National Library of Energy BETA

Sample records for oxford big-bang nucleosynthesis

  1. Quark mass variation constraints from Big Bang nucleosynthesis...

    Office of Scientific and Technical Information (OSTI)

    Quark mass variation constraints from Big Bang nucleosynthesis Citation Details In-Document Search Title: Quark mass variation constraints from Big Bang nucleosynthesis We study...

  2. Quark mass variation constraints from Big Bang nucleosynthesis (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Quark mass variation constraints from Big Bang nucleosynthesis Citation Details In-Document Search Title: Quark mass variation constraints from Big Bang nucleosynthesis We study the impact on the primordial abundances of light elements created of a variation of the quark masses at the time of Big Bang nucleosynthesis (BBN). In order to navigate through the particle and nuclear physics required to connect quark masses to binding energies and reaction rates in a

  3. Quark mass variation constraints from Big Bang nucleosynthesis (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Journal Article: Quark mass variation constraints from Big Bang nucleosynthesis Citation Details In-Document Search Title: Quark mass variation constraints from Big Bang nucleosynthesis We study the impact on the primordial abundances of light elements created of a variation of the quark masses at the time of Big Bang nucleosynthesis (BBN). In order to navigate through the particle and nuclear physics required to connect quark masses to binding energies and

  4. Quark mass variation constraints from Big Bang nucleosynthesis (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Quark mass variation constraints from Big Bang nucleosynthesis Citation Details In-Document Search Title: Quark mass variation constraints from Big Bang nucleosynthesis × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A

  5. Big bang nucleosynthesis revisited via Trojan Horse method measurements

    SciTech Connect (OSTI)

    Pizzone, R. G.; Spartá, R.; Spitaleri, C.; La Cognata, M.; Tumino, A.; Bertulani, C. A.; Lalmansingh, J.; Lamia, L.; Mukhamedzhanov, A.

    2014-05-10

    Nuclear reaction rates are among the most important input for understanding primordial nucleosynthesis and, therefore, for a quantitative description of the early universe. An up-to-date compilation of direct cross-sections of {sup 2}H(d, p){sup 3}H, {sup 2}H(d, n){sup 3}He, {sup 7}Li(p, ?){sup 4}He, and {sup 3}He(d, p){sup 4}He reactions is given. These are among the most uncertain cross-sections used and input for big bang nucleosynthesis calculations. Their measurements through the Trojan Horse method are also reviewed and compared with direct data. The reaction rates and the corresponding recommended errors in this work were used as input for primordial nucleosynthesis calculations to evaluate their impact on the {sup 2}H, {sup 3,4}He, and {sup 7}Li primordial abundances, which are then compared with observations.

  6. Standard big bang nucleosynthesis and primordial CNO abundances after Planck

    SciTech Connect (OSTI)

    Coc, Alain [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), CNRS/IN2P3, Université Paris Sud 11, UMR 8609, Bâtiment 104, F–91405 Orsay Campus (France); Uzan, Jean-Philippe; Vangioni, Elisabeth, E-mail: coc@csnsm.in2p3.fr, E-mail: uzan@iap.fr, E-mail: vangioni@iap.fr [Institut d'Astrophysique de Paris, UMR-7095 du CNRS, Université Pierre et Marie Curie, 98 bis bd Arago, 75014 Paris (France)

    2014-10-01

    Primordial or big bang nucleosynthesis (BBN) is one of the three historical strong evidences for the big bang model. The recent results by the Planck satellite mission have slightly changed the estimate of the baryonic density compared to the previous WMAP analysis. This article updates the BBN predictions for the light elements using the cosmological parameters determined by Planck, as well as an improvement of the nuclear network and new spectroscopic observations. There is a slight lowering of the primordial Li/H abundance, however, this lithium value still remains typically 3 times larger than its observed spectroscopic abundance in halo stars of the Galaxy. According to the importance of this ''lithium problem{sup ,} we trace the small changes in its BBN calculated abundance following updates of the baryonic density, neutron lifetime and networks. In addition, for the first time, we provide confidence limits for the production of {sup 6}Li, {sup 9}Be, {sup 11}B and CNO, resulting from our extensive Monte Carlo calculation with our extended network. A specific focus is cast on CNO primordial production. Considering uncertainties on the nuclear rates around the CNO formation, we obtain CNO/H ? (5-30)×10{sup -15}. We further improve this estimate by analyzing correlations between yields and reaction rates and identified new influential reaction rates. These uncertain rates, if simultaneously varied could lead to a significant increase of CNO production: CNO/H?10{sup -13}. This result is important for the study of population III star formation during the dark ages.

  7. Astrophysical S-factor for destructive reactions of lithium-7 in big bang nucleosynthesis

    SciTech Connect (OSTI)

    Komatsubara, Tetsuro; Kwon, YoungKwan; Moon, JunYoung; Kim, Yong-Kyun; Moon, Chang-Bum; Ozawa, Akira; Sasa, Kimikazu; Onishi, Takahiro; Yuasa, Toshiaki; Okada, Shunsuke; Saito, Yuta; Hayakawa, Takehito; Shizuma, Toshiyuki; Kubono, Shigeru; Kusakabe, Motohiko; Kajino, Toshitaka

    2014-05-02

    One of the most prominent success with the Big Bang models is the precise reproduction of mass abundance ratio for {sup 4}He. In spite of the success, abundances of lithium isotopes are still inconsistent between observations and their calculated results, which is known as lithium abundance problem. Since the calculations were based on the experimental reaction data together with theoretical estimations, more precise experimental measurements may improve the knowledge of the Big Bang nucleosynthesis. As one of the destruction process of lithium-7, we have performed measurements for the reaction cross sections of the {sup 7}L({sup 3}He,p){sup 9}Be reaction.

  8. Refined scenario of standard Big Bang nucleosynthesis allowing for nonthermal nuclear reactions in the primordial plasma

    SciTech Connect (OSTI)

    Voronchev, Victor T.; Nakao, Yasuyuki; Nakamura, Makoto; Tsukida, Kazuki [Institute of Nuclear Physics, Moscow State University, Moscow 119991 (Russian Federation); Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Motooka, Fukuoka 819-0395 (Japan); Division of Advanced Plasma Research, Japan Atomic Energy Agency, 2-166 Oaza-Obuchi-Aza-Omotedate, Rokkasho, Kamikita, Aomori 039-3212 (Japan); Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Motooka, Fukuoka 819-0395 (Japan)

    2012-11-12

    The standard scenario of big bang nucleosynthesis (BBN) is generalized to take into account nonthermal nuclear reactions in the primordial plasma. These reactions are naturally triggered in the BBN epoch by fast particles generated in various exoergic processes. It is found that, although such particles can appreciably enhance the rates of some individual reactions, their influence on the whole process of element production is not significant. The nonthermal corrections to element abundances are obtained to be 0.1% ({sup 3}H), -0.03% ({sup 7}Li), and 0.34 %-0.63% (CNO group).

  9. The Big Bang Theory

    SciTech Connect (OSTI)

    Lincoln, Don

    2014-09-30

    The Big Bang is the name of the most respected theory of the creation of the universe. Basically, the theory says that the universe was once smaller and denser and has been expending for eons. One common misconception is that the Big Bang theory says something about the instant that set the expansion into motion, however this isn’t true. In this video, Fermilab’s Dr. Don Lincoln tells about the Big Bang theory and sketches some speculative ideas about what caused the universe to come into existence.

  10. A different Big Bang theory: Los Alamos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    different Big Bang theory: Los Alamos unveils explosives detection expertise February 11, 2015 Collaboration project defeats explosives threats through enhanced detection...

  11. A different Big Bang theory: Los Alamos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    different Big Bang theory: Los Alamos unveils explosives detection expertise February 11, 2015 Collaboration project defeats explosives threats through enhanced detection technologies LOS ALAMOS, N.M., Feb. 11, 2015-Having long kept details of its explosives capabilities under wraps, a team of Los Alamos National Laboratory scientists is now rolling out a collaborative project to defeat explosives threats through enhanced detection technologies. "We're aiming to create a collaboration of

  12. A different Big Bang theory: Los Alamos unveils explosives detection...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    unveils explosives detection expertise A different Big Bang theory: Los Alamos unveils explosives detection expertise A team of scientists is now rolling out a collaborative...

  13. Big Bang or Big Bounce? | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 30, 2013, 4:00pm to 5:30pm Colloquia MBG Auditorium Big Bang or Big Bounce? Professor Paul Steinhardt Princeton University Presentation: File WC30OCT2013_PSteinhardt.pptx Abstract: PDF icon COLL.10.30.13.pdf Was the event that occurred 13.7 billion years ago a big bang - the beginning of space and time - or a big bang bounce - a transition from contraction to expansion? This talk will explain how the two possibilities lead to very different pictures of the origin, evolution and future of

  14. John C. Mather, the Big Bang, and the COBE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    John C. Mather, the Big Bang, and the COBE Resources with Additional Information * Videos John C. Mather Courtesy of NASA "Dr. John C. Mather of NASA's Goddard Space Flight Center has won the 2006 Nobel Prize for Physics, awarded by the Royal Swedish Academy of Sciences. Mather shares the prize with George F. Smoot of the University of California for their collaborative work on understanding the Big Bang. Mather and Smoot analyzed data from NASA's Cosmic Background Explorer (COBE), which

  15. Big Bang Day: 5 Particles - 3. The Anti-particle

    ScienceCinema (OSTI)

    None

    2011-04-25

    Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 3. The Anti-particle. It appears to be the stuff of science fiction. Associated with every elementary particle is an antiparticle which has the same mass and opposite charge. Should the two meet and combine, the result is annihilation - and a flash of light. Thanks to mysterious processes that occurred after the Big Bang there are a vastly greater number of particles than anti-particles. So how could their elusive existence be proved? At CERN particle physicists are crashing together subatomic particles at incredibly high speeds to create antimatter, which they hope will finally reveal what happened at the precise moment of the Big Bang to create the repertoire of elementary particles and antiparticles in existence today.

  16. Big Bang Day : The Great Big Particle Adventure - 3. Origins

    ScienceCinema (OSTI)

    None

    2011-04-25

    In this series, comedian and physicist Ben Miller asks the CERN scientists what they hope to find. If the LHC is successful, it will explain the nature of the Universe around us in terms of a few simple ingredients and a few simple rules. But the Universe now was forged in a Big Bang where conditions were very different, and the rules were very different, and those early moments were crucial to determining how things turned out later. At the LHC they can recreate conditions as they were billionths of a second after the Big Bang, before atoms and nuclei existed. They can find out why matter and antimatter didn't mutually annihilate each other to leave behind a Universe of pure, brilliant light. And they can look into the very structure of space and time - the fabric of the Universe

  17. COLLOQUIUM: Seeing the Big Bang More Clearly: The Evolution of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observational Techniques in CMB Studies | Princeton Plasma Physics Lab October 28, 2015, 4:00pm to 5:30pm Colloquia MBG AUDITORIUM COLLOQUIUM: Seeing the Big Bang More Clearly: The Evolution of Observational Techniques in CMB Studies Professor Bruce Partridge Haverford College Since 2015 marks the fiftieth anniversary of the discovery of the cosmic microwave background (CMB), I will begin by analyzing the very early experiments that established the properties of the CMB. What experimental

  18. A different Big Bang theory: Los Alamos unveils explosives detection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    expertise unveils explosives detection expertise A different Big Bang theory: Los Alamos unveils explosives detection expertise A team of scientists is now rolling out a collaborative project to defeat explosives threats through enhanced detection technologies. February 11, 2015 Instructors discuss the production of aluminum based explosives, part of an advanced course in worldwide threats from homemade explosives created by the Los Alamos Collaboration for Explosives Detection (LACED).

  19. Primordial nucleosynthesis: A cosmological point of view

    SciTech Connect (OSTI)

    Mathews, G. J.; Kusakabe, M.; Cheoun, M.-K.

    2014-05-09

    Primordial nucleosynthesis remains as one of the pillars of modern cosmology. It is the test-ing ground upon which all cosmological models must ultimately rest. It is our only probe of the universe during the first few minutes of cosmic expansion and in particular during the important radiation-dominated epoch. These lectures review the basic equations of space-time, cosmology, and big bang nucleosynthesis. We will then review the current state of observational constraints on primordial abundances along with the key nuclear reactions and their uncertainties. We summarize which nuclear measure-ments are most crucial during the big bang. We also review various cosmological models and their constraints. In particular, we summarize the constraints that big bang nucleosynthesis places upon the possible time variation of fundamental constants, along with constraints on the nature and origin of dark matter and dark energy, long-lived supersymmetric particles, gravity waves, and the primordial magnetic field.

  20. NERSC User Group 2013 Big Bang, Big Data, Big Iron Planck Satellite Data Analysis At NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2013 Big Bang, Big Data, Big Iron Planck Satellite Data Analysis At NERSC Julian Borrill Computational Cosmology Center, Berkeley Lab & Space Sciences Laboratory, UC Berkeley NERSC User Group 2013 The Cosmic Microwave Background * Hot Big Bang => expanding, cooling Universe. * After 370,000 years temperature drops to 3000K. * p + + e - => H : Universe become neutral & transparent. * Photons free-stream to observers today. The image cannot be displayed. Your computer may not have

  1. Matter, antimatter and surviving the big bang is topic of Lab's next

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frontiers in Science lecture Frontiers in Science lectures Matter, antimatter and surviving the big bang is topic of Lab's next Frontiers in Science lecture LANL scientist Vincenzo Cirigliano asks the question, How did we survive the big bang? in a series of Frontiers in Science lectures. October 31, 2013 Frontiers in Science lecture series is intended to increase local public awareness of the diversity of science and engineering research at the Laboratory. Frontiers in Science lecture

  2. Jetting into the Moments after the Big Bang | U.S. DOE Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SC) Jetting into the Moments after the Big Bang Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: Email Us More Information » 06.01.15 Jetting into the Moments after the Big Bang Upgraded

  3. Big Bang Day : Afternoon Play - Torchwood: Lost Souls

    ScienceCinema (OSTI)

    None

    2011-04-25

    Martha Jones, ex-time traveller and now working as a doctor for a UN task force, has been called to CERN where they're about to activate the Large Hadron Collider. Once activated, the Collider will fire beams of protons together recreating conditions a billionth of a second after the Big Bang - and potentially allowing the human race a greater insight into what the Universe is made of. But so much could go wrong - it could open a gateway to a parallel dimension, or create a black hole - and now voices from the past are calling out to people and scientists have started to disappear... Where have the missing scientists gone? What is the secret of the glowing man? What is lurking in the underground tunnel? And do the dead ever really stay dead? Lost Souls is a spin-off from the award-winning BBC Wales TV production Torchwood. It stars John Barrowman, Freema Agyeman, Eve Myles, Gareth David-Lloyd, Lucy Montgomery (of Titty Bang Bang) and Stephen Critchlow.

  4. The B-Factory and the Big Bang

    SciTech Connect (OSTI)

    Heller, A.

    1997-01-01

    A B-Factory, a virtual {open_quotes}time machine{close_quotes} back to the early moments of the Big Bang that created the universe, is not under construction at the Stanford Linear Accelerator Center (SLAC). The $300 million project to produce copious amounts of B mesons is a combined effort of SLAC, Lawrence Berkeley National Laboratory, and Lawrence Livermore National Laboratory. Scheduled for completion in early 1999, the facility will be one of the flagships of the US high-energy physics program. Nearly 200 Laboratory specialists, representing a broad range of disciplines, are contributing to the B-Factory effort. The B-Factory`s two underground rings, each 2,200 meters (a mile and a half) in circumference, will generate B mesons by colliding electron and positrons (antimatter counterpart of electrons) at near the speed of light. A key feature of this collider is the fact that electrons and positrons will circulate and collide with unequal (or {open_quotes}asymmetric{close_quotes}) energies so that scientists can to better explore the particles generated in the collisions. In helping to design and manufacture many of the major components and detector systems for the B-Factory`s twin particle beam rings and its three-story-tall detector, Lawrence Livermore is strengthening its reputation as a center of excellence for accelerator science and technology. In addition, many LLNL capabilities brought to bear on the technical challenges of the B-Factory are enhancing the Laboratory`s efforts for the DOE Stockpile Stewardship Program.

  5. Reaching Back Towards the Big Bang | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    4 » Reaching Back Towards the Big Bang Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: Email Us More Information » 04.01.14 Reaching Back Towards the Big Bang US-led experiments at the LHC recreate

  6. COLLOQUIUM: One Second After the Big Bang | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 16, 2013, 4:00pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: One Second After the Big Bang Professor Christopher Tully Princeton University Presentation: File WC16OCT2013_CTully.pptx iCal A new experiment called PTOLEMY (Princeton Tritium Observatory for Light, Early-Universe, Massive-Neutrino Yield) is under development at the Princeton Plasma Physics Laboratory with the goal of challenging one of the most fundamental predictions of the Big Bang - the present-day existence of relic

  7. Neutrinos' Instant Identity Changes Could Mean Big Things for the Big Bang

    Office of Environmental Management (EM)

    | Department of Energy Neutrinos' Instant Identity Changes Could Mean Big Things for the Big Bang Neutrinos' Instant Identity Changes Could Mean Big Things for the Big Bang July 11, 2011 - 12:23pm Addthis Scientists use the near detector to verify the intensity and purity of the muon neutrino beam leaving the Fermilab site. | Courtesy of Fermilab, photo by Peter Ginter Scientists use the near detector to verify the intensity and purity of the muon neutrino beam leaving the Fermilab site. |

  8. Supercomputing: A Toolbox to Simulate the Big Bang and Beyond | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy A Toolbox to Simulate the Big Bang and Beyond Supercomputing: A Toolbox to Simulate the Big Bang and Beyond September 19, 2013 - 1:30pm Addthis This image shows the barred spiral galaxy NGC 1398. | Image courtesy of the Dark Energy Survey. This image shows the barred spiral galaxy NGC 1398. | Image courtesy of the Dark Energy Survey. Rob Roser Rob Roser Head, Fermilab Scientific Computing Division What does this project do? A new project sponsored by three of the Energy

  9. Before the Big Bang? A Novel Resolution of a Profound Cosmological Puzzle

    ScienceCinema (OSTI)

    Penrose, Roger

    2010-09-01

    The second law of thermodynamics says, in effect, that things get more random as time progresses. Thus, we can deduce that the beginning of the universe - the Big Bang - must have been an extraordinarily precisely organized state. What was the nature of this state? How can such a special state have come about? In Penrose's talk, a novel explanation is suggested.

  10. PPPL, Princeton launch hunt for Big Bang particles offering clues to the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    origin of the universe | Princeton Plasma Physics Lab PPPL, Princeton launch hunt for Big Bang particles offering clues to the origin of the universe By John Greenwald November 17, 2014 Tweet Widget Google Plus One Share on Facebook Chris Tully, front left, and Charles Gentile, front right, with participants in the PTOLEMY project under construction. Back row from left: Irving Zatz, Robert Woolley, Lloyd Ciebiera, Junast Suerfu, Doug Westover, Philip G. Efthimion, William Sands, Jim Taylor.

  11. DOE research makes big bang | OSTI, US Dept of Energy, Office of Scientific

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Technical Information research makes big bang Feature Archive Saul Perlmutter Photo Courtesy of Lawrence Berkeley National Laboratory Saul Perlmutter has been awarded the 2011 Nobel Prize in Physics for his breakthrough research at Lawrence Berkeley National Laboratory. He cofounded the Supernova Cosmology Project (SCP) in 1988, with the breakthrough coming ten years later. The SCP pioneered the methods used to discover the accelerating expansion of the universe through observations of

  12. Out of the white hole: a holographic origin for the Big Bang

    SciTech Connect (OSTI)

    Pourhasan, Razieh; Afshordi, Niayesh; Mann, Robert B. E-mail: nafshordi@pitp.ca

    2014-04-01

    While most of the singularities of General Relativity are expected to be safely hidden behind event horizons by the cosmic censorship conjecture, we happen to live in the causal future of the classical Big Bang singularity, whose resolution constitutes the active field of early universe cosmology. Could the Big Bang be also hidden behind a causal horizon, making us immune to the decadent impacts of a naked singularity? We describe a braneworld description of cosmology with both 4d induced and 5D bulk gravity (otherwise known as Dvali-Gabadadze-Porati, or DGP model), which exhibits this feature: the universe emerges as a spherical 3-brane out of the formation of a 5D Schwarzschild black hole. In particular, we show that a pressure singularity of the holographic fluid, discovered earlier, happens inside the white hole horizon, and thus need not be real or imply any pathology. Furthermore, we outline a novel mechanism through which any thermal atmosphere for the brane, with comoving temperature of ?20% of the 5D Planck mass can induce scale-invariant primordial curvature perturbations on the brane, circumventing the need for a separate process (such as cosmic inflation) to explain current cosmological observations. Finally, we note that 5D space-time is asymptotically flat, and thus potentially allows an S-matrix or (after minor modifications) an AdS/CFT description of the cosmological Big Bang.

  13. The Big Bang, COBE, and the Relic Radiation of Creation (LBNL Science at the Theater)

    ScienceCinema (OSTI)

    Smoot, George

    2011-04-28

    Berkeley Lab's George Smoot won the 2006 Physics Nobel Prize, together with John Mather of NASA Goddard Space Flight Center, for "the discovery of the blackbody form and anisotropy of the cosmic microwave background radiation." The anisotropy showed as small variations in the map of the early universe. This research looks back into the infant universe and provides a better understanding of the origin of galaxies and stars. The cosmic background radiation is a tool to understand the structure and history of the universe and the structure of space-time. These observations have provided increased support for the big bang theory of the universe's origin. The Cosmic Background Explorer (COBE) NASA satellite, launched in 1989, carries instruments that measured various aspects of cosmic microwave background radiation, and produced the data for these compelling scientific results, which opened up a field that continues very actively today.

  14. Origin of matter and space-time in the big bang

    SciTech Connect (OSTI)

    Mathews, G. J.; Yamazaki, D.; Kusakabe, M.; Cheoun, M.-K.

    2014-05-02

    We review the case for and against a bulk cosmic motion resulting from the quantum entanglement of our universe with the multiverse beyond our horizon. Within the current theory for the selection of the initial state of the universe from the landscape multiverse there is a generic prediction that pre-inflation quantum entanglement with other universes should give rise to a cosmic bulk flow with a correlation length of order horizon size and a velocity field relative to the expansion frame of the universe. Indeed, the parameters of this motion are are tightly constrained. A robust prediction can be deduced indicating that there should be an overall motion of of about 800 km/s relative to the background space time as defined by the cosmic microwave background (CMB). This talk will summarize the underlying theoretical motivation for this hypothesis. Of course our motion relative to the background space time (CMB dipole) has been known for decades and is generally attributed to the gravitational pull of the local super cluster. However, this cosmic peculiar velocity field has been recently deduced out to very large distances well beyond that of the local super cluster by using X-ray galaxy clusters as tracers of matter motion. This is achieved via the kinematic component of the Sunyaev-Zeldovich (KSZ) effect produced by Compton scattering of cosmic microwave background photons from the local hot intracluster gas. As such, this method measures peculiar velocity directly in the frame of the cluster. Similar attempts by our group and others have attempted to independently assess this bulk flow via Type la supernova redshifts. In this talk we will review the observation case for and against the existence of this bulk flow based upon the observations and predictions of the theory. If this interpretation is correct it has profound implications in that we may be observing for the first time both the physics that occurred before the big bang and the existence of the multiverse beyond our horizon.

  15. Testing the big bang: Light elements, neutrinos, dark matter and large-scale structure

    SciTech Connect (OSTI)

    Schramm, D.N. Fermi National Accelerator Lab., Batavia, IL )

    1991-06-01

    In this series of lectures, several experimental and observational tests of the standard cosmological model are examined. In particular, detailed discussion is presented regarding nucleosynthesis, the light element abundances and neutrino counting; the dark matter problems; and the formation of galaxies and large-scale structure. Comments will also be made on the possible implications of the recent solar neutrino experimental results for cosmology. An appendix briefly discusses the 17 keV thing'' and the cosmological and astrophysical constraints on it. 126 refs., 8 figs., 2 tabs.

  16. Constraining spacetime noncommutativity with primordial nucleosynthesis

    SciTech Connect (OSTI)

    Horvat, Raul; Trampetic, Josip

    2009-04-15

    We discuss a constraint on the scale {lambda}{sub NC} of noncommutative (NC) gauge field theory arising from consideration of the big bang nucleosynthesis of light elements. The propagation of neutrinos in the NC background described by an antisymmetric tensor {theta}{sup {mu}}{sup {nu}} does result in a tree-level vectorlike coupling to photons in a generation-independent manner, raising thus a possibility to have an appreciable contribution of three light right-handed (RH) fields to the energy density of the Universe at nucleosynthesis time. Considering elastic scattering processes of the RH neutrinos off charged plasma constituents at a given cosmological epoch, we obtain for a conservative limit on an effective number of additional doublet neutrinos {delta}N{sub {nu}}=1, a bound {lambda}{sub NC} > or approx. 3 TeV. With a more stringent requirement, {delta}N{sub {nu}} < or approx. 0.2, the bound is considerably improved, {lambda}{sub NC} > or approx. 10{sup 3} TeV. For our bounds the {theta} expansion of the NC action stays always meaningful, since the decoupling temperature of the RH species is perseveringly much less than the inferred bound for the scale of noncommutativity.

