{sub 2} is the main product, and the formation of NO{sub 2} and NO could be neglected. The investigation on SCWO of landfill leachate was conducted in a batch reactor at temperature of 380-500 deg. C, reaction time of 50-300 s and pressure of 25 MPa. The effect of reaction parameters such as oxidant equivalent ratio, reaction time and temperature were investigated. The results showed that COD and NH{sub 3} conversion improved as temperature, reaction time and oxygen excess increased. Compared to organics, NH{sub 3} is a refractory compound in supercritical water. The conversion of COD and NH{sub 3} were higher in the presence of MnO{sub 2} than that without catalyst. The interaction between reaction temperature and time was analyzed by using response surface method (RSM) and the results showed that its influence on the NH{sub 3} conversion was relatively insignificant in the case without catalyst. A global power-law rate expression was regressed from experimental data to estimate the reaction rate of NH{sub 3}. The activation energy with and without catalyst for NH{sub 3} oxidation were 107.07 {+-} 8.57 kJ/mol and 83.22 {+-} 15.62 kJ/mol, respectively.

Wang Shuzhong, E-mail: s_z_wang@yahoo.cn [School of Energy and Power Engineering of Xi' an Jiao Tong University, Xi'an 710049 (China); Guo Yang [School of Energy and Power Engineering of Xi' an Jiao Tong University, Xi'an 710049 (China); Chen Chongming [Hebei Electric Power Research Institute, Shijizhuang, Hebei 050021 (China); Zhang Jie; Gong Yanmeng; Wang Yuzhen [School of Energy and Power Engineering of Xi' an Jiao Tong University, Xi'an 710049 (China)

2011-09-15T23:59:59.000Z

279

Direct Carbon Conversion: Application to the Efficient Conversion of Fossil Fuels to Electricity  

DOE Green Energy (OSTI)

We introduce a concept for efficient conversion of fossil fuels to electricity that entails the decomposition of fossil-derived hydrocarbons into carbon and hydrogen, and electrochemical conversion of these fuels in separate fuel cells. Carbon/air fuel cells have the advantages of near zero entropy change and associated heat production (allowing 100% theoretical conversion efficiency). The activities of the C fuel and CO{sub 2} product are invariant, allowing constant EMF and full utilization of fuel in single pass mode of operation. System efficiency estimates were conducted for several routes involving sequential extraction of a hydrocarbon from the fossil resource by (hydro) pyrolysis followed by thermal decomposition. The total energy conversion efficiencies of the processes were estimated to be (1) 80% for direct conversion of petroleum coke; (2) 67% HHV for CH{sub 4}; (3) 72% HHV for heavy oil (modeled using properties of decane); (4) 75.5% HHV (83% LHV) for natural gas conversion with a Rankine bottoming cycle for the H{sub 2} portion; and (5) 69% HHV for conversion of low rank coals and lignite through hydrogenation and pyrolysis of the CH{sub 4} intermediate. The cost of carbon fuel is roughly $7/GJ, based on the cost of the pyrolysis step in the industrial furnace black process. Cell hardware costs are estimated to be less than $500/kW.

Cooper, J F; Cherepy, N; Berry, G; Pasternak, A; Surles, T; Steinberg, M

2001-03-07T23:59:59.000Z

280

Energy Conversion Devices Inc aka ECD Ovonics | Open Energy Information  

Open Energy Info (EERE)

Conversion Devices Inc aka ECD Ovonics Conversion Devices Inc aka ECD Ovonics Jump to: navigation, search Name Energy Conversion Devices Inc (aka ECD Ovonics) Place Rochester Hills, Michigan Zip 48309 Sector Solar Product Michigan-based materials developer and holding company for thin-film silicon PV manufacturer United Solar Ovonics. References Energy Conversion Devices Inc (aka ECD Ovonics)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Energy Conversion Devices Inc (aka ECD Ovonics) is a company located in Rochester Hills, Michigan . References ↑ "Energy Conversion Devices Inc (aka ECD Ovonics)" Retrieved from "http://en.openei.org/w/index.php?title=Energy_Conversion_Devices_Inc_aka_ECD_Ovonics&oldid=34484

Note: This page contains sample records for the topic "oxide conversion product" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Global Waste to Energy Conversion Company GWECC | Open Energy Information  

Open Energy Info (EERE)

Waste to Energy Conversion Company GWECC Waste to Energy Conversion Company GWECC Jump to: navigation, search Name Global Waste to Energy Conversion Company (GWECC) Place Washington, DC Product GWECC is a global alternative energy company headquartered in Washington DC, USA. References Global Waste to Energy Conversion Company (GWECC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Global Waste to Energy Conversion Company (GWECC) is a company located in Washington, DC . References ↑ "Global Waste to Energy Conversion Company (GWECC)" Retrieved from "http://en.openei.org/w/index.php?title=Global_Waste_to_Energy_Conversion_Company_GWECC&oldid=345924" Categories: Clean Energy Organizations

282

Advanced Coal Conversion Process Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal Technology Program Clean Coal Technology Program Advanced Coal Conversion Process Demonstration A DOE Assessment DOE/NETL-2005/1217 U.S. Department of Energy Office of Fossil Energy National Energy Technology Laboratory April 2005 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name,

283

Direct conversion of light hydrocarbon gases to liquid fuel. Quarterly technical status report No. 11 for thrid quarter FY 1990  

DOE Green Energy (OSTI)

The objective of this program is to investigate the direct conversion of light gaseous hydrocarbons, such as those produced during Fischer-Tropsch synthesis or as a product of gasification, to liquid transportation fuels via a partial oxidation process. The process will be tested in an existing pilot plant to obtain credible mass balances. Specific objectives to be met include determination of optimal process conditions, investigation of various processing options (e.g. feed injection, product quench, and recycle systems), and evaluation of the various options will be performed as experimental data become available.

Foral, M.J.

1990-12-31T23:59:59.000Z

284

Direct conversion of light hydrocarbon gases to liquid fuel. Quarterly technical status report No. 15 fourth quarter FY 1990  

DOE Green Energy (OSTI)

The objective of this program is to investigate the direct conversion of light gaseous hydrocarbons, such as those produced during Fischer-Tropsch synthesis or as a product of gasification, to liquid transportation fuels via a partial oxidation process. The process will be tested in an existing pilot plant to obtain credible mass balances. Specific objectives to be met include determination of optimal process conditions, investigation of various processing options (e.g. feed injection, product quench, and recycle systems), and evaluation of an enhanced yield thermal/catalytic system. Economic evaluation of the various options will be performed as experimental data become available.

Foral, M.J.

1990-12-31T23:59:59.000Z

285

Direct conversion of light hydrocarbon gases to liquid fuel. Quarterly technical status report No. 23 for second quarter FY 1991  

DOE Green Energy (OSTI)

The objective of this program is to investigate the direct conversion of light gaseous hydrocarbons, such as those produced during Fischer-Tropsch synthesis or as a product of gasification, to liquid transportation fuels via a partial oxidation process. The process will be tested in an existing pilot plant to obtain credible mass balances. Specific objectives to be met include determination of optimal process conditions, investigation of various processing options (e.g. feed injection, product quench, and recycle systems), and evaluation of an enhanced yield thermal/catalytic system. Economic evaluation of the various options will be performed as experimental data become available.

Foral, M.J.

1991-12-31T23:59:59.000Z

286

Direct conversion of light hydrocarbon gases to liquid fuel. Quarterly technical status report No. 19 for first quarter FY 1991  

DOE Green Energy (OSTI)

The objective of this program is to investigate the direct conversion of light gaseous hydrocarbons, such as those produced during Fischer-Tropsch synthesis or as a product of gasification, to liquid transportation fuels via a partial oxidation process. The process will be tested in an existing pilot plant to obtain credible mass balances. Specific objectives to be met include determination of optimal process conditions, investigation of various processing options (e.g. feed injection, product quench, and recycle systems), and evaluation of an enhanced yield thermal/catalytic system. Economic evaluation of the various options will be performed as experimental data become available.

Foral, M.J.

1991-12-31T23:59:59.000Z

287

A Novel Combustion Synthesis Preparation of CuO/ZnO/ZrO2/Pd for Oxidative Hydrogen Production from Methanol  

E-Print Network (OSTI)

A Novel Combustion Synthesis Preparation of CuO/ZnO/ZrO2/Pd for Oxidative Hydrogen Production from pre- pared via three combustion synthesis routes including volume combustion, impregnated substrate combustion, and so-called second wave impregnation combustion methods. These catalysts were characterized via

Mukasyan, Alexander

288

Direct electrochemical conversion of carbon: systems for efficient conversion of fossil fuels to electricity  

DOE Green Energy (OSTI)

The direct electrochemical conversion of carbon involves discharge of suspensions of reactive carbon particles in a molten salt electrolyte against an oxygen (air) cathode. (Figure 1). The free energy and the enthalpy of the oxidation reaction are nearly identical. This allows theoretical efficiencies ({Delta}G(T)/{Delta}H) to approach 100% at temperatures from 500 to 800 C. Entropy heat losses are therefore negligible. The activities of the elemental carbon and of the carbon dioxide product are uniform throughout the fuel cell and constant over discharge time. This stabilizes cell EMF and allows full utilization of the carbon fuel in a single pass. Finally, the energy cost for pyrolysis of hydrocarbons is generally very low compared with that of steam reforming or water gas reactions. Direct electrochemical conversion of carbon might be compared with molten carbonate fuel cell using carbon rather than hydrogen. However, there are important differences. There is no hydrogen involved (except from trace water contamination). The mixture of molten carbonate and carbon is not highly flammable. The carbon is introduced in as a particulate, rather than as a high volume flow of hydrogen. At the relatively low rates of discharge (about 1 kA/m{sup 2}), the stoichiometric requirements for carbon dioxide by the cathodic reaction may be met by diffusion across the thin electrolyte gap. We report recent experimental work at LLNL using melt slurries of reactive carbons produced by the thermal decomposition of hydrocarbons. We have found that anodic reactivity of carbon in mixed carbonate melts depends strongly on form, structure and nano-scale disorder of the materials, which are fixed by the hydrocarbon starting material and the conditions of pyrolysis. Thus otherwise chemically pure carbons made by hydrocarbon pyrolysis show rates at fixed potentials that span an order of magnitude, while this range lies 1-2 orders of magnitude higher than the current density of graphite plate electrodes. One carbon materials was identified which delivered anode current densities of 1 kA/m{sup 2} at 0.8 V (i.e., 80% efficiency, based on the standard enthalpy of carbon/oxygen reaction, and assuming full conversion), which we believe to be sufficiently great to allow practical application in fuel cell arrays. Since the hydrocarbon starting materials are ''ash free,'' entrainment of ash into the melt is not limiting. Finally, the use of fine carbon particulates in slurries avoids cost and logistics of carbon electrode manufacture and distribution.

Cooper, J F; Cherepy, N; Krueger, R

2000-08-10T23:59:59.000Z

289

Digital optical conversion module  

DOE Patents (OSTI)

A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer.

Kotter, Dale K. (North Shelley, ID); Rankin, Richard A. (Ammon, ID)

1991-02-26T23:59:59.000Z

290

Digital optical conversion module  

DOE Patents (OSTI)

A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer. 2 figs.

Kotter, D.K.; Rankin, R.A.

1988-07-19T23:59:59.000Z

291

Direct conversion technology  

DOE Green Energy (OSTI)

The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC) and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1, 1991 through December 31, 1991. Research on AMTEC and on LMMHD was initiated during October 1987. Reports prepared on previous occasions (Refs. 1--5) contain descriptive and performance discussions of the following direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (Nitionol heat engine); and also, more complete descriptive discussions of AMTEC and LMMHD systems.

Massier, P.F.; Back, L.H.; Ryan, M.A.; Fabris, G.

1992-01-07T23:59:59.000Z

292

Power conversion technologies  

DOE Green Energy (OSTI)

The Power Conservation Technologies thrust area supports initiatives that enhance the core competencies of the Lawrence Livermore National Laboratory (LLNL) Engineering Directorate in the area of solid-state power electronics. Through partnerships with LLNL programs, projects focus on the development of enabling technologies for existing and emerging programs that have unique power conversion requirements. This year, a multi-disciplinary effort was supported which demonstrated solid-state, high voltage generation by using a dense, monolithic photovoltaic array. This effort builds upon Engineering's strengths in the core technology areas of power conversion, photonics, and microtechnologies.

Haigh, R E

1998-01-01T23:59:59.000Z

293

Direct Conversion Technology  

DOE Green Energy (OSTI)

The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. Initially, two systems were selected for exploratory research and advanced development. These are Alkali Metal Thermal-to-Electric Converter (AMTEC) and Two-Phase Liquid Metal MD Generator (LMMHD). This report describes progress that has been made during the first six months of 1992 on research activities associated with these two systems. (GHH)

Back, L.H.; Fabris, G.; Ryan, M.A.

1992-07-01T23:59:59.000Z

294

Structure and dynamics of the microbial communities underlying the carboxylate platform for biofuel production  

E-Print Network (OSTI)

carboxylate platform for biofuel production E.B. Hollisterbiomass conversion and biofuel production. Keywords: mixedbiomass conversion and biofuel production. Materials and

Hollister, E.B.

2012-01-01T23:59:59.000Z

295

Tunable molten oxide pool assisted plasma-melter vitrification systems  

DOE Patents (OSTI)

The present invention provides tunable waste conversion systems and apparatus which have the advantage of highly robust operation and which provide complete or substantially complete conversion of a wide range of waste streams into useful gas and a stable, nonleachable solid product at a single location with greatly reduced air pollution to meet air quality standards. The systems provide the capability for highly efficient conversion of waste into high quality combustible gas and for high efficiency conversion of the gas into electricity by utilizing a high efficiency gas turbine or an internal combustion engine. The solid product can be suitable for various commercial applications. Alternatively, the solid product stream, which is a safe, stable material, may be disposed of without special considerations as hazardous material. In the preferred embodiment, the arc plasma furnace and joule heated melter are formed as a fully integrated unit with a common melt pool having circuit arrangements for the simultaneous independently controllable operation of both the arc plasma and the joule heated portions of the unit without interference with one another. The preferred configuration of this embodiment of the invention utilizes two arc plasma electrodes with an elongated chamber for the molten pool such that the molten pool is capable of providing conducting paths between electrodes. The apparatus may additionally be employed with reduced use or without further use of the gases generated by the conversion process. The apparatus may be employed as a net energy or net electricity producing unit where use of an auxiliary fuel provides the required level of electricity production. Methods and apparatus for converting metals, non-glass forming waste streams and low-ash producing inorganics into a useful gas are also provided. The methods and apparatus for such conversion include the use of a molten oxide pool having predetermined electrical, thermal and physical characteristics capable of maintaining optimal joule heating and glass forming properties during the conversion process.