  17. Big Bang Day : Today

    ScienceCinema (OSTI)

    None

    2011-04-25

    Andrew Marr will be reporting live from the CERN control room for the Today programme, with correspondent Tom Feilden. (Wednesday 10th September, 6.00-9.00am )

  18. Big Bang Day : Today

    SciTech Connect (OSTI)

    2009-11-16

    Andrew Marr will be reporting live from the CERN control room for the Today programme, with correspondent Tom Feilden. (Wednesday 10th September, 6.00-9.00am )

  19. Oxford Solar | Open Energy Information

    Open Energy Info (EERE)

    Oxford Solar Jump to: navigation, search Name: Oxford Solar Place: Randolph, New Jersey Zip: 7869 Sector: Solar Product: Oxford Solar provides solar energy consulting and...

  20. Oxford System 400

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oxford Plasmalab System 400 Sputtering System For questions concerning this machines capabilities, please contact Varshni Singh, at 578-0248. ecr.jpg (48456 bytes)  : ecr1.jpg...

  1. Big Bang Day: Engineering Solutions

    ScienceCinema (OSTI)

    None

    2011-04-25

    CERN's Large Hadron Collider is the most complicated scientific apparatus ever built. Many of the technologies it uses hadn't even been invented when scientists started building it. Adam Hart-Davis discovers what it takes to build the world's most intricate discovery machine.

  2. Big Bang Day : Physics Rocks

    ScienceCinema (OSTI)

    None

    2011-04-25

    Is particle physics the new rock 'n' roll? The fundamental questions about the nature of the universe that particle physics hopes to answer have attracted the attention of some very high profile and unusual fans. Alan Alda, Ben Miller, Eddie Izzard, Dara O'Briain and John Barrowman all have interests in this branch of physics. Brian Cox - CERN physicist, and former member of 90's band D:Ream, tracks down some very well known celebrity enthusiasts and takes a light-hearted look at why this subject can appeal to all of us.

  3. Probing neutrino physics with a self-consistent treatment of the weak decoupling, nucleosynthesis, and photon decoupling epochs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Grohs, E.; Fuller, George M.; Kishimoto, Chad T.; Paris, Mark W.

    2015-05-11

    In this study, we show that a self-consistent and coupled treatment of the weak decoupling, big bang nucleosynthesis, and photon decoupling epochs can be used to provide new insights and constraints on neutrino sector physics from high-precision measurements of light element abundances and Cosmic Microwave Background observables. Implications of beyond-standard-model physics in cosmology, especially within the neutrino sector, are assessed by comparing predictions against five observables: the baryon energy density, helium abundance, deuterium abundance, effective number of neutrinos, and sum of the light neutrino mass eigenstates. We give examples for constraints on dark radiation, neutrino rest mass, lepton numbers, andmore » scenarios for light and heavy sterile neutrinos.« less

  4. Probing neutrino physics with a self-consistent treatment of the weak decoupling, nucleosynthesis, and photon decoupling epochs

    SciTech Connect (OSTI)

    Grohs, E.; Fuller, George M.; Kishimoto, Chad T.; Paris, Mark W.

    2015-05-11

    In this study, we show that a self-consistent and coupled treatment of the weak decoupling, big bang nucleosynthesis, and photon decoupling epochs can be used to provide new insights and constraints on neutrino sector physics from high-precision measurements of light element abundances and Cosmic Microwave Background observables. Implications of beyond-standard-model physics in cosmology, especially within the neutrino sector, are assessed by comparing predictions against five observables: the baryon energy density, helium abundance, deuterium abundance, effective number of neutrinos, and sum of the light neutrino mass eigenstates. We give examples for constraints on dark radiation, neutrino rest mass, lepton numbers, and scenarios for light and heavy sterile neutrinos.

  5. Nucleosynthesis in Thermonuclear Supernovae

    SciTech Connect (OSTI)

    Claudia, Travaglio; Hix, William Raphael

    2013-01-01

    We review our understanding of the nucleosynthesis that occurs in thermonuclear supernovae and their contribution to Galactic Chemical evolution. We discuss the prospects to improve the modeling of the nucleosynthesis within simulations of these events.

  6. 2014 Awarded Campaigns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    users / call for proposals 2014 Awarded Campaigns Metastability of dynamically compressed C Wark (Oxford) High pressure phases of carbon Hemley (Carnegie) Pressure ionization at extreme densities Neumayer (GSI) Direct-drive hydrodynamics Casner (CEA) Asymptotic self-similar instabilities Shvarts (Israel) Charged particle stopping powers Zylstra (MIT) Stellar and Big Bang nucleosynthesis Gatu-Johnson (MIT) Magnetogenesis and B field amplification Gregori (Oxford) Collisionless astrophysical

  7. Oxford Innovation | Open Energy Information

    Open Energy Info (EERE)

    Innovation Jump to: navigation, search Name: Oxford Innovation Place: United Kingdom Sector: Services Product: General Financial & Legal Services ( Private family-controlled )...

  8. Oxford Catalysts Group plc | Open Energy Information

    Open Energy Info (EERE)

    Oxford Catalysts Group plc Place: Oxford, United Kingdom Zip: OX2 6UD Sector: Hydro, Hydrogen Product: Developer of catalysts for room-temperature hydrogen production, hot steam...

  9. Oxford County, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Oxford, Maine Norway, Maine Otisfield, Maine Oxford, Maine Paris, Maine Peru, Maine Porter, Maine Roxbury, Maine Rumford, Maine South Oxford, Maine South Paris, Maine Stoneham,...

  10. Luu, T; Platter, L 73 NUCLEAR PHYSICS AND RADIATION PHYSICS;...

    Office of Scientific and Technical Information (OSTI)

    constraints from Big Bang nucleosynthesis Bedaque, P; Luu, T; Platter, L 73 NUCLEAR PHYSICS AND RADIATION PHYSICS; DEUTERIUM; FIELD THEORIES; NUCLEAR PHYSICS; NUCLEOSYNTHESIS;...

  11. Adrian Cooper CEO, Oxford Economics

    Gasoline and Diesel Fuel Update (EIA)

    macroeconomic impact of lower oil prices June 2015 Adrian Cooper CEO, Oxford Economics acooper@oxfordeconomics.com Lower oil prices big boost for the global economy... 2 ...but global economic news has been disappointing 3 Who should be the winners? 4 ...and losers? 5 Fall in oil prices give US households extra $1,000 6 But investment down sharply... 7 ...and further falls likely 8 Extraction sector employment also hit hard 9 But not all countries have seen lower gas prices 10 Contrasting

  12. Oxford, Massachusetts: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Oxford is a town in Worcester County, Massachusetts.1 Registered Energy Companies in...

  13. City of Oxford, Georgia (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Oxford, Georgia (Utility Company) Jump to: navigation, search Name: Oxford City of Place: Georgia Phone Number: 770-786-7004 Website: www.oxfordgeorgia.org Outage Hotline:...

  14. Village of Oxford, Nebraska (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    Oxford, Nebraska (Utility Company) Jump to: navigation, search Name: Oxford Municipal Power Place: Nebraska Phone Number: 308.824.3511 Website: www.oxfordne.comgovernment Outage...

  15. Oxford, Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Oxford is a city in Lafayette County, Mississippi. It falls under Mississippi's 1st...

  16. Oxford, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Oxford is a city in Butler County, Ohio. It falls under Ohio's 8th congressional...

  17. Oxford, Michigan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Oxford is a village in Oakland County, Michigan. It falls under Michigan's 8th congressional...

  18. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    Quark mass variation constraints from Big Bang nucleosynthesis Bedaque P Luu T Platter L NUCLEAR PHYSICS AND RADIATION PHYSICS DEUTERIUM FIELD THEORIES NUCLEAR PHYSICS...

  19. City of Oxford, Mississippi (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    Oxford Place: Mississippi Phone Number: 662-232-2373 or 662-236-1310 Website: www.oxfordms.netdepartmentse Twitter: @OxfordMS Facebook: https:www.facebook.com...

  20. Oxford, United Kingdom: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Oxford is a city in the United Kingdom. Registered Research Institutions in Oxford, United...

  1. DOE - Office of Legacy Management -- Oxford_FUSRAP

    Office of Legacy Management (LM)

    Ohio Oxford, Ohio, Site FUSRAP Site Oxford Map Background-The Oxford, Ohio, Site was remediated under the Formerly Utilized Sites Remedial Action Program (FUSRAP). FUSRAP was established in 1974 to remediate sites where radioactive contamination remained from Manhattan Project and early U.S. Atomic Energy Commission (AEC) operations. History-Uranium metal machining at the Oxford Site from 1952 to 1957 for AEC resulted in contamination of the site and several nearby (vicinity) properties, all of

  2. New Oxford, Pennsylvania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Oxford, Pennsylvania: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.8637086, -77.0558143 Show Map Loading map... "minzoom":false,"mappings...

  3. DOE - Office of Legacy Management -- Oxford OH Site - OH 22

    Office of Legacy Management (LM)

    Oxford OH Site - OH 22 FUSRAP Considered Sites Oxford, OH Alternate Name(s): Alba Craft Shop Alba Craft Laboratory Albaugh dba Alba Craft Shop OH.22-3 OH.22-4 Location: 10-14 West Rose Avenue, Oxford, Ohio OH.22-7 Historical Operations: Performed metal fabrication under subcontract with AEC prime contract to National Lead Company of Ohio on uranium metal. Includes VPs. OH.22-5 OH.22-6 OH.22-8 Eligibility Determination: Eligible OH.22-1 OH.22-2 Radiological Survey(s): Assessment Survey,

  4. Big Bang Day: 5 Particles - 5. The Next Particle

    ScienceCinema (OSTI)

    None

    2011-04-25

    Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 5. The Next Particle The "sparticle" - a super symmetric partner to all the known particles could be the answer to uniting all the known particles and their interactions under one grand theoretical pattern of activity. But how do researchers know where to look for such phenomena and how do they know if they find them? Simon Singh reviews the next particle that physicists would like to find if the current particle theories are to ring true.

  5. Big Bang Day: 5 Particles - 4. The Neutrino

    ScienceCinema (OSTI)

    None

    2011-04-25

    Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". It's the most populous particle in the universe. Millions of these subatomic particles are passing through each one of us. With no charge and virtually no mass they can penetrate vast thicknesses of matter without any interaction - indeed the sun emits huge numbers that pass through earth at the speed of light. Neutrinos are similar to the more familiar electron, with one crucial difference: neutrinos do not carry electric charge. As a result they're extremely difficult to detect . But like HG Wells' invisible man they can give themselves away by bumping into things at high energy and detectors hidden in mines are exploiting this to observe these rare interactions.

  6. Big Bang Day: 5 Particles - 2. The Quark

    SciTech Connect (OSTI)

    None

    2009-10-07

    Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 2. The Quark "Three Quarks for Master Mark! Sure he hasn't got much of a bark." James Joyce's Finnegans Wake left its mark on modern physics when physicist Murray Gell Mann proposed this name for a group of hypothetical subatomic particles that were revealed in 1960 as the fundamental units of matter. Basic particles it seems are made up of even more basic units called quarks that make up 99.9% of visible material in the universe.. But why do we know so little about them? Quarks have never been seen as free particles but instead, inextricably bound together by the Strong Force that in turn holds the atomic nucleus together. This is the hardest of Nature's fundamental forces to crack, but recent theoretical advances, mean that the properties of the quark are at last being revealed.

  7. Big Bang Day: The Making of CERN (Episode 1)

    SciTech Connect (OSTI)

    None

    2009-10-06

    A two-part history of the CERN project. Quentin Cooper explores the fifty-year history of CERN, the European particle physics laboratory in Switzerland. The institution was created to bring scientists together after WW2 .......

  8. COLLOQUIUM: Seeing the Big Bang More Clearly: The Evolution of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at PPPL, adult visitors must show a government-issued photo I.D. - for example, a passport or a driver's license. Non-U.S. citizens must show a government-issued photo I.D.,...

  9. Big Bang Day: 5 Particles - 2. The Quark

    ScienceCinema (OSTI)

    None

    2011-04-25

    Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 2. The Quark "Three Quarks for Master Mark! Sure he hasn't got much of a bark." James Joyce's Finnegans Wake left its mark on modern physics when physicist Murray Gell Mann proposed this name for a group of hypothetical subatomic particles that were revealed in 1960 as the fundamental units of matter. Basic particles it seems are made up of even more basic units called quarks that make up 99.9% of visible material in the universe.. But why do we know so little about them? Quarks have never been seen as free particles but instead, inextricably bound together by the Strong Force that in turn holds the atomic nucleus together. This is the hardest of Nature's fundamental forces to crack, but recent theoretical advances, mean that the properties of the quark are at last being revealed.

  10. PPPL, Princeton launch hunt for Big Bang particles offering clues...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and the use of quantum electronics - a discipline that deals with the effect of quantum mechanics on the behavior of electrons in matter - to detect the minute extra...

  11. Big Bang Day: The Making of CERN (Episode 1)

    ScienceCinema (OSTI)

    None

    2011-04-25

    A two-part history of the CERN project. Quentin Cooper explores the fifty-year history of CERN, the European particle physics laboratory in Switzerland. The institution was created to bring scientists together after WW2 .......

  12. Big Bang Day: 5 Particles - 1. The Electron

    ScienceCinema (OSTI)

    None

    2011-04-25

    Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 1. The Electron Just over a century ago, British physicist J.J. Thompson experimenting with electric currents and charged particles inside empty glass tubes, showed that atoms are divisible into indivisible elementary particles. But how could atoms be built up of these so called "corpuscles"? An exciting 30 year race ensued, to grasp the planetary model of the atom with its orbiting electrons, and the view inside the atom was born. Whilst the number of electrons around the nucleus of an atom determines their the chemistry of all elements, the power of electrons themselves have been harnessed for everyday use: electron beams for welding,cathode ray tubes and radiation therapy.

  13. Big Bang or Big Bounce? Professor Paul J. Steinhardt Princeton...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bang or Big Bounce? Professor Paul J. Steinhardt Princeton University Wednesday, Oct 30, 2013 - 4:15PM MBG AUDITORIUM Refreshments at 4:00PM The PrinceTon Plasma Physics laboraTory...

  14. What Was There Before the Big Bang? | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flying above the innovative ecoROTR wind turbine in a drone NormTurnquistecoROTRV ECO ROTR (Energy Capture Optimization by Revolutionary Onboard Turbine Reshape) - Making it...

  15. Big Bang Day: The Making of CERN (Episode 2)

    ScienceCinema (OSTI)

    None

    2011-04-25

    A two-part history of the CERN project. Quentin Cooper explores the fifty-year history of CERN, the European particle physics laboratory in Switzerland.

  16. Big Bang Day : The Great Big Particle Adventure - 1. Atom

    ScienceCinema (OSTI)

    None

    2011-04-25

    In this series, comedian and physicist Ben Miller asks the CERN scientists what they hope to find. The notion of atoms dates back to Greek philosophers who sought a natural mechanical explanation of the Universe, as opposed to a divine one. The existence what we call chemical atoms, the constituents of all we see around us, wasn't proved until a hundred years ago, but almost simultaneously it was realised these weren't the indivisible constituents the Greeks envisaged. Much of the story of physics since then has been the ever-deeper probing of matter until, at the end of the 20th century, a complete list of fundamental ingredients had been identified, apart from one, the much discussed Higgs particle. In this programme, Ben finds out why this last particle is so pivotal, not just to atomic theory, but to our very existence - and how hopeful the scientists are of proving its existence.

  17. LHC, le Big Bang en éprouvette

    ScienceCinema (OSTI)

    None

    2011-10-06

    Notre compréhension de l?Univers est en train de changer? Bar des Sciences - Tout public Débat modéré par Marie-Odile Montchicourt, journaliste de France Info. Evenement en vidéoconférence entre le Globe de la science et de l?innovation, le bar le Baloard de Montpellier et la Maison des Métallos à Paris. Intervenants au CERN : Philippe Charpentier et Daniel Froideveaux, physiciens au CERN. Intervenants à Paris : Vincent Bontemps, philosophe et chercheur au CEA ; Jacques Arnould, philosophe, historien des sciences et théologien, Jean-Jacques Beineix, réalisateur, producteur, scénariste de cinéma. Intervenants à Montpellier (LPTA) : André Neveu, physicien théoricien et directeur de recherche au CNRS ; Gilbert Moultaka, physicien théoricien et chargé de recherche au CNRS. Partenariat : CERN, CEA, IN2P3, Université MPL2 (LPTA) Dans le cadre de la Fête de la science 2008

  18. Oxford, North Carolina: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Oxford is a city in Granville County, North Carolina. It falls under North Carolina's 1st...

  19. Harry Potter, Oxford and Nuclear Energy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Assistant Secretary Dr. Peter Lyons meets with students on the Oxford University Campus in the same room where scenes from the Harry Potter films were filmed. Assistant Secretary Dr. Peter Lyons meets with students on the Oxford University Campus in the same room where scenes from the Harry Potter films were filmed. Karissa Marcum Public Affairs Specialist, Office of Public Affairs Dr. Peter Lyons, the Assistant Secretary for Nuclear Energy at the Energy Department and the U.S. government's

  20. Supernova neutrinos and explosive nucleosynthesis

    SciTech Connect (OSTI)

    Kajino, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Aoki, W. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Cheoun, M.-K. [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Hayakawa, T. [Japan Atomic Energy Agency, Shirakara-Shirane 2-4, Tokai-mura, Ibaraki 319-1195 (Japan); Hidaka, J.; Hirai, Y.; Shibagaki, S. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Mathews, G. J. [Center for Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Nakamura, K. [Faculty of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan); Suzuki, T. [Department of Physics, College of Humanities and Sciences, Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550 (Japan)

    2014-05-09

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos. We studied the explosive nucleosyn-thesis in supernovae and found that several isotopes {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta as well as r-process nuclei are affected by the neutrino interactions. The abundance of these isotopes therefore depends strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We discuss first how to determine the neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the effects of neutrino oscillation on their abundances, and propose a novel method to determine the still unknown neutrino oscillation parameters, mass hierarchy and ?{sub 13}, simultaneously. There is recent evidence that SiC X grains from the Murchison meteorite may contain supernova-produced light elements {sup 11}B and {sup 7}Li encapsulated in the presolar grains. Combining the recent experimental constraints on ?{sub 13}, we show that our method sug-gests at a marginal preference for an inverted neutrino mass hierarchy. Finally, we discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  1. Oxford Area Community School District (Michigan) Bonds Case Study

    Broader source: Energy.gov [DOE]

    Michigan’s Oxford Area Community School District entered into an energy savings performance contract and issued limited tax general obligation bonds to fund the up-front costs of almost $3 million of energy-related improvements. Case study is excerpted from Financing Energy Upgrades for K-12 School Districts: A Guide to Tapping into Funding for Energy Efficiency and Renewable Energy Improvements. Author: Merrian Borgeson and Mark Zimring

  2. Abundances for p-process nucleosynthesis

    SciTech Connect (OSTI)

    De Laeter, John R.

    2008-04-15

    An important constraint in developing models of p-process nucleosynthesis is that the abundances of many of the p-process nuclides are not well known. A recent review of the p-process has identified six p-process nuclides that are of particular significance to p-process theorists [M. Arnould and S. Goriely, Phys. Rep. 384, 1 (2003)]. These nuclides are {sup 92,94}Mo, {sup 96,98}Ru, {sup 138}La, and {sup 180}Ta{sup m}. The absence of accurate abundances for these isotopes is due to the fact that the isotopic composition of the elements concerned have not been corrected for isotope fractionation induced by the thermal ionization mass spectrometric instruments used to measure them. To remedy this deficiency, a VG 354 mass spectrometer was calibrated using gravimetric mixtures of enriched isotopes to enable the absolute isotopic compositions of these elements to be obtained. Although the isotopic abundances of {sup 92,94}Mo, {sup 138}La, and {sup 180}Ta{sup m} have previously been reported, the absolute abundances of {sup 96,98}Ru are reported for the first time in this article, with a significant reduction in the magnitude of the values as compared to existing abundances.

  3. Challenges in explosive nucleosynthesis of heavy elements

    SciTech Connect (OSTI)

    Pinedo, Gabriel Martinez; Fischer, T.; Lohs, A.; Huther, L.

    2012-10-20

    We show that a treatment of charged-current neutrino interactions in hot and dense matter that is consistent with the nuclear equation of state has a strong impact on the spectra of the neutrinos emitted during the deleptonization period of a protoneutron star formed in a core-collapse supernova. We compare results of simulations including and neglecting mean field effects on the neutrino opacities. Their inclusion reduces the luminosities of all neutrino flavors and enhances the spectral differences between electron neutrino and antineutrino. The magnitude of the difference depends on the equation of state and in particular on the symmetry energy at sub-nuclear densities. These modifications reduce the proton-to-nucleon ratio of the neutrino-driven outflow, increasing slightly their entropy. They are expected to have a substantial impact on the nucleosynthesis in neutrino-driven winds, even though they do not result in conditions that favor an r-process. Contrarily to previous findings, our simulations show that the spectra of electron neutrinos remain substantially different from those of other (anti)neutrino flavors during the entire deleptonization phase of the protoneutron star. The obtained luminosity and spectral changes are also expected to have important consequences for neutrino flavor oscillations and neutrino detection on Earth.

  4. HOW MANY NUCLEOSYNTHESIS PROCESSES EXIST AT LOW METALLICITY?

    SciTech Connect (OSTI)

    Hansen, C. J. [Landessternwarte, ZAH, Heidelberg University, Königstuhl 12, D-69117 Heidelberg (Germany); Montes, F. [Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824 (United States); Arcones, A., E-mail: cjhansen@lsw.uni-heidelberg.de, E-mail: cjhansen@dark-cosmology.dk, E-mail: montes@nscl.msu.edu, E-mail: almudena.arcones@physik.tu-darmstadt.de [Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstr. 2, Darmstadt D-64289 (Germany)

    2014-12-20

    Abundances of low-metallicity stars offer a unique opportunity to understand the contribution and conditions of the different processes that synthesize heavy elements. Many old, metal-poor stars show a robust abundance pattern for elements heavier than Ba, and a less robust pattern between Sr and Ag. Here we probe if two nucleosynthesis processes are sufficient to explain the stellar abundances at low metallicity, and we carry out a site independent approach to separate the contribution from these two processes or components to the total observationally derived abundances. Our approach provides a method to determine the contribution of each process to the production of elements such as Sr, Zr, Ba, and Eu. We explore the observed star-to-star abundance scatter as a function of metallicity that each process leads to. Moreover, we use the deduced abundance pattern of one of the nucleosynthesis components to constrain the astrophysical conditions of neutrino-driven winds from core-collapse supernovae.

  5. Topical Collaboration "Neutrinos and Nucleosynthesis in Hot and Dense Matter"

    SciTech Connect (OSTI)

    Allahverdi, Rouzbeh

    2015-09-18

    This is the final technical report describing contributions from the University of New Mexico to Topical Collaboration on "Neutrinos and Nucleosynthesis in Hot and Dense Matter" in the period June 2010 through May 2015. During the funding period, the University of New Mexico successfully hired Huaiyu Duan as a new faculty member with the support from DOE, who has contributed to the Topical Collaboration through his research and collaborations.

  6. Primordial Li abundance and massive particles

    SciTech Connect (OSTI)

    Latin-Capital-Letter-Eth apo, H.

    2012-10-20

    The problem of the observed lithium abundance coming from the Big Bang Nucleosynthesis is as of yet unsolved. One of the proposed solutions is including relic massive particles into the Big Bang Nucleosynthesis. We investigated the effects of such particles on {sup 4}HeX{sup -}+{sup 2}H{yields}{sup 6}Li+X{sup -}, where the X{sup -} is the negatively charged massive particle. We demonstrate the dominance of long-range part of the potential on the cross-section.

  7. Matter, antimatter and surviving the big bang is topic of Lab...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for the Deaf, 1060 Cerrillos Road, Santa Fe Nov. 15, Taos Convention Center, 120 Civic Plaza Drive, Taos. Sponsored by the Fellows of Los Alamos National Laboratory, the Frontiers...