Titus, Charles H. (Newtown Square, PA); Cohn, Daniel R. (Chestnut Hill, MA); Surma, Jeffrey E. (Kennewick, WA)

1998-01-01T23:59:59.000Z

296

Direct conversion of methane to C sub 2 's and liquid fuels  

DOE Green Energy (OSTI)

The objectives of the project are to discover and evaluate novel catalytic systems for the conversion of methane or by-product light hydrocarbon gases either indirectly (through intermediate light gases rich in C{sub 2}'s) or directly to liquid hydrocarbon fuels, and to evaluate, from an engineering perspective, different conceptualized schemes. The approach is to carry out catalyst testing on several specific classes of potential catalysts for the conversion of methane selectively to C{sub 2} products. The behavior of alkaline earth/metal oxide/halide catalysts containing strontium was found to be different from the behavior of catalysts containing barium. Two approaches were pursued to avoid the heterogeneous/homogeneous mechanism in order to achieve higher C{sub 2} selectivity/methane conversion combinations. One approach was to eliminate or minimize the typical gas phase combustion chemistry and make more of the reaction occur on the surface of the catalyst by using silver. Another approach was to change the gas phase chemistry to depart from the typical combustion reaction network by using vapor-phase catalysts. The layered perovskite K{sub 2}La{sub 2}Ti{sub 3}O{sub 10} was further studied. Modifications of process and catalyst variables for LaCaMnCoO{sub 6} catalysts resulted in catalysts with superior performance. Results obtained with a literature catalyst Na{sub 2}CO{sub 3}/Pr{sub 6}O{sub 11} were better than those obtained with NaCO{sub 3}/Pr-Ce oxide or Na{sub 2}CO{sub 3}/Ag-Pr-Ce oxide. 52 refs., 15 figs., 9 tabs.

Warren, B.K.; Campbell, K.D.; Matherne, J.L.; Kinkade, N.E.

1990-03-12T23:59:59.000Z

297

Energy Conversion, Storage, and Transport News  

Science Conference Proceedings (OSTI)

NIST Home > Energy Conversion, Storage, and Transport News. Energy Conversion, Storage, and Transport News. (showing ...

2010-10-26T23:59:59.000Z

298

Energy Conversion, Storage, and Transport Portal  

Science Conference Proceedings (OSTI)

NIST Home > Energy Conversion, Storage, and Transport Portal. Energy Conversion, Storage, and Transport Portal. Programs ...

2013-04-08T23:59:59.000Z

299

Links to on-line unit conversions  

Science Conference Proceedings (OSTI)

... Basic physical quantities. General unit, currency, and temperature conversion. ... Many conversions, including unusual and ancient units. ...

300

Model Energy Conversion Efficiency of Biological Systems  

Science Conference Proceedings (OSTI)

MML Researchers Model Energy Conversion Efficiency of Biological Systems. Novel, highly efficient energy conversion ...

2013-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "oxide conversion product" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Development of vanadium-phosphate catalysts for methanol production by selective oxidation of methane. Quarterly technical progress report 10, July 1, 1995--September 31, 1995  

DOE Green Energy (OSTI)

This document is the tenth quarterly technical progress report under Contract No. DE-AC22-92PC92110 {open_quotes}Development of Vanadium-Phosphate Catalysts for Methanol Production by Selective Oxidation of Methane{close_quotes}. Activities focused on testing of additional modified and promoted catalysts and characterization of these materials. Attempts at improving the sensitivity of our GC based analytical systems were also made with some success. Methanol oxidation studies were initiated. These results are reported. Specific accomplishments include: (1) Methane oxidation testing of a suite of catalysts promoted with most of the first row transition metals was completed. Several of these materials produced low, difficult to quantify yields of formaldehyde. (2) Characterization of these materials by XRD and FTIR was performed with the goal of correlating activity and selectivity with catalyst properties. (3) We began to characterize catalysts prepared via modified synthesis methods designed to enhance acidity using TGA measurements of acetonitrile chemisorption and methanol dehydration to dimethyl ether as a test reaction. (4) A catalyst prepared in the presence of naphthalene methanol as a structural disrupter was tested for activity in methane oxidation. It was found that this material produced low yields of formaldehyde which were difficult to quantify. (5) Preparation of catalysts with no Bronsted acid sites. This was accomplished by replacement of exchangeable protons with potassium, and (6) Methanol oxidation studies were initiated to provide an indication of catalyst activity for decomposition of this desired product and as a method of characterizing the catalyst surface.

McCormick, R.L.

1995-12-07T23:59:59.000Z

302

Photovoltaic Energy Conversion  

E-Print Network (OSTI)

Photovoltaic Energy Conversion Frank Zimmermann #12;Solar Electricity Generation Consumes no fuel Buy Solar Energy Stocks? Make Photovoltaics your Profession! #12;Challenges Make solar cells more and fossil fuel depletion problems! #12;Photovoltaics: Explosive Growth #12;Take Advantage of Solar Megatrend

Glashausser, Charles

303

ENERGY CONVERSION Spring 2011  

E-Print Network (OSTI)

in this course: Week 1: Review Week 2: Entropy and exergy Week 3: Power cycles, Otto and Diesel Week 4 resources including: wind, wave energy conversion devices, and fuel cell technologies Week12: Introduction will work in groups as assigned. Experiment: Diesel Engine Assessment: Projects 20% Lab Reports

Bahrami, Majid

304

Thermal Conversion of Methane to Acetylene  

DOE Green Energy (OSTI)

This report describes the experimental demonstration of a process for the direct thermal conversion of methane to acetylene. The process utilizes a thermal plasma heat source to dissociation products react to form a mixture of acetylene and hydrogen. The use of a supersonic expansion of the hot gas is investigated as a method of rapidly cooling (quenching) the product stream to prevent further reaction or thermal decomposition of the acetylene which can lower the overall efficiency of the process.

Fincke, James Russell; Anderson, Raymond Paul; Hyde, Timothy Allen; Wright, Randy Ben; Bewley, Randy Lee; Haggard, Delon C; Swank, William David

2000-01-01T23:59:59.000Z

305

Solar energy conversion.  

SciTech Connect

If solar energy is to become a practical alternative to fossil fuels, we must have efficient ways to convert photons into electricity, fuel, and heat. The need for better conversion technologies is a driving force behind many recent developments in biology, materials, and especially nanoscience. The Sun has the enormous untapped potential to supply our growing energy needs. The barrier to greater use of the solar resource is its high cost relative to the cost of fossil fuels, although the disparity will decrease with the rising prices of fossil fuels and the rising costs of mitigating their impact on the environment and climate. The cost of solar energy is directly related to the low conversion efficiency, the modest energy density of solar radiation, and the costly materials currently required. The development of materials and methods to improve solar energy conversion is primarily a scientific challenge: Breakthroughs in fundamental understanding ought to enable marked progress. There is plenty of room for improvement, since photovoltaic conversion efficiencies for inexpensive organic and dye-sensitized solar cells are currently about 10% or less, the conversion efficiency of photosynthesis is less than 1%, and the best solar thermal efficiency is 30%. The theoretical limits suggest that we can do much better. Solar conversion is a young science. Its major growth began in the 1970s, spurred by the oil crisis that highlighted the pervasive importance of energy to our personal, social, economic, and political lives. In contrast, fossil-fuel science has developed over more than 250 years, stimulated by the Industrial Revolution and the promise of abundant fossil fuels. The science of thermodynamics, for example, is intimately intertwined with the development of the steam engine. The Carnot cycle, the mechanical equivalent of heat, and entropy all played starring roles in the development of thermodynamics and the technology of heat engines. Solar-energy science faces an equally rich future, with nanoscience enabling the discovery of the guiding principles of photonic energy conversion and their use in the development of cost-competitive new technologies.

Crabtree, G. W.; Lewis, N. S. (Materials Science Division); (California Inst. of Tech.)

2008-03-01T23:59:59.000Z

306

Hydrogen production by fluid-bed retorting of oil shale. [Shale oil/partial oxidation; steam-oxygen gasifier; CO/sub 2/ acceptor gasifier  

DOE Green Energy (OSTI)

The oil produced from retorting of oil shales requires hydrogen treatment to improve its characteristics and make it suitable for refining into marketable products. Hydrogen requirements can be met by partial oxidation of a fraction of the shale oil produced or by direct processing of oil shale in a fluid bed. This report examines the economics and engineering feasibility of using fluid bed systems to produce hydrogen. Fluid bed processing of oil shale to produce hydrogen might be technically and economically competitive with a more conventional shale retorting/partial oxidation method. A major development program would be required to demonstrate the feasibility of the fluid bed approach.

Barnes, J.W.

1981-05-01T23:59:59.000Z

307

Having Productive Conversations About Sustainability: Pitfalls and ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2013 TMS Annual Meeting & Exhibition. Symposium , REWAS 2013: Enabling Materials Resource Sustainability. Presentation Title ...

308

Electric Forklift Conversion Transforms Building Products Manufacturer  

Science Conference Proceedings (OSTI)

In the last six years, market acceptance of electric lift trucks has steadily increased. Advances in motor drive, battery, and charger technology have dramatically improved equipment performance and utility, and therefore industry acceptance – even in demanding multi-shift operations. Roughly 64% of the total North American forklift market and more than 70% of the European Union lift truck market is now electric. For many applications, electric lift trucks offer equal or superior performance ...

2013-12-17T23:59:59.000Z

309

Development of a catalyst for conversion of syngas-derived materials to isobutylene. Quarterly technical report No. 13, April 1, 1994--June 30, 1994  

DOE Green Energy (OSTI)

The goals of this project are to develop a catalyst and process for the conversion of syngas to isobutanol. The research will identify and optimize key catalyst and process characteristics. In addition, the commercial potential of the new process will be evaluated by an economic analysis. This report describes the preparation and testing of a variety of potential higher alcohols synthesis catalysts based on a bifunctional formulation consisting of a noble metal dehydrogenation function on a basic mixed metal oxide support. A pilot plant catalyst screening test using a 10/1 methanol/ethanol feed blend has been used to identify a new class of catalysts that afford higher selectivities and productivities. of the desired isobutanol and other C{sub 4+}, products than the Cu/Zn/Al oxide methanol synthesis catalyst that is being used as a baseline for this work. 2% Pd or Pt on a Zn/Mn/Zr oxide support and 2% Pd on a Zn/Mn/Cr support have given the best performances to date. In addition to isobutanol, these catalysts afford significant quantities of isobutyraldehyde and methyl isobutyrate. In order to elucidate the reaction pathway occurring with this class of catalyst, the 2%Pd on Zn/Mn/Zr oxide catalyst has been evaluated over a range of space velocities. It has been found that isobutanol and higher oxygenates yields increase with decreasing space velocity at ethanol conversions greater than 90%. This suggests that this catalyst is capable of converting methanol alone to higher alcohols. This is different from the result obtained with the Cu/Zn/Al oxide baseline catalyst, which showed no change in product yields at high ethanol conversions. Therefore, further effort will be focussed on the development of these noble metal/basic metal oxide catalysts for this application.

Barger, P.T.

1994-12-31T23:59:59.000Z

310

Oxidation resistant high temperature thermal cycling resistant coatings on silicon-based substrates and process for the production thereof  

DOE Patents (OSTI)

An oxidation resistant, high temperature thermal cycling resistant coated ceramic article for ceramic heat engine applications is disclosed. The substrate is a silicon-based material, i.e. a silicon nitride- or silicon carbide-based monolithic or composite material. The coating is a graded coating of at least two layers: an intermediate AlN or Al[sub x]N[sub y]O[sub z] layer and an aluminum oxide or zirconium oxide outer layer. The composition of the coating changes gradually from that of the substrate to that of the AlN or Al[sub x]N[sub y]O[sub z] layer and further to the composition of the aluminum oxide or zirconium oxide outer layer. Other layers may be deposited over the aluminum oxide layer. A CVD process for depositing the graded coating on the substrate is also disclosed.

Sarin, V.K.

1990-08-21T23:59:59.000Z

311

Question detection in spoken conversations using textual conversations  

Science Conference Proceedings (OSTI)

We investigate the use of textual Internet conversations for detecting questions in spoken conversations. We compare the text-trained model with models trained on manually-labeled, domain-matched spoken utterances with and without prosodic features. ...

Anna Margolis; Mari Ostendorf

2011-06-01T23:59:59.000Z

312

Energy Production from Coal Syngas Containing H2S via Solid Oxide Fuel Cells Utilizing Lanthanum Strontium Vanadate Anodes.  

E-Print Network (OSTI)

??Lanthanum strontium vanadate (LSV), a perovskite ceramic electrocatalyst suitable for use as a solid oxide fuel cell (SOFC) anode, has shown significant activity toward the… (more)

Cooper, Matthew E.

2008-01-01T23:59:59.000Z

313

Fabrication of ceramic membrane tubes for direct conversion of natural gas  

DOE Green Energy (OSTI)

Several perovskite-type oxides that contain transition metals on the B-site show mixed (electronic/ionic) conductivity. These mixed conducting oxides are promising materials for oxygen permeating membranes that can operate without the need of electrodes or external electrical circuitry. SrCo{sub 0.8}Fe{sub 0.2}O{sub x} perovskite is known to exhibit very high oxygen permeabilities and one could use this material for producing value added products by direct conversion of methane, the most abundant component of natural gas. This paper deals with the processing and fabrication by plastic extrusion of long lengths ({approx}30 cm) of hollow SrCo{sub 0.8}Fe{sub 0.2}O{sub x} ceramic tubes. These tubes are characterized by scanning electron microscopy, X-ray diffraction (XRD) and their thermodynamic stability is evaluated using room temperature XRD on samples equilibrated at high temperatures in different gas environment.

Balachandran, U.; Morissette, S.L.; Picciolo, J.J.; Dusek, J.T.; Poeppel, R.B. [Argonne National Lab., IL (United States); Pei, S.; Kleefisch, M.S.; Mieville, R.L.; Kobylinski, T.P.; Udovich, C.A. [Amoco Research Center, Naperville, IL (United States)

1992-05-01T23:59:59.000Z

314

Wind energy conversion system  

DOE Patents (OSTI)

The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

Longrigg, Paul (Golden, CO)

1987-01-01T23:59:59.000Z

315

DUF6 Conversion Facility EISs  

NLE Websites -- All DOE Office Websites (Extended Search)

Sign Me Up Search: OK Button DUF6 Guide DU Uses DUF6 Management and Uses DUF6 Conversion EIS Documents News FAQs Internet Resources Glossary Home Conversion Facility EISs...

316

Conversion factors for energy equivalents  

Science Conference Proceedings (OSTI)

... Conversion factors for energy equivalents, For your convenience, you may convert energies online below. Or display factors as: ...

317

Energy Conversion/Fuel Cells  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, Materials Science & Technology 2011. Symposium, Energy Conversion/Fuel Cells. Sponsorship, MS&T Organization.

318

Conversion of Questionnaire Data  

SciTech Connect

During the survey, respondents are asked to provide qualitative answers (well, adequate, needs improvement) on how well material control and accountability (MC&A) functions are being performed. These responses can be used to develop failure probabilities for basic events performed during routine operation of the MC&A systems. The failure frequencies for individual events may be used to estimate total system effectiveness using a fault tree in a probabilistic risk analysis (PRA). Numeric risk values are required for the PRA fault tree calculations that are performed to evaluate system effectiveness. So, the performance ratings in the questionnaire must be converted to relative risk values for all of the basic MC&A tasks performed in the facility. If a specific material protection, control, and accountability (MPC&A) task is being performed at the 'perfect' level, the task is considered to have a near zero risk of failure. If the task is performed at a less than perfect level, the deficiency in performance represents some risk of failure for the event. As the degree of deficiency in performance increases, the risk of failure increases. If a task that should be performed is not being performed, that task is in a state of failure. The failure probabilities of all basic events contribute to the total system risk. Conversion of questionnaire MPC&A system performance data to numeric values is a separate function from the process of completing the questionnaire. When specific questions in the questionnaire are answered, the focus is on correctly assessing and reporting, in an adjectival manner, the actual performance of the related MC&A function. Prior to conversion, consideration should not be given to the numeric value that will be assigned during the conversion process. In the conversion process, adjectival responses to questions on system performance are quantified based on a log normal scale typically used in human error analysis (see A.D. Swain and H.E. Guttmann, 'Handbook of Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications,' NUREG/CR-1278). This conversion produces the basic event risk of failure values required for the fault tree calculations. The fault tree is a deductive logic structure that corresponds to the operational nuclear MC&A system at a nuclear facility. The conventional Delphi process is a time-honored approach commonly used in the risk assessment field to extract numerical values for the failure rates of actions or activities when statistically significant data is absent.

Powell, Danny H [ORNL; Elwood Jr, Robert H [ORNL

2011-01-01T23:59:59.000Z

319

Nitrogen Fertilizer Management for Nitrous Oxide (N2O) Mitigation in Intensive Corn (Maize) Production: An Emissions Reduction Proto col for US Midwest Agriculture  

Science Conference Proceedings (OSTI)

Status: Published Citation: Millar, N; Robertson, GP; Grace, PR; Gehl, RJ; and Hoben, JP. 2010. Nitrogen Fertilizer Management for Nitrous Oxide (N2O) Mitigation in Intensive Corn (Maize) Production: An Emissions Reduction Protocol for US Midwest Agriculture. In Journal of Mitigation and Adaptation Strategies for Global Change,Volume 15, Number 2, 2010, pp. 185-204. Link to Journal Publication: See Journal of Mitigation and Adaptation Strategies for Global Change.

2010-09-03T23:59:59.000Z

320

Nitrogen Fertilizer Management for Nitrous Oxide (N2O) Mitigation in Intensive Corn (Maize) Production: An Emissions Redu ction Protocol for U.S. Midwest Agriculture  

Science Conference Proceedings (OSTI)

Status: Published Citation: Millar, N; Robertson, GP; Grace, PR; Gehl, RJ; and Hoben; JP. 2010. Nitrogen Fertilizer Management for Nitrous Oxide (N2O) Mitigation in Intensive Corn (Maize) Production: An Emissions Reduction Protocol for U.S. Midwest Agriculture. In Mitigation and Adaptation Strategies for Global Change, Volume 15, Number 2, 2010, pp. 185-204. A peer-reviewed journal article that identifies, describes and analyzes socio-economic factors that may encourage or inhibit farmers from participat...

2009-12-17T23:59:59.000Z

Note: This page contains sample records for the topic "oxide conversion product" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Indium oxide/n-silicon heterojunction solar cells  

DOE Patents (OSTI)

A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.

Feng, Tom (Morris Plains, NJ); Ghosh, Amal K. (New Providence, NJ)

1982-12-28T23:59:59.000Z

322

Development of a catalyst for conversion of syngas-derived materials to isobutylene. Quarterly report No. 15, October 1, 1994--December 31, 1994  

DOE Green Energy (OSTI)

The goals of this project are to develop a catalyst and process for the conversion of syngas to isobutanol. The research will identify and optimize key catalyst and process characteristics. In addition, the commercial potential of the new process will be evaluated by an economic analysis. Previous work identified Pt or Pd on Zn/Mn[Zr co-precipitated metal oxides as promising catalysts for the conversion of a 10/1 methanol/ethanol blend to higher oxygenates. A series of catalysts have been prepared to determine the effects of metal oxide support composition and noble metal loading on the performance of these catalysts. The three components of the metal oxide have been systematically varied from 10% to 60%. These supports have been tested in the pilot plant with 2% Pt and 2% Pd added. Support composition has shown a surprisingly minor affect on both catalyst activity and selectivity. Supports with high Zn (>45%) and low Zr (<33%) have afforded the best selectivities for the desired branched C{sub 4} products. The Zn/Mn/Zr (60/20/20) support from this series has been impregnated with 0.5, 1, 2 and 5% Pt to evaluate the affect of noble metal loading. The best selectivities to the desired C{sub 4} oxygenates has been observed with the 2% Pt loading. However, the other catalysts showed higher activities as well as lower selectivities in the standard test. Therefore, a more detailed testing protocol will be employed to establish a selectivity versus conversion relationship in order to properly compare these materials. Evaluation of the 2% Pt on Zn/Mn/Zr (60/20/20) oxide catalyst at high space velocities has indicated that this material may have some activity for C{sub l}-C{sub 1}, condensation needed for methanol only conversion to higher alcohols. This material and others will be tested for methanol only conversion.

Barger, P.T.; Kurek, P.R.

1994-12-31T23:59:59.000Z

323

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network (OSTI)

Ocean Thermal Energy Conversion (OTEC) Draft Programmaticof ocean thermal energy conversion technology. U.S. Depart~on Ocean TherUial Energy Conversion, June 18, 1979. Ocean

Sands, M.Dale

2013-01-01T23:59:59.000Z

324

Semiconductor Nanowires and Nanotubes for Energy Conversion  

E-Print Network (OSTI)

notably energy conversion. As research continues in thisnanowires for energy conversion. Chemical Reviews, 2010.for solar energy conversion. Physical Review Letters, 2004.

Fardy, Melissa Anne

2010-01-01T23:59:59.000Z

325

: Package gov.nist.nlpir.irf.conversion  

Science Conference Proceedings (OSTI)

gov.nist.nlpir.irf.conversion Classes Ascii2HtmlConverter ConversionRule ConversionRules IrfConverter Sgml2AppDocConverter.

326

Development of a catalyst for conversion of syngas-derived materials to isobutylene. Quarterly report, 1 January 1995--31 March 1995  

DOE Green Energy (OSTI)

The goals of this project are to develop a catalyst and process for the conversion of syngas to isobutanol. The research will identify and optimize key catalyst characteristics. In addition, the commercial potential of the new process will be evaluated by an economic analysis. Previous work identified Pt or Pd on Zn/Mn/Zr co-precipitated metal oxides as promising catalysts for the conversion of a 10/1 methanol/ethanol blend to higher oxygenates. Supports with high Zn (>45%) and low Zr (< 33%) have afforded the best selectivities for the desired branched C{sub 4} products in the standard pilot plant test after impregnation with 2% Pt. In this report the analytical characterization of this series of materials is summarized. A large scale preparation of Zn/Mn/Zr oxide support has been completed for use in future process variable studies.

Barger, P.T.; Kurek, P.R.

1995-12-31T23:59:59.000Z

327

Nanostructures for Energy Conversion  

Science Conference Proceedings (OSTI)

... These nanoelectrochemical energy systems hold particular promise for enabling ... photoelectrochemical cells for solar hydrogen production, fuel cells ...

2012-07-10T23:59:59.000Z

328

Zinc phosphate conversion coatings  

DOE Patents (OSTI)

Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

Sugama, Toshifumi (Wading River, NY)

1997-01-01T23:59:59.000Z

329

Advanced gas atomization production of oxide dispersion strengthened (ODS) Ni-base superalloys through process and solidification control.  

E-Print Network (OSTI)

??A novel gas atomization reaction synthesis (GARS) method was utilized to produce precursor Ni-Cr-Y-Ti powder with a surface oxide and an internal rare earth (RE)-containing… (more)

Meyer, John

2013-01-01T23:59:59.000Z

330

The influence of inert anode material and electrolyte composition on the electrochemical production of oxygen from molten oxides  

E-Print Network (OSTI)

Shifts in global and political climates have led industries worldwide to search for more environmentally sound processes that are still economically viable. The steel industry is studying the feasibility of molten oxide ...

Gmitter, Andrew J

2008-01-01T23:59:59.000Z

331

Energy conversion system  

DOE Patents (OSTI)

The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weathproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction and operational with a minimal power draw.

Murphy, L.M.

1985-09-16T23:59:59.000Z

332

Energy conversion system  

DOE Patents (OSTI)

The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weatherproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction, and operational with a minimal power draw.

Murphy, Lawrence M. (Lakewood, CO)

1987-01-01T23:59:59.000Z

333

ass combustion CO2 capture coal conversion mat on biofuels geologic storage hydrogen renewables  

E-Print Network (OSTI)

ass combustion CO2 capture coal conversion mat on biofuels geologic storage hydrogen renewables storage fuel cells CO2 capture photovoltaics ma conversion biofuels batteries conversion biofuels stion CO Stanford University About GCEP #12;Explored novel approaches for enhanced biofuel production, such as

Nur, Amos

334

Steady-state and transient catalytic oxidation and coupling of methane  

DOE Green Energy (OSTI)

This project addresses the conversion of methane from natural gas into ethane, ethylene and higher hydrocarbons. Our research explores the mechanistic and practical implications of carrying out the methane oxidative coupling reaction in reactor designs other than conventional packed-beds with co-fed reactants. These alternate reactor designs are needed to prevent the full oxidation of methane, which limits C{sub 2}, yields in methane oxidative coupling reactions. The research strategy focuses on preventing contact between the 0{sub 2} reactant required for favorable overall thermodynamics and the C{sub 2+} products of methane coupling. The behavior of various reactor designs are simulated using detailed kinetic transport models. These simulations have suggested that the best way to prevent high C0{sub 2} yields is to separate the oxygen and hydrocarbon streams altogether. As a result, the project has focused on the experimental demonstration of proton transport membrane reactors for the selective conversion of methane into higher hydrocarbons.

Iglesia, E.; Perry, D.L.; Heinemann, H.

1995-06-01T23:59:59.000Z

335

Identification of volatile butyl rubber thermal-oxidative degradation products by cryofocusing gas chromatography/mass spectrometry (cryo-GC/MS).  

Science Conference Proceedings (OSTI)

Chemical structure and physical properties of materials, such as polymers, can be altered as aging progresses, which may result in a material that is ineffective for its envisioned intent. Butyl rubber formulations, starting material, and additives were aged under thermal-oxidative conditions for up to 413 total days at up to 124 %C2%B0C. Samples included: two formulations developed at Kansas City Plant (KCP) (%236 and %2310), one commercially available formulation (%2321), Laxness bromobutyl 2030 starting material, and two additives (polyethylene AC-617 and Vanax MBM). The low-molecular weight volatile thermal-oxidative degradation products that collected in the headspace over the samples were preconcentrated, separated, and detected using cryofocusing gas chromatography mass spectrometry (cryo-GC/MS). The majority of identified degradation species were alkanes, alkenes, alcohols, ketones, and aldehydes. Observations for Butyl %2310 aged in an oxygen-18 enriched atmosphere (18O2) were used to verify when the source of oxygen in the applicable degradation products was from the gaseous environment rather than the polymeric mixture. For comparison purposes, Butyl %2310 was also aged under non-oxidative thermal conditions using an argon atmosphere.

Smith, Jonell Nicole; White, Michael Irvin; Bernstein, Robert; Hochrein, James Michael

2013-02-01T23:59:59.000Z

336

Basis of conversion factors for energy equivalents  

Science Conference Proceedings (OSTI)

... Basis of conversion factors for energy equivalents Conversion factors for energy equivalents are derived from the following relations: ...

337

Conversion factors for energy equivalents: All factors  

Science Conference Proceedings (OSTI)

... Conversion factors for energy equivalents Return to online conversions. Next page of energy equivalents. Definition of uncertainty ...

338

Catalytic Conversion of Bioethanol to Hydrocarbons ...  

Conventional biomass to hydrocarbon conversion is generally not commercially feasible, due to costs of the conversion process.

339

Conversion of Cyclic Amines into Lactams for Synthesis of Nylons and Other Polymers  

Ames Laboratory researchers have developed a process for the conversion of cyclic amines into lactams, which may have utility for the production of nylons and other industrial polymers.

340

Coverage impacts biomass composition, conversion to ethanol yields and microbial communities during storage.  

E-Print Network (OSTI)

??Increased mandates for the production of transportation fuels from renewable resources have thrust the conversion of lignocellulosic biomass, e.g., energy crops and agricultural residues, to… (more)

Rigdon, Anne R.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxide conversion product" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Advances in Conjugated Linoleic Acid Research, Volume 3Chapter 2 Detection of Partial ß-Oxidation Products of Conjugated Linoleic Acid Isomers and Their Metabolites in Animals andHumans  

Science Conference Proceedings (OSTI)

Advances in Conjugated Linoleic Acid Research, Volume 3 Chapter 2 Detection of Partial ß-Oxidation Products of Conjugated Linoleic Acid Isomers and Their Metabolites in Animals andHumans Health Nutrition Biochemistry eChapters Health - N

342

Conversion of atactic polypropylene waste to fuel oil. Final report  

DOE Green Energy (OSTI)

A stable, convenient thermal pyrolysis process was demonstrated on a large scale pilot plant. The process successfully converted high viscosity copolymer atactic polypropylene to predominantly liquid fuels which could be burned in commercial burners. Energy yield of the process was very high - in excess of 93% including gas phase heating value. Design and operating data were obtained to permit design of a commercial size atactic conversion plant. Atactic polypropylene can be cracked at temperatures around 850/sup 0/F and residence time of 5 minutes. The viscosity of the cracked product increases with decrease in time/temperature. A majority of the pyrolysis was carried out at a pressure of 50 psig. Thermal cracking of atactic polypropylene is seen to result in sigificant coke formation (0.4% to 0.8% on a weight of feed basis) although the coke levels were of an order of magnitude lower than those obtained during catalytic cracking. The discrepancy between batch and continuous test data can be atrributed to lowered heat transfer and diffusion rates. Oxidative pyrolysis is not seen as a viable commercial alternative due to a significant amount of water formation. However, introduction of controlled quantities of oxygen at lower temperatures to affect change in feedstock viscosity could be considered. It is essential to have a complete characterization of the polymer composition and structure in order to obtain useful and duplicable data because the pyrolysis products and probably the pyrolysis kinetics are affected by introduction of abnormalities into the polymer structure during polymerization. The polymer products from continuous testing contained an olefinic content of 80% or higher. This suggests that the pyrolysis products be investigated for use as olefinic raw materials. Catalytic cracking does not seem to result in any advantage over the Thermal Cracking process in terms of reaction rates or temperature of operation.

Bhatia, J.

1981-04-01T23:59:59.000Z

343

Power conversion technologies  

DOE Green Energy (OSTI)

The Power Conversion Technologies thrust area identifies and sponsors development activities that enhance the capabilities of engineering at Lawrence Livermore National Laboratory (LLNL) in the area of solid- state power electronics. Our primary objective is to be a resource to existing and emerging LLNL programs that require advanced solid-state power electronic technologies.. Our focus is on developing and integrating technologies that will significantly impact the capability, size, cost, and reliability of future power electronic systems. During FY-96, we concentrated our research efforts on the areas of (1) Micropower Impulse Radar (MIR); (2) novel solid-state opening switches; (3) advanced modulator technology for accelerators; (4) compact accelerators; and (5) compact pulse generators.

Newton, M. A.