  8. Big Bang Day : The Great Big Particle Adventure - 2. Who Ordered That?

    ScienceCinema (OSTI)

    None

    2011-04-25

    In this series, comedian and physicist Ben Miller asks the CERN scientists what they hope to find. The atoms that make up our material world are important to us, but it turns out they aren't so significant on the cosmic stage. In fact early in the search for the stuff of atoms, researchers discovered particles that played no part in Earthly chemistry - for example particles in cosmic rays that resemble electrons (the stuff of electricity and the chemical glue in molecules) in almost all respects except that they weigh 140 times more. "Who ordered that?" one Nobel laureate demanded. They also discovered antimatter - the destructive mirror-image particles at obliterate all matter they come into contact with. In fact, the Universe is mostly made up of particles that could never make atoms, so that we are just the flotsam of the cosmos. But the main constituent of the Universe, what makes 80% of creation, has never been seen in the lab. Researchers at CERN believe they can create samples of it, down here on Earth.

  9. Microsoft Word - fields_abstract

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4, 2010 at 3:45 pm "Primordial Nucleosynthesis After WMAP: The Lithium Problem and New Physics" Professor Brian Fields Departments of Astronomy and Physics Univ. of Illinois, Urbana, IL Abstract: The early universe is a central arena for the interplay among nuclear,particle, and astrophysics, and big-bang nucleosynthesis remains particularly important because it represents our earliest reliable probe of the cosmos. We will review the physics of primordial nucleosynthesis which

  10. Primordial magnetic field limits from cosmological data

    SciTech Connect (OSTI)

    Kahniashvili, Tina [McWilliams Center for Cosmology and Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213 (United States); Department of Physics, Laurentian University, Ramsey Lake Road, Sudbury, Ontario P3E 2C (Canada); Abastumani Astrophysical Observatory, Ilia State University, 2A Kazbegi Ave, Tbilisi, GE-0160 (Georgia); Tevzadze, Alexander G. [Abastumani Astrophysical Observatory, Ilia State University, 2A Kazbegi Ave, Tbilisi, GE-0160 (Georgia); Faculty of Exact and Natural Sciences, Tbilisi State University, 1 Chavchavadze Avenue, Tbilisi, GE-0128 (Georgia); Sethi, Shiv K. [McWilliams Center for Cosmology and Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213 (United States); Raman Research Institute, Sadashivanagar, Bangalore 560080 (India); Pandey, Kanhaiya [Raman Research Institute, Sadashivanagar, Bangalore 560080 (India); Ratra, Bharat [Department of Physics, Kansas State University, 116 Cardwell Hall, Manhattan, Kansas 66506 (United States)

    2010-10-15

    We study limits on a primordial magnetic field arising from cosmological data, including that from big bang nucleosynthesis, cosmic microwave background polarization plane Faraday rotation limits, and large-scale structure formation. We show that the physically relevant quantity is the value of the effective magnetic field, and limits on it are independent of how the magnetic field was generated.

  11. Microsoft PowerPoint - Oxford_MiniBooNE_and_SterileNus.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oxford Seminar June 23, 2004 * Extensions to the Neutrino Standard Model: Sterile Neutrinos * MiniBooNE: Status and Prospects * Future Directions if MiniBooNE Sees Oscillations 2 Theoretical Prejudices before 1995 * Natural scale for ∆m 2 ~ 10 - 100 eV 2 since needed to explain dark matter * Oscillation mixing angles must be small like the quark mixing angles * Solar neutrino oscillations must be small mixing angle MSW solution because it is "cool" * Atmospheric neutrino anomaly must

  12. Modeling Cosmic Nucleosynthesis | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling Cosmic Nucleosynthesis Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: Email Us More Information » 12.01.13 Modeling Cosmic Nucleosynthesis First measurements of isotopes produced by

  13. The r-process nucleosynthesis: Nuclear physics challenges

    SciTech Connect (OSTI)

    Goriely, S.

    2012-10-20

    About half of the nuclei heavier than iron observed in nature are produced by the socalled rapid neutron capture process, or r-process, of nucleosynthesis. The identification of the astrophysics site and the specific conditions in which the r-process takes place remains, however, one of the still-unsolved mysteries of modern astrophysics. Another underlying difficulty associated with our understanding of the r-process concerns the uncertainties in the predictions of nuclear properties for the few thousands exotic neutron-rich nuclei involved and for which essentially no experimental data exist. The present contribution emphasizes some important future challenges faced by nuclear physics in this problem, particularly in the determination of the nuclear structure properties of exotic neutron-rich nuclei as well as their radiative neutron capture rates and their fission probabilities. These quantities are particularly relevant to determine the composition of the matter resulting from the r-process. Their impact on the r-abundance distribution resulting from the decompression of neutron star matter is discussed.

  14. Low-mass helium star models for type Ib supernovae - Light curves, mixing, and nucleosynthesis

    SciTech Connect (OSTI)

    Shigeyama, Toshikazu; Nomoto, Kenichi; Tsujimoto, Takuji; Hashimoto, Masaki (Tokyo Univ. (Japan) Kyushu Univ., Fukuoka (Japan))

    1990-09-01

    The applicability of theoretical models of He-star explosions to type Ib SN explosions is explored. Particular attention is given to light curves and mixing, Rayleigh-Taylor instabilities and mixing, and nucleosynthesis and the mass of Ni-56. Typical numerical results are presented in graphs, and it is concluded that the explosions of SN 1983N and SN 1983I can be accurately represented in terms of explosions of He stars with M(alpha) of 3-4 solar mass. A strong M(alpha) dependence of light-curve shape, photospheric velocity, and Ni-56 mass is found. 44 refs.

  15. Beta-decay spectroscopy relevant to the r-process nucleosynthesis

    SciTech Connect (OSTI)

    Nishimura, Shunji; Collaboration: RIBF Decay Collaboration

    2012-11-12

    A scientific program of beta-decay spectroscopy relevant to r-process nucleosynthesis has been started using high intensity U-beam at the RIBF. The first results of {beta}-decay half-lives of very neutron-rich Kr to Tc nuclides, all of which lie close to the r-process path, suggest a systematic enhancement of the the {beta}-decay rates of the Zr and Nb isotopes around A110 with respect to the predictions of the deformed quasiparticle-random-phase-approximation model (FRDM + QRPA). An impact of the results on the astrophysical r-process is discussed together with the future perspective of the {beta}-decay spectroscopy with the EURICA.

  16. THE {sup 12}C + {sup 12}C REACTION AND THE IMPACT ON NUCLEOSYNTHESIS IN MASSIVE STARS

    SciTech Connect (OSTI)

    Pignatari, M.; Hirschi, R.; Bennett, M.; Wiescher, M.; Beard, M.; Gallino, R.; Fryer, C.; Rockefeller, G.; Herwig, F.; Timmes, F. X.

    2013-01-01

    Despite much effort in the past decades, the C-burning reaction rate is uncertain by several orders of magnitude, and the relative strength between the different channels {sup 12}C({sup 12}C, {alpha}){sup 20}Ne, {sup 12}C({sup 12}C, p){sup 23}Na, and {sup 12}C({sup 12}C, n){sup 23}Mg is poorly determined. Additionally, in C-burning conditions a high {sup 12}C+{sup 12}C rate may lead to lower central C-burning temperatures and to {sup 13}C({alpha}, n){sup 16}O emerging as a more dominant neutron source than {sup 22}Ne({alpha}, n){sup 25}Mg, increasing significantly the s-process production. This is due to the chain {sup 12}C(p, {gamma}){sup 13}N followed by {sup 13}N({beta} +){sup 13}C, where the photodisintegration reverse channel {sup 13}N({gamma}, p){sup 12}C is strongly decreasing with increasing temperature. Presented here is the impact of the {sup 12}C+{sup 12}C reaction uncertainties on the s-process and on explosive p-process nucleosynthesis in massive stars, including also fast rotating massive stars at low metallicity. Using various {sup 12}C+{sup 12}C rates, in particular an upper and lower rate limit of {approx}50,000 higher and {approx}20 lower than the standard rate at 5 Multiplication-Sign 10{sup 8} K, five 25 M {sub Sun} stellar models are calculated. The enhanced s-process signature due to {sup 13}C({alpha}, n){sup 16}O activation is considered, taking into account the impact of the uncertainty of all three C-burning reaction branches. Consequently, we show that the p-process abundances have an average production factor increased up to about a factor of eight compared with the standard case, efficiently producing the elusive Mo and Ru proton-rich isotopes. We also show that an s-process being driven by {sup 13}C({alpha}, n){sup 16}O is a secondary process, even though the abundance of {sup 13}C does not depend on the initial metal content. Finally, implications for the Sr-peak elements inventory in the solar system and at low metallicity are discussed.

  17. Gravitational waves from domain walls in the next-to-minimal supersymmetric standard model

    SciTech Connect (OSTI)

    Kadota, Kenji; Kawasaki, Masahiro; Saikawa, Ken’ichi

    2015-10-16

    The next-to-minimal supersymmetric standard model predicts the formation of domain walls due to the spontaneous breaking of the discrete Z{sub 3}-symmetry at the electroweak phase transition, and they collapse before the epoch of big bang nucleosynthesis if there exists a small bias term in the potential which explicitly breaks the discrete symmetry. Signatures of gravitational waves produced from these unstable domain walls are estimated and their parameter dependence is investigated. It is shown that the amplitude of gravitational waves becomes generically large in the decoupling limit, and that their frequency is low enough to be probed in future pulsar timing observations.

  18. 20013-2014 Section III: Nuclear Theory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Anomalous asymptotics of radial overlap functions for bound systems of three or more particles L. D. Blokhintsev, A. M. Mukhamedzhanov, and R. Yarmukhamedov Astrophysical reaction rate for 17F(p,γ)18Ne from the transfer reaction 13C(17O, 18O)12C T. Al-Abdullah, F. Carstoiu, X. Chen, H. L. Clark, C. A. Gagliardi, Y. -W. Lui, A. Mukhamedzhanov, G. Tabacaru, Y. Tokimoto, L. Trache, R. E. Tribble, and Y. Zhai Big bang nucleosynthesis revisited via Trojan Horse method measurements R. G. Pizzone, R.

  19. 2014-2015 Section III: Nuclear Theory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutron stars in the framework of Landau's theory H. Zheng, J. Sahagun, and A. Bonasera Asymptotic normalization coefficients and spectroscopic factors from deuteron stripping reactions D.Y. Pang and A.M. Mukhamedzhanov Big bang nucleosynthesis revisted via Trojan Horse method measurements R.G. Pizzone, R. Spartá, C.A. Bertulani, C. Spitaleri, M. La Cognata, J. Lalmansingh, L. Lamia, A. Mukhamedzhanov, and A. Tumino Constraining the 6.05 MeV 0+ and 6.13 MeV 3- cascade transitions in the

  20. FY16 Projects.xls

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PI/ Univ PI Title University /Internal H. Li/Dean Linn Close-in Exoplanets: Origin and Dynamics of Hot Jupiters and Super-Earths UCSC M. Paris/Fuller Towards a Unitary & Self-consistent Treatment of Big Bang Nucleosynthesis UCSD Stamatikos/Fryer Spectral Variation Studies of Gamma-ray Bursts OH Univ J Smidt/A Cooray Primordial Explosions and BlackHoles: Direct and indrect Signatures in deep Sky Image (gave only what was requested) UC Irvin Hui Li/Shengtai Li Planet Formation in the ALMA Era:

  1. Can mirror matter solve the the cosmological lithium problem?

    SciTech Connect (OSTI)

    Coc, Alain [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), CNRS/IN2P3, Université Paris Sud 11, UMR 8609, Bâtiment 104, 91405 Orsay Campus (France); Uzan, Jean-Philippe; Vangioni, Elisabeth [Institut d'Astrophysique de Paris, UMR-7095 du CNRS, Université Pierre et Marie Curie, 98 bis bd Arago, 75014 Paris, France and Sorbonne Universités, Institut Lagrange de Paris, 98 bis bd Arago, 75014 Paris (France)

    2014-05-02

    The abundance of lithium-7 confronts cosmology with a long lasting inconsistency between the predictions of standard Big Bang Nucleosynthesis with the baryonic density determined from the Cosmic Microwave Background observations on the one hand, and the spectroscopic determination of the lithium-7 abundance on the other hand. We investigated the influence of the existence of a mirror world, focusing on models in which mirror neutrons can oscillate into ordinary neutrons. Such a mechanism allows for an effective late time neutron injection, which induces an increase of the destruction of beryllium-7and thus a lower final lithium-7 abundance.

  2. Impact of nuclear fission on r-process nucleosynthesis and origin of solar r-process elements

    SciTech Connect (OSTI)

    Shibagaki, Shota; Kajino, Toshitaka; Mathews, Grant J.; Chiba, Satoshi

    2015-02-24

    Binary neutron star mergers (NSMs) are expected to be main production sites of r-process elements. Their ejecta are extremely neutron-rich (Y{sub e}<0.1), and the r-process path proceeds along the neutron drip line and enters the region of fissile nuclei. In this situation, although superheavy nuclei may be synthesized and the r-process path may reach the island of stability, those are sensitive to theoretical models of nuclear masses and nuclear fission. In this study, we carry out r-process nucleosynthesis simulations in the NSMs. Our new nuclear reaction network code include new theoretical models of nuclear masses and nuclear fission. Our r-process simulation of a binary NSM shows that the final r-process elemental abundances exhibit flat pattern for A?110-160, and several fission cycling operate in extremely neutron-rich conditions of the NSM. We find that the combination of the NSMs and the magnetorotational supernovae can reproduce the solar r-process elements. We discuss the validity of this interpretation.

  3. Asymmetric dark matter annihilation as a test of non-standard cosmologies

    SciTech Connect (OSTI)

    Gelmini, Graciela B.; Huh, Ji-Haeng; Rehagen, Thomas E-mail: jhhuh@physics.ucla.edu

    2013-08-01

    We show that the relic abundance of the minority component of asymmetric dark matter can be very sensitive to the expansion rate of the Universe and the temperature of transition between a non-standard pre-Big Bang Nucleosynthesis cosmological phase and the standard radiation dominated phase, if chemical decoupling happens before this transition. In particular, because the annihilation cross section of asymmetric dark matter is typically larger than that of symmetric dark matter in the standard cosmology, the decrease in relic density of the minority component in non-standard cosmologies with respect to the majority component may be compensated by the increase in annihilation cross section, so that the annihilation rate at present of asymmetric dark matter, contrary to general belief, could be larger than that of symmetric dark matter in the standard cosmology. Thus, if the annihilation cross section of the asymmetric dark matter candidate is known, the annihilation rate at present, if detectable, could be used to test the Universe before Big Bang Nucleosynthesis, an epoch from which we do not yet have any data.

  4. Code dependencies of pre-supernova evolution and nucleosynthesis in massive stars: evolution to the end of core helium burning

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jones, S.; Hirschi, R.; Pignatari, M.; Heger, A.; Georgy, C.; Nishimura, N.; Fryer, C.; Herwig, F.

    2015-01-15

    We present a comparison of 15M⊙ , 20M⊙ and 25M⊙ stellar models from three different codes|GENEC, KEPLER and MESA|and their nucleosynthetic yields. The models are calculated from the main sequence up to the pre-supernova (pre-SN) stage and do not include rotation. The GENEC and KEPLER models hold physics assumptions that are characteristic of the two codes. The MESA code is generally more flexible; overshooting of the convective core during the hydrogen and helium burning phases in MESA is chosen such that the CO core masses are consistent with those in the GENEC models. Full nucleosynthesis calculations are performed for allmore » models using the NuGrid post-processing tool MPPNP and the key energy-generating nuclear reaction rates are the same for all codes. We are thus able to highlight the key diferences between the models that are caused by the contrasting physics assumptions and numerical implementations of the three codes. A reasonable agreement is found between the surface abundances predicted by the models computed using the different codes, with GENEC exhibiting the strongest enrichment of H-burning products and KEPLER exhibiting the weakest. There are large variations in both the structure and composition of the models—the 15M⊙ and 20M⊙ in particular—at the pre-SN stage from code to code caused primarily by convective shell merging during the advanced stages. For example the C-shell abundances of O, Ne and Mg predicted by the three codes span one order of magnitude in the 15M⊙ models. For the alpha elements between Si and Fe the differences are even larger. The s-process abundances in the C shell are modified by the merging of convective shells; the modification is strongest in the 15M⊙ model in which the C-shell material is exposed to O-burning temperatures and the γ -process is activated. The variation in the s-process abundances across the codes is smallest in the 25M⊙ models, where it is comparable to the impact of nuclear reaction rate uncertainties. In general the differences in the results from the three codes are due to their contrasting physics assumptions (e.g. prescriptions for mass loss and convection). The broadly similar evolution of the 25M⊙ models gives us reassurance that different stellar evolution codes do produce similar results. For the 15M⊙ and 20M⊙ models, however, the different input physics and the interplay between the various convective zones lead to important differences in both the pre-supernova structure and nucleosynthesis predicted by the three codes. For the KEPLER models the core masses are different and therefore an exact match could not be expected.« less

  5. Oxford, Ohio, Site Fact Sheet

    Office of Legacy Management (LM)

    ... established FUSRAP in March 1974 to evaluate radioactive contamination at sites where work was performed to develop the nation's nuclear weapons and early atomic energy program. ...

  6. Light sterile neutrinos in the early universe

    SciTech Connect (OSTI)

    Lunardini, Cecilia

    2014-06-24

    Cosmological and terrestrial data suggests the number of light neutrinos may be greater than 3, motivating a careful reexamination of cosmological bounds on extra light species. Big bang nucleosynthesis constrains the number of relativistic neutrino species present during nucleosynthesis, N{sub eff}{sup BBN}, while measurements of the cosmic microwave background (CMB) angular power spectrum constrain the effective energy density in relativistic neutrinos at the time of matter-radiation equality, N{sub eff}{sup CMB}. We review a scenario with two sterile neutrinos and explore whether partial thermalization of the sterile states can ease the tension between cosmological constraints on N{sub eff}{sup BBN} and terrestrial data. We conclude that, still, two additional light sterile neutrinos species cannot fit all the data at the 95% confidence level.

  7. ALMA imaging of gas and dust in a galaxy protocluster at redshift 5.3: [C II] emission in 'typical' galaxies and dusty starbursts ?1 billion years after the big bang

    SciTech Connect (OSTI)

    Riechers, Dominik A.; Carilli, Christopher L.; Capak, Peter L.; Yan, Lin; Scoville, Nicholas Z.; Smol?i?, Vernesa; Schinnerer, Eva; Yun, Min; Cox, Pierre; Bertoldi, Frank; Karim, Alexander

    2014-12-01

    We report interferometric imaging of [C II]({sup 2} P {sub 3/2}?{sup 2} P {sub 1/2}) and OH({sup 2}?{sub 1/2} J = 3/2?1/2) emission toward the center of the galaxy protocluster associated with the z = 5.3 submillimeter galaxy (SMG) AzTEC-3, using the Atacama Large (sub)Millimeter Array (ALMA). We detect strong [C II], OH, and rest-frame 157.7 ?m continuum emission toward the SMG. The [C II]({sup 2} P {sub 3/2}?{sup 2} P {sub 1/2}) emission is distributed over a scale of 3.9 kpc, implying a dynamical mass of 9.7 × 10{sup 10} M {sub ?}, and a star formation rate (SFR) surface density of ?{sub SFR} = 530 M {sub ?} yr{sup –1} kpc{sup –2}. This suggests that AzTEC-3 forms stars at ?{sub SFR} approaching the Eddington limit for radiation pressure supported disks. We find that the OH emission is slightly blueshifted relative to the [C II] line, which may indicate a molecular outflow associated with the peak phase of the starburst. We also detect and dynamically resolve [C II]({sup 2} P {sub 3/2}?{sup 2} P {sub 1/2}) emission over a scale of 7.5 kpc toward a triplet of Lyman-break galaxies with moderate UV-based SFRs in the protocluster at ?95 kpc projected distance from the SMG. These galaxies are not detected in the continuum, suggesting far-infrared SFRs of <18-54 M {sub ?} yr{sup –1}, consistent with a UV-based estimate of 22 M {sub ?} yr{sup –1}. The spectral energy distribution of these galaxies is inconsistent with nearby spiral and starburst galaxies, but resembles those of dwarf galaxies. This is consistent with expectations for young starbursts without significant older stellar populations. This suggests that these galaxies are significantly metal-enriched, but not heavily dust-obscured, 'normal' star-forming galaxies at z > 5, showing that ALMA can detect the interstellar medium in 'typical' galaxies in the very early universe.

  8. PRODUCTION OF {sup 9}Be THROUGH THE {alpha}-FUSION REACTION OF METAL-POOR COSMIC RAYS AND STELLAR FLARES

    SciTech Connect (OSTI)

    Kusakabe, Motohiko; Kawasaki, Masahiro E-mail: kawasaki@icrr.u-tokyo.ac.jp

    2013-04-10

    Spectroscopic observations of metal-poor stars have indicated possible {sup 6}Li abundances that are much larger than the primordial abundance predicted in the standard big bang nucleosynthesis model. Possible mechanisms of {sup 6}Li production in metal-poor stars include pregalactic and cosmological cosmic-ray (CR) nucleosynthesis and nucleosynthesis by flare-accelerated nuclides. We study {sup 9}Be production via two-step {alpha}-fusion reactions of CR or flare-accelerated {sup 3,4}He through {sup 6}He and {sup 6,7}Li, in pregalactic structure, intergalactic medium, and stellar surfaces. We solve transfer equations of CR or flare particles and calculate nuclear yields of {sup 6}He, {sup 6,7}Li, and {sup 9}Be taking account of probabilities of processing {sup 6}He and {sup 6,7}Li into {sup 9}Be via fusions with {alpha} particles. Yield ratios, i.e., {sup 9}Be/{sup 6}Li, are then calculated for the CR and flare nucleosynthesis models. We suggest that the future observations of {sup 9}Be in metal-poor stars may find enhanced abundances originating from metal-poor CR or flare activities.

  9. Spherically symmetric cosmological spacetimes with dust and radiation — numerical implementation

    SciTech Connect (OSTI)

    Lim, Woei Chet; Regis, Marco; Clarkson, Chris E-mail: regis@to.infn.it

    2013-10-01

    We present new numerical cosmological solutions of the Einstein Field Equations. The spacetime is spherically symmetric with a source of dust and radiation approximated as a perfect fluid. The dust and radiation are necessarily non-comoving due to the inhomogeneity of the spacetime. Such a model can be used to investigate non-linear general relativistic effects present during decoupling or big-bang nucleosynthesis, as well as for investigating void models of dark energy with isocurvature degrees of freedom. We describe the full evolution of the spacetime as well as the redshift and luminosity distance for a central observer. After demonstrating accuracy of the code, we consider a few example models, and demonstrate the sensitivity of the late time model to the degree of inhomogeneity of the initial radiation contrast.

  10. Is there further evidence for spatial variation of fundamental constants?

    SciTech Connect (OSTI)

    Berengut, J. C.; Flambaum, V. V.; King, J. A.; Curran, S. J.; Webb, J. K.

    2011-06-15

    Indications of spatial variation of the fine-structure constant, {alpha}, based on study of quasar absorption systems have recently been reported [J. K. Webb, J. A. King, M. T. Murphy, V. V. Flambaum, R. F. Carswell, and M. B. Bainbridge, arXiv:1008.3907.]. The physics that causes this {alpha}-variation should have other observable manifestations, and this motivates us to look for complementary astrophysical effects. In this paper we propose a method to test whether spatial variation of fundamental constants existed during the epoch of big bang nucleosynthesis and study existing measurements of deuterium abundance for a signal. We also examine existing quasar absorption spectra data that are sensitive to variation of the electron-to-proton mass ratio {mu} and x={alpha}{sup 2{mu}}g{sub p} for spatial variation.

  11. WIMP Dark Matter Limit-Direct Detection Data and Sensitivity Plots from the Cryogenic Dark Matter Search II and the University of California at Santa Barbara

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Expectations for non-baryonic dark matter are founded principally in Big Bang nucleosynthesis calculations, which indicate that the missing mass of the universe is not likely to be baryonic. The supersymmetric standard model (SUSY) offers a promising framework for expectations of particle species which could satisfy the observed properties of dark matter. WIMPs are the most likely SUSY candidate for a dark matter particle. The High Energy Physics Group at University of California, Santa Barbara, is part of the CDMSII Collaboration and have provided the Interactive Plotter for WIMP Dark Matter Limit-Direct Detection Data on their website. They invite other collaborations working on dark matter research to submit datasets and, as a result, have more than 150 data sets now available for use with the plotting tool. The published source of the data is provided with each data set.

  12. Measurement of the neutron capture cross section of {sup 15}N J

    SciTech Connect (OSTI)

    MeiBner, N.J.; Schatz, H.; Herndl, H.; Wiescher, M.

    1995-10-01

    Neutron capture reactions on fight nuclei may be of considerable importance for the s-process nucleosynthesis in red giant stars as well as in inhomogeneous big bang scenarios and high entropy supernovae neutrino bubbles. To determine the reaction rates for such different temperature conditions, the cross sections need to be known for a wide energy range. The reaction {sup 15}N(n,{gamma}) represents an important link in the reaction seququences for the production of heavier isotopes in such scenarios. At high temperature conditions, the cross section is not only influenced by a non resonant a-wave contribution but also by a non resonant p-wave contribution and higher energy resonances. The (n,{gamma}) cross section has been measured at the Forschungszentrum Karlsruhe for different neutron energies using a fast cyclic neutron activation technique. The technique and the results will be presented.

  13. Blue-tilted tensor spectrum and thermal history of the Universe

    SciTech Connect (OSTI)

    Kuroyanagi, Sachiko; Takahashi, Tomo; Yokoyama, Shuichiro E-mail: tomot@cc.saga-u.ac.jp

    2015-02-01

    We investigate constraints on the spectral index of primordial gravitational waves (GWs), paying particular attention to a blue-tilted spectrum. Such constraints can be used to test a certain class of models of the early Universe. We investigate observational bounds from LIGO+Virgo, pulsar timing and big bang nucleosynthesis, taking into account the suppression of the amplitude at high frequencies due to reheating after inflation and also late-time entropy production. Constraints on the spectral index are presented by changing values of parameters such as reheating temperatures and the amount of entropy produced at late time. We also consider constraints under the general modeling approach which can approximately describe various scenarios of the early Universe. We show that the constraints on the blue spectral tilt strongly depend on the underlying assumption and, in some cases, a highly blue-tilted spectrum can still be allowed.

  14. EXPLOSIVE NUCLEOSYNTHESIS IN THE NEUTRINO-DRIVEN ASPHERICAL SUPERNOVA EXPLOSION OF A NON-ROTATING 15 M{sub sun} STAR WITH SOLAR METALLICITY

    SciTech Connect (OSTI)

    Fujimoto, Shin-ichiro; Kotake, Kei; Hashimoto, Masa-aki; Ono, Masaomi; Ohnishi, Naofumi

    2011-09-01

    We investigate explosive nucleosynthesis in a non-rotating 15 M{sub sun} star with solar metallicity that explodes by a neutrino-heating supernova (SN) mechanism aided by both standing accretion shock instability (SASI) and convection. To trigger explosions in our two-dimensional hydrodynamic simulations, we approximate the neutrino transport with a simple light-bulb scheme and systematically change the neutrino fluxes emitted from the protoneutron star. By a post-processing calculation, we evaluate abundances and masses of the SN ejecta for nuclei with a mass number {<=}70, employing a large nuclear reaction network. Aspherical abundance distributions, which are observed in nearby core-collapse SN remnants, are obtained for the non-rotating spherically symmetric progenitor, due to the growth of a low-mode SASI. The abundance pattern of the SN ejecta is similar to that of the solar system for models whose masses range between (0.4-0.5) M{sub sun} of the ejecta from the inner region ({<=}10, 000 km) of the precollapse core. For the models, the explosion energies and the {sup 56}Ni masses are {approx_equal} 10{sup 51}erg and (0.05-0.06) M{sub sun}, respectively; their estimated baryonic masses of the neutron star are comparable to the ones observed in neutron-star binaries. These findings may have little uncertainty because most of the ejecta is composed of matter that is heated via the shock wave and has relatively definite abundances. The abundance ratios for Ne, Mg, Si, and Fe observed in the Cygnus loop are reproduced well with the SN ejecta from an inner region of the 15 M{sub sun} progenitor.

  15. Light-element nucleosynthesis in a molecular cloud interacting with a supernova remnant and the origin of beryllium-10 in the protosolar nebula

    SciTech Connect (OSTI)

    Tatischeff, Vincent; Duprat, Jean [Centre de Sciences Nucléaires et de Sciences de la Matière, IN2P3-CNRS and Univ Paris-Sud, F-91405 Orsay Cedex (France); De Séréville, Nicolas, E-mail: Vincent.Tatischeff@csnsm.in2p3.fr [Institut de Physique Nucléaire d'Orsay, IN2P3-CNRS and Univ Paris-Sud, F-91405 Orsay Cedex (France)

    2014-12-01

    The presence of short-lived radionuclides (t {sub 1/2} < 10 Myr) in the early solar system provides important information about the astrophysical environment in which the solar system formed. The discovery of now extinct {sup 10}Be (t {sub 1/2} = 1.4 Myr) in calcium-aluminum-rich inclusions (CAIs) with Fractionation and Unidentified Nuclear isotope anomalies (FUN-CAIs) suggests that a baseline concentration of {sup 10}Be in the early solar system was inherited from the protosolar molecular cloud. In this paper, we investigate various astrophysical contexts for the nonthermal nucleosynthesis of {sup 10}Be by cosmic-ray-induced reactions. We first show that the {sup 10}Be recorded in FUN-CAIs cannot have been produced in situ by irradiation of the FUN-CAIs themselves. We then show that trapping of Galactic cosmic rays (GCRs) in the collapsing presolar cloud core induced a negligible {sup 10}Be contamination of the protosolar nebula, the inferred {sup 10}Be/{sup 9}Be ratio being at least 40 times lower than that recorded in FUN-CAIs ({sup 10}Be/{sup 9}Be ? 3 × 10{sup –4}). Irradiation of the presolar molecular cloud by background GCRs produced a steady-state {sup 10}Be/{sup 9}Be ratio ? 1.3 × 10{sup –4} at the time of the solar system formation, which suggests that the presolar cloud was irradiated by an additional source of CRs. Considering a detailed model for CR acceleration in a supernova remnant (SNR), we find that the {sup 10}Be abundance recorded in FUN-CAIs can be explained within two alternative scenarios: (1) the irradiation of a giant molecular cloud by CRs produced by ? 50 supernovae exploding in a superbubble of hot gas generated by a large star cluster of at least 20,000 members, and (2) the irradiation of the presolar molecular cloud by freshly accelerated CRs escaped from an isolated SNR at the end of the Sedov-Taylor phase. In the second picture, the SNR resulted from the explosion of a massive star that ran away from its parent OB association, expanded during most of its adiabatic phase in an intercloud medium of density of about 1 H-atom cm{sup –3}, and eventually interacted with the presolar molecular cloud only during the radiative stage. This model naturally provides an explanation for the injection of other short-lived radionuclides of stellar origin into the cold presolar molecular cloud ({sup 26}Al, {sup 41}Ca, and {sup 36}Cl) and is in agreement with the solar system originating from the collapse of a molecular cloud shocked by a supernova blast wave.

  16. Rob Roser | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roser About Us Rob Roser - Head, Fermilab Scientific Computing Division Most Recent Supercomputing: A Toolbox to Simulate the Big Bang and Beyond September 19

  17. Frank Wilczek, Asymptotic Freedom, and Strong Interaction

    Office of Scientific and Technical Information (OSTI)

    of matter under extreme conditions, such as occurred in the earliest moments of the Big Bang. Also, it permits the construction of unified models of particle interactions,...

  18. Nuclear Astrophysics - Research - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that surround us. Popular cosmology theories tell us that, within an instant after the Big Bang, nuclear synthesis has driven the evolution of the universe. To understand this...

  19. White House honors Los Alamos physicist's early career work

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    what many scientists believe conditions of the universe were like immediately after the Big Bang. Vitev's work has assisted research at the U.S. Department of Energy's...

  20. Neutrino-induced nucleosynthesis in supernovae

    SciTech Connect (OSTI)

    Hayakawa, Takehito

    2012-11-12

    The neutrino-induced reactions in supernova explosions produce some rare odd-odd nuclides. We have made a new time-dependent calculation of the supernova production ratio of the long-lived isomeric state of {sup 180}Ta. This time-dependent solution is crucial for understanding the production and survival of this isotope. We find that the explicit time evolution of the synthesis of {sup 180}Ta using the available nuclear data avoids the overproduction relative to {sup 138}La for a {nu}-process neutrino temperature of 4 MeV. An unstable isotope {sup 92}Nb decays to {sup 92}Zr with a half-life of 3.47 Multiplication-Sign 10{sup 7} years. We have proposed the {nu}-process origin for {sup 92}Nb. We calculate key neutrino-induced reactions and supernova {nu}-process. Our calculated result shows that the abundance of {sup 92}Nb can be explained by the {nu}-process.

  1. The minimal curvaton-higgs model

    SciTech Connect (OSTI)

    Enqvist, Kari; Lerner, Rose N.; Takahashi, Tomo E-mail: rose.lerner@desy.de

    2014-01-01

    We present the first full study of the minimal curvaton-higgs (MCH) model, which is a minimal interpretation of the curvaton scenario with one real scalar coupled to the standard model Higgs boson. The standard model coupling allows the dynamics of the model to be determined in detail, including effects from the thermal background and from radiative corrections to the potential. The relevant mechanisms for curvaton decay are incomplete non-perturbative decay (delayed by thermal blocking), followed by decay via a dimension-5 non-renormalisable operator. To avoid spoiling the predictions of big bang nucleosynthesis, we find the ''bare'' curvaton mass to be m{sub ?} ? 8 × 10{sup 4}GeV. To match observational data from Planck there is an upper limit on the curvaton-higgs coupling g, between 10{sup ?3} and 10{sup ?2}, depending on the mass. This is due to interactions with the thermal background. We find that typically non-Gaussianities are small but that if f{sub NL} is observed in the near future then m{sub ?}?<5 × 10{sup 9}GeV, depending on Hubble scale during inflation. In a thermal dark matter model, the lower bound on m{sub ?} can increase substantially. The parameter space may also be affected once the baryogenesis mechanism is specified.

  2. Sterile neutrinos with secret interactions — lasting friendship with cosmology

    SciTech Connect (OSTI)

    Chu, Xiaoyong; Dasgupta, Basudeb; Kopp, Joachim

    2015-10-06

    Sterile neutrinos with mass ≃1 eV and order 10% mixing with active neutrinos have been proposed as a solution to anomalies in neutrino oscillation data, but are tightly constrained by cosmological limits. It was recently shown that these constraints are avoided if sterile neutrinos couple to a new MeV-scale gauge boson A{sup ′}. However, even this scenario is restricted by structure formation constraints when A{sup ′}-mediated collisional processes lead to efficient active-to-sterile neutrino conversion after neutrinos have decoupled. In view of this, we reevaluate in this paper the viability of sterile neutrinos with such “secret” interactions. We carefully dissect their evolution in the early Universe, including the various production channels and the expected modifications to large scale structure formation. We argue that there are two regions in parameter space — one at very small A{sup ′} coupling, one at relatively large A{sup ′} coupling — where all constraints from big bang nucleosynthesis (BBN), cosmic microwave background (CMB), and large scale structure (LSS) data are satisfied. Interestingly, the large A{sup ′} coupling region is precisely the region that was previously shown to have potentially important consequences for the small scale structure of dark matter halos if the A{sup ′} boson couples also to the dark matter in the Universe.

  3. Nuclear reactions from lattice QCD

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Briceño, Raúl A.; Davoudi, Zohreh; Luu, Thomas C.

    2015-01-13

    In this study, one of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of strong interactions, Quantum Chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear reactions which will impact our understanding of environments that occur during big bang nucleosynthesis, the evolution of stars and supernovae, and within nuclear reactors and high energy/density facilities. Such calculations, being truly ab initio, would include all two-nucleon and three- nucleon (and higher) interactions in a consistent manner. Currently, lattice QCD provides the only reliable option for performing calculationsmore » of some of the low-energy hadronic observables. With the aim of bridging the gap between lattice QCD and nuclear many-body physics, the Institute for Nuclear Theory held a workshop on Nuclear Reactions from Lattice QCD on March 2013. In this review article, we report on the topics discussed in this workshop and the path planned to move forward in the upcoming years.« less

  4. Dark matter with topological defects in the Inert Doublet Model

    SciTech Connect (OSTI)

    Hindmarsh, Mark; Kirk, Russell; No, Jose Miguel; West, Stephen M.

    2015-05-26

    We examine the production of dark matter by decaying topological defects in the high mass region m{sub DM}≫m{sub W} of the Inert Doublet Model, extended with an extra U(1) gauge symmetry. The density of dark matter states (the neutral Higgs states of the inert doublet) is determined by the interplay of the freeze-out mechanism and the additional production of dark matter states from the decays of topological defects, in this case cosmic strings. These decays increase the predicted relic abundance compared to the standard freeze-out only case, and as a consequence the viable parameter space of the Inert Doublet Model can be widened substantially. In particular, for a given dark matter annihilation rate lower dark matter masses become viable. We investigate the allowed mass range taking into account constraints on the energy injection rate from the diffuse γ-ray background and Big Bang Nucleosynthesis, together with constraints on the dark matter properties coming from direct and indirect detection limits. For the Inert Doublet Model high-mass region, an inert Higgs mass as low as ∼200 GeV is permitted. There is also an upper limit on string mass per unit length, and hence the symmetry breaking scale, from the relic abundance in this scenario. Depending on assumptions made about the string decays, the limits are in the range 10{sup 12} GeV to 10{sup 13} GeV.

  5. On the lithium dip in the metal poor open cluster NGC 2243

    SciTech Connect (OSTI)

    François, P. [GEPI, Paris-Meudon Observatory, 61 Avenue de l'Observatoire, F-75014 Paris (France); Pasquini, L.; Palsa, R. [ESO, European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching bei München (Germany); Biazzo, K. [INAF, Capodimonte Astronomical Observatory, via Moiariello 16, 80131 Naples (Italy); Bonifacio, P. [GEPI, Paris-Meudon Observatory, Place Jules Janssen 92190, Meudon (France)

    2014-05-02

    Lithium is a key element for studying the mixing mechanisms operating in stellar interiors. It can also be used to probe the chemical evolution of the Galaxy and the Big Bang nucleosynthesis. Measuring the abundance of Lithium in stars belonging to Open Clusters (hereafter OC) allows a detailed comparison with stellar evolutionary models. NGC 2243 is particularly interesting thanks to its relative low metallicity ([Fe/H]=?0.54 ± 0.10 dex). We performed a detailed analysis of high-resolution spectra obtained with the multi-object facility FLAMES at the VLT 8.2m telescope. Lithium abundance has been measured in 27 stars. We found a Li dip center of 1.06 M{sub ?}, which is significantly smaller than that observed in solar metallicity and metal-rich clusters. This finding confirms and strengthens the conclusion that the mass of the stars in the Li dip strongly depends on stellar metallicity. The mean Li abundance of the cluster is log n(Li) = 2.70 dex, which is substantially higher than that observed in 47 Tue. We derived an iron abundance of [Fe/H]=?0.54±0.10 dex for NGC 2243, in agreement (within the errors) with previous findings.

  6. Nuclear reactions from lattice QCD

    SciTech Connect (OSTI)

    Briceño, Raúl A.; Davoudi, Zohreh; Luu, Thomas C.

    2015-01-13

    In this study, one of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of strong interactions, Quantum Chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear reactions which will impact our understanding of environments that occur during big bang nucleosynthesis, the evolution of stars and supernovae, and within nuclear reactors and high energy/density facilities. Such calculations, being truly ab initio, would include all two-nucleon and three- nucleon (and higher) interactions in a consistent manner. Currently, lattice QCD provides the only reliable option for performing calculations of some of the low-energy hadronic observables. With the aim of bridging the gap between lattice QCD and nuclear many-body physics, the Institute for Nuclear Theory held a workshop on Nuclear Reactions from Lattice QCD on March 2013. In this review article, we report on the topics discussed in this workshop and the path planned to move forward in the upcoming years.

  7. Oxford Institute for Energy Studies | Open Energy Information

    Open Energy Info (EERE)

    areas of energy issues. The research focuses on: the economics of petroleum, gas, coal, nuclear power, solar and renewable energy; the politics and sociology of energy; the...

  8. City of Oxford, Kansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 14276 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes...

  9. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hello, At least some contemporary big bang theories begin with the entire universe packed into a very small, atom sized volume. Since black hole densities can be achieved by compressing the earth to the size of a marble; it seems that the early universe would have been dense enough to be a black hole and would have never expanded. Are the theories of the big bang and black holes at odds? Thanks, Doug McAllister Tulsa Hello Doug, That is a very good question. The big bang theory and the existence

  10. Cosmological and supernova neutrinos

    SciTech Connect (OSTI)

    Kajino, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan Department of Astronomy, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Aoki, W. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Balantekin, A. B. [Department of Physics, University of Wisconsin - Madison, Wisconsin 53706 (United States); Cheoun, M.-K. [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Hayakawa, T. [Japan Atomic Energy Agency, Shirakara-Shirane 2-4, Tokai-mura, Ibaraki 319-1195 (Japan); Hidaka, J. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Hirai, Y.; Shibagaki, S. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Kusakabe, M. [School of Liberal Arts and Science, Korea Aerospace University, Goyang 412-791 (Korea, Republic of); Mathews, G. J. [Department of Physics, University of Notre Dame, IN 46556 (United States); Nakamura, K. [Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan); Pehlivan, Y. [Mimar Sinan GSÜ, Department of Physics, ?i?li, ?stanbul 34380 (Turkey); Suzuki, T. [Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550 (Japan)

    2014-06-24

    The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial {sup 7}Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and {sup 7}Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on ?{sub 13} with predicted and observed supernova-produced abundance ratio {sup 11}B/{sup 7}Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

  11. Making sense of the new cosmology (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    The New Cosmology greatly extends the highly successful hot big-bang model. Now we have to make sense of all this: What is the dark matter particle? What is the nature of the dark ...

  12. Press Pass - Press Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1:00 to 3:00 p.m. to talk with visitors, answer questions and explain everything from the Higgs boson and the Big Bang to how a particle accelerator works. "We'll even try to help...

  13. 1663_24_WEB-FINAL.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    63 May 2015 31 Matter 1,000,000,002 Antimatter 1,000,000,000 Antimatter 0 Matter 2 Early universe Today's universe How We Survived the Big Bang The fact that we exist in a universe...

  14. Reading the Cosmic Writing on the Wall

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    model for decades to come and spur new directions in research." Decoding the Cosmos Written in light shortly after the big bang, the CMB is a faint glow that permeates...

  15. The Origins of the Universe | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    ... In addition to RHIC, the Office of Science supports research on the environmental conditions of the Big Bang at the Large Hadron Collider External link (LHC), located at CERN, the ...

  16. Microsoft Word - D. Spergel.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 March 2016 Taking the Baby Picture of the Universe Dr. David Spergel Professor of Astronomy & Chair of he Department of Astrophysical Sciences Princeton University Princeton, NJ ABSTRACT: Observations of the microwave background, the left-over heat from the big bang, are snap-shots of the universe only three hundred thousand years after the big bang. These observations have answered many of the questions that have driven cosmology for the past few decades: How old is the universe? What is

  17. R-matrix Analysis of Reactions in the {sup 9}B Compound System

    SciTech Connect (OSTI)

    Paris, M. Hale, G.; Hayes-Sterbenz, A.; Jungman, G.

    2014-06-15

    Recent activity in solving the ‘lithium problem’ in big bang nucleosynthesis has focused on the role that putative resonances may play in resonance-enhanced destruction of {sup 7}Li. Particular attention has been paid to the reactions involving the {sup 9}B compound nuclear system, d+{sup 7}Be?{sup 9}B. These reactions are analyzed via the multichannel, two-body unitary R-matrix method using the code EDA developed by Hale and collaborators. We employ much of the known elastic and reaction data, in a four-channel treatment. The data include elastic {sup 3}He+{sup 6}Li differential cross sections from 0.7 to 2.0 MeV, integrated reaction cross sections for energies from 0.7 to 5.0 MeV for {sup 6}Li({sup 3}He,p){sup 8}Be{sup *} and from 0.4 to 5.0 MeV for the {sup 6}Li({sup 3}He,d){sup 7}Be reaction. Capture data have been added to an earlier analysis with integrated cross section measurements from 0.7 to 0.825 MeV for {sup 6}Li({sup 3}He,?){sup 9}B. The resulting resonance parameters are compared with tabulated values, and previously unidentified resonances are noted. Our results show that there are no near d+{sup 7}Be threshold resonances with widths that are 10's of keV and reduce the likelihood that a resonance-enhanced mass-7 destruction mechanism, as suggested in recently published work, can explain the {sup 7}Li problem.

  18. New determination of the {sup 2}H(d,p){sup 3}H and {sup 2}H(d,n){sup 3}He reaction rates at astrophysical energies

    SciTech Connect (OSTI)

    Tumino, A.; Spartà, R.; Spitaleri, C.; Pizzone, R. G.; La Cognata, M.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Mukhamedzhanov, A. M.; Typel, S.; Tognelli, E.; Degl'Innocenti, S.; Prada Moroni, P. G.; Burjan, V.; Kroha, V.; Hons, Z.; Mrazek, J.; Piskor, S.; Lamia, L.

    2014-04-20

    The cross sections of the {sup 2}H(d,p){sup 3}H and {sup 2}H(d,n){sup 3}He reactions have been measured via the Trojan Horse method applied to the quasi-free {sup 2}H({sup 3}He,p {sup 3}H){sup 1}H and {sup 2}H({sup 3}He,n {sup 3}He){sup 1}H processes at 18 MeV off the proton in {sup 3}He. For the first time, the bare nucleus S(E) factors have been determined from 1.5 MeV, across the relevant region for standard Big Bang nucleosynthesis, down to the thermal energies of deuterium burning in the pre-main-sequence (PMS) phase of stellar evolution, as well as of future fusion reactors. Both the energy dependence and the absolute value of the S(E) factors deviate by more than 15% from the available direct data and existing fitting curves, with substantial variations in the electron screening by more than 50%. As a consequence, the reaction rates for astrophysics experience relevant changes, with a maximum increase of up to 20% at the temperatures of the PMS phase. From a recent primordial abundance sensitivity study, it turns out that the {sup 2}H(d,n){sup 3}He reaction is quite influential on {sup 7}Li, and the present change in the reaction rate leads to a decrease in its abundance by up to 10%. The present reaction rates have also been included in an updated version of the FRANEC evolutionary code to analyze their influence on the central deuterium abundance in PMS stars with different masses. The largest variation of about 10%-15% pertains to young stars (?1 Myr) with masses ?1 M {sub ?}.

  19. Nucleosynthesis Woosley, Stan 79 ASTRONOMY AND ASTROPHYSICS SciDAC...

    Office of Scientific and Technical Information (OSTI)

    SciDAC 2, Computational Astrophysics Consortium, Supernovae, Computations Final project report for UCSC's participation in the Computational Astrophysics Consortium -...

  20. Formation of super-heavy elements in astrophysical nucleosynthesis

    SciTech Connect (OSTI)

    Zagrebaev, V. I.; Karpov, A. V.; Mishustin, I. N.; Greiner, Walter

    2012-10-20

    The unexplored area of heavy neutron-rich nuclides is extremely important for the understanding of the r process of astrophysical nucleogenesis. For elements with Z>100 only neutron deficient isotopes (located to the left of the stability line) have been synthesized so far. The 'north-east' area of the nuclear map can be reached neither in fusion reactions nor in fragmentation processes. Low energy multi-nucleon transfer reactions are quite promising for the production and study of neutron-rich heavy nuclei including those located at the superheavy (SH) island of stability [1]. The neutron capture process is considered here as an alternative method for the production of SH nuclei. Requirements for the pulsed reactors of the next generation that could be used for the synthesis of long-living neutron rich SH nuclei are formulated. Formation of SH nuclei in supernova explosions is also discussed and the abundance of SH elements in nature is estimated.