1997-02-01T23:59:59.000Z

344

Quantum optical waveform conversion  

E-Print Network (OSTI)

Currently proposed architectures for long-distance quantum communication rely on networks of quantum processors connected by optical communications channels [1,2]. The key resource for such networks is the entanglement of matter-based quantum systems with quantum optical fields for information transmission. The optical interaction bandwidth of these material systems is a tiny fraction of that available for optical communication, and the temporal shape of the quantum optical output pulse is often poorly suited for long-distance transmission. Here we demonstrate that nonlinear mixing of a quantum light pulse with a spectrally tailored classical field can compress the quantum pulse by more than a factor of 100 and flexibly reshape its temporal waveform, while preserving all quantum properties, including entanglement. Waveform conversion can be used with heralded arrays of quantum light emitters to enable quantum communication at the full data rate of optical telecommunications.

Kielpinski, D; Wiseman, HM

2010-01-01T23:59:59.000Z

345

Development of a catalyst for conversion of syngas-derived materials to isobutylene. Quarterly report number 19, October 1--December 31, 1995  

DOE Green Energy (OSTI)

The goals of this project are to develop a catalyst and process for the conversion of syngas to isobutanol. After identification and optimization of key catalyst and process characteristics, the commercial potential of the process is to be evaluated by an economic analysis. From independent process variable studies to investigate the conversion of a methanol/ethanol feed to isobutanol, the best performance to date has been achieved with the 2% Pt on Zn/Mn/Zr oxide catalyst. Using Hyprotech Hysim v2.5 process simulation software, and considering both gas and liquid recycle loops in the process flow diagram, the overall carbon conversion is 98% with 22% selectivity to isobutanol. The expected production of isobutanol is 92 MT/day from 500 MT/day of methanol and 172 MT/day of ethanol feed. An additional 13 MT/day of isobutryaldehyde intermediate is recovered in the liquid product and vent streams. Because of the low selectivity (22%) of the methanol conversion catalyst to isobutanol, the process is uneconomical, even if the isobutanol is valued as a solvent ($903/MT) and not as isobutylene for MTBE production ($352/MT).

Spehlmann, B.C.

1996-07-01T23:59:59.000Z

346

Improving PbS Quantum Dot Solar Cell Power Conversion Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

research team developed a new process that improves the efficiency of PbS quantum dot solar power conversion. Key Result By using a transition metal oxide in the quantum dot...

347

Advanced Coal Conversion Process Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal Technology Program Advanced Coal Conversion Process Demonstration A DOE Assessment DOENETL-20051217 U.S. Department of Energy Office of Fossil Energy National Energy...

348

Wideband Wavelength Conversion Using Cavity ...  

Science Conference Proceedings (OSTI)

... The researchers use the interaction of two ... bands that are frequently used in telecommunications. ... conversion should be possible using the same ...

2013-08-27T23:59:59.000Z

349

Energy Basics: Biofuel Conversion Processes  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

from the EERE Bioenergy Technologies Office. Thermochemical Conversion Processes Heat energy and chemical catalysts can be used to break down biomass into intermediate compounds...

350

Thermal Conversion Factor Source Documentation  

U.S. Energy Information Administration (EIA)

national annual quantity-weighted average conversion factors for conventional, reformulated, and oxygenated motor gasolines (see Table A3). The factor ...

351

PRIMARY QUANTUM CONVERSION IN PHOTOSYNTHESIS  

E-Print Network (OSTI)

Reactions in,Bacterial Photosynthesis. I, Nature of lightReactions in Bacterial Photosynthesis. 111. Reactions ofQUANTUM CONVERSION IN PHOTOSYNTHESIS Melvin Calvin and G. M.

Calvin, Melvin; Androes, G.M.

1962-01-01T23:59:59.000Z

352

Developing Greenhouse Gas Emissions Offsets by Reducing Nitrous Oxide (N2O) Emissions in Agricultural Crop Production  

Science Conference Proceedings (OSTI)

This final project report describes a three-year long EPRI supplemental project entitled "Developing Greenhouse Gas Emissions Offsets by Reducing Nitrous Oxide (N2O) Emissions." This EPRI-sponsored project investigated an innovative approach to developing large-scale, cost-effective greenhouse gas (GHG) emissions offsets that potentially can be implemented across broad geographic areas of the United States and internationally.

2009-12-17T23:59:59.000Z

353

Alternative Fuels Data Center: Conversion Regulations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Conversion Regulations Conversion Regulations to someone by E-mail Share Alternative Fuels Data Center: Conversion Regulations on Facebook Tweet about Alternative Fuels Data Center: Conversion Regulations on Twitter Bookmark Alternative Fuels Data Center: Conversion Regulations on Google Bookmark Alternative Fuels Data Center: Conversion Regulations on Delicious Rank Alternative Fuels Data Center: Conversion Regulations on Digg Find More places to share Alternative Fuels Data Center: Conversion Regulations on AddThis.com... Conversion Regulations All vehicle and engine conversions must meet standards instituted by the U.S. Environmental Protection Agency (EPA), the National Highway Traffic Safety Administration (NHTSA), and state agencies like the California Air Resources Board (CARB).

354

ORIGINAL PAPER Tunability of Propane Conversion over Alumina Supported  

E-Print Network (OSTI)

of this material for syngas products when prepared by procedures similar to those for Pt. Overall, the tunability of the anode for the production of syngas, which can subse- quently be electrochemically oxidized [7

355

Feedstock handling and processing effects on biochemical conversion to biofuels  

Science Conference Proceedings (OSTI)

Abating the dependence of the United States on foreign oil by reducing oil consumption and increasing biofuels usage will have far-reaching global effects. These include reduced greenhouse gas emissions and an increased demand for biofuel feedstocks. To support this increased demand, cellulosic feedstock production and conversion to biofuels (e.g. ethanol, butanol) is being aggressively researched. Thus far, research has primarily focused on optimizing feedstock production and ethanol conversion, with less attention given to the feedstock supply chain required to meet cost, quality, and quantity goals. This supply chain comprises a series of unit operations from feedstock harvest to feeding the conversion process. Our objectives in this review are (i) to summarize the peer-reviewed literature on harvest-to-reactor throat variables affecting feedstock composition and conversion to ethanol; (ii) to identify knowledge gaps; and (iii) to recommend future steps.

Daniel Inman; Nick Nagle; Jacob Jacobson; Erin Searcy; Allison Ray

2001-10-01T23:59:59.000Z

356

Development of vanadium-phosphate catalysts for methanol production by selective oxidation of methane. Quarterly technical progress report No. 9, April 1995--June 1995  

DOE Green Energy (OSTI)

This document is the ninth quarterly technical progress report under Contract No. DE-AC22-92PC92110 {open_quotes}Development of Vanadium-Phosphate Catalysts for Methanol Production by Selective Oxidation of Methane{close_quotes}. Activities were focused on fine tuning of the microreactor system by elimination of transport effects and improvements in the analytical system. Process variable studies were conducted on vanadyl pyrophosphate and screening studies were conducted on several modified catalyst. One additional catalyst was prepared and characterization studies continued. These results are reported.

McCormick, R.L.

1995-09-14T23:59:59.000Z

357

Natural gas conversion process. Sixth quarterly report  

Science Conference Proceedings (OSTI)

The experimental apparatus was dismantled and transferred to a laboratory space provided by Lawrence Berkeley Laboratory (LBL) which is already equipped with a high-ventilation fume hood. This will enable us to make tests at higher gas flow rates in a safe environment. Three papers presented at the ACS meeting in San Francisco (Symposium on Natural Gas Upgrading II) April 5--10, 1992 show that the goal of direct catalytic conversion of Methane into heavier Hydrocarbons in a reducing atmosphere is actively pursued in three other different laboratories. There are similarities in their general concept with our own approach, but the temperature range of the experiments reported in these recent papers is much lower and this leads to uneconomic conversion rates. This illustrates the advantages of Methane activation by a Hydrogen plasma to reach commercial conversion rates. A preliminary process flow diagram was established for the Integrated Process, which was outlined in the previous Quarterly Report. The flow diagram also includes all the required auxiliary facilities for product separation and recycle of the unconverted feed as well as for the preparation and compression of the Syngas by-product.

Not Available

1992-12-01T23:59:59.000Z

358

Portfolio Manager Technical Reference: Thermal Conversion Factors | ENERGY  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Conversion Factors Thermal Conversion Factors Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

359

MEDICAL IMAGE CONVERSION Peter Stanchev  

E-Print Network (OSTI)

MEDICAL IMAGE CONVERSION Peter Stanchev Institute of Mathematics, Bulgarian Academy of Sciences with the problem of converting medical images from one format to another. In solving it the structure of the most commonly used medical image formats are studied and analysed. A mechanism for medical image file conversion

Stanchev, Peter

360

Visualization components for persistent conversations  

Science Conference Proceedings (OSTI)

An appropriately designed interface to persistent, threaded conversations could reinforce socially beneficial behavior by prominently featuring how frequently and to what degree each user exhibits such behaviors. Based on the data generated by the Netscan ... Keywords: Usenet, asynchronous threaded discussions, newsgroup, persistent conversation, social cyberspaces, visualization

Marc A. Smith; Andrew T. Fiore

2001-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxide conversion product" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Alcohol fuel conversion apparatus  

Science Conference Proceedings (OSTI)

This patent describes an alcohol fuel conversion apparatus for internal combustion engines comprising: fuel storage means for containing an alcohol fuel; primary heat exchange means in fluid communication with the fuel storage means for transferring heat to pressurized alcohol contained within the heat exchange means; a heat source for heating the primary heat exchange means; pressure relief valve means in closed fluid communication with the primary heat exchange means for releasing heated pressurized alcohol into an expansion chamber; converter means including the expansion chamber in fluid communication with the pressure relief valve means for receiving the heated pressurized alcohol and for the vaporization of the alcohol; fuel injection means in fluid communication with the converter means for injecting vaporized alcohol into the cylinders of an internal combustion engine for mixing with air within the cylinders for proper combustion; and pump means for pressurized pumping of alcohol from the 23 fuel storage means to the primary heat exchanger means, converter means, fuel injector means, and to the engine.

Carroll, B.I.

1987-12-08T23:59:59.000Z

362

U.S. crude oil production  

U.S. Energy Information Administration (EIA)

Production of Crude Oil including Lease Condensate (Thousand Barrels Per Day) Loading... Units Conversion Download Excel: 2012 2013 JAN ...

363

Conversion system overview assessment. Volume 1: solar thermoelectrics  

DOE Green Energy (OSTI)

An assessment of thermoelectrics for solar energy conversion is given. There is significant potential for solar thermoelectrics in solar technologies where collector costs are low; e.g., Ocean Thermal Energy Conversion (OTEC) and solar ponds. Reports of two studies by manufacturers assessing the cost of thermoelectric generators in large scale production are included in the appendix and several new concepts thermoelectric systems are presented. (WHK)

Jayadev, T. S.; Henderson, J.; Finegold, J.; Benson, D.

1979-08-01T23:59:59.000Z

364

$?- e$ Conversion With Four Generations  

E-Print Network (OSTI)

We study $\\mu - e$ conversion with sequential four generations. A large mass for the fourth generation neutrino can enhance the conversion rate by orders of magnitude. We compare constraints obtained from $\\mu - e$ conversion using experimental bounds on various nuclei with those from $\\mu \\to e \\gamma$ and $\\mu \\to e\\bar e e$. We find that the current bound from $\\mu - e$ conversion with Au puts the most stringent constraint in this model. The relevant flavor changing parameter $\\lambda_{\\mu e} = V^*_{\\mu 4}V_{e4}^{}$ is constrained to be less than $1.6\\times 10^{-5}$ for the fourth generation neutrino mass larger than 100 GeV. Implications for future $\\mu -e$ conversion, $\\mu \\to e\\gamma$ and $\\mu \\to e\\bar e e$ experiments are discussed.

N. G. Deshpande; T. Enkhbat; T. Fukuyama; X. -G. He; L. -H. Tsai; K. Tsumura

2011-06-25T23:59:59.000Z

365

Proton Conductor based Solid Oxide Fuel Cells Ceramatec, Inc., Salt Lake City, UT 84119  

NLE Websites -- All DOE Office Websites (Extended Search)

based Solid Oxide Fuel Cells based Solid Oxide Fuel Cells Ceramatec, Inc., Salt Lake City, UT 84119 S. (Elango) Elangovan, Joseph Hartvigsen, Insoo Bay, and Feng Zhao High efficiency operation is one of the primary attractions to use solid oxide fuel cells as the energy conversion device. High efficiency requires maximizing of the product of operating voltage and fuel utilization. The maximum possible operating voltage however is limited by the Nernst potential near the fuel exhaust. In oxygen conducting electrolyte based fuel cells (O-SOFC) as the fuel utilization increases, the Nernst potential continues to decrease with the dilution of fuel by the reaction products. In contrast, in a proton conducting electrolyte based fuel cell (P-SOFC) the reaction product is formed on the cathode side allowing for high operating voltage at high fuel

366

Battery Chargers | Electrical Power Conversion and Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Battery Chargers | Electrical Power Conversion and Storage Battery Chargers | Electrical Power Conversion and Storage 625 West A Street | Lincoln, NE 68522-1794 | LesterElectrical.com P: 402.477.8988 | F: 402.441.3727, 402.474.1769 (Sales) MEMORANDUM TO: United States Department of Energy (DOE), Via Email, expartecommunications@hq.doe.gov FROM: Spencer Stock, Product Marketing Manager, Lester Electrical DATE: June 18, 2012 RE: Ex Parte Communications, Docket Number EERE-2008-BT-STD-0005, RIN 1904-AB57 On Monday, June 11, 2012, representatives from Lester Electrical and Ingersoll Rand met with DOE to discuss the Notice of Proposed Rulemaking (NOPR) for Energy Conservation Standards for Battery Chargers and External Power Supplies, Docket Number EERE-2008-BT-STD-0005, RIN 1904-AB57.

367

Development of vanadium-phosphate catalysts for methanol production by selective oxidation of methane. Quarterly technical progress report 13, April--June, 1996  

DOE Green Energy (OSTI)

The specific objectives of this project are: to determine optimum conditions for methanol and formaldehyde production from methane using VPO catalysts, in particular to determine the effect of lean conditions (excess oxygen), oxygen deficient conditions (used in most other methane oxidation studies), and the potential of using the catalyst as a stoichiometric oxidant or oxygen carrier; to utilize promoters and catalyst supports to improve oxygenate yield relative to the base case catalysts; to provide a preliminary understanding of how these promoters and supports actually effect catalyst properties; and use the information obtained to prepare advanced catalysts which will be tested for activity, selectivity, and stability. Activities this quarter included analysis of all previously acquired data for methane, methanol, and formaldehyde oxidation over vanadyl pyrophosphate and testing of supported, promoted, and iron phosphate catalysts. Some experiments have been conducted with a small percentage of butane in the feed gas to help retain the catalyst in a reduced state and these results are reported. Iron phosphate, and iron phosphate supported on silica have also been tested in a preliminary way.

McCormick, R.L.; Alptekin, G.O.