  1. LOS ALAMOS, N.M., Oct. 31, 2013-Los Alamos National Laboratory scientist

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Matter, antimatter and surviving the big bang is topic of Lab's next Frontiers in Science lecture October 31, 2013 Talk begins at 7 p.m. and open to public LOS ALAMOS, N.M., Oct. 31, 2013-Los Alamos National Laboratory scientist Vincenzo Cirigliano asks the question, How did we survive the big bang? in a series of Frontiers in Science lectures beginning Monday, Nov. 4, in the Duane Smith Auditorium at Los Alamos High School. "Particles and antiparticles were produced in equal numbers in the

  2. Studying Nuclear Astrophysics at NIF

    SciTech Connect (OSTI)

    Boyd, R; Bernstein, L; Brune, C

    2009-07-01

    The National Ignition Facility's primary goal is to generate fusion energy. But the starlike conditions that it creates will also enable NIF scientists to study astrophysically important nuclear reactions. When scientists at the stadium-sized National Ignition Facility attempt to initiate fusion next year, 192 powerful lasers will direct 1.2 MJ of light energy toward a two-mm-diameter pellet of deuterium ({sup 2}H, or D) and tritium ({sup 3}H, or T). Some of that material will be gaseous, but most will be in a frozen shell. The idea is to initiate 'inertial confinement fusion', in which the two hydrogen isotopes fuse to produce helium-4, a neutron, and 17.6 MeV of energy. The light energy will be delivered to the inside walls of a hohlraum, a heavy-metal, centimeter-sized cylinder that houses the pellet. The container's heated walls will produce x rays that impinge on the pellet and ablate its outer surface. The exiting particles push inward on the pellet and compresses the DT fuel. Ultimately a hot spot develops at the pellet's center, where fusion produces {sup 4}He nuclei that have sufficient energy to propagate outward, trigger successive reactions, and finally react the frozen shell. Ignition should last several tens of picoseconds and generate more than 10 MJ of energy and roughly 10{sup 19} neutrons. The temperature will exceed 10{sup 8} K and fuel will be compressed to a density of several hundred g/cm{sup 3}, both considerably greater than at the center of the Sun. The figure shows a cutaway view of NIF. The extreme conditions that will be produced there simulate those in nuclear weapons and inside stars. For that reason, the facility is an important part of the US stockpile stewardship program, designed to assess the nation's aging nuclear stockpile without doing nuclear tests. In this Quick Study we consider a third application of NIF - using the extraordinary conditions it will produce to perform experiments in basic science. We will focus on measurements of some of the nuclear reaction probabilities that are important to nuclear astrophysics, the field that relates energy production and nucleosynthesis from nuclear reactions in stars and in the Big Bang to the environments in which those nuclear reactions occur. NIF, unlike previous nuclear-physics facilities, will enable measurements of nuclear reactions at the temperatures, densities, and ionization states similar to those that occur in stars.

  3. Waves in Nature, Lasers to Tsumanis and Beyond

    ScienceCinema (OSTI)

    LLNL - University of California Television

    2009-09-01

    Waves are everywhere. Microwaves, laser beams, music, tsunamis. Electromagnetic waves emanating from the Big Bang fill the universe. Learn about the similarities and difference in all of these wavy phenomena with Ed Moses and Rick Sawicki, Lawrence Livermore National Laboratory scientists Series: Science on Saturday [10/2006] [Science] [Show ID: 11541

  4. Waves in Nature, Lasers to Tsumanis and Beyond

    SciTech Connect (OSTI)

    LLNL - University of California Television

    2008-05-01

    Waves are everywhere. Microwaves, laser beams, music, tsunamis. Electromagnetic waves emanating from the Big Bang fill the universe. Learn about the similarities and difference in all of these wavy phenomena with Ed Moses and Rick Sawicki, Lawrence Livermore National Laboratory scientists Series: Science on Saturday [10/2006] [Science] [Show ID: 11541

  5. From Pinholes to Black Holes

    SciTech Connect (OSTI)

    Fenimore, Edward E.

    2014-10-06

    Pinhole photography has made major contributions to astrophysics through the use of “coded apertures”. Coded apertures were instrumental in locating gamma-ray bursts and proving that they originate in faraway galaxies, some from the birth of black holes from the first stars that formed just after the big bang.

  6. Copper vs. Copper at the Relativistic Heavy Ion Collider (2005)

    ScienceCinema (OSTI)

    Brookhaven Lab - Fulvia Pilat

    2010-01-08

    To investigate a new form of matter not seen since the Big Bang, scientists are using a new experimental probe: collisions between two beams of copper ions. The use of intermediate size nuclei is expected to result in intermediate energy density - not as

  7. NUCLEOSYNTHESIS CONSTRAINTS ON THE NEUTRON STAR-BLACK HOLE MERGER RATE

    SciTech Connect (OSTI)

    Bauswein, A. [Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Ardevol Pulpillo, R.; Janka, H.-T. [Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany); Goriely, S., E-mail: bauswein@MPA-Garching.MPG.DE [Institut d'Astronomie et d'Astrophysique, Université Libre de Bruxelles, C.P. 226, B-1050 Brussels (Belgium)

    2014-11-01

    We derive constraints on the time-averaged event rate of neutron star-black hole (NS-BH) mergers by using estimates of the population-integrated production of heavy rapid neutron-capture (r-process) elements with nuclear mass numbers A > 140 by such events in comparison to the Galactic repository of these chemical species. Our estimates are based on relativistic hydrodynamical simulations convolved with theoretical predictions of the binary population. This allows us to determine a strict upper limit of the average NS-BH merger rate of ?6× 10{sup –5} per year. We quantify the uncertainties of this estimate to be within factors of a few mostly because of the unknown BH spin distribution of such systems, the uncertain equation of state of NS matter, and possible errors in the Galactic content of r-process material. Our approach implies a correlation between the merger rates of NS-BH binaries and of double NS systems. Predictions of the detection rate of gravitational-wave signals from such compact object binaries by Advanced LIGO and Advanced Virgo on the optimistic side are incompatible with the constraints set by our analysis.

  8. Study of {sup 24}Mg resonances relevant for carbon burning nucleosynthesis

    SciTech Connect (OSTI)

    Toki?, V.; Soi?, N.; Blagus, S.; Fazini?, S.; Jelavi?-Malenica, D.; Miljani?, D.; Prepolec, L.; Skukan, N.; Szilner, S.; Uroi?, M.; Milin, M.; Di Pietro, A.; Figuera, P.; Fisichella, M.; Lattuada, M.; Scuderi, V.; Strano, E.; Torresi, D.; Freer, M.; Ziman, V.; and others

    2014-05-09

    We have studied decays of resonances in {sup 24}Mg at excitation energies above the {sup 12}C+{sup 12}C decay threshold, using {sup 12}C({sup 16}O,?){sup 24}Mg* reaction. This experiment has been performed at INFNLNS, using Tandem accelerator beam of 16O at E = 94 MeV. Some preliminary results are presented.

  9. The Origin of the Elements

    SciTech Connect (OSTI)

    Murphy, Edward

    2012-11-20

    The world around us is made of atoms. Did you ever wonder where these atoms came from? How was the gold in our jewelry, the carbon in our bodies, and the iron in our cars made? In this lecture, we will trace the origin of a gold atom from the Big Bang to the present day, and beyond. You will learn how the elements were forged in the nuclear furnaces inside stars, and how, when they die, these massive stars spread the elements into space. You will learn about the origin of the building blocks of matter in the Big Bang, and we will speculate on the future of the atoms around us today.

  10. The Origin of the Elements

    ScienceCinema (OSTI)

    Murphy, Edward

    2014-08-06

    The world around us is made of atoms. Did you ever wonder where these atoms came from? How was the gold in our jewelry, the carbon in our bodies, and the iron in our cars made? In this lecture, we will trace the origin of a gold atom from the Big Bang to the present day, and beyond. You will learn how the elements were forged in the nuclear furnaces inside stars, and how, when they die, these massive stars spread the elements into space. You will learn about the origin of the building blocks of matter in the Big Bang, and we will speculate on the future of the atoms around us today.

  11. Planetary formation theory developed, tested: predicts timeline for life

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Planetary formation theory developed, tested: predicts timeline for life After the Big Bang: Theory suggests first planets formed after first generations of stars The researchers' calculations predict properties of first planet and timeline for life. May 3, 2012 image description The researchers state that the formation of Earth-like planets is not itself a sufficient prerequisite for life. Early galaxies contained strong sources of life-threatening radiation, such as supernovae and black holes.

  12. October

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October /newsroom/_assets/images/newsroom-icon.jpg October We are your source for reliable, up-to-date news and information; our scientists and engineers can provide technical insights on our innovations for a secure nation. Frontiers in Science lecture series is intended to increase local public awareness of the diversity of science and engineering research at the Laboratory. Matter, antimatter and surviving the big bang is topic of Lab's next Frontiers in Science lecture LANL scientist

  13. The Princeton Tritium Observatory for Light, Early Universe, Massive Neutrino Yield (PTOLEMY) Prototype

    Office of Environmental Management (EM)

    Princeton Tritium Observatory for Light, Early Universe, Massive Neutrino Yield (PTOLEMY) Tritium Focus Group Meeting Sept 24, 2014 C.A. Gentile and P.G. Efthimion on behalf of the PTOLEMY team Motivation * Big bang relic neutrinos are predicted to be amongst the oldest and smallest particles in the universe. Information on their mass and density would significantly enhance our understanding of elementary particles, the ways in which mass is distributed, and the formation of the universe. *

  14. Faces of Science: Tom Vestrand

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tom Vestrand Faces of Science: Tom Vestrand Tom Vestrand has always been interested in how the universe began, how it will end, and the nature of its early, violent history. At Los Alamos, he has worked on developing fully autonomous "thinking telescopes" that catch gamma-ray bursts-the biggest explosions since the Big Bang. March 4, 2015 Tom Vestrand Tom Vestrand, Space Physics Contact Communications Office (505) 667-6700 SPACE PHYSICS Robotic telescopes, distributed sensor networks,

  15. Decades of Discovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    48 6/1/2011 3.13 Detecting the Afterglow of the Big Bang Since 1964, when cosmic microwave background radiation was first discovered, scientists have searched the skies for evidence of temperature variations that might reflect the origins of the universe. In 1977, a team led by astrophysicist George Smoot of Lawrence Berkeley National Laboratory reported the first measurements of temperature variations in the microwave sky, but this irregularity was attributed to the motion of the Earth's galaxy

  16. For your calendar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For your calendar Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit For your calendar New Frontiers in Science talk and museum activities November 1, 2013 The Bradbury Science Museum at night The Lab celebrates 50 years in space Contact Community Programs Office Director Kurt Steinhaus Email Editor Linda Anderman Email Big bang survival topic of the next Frontiers in Science talk In early

  17. NERSC User Group Meeting 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meeting 2014 Planck @ NERSC Theodore Kisner Computational Cosmology Center, LBNL On behalf of the Planck collaboration NERSC User Group Meeting 2014 The Cosmic Microwave Background * Universe begins with hot Big Bang and then expands and cools. * After 370,000 years temperature drops to 3000K. * p + + e - => H : Universe becomes neutral & transparent. * Photons free-stream to observers today. They are redshifted and appear as a 3K blackbody. Source: NASA Temp = 3K Today NERSC User Group

  18. Inquiring Minds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Astrophysics at Fermilab Source: Robert Kirschner; NASA/WMAP Science Team. Fermilab is recognized worldwide as a laboratory where advances in particle physics, astrophysics and cosmology converge. The experimental results and theoretical predictions of accelerator-based particle physics experiments shed light on the birth and evolution of the universe immediately after the Big Bang. Similarly, advances in the understanding of the large-scale structure and evolution of the universe give new

  19. Mass Measurements of Very Neutron-Deficient Mo and Tc Isotopes and Their Impact on rp Process Nucleosynthesis

    SciTech Connect (OSTI)

    Haettner, E.; Plass, W. R.; Scheidenberger, C.; Ackermann, D.; Block, M.; Eliseev, S.; Herfurth, F.; Hessberger, F. P.; Hofmann, S.; Kluge, H.-J.; Audi, G.; Blaum, K.; Ketter, J.; Fleckenstein, T.; Ketelaer, J.; Marx, G.; Schweikhard, L.; Mazzocco, M.; Novikov, Yu. N.; Vorobjev, G.

    2011-03-25

    The masses of ten proton-rich nuclides, including the N=Z+1 nuclides {sup 85}Mo and {sup 87}Tc, were measured with the Penning trap mass spectrometer SHIPTRAP. Compared to the Atomic Mass Evaluation 2003 a systematic shift of the mass surface by up to 1.6 MeV is observed causing significant abundance changes of the ashes of astrophysical x-ray bursts. Surprisingly low {alpha} separation energies for neutron-deficient Mo and Tc are found, making the formation of a ZrNb cycle in the rp process possible. Such a cycle would impose an upper temperature limit for the synthesis of elements beyond Nb in the rp process.

  20. Supercomputer Helps Model 3D Map of Adolescent Universe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supercomputer Helps Model 3D Map of Adolescent Universe Supercomputer Helps Model 3D Map of Adolescent Universe Researchers Demonstrate Novel Technique for High-Resolution Universe Maps October 17, 2014 Contact: Kate Greene, kgreene@lbl.gov, 510-486-4404 Using extremely faint light from galaxies 10.8 billion light years away, scientists have created one of the most complete, three-dimensional maps of a slice of the adolescent universe-just 3 billion years after the Big Bang. The map shows a web

  1. RHIC PHYSICS: THE QUARK GLUON PLASMA AND THE COLOR GLASS CONDENSATE: 4 LECTURES

    SciTech Connect (OSTI)

    MCLERRAN,L.

    2003-01-01

    The purpose of these lectures is to provide an introduction to the physics issues which are being studied in the RHIC heavy ion program. These center around the production of new states of matter. The Quark Gluon Plasma is thermal matter which once existed in the big bang which may be made at RHIC. The Color Glass Condensate is a universal form of matter which controls the high energy limit of strong interactions. Both such forms of matter might be produced and probed at RHIC.

  2. Nuclear Fusion Drives Present-Day Accelerated Cosmic Expansion

    SciTech Connect (OSTI)

    Ying, Leong

    2010-09-30

    The widely accepted model of our cosmos is that it began from a Big Bang event some 13.7 billion years ago from a single point source. From a twin universe perspective, the standard stellar model of nuclear fusion can account for the Dark Energy needed to explain the mechanism for our present-day accelerated expansion. The same theories can also be used to account for the rapid inflationary expansion at the earliest time of creation, and predict the future cosmic expansion rate.

  3. Planck Surveyor On Its Way to Orbit

    ScienceCinema (OSTI)

    None

    2010-01-08

    An Ariane 5 rocket carried the Planck Surveyor and a companion satellite into space May 14, 2009 from the European Space Agency (ESA) base on the northwest coast of South America. Once in orbit beyond the moon, Planck will produce the most accurate measurements ever made of the relic radiation from the big bang, plus the largest set of CMB data ever recorded. Berkeley Labs long and continuing involvement with Planck began when George Smoot of the Physics Division proposed Plancks progenitor to ESA and continues with preparations for ongoing data analysis for the U.S. Planck team at NERSC, led by Julian Borrill, co-leader of the Computational Cosmology Center

  4. The supernova that destroyed a galaxy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The supernova that destroyed a galaxy The supernova that destroyed a galaxy The research may solve the long-standing puzzle of how supermassive black holes were formed in the centers of some galaxies less then a billion years after the Big Bang. August 5, 2013 Supernova of a 55,000 solar-mass star in a primitive galaxy (explosion in a low-density region) Supernova of a 55,000 solar-mass star in a primitive galaxy (explosion in a low-density region) The Los Alamos simulation is the most realistic

  5. What Started the Motion Described By Newton's Third Law? | GE Global

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Started the Motion Described By Newton's Third Law? Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) What Started the Motion Described By Newton's Third Law? 2012.02.24 Chief Scientist Jim Bray discusses the motion of atoms, the classical laws of physics and the forces associated with the big bang theory. 0

  6. DOE Research and Development Accomplishments RSS Archive 2005-2006

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5-2006 2005 - 2006 * 2007 * 2008 * 2009 * 2010 * 2011 * 2012 * 2013 * 2014 George Smoot Courtesy of Lawrence Berkeley National Laboratory "Blackbody Form" Research Yields 2006 Nobel Prize George Smoot made an announcement in 1992 that "essentially silenced all the scientific critics of the Big Bang theory." (See the October 3, 2006 edition of Today at Berkeley Lab.) For research leading up to that announcement, Smoot was awarded the Nobel Prize in Physics 2006. Smoot, an

  7. Fermilab Cultural Events in Chicago's Far West Side

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "I have always felt that science, technology, and art are importantly connected, indeed science and technology seem to many scholars to have grown out of art." -Robert Rathbun Wilson This convergence of art and science occurs daily in the Fermilab Art Gallery. It is a space for art exhibitions, chamber music concerts and where the top quark and big bang are debated over coffee. It is also a quiet space for contemplation and beauty. Current Status of Access to Fermilab Current

  8. Fermilab Cultural Events in Chicago's Far West Side

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Art of Darkness Images from the Dark Energy Survey On Display: February 19, 2016 -April 29, 2016 Reception - Friday, March 18 5-7pm Fermilab Art Gallery, Wilson Hall The universe has been expanding since the Big Bang almost 14 billion years ago. Now, the expansion of the universe is accelerating, driven by a new fundamental form of energy called dark energy. The Dark Energy Survey (DES) is a collaboration of more than 400 scientists from over 30 institutions across 7 countries. DES aims to find

  9. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics of the universe From the big bang to black holes, extra dimensions, space and time Centrifugal Force From smaller than atoms to larger than galaxies structures spin and in doing so the centrifugal force throws things outward. Might not the Universe as a whole be spinning on an axis and what we currently ascribe to a mysterious repulsive force be a centrifugal force throwing things outward? Thrown out rather than pushed or drawn? Motion in the Universe I have been attempting to calculate

  10. Planck Surveyor On Its Way to Orbit

    ScienceCinema (OSTI)

    Borrill, Julian

    2013-05-29

    An Ariane 5 rocket carried the Planck Surveyor and a companion satellite into space May 14, 2009 from the European Space Agency (ESA) base on the northwest coast of South America. Once in orbit beyond the moon, Planck will produce the most accurate measurements ever made of the relic radiation from the big bang, plus the largest set of CMB data ever recorded. Berkeley Labs long and continuing involvement with Planck began when George Smoot of the Physics Division proposed Plancks progenitor to ESA and continues with preparations for ongoing data analysis for the U.S. Planck team at NERSC, led by Julian Borrill, co-leader of the Computational Cosmology Center.

  11. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Early Universe Question Greetings Well, you most likely receive a billion messages a day from nuts like me, but here's another one for you. Before the big bang, when there was just random endergy fluctuations in this empty void. At this point, before the particle that blew up, is it possible that there could have been one dimension raining supreme, a dimension which, when seperated, become the four distinct dimensions we now live in? What I'm trying to say is, when the universe was formed,

  12. Sorption Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    Oxford, England, United Kingdom Zip: OX1 2AY Product: Oxford-based firm developing adsorption air-conditioning and heating systems for domestic-scale products. Coordinates:...

  13. Ternary structure reveals mechanism of a membrane diacylglycerol...

    Office of Scientific and Technical Information (OSTI)

    less + Show Author Affiliations Trinity College Dublin, Dublin (Ireland) Univ. of Oxford, Oxford (United Kingdom) Arizona State Univ., Tempe, AZ (United States) Univ. of...

  14. The Atacama Cosmology Telescope: Cosmological Parameters from...

    Office of Scientific and Technical Information (OSTI)

    ; Doriese, W.Bertrand ; Dunner, R. ; Essinger-Hileman, T. more ; Fisher, R.P. ; Oxford U. Princeton U. Princeton U., Astrophys. Sci. Dept. Oxford U. Canadian Inst....

  15. Origin of the universe from Quantum Chaos: An introduction to current ideas (professor John Dyer Memorial Lecture). Technical report

    SciTech Connect (OSTI)

    Woehler, K.E.

    1989-05-01

    In his recently published book A Brief History of Time, S. Hawking describes his remarkable insights into the problem of the origin of our universe. In this talk a more quantitative description of some of the important principles from this book is presented as a mathematical appendix to it. A brief review of the ideas of the Standard Big Bang Model of the Universe is given in terms of the evolution equation that follows from Einstein's theory. The meaning of the Cosmological Constant, its relation to Vacuum Energy, the model of the empty DeSitter Space and Gravity is derived. By analogy to Schroedinger mechanics one can give the general features of Quantum Cosmology', in which the origin of the universe can be viewed as a quantum tunneling process in imaginary time from a Quantum Chaos state of no space, no time, no matter to an inflationary expanding DeSitter space which eventually transits into the Hot Big Bang Expansion that we see.

  16. Worcester County, Massachusetts: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    North Brookfield, Massachusetts Northbridge, Massachusetts Oakham, Massachusetts Oxford, Massachusetts Paxton, Massachusetts Petersham, Massachusetts Phillipston,...

  17. Chester County, Pennsylvania: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Lionville-Marchwood, Pennsylvania Malvern, Pennsylvania Modena, Pennsylvania Oxford, Pennsylvania Paoli, Pennsylvania Parkesburg, Pennsylvania Phoenixville, Pennsylvania...

  18. The ATLAS Experiment: Mapping the Secrets of the Universe (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Barnett, Michael

    2011-04-28

    Summer Lecture Series 2007: Michael Barnett of Berkeley Lab's Physics Division discusses the ATLAS Experiment at the European Laboratory for Particle Physics' (CERN) Large Hadron Collider. The collider will explore the aftermath of collisions at the highest energy ever produced in the lab, and will recreate the conditions of the universe a billionth of a second after the Big Bang. The ATLAS detector is half the size of the Notre Dame Cathedral and required 2000 physicists and engineers from 35 countries for its construction. Its goals are to examine mini-black holes, identify dark matter, understand antimatter, search for extra dimensions of space, and learn about the fundamental forces that have shaped the universe since the beginning of time and will determine its fate.

  19. Non-Gaussian density fluctuations from entropically generated curvature perturbations in ekpyrotic models

    SciTech Connect (OSTI)

    Lehners, Jean-Luc; Steinhardt, Paul J.

    2008-03-15

    We analyze the non-Gaussian density perturbations generated in ekpyrotic/cyclic models based on heterotic M theory. In this picture, two scalar fields produce nearly scale-invariant entropic perturbations during an ekpyrotic phase that are converted into curvature modes after the ekpyrotic phase is complete and just before the big bang. Both intrinsic nonlinearity in the entropy perturbation and the conversion process contribute to non-Gaussianity. The range of the non-Gaussianity parameter f{sub NL} depends on how gradual the conversion process is and the steepness of the scalar field potential during the ekpyrotic phase. Although a wider range is possible, in principle, natural values of the ekpyrotic parameters combined with a gradual conversion process lead to values of -50 < or approx. f{sub NL} < or approx. +200, typically much greater than slow-roll inflation but within the current observational bounds.

  20. Big Questions: Missing Antimatter

    ScienceCinema (OSTI)

    Lincoln, Don

    2014-08-07

    Einstein's equation E = mc2 is often said to mean that energy can be converted into matter. More accurately, energy can be converted to matter and antimatter. During the first moments of the Big Bang, the universe was smaller, hotter and energy was everywhere. As the universe expanded and cooled, the energy converted into matter and antimatter. According to our best understanding, these two substances should have been created in equal quantities. However when we look out into the cosmos we see only matter and no antimatter. The absence of antimatter is one of the Big Mysteries of modern physics. In this video, Fermilab's Dr. Don Lincoln explains the problem, although doesn't answer it. The answer, as in all Big Mysteries, is still unknown and one of the leading research topics of contemporary science.

  1. Scientific results from the cosmic background explorer (COBE). [Information on cosmic radiation

    SciTech Connect (OSTI)

    Bennett, C.L.; Boggess, N.W.; Cheng, E.S.; Hauser, M.G.; Kelsall, T.; Mather, J.C.; Moseley, S.H. Jr.; Shafer, R.A.; Silverberg, R.F. ); Murdock, T.L. ); Smoot, G.F. ); Weiss, R. ); Wright, E.L. )

    1993-06-01

    The National Aeronautics and Space Administration (NASA) has flown the COBE satellite to observe the Big Bang and the subsequent formation of galaxies and large-scale structure. Data from the Far-Infrared Absolute Spectrophotometer (FIRAS) show that the spectrum of the cosmic microwave background is that of a black body of temperature T = 2.73 [+-] 0.06 K, with no deviation from a black-body spectrum greater than 0.25% of the peak brightness. The data from the Differential Microwave Radiometers (DMR) show statistically significant cosmic microwave background anisotropy, consistent with a scale-invariant primordial density fluctuation spectrum. Measurements from the Diffuse Infrared Background Experiment (DIRBE) provide new conservation upper limits to the cosmic infrared background. Extensive modeling of solar system and galactic infrared foregrounds is required for further improvement in the cosmic infrared background limits. 104 refs., 1 tab.

  2. Oak Ridge National Laboratory review: Volume 20, No. 2, 1987

    SciTech Connect (OSTI)

    Krause, C.; Zucker, A.; Corrill, L.

    1987-01-01

    After a brief statement on the 1986 state of the laboratory, science highlights in collaborative research are presented: an attempt to recreate the first moments of the Big Bang, surface modification techniques in electronics, assessing home radon levels in five states, managing international integrated forest study, US-Japan joint breeder reprocessing project, optical components for SDI, evaluating the Chernobyl reactor accident, fusion superconducting magnet and fueling, scanning tunneling microscope, laser-processed solar cells, explosive trace detector, parallel computer processing algorithms, risk of fertilized egg to teratogens, trees for biomass energy, toxic waste leaching test, corn fermentation, and electricity distribution automation at Athens, TN. Milestones, other programs, the HFIR situation, book publications, and news are finally given. (DLC)

  3. SciDAC Visualization and Analytics Center for Enabling Technologies

    SciTech Connect (OSTI)

    Joy, Kenneth I.

    2014-09-14

    This project focuses on leveraging scientific visualization and analytics software technology as an enabling technology for increasing scientific productivity and insight. Advances in computational technology have resulted in an "information big bang," which in turn has created a significant data understanding challenge. This challenge is widely acknowledged to be one of the primary bottlenecks in contemporary science. The vision for our Center is to respond directly to that challenge by adapting, extending, creating when necessary and deploying visualization and data understanding technologies for our science stakeholders. Using an organizational model as a Visualization and Analytics Center for Enabling Technologies (VACET), we are well positioned to be responsive to the needs of a diverse set of scientific stakeholders in a coordinated fashion using a range of visualization, mathematics, statistics, computer and computational science and data management technologies.

  4. Inflation after COBE: Lectures on inflationary cosmology

    SciTech Connect (OSTI)

    Turner, M.S. [Chicago Univ., IL (United States). Enrico Fermi Inst.]|[Fermi National Accelerator Lab., Batavia, IL (United States)

    1992-12-31

    In these lectures I review the standard hot big-bang cosmology, emphasizing its successes, its shortcomings, and its major challenge-a detailed understanding of the formation of structure in the Universe. I then discuss the motivations for and the fundamentals of inflationary cosmology, particularly emphasizing the quantum origin of metric (density and gravity-wave) perturbations. Inflation addresses the shortcomings of the standard cosmology and provides the ``initial data`` for structure formation. I conclude by addressing the implications of inflation for structure formation, evaluating the various cold dark matter models in the light of the recent detection of temperature anisotropies in the cosmic background radiation by COBE. In the near term, the study of structure formation offers a powerful probe of inflation, as well as specific inflationary models.

  5. Quantum Criticality and Black Holes

    ScienceCinema (OSTI)

    Sachdev, Subir [Harvard University, Cambridge, Massachusetts, United States

    2009-09-01

    I will describe the behavior of a variety of condensed matter systems in the vicinity of zero temperature quantum phase transitions. There is a remarkable analogy between the hydrodynamics of such systems and the quantum theory of black holes. I will show how insights from this analogy have shed light on recent experiments on the cuprate high temperature superconductors. Studies of new materials and trapped ultracold atoms are yielding new quantum phases, with novel forms of quantum entanglement. Some materials are of technological importance: e.g. high temperature superconductors. Exact solutions via black hole mapping have yielded first exact results for transport coefficients in interacting many-body systems, and were valuable in determining general structure of hydrodynamics. Theory of VBS order and Nernst effect in cuprates. Tabletop 'laboratories for the entire universe': quantum mechanics of black holes, quark-gluon plasma, neutrons stars, and big-bang physics.

  6. Analysis of the Fisher solution

    SciTech Connect (OSTI)

    Abdolrahimi, Shohreh; Shoom, Andrey A.

    2010-01-15

    We study the d-dimensional Fisher solution which represents a static, spherically symmetric, asymptotically flat spacetime with a massless scalar field. The solution has two parameters, the mass M and the 'scalar charge' {Sigma}. The Fisher solution has a naked curvature singularity which divides the spacetime manifold into two disconnected parts. The part which is asymptotically flat we call the Fisher spacetime, and another part we call the Fisher universe. The d-dimensional Schwarzschild-Tangherlini solution and the Fisher solution belong to the same theory and are dual to each other. The duality transformation acting in the parameter space (M,{Sigma}) maps the exterior region of the Schwarzschild-Tangherlini black hole into the Fisher spacetime which has a naked timelike singularity, and interior region of the black hole into the Fisher universe, which is an anisotropic expanding-contracting universe and which has two spacelike singularities representing its 'big bang' and 'big crunch'. The big bang singularity and the singularity of the Fisher spacetime are radially weak in the sense that a 1-dimensional object moving along a timelike radial geodesic can arrive to the singularities intact. At the vicinity of the singularity the Fisher spacetime of nonzero mass has a region where its Misner-Sharp energy is negative. The Fisher universe has a marginally trapped surface corresponding to the state of its maximal expansion in the angular directions. These results and derived relations between geometric quantities of the Fisher spacetime, the Fisher universe, and the Schwarzschild-Tangherlini black hole may suggest that the massless scalar field transforms the black hole event horizon into the naked radially weak disjoint singularities of the Fisher spacetime and the Fisher universe which are 'dual to the horizon'.

  7. Topics in inflationary cosmologies

    SciTech Connect (OSTI)

    Mahajan, S.

    1986-04-01

    Several aspects of inflationary cosmologies are discussed. An introduction to the standard hot big bang cosmological model is reviewed, and some of the problems associated with it are presented. A short review of the proposals for solving the cosmological conundrums of the big bang model is presented. Old and the new inflationary scenarios are discussed and shown to be unacceptable. Some alternative scenarios especially those using supersymmetry are reviewed briefly. A study is given of inflationary models where the same set of fields that breaks supersymmetry is also responsible for inflation. In these models, the scale of supersymmetry breaking is related to the slope of the potential near the origin and can thus be kept low. It is found that a supersymmetry breaking scale of the order of the weak breaking scale. The cosmology obtained from the simplest of such models is discussed in detail and it is shown that there are no particular problems except a low reheating temperature and a violation of the thermal constraint. A possible solution to the thermal constraint problem is given by introducing a second field, and the role played by this second field in the scenario is discussed. An alternative mechanism for the generation of baryon number within the framework of supergravity inflationary models is studied using the gravitational couplings of the heavy fields with the hidden sector (the sector which breaks supersymmetry). This mechanism is applied to two specific models - one with and one without supersymmetry breaking. The baryon to entropy ratio is found to be dependent on parameters which are model dependent. Finally, the effect of direct coupling between the two sectors on results is related, 88 refs., 6 figs.

  8. Climate Care | Open Energy Information

    Open Energy Info (EERE)

    Climate Care Jump to: navigation, search Name: Climate Care Place: Oxford, England, United Kingdom Zip: OX4 1RQ Sector: Carbon Product: Oxford-based carbon offsetting firm- making...

  9. Nanofabrication and Devices Capabilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    system (Emitech K675X) ThermalPECVD System for CNT and Graphene Synthesis Dry Etching RIE Oxford PlasmaLab 100, Chlorine Chamber RIE Oxford PlasmaLab 100, Fluorine Chamber...

  10. Retrospective Benefit-Cost Evaluation of U.S. DOE Vehicle Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... the social benefits of public R&D. Oxford: Oxford ... Journal of the American Medical Association, 287(9), 1132-41. Ruegg, ... acute respiratory health effects in schoolchildren. ...

  11. Marquette County, Wisconsin: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Montello, Wisconsin Moundville, Wisconsin Neshkoro, Wisconsin Newton, Wisconsin Oxford, Wisconsin Packwaukee, Wisconsin Shields, Wisconsin Westfield, Wisconsin Retrieved...

  12. New Haven County, Connecticut: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Connecticut North Branford, Connecticut North Haven, Connecticut Orange, Connecticut Oxford, Connecticut Prospect, Connecticut Seymour, Connecticut Southbury, Connecticut...

  13. Adams County, Pennsylvania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Lake Meade, Pennsylvania Littlestown, Pennsylvania McSherrystown, Pennsylvania New Oxford, Pennsylvania Orrtanna, Pennsylvania York Springs, Pennsylvania Retrieved from "http:...

  14. Newton County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    in Newton County, Georgia Covington, Georgia Mansfield, Georgia Newborn, Georgia Oxford, Georgia Porterdale, Georgia Social Circle, Georgia Retrieved from "http:...

  15. Computational Astrophysics Consortium 3 - Supernovae, Gamma-Ray Bursts and

    Office of Scientific and Technical Information (OSTI)

    Nucleosynthesis (Technical Report) | SciTech Connect Technical Report: Computational Astrophysics Consortium 3 - Supernovae, Gamma-Ray Bursts and Nucleosynthesis Citation Details In-Document Search Title: Computational Astrophysics Consortium 3 - Supernovae, Gamma-Ray Bursts and Nucleosynthesis Final project report for UCSC's participation in the Computational Astrophysics Consortium - Supernovae, Gamma-Ray Bursts and Nucleosynthesis. As an appendix, the report of the entire Consortium is

  16. UNCLASSIFIED Institute for Materials ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Co-ordinator & Visiting Professor Oxford University Materials United Kingdom "Magnetic" Molecular Dynamics and Other Models for Fusion Reactor Materials Tuesday, September 15,...

  17. Furnas County, Nebraska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Subtype A. Places in Furnas County, Nebraska Arapahoe, Nebraska Beaver City, Nebraska Cambridge, Nebraska Edison, Nebraska Hendley, Nebraska Holbrook, Nebraska Oxford, Nebraska...

  18. Encore Energy Systems formerly Energy Vision International formerly...

    Open Energy Info (EERE)

    (formerly Energy Vision International (formerly DeMarco Energy Systems of Amer Place: Oxford, Massachusetts Zip: 38655 Sector: Geothermal energy Product: Provider geothermal heat...

  19. Beamline 11.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (EE) 1000 Endstations Medium sized hutch with Bruker AXS D8 diffractometer and Oxford Cryosystems Cryostream Plus Detectors Bruker AXS APEXII CCD Spot size at sample 280...

  20. Jones County, Iowa: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Junction, Iowa Martelle, Iowa Monticello, Iowa Morley, Iowa Olin, Iowa Onslow, Iowa Oxford Junction, Iowa Wyoming, Iowa Retrieved from "http:en.openei.orgw...

  1. Beamline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    detector distance: 50 - 380 mm Detector theta: 0 - 30 Sample temperature control: Oxford Instruments CryoJet (100 K - room temperature) Detector: Mar165 CCD detector...

  2. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dianne Xiao, UC Berkeley Title: Iron Metal-organic Frameworks for Hydrocarbon Oxidations Location: 67-3111 Chemla room Pizza will be served, compliments of Oxford Instruments...

  3. US ITER | About

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    includes: 9 active double-pancake lengths (about 765 m each), with 2 using Oxford Superconductor Technology (OST) strand and 7 using Luvata strand; 1 dummy length of...

  4. News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monochromator Installed The new multilayer monochromator has been installed by Oxford Danfysik. In the coming months the monochromator will undergo commissioning by the...

  5. MHK Projects/Myette Point | Open Energy Information

    Open Energy Info (EERE)

    Label":"","visitedicon":"" Project Profile Project Start Date 112009 Project City Oxford, LA Project StateProvince Louisiana Project Country United States Project Resource...

  6. Franklin County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    B. Places in Franklin County, Idaho Clifton, Idaho Dayton, Idaho Franklin, Idaho Oxford, Idaho Preston, Idaho Weston, Idaho Retrieved from "http:en.openei.orgw...

  7. LOS ALAMOS, New Mexico, March 22, 2012-Researchers at Los Alamos...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University of Minnesota, Cambridge University, University of British Columbia, and Oxford University. The science that we expect to come out varies with the experiment, but can...

  8. Nicola Ferrier | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    her doctorate from Harvard University in 1992. After postdoctoral fellowships at Oxford University and Harvard, she joined the Department of Mechanical Engineering at the...

  9. Butler County, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Middletown, Ohio Millville, Ohio Monroe, Ohio New Miami, Ohio Olde West Chester, Ohio Oxford, Ohio Ross, Ohio Seven Mile, Ohio Sharonville, Ohio Somerville, Ohio South Middletown,...

  10. Calhoun County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alabama Glencoe, Alabama Hobson City, Alabama Jacksonville, Alabama Ohatchee, Alabama Oxford, Alabama Piedmont, Alabama Saks, Alabama Southside, Alabama Weaver, Alabama West...

  11. Crystalox Ltd | Open Energy Information

    Open Energy Info (EERE)

    Crystalox Ltd Jump to: navigation, search Name: Crystalox Ltd Place: Wantage (near Oxford), United Kingdom Sector: Solar Product: Merged with PV Silicon AG in Erfurt, Germany to...

  12. Sumner County, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Geuda Springs, Kansas Hunnewell, Kansas Mayfield, Kansas Milan, Kansas Mulvane, Kansas Oxford, Kansas South Haven, Kansas Wellington, Kansas Retrieved from "http:en.openei.orgw...

  13. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    coverage was augmented by two additional profilers at Whitewater (wh), Kansas, and Oxford (ox), Kansas, that are part of the Atmospheric Boundary Layer Experiments (ABLE)...

  14. Izard County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Guion, Arkansas Horseshoe Bend, Arkansas Melbourne, Arkansas Mount Pleasant, Arkansas Oxford, Arkansas Pineville, Arkansas Retrieved from "http:en.openei.orgw...

  15. Harlan County, Nebraska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Places in Harlan County, Nebraska Alma, Nebraska Huntley, Nebraska Orleans, Nebraska Oxford, Nebraska Ragan, Nebraska Republican City, Nebraska Stamford, Nebraska Retrieved from...

  16. Talbot County, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Subtype A. Places in Talbot County, Maryland Cordova, Maryland Easton, Maryland Oxford, Maryland Queen Anne, Maryland St. Michaels, Maryland Tilghman Island, Maryland...

  17. Johnson County, Iowa: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Iowa Coralville, Iowa Hills, Iowa Iowa City, Iowa Lone Tree, Iowa North Liberty, Iowa Oxford, Iowa Shueyville, Iowa Solon, Iowa Swisher, Iowa Tiffin, Iowa University Heights, Iowa...

  18. fogal-99

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    inverse problem. The SEASCRAPE forward model has been compared to the University of Oxford GENLN2 code and FASCODE (Fast Atmospheric Signature Code), with an indicated agreement...

  19. Radiocarbon (Geochronology)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Belfast: Marine Reservoir Database Calib Calibomb CLAMBACON IntCal Database Oxford University Radiocarbon Unit: OxCal PaleoclimateEnvironmental Databases: Neotoma NOAA...

  20. Lafayette County, Mississippi: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Climate Zone Subtype A. Places in Lafayette County, Mississippi Abbeville, Mississippi Oxford, Mississippi Taylor, Mississippi Retrieved from "http:en.openei.orgw...

  1. Uranium Series Disequilibrium: Applications to Environmental...

    Open Energy Info (EERE)

    Abstract No abstract available. Editors M. Ivanovich and Russell S. Harmon Published Oxford University Press, 1982 DOI Not Provided Check for DOI availability: http:...

  2. Property:Event/Location | Open Energy Information

    Open Energy Info (EERE)

    of Climate Change Ideas and Themes + Island Pavilion + CDKN Action Lab + University of Oxford, UK + CDKNMAPS side event: developing countries collaborating for climate compatible...

  3. Warren County, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Brass Castle, New Jersey Great Meadows-Vienna, New Jersey Hackettstown, New Jersey Oxford, New Jersey Phillipsburg, New Jersey Washington, New Jersey Retrieved from "http:...

  4. Relume Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    Technologies Inc Jump to: navigation, search Name: Relume Technologies Inc Place: Oxford, Michigan Zip: 48371 Product: Michigan-based LED street, commercial and signage...

  5. Granville County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    in Granville County, North Carolina Butner, North Carolina Creedmoor, North Carolina Oxford, North Carolina Stem, North Carolina Stovall, North Carolina Retrieved from "http:...

  6. Smith School of Enterprise and the Environment | Open Energy...

    Open Energy Info (EERE)

    School of Enterprise and the Environment Jump to: navigation, search Name: Smith School of Enterprise and the Environment Place: Oxford, England, United Kingdom Product: String...

  7. A coupling strategy for nonlocal and local diffusion models with...

    Office of Scientific and Technical Information (OSTI)

    (Oxford); Journal Volume: 61; Journal Issue: C; Journal ID: ISSN 0898-1221 Publisher: Elsevier Research Org: Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States) ...

  8. NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DE-OE0000190 Portland General Electric OE PGE Substation @ Oxford & 22nd PMC EDT Division 2010 Mario Sciulli 5 years (112010 - 12312014) Salem, Oregon, USA Pacific Northwest ...

  9. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and G. S. Tyndall (eds), 1999: Atmospheric chemistry and global change. Oxford University Press, New York. Elokhov, A. S., and A. N. Gruzdev, 1995: Estimation of tropospheric...

  10. 2degrees | Open Energy Information

    Open Energy Info (EERE)

    Kingdom Zip: OX2 7HT Product: Oxford-based collaborative network provider for sustainability professionals. Coordinates: 43.781517, -89.571699 Show Map Loading map......

  11. Browse by Discipline -- E-print Network Subject Pathways: Power...

    Office of Scientific and Technical Information (OSTI)

    - Department of Physics, University of Oxford Zardoya, Rafael (Rafael Zardoya) - Biodiversidad y Biologia Evolutiva, Museo Nacional de Ciencias Naturales Zavaleta, Erika (Erika ...

  12. Sunlight Solar Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: Sunlight Solar Energy Address: 4 Oxford Road Place: Milford, Connecticut Zip: 06460 Region: Northeast - NY NJ CT PA Area Sector: Solar...

  13. Biofuels Center of North Carolina | Open Energy Information

    Open Energy Info (EERE)

    Center of North Carolina Jump to: navigation, search Name: Biofuels Center of North Carolina Place: Oxford, North Carolina Zip: 27565 Sector: Biofuels Product: State-funded,...

  14. The Biofuels Center of North Carolina | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Center of North Carolina Jump to: navigation, search Name: The Biofuels Center of North Carolina Place: Oxford, North Carolina Website: www.biofuelscenter.org...

  15. Project No 974 | Open Energy Information

    Open Energy Info (EERE)

    Project No 974 Place: Oxford, United Kingdom Zip: OX2 7SG Product: Biological fuel cell technology employing enzymatic catalysts. Project is at present without company name....

  16. Microsoft Word - Jost's draft.docx roy.2 docx.docx cooper copy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by the Louisiana Board of Regents' enhancement program, CAMD's DRIE (Deep Reactive Ion Etching) etcher from Oxford Instruments was upgraded with an ICP (Inductively Coupled Plasma)...

  17. Rwanda-Project to Develop a National Strategy on Climate Change...

    Open Energy Info (EERE)

    for International Development, United Nations Development Programme (UNDP) Partner Smith School for Enterprise and Environment, University of Oxford Sector Climate, Energy,...

  18. MPA Fellows and Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Fellows Prize for Leadership Oxford Instruments Lee Osheroff-Richardson Prize McGraw-Hill and Scientific American Top Five Inventions in Acoustics The Minerals, Metals...

  19. The Morphology of TiO[subscript 2] (B) Nanoparticles (Journal...

    Office of Scientific and Technical Information (OSTI)

    Hua, Xiao ; Liu, Zheng ; Bruce, Peter G. ; Grey, Clare P. 1 ; Cambridge) 2 ; Oxford) 2 + Show Author Affiliations (St Andrews) ( Publication Date: 2015-11-02 OSTI...

  20. CGRaBS: An All-Sky Survey of Gamma-Ray Blazar Candidates (Journal...

    Office of Scientific and Technical Information (OSTI)

    ; Romani, Roger W. ; Stanford U., Phys. Dept. KIPAC, Menlo Park ; Cotter, Garret ; Oxford U. ; Michelson, Peter F. ; Schlafly, Edward F. ; Stanford U., Phys. Dept. KIPAC,...

  1. Felix Bloch, Nuclear Induction, Bloch Equations, Bloch Theorem...

    Office of Scientific and Technical Information (OSTI)

    of the Swiss Physical Society and received honorary degrees from Grenoble University, Oxford University, the University of Jerusalem, and the University of Zurich. In 1965, he...

  2. Top Quark Anomalous Couplings at the International Linear Collider...

    Office of Scientific and Technical Information (OSTI)

    the tbar tZ and Wtbar b couplings. Authors: Devetak, Erik ; Nomerotski, Andrei ; Oxford U. ; Peskin, Michael ; SLAC Publication Date: 2011-08-15 OSTI Identifier: 1022544...

  3. Total Ionizing Dose and Displacement Damage Effects in Embedded...

    Office of Scientific and Technical Information (OSTI)

    Effects on Components and Systems: 2013 Conference held September 23-27, 2013 in Oxford, United Kindom.; Related Information: Proposed for presentation at the Radiation...

  4. SHEDDING NEW LIGHT ON EXPLODING STARS: TERASCALE SIMULATIONS OF

    Office of Scientific and Technical Information (OSTI)

    NEUTRINO-DRIVEN SUPERNOVAE AND THEIR NUCLEOSYNTHESIS (Technical Report) | SciTech Connect Technical Report: SHEDDING NEW LIGHT ON EXPLODING STARS: TERASCALE SIMULATIONS OF NEUTRINO-DRIVEN SUPERNOVAE AND THEIR NUCLEOSYNTHESIS Citation Details In-Document Search Title: SHEDDING NEW LIGHT ON EXPLODING STARS: TERASCALE SIMULATIONS OF NEUTRINO-DRIVEN SUPERNOVAE AND THEIR NUCLEOSYNTHESIS × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product

  5. Computational Astrophysics Consortium 3 - Supernovae, Gamma-Ray Bursts and

    Office of Scientific and Technical Information (OSTI)

    Nucleosynthesis (Technical Report) | SciTech Connect Technical Report: Computational Astrophysics Consortium 3 - Supernovae, Gamma-Ray Bursts and Nucleosynthesis Citation Details In-Document Search Title: Computational Astrophysics Consortium 3 - Supernovae, Gamma-Ray Bursts and Nucleosynthesis × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public

  6. SHEDDING NEW LIGHT ON EXPLODING STARS: TERASCALE SIMULATIONS OF

    Office of Scientific and Technical Information (OSTI)

    NEUTRINO-DRIVEN SUPERNOVAE AND THEIR NUCLEOSYNTHESIS (Technical Report) | SciTech Connect Technical Report: SHEDDING NEW LIGHT ON EXPLODING STARS: TERASCALE SIMULATIONS OF NEUTRINO-DRIVEN SUPERNOVAE AND THEIR NUCLEOSYNTHESIS Citation Details In-Document Search Title: SHEDDING NEW LIGHT ON EXPLODING STARS: TERASCALE SIMULATIONS OF NEUTRINO-DRIVEN SUPERNOVAE AND THEIR NUCLEOSYNTHESIS This project was focused on simulations of core-collapse supernovae on parallel platforms. The intent was to

  7. Slide 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    describe astrophysical processes Neutron star formation & structure (nsEOS) Supernovae & nucleosynthesis 132 Sn Very neutron rich Doubly-magic (Z 50, N 82) ...

  8. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... in abundance distribution of the nucleosynthesis products after the explosion. ... Cassiopeia A progenitor, a double shock hypernova progenitor, and a rotating ...

  9. penionzhkevich_abstract

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Russian Federation Abstract: This talk is an attempt to present some problems on the evolution of the Universe: the nucleosynthesis and cosmochronology from the standpoint of...

  10. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    DRIVEN SUPERNOVAE AND THEIR NUCLEOSYNTHESIS Haxton Wick CLASSICAL AND QUANTUM MECHANICS GENERAL PHYSICS PHYSICS OF ELEMENTARY PARTICLES AND FIELDS NUCLEAR PHYSICS AND...

  11. SHEDDING NEW LIGHT ON EXPLODING STARS: TERASCALE SIMULATIONS...

    Office of Scientific and Technical Information (OSTI)

    SUPERNOVAE AND THEIR NUCLEOSYNTHESIS Haxton, Wick 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; 73 NUCLEAR PHYSICS...

  12. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    nucleosynthesis. We discuss the implications of our findings for the dark matter self-interaction cross section and the prospects of probing dark matter coupled to a...

  13. Horava–Lifshitz cosmology, entropic interpretation and quark–hadron phase transition

    SciTech Connect (OSTI)

    Kheyri, F. Khodadi, M. Sepangi, Hamid Reza

    2013-05-15

    Based on the assumptions of the standard model of cosmology, a phase transition associated with chiral symmetry breaking after the electroweak transition has occurred at approximately 10 ?s after the Big Bang to convert a plasma of free quarks and gluons into hadrons. We consider such a phase transition in the context of a deformed Horava–Lifshitz cosmology. The Friedmann equation for the deformed Horava–Lifshitz universe is obtained using the entropic interpretation of gravity, proposed by Verlinde. We investigate the effects of the parameter ? appearing in the theory on the evolution of the physical quantities relevant to a description of the early universe, namely, the energy density and temperature before, during and after the phase transition. Finally, we study the cross-over phase transition in both high and low temperature regions in view of the recent lattice QCD simulations data. -- Highlights: ? We study the problem of the quark–hadron phase transition in the early universe, in the context of Horava–Lifshitz cosmology. ? We conduct this study by including the recently introduced entropic principle. ? We study the behavior of thermodynamical parameters of the theory.