1996-07-30T23:59:59.000Z

368

Thermal decomposition of Mg/V hydrotalcites and catalytic performance of the products in oxidative dehydrogenation reactions  

Science Conference Proceedings (OSTI)

Layered double hydroxides with the hydrotalcite-type structure containing Mg{sup 2+} and V{sup 3+} in the brucite-like layers, possessing different V contents, have been prepared and characterised by elemental chemical analysis, powder X-ray diffraction, Fourier transform infrared (FT-IR) spectroscopy and specific surface area and porosity assessment by nitrogen adsorption; thermal decomposition was studied by Differential Thermal Analysis and Thermogravimetric Analysis. The solids obtained after calcination at 800 deg. C were tested as catalysts for oxidative dehydrogenation of propane and n-butane. Results indicate that the relative amounts of Mg{sub 3}(VO{sub 4}) and MgO, depending on the V content in the starting hydrotalcite, determines the performance of the catalysts in oxidative dehydrogenation of propane and n-butane.

Holgado, M.J.; Labajos, F.M.; Montero, M.J.S.; Rives, V

2003-11-26T23:59:59.000Z

369

Developing Greenhouse Gas Emissions Offsets by Reducing Nitrous Oxide (N2O) Emissions in Agricultural Crop Production  

Science Conference Proceedings (OSTI)

This report covers the first two years of a three-year long project entitled "Developing Greenhouse Gas Emissions Offsets by Reducing Nitrous Oxide (N2O) Emissions." This EPRI-sponsored project is investigating an innovative approach to developing large-scale and potentially cost-effective greenhouse gas (GHG) emissions offsets that could be implemented across broad geographic areas of the U.S. and internationally. The tools and information developed in this project will broaden the GHG emissions offset ...

2008-11-11T23:59:59.000Z

370

Direct conversion of light hydrocarbon gases to liquid fuel  

DOE Green Energy (OSTI)

The objective of this program is to investigate the direct conversion of light gaseous hydrocarbons to liquid transportation fuels via a partial oxidation process. The process will be tested in existing pilot plant to obtain credible mass balances. Specific objectives to be met include determination of optimal process conditions, investigation of various processing options (e.g. feed injection, product quench, and recycle systems), and evaluation of an enhanced yield thermal/catalytic system. Economic evaluation of the various option will be performed as experimental data become available. The project is of two year's duration and contains three major tasks: Project Management Plan, Pilot Plant Modification, and Comparison of Preliminary Data With Los Alamos Model: We will determine if the kinetic model developed by Los Alamos National Laboratory can be used to guide our experimental effort. Other subtasks under Task 3 include: Pressure/Temperature/Reaction Time Effects; Study of Different Injection Systems: Different schemes for introducing and mixing reactants before or within the reactor will be evaluated theoretically and/or experimentally; Study of Different Quench Systems; Effect of Reactor Geometry; Effect of Reactor Recycle; and Enhanced-Yield Catalyst Study. 5 refs., 12 figs., 4 tabs.

Foral, M.J.

1990-01-01T23:59:59.000Z

371

Direct conversion of methane to C sub 2 's and liquid fuels  

DOE Green Energy (OSTI)

Objectives of the project are to discover and evaluate novel catalytic systems for the conversion of methane or by-product light hydrocarbon gases either indirectly (through intermediate light gases rich in C{sub 2}'s) or directly to liquid hydrocarbon fuels, and to evaluate, from an engineering perspective, different conceptualized schemes. The approach is to carry out catalyst testing on several specific classes of potential catalysts for the conversion of methane selectively to C{sub 2} products. Promoted metal oxide catalysts were tested. Several of these exhibited similar high ethylene to ethane ratios and low carbon dioxide to carbon monoxide ratios observed for the NaCl/{alpha}-alumina catalyst system reported earlier. Research on catalysts containing potentially activated metals began with testing of metal molecular sieves. Silver catalysts were shown to be promising as low temperature catalysts. Perovskites were tested as potential methane coupling catalysts. A layered perovskite (K{sub 2}La{sub 2}Ti{sub 3}O{sub 10}) gave the highest C{sub 2} yield. Work continued on the economic evaluation of a hypothetical process converting methane to ethylene. An engineering model of the methane coupling system has been prepared. 47 refs., 17 figs., 57 tabs.

Warren, B.K.; Campbell, K.D.

1989-11-22T23:59:59.000Z

372

Hydrothermal Energy Conversion Technology  

SciTech Connect

The goal of the Hydrothermal Program is to develop concepts which allow better utilization of geothermal energy to reduce the life-cycle cost of producing electricity from liquid-dominated, hydrothermal resources. Research in the program is currently ongoing in three areas: (1) Heat Cycle Research, which is looking at methods to increase binary plant efficiencies; (2) Materials Development, which is developing materials for use in geothermal associated environments; and (3) Advanced Brine Chemistry, with work taking place in both the brine chemistry modeling area and waste disposal area. The presentations during this session reviewed the accomplishments and activities taking place in the hydrothermal energy conversion program. Lawrence Kukacka, Brookhaven National Laboratory, discussed advancements being made to develop materials for use in geothermal applications. This research has identified a large number of potential materials for use in applications from pipe liners that inhibit scale buildup and reduce corrosion to elastomers for downhole use. Carl J. Bliem, Idaho National Engineering Laboratory, discussed preparations currently underway to conduct field investigations of the condensation behavior of supersaturated turbine expansions. The research will evaluate whether the projected 8% to 10% improvement in brine utilization can be realized by allowing these expansions. Eugene T. Premuzic, Brookhaven National Laboratory, discussed advancements being made using biotechnology for treatment of geothermal residual waste; the various process options were discussed in terms of biotreatment variables. A treatment scenario and potential disposal costs were presented. John H. Weare, University of California, San Diego, discussed the present capabilities of the brine chemistry model he has developed for geothermal applications and the information it can provide a user. This model is available to industry. The accomplishments from the research projects presented in this session have been many. It is hoped that these accomplishments can be integrated into industrial geothermal power plant sites to assist in realizing the goal of reducing the cost of energy produced from the geothermal resource.

Robertson, David W.; LaSala, Raymond J.

1992-03-24T23:59:59.000Z

373

Biomimetic approach to solar energy conversion: artificial photosynthesis  

DOE Green Energy (OSTI)

Results of efforts to devise apparatus and systems for using solar energy for chemical purposes by methods that mimic those used by photosynthetic organisms are reported. Sufficient progress has been made in the understanding of plant photosynthesis to make artificial photosynthesis a reasonable goal. Artificial photoreaction centers, the apparatus used by photosynthetic organisms for light energy conversion to chemical oxidizing and reducing capacity, have been made in the laboratory. The synthetic reaction centers mimic with remarkable fidelity the properties of their in vivo prototypes. Some of the formidable problems that must still be solved and the future prospects for biomimetic devices for solar energy conversion are discussed.

Katz, J.J.

1978-01-01T23:59:59.000Z

374

Management and Uses Conversion Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion Conversion Depleted UF6 Conversion DOE is planning to build two depleted UF6 conversion facilities, and site-specific environmental impact statements (EISs) to evaluate project alternatives. The Final Plan for Conversion and the Programmatic EIS The eventual disposition of depleted UF6 remains the subject of considerable interest within the U.S. Congress, and among concerned citizens and other stakeholders. Congress stated its intentions in Public Law (P. L.) 105-204, signed by the President in July 1998. P. L. 105-204 required DOE to develop a plan to build two depleted UF6 conversion facilities, one each at Portsmouth, Ohio, and Paducah, Kentucky. DOE submitted the required plan, Final Plan for the Conversion of Depleted Uranium Hexafluoride, to Congress in July 1999. This document provided a discussion of DOE's technical approach and schedule to implement this project. Although much of the information provided in this report is still valid, a few aspects of this plan have changed since its publication.

375

The Relative Importance of Scavenging, Oxidation, and Ice-Phase Processes in the Production and Wet Deposition of Sulfate  

Science Conference Proceedings (OSTI)

The relative importance of various processes to sulfate production and wet deposition is examined by using a cloud-resolving model coupled with a sulfate chemistry submodel. Results using different versions of the model are then compared and ...

Vlado Spiridonov; Mladjen Curic

2005-07-01T23:59:59.000Z

376

Barn ConversionBarn Conversion DiscussionDiscussion  

E-Print Network (OSTI)

B.G.S.A.C Stats ·· 2500 square foot insulated pole barn2500 square foot insulated pole barn ·· concrete neededhouse the system needed ·· Is the conversion cost worthIs the conversion cost worth while when compared installedNo vapor barrier installed ·· Rains in barnRains in barn ·· Up to 75 gallons per dayUp to 75

377

Thermal Conversion Process (TCP) Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Changing World Technologies' Changing World Technologies' Thermal Conversion Process Commercial Demonstration Plant DOE/EA 1506 Weld County, Colorado December 2004 U.S. DEPARTMENT OF ENERGY GOLDEN FIELD OFFICE 1617 Cole Boulevard Golden, Colorado 80401 Thermal Conversion Process (TCP) Technology Commercial Demonstration - Weld County, CO TABLE OF CONTENTS Environmental Assessment Thermal Conversion Process (TCP) Technology Commercial Demonstration Project Weld County, Colorado SUMMARY............................................................................................................................. S-1 1.0 INTRODUCTION.........................................................................................................1-1 1.1. National Environmental Policy Act and Related Procedures...........................1-1

378

EPA Redesigns Conversion Certification Policies  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EPA Redesigns EPA Redesigns Conversion Certification Policies At a recent meeting held in Washington, DC, officials from the U.S. Environmental Protection Agency (EPA) opened dialogue about proposed changes to its emission certification policies that affect alternative fuel vehicles (AFVs). "We are trying to accommo- date the Energy Policy Act (EPAct) and Executive Order requirements while trying to change enforce- ment policies and guidance with respect to conversions," said Rich Ackerman of EPA's Enforcement Office. The meeting, attended by representatives of more than 60 organizations, was held to discuss actions addressing AFV emission certification. Specifically, topics included * Conversion emissions perfor- mance data * Status of environmental laws pertaining to alternative fuel

379

Millisecond Oxidation of Alkanes  

Science Conference Proceedings (OSTI)

This project was undertaken in response to the Department of Energy's call to research and develop technologies 'that will reduce energy consumption, enhance economic competitiveness, and reduce environmental impacts of the domestic chemical industry.' The current technology at the time for producing 140 billion pounds per year of propylene from naphtha and Liquified Petroleum Gas (LPG) relied on energy- and capital-intensive steam crackers and Fluidized Catalytic Cracking (FCC) units. The propylene is isolated from the product stream in a costly separation step and subsequently converted to acrylic acid and other derivatives in separate production facilities. This project proposed a Short Contact Time Reactor (SCTR)-based catalytic oxydehydrogenation process that could convert propane to propylene and acrylic acid in a cost-effective and energy-efficient fashion. Full implementation of this technology could lead to sizeable energy, economic and environmental benefits for the U. S. chemical industry by providing up to 45 trillion BTUs/year, cost savings of $1.8 billion/year and a combined 35 million pounds/year reduction in environmental pollutants such as COx, NOx, and SOx. Midway through the project term, the program directive changed, which approval from the DOE and its review panel, from direct propane oxidation to acrylic acid at millisecond contact times to a two-step process for making acrylic acid from propane. The first step was the primary focus, namely the conversion of propane to propylene in high yields assisted by the presence of CO2. The product stream from step one was then to be fed directly into a commercially practiced propylene-to-acrylic acid tandem reactor system.

Scott Han

2011-09-30T23:59:59.000Z

380

Conversion of rice straw to bio-based chemicals: an integrated process using Lactobacillus brevis  

E-Print Network (OSTI)

Conversion of rice straw to bio-based chemicals: anbiomass as a feedstock for bio-based chemical production ispositive strain is used for bio-based chemical production

Kim, Jae-Han; Block, David E.; Shoemaker, Sharon P.; Mills, David A.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxide conversion product" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Solar Thermochemical Fuels Production: Solar Thermochemical Fuel Production via a Novel Lowe Pressure, Magnetically Stabilized, Non-volatile Iron Oxide Looping Process  

SciTech Connect

HEATS Project: The University of Florida is developing a windowless high-temperature chemical reactor that converts concentrated solar thermal energy to syngas, which can be used to produce gasoline. The overarching project goal is lowering the cost of the solar thermochemical production of syngas for clean and synthetic hydrocarbon fuels like petroleum. The team will develop processes that rely on water and recycled CO2 as the sole feed-stock, and concentrated solar radiation as the sole energy source, to power the reactor to produce fuel efficiently. Successful large-scale deployment of this solar thermochemical fuel production could substantially improve our national and economic security by replacing imported oil with domestically produced solar fuels.

None

2011-12-19T23:59:59.000Z

382

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network (OSTI)

DOE-EPA Working Group on Ocean TherUial Energy Conversion,Sands, M.D. (editor) Ocean Thermal Energy Conversion (OTEC)r:he comnercialization of ocean thermal energy conversion

Sands, M.Dale

2013-01-01T23:59:59.000Z

383

Ocean Thermal Energy Conversion | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermal Energy Conversion Ocean Thermal Energy Conversion August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in...

384

Alternative Fuels Data Center: Vehicle Conversions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Conversions Conversions Printable Version Share this resource Send a link to Alternative Fuels Data Center: Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Vehicle Conversions on AddThis.com... Vehicle Conversions Photo of converted to run on propane. What kinds of conversions are available? Natural Gas Propane Electric Hybrid Ethanol An aftermarket conversion is a vehicle or engine modified to operate using

385

Alternative Fuels Data Center: Propane Vehicle Conversions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Conversions to someone by E-mail Conversions to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle Conversions on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Propane Vehicle Conversions Related Information Conversion Basics Regulations Vehicle conversions provide alternative fuel options beyond what is

386

US energy conversion and use characteristics  

SciTech Connect

The long-range goal of the Energy Conversion and Utilization Technology (ECUT) Program is to enhance energy productivity in all energy-use sectors by supporting research on improved efficiency and fuel switching capability in the conversion and utilization of energy. Regardless of the deficiencies of current information, a summary of the best available energy-use information is needed now to support current ECUT program planning. This document is the initial draft of this type of summary and serves as a data book that will present current and periodically updated descriptions of the following aspects of energy use: gross US energy consumption in each major energy-use sector; energy consumption by fuel type in each sector; energy efficiency of major equipment/processes; and inventories, replacement rates, and use patterns for major energy-using capital stocks. These data will help the ECUT program staff perform two vital planning functions: determine areas in which research to improve energy productivity might provide significant energy savings or fuel switching and estimate the actual effect that specific research projects may have on energy productivity and conservation. Descriptions of the data sources and examples of the uses of the different types of data are provided in Section 2. The energy-use information is presented in the last four sections; Section 3 contains general, national consumption data; and Sections 4 through 6 contain residential/commercial, industrial, and transportation consumption data, respectively. (MCW)

Imhoff, C.H.; Liberman, A.; Ashton, W.B.

1982-02-01T23:59:59.000Z

387

Tidal Conversion by Supercritical Topography  

E-Print Network (OSTI)

Calculations are presented of the rate of energy conversion of the barotropic tide into internal gravity waves above topography on the ocean floor. The ocean is treated as infinitely deep, and the topography consists of ...

Balmforth, Neil J.

388

Conversion to the Metric System  

U.S. Energy Information Administration (EIA)

Appendix C Conversion to the Metric System Public Law 100–418, the Omnibus Trade and Competitiveness Act of 1988, states: “It is the declared policy of the United ...