  14. Neutrino Physics from the Cosmic Microwave Background and Large Scale Structure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazajian, K. N.; Arnold, K.; Austermann, J.; Benson, B. A.; Bischoff, C.; Bock, J.; Bond, J. R.; Borrill, J.; Calabrese, E.; Carlstrom, J. E.; et al

    2014-03-15

    This is a report on the status and prospects of the quantification of neutrino properties through the cosmological neutrino background for the Cosmic Frontier of the Division of Particles and Fields Community Summer Study long-term planning exercise. Experiments planned and underway are prepared to study the cosmological neutrino background in detail via its influence on distance-redshift relations and the growth of structure. The program for the next decade described in this document, including upcoming spectroscopic galaxy surveys eBOSS and DESI and a new Stage-IV CMB polarization experiment CMB-S4, will achieve σ (σmv) = 16 meV and σ (Neff)(Neff) = 0.020.more » Such a mass measurement will produce a high significance detection of non-zero σmνσmν, whose lower bound derived from atmospheric and solar neutrino oscillation data is about 58 meV. If neutrinos have a minimal normal mass hierarchy, this measurement will definitively rule out the inverted neutrino mass hierarchy, shedding light on one of the most puzzling aspects of the Standard Model of particle physics — the origin of mass. This precise a measurement of Neff will allow for high sensitivity to any light and dark degrees of freedom produced in the big bang and a precision test of the standard cosmological model prediction that Neff = 3.046.« less

  15. Primordial Magnetic Field Effects on the CMB and Large-Scale Structure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yamazaki, Dai G.; Ichiki, Kiyotomo; Kajino, Toshitaka; Mathews, Grant J.

    2010-01-01

    Mmore » agnetic fields are everywhere in nature, and they play an important role in every astronomical environment which involves the formation of plasma and currents. It is natural therefore to suppose that magnetic fields could be present in the turbulent high-temperature environment of the big bang. Such a primordial magnetic field (PMF) would be expected to manifest itself in the cosmic microwave background (CMB) temperature and polarization anisotropies, and also in the formation of large-scale structure. In this paper, we summarize the theoretical framework which we have developed to calculate the PMF power spectrum to high precision. Using this formulation, we summarize calculations of the effects of a PMF which take accurate quantitative account of the time evolution of the cutoff scale. We review the constructed numerical program, which is without approximation, and an improvement over the approach used in a number of previous works for studying the effect of the PMF on the cosmological perturbations. We demonstrate how the PMF is an important cosmological physical process on small scales. We also summarize the current constraints on the PMF amplitude B λ and the power spectral index n B which have been deduced from the available CMB observational data by using our computational framework.« less

  16. Higgs vacuum stability and inflationary dynamics after BICEP2 and PLANCK dust polarisation data

    SciTech Connect (OSTI)

    Bhattacharya, Kaushik; Chakrabortty, Joydeep; Das, Suratna; Mondal, Tanmoy E-mail: joydeep@iitk.ac.in E-mail: tanmoym@prl.res.in

    2014-12-01

    If the recent detection of B-mode polarization of the Cosmic Microwave Background by BICEP2 observations, withstand the test of time after the release of recent PLANCK dust polarisation data, then it would surprisingly put the inflationary scale near Grand Unification scale if one considers single-field inflationary models. On the other hand, Large Hadron Collider has observed the elusive Higgs particle whose presently observed mass can lead to electroweak vacuum instability at high scale (? O(10{sup 10}) GeV). In this article, we seek for a simple particle physics model which can simultaneously keep the vacuum of the theory stable and yield high-scale inflation successfully. To serve our purpose, we extend the Standard Model of particle physics with a U(1){sub B-L} gauged symmetry which spontaneously breaks down just above the inflationary scale. Such a scenario provides a constrained parameter space where both the issues of vacuum stability and high-scale inflation can be successfully accommodated. The threshold effect on the Higgs quartic coupling due to the presence of the heavy inflaton field plays an important role in keeping the electroweak vacuum stable. Furthermore, this scenario is also capable of reheating the universe at the end of inflation. Though the issues of Dark Matter and Dark Energy, which dominate the late-time evolution of our universe, cannot be addressed within this framework, this model successfully describes the early universe dynamics according to the Big Bang model.

  17. The Shape and Flow of Heavy Ion Collisions (490th Brookhaven Lecture)

    SciTech Connect (OSTI)

    Schenke, Bjoern

    2014-12-18

    The sun can’t do it, but colossal machines like the Relativistic Heavy Ion Collider (RHIC) at Brookhaven Lab and Large Hadron Collider (LHC) in Europe sure can. Quarks and gluons make up protons and neutrons found in the nucleus of every atom in the universe. At heavy ion colliders like RHIC and the LHC, scientists can create matter more than 100,000 times hotter than the center of the sun—so hot that protons and neutrons melt into a plasma of quarks and gluons. The particle collisions and emerging quark-gluon plasma hold keys to understanding how these fundamental particles interact with each other, which helps explain how everything is held together—from atomic nuclei to human beings to the biggest stars—how all matter has mass, and what the universe looked like microseconds after the Big Bang. Dr. Schenke discusses theory that details the shape and structure of heavy ion collisions. He will also explain how this theory and data from experiments at RHIC and the LHC are being used to determine properties of the quark-gluon plasma.

  18. Neutrino physics from the cosmic microwave background and large scale structure

    SciTech Connect (OSTI)

    Abazajian, K. N.; Arnold, K.; Austermann, J. E.; Benson, B. A.; Bischoff, C.; Brock, J.; Bond, J. R.; Borrill, J.; Calabrese, E.; Carlstrom, J. E.; Chang, C. L.

    2015-03-15

    This is a report on the status and prospects of the quantification of neutrino properties through the cosmological neutrino background for the Cosmic Frontier of the Division of Particles and Fields Community Summer Study long-term planning exercise. Experiments planned and underway are prepared to study the cosmological neutrino background in detail via its influence on distance-redshift relations and the growth of structure. The program for the next decade described in this document, including upcoming spectroscopic galaxy surveys eBOSS and DESI and a new Stage-IV CMB polarization experiment CMB-S4, will achieve ? (?m?)(?m?) = 16 meV and ? (Neff)(Neff) = 0.020. Such a mass measurement will produce a high significance detection of non-zero ?m??m?, whose lower bound derived from atmospheric and solar neutrino oscillation data is about 58 meV. If neutrinos have a minimal normal mass hierarchy, this measurement will definitively rule out the inverted neutrino mass hierarchy, shedding light on one of the most puzzling aspects of the Standard Model of particle physics — the origin of mass. This precise a measurement of NeffNeff will allow for high sensitivity to any light and dark degrees of freedom produced in the big bang and a precision test of the standard cosmological model prediction that View the MathML sourceNeff=3.046.

  19. Neutrino Physics from the Cosmic Microwave Background and Large Scale Structure

    SciTech Connect (OSTI)

    Abazajian, K. N.; Arnold, K.; Austermann, J.; Benson, B. A.; Bischoff, C.; Bock, J.; Bond, J. R.; Borrill, J.; Calabrese, E.; Carlstrom, J. E.; Carvalho, C. S.; Chang, C. L.; Chiang, H. C.; Church, S.; Cooray, A.; Crawford, T. M.; Dawson, K. S.; Das, S.; Devlin, M. J.; Dobbs, M.; Dodelson, S.; Dore, O.; Dunkley, J.; Errard, J.; Fraisse, A.; Gallicchio, J.; Halverson, N. W.; Hanany, S.; Hildebrandt, S. R.; Hincks, A.; Hlozek, R.; Holder, G.; Holzapfel, W. L.; Honscheid, K.; Hu, W.; Hubmayr, J.; Irwin, K.; Jones, W. C.; Kamionkowski, M.; Keating, B.; Keisler, R.; Knox, L.; Komatsu, E.; Kovac, J.; Kuo, C. -L.; Lawrence, C.; Lee, A. T.; Leitch, E.; Linder, E.; Lubin, P.; McMahon, J.; Miller, A.; Newburgh, L.; Niemack, M. D.; Nguyen, H.; Nguyen, H. T.; Page, L.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Sehgal, N.; Seljak, U.; Sievers, J.; Silverstein, E.; Slosar, A.; Smith, K. M.; Spergel, D.; Staggs, S. T.; Stark, A.; Stompor, R.; Wang, G.; Watson, S.; Wollack, E. J.; Wu, W. L.K.; Yoon, K. W.; Zahn, O.

    2014-03-15

    This is a report on the status and prospects of the quantification of neutrino properties through the cosmological neutrino background for the Cosmic Frontier of the Division of Particles and Fields Community Summer Study long-term planning exercise. Experiments planned and underway are prepared to study the cosmological neutrino background in detail via its influence on distance-redshift relations and the growth of structure. The program for the next decade described in this document, including upcoming spectroscopic galaxy surveys eBOSS and DESI and a new Stage-IV CMB polarization experiment CMB-S4, will achieve ? (?mv) = 16 meV and ? (Neff)(Neff) = 0.020. Such a mass measurement will produce a high significance detection of non-zero ?m??m?, whose lower bound derived from atmospheric and solar neutrino oscillation data is about 58 meV. If neutrinos have a minimal normal mass hierarchy, this measurement will definitively rule out the inverted neutrino mass hierarchy, shedding light on one of the most puzzling aspects of the Standard Model of particle physics — the origin of mass. This precise a measurement of Neff will allow for high sensitivity to any light and dark degrees of freedom produced in the big bang and a precision test of the standard cosmological model prediction that Neff = 3.046.

  20. FORMERLY USED SITES REMEDIAL ACTION PROGRAM DESIGNATION SUMMARY

    Office of Legacy Management (LM)

    USED SITES REMEDIAL ACTION PROGRAM DESIGNATION SUMMARY FOR ALBA CRAFT LABORATORY OXFORD, OHIO October 1, 1992 U.S. DEPARTMENT OF ENERGY OFFICE OF ENVIRONMENTAL RESTORATION Designation Summary Alba Craft Laboratory. Oxford CONTENTS INTRODUCTION .......... . . ..................... 1 BACKGROUND Site Function ......................... Site Description ..................... 1 Owner History ................. .. 2 Radiological History and Status............ 2 Authority Review .................... .. 3

  1. CX-001814: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energy Efficiency and Renewable Energy Retrofits for Oxford County BuildingsCX(s) Applied: B2.2, B5.1Date: 04/22/2010Location(s): Oxford County, MaineOffice(s): Energy Efficiency and Renewable Energy

  2. United States Government

    Office of Legacy Management (LM)

    . v-w. ' ;H; (07.901 United States Government 0' ; Td 2, <.<~ Department of Energy ' m e m o randum DATE: REPLY TO Al-TN OF: EM-421 (W. A. W illiams, 903-8149) SUBJECT: Authorization for Remedial Action at Alba Craft Laboratory in Oxford, Ohio L. Price, OR TO: The former Alba Craft Laboratory site at lo-14 West Rose Avenue, Oxford, Ohio, is designated for remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP). Dr. and M rs. Gilbert Pacey, of Oxford, Ohio, own

  3. Institutional plan. FY 1998--2003

    SciTech Connect (OSTI)

    1997-07-01

    This Institutional Plan for Argonne National Laboratory contains central elements of Argonne`s strategic plan. Chapter II of this document discusses the Laboratory`s mission and core competencies. Chapter III presents the Science and Technology Strategic Plan, which summarizes key features of the external environment, presents Argonne`s vision, and describes how the Laboratory`s strategic goals and objectives map onto and support DOE`s four business lines. The balance of the chapter comprises the science and technology area plans, organized by the four DOE business lines. Chapter IV describes the Laboratory`s ten major initiatives, which cover a broad spectrum of science and technology. Our proposal for an Exotic Beam Facility aims at, among other things, increased understanding of the processes of nuclear synthesis during and shortly after the Big Bang. Our Advanced Transportation Technology initiative involves working with US industry to develop cost-effective technologies to improve the fuel efficiency and reduce the emissions of transportation systems. The Laboratory`s plans for the future depend significantly on the success of its major initiatives. Chapter V presents our Operations and Infrastructure Strategic Plan. The main body of the chapter comprises strategic plans for human resources; environmental protection, safety, and health; site and facilities; and information management. The chapter concludes with a discussion of the business and management practices that Argonne is adopting to improve the quality and cost-effectiveness of its operations. The structure and content of this document depart from those of the Institutional Plan in previous years. Emphasis here is on directions for the future; coverage of ongoing activities is less detailed. We hope that this streamlined plan is more direct and accessible.

  4. Le LHC, un tunnel cosmique

    ScienceCinema (OSTI)

    None

    2011-10-06

    Et si la lumière au bout du tunnel du LHC était cosmique ? En d?autres termes, qu?est-ce que le LHC peut nous apporter dans la connaissance de l?Univers ? Car la montée en énergie des accélérateurs de particules nous permet de mieux appréhender l?univers primordial, chaud et dense. Mais dans quel sens dit-on que le LHC reproduit des conditions proches du Big bang ? Quelles informations nous apporte-t-il sur le contenu de l?Univers ? La matière noire est-elle détectable au LHC ? L?énergie noire ? Pourquoi l?antimatière accumulée au CERN est-elle si rare dans l?Univers ? Et si le CERN a bâti sa réputation sur l?exploration des forces faibles et fortes qui opèrent au sein des atomes et de leurs noyaux, est-ce que le LHC peut nous apporter des informations sur la force gravitationnelle qui gouverne l?évolution cosmique ? Depuis une trentaine d?années, notre compréhension de l?univers dans ses plus grandes dimensions et l?appréhension de son comportement aux plus petites distances sont intimement liées : en quoi le LHC va-t-il tester expérimentalement cette vision unifiée ? Tout public, entrée libre / Réservations au +41 (0)22 767 76 76

  5. Submillimeter galaxies as progenitors of compact quiescent galaxies

    SciTech Connect (OSTI)

    Toft, S.; Zirm, A.; Krogager, J.-K.; Man, A. W. S.; Smol?i?, V.; Krpan, J.; Magnelli, B.; Karim, A.; Michalowski, M.; Capak, P.; Sheth, K.; Schawinski, K.; Wuyts, S.; Lutz, D.; Staguhn, J.; Berta, S.; Sanders, D.; Mccracken, H.; Riechers, D.

    2014-02-20

    Three billion years after the big bang (at redshift z = 2), half of the most massive galaxies were already old, quiescent systems with little to no residual star formation and extremely compact with stellar mass densities at least an order of magnitude larger than in low-redshift ellipticals, their descendants. Little is known about how they formed, but their evolved, dense stellar populations suggest formation within intense, compact starbursts 1-2 Gyr earlier (at 3 < z < 6). Simulations show that gas-rich major mergers can give rise to such starbursts, which produce dense remnants. Submillimeter-selected galaxies (SMGs) are prime examples of intense, gas-rich starbursts. With a new, representative spectroscopic sample of compact, quiescent galaxies at z = 2 and a statistically well-understood sample of SMGs, we show that z = 3-6 SMGs are consistent with being the progenitors of z = 2 quiescent galaxies, matching their formation redshifts and their distributions of sizes, stellar masses, and internal velocities. Assuming an evolutionary connection, their space densities also match if the mean duty cycle of SMG starbursts is 42{sub ?29}{sup +40} Myr (consistent with independent estimates), which indicates that the bulk of stars in these massive galaxies were formed in a major, early surge of star formation. These results suggest a coherent picture of the formation history of the most massive galaxies in the universe, from their initial burst of violent star formation through their appearance as high stellar-density galaxy cores and to their ultimate fate as giant ellipticals.

  6. Electro Chem Technic | Open Energy Information

    Open Energy Info (EERE)

    Place: Oxford, United Kingdom Zip: OX3 7LA Product: The company makes and sells a novel small fuel cell. They sell as well a wide range of educational material about fuel...

  7. Biojoule Ltd | Open Energy Information

    Open Energy Info (EERE)

    Biojoule Ltd Jump to: navigation, search Name: Biojoule Ltd Place: Oxford, England, United Kingdom Zip: OX4 1RQ Product: Biojoule is a pellets producer who has developed its own...

  8. Alan Bishop selected as Institute of Physics Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in theoretical solid-state physics at the Cavendish Laboratory. After working at Oxford, Cornell, and London Universities, he joined Los Alamos in 1979. He has served as the...

  9. Amanda Petford-Long | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging at Argonne. She holds a D.Phil in Materials Science from the University of Oxford (1985) and a Bachelor's degree in Physics from University College, London (1981). She...

  10. Assumption to the Annual Energy Outlook 2014 - International...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3.2. The GDP growth rate assumptions for non-U.S. countriesregions are taken from Oxford Economic Model (October, 2012). The values for growth in total liquids demand in the...

  11. Chenango County, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    York New Berlin, New York North Norwich, New York Norwich, New York Otselic, New York Oxford, New York Pharsalia, New York Pitcher, New York Plymouth, New York Preston, New York...

  12. UNCLASSIFIED Institute for Materials ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fracture with coarser dimples. Biography: Roger Doherty received his D. Phil. from Oxford University in 1964, worked for two years in the UK steel industry and then spent 17...

  13. 2013-2014 SectionI V: Superconducting Cyclotron, Instrumentation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R. E. Tribble, E. Pollaco, L. Trache, and G. Pascovici Update on the upgrade of the Oxford detector - part 1 A. Spiridon, R. Chyzh, M. Dag, E. McCleskey, M. McCleskey, B. T....

  14. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    200 kV Spherical Aberration Cs: 1.2mm Chromatic Aberration Cc: 1.2mm Detectors Oxford INCA energy dispersive X-ray detector with energy resolution of 136eV for Mn k-alpha...

  15. LeekSeek International | Open Energy Information

    Open Energy Info (EERE)

    LeekSeek International Jump to: navigation, search Name: LeekSeek International Place: Oxford, England, United Kingdom Zip: OX4 4GA Product: UK-based group who detect and prevent...

  16. Fermilab | Newsroom | Press Releases | February 2014: Scientists...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jpeg images. When using these images, please credit each photo as indicated. Med Res | Hi Res Matteo Cremonesi, left, of the University of Oxford and the CDF collaboration, and...

  17. CX-005652: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Geothermal Incentive ProgramCX(s) Applied: A9, A11, B5.1Date: 04/28/2011Location(s): Oxford, ConnecticutOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  18. FOIA May 2009 Responses (000331 - 000358)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... security of nuclear weapon material outside the United States. ... , 441,600 1 C CRITIQUE RESOURCE -1,741,413 ... OXFORD INSTRUMENTS ' 1 AMERICA 1 INCORPORATED 26,300 ' ...

  19. Stephen Hawking

    ScienceCinema (OSTI)

    None

    2011-04-25

    Le grand astrophysicien S.Hawking, né le 08-01-1942 à Oxford, parle de "baby universes" et la gravitation et répond aux questions.

  20. untitled

    Office of Legacy Management (LM)

    Oxford Site M:\LTS\111\0001\10\000\S0824300\S0824300-28.mxd coatesc 09/28/2011 12:59:21 PM 0 100 50 FEET

  1. SAC - Linac Coherent Light Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    von der Linde - University of Essen, Germany Justin Wark,-Oxford University, USA C. Lewis Cocke-Kansas State University, USA Robert Schoenlein-LBNL, USA Philip Anfinrud-NIH,...

  2. EA-1824: Finding of No Significant Impact | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and startup of the 50.6-MW wind power project and its associated transmission line in Oxford County, Maine, will not have a significant effect on the human environment. DOE is...

  3. Calorimetry Triggering in ATLAS (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    U. Montreal U. SLAC CERN Michigan State U. Chile U., Catolica City Coll., N.Y. Oxford U. La Plata U. McGill U. Mainz U., Inst. Phys. Hamburg U. DESY DESY, Zeuthen...

  4. Project Profile: Forecasting and Influencing Technological Progress in Solar Energy

    Broader source: Energy.gov [DOE]

    The University of North Carolina at Charlotte, along with their partners at Arizona State University and the University of Oxford, under the Solar Energy Evolution and Diffusion Studies (SEEDS)...

  5. DOE - Office of Legacy Management -- Ohio

    Office of Legacy Management (LM)

    Ohio Ohio Ohio Sites Columbus East Site Columbus Sites Fairfield Site Fernald Preserve Hamilton Site Mound Site Oxford Site Painesville Site Piqua Decommissioned Reactor Site Toledo Site Last Updated: 1/14/2016

  6. New Jersey firm creates jobs and vital components for world-leading

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    experiment | Princeton Plasma Physics Lab Jersey firm creates jobs and vital components for world-leading experiment By John Greenwald July 10, 2012 Tweet Widget Google Plus One Share on Facebook This superconducting wire will become thin as a needle when Oxford Superconducting Technology finishes manufacturing it. (Photo by Elle Starkman, PPPL Office Of Communications) This superconducting wire will become thin as a needle when Oxford Superconducting Technology finishes manufacturing it.

  7. NIF User Group Executive Board

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NIF User Group Executive Board Professor Don Lamb (Chair) University of Chicago Dr. Riccardo Betti University of Rochester Dr. Alexis Casner Centre d'Études de Bruyère Le Châtel Professor Paul Drake Co-Chair Committee Elections University of Michigan Dr. Hans Hermann Los Alamos National Laboratory Dr. Paul Neumayer GSI Darmstadt Dr. Hye-Sook Park Lawrence Livermore National Laboratory Dr. Mingsheng Wei General Atomics Jena Meineche Young Researcher: Oxford University Gianluca Gregori Oxford

  8. TITLE

    Office of Legacy Management (LM)

    Post-Remedial Action Report for the Alba Craft Site and Vicinity Properties Oxford , Ohio August 1995 POST-REMEDIAL ACTION REPORT FOR THE A D A CRAFT SITE AND VICINITY PROPERTIES OXFORD, OHIO AUGUST 1995 Prepared f o ~ United States Department of Energy Oak Ridge Operations Office Under Contract No. DE-ACO5-910R21949 Bechtel National, Inc. Oak Ridge, Tennessee Bechtel Job No. 14501 CONTENTS Page FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  9. Remedial Action Performed

    Office of Legacy Management (LM)

    Alba Craft Laboratory and Vicinity Properties Site in Oxford, Ohio C Department of Energy Former Sites Restoration Division Oak Ridge Operations Office January 1997 $$@T Op% 3 @!B . i~d!l Ab Printed on recycled/recyclable paper. CERTIFICATION DOCKET FOR THE REMEDIAL ACTION PERFORMED AT THE FORMER ALBA CRAFT LABORATORY AND VICINITY PROPERTIES SITE IN OXFORD, OHIO JANUARY 1997 Prepared for United States Department of Energy Oak Ridge Operations Office Under Contract No. DE-AC0591 OR2 1949 Bechtel

  10. --No Title--

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    end-point for nova nucleosynthesis: Evaluating the 30P(p,g) reaction rate 4 1021X C.J. Lister Precise Doppler reconstruction of gamma rays from fast-moving nuclei 2 1023 P.M....

  11. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nucleosynthesis (Univ. Texas Press, 1973) p. 3 1973CA1C Catala et al., An. de Fisica 69 (1973) 267 1973DZ1A Dzhibuti, Izv. Akad. Nauk SSSR Ser. Fiz. 37 (1973) 1562...

  12. Dr. Ania Kwiatkowski, TRIUMF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ania Kwiatkowski, TRIUMF Radioactive decay processes are of intrinsic interest to nuclear physicists, but they also play a pivotal role in stellar nucleosynthesis, investigations of the neutrino's character, and fundamental symmetries. Although more than a century has passed since the discovery of radioactivity, the underlying mechanisms are not fully understood. Yet radioactive decay processes are of interest not only to nuclear physics but also for their role in for example nucleosynthesis.

  13. The Initial State of a Primordial Anisotropic Stage of Inflation

    SciTech Connect (OSTI)

    Blanco-Pillado, Jose J.; Minamitsuji, Masato

    2015-06-12

    We investigate the possibility that the inflationary period in the early universe was preceded by a primordial stage of strong anisotropy. In particular we focus on the simplest model of this kind, where the spacetime is described by a non-singular Kasner solution that quickly evolves into an isotropic de Sitter space, the so-called Kasner-de Sitter solution. The initial Big Bang singularity is replaced, in this case, by a horizon. We show that the extension of this metric to the region behind the horizon contains a timelike singularity which will be visible by cosmological observers. This makes it impossible to have a reliable prediction of the quantum state of the cosmological perturbations in the region of interest. In this paper we consider the possibility that this Kasner-de Sitter universe is obtained as a result of a quantum tunneling process effectively substituting the region behind the horizon by an anisotropic parent vacuum state, namely a 1+1 dimensional spacetime compactified over an internal flat torus, T{sub 2}, which we take it to be of the form de Sitter{sub 2}×T{sub 2} or Minkowski{sub 2}×T{sub 2}. As a first approximation to understand the effects of this anisotropic initial state, we compute the power spectrum of a massless scalar field in these backgrounds. In both cases, the spectrum converges at small scales to the isotropic scale invariant form and only present important deviations from it at the largest possible scales. We find that the decompactification scenario from M{sub 2}×T{sub 2} leads to a suppressed and slightly anisotropic power spectrum at large scales which could be related to some of the anomalies present in the current CMB data. On the other hand, the spectrum of the universe with a dS{sub 2}×T{sub 2} parent vacuum presents an enhancement in power at large scales not consistent with observations.