389

Tidal Conversion by Supercritical Topography  

Science Conference Proceedings (OSTI)

Calculations are presented of the rate of energy conversion of the barotropic tide into internal gravity waves above topography on the ocean floor. The ocean is treated as infinitely deep, and the topography consists of periodic obstructions; a ...

Neil J. Balmforth; Thomas Peacock

2009-08-01T23:59:59.000Z

390

Conversion coefficients for superheavy elements  

E-Print Network (OSTI)

In this paper we report on internal conversion coefficients for Z = 111 to Z = 126 superheavy elements obtained from relativistic Dirac-Fock (DF) calculations. The effect of the atomic vacancy created during the conversion process has been taken into account using the so called "Frozen Orbital" approximation. The selection of this atomic model is supported by our recent comparison of experimental and theoretical conversion coefficients across a wide range of nuclei. The atomic masses, valence shell electron configurations, and theoretical atomic binding energies required for the calculations were adopted from a critical evaluation of the published data. The new conversion coefficient data tables presented here cover all atomic shells, transition energies from 1 keV up to 6000 keV, and multipole orders of 1 to 5. A similar approach was used in our previous calculations [1] for Z = 5 - 110.

T. Kibédi; M. B. Trzhaskovskaya; M. Gupta; A. E. Stuchbery

2011-03-03T23:59:59.000Z

391

Cosmopolitanism - Conversation with Stuart Hall  

E-Print Network (OSTI)

Conversation between Stuart Hall and Pnina Werbner on the theme of Cosmopolitanism (to be shown at the Association of Social Anthropologists Silver Jubilee conference in 2006), in March 2006...

Hall, Stuart

2006-09-27T23:59:59.000Z

392

Unsupervised modeling of Twitter conversations  

Science Conference Proceedings (OSTI)

We propose the first unsupervised approach to the problem of modeling dialogue acts in an open domain. Trained on a corpus of noisy Twitter conversations, our method discovers dialogue acts by clustering raw utterances. Because it accounts for the sequential ...

Alan Ritter; Colin Cherry; Bill Dolan

2010-06-01T23:59:59.000Z

393

Evaluation of Ultra-Violet Photocatalytic Oxidation (UVPCO) for...  

NLE Websites -- All DOE Office Websites (Extended Search)

165 and 580 m3h. Production of formaldehyde, acetaldehyde, acetone, formic acid, and acetic acid as reaction products was investigated. Conversion efficiency data were...

394

Biological conversion of synthesis gas  

DOE Green Energy (OSTI)

A continuous stirred tank reactor with and without sulfur recovery has been operated using Chlorobium thiosulfatophilum for the conversion of H[sub 2]S to elemental sulfur. In operating the reactor system with sulfur recovery, a gas retention time of 40 min was required to obtain a 100 percent conversion of H[sub 2]S to elemental sulfur. Essentially no SO[sub 4][sup 2[minus

Clausen, E.C.

1993-04-10T23:59:59.000Z

395

Process modeling of plutonium conversion and MOX fabrication for plutonium disposition  

SciTech Connect

Two processes are currently under consideration for the disposition of 35 MT of surplus plutonium through its conversion into fuel for power production. These processes are the ARIES process, by which plutonium metal is converted into a powdered oxide form, and MOX fuel fabrication, where the oxide powder is combined with uranium oxide powder to form ceramic fuel. This study was undertaken to determine the optimal size for both facilities, whereby the 35 MT of plutonium metal will be converted into fuel and burned for power. The bounding conditions used were a plutonium concentration of 3--7%, a burnup of 20,000--40,000 MWd/MTHM, a core fraction of 0.1 to 0.4, and the number of reactors ranging from 2--6. Using these boundary conditions, the optimal cost was found with a plutonium concentration of 7%. This resulted in an optimal throughput ranging from 2,000 to 5,000 kg Pu/year. The data showed minimal costs, resulting from throughputs in this range, at 3,840, 2,779, and 3,497 kg Pu/year, which results in a facility lifetime of 9.1, 12.6, and 10.0 years, respectively.

Schwartz, K.L. [Univ. of Texas, Austin, TX (United States). Dept. of Nuclear Engineering

1998-10-01T23:59:59.000Z

396

Catalytic conversion of light alkanes, Phase 3. Topical report, January 1990--December 1992  

DOE Green Energy (OSTI)

The mission of this work is to devise a new catalyst which can be used in the first simple, economic process to convert the light alkanes in natural gas to an alcohol-rich oxygenated product which can either be used as an environmentally friendly, high-performance liquid fuel, or a precursor to a liquid hydrocarbon transportation fuel. The authors have entered the proof-of-concept stage for converting isobutane to tert butyl alcohol in a practical process and are preparing to enter proof-of-concept of a propane to isopropyl alcohol process in the near future. Methane and ethane are more refractory and thus more difficult to oxidize than the C{sub 3} and C{sub 4} hydrocarbons. Nonetheless, advances made in this area indicate that further research progress could achieve the goal of their direct conversion to alcohols. Progress in Phase 3 catalytic vapor phase methane and ethane oxidation over metals in regular oxidic lattices are the subject of this topical report.

NONE

1992-12-31T23:59:59.000Z

397

Environmental assessment for the National Conversion Pilot Project, Stage 3  

Science Conference Proceedings (OSTI)

The purpose of the National Conversion Pilot Project (NCPP) is to explore and demonstrate, at the Rocky Flats Environmental Technology Site (RFETS), the feasibility of economic conversion at Department of Energy facilities. Economic conversion is the conversion of facilities and equipment owned by the Federal government to production of goods by private firms for profit. The NCPP mission is consistent with the RFETS current mission: to conduct site remediation, decontaminate and decommission site buildings and close the site in a manner that is safe, environmentally and socially responsible, physically secure, and cost effective. The NCPP is divided into three stages, with decision points at the ends of Stages 1 and 2 and periodically during Stage 3, to help ensure careful consideration of project effectiveness and to create an opportunity for regulators and stakeholders to provide comments to the DOE. At the end of each stage, the project can be reversed, authorized to proceed, or terminated.

NONE

1997-06-11T23:59:59.000Z

398

Fast Conversion Algorithms for Orthogonal Polynomials - Computer ...  

E-Print Network (OSTI)

Nov 13, 2008 ... a known conversion algorithm from an arbitrary orthogonal basis to the ... Fast algorithms, transposed algorithms, basis conversion, orthogonal.

399

Photocatalytic Conversion of Carbon Dioxide to Methanol.  

E-Print Network (OSTI)

??The photocatalytic conversion of carbon dioxide (CO2) to methanol was investigated. The procedure for the carbon dioxide conversion was carried out using a small scale… (more)

Okpo, Emmanuel

2009-01-01T23:59:59.000Z

400

Vehicle Technologies Office: Solid State Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Conversion to someone by E-mail Share Vehicle Technologies Office: Solid State Energy Conversion on Facebook Tweet about Vehicle Technologies Office: Solid State Energy...

Note: This page contains sample records for the topic "oxide conversion product" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Vehicle Technologies Office: Solid State Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid State Energy Conversion The Solid State Energy Conversion R&D activity is focused on developing advanced thermoelectric technologies for utilizing engine waste heat by...

402

Energy Basics: Ocean Thermal Energy Conversion  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Energy Conversion A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity. OTEC works best when...

403

Catalytic oxidation of light alkanes in presence of a base  

DOE Patents (OSTI)

The presence of a base in the reaction mixture in a metal-ligand catalyzed partial oxidation of alkanes results in sustained catalyst activity, and in greater percent conversion as compared with oxidation in the absence of base, while maintaining satisfactory selectivity for the desired oxidation, for example the oxidation of isobutane to isobutanol.

Bhinde, Manoj V. (Boothwyn, PA); Bierl, Thomas W. (West Chester, PA)

1998-01-01T23:59:59.000Z

404

Catalytic oxidation of light alkanes in presence of a base  

DOE Patents (OSTI)

The presence of a base in the reaction mixture in a metal-ligand catalyzed partial oxidation of alkanes results in sustained catalyst activity, and in greater percent conversion as compared with oxidation in the absence of base, while maintaining satisfactory selectivity for the desired oxidation, for example the oxidation of isobutane to isobutanol. 1 fig.

Bhinde, M.V.; Bierl, T.W.

1998-03-03T23:59:59.000Z

405

Applied reaction dynamics: Efficient synthesis gas production via single collision partial oxidation of methane to CO on Rh,,111...  

E-Print Network (OSTI)

of the synthetic fuels examined in the journal paper, namely Fischer-Tropsch fuels (diesel and gasoline blendstocks processes included in our analysis. 2 Synthetic Fuels Included in the Analysis 2.1 Fischer-Tropsch Fuels The product of Fischer-Tropsch (FT) synthesis is a mixture of straight-chain hydrocarbons (olefins

Sibener, Steven

406

Method for regeneration and activity improvement of syngas conversion catalyst  

DOE Patents (OSTI)

A method is disclosed for the treatment of single particle iron-containing syngas (synthes.s gas) conversion catalysts comprising iron, a crystalline acidic aluminosilicate zeolite having a silica to alumina ratio of at least 12, a pore size greater than about 5 Angstrom units and a constraint index of about 1-12 and a matrix. The catalyst does not contain promoters and the treatment is applicable to either the regeneration of said spent single particle iron-containing catalyst or for the initial activation of fresh catalyst. The treatment involves air oxidation, hydrogen reduction, followed by a second air oxidation and contact of the iron-containing single particle catalyst with syngas prior to its use for the catalytic conversion of said syngas. The single particle iron-containing catalysts are prepared from a water insoluble organic iron compound.

Lucki, Stanley J. (Runnemede, NJ); Brennan, James A. (Cherry Hill, NJ)

1980-01-01T23:59:59.000Z

407

Methyl Chloride from Direct Methane Partial Oxidation: A High-Temperature Shilov-Like Catalytic System  

SciTech Connect

The intention of this study is to demonstrate and evaluate the scientific and economic feasibility of using special solvents to improve the thermal stability of Pt-catalyst in the Shilov system, such that a high reaction temperature could be achieved. The higher conversion rate (near 100%) of methyl chloride from partial oxidation of methane under the high temperature ({approx} 200 C) without significant Pt0 precipitation has been achieved. High concentration of the Cl- ion has been identified as the key for the stabilization of the Pt-catalysts. H/D exchange measurements indicated that the over oxidation will occur at the elevated temperature, developments of the effective product separation processes will be necessary in order to rationalize the industry-visible CH4 to CH3Cl conversion.

Yongchun Tang; John (Qisheng) Ma

2012-03-23T23:59:59.000Z

408

Conversion of methane to higher hydrocarbons (Biomimetic catalysis of the conversion of methane to methanol). Final report  

DOE Green Energy (OSTI)

In addition to inorganic catalysts that react with methane, it is well-known that a select group of aerobic soil/water bacteria called methanotrophs can efficiently and selectively utilize methane as the sole source of their energy and carbon for cellular growth. The first reaction in this metabolic pathway is catalyzed by the enzyme methane monooxygenase (MMO) forming methanol. Methanol is a technology important product from this partial oxidation of methane since it can be easily converted to liquid hydrocarbon transportation fuels (gasoline), used directly as a liquid fuel or fuel additive itself, or serve as a feedstock for chemicals production. This naturally occurring biocatalyst (MMO) is accomplishing a technologically important transformation (methane directly to methanol) for which there is currently no analogous chemical (non-biological) process. The authors approach has been to use the biocatalyst, MMO, as the initial focus in the development of discrete chemical catalysts (biomimetic complexes) for methane conversion. The advantage of this approach is that it exploits a biocatalytic system already performing a desired transformation of methane. In addition, this approach generated needed new experimental information on catalyst structure and function in order to develop new catalysts rationally and systematically. The first task is a comparative mechanistic, biochemical, and spectroscopic investigation of MMO enzyme systems. This work was directed at developing a description of the structure and function of the catalytically active sites in sufficient detail to generate a biomimetic material. The second task involves the synthesis, characterization, and chemical reactions of discrete complexes that mimic the enzymatic active site. These complexes were synthesized based on their best current understanding of the MMO active site structure.

Watkins, B.E.; Taylor, R.T.; Satcher, J.H. [and others

1993-09-01T23:59:59.000Z

409

CRAD, Conduct of Operations - Y-12 Enriched Uranium Operations Oxide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conduct of Operations - Y-12 Enriched Uranium Operations Conduct of Operations - Y-12 Enriched Uranium Operations Oxide Conversion Facility CRAD, Conduct of Operations - Y-12 Enriched Uranium Operations Oxide Conversion Facility January 2005 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January, 2005 assessment of Conduct of Operations program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Conduct of Operations - Y-12 Enriched Uranium Operations Oxide Conversion Facility More Documents & Publications CRAD, DOE Oversight - Y-12 Enriched Uranium Operations Oxide Conversion

410

Method for forming indium oxide/n-silicon heterojunction solar cells  

DOE Patents (OSTI)

A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.

Feng, Tom (Morris Plains, NJ); Ghosh, Amal K. (New Providence, NJ)

1984-03-13T23:59:59.000Z

411

Depleted Uranium De-conversion  

E-Print Network (OSTI)

This Environmental Report (ER) constitutes one portion of an application being submitted by International Isotopes Fluorine Products (IIFP) to construct and operate a facility that will utilize depleted DUF6 to produce high purity inorganic fluorides, uranium oxides, and anhydrous hydrofluoric acid. The proposed IIFP facility will be located near Hobbs, New Mexico. IIFP has prepared the ER to meet the requirements specified in 10 CFR 51, Subpart A, particularly those requirements set forth in 10 CFR 51.45(b)-(e). The organization of this ER is generally consistent with NUREG-1748, “Environmental Review Guidance for Licensing Actions Associated with NMSS Programs, Final Report.” The Environmental Report for this proposed facility provides information that is specifically required by the NRC to assist it in meeting its obligations under the National Environmental Policy Act (NEPA) of 1969 and the agency’s NEPA-implementing regulations. This ER demonstrates that the environmental protection measures proposed by IIFP are adequate to protect both the environment and the health and safety of the public. This Environmental Report evaluates the potential environmental impacts of the Proposed Action and its reasonable alternatives. This ER also describes the environment potentially affected by IIEF’s proposal,

Fluorine Extraction Process

2009-01-01T23:59:59.000Z

412

Characterization of Biodiesel Oxidation and Oxidation Products  

DOE Green Energy (OSTI)

Features a literature review of 130 technical references pertaining to fatty oil and fatty ester stability chemistry in biodiesel fuels.

Not Available

2005-08-01T23:59:59.000Z

413

The Rothmund-Thomson gene product RECQL4 localizes to the nucleolus in response to oxidative stress  

Science Conference Proceedings (OSTI)

Mutations in the RECQL4 helicase gene have been linked to Rothmund-Thomson syndrome (RTS), which is characterized by poikiloderma, growth deficiency, and a predisposition to cancer. Examination of RECQL4 subcellular localization in live cells demonstrated a nucleoplasmic pattern and, to a lesser degree, staining in nucleoli. Analysis of RECQL4-GFP deletion mutants revealed two nuclear localization regions in the N-terminal region of RECQL4 and a nucleolar localization signal at amino acids 376-386. RECQL4 localization did not change after treatment with the DNA-damaging agents bleomycin, etoposide, UV irradiation and {gamma} irradiation, in contrast to the Bloom and Werner syndrome helicases that relocate to distinct nuclear foci after damage. However, in a significant number of cells exposed to hydrogen peroxide or streptonigrin, RECQL4 accumulated in nucleoli. Using a T7 phage display screen, we determined that RECQL4 interacts with poly(ADP-ribose) polymerase-1 (PARP-1), a nuclear enzyme that promotes genomic integrity through its involvement in DNA repair and signaling pathways. The RECQL4 nucleolar localization was inhibited by pretreatment with a PARP-1 inhibitor. The C-terminal portion of RECQL4 was found to be an in vitro substrate for PARP-1. These results demonstrate changes in the intracellular localization of RECQL4 in response to oxidative stress and identify an interaction between RECQL4 and PARP-1.

Woo, Leslie L. [Department of Pathology, University of Chicago, 5841 South Maryland Ave., MC1089, Chicago, IL 60637 (United States); Futami, Kazunobu [Department of Target Discovery, GeneCare Research Institute, 200 Kajiwara, Kamakura, Kanagawa 247-0063 (Japan); Shimamoto, Akira [Department of Cellular and Molecular Biology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553 (Japan); Furuichi, Yasuhiro [Department of Target Discovery, GeneCare Research Institute, 200 Kajiwara, Kamakura, Kanagawa 247-0063 (Japan); Frank, Karen M. [Department of Pathology, University of Chicago, 5841 South Maryland Ave., MC1089, Chicago, IL 60637 (United States)]. E-mail: kfrank@uchicago.edu

2006-10-15T23:59:59.000Z

414

Effect of biomass feedstock chemical and physical properties on energy conversion processes: Volume 1, Overview  

DOE Green Energy (OSTI)

Pacific Northwest Laboratory has completed an initial investigation of the effects of physical and chemical properties of biomass feedstocks relative to their performance in biomass energy conversion systems. Both biochemical conversion routes (anaerobic digestion and ethanol fermentation) and thermochemical routes (combustion, pyrolysis, and gasification) were included in the study. Related processes including chemical and physical pretreatment to improve digestibility, and size and density modification processes such as milling and pelletizing were also examined. This overview report provides background and discussion of feedstock and conversion relationships, along with recommendations for future research. The recommendations include (1) coordinate production and conversion research programs; (2) quantify the relationship between feedstock properties and conversion priorities; (3) develop a common framework for evaluating and characterizing biomass feedstocks; (4) include conversion effects as part of the criteria for selecting feedstock breeding programs; and (5) continue emphasis on multiple feedstock/conversion options for biomass energy systems. 9 refs., 3 figs., 2 tabs.

Butner, R.S.; Elliott, D.C.; Sealock, L.J. Jr.; Pyne, J.W.

1988-12-01T23:59:59.000Z

415

Novel Energy Conversion Equipment for Low Temperature Geothermal Resources  

Open Energy Info (EERE)

Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Low Temperature Resources Project Description Using mass-produced chiller equipment for "reverse refrigeration" to generate electricity: This approach allows Johnson Controls to take advantage of the economies of scale and manufacturing experience gained from current products while minimizing performance risks. Process efficiencies will be increased over the current state of the art in two ways: better working fluids and improved cycle heat management.

416

Plasma-induced conversion of surface-adsorbed hydrocarbons  

DOE Green Energy (OSTI)

Experimental results are reported for an electrical device for direct conversion of methane into higher hydrocarbons. A microchannel plate is excited with electrons from a photoemissive source, and electron impact ionization of methane on the inner surfaces of the microchannels creates an ion feedback process. The resulting low-density plasma creates higher hydrocarbons when charged particles impact the surfaces at grazing incidence. The production Of C{sub 2} to C{sub 8}-containing gases was noted, with a selectivity for C{sub 2} of 39% in one case. The proportions of converted products and the conversion rates depend upon the electrical voltage, the microchannel geometry, and the operating pressure. Conversion rates increase with operating pressure.

Sackinger, W.M.

1992-07-01T23:59:59.000Z

417

Plasma-induced conversion of surface-adsorbed hydrocarbons  

DOE Green Energy (OSTI)

Experimental results are reported for an electrical device for direct conversion of methane into higher hydrocarbons. A microchannel plate is excited with electrons from a photoemissive source, and electron impact ionization of methane on the inner surfaces of the microchannels creates an ion feedback process. The resulting low-density plasma creates higher hydrocarbons when charged particles impact the surfaces at grazing incidence. The production Of C{sub 2} to C{sub 8}-containing gases was noted, with a selectivity for C{sub 2} of 39% in one case. The proportions of converted products and the conversion rates depend upon the electrical voltage, the microchannel geometry, and the operating pressure. Conversion rates increase with operating pressure.

Sackinger, W.M.

1992-01-01T23:59:59.000Z

418

Energy Conversion – Photovoltaic, Concentrating Solar Power, and ...  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, Materials Science & Technology 2012. Symposium, Energy Conversion – Photovoltaic, Concentrating Solar Power, and  ...

419

Biochemical Conversion Pilot Plant (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet provides information about Biochemical Conversion Pilot Plant capabilities and resources at NREL.

Not Available

2012-06-01T23:59:59.000Z

420

Frequency Conversion of Entangled State  

E-Print Network (OSTI)

The quantum characteristics of sum-frequency process in an optical cavity with an input signal optical beam, which is a half of entangled optical beams, are analyzed. The calculated results show that the quantum properties of the signal beam can be maintained after its frequency is conversed during the intracavity nonlinear optical interaction. The frequency-conversed output signal beam is still in an entangled state with the retained other half of initial entangled beams. The resultant quantum correlation spectra and the parametric dependences of the correlations on the initial squeezing factor, the optical losses and the pump power of the sum-frequency cavity are calculated. The proposed system for the frequency conversion of entangled state can be used in quantum communication network and the calculated results can provide direct references for the design of experimental systems.

Aihong Tan; Xiaojun Jia; Changde Xie

2006-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxide conversion product" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

A simulated countercurrent moving-bed chromatographic reactor for the oxidative coupling of methane: Experimental results  

DOE Green Energy (OSTI)

The oxidative coupling reaction of methane (OCM) represents a potential commercial ethylene production route. However, the highest reported yields do not exceed 20%. The methane coupling reaction is accompanied by the undesired conversion of methane to carbon oxides. The relative amount of oxygen and methane along with other parameters, including temperature, determine the favored reaction pathway. High hydrocarbon to oxygen feed ratios give high ethane/ethylene selectivities but at the expense of the hydrocarbon conversion. When the methane to oxygen feed ratio is low, combustion is favored. The simulated countercurrent moving-bed chromatographic reactor (SCMCR) is applied to the OCM. A modified experimental configuration is designed and evaluated. A four-section apparatus, each containing a reaction and two separation columns, is used to quickly separate the reactants and products using the principles of simulated countercurrent flow. Simultaneous reaction and separation of the reactive products column is desired, but unattainable because of an incompatibility between OCM reaction and separation temperatures. Microreactor yields with a samarium oxide catalyst gives yields between 2% and 10%. Yields as high as 50% are observed with the same catalyst and run conditions in the SCMCR. These yields are significantly higher than previously reported values. The effects of temperature, feed switching time, and methane to oxygen feed ratio have been investigated. The reactor, while not fully optimized, does give promise as an alternative production method for ethylene.

Tonkovich, A.L.Y. [Pacific Northwest Lab., Richland, WA (United States); Carr, R.W. [Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Chemical Engineering and Materials Sciences

1994-09-01T23:59:59.000Z

422

Polymer Based Nanocomposites for Solar Energy Conversion  

DOE Green Energy (OSTI)

Organic semiconductor-based photovoltaic devices offer the promise of low cost photovoltaic technology that can be manufactured via large-scale, roll-to-roll printing techniques. Existing organic photovoltaic devices are currently limited to solar power conversion efficiencies of 3?5%. This is because of poor overlap between the absorption spectrum of the organic chromophores and the solar spectrum, non-ideal band alignment between the donor and acceptor species, and low charge carrier mobilities. To address these issues, we are investigating the development of dendrimeric organic semiconductors that are readily synthesized with high purity. They also benefit from optoelectronic properties, such as band gap and band positions, which can be easily tuned by substituting different chemical groups into the molecule. Additionally, we are developing nanostructured oxide/conjugated polymer composite photovoltaics. These composites take advantage of the high electron mobilities attainable in oxide semiconductors and can be fabricated using low-temperature solution-based growth techniques. Here, we discuss the synthesis and preliminary device results of these novel materials and composites.

Shaheen, S.; Olson, D.; White, M.; Mitchell, W.; Miedaner, A.; Curtis, C.; Rumbles, G.; Gregg, B.; Ginley, D.

2005-01-01T23:59:59.000Z

423

Development of vanadium-phosphate catalysts for methanol production by selective oxidation of methane. Quarterly technical progress report No. 6, July--September 1994  

DOE Green Energy (OSTI)

This is the eighth quarterly technical progress report. During this quarter the project was initiated, after transfer via a novation agreement, at the Colorado School of Mines. Project initiation activities have included: set up of catalyst synthesis apparatus; training on x-ray diffraction and FTIR apparatus; set up of catalyst testing reactor; set up of reactor product analytical systems; and set up of method development for measuring catalyst acidity via FTIR. At the end of this quarter significant progress had been made towards completion of these initiation activities. Several catalyst syntheses have been performed and the catalysts characterized by x-ray diffraction and FTIR. The catalyst testing reactor system is operational. Reactor product analysis system is nearing completion. Initiation of this system was delayed by the unavailability of a Valco valve which has just recently arrived. Set up of the in-situ FTIR cell for catalyst acidity studies has begun. In this report the results of several catalyst syntheses are reported along with characterization results. In particular, impregnation of vanadyl pyrophosphate with potassim nitrate dramatically reduced the number of surface hydroxyl groups. Such groups may be important in the non-selective, total oxidation of hydrocarbons. Also, preliminary experimental results on FTIR spectra of adsorbed pyridine are presented. It is shown that pyridine adsorbed on the catalyst surface can be easily observed by the diffuse reflectance IR technique. We plan to apply this technique to measurement of the acid site strength of surfaces modified with promoters.

McCormick, R.L.

1995-01-10T23:59:59.000Z

424

CRAD, Emergency Management - Y-12 Enriched Uranium Operations Oxide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emergency Management - Y-12 Enriched Uranium Operations Oxide Emergency Management - Y-12 Enriched Uranium Operations Oxide Conversion Facility CRAD, Emergency Management - Y-12 Enriched Uranium Operations Oxide Conversion Facility January 2005 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of Emergency Management program at the Y-12 Enriched Uranium Operations Oxide Conversion Facility. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Emergency Management - Y-12 Enriched Uranium Operations Oxide Conversion Facility More Documents & Publications CRAD, Conduct of Operations - Y-12 Enriched Uranium Operations Oxide

425

Crop residue conversion to biogas by dry fermentation  

Science Conference Proceedings (OSTI)

A simple 'dry fermentation' process has been developed that may enable economical conversion of drier crop residues to biogas. Results from two years of process definition and scale-up to a 110 m/sup 3/ prototype show that biogas production rates exceeding those necessary to make the dry fermentor competitive have been achieved. 13 refs.

Jewell, W.J.; Dell'Orto, S.; Fanfoni, K.J.; Fast, S.J.; Jackson, D.A.; Kabrick, R.M.; Gottung, E.J.

1981-01-01T23:59:59.000Z

426

Operation of staged membrane oxidation reactor systems  

DOE Patents (OSTI)

A method of operating a multi-stage ion transport membrane oxidation system. The method comprises providing a multi-stage ion transport membrane oxidation system with at least a first membrane oxidation stage and a second membrane oxidation stage, operating the ion transport membrane oxidation system at operating conditions including a characteristic temperature of the first membrane oxidation stage and a characteristic temperature of the second membrane oxidation stage; and controlling the production capacity and/or the product quality by changing the characteristic temperature of the first membrane oxidation stage and/or changing the characteristic temperature of the second membrane oxidation stage.

Repasky, John Michael

2012-10-16T23:59:59.000Z

427

Conversion of methane and acetylene into gasoline range hydrocarbons  

E-Print Network (OSTI)

Conversion of methane and acetylene to higher molecular weight hydrocarbons over zeolite catalyst (HZSM-5) was studied The reaction between methane and acetylene successfully produced high molecular weight hydrocarbons, such as naphthalene, benzene, indene, azulene, fluorene, and biphenyl substituted compounds. Also, lighter hydrocarbons, such as ethylene and isobutene were produced. The reaction was conducted at different operating temperatures and different molar feed composition. The results showed that the conversion of both reactants increased with increasing the operating temperature; for example a conversion of 95.1% was achieved for acetylene at 350°C and 98.6% at 412°C. In addition, the conversion of both reactants decreased with increasing the molar feed ratio of methane to acetylene. A conversion of 96.4% for acetylene was achieved at a molar feed ratio of 6 to 1 (methane to acetylene) and 80.9% at a molar feed ration of 20 to 1 (methane to acetylene). The reaction of methane and ethane over HZSM-5 catalyst also led to the production of high molecular weight hydrocarbons, mainly aromatics, and some lighter products such as propane, and ethylene. Also methane by itself showed the ability to react over HZSM-5 to produce a small amount of aromatics, and ethylene.

Alkhawaldeh, Ammar

2000-01-01T23:59:59.000Z

428

Energy Conversion and Storage Program: 1992 Annual report  

Science Conference Proceedings (OSTI)

This report is the 1992 annual progress report for the Energy Conversion and Storage Program, a part of the Energy and Environment Division of the Lawrence Berkeley Laboratory. Work described falls into three broad areas: electrochemistry; chemical applications; and materials applications. The Energy Conversion and Storage Program applies principles of chemistry and materials science to solve problems in several areas: (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes and chemical species, and (5) study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Chemical applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing product and waste streams from synfuel plants, coal gasifiers, and biomass conversion processes. Materials applications research includes evaluation of the properties of advanced materials, as well as development of novel preparation techniques. For example, techniques such as sputtering, laser ablation, and poised laser deposition are being used to produce high-temperature superconducting films.

Cairns, E.J.

1993-06-01T23:59:59.000Z

429

Biomass conversion Task 4 1988 program of work: International Energy Agency Bioenergy Agreement  

DOE Green Energy (OSTI)

For biomass to meet its potential as an energy resource, conversion processes must be available which are both efficient and environmentally acceptable. Conversion can include direct production of heat and electricity as well as production of intermediate gaseous, liquid, and solid fuels. While many biomass conversion processes are commercially available at present, others are still in the conceptual stage. Additional research and development activities on these advanced concepts will be necessary to fully use biomass resources. Ongoing research on biomass conversion processes is being conducted by many nations throughout the world. In an effort to coordinate this research and improve information exchange, several countries have agreed to a cooperative effort through the International Energy Agency's Bioenergy Agreement (IEA/BA). Under this Agreement, Task IV deals specifically with biomass conversion topics. The cooperative activities consists of information exchange and coordination of national research programs on specific topics. The activities address biomass conversion in a systematic manner, dealing with the pretreatment of biomass prior to conversion, the subsequent conversion of the biomass to intermediate fuels or end-product energy, and then the environmental aspects of the conversion process. This document provides an outline of cooperative work to be performed in 1988. 1 fig., 2 tabs.

Stevens, D.J.

1987-12-01T23:59:59.000Z

430

Biomass conversion Task 4 1988 program of work: International Energy Agency Bioenergy Agreement  

SciTech Connect

For biomass to meet its potential as an energy resource, conversion processes must be available which are both efficient and environmentally acceptable. Conversion can include direct production of heat and electricity as well as production of intermediate gaseous, liquid, and solid fuels. While many biomass conversion processes are commercially available at present, others are still in the conceptual stage. Additional research and development activities on these advanced concepts will be necessary to fully use biomass resources. Ongoing research on biomass conversion processes is being conducted by many nations throughout the world. In an effort to coordinate this research and improve information exchange, several countries have agreed to a cooperative effort through the International Energy Agency's Bioenergy Agreement (IEA/BA). Under this Agreement, Task IV deals specifically with biomass conversion topics. The cooperative activities consists of information exchange and coordination of national research programs on specific topics. The activities address biomass conversion in a systematic manner, dealing with the pretreatment of biomass prior to conversion, the subsequent conversion of the biomass to intermediate fuels or end-product energy, and then the environmental aspects of the conversion process. This document provides an outline of cooperative work to be performed in 1988. 1 fig., 2 tabs.

Stevens, D.J.

1987-12-01T23:59:59.000Z

431

Conversion of the Barotropic Tide  

Science Conference Proceedings (OSTI)

Using linear wave theory, the rate at which energy is converted into internal gravity waves by the interaction of the barotropic tide with topography in an ocean is calculated. Bell's formula for the conversion rate is extended to the case of an ...

Stefan G. Llewellyn Smith; W. R. Young

2002-05-01T23:59:59.000Z

432

Novel membrane technology for green ethylene production.  

Science Conference Proceedings (OSTI)

Ethylene is currently produced by pyrolysis of ethane in the presence of steam. This reaction requires substantial energy input, and the equilibrium conversion is thermodynamically limited. The reaction also produces significant amounts of greenhouse gases (CO and CO{sub 2}) because of the direct contact between carbon and steam. Argonne has demonstrated a new way to make ethylene via ethane dehydrogenation using a dense hydrogen transport membrane (HTM) to drive the unfavorable equilibrium conversion. Preliminary experiments show that the new approach can produce ethylene yields well above existing pyrolysis technology and also significantly above the thermodynamic equilibrium limit, while completely eliminating the production of greenhouse gases. With Argonne's approach, a disk-type dense ceramic/metal composite (cermet) membrane is used to produce ethylene by dehydrogenation of ethane at 850 C. The gas-transport membrane reactor combines a reversible chemical reaction with selective separation of one product species and leads to increased reactant conversion to the desired product. In an experiment ethane was passed over one side of the HTM membrane and air over the other side. The hydrogen produced by the dehydrogenation of ethane was removed and transported through the HTM to the air side. The air provided the driving force required for the transport of hydrogen through the HTM. The reaction between transported hydrogen and oxygen in air can provide the energy needed for the dehydrogenation reaction. At 850 C and 1-atm pressure, equilibrium conversion of ethane normally limits the ethylene yield to 64%, but Argonne has shown that an ethylene yield of 69% with a selectivity of 88% can be obtained under the same conditions. Coking was not a problem in runs extending over several weeks. Further improved HTM materials will lower the temperature required for high conversion at a reasonable residence time, while the lower temperature will suppress unwanted side reactions and prolong membrane life. With the Argonne approach, oxygen does not contact the ethane/ethylene stream, so oxidation products are not formed. Consequently, higher selectivity to ethylene and fewer by-products can be achieved. Some benefits are: (1) Simplifies overall product purification and processing schemes; (2) Results in greater energy efficiency; (3) Completely eliminates greenhouse gases from the reactor section; and (4) Lowers the cost of the 'back end' purification train, which accounts for about 70% of the capital cost of a conventional ethylene production unit.

Balachandran, U.; Lee, T. H.; Dorris, S. E.; Udovich, C. A.; Scouten, C. G.; Marshall, C. L. (Energy Systems); ( CSE)

2008-01-01T23:59:59.000Z

433

ADVANCED OXIDATION PROCESS  

DOE Green Energy (OSTI)

The design of new, high efficiency and cleaner burning engines is strongly coupled with the removal of recalcitrant sulfur species, dibenzothiophene and its derivatives, from fuels. Oxidative desulfurization (ODS) wherein these dibenzothiophene derivatives are oxidized to their corresponding sulfoxides and sulfones is an approach that has gained significant attention. Fe-TAML{reg_sign} activators of hydrogen peroxide (TAML is Tetra-Amido-Macrocyclic-Ligand) convert in a catalytic process dibenzothiophene and its derivatives to the corresponding sulfoxides and sulfones rapidly at moderate temperatures (60 C) and ambient pressure. The reaction can be performed in both an aqueous system containing an alcohol (methanol, ethanol, or t-butanol) to solubilize the DBT and in a two-phase hydrocarbon/aqueous system where the alcohol is present in both phases and facilitates the oxidation. Under a consistent set of conditions using the FeBF{sub 2} TAML activator, the degree of conversion was found to be t-butanol > methanol > ethanol. In the cases of methanol and ethanol, both the sulfoxide and sulfone were observed while for t-butanol only the sulfone was detected. In the two-phase system, the alcohol may function as an inverse phase transfer agent. The oxidation was carried out using two different TAML activators. In homogeneous solution, approximately 90% oxidation of the DBT could be achieved using the prototype TAML activator, FeB*, by sonicating the solution at near room temperature. In bi-phasic systems conversions as high as 50% were achieved using the FeB* TAML activator and hydrogen peroxide at 100 C. The sonication method yielded only {approx}6% conversion but this may have been due to mixing.

Colin P. Horwitz; Terrence J. Collins

2003-10-22T23:59:59.000Z

434

Alternative Fuels Data Center: Vehicle Conversion Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Conversion Vehicle Conversion Basics to someone by E-mail Share Alternative Fuels Data Center: Vehicle Conversion Basics on Facebook Tweet about Alternative Fuels Data Center: Vehicle Conversion Basics on Twitter Bookmark Alternative Fuels Data Center: Vehicle Conversion Basics on Google Bookmark Alternative Fuels Data Center: Vehicle Conversion Basics on Delicious Rank Alternative Fuels Data Center: Vehicle Conversion Basics on Digg Find More places to share Alternative Fuels Data Center: Vehicle Conversion Basics on AddThis.com... Vehicle Conversion Basics Photo of a Ford Transit Connect converted to run on compressed natural gas. A Ford Transit Connect converted to run on compressed natural gas. A converted vehicle or engine is one modified to use a different fuel or

435

Thermophotovoltaic conversion using selective infrared line emitters and large band gap photovoltaic devices  

DOE Patents (OSTI)

Efficient thermophotovoltaic conversion can be performed using photovoltaic devices with a band gap in the 0.75-1.4 electron volt range, and selective infrared emitters chosen from among the rare earth oxides which are thermally stimulated to emit infrared radiation whose energy very largely corresponds to the aforementioned band gap. It is possible to use thermovoltaic devices operating at relatively high temperatures, up to about 300.degree. C., without seriously impairing the efficiency of energy conversion.

Brandhorst, Jr., Henry W. (Auburn, AL); Chen, Zheng (Auburn, AL)

2000-01-01T23:59:59.000Z

436

Strategic term rewriting and its application to a VDM-SL to SQL conversion  

Science Conference Proceedings (OSTI)

We constructed a tool, called VooDooM, which converts datatypes in Vdm-sl into Sql relational data models. The conversion involves transformation of algebraic types to maps and products, and pointer introduction. The conversion is specified as a theory ... Keywords: SQL, VDM, program calculation, strategic term rewriting

T. L. Alves; P. F. Silva; J. Visser; J. N. Oliveira

2005-07-01T23:59:59.000Z

437

PRODUCTION OF URANIUM HEXAFLUORIDE  

DOE Patents (OSTI)

A process for the production of uranium hexafluoride from the oxides of uranium is reported. In accordance with the method, the higher oxides of uranium may be reduced to uranium dioxide (UO/sub 2/), the latter converted into uranium tetrafluoride by reaction with hydrogen fluoride, and the UF/sub 4/ converted to UF/sub 6/ by reaction with a fluorinating agent, such as CoF/sub 3/. The UO/sub 3/ or U/sub 3/O/sub 8/ is placed in a reac tion chamber in a copper boat or tray enclosed in a copper oven, and heated to 500 to 650 deg C while hydrogen gas is passed through the oven. After nitrogen gas is used to sweep out the hydrogen and the water vapor formed, and while continuing to inaintain the temperature between 400 deg C and 600 deg C, anhydrous hydrogen fluoride is passed through. After completion of the conversion of UO/sub 2/ to UF/sub 4/ the temperature of the reaction chamber is lowered to about 400 deg C or less, the UF/sub 4/ is mixed with the requisite quantity of CoF/sub 3/, and after evacuating the chamber, the mixture is heated to 300 to 400 deg C, and the resulting UF/sub 6/ is led off and delivered to a condenser.

Fowler, R.D.

1957-08-27T23:59:59.000Z

438

Methods for natural gas and heavy hydrocarbon co-conversion  

DOE Patents (OSTI)

A reactor for reactive co-conversion of heavy hydrocarbons and hydrocarbon gases and includes a dielectric barrier discharge plasma cell having a pair of electrodes separated by a dielectric material and passageway therebetween. An inlet is provided for feeding heavy hydrocarbons and other reactive materials to the passageway of the discharge plasma cell, and an outlet is provided for discharging reaction products from the reactor. A packed bed catalyst may optionally be used in the reactor to increase efficiency of conversion. The reactor can be modified to allow use of a variety of light sources for providing ultraviolet light within the discharge plasma cell. Methods for upgrading heavy hydrocarbons are also disclosed.

Kong, Peter C. (Idaho Falls, ID); Nelson, Lee O. (Idaho Falls, ID); Detering, Brent A. (Idaho Falls, ID)

2009-02-24T23:59:59.000Z

439

APPLICATION OF COLUMN EXTRACTION METHOD FOR IMPURITIES ANALYSIS ON HB-LINE PLUTONIUM OXIDE IN SUPPORT OF MOX FEED PRODUCT SPECIFICATIONS  

SciTech Connect

The current mission at H-Canyon involves the dissolution of an Alternate Feedstocks 2 (AFS-2) inventory that contains plutonium metal. Once dissolved, HB-Line is tasked with purifying the plutonium solution via anion exchange, precipitating the Pu as oxalate, and calcining to form plutonium oxide (PuO{sub 2}). The PuO{sub 2} will provide feed product for the Mixed Oxide (MOX) Fuel Fabrication Facility, and the anion exchange raffinate will be transferred to H-Canyon. The results presented in this report document the potential success of the RE resin column extraction application on highly concentrated Pu samples to meet MOX feed product specifications. The original 'Hearts Cut' sample required a 10000x dilution to limit instrument drift on the ICP-MS method. The instrument dilution factors improved to 125x and 250x for the sample raffinate and sample eluent, respectively. As noted in the introduction, the significantly lower dilutions help to drop the total MRL for the analyte. Although the spike recoveries were half of expected in the eluent for several key elements, they were between 94-98% after Nd tracer correction. It is seen that the lower ICD limit requirements for the rare earths are attainable because of less dilution. Especially important is the extremely low Ga limit at 0.12 {mu}g/g Pu; an ICP-MS method is now available to accomplish this task on the sample raffinate. While B and V meet the column A limits, further development is needed to meet the column B limits. Even though V remained on the RE resin column, an analysis method is ready for investigation on the ICP-MS, but it does not mean that V cannot be measured on the ICP-ES at a low dilution to meet the column B limits. Furthermore, this column method can be applicable for ICP-ES as shown in Table 3-2, in that it trims the sample of Pu, decreasing and sometimes eliminating Pu spectral interferences.

Jones, M.; Diprete, D.; Wiedenman, B.

2012-03-20T23:59:59.000Z

440

Direct conversion of light hydrocarbon gases to liquid fuel  

DOE Green Energy (OSTI)

Amoco Oil Company is investigating the direct conversion of light hydrocarbon gases to liquid fuels via partial oxidation. This report describes work completed in the first quarter of the two-year project (first quarter FY 1990). Task 1 of the work, preparation of the Project Management Plan, has been completed. Work was started and progress made on three other tasks during this quarter: Task 2. Modification of an existing Amoco pilot plant to handle the conditions of this project. Minor modifications were made to increase the maximum operating pressure to 1500 psig. Other more extensive modifications are being designed, including addition of an oxygen compressor and recycle system. Task 3.1. Evaluation of a Los Alamos National Laboratory methane oxidation kinetic model for suitability in guiding the experimental portions of this project. Task 3.2. Process variable (e.g. temperature, pressure, residence time) studies to determine optimal partial oxidation conditions. 1 fig.

Foral, M.J.

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oxide conversion product" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Direct catalytic conversion of methane and light hydrocarbon gases. Final report, October 1, 1986--July 31, 1989  

DOE Green Energy (OSTI)

This project explored conversion of methane to useful products by two techniques that do not involve oxidative coupling. The first approach was direct catalytic dehydrocoupling of methane to give hydrocarbons and hydrogen. The second approach was oxidation of methane to methanol by using heterogenized versions of catalysts that were developed as homogeneous models of cytochrome-P450, an enzyme that actively hydroxylates hydrocarbons by using molecular oxygen. Two possibilities exist for dehydrocoupling of methane to higher hydrocarbons: The first, oxidative coupling to ethane/ethylene and water, is the subject of intense current interest. Nonoxidative coupling to higher hydrocarbons and hydrogen is endothermic, but in the absence of coke formation the theoretical thermodynamic equilibrium yield of hydrocarbons varies from 25% at 827{degrees}C to 65% at 1100{degrees}C (at atmospheric pressure). In this project we synthesized novel, highly dispersed metal catalysts by attaching metal clusters to inorganic supports. The second approach mimics microbial metabolism of methane to produce methanol. The methane mono-oxygenase enzyme responsible for the oxidation of methane to methanol in biological systems has exceptional selectivity and very good rates. Enzyme mimics are systems that function as the enzymes do but overcome the problems of slow rates and poor stability. Most of that effort has focused on mimics of cytochrome P-450, which is a very active selective oxidation enzyme and has a metalloporphyrin at the active site. The interest in nonporphyrin mimics coincides with the interest in methane mono-oxygenase, whose active site has been identified as a {mu}-oxo dinuclear iron complex.We employed mimics of cytochrome P-450, heterogenized to provide additional stability. The oxidation of methane with molecular oxygen was investigated in a fixed-bed, down-flow reactor with various anchored metal phthalocyanines (PC) and porphyrins (TPP) as the catalysts.

Wilson, R.B. Jr.; Posin, B.M.; Chan, Yee-Wai

1995-06-01T23:59:59.000Z

442

Conversion of plutonium scrap and residue to boroilicate glass using the GMODS process  

SciTech Connect

Plutonium scrap and residue represent major national and international concerns because (1) significant environmental, safety, and health (ES&H) problems have been identified with their storage; (2) all plutonium recovered from the black market in Europe has been from this category; (3) storage costs are high; and (4) safeguards are difficult. It is proposed to address these problems by conversion of plutonium scrap and residue to a CRACHIP (CRiticality, Aerosol, and CHemi