  14. Final Technical Report for "High Energy Physics at The University of Iowa"

    SciTech Connect (OSTI)

    Mallik, Usha; Meurice, Yannick; Nachtman, Jane; Onel, Yasar; Reno, Mary

    2013-07-31

    Particle Physics explores the very fundamental building blocks of our universe: the nature of forces, of space and time. By exploring very energetic collisions of sub-nuclear particles with sophisticated detectors at the colliding beam accelerators (as well as others), experimental particle physicists have established the current theory known as the Standard Model (SM), one of the several theoretical postulates to explain our everyday world. It explains all phenomena known up to a very small fraction of a second after the Big Bang to a high precision; the Higgs boson, discovered recently, was the last of the particle predicted by the SM. However, many other phenomena, like existence of dark energy, dark matter, absence of anti-matter, the parameters in the SM, neutrino masses etc. are not explained by the SM. So, in order to find out what lies beyond the SM, i.e., what conditions at the earliest fractions of the first second of the universe gave rise to the SM, we constructed the Large Hadron Collider (LHC) at CERN after the Tevatron collider at Fermi National Accelerator Laboratory. Each of these projects helped us push the boundary further with new insights as we explore a yet higher energy regime. The experiments are extremely complex, and as we push the boundaries of our existing knowledge, it also requires pushing the boundaries of our technical knowhow. So, not only do we pursue humankind’s most basic intellectual pursuit of knowledge, we help develop technology that benefits today’s highly technical society. Our trained Ph.D. students become experts at fast computing, manipulation of large data volumes and databases, developing cloud computing, fast electronics, advanced detector developments, and complex interfaces in several of these areas. Many of the Particle physics Ph.D.s build their careers at various technology and computing facilities, even financial institutions use some of their skills of simulation and statistical prowess. Additionally, last but not least, today’s discoveries make for tomorrow’s practical uses of an improved life style, case in point, internet technology, fiber optics, and many such things. At The University of Iowa we are involved in the LHC experiments, ATLAS and CMS, building equipment, with calibration and maintenance, supporting the infrastructure in hardware, software and analysis as well as participating in various aspects of data analyses. Our theory group works on fundamentals of field theories and on exploration of non-accelerator high energy neutrinos and possible dark matter searches.

  15. Meet CMI Director Alex King | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Director Alex King CMI Director Alex King CMI Director Alex King was born and raised in London. He attended the University of Sheffield as an undergraduate and earned his doctorate from Oxford. He was a postdoc at Oxford and then M.I.T. before joining the faculty at the State University of New York at Stony Brook, where he also served as the Vice Provost for Graduate Studies (Dean of the Graduate School). He was appointed as Professor and Head of the School of Materials Engineering at Purdue in

  16. THE ORIGINS OF LIGHT AND HEAVY R-PROCESS ELEMENTS IDENTIFIED BY CHEMICAL TAGGING OF METAL-POOR STARS

    SciTech Connect (OSTI)

    Tsujimoto, Takuji; Shigeyama, Toshikazu

    2014-11-01

    Growing interests in neutron star (NS) mergers as the origin of r-process elements have sprouted since the discovery of evidence for the ejection of these elements from a short-duration ?-ray burst. The hypothesis of a NS merger origin is reinforced by a theoretical update of nucleosynthesis in NS mergers successful in yielding r-process nuclides with A > 130. On the other hand, whether the origin of light r-process elements are associated with nucleosynthesis in NS merger events remains unclear. We find a signature of nucleosynthesis in NS mergers from peculiar chemical abundances of stars belonging to the Galactic globular cluster M15. This finding combined with the recent nucleosynthesis results implies a potential diversity of nucleosynthesis in NS mergers. Based on these considerations, we are successful in the interpretation of an observed correlation between [light r-process/Eu] and [Eu/Fe] among Galactic halo stars and accordingly narrow down the role of supernova nucleosynthesis in the r-process production site. We conclude that the tight correlation by a large fraction of halo stars is attributable to the fact that core-collapse supernovae produce light r-process elements while heavy r-process elements such as Eu and Ba are produced by NS mergers. On the other hand, stars in the outlier, composed of r-enhanced stars ([Eu/Fe] ? +1) such as CS22892-052, were exclusively enriched by matter ejected by a subclass of NS mergers that is inclined to be massive and consist of both light and heavy r-process nuclides.

  17. Microsoft Word - saastamoinen_abstract

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 24, 2012, at 2:00 pm Refreshment will be served at 1:45 pm Beta-decay Studies for Nova Nucleosynthesis Dr. Antti Saastamoinen University of Jyväskylä / TAMU Abstract Classical novae occur in interacting binary systems, where hydrogen-rich material accretes on a white dwarf from its low-mass main-sequence companion. Eventually, the accretion of the hydrogen-rich matter leads to a thermonuclear runaway (TNR). Understanding the dynamics of the nova outbursts and the nucleosynthesis fueling

  18. International Linear Collider Reference Design Report Volume 2: Physics at the ILC

    SciTech Connect (OSTI)

    Aarons, Gerald; Abe, Toshinori; Abernathy, Jason; Ablikim, Medina; Abramowicz, Halina; Adey, David; Adloff, Catherine; Adolphsen, Chris; Afanaciev, Konstantin; Agapov, Ilya; Ahn, Jung-Keun; Aihara, Hiroaki; Akemoto, Mitsuo; del Carmen Alabau, Maria; Albert, Justin; Albrecht, Hartwig; Albrecht, Michael; Alesini, David; Alexander, Gideon; Alexander, Jim; Allison, Wade; /SLAC /Tokyo U. /Victoria U. /Beijing, Inst. High Energy Phys. /Tel Aviv U. /Birmingham U. /Annecy, LAPP /Minsk, High Energy Phys. Ctr. /DESY /Royal Holloway, U. of London /CERN /Pusan Natl. U. /KEK, Tsukuba /Orsay, LAL /Notre Dame U. /Frascati /Cornell U., Phys. Dept. /Oxford U. /Hefei, CUST /Bangalore, Indian Inst. Sci. /Fermilab

    2011-11-14

    The triumph of 20th century particle physics was the development of the Standard Model and the confirmation of many of its aspects. Experiments determined the particle constituents of ordinary matter, and identified four forces that hold matter together and transform it from one form to another. Particle interactions were found to obey precise laws of relativity and quantum theory. Remarkable features of quantum physics were observed, including the real effects of 'virtual' particles on the visible world. Building on this success, particle physicists are now able to address questions that are even more fundamental, and explore some of the deepest mysteries in science. The scope of these questions is illustrated by this summary from the report Quantum Universe: (1) Are there undiscovered principles of nature; (2) How can we solve the mystery of dark energy; (3) Are there extra dimensions of space; (4) Do all the forces become one; (5) Why are there so many particles; (6) What is dark matter? How can we make it in the laboratory; (7) What are neutrinos telling us; (8) How did the universe begin; and (9) What happened to the antimatter? A worldwide program of particle physics investigations, using multiple approaches, is already underway to explore this compelling scientific landscape. As emphasized in many scientific studies, the International Linear Collider is expected to play a central role in what is likely to be an era of revolutionary advances. Discoveries from the ILC could have breakthrough impact on many of these fundamental questions. Many of the scientific opportunities for the ILC involve the Higgs particle and related new phenomena at Terascale energies. The Standard Model boldly hypothesizes a new form of Terascale energy, called the Higgs field, that permeates the entire universe. Elementary particles acquire mass by interacting with this field. The Higgs field also breaks a fundamental electroweak force into two forces, the electromagnetic and weak forces, which are observed by experiments in very different forms. So far, there is no direct experimental evidence for a Higgs field or the Higgs particle that should accompany it. Furthermore, quantum effects of the type already observed in experiments should destabilize the Higgs boson of the Standard Model, preventing its operation at Terascale energies. The proposed antidotes for this quantum instability mostly involve dramatic phenomena at the Terascale: new forces, a new principle of nature called supersymmetry, or even extra dimensions of space. Thus for particle physicists the Higgs boson is at the center of a much broader program of discovery, taking off from a long list of questions. Is there really a Higgs boson? If not, what are the mechanisms that give mass to particles and break the electroweak force? If there is a Higgs boson, does it differ from the hypothetical Higgs of the Standard Model? Is there more than one Higgs particle? What are the new phenomena that stabilize the Higgs boson at the Terascale? What properties of Higgs boson inform us about these new phenomena? Another major opportunity for the ILC is to shed light on the dark side of the universe. Astrophysical data shows that dark matter dominates over visible matter, and that almost all of this dark matter cannot be composed of known particles. This data, combined with the concordance model of Big Bang cosmology, suggests that dark matter is comprised of new particles that interact weakly with ordinary matter and have Terascale masses. It is truely remarkable that astrophysics and cosmology, completely independently of the particle physics considerations reviewed above, point to new phenomena at the Terascale. If Terascale dark matter exists, experiments at the ILC should be able to produce such particles in the laboratory and study their properties. Another list of questions will then beckon. Do these new particles really have the correct properties to be the dark matter? Do they account for all of the dark matter, or only part of it? What do their properties tell us about the evolution of the universe? How is dark matter connected to new principles or forces of nature? A third cluster of scientific opportunities for the ILC focus on Einstein's vision of an ultimate unified theory. Particle physics data already suggests that three of the fundamental forces originated from a single 'grand' unified force in the first instant of the Big Bang. Experiments at the ILC could test this idea and look for evidence of a related unified origin of matter involving supersymmetry. A theoretical framework called string theory goes beyond grand unification to include gravity, extra spatial dimensions, and new fundamental entities called superstrings. Theoretical models to explain the properties of neutrinos, and account for the mysterious dominance of matter over antimatter, also posit unification at high energies.

  19. ANL/EAD/TM-9 Derivation

    Office of Legacy Management (LM)

    ANL/EAD/TM-9 Derivation of Uranium Residual Radioactive Material Guidelines for the Former Alba Craft Laboratory Site, Oxford, Ohio _ _ ,_ _., by M. Nimmagadda, E. Faillace, and C. Yu Environmental Assessment Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 January 1994 Work sponsored by United States Department of Energy MASTER CONTENTS NOTATION ......................................................... v SUMMARY

  20. Southern Ute Alternative Energy

    Energy Savers [EERE]

    Alternative Energy Confidential Draft - For Discussion Only Oxford Solar Project Lessons Learned February, 2016 Rebecca Kauffman, SUAE President Southern Ute Alternative Energy Confidential Draft - For Discussion Only Agenda Background - Southern Ute Indian Tribe - Southern Ute Alternative Energy Solar Project Overview - Why Now? - Why this particular project? Project Development Process - Permitting - Land access - Utility Negotiation Project Next Steps - Remaining Activities 2 Southern Ute

  1. CX-006195: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    United Way Energy Efficient Buildings Project for Non-Profit FacilitiesCX(s) Applied: B2.5, B5.1Date: 07/01/2011Location(s): Oxford, MichiganOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  2. CX-004327: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Retrofitting for Energy Efficiency - Biofuels Center of North CarolinaCX(s) Applied: A9, A11, B1.24, B1.31, B2.2, B5.1Date: 10/29/2010Location(s): Oxford, North CarolinaOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  3. Karissa Marcum | Department of Energy

    Office of Environmental Management (EM)

    Karissa Marcum About Us Karissa Marcum - Public Affairs Specialist, Office of Public Affairs Karissa Marcum is a Public Affairs Specialist in the Office of Public Affairs. Most Recent The Internet Café of the Nuclear World July 19 Harry Potter, Oxford and Nuclear Energy July 16 One Cool Change at Energy HQ July 6

  4. Collective neutrino oscillations in supernovae

    SciTech Connect (OSTI)

    Duan, Huaiyu [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States)

    2014-06-24

    In a dense neutrino medium neutrinos can experience collective flavor transformation through the neutrino-neutrino forward scattering. In this talk we present some basic features of collective neutrino flavor transformation in the context in core-collapse supernovae. We also give some qualitative arguments for why and when this interesting phenomenon may occur and how it may affect supernova nucleosynthesis.

  5. Cosmic radioactivity and INTEGRAL results

    SciTech Connect (OSTI)

    Diehl, Roland

    2014-05-02

    Gamma-ray lines from radioactive decay of unstable isotopes co-produced by nucleosynthesis in massive stars and supernova have been measured since more than thirty years. Over the past ten years, INTEGRAL complemented the first sky survey made by COMPTEL. The {sup 26}A1 isotope with 1 My decay time had been first direct proof of currently-ongoing nucleosynthesis in our Galaxy. This has now become a tool to study the ?My history of specific source regions, such as massive-star groups and associations in nearby regions which can be discriminated from the galactic-plane background, and the inner Galaxy, where Doppler shifted lines add to the astronomical information about bar and spiral structure. Recent findings suggest that superbubbles show a remarkable asymmetry, on average, in the spiral arms of our galaxy. {sup 60}Fe is co-produced by the sources of {sup 26}A1, and the isotopic ratio from their nucleosynthesis encodes stellar-structure information. Annihilation gamma-rays from positrons in interstellar space show a puzzling bright and extended source region central to our Galaxy, but also may be partly related to nucleosynthesis. {sup 56}Ni and {sup 44}Ti isotope gamma-rays have been used to constrain supernova explosion mechanisms. Here we report latest results using the accumulated multi-year database of INTEGRAL observations, and discuss their astrophysical interpretations, connecting to other traces of cosmic radioactivity and to other cosmic messengers.

  6. (Experimental physics at Yale University: Research proposal and budget Proposal, 1 January 1992--31 December 1996)

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    This report reviews the following topics: nuclear and quark matter; correlated pairs from heavy ion collisions-search for new low mass resonances coupled to electron-positron collisions; proposed light ion research program; experimental nuclear astrophysics (explosive nucleosynthesis); search for rare decay modes and rare processes in nuclei; and nuclear spectroscopy at the extremes of spin, isospin, and temperature. (LSP).

  7. [Experimental physics at Yale University: Research proposal and budget Proposal, 1 January 1992--31 December 1996

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    This report reviews the following topics: nuclear and quark matter; correlated pairs from heavy ion collisions-search for new low mass resonances coupled to electron-positron collisions; proposed light ion research program; experimental nuclear astrophysics (explosive nucleosynthesis); search for rare decay modes and rare processes in nuclei; and nuclear spectroscopy at the extremes of spin, isospin, and temperature. (LSP).

  8. Advanced Accelerator Concepts Final Report

    SciTech Connect (OSTI)

    Wurtele, Jonathan S.

    2014-05-13

    A major focus of research supported by this Grant has been on the ALPHA antihydrogen trap. We first trapped antihydrogen in 2010 and soon thereafter demonstrated trapping for 1000s. We now have observed resonant quantum interactions with antihydrogen. These papers in Nature and Nature Physics report the major milestones in anti-atom trapping. The success was only achieved through careful work that advanced our understanding of collective dynamics in charged particle systems, the development of new cooling and diagnostics, and in- novation in understanding how to make physics measurements with small numbers of anti-atoms. This research included evaporative cooling, autoresonant excitation of longitudinal motion, and centrifugal separation. Antihydrogen trapping by ALPHA is progressing towards the point when a important theories believed by most to hold for all physical systems, such as CPT (Charge-Parity-Time) invariance and the Weak Equivalence Principle (matter and antimatter behaving the same way under the influence of gravity) can be directly tested in a new regime. One motivation for this test is that most accepted theories of the Big Bang predict that we should observe equal amounts of matter and antimatter. However astrophysicists have found very little antimatter in the universe. Our experiment will, if successful over the next seven years, provide a new test of these ideas. Many earlier detailed and beautiful tests have been made, but the trapping of neutral antimatter allows us to explore the possibility of direct, model-independent tests. Successful cooling of the anti atoms, careful limits on systematics and increased trapping rates, all planned for our follow-up experiment (ALPHA-II) will reach unrivaled precision. CPT invariance implies that the spectra of hydrogen and antihydrogen should be identical. Spectra can be measured in principle with great precision, and any di#11;erences we might observe would revolutionize fundamental physics. This is the physics motivation for our experiment, one that requires only a few dozen researchers but must effectively integrate plasma, accelerator, atomic, and fundamental physics, as well as combine numerous technologies in the control, manipulation, and measurement of neutral and non-neutral particles. The ELENA ring (to which we hope to contribute, should funding be provided) is expect, when completed, to significantly enhance the performance of antihydrogen trapping by increasing by a factor of 100 the number of antiprotons that can be successfully trapped and cooled. ELENA operation is scheduled to commence in 2017. In collaboration with LBNL scientists, we proposed a frictional cooling scheme. This is an alternative cooling method to that used by ELENA. It is less complicated, experimentally unproven, and produces a lower yield of cold antiprotons. Students and postdoctoral researchers work on the trapping, cooling, transport, and nonlinear dynamics of antiprotons bunches that are provided by the AD to ALPHA; they contribute to the operation of the experiment, to software development, and to the design and operation of experiments. Students are expected to spend at summers at CERN while taking courses; after completion of courses they typically reside at CERN for most of the half-year run. The Antiproton Decelerator [AD] at CERN, along with its experiments, is the only facility in the world where antiprotons can be trapped and cooled and combined with positrons to form cold antihydrogen, with the ultimate goal of studying CPT violation and, subsequently, gravitational interactions of antimatter. Beyond the ALPHA experiment, the group worked on beam physics problems including limits on the average current in a time-dependent period cathode and new methods to create longitudinally coherent high repetition rate soft x-ray sources and wide bandwidth mode locked x-ray lasers. We completed a detailed study of quantum mechanical effects in the transit time cooling of muons.

  9. Yimin Wu | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Yimin Wu Postdoctoral Appointee (Supervisor, Yuzi Liu) Yimin Wu received a PhD in Materials Science, specializing in 2D nanomaterials and Devices, from the University of Oxford. He spent a year at University of California, Berkeley and Lawrence Berkeley National Lab as a postdoc. Currently, he is a postdoc at Center for Nanoscale Materials. His Research focuses primarily on integrated in-situ imaging to understand and advance photocatalysis for artificial photosynthesis. Other research topics

  10. SREL Reprint #3300

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Development and characterization of twenty-two polymorphic microsatellite markers for the leafcutter ant, Acromyrmex lundii, utilizing Illumina sequencing Christian Rabeling1, Martin Bollazzi2, Maurício Bacci Jr.3, Rochelle R. Beasley4, Stacey L. Lance4, Kenneth L. Jones5, and Naomi E. Pierce1 1Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA 2Section of Entomology, University of the Republic, Avenida Garzon 780, 11200 Montevideo, Uruguay

  11. Microsoft Word - NStone_Abs2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pathological Physics is alive and well Professor N. Stone Oxford University, UK, and University of Tennessee, USA The name pathological science was applied by the Nobel Prize winning chemist Irving Langmuir to describe the studies in which scientists have been persuaded to support erroneous ideas through wishful thinking - the science of 'things that aren't so'. In this talk, after reviewing some classical examples of pathological physics, I will describe, from first hand involvement, two very

  12. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stephen Whitelam Whitelam Staff Scientist, Theory of Nanostructured Materials swhitelam@lbl.gov 510.495.2769 personal website Biography Steve Whitelam got his Ph.D. in theoretical physics in 2004 from Oxford University, where he used statistical mechanics to study the dynamics of model glass-forming liquids. He was supervised by Juan P. Garrahan and David Sherrington. From 2004 - 2007 he did a postdoc with Phillip Geissler at UC Berkeley, using theory and simulation to study protein complex

  13. Microsoft PowerPoint - Session2_Rogers.pptx

    Gasoline and Diesel Fuel Update (EIA)

    mme search Program atural Gas Res International Gas Market Workshop International Gas Market Workshop European Gas Market Outlook European Gas Market Outlook Y STUDIES Na p p 23 rd August 2012 Howard V Rogers Director Natural Gas Programme E FOR ENERGY Director Natural Gas Programme Oxford Institute for Energy Studies ORD INSTITUT OXFO 1 mme Themes search Program Themes * European Price Transition from oil indexation to hub atural Gas Res pricing. * Europe and Asia LNG 'Tug of War' Y STUDIES Na

  14. Browse by Discipline -- E-print Network Subject Pathways: Fossil Fuels --

    Office of Scientific and Technical Information (OSTI)

    Energy, science, and technology for the research community -- hosted by the Office of Scientific and Technical Information, U.S. Department of Energy L M N O P Q R S T U V W X Y Z Kaessmann, Henrik (Henrik Kaessmann) - Centre Integratif de Genomique, Universite de Lausanne Kapanidis, Achillefs N. (Achillefs N. Kapanidis) - Department of Physics, University of Oxford Karpen, Gary (Gary Karpen) - Department of Genome Biology, Lawrence Berkeley National Laboratory Karplus, Kevin (Kevin Karplus)

  15. Browse by Discipline -- E-print Network Subject Pathways: Geosciences --

    Office of Scientific and Technical Information (OSTI)

    Energy, science, and technology for the research community -- hosted by the Office of Scientific and Technical Information, U.S. Department of Energy W X Y Z Walba, David (David Walba) - Department of Chemistry and Biochemistry, University of Colorado at Boulder Wallace, Bonnie Ann (Bonnie Ann Wallace) - School of Crystallography, Birkbeck College, University of London Wallace, Mark (Mark Wallace) - Department of Chemistry, University of Oxford Walsh, Patrick J. (Patrick J. Walsh) -

  16. UNCLASSIFIED Institute for Materials Science Sponsored Seminar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dr. Sergii L. Dudarev Programme Grant Modelling Co-ordinator & Visiting Professor Oxford University Materials United Kingdom "Magnetic" Molecular Dynamics and Other Models for Fusion Reactor Materials Tuesday, September 15, 2015 2:00 - 3:00pm MSL Auditorium (TA-03 - Bldg 1698 - Room A103) Abstract - Multiscale models for fusion reactor materials address both the initial stages of production of radiation defects, where the recently discovered power law statistics of defect

  17. US ITER toroidal field coil conductor produc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ITER toroidal field coil conductor production requires miles of niobium-tin superconducting wire. Photo: Oxford Superconducting Technology Continued on page 6 INSIDE: ITER Site Progress View from DOE US Systems Update Engaging Industry, Universities and Labs Open Positions Upcoming Events PPPL-Led Researchers Seek to Demonstrate a New Diagnostic - by John Greenwald Scientists working under the leadership of the US Department of Energy's Princeton Plasma Physics Laboratory have developed and are

  18. VII-14 INSTITUTE COLLOQUIA AND SEMINARS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11-March 31, 2012 2011 April 21 Dr. Pibero Djawotho, Cyclotron Institute, Texas A&M University, College Station, Texas Gluon Polarization Measurements with STAR May 2 Professor G. Wolschin, University of Heidelberg, Heidelberg, Germany Heavy Ion at LHC Energies: Selected Predictions vs. First Data May 10 Professor J. Stone, Oxford University, United Kingdom and University of Tennessee, Knoxville, Tennessee Nuclear Matter and Giant Resonance Constraints on Models of Nucleon-Nucleon

  19. FEI Nova 200 Dual-Beam SEM/FIB

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nova 200 Dual-Beam SEM/FIB Current Research Activities: * Support instrument for atom probe and TEM specimen preparation * 3D reconstruction of microstructural features Contact: Jon Poplawsky, poplawskyjd@ornl.gov, (865) 576-4965 Capabilities: * FEG scanning electron microscope * Ion column with Ga liquid ion source for milling * GIS for Pt deposition * Kleindiek nanomanipulator for specimen lift-out * Oxford Inca EDS system * AutoTEM, AutoFIB, and slice and view automation software Fabricating

  20. LANSCE | Users | Rosen Scholar | Past

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scholars | Past The Rosen Scholars bring together the disciplines of nuclear physics, accelerator technology, material science, and electrodynamics. This range of activities is the foundation of the LANSCE complex and fits well with the vision of a multi-disciplinary facility developed by Louis Rosen. 2013-2014 LANSCE Rosen Scholars Devinder Sivia Devinder Sivia Dr. Sivia is the Stipendary Lecturer in Mathematics for the Sciences at St. John's College, Oxford. An accomplished lecturer and

  1. MEMORANDUM OF UNDERSTANDING Between The Numerical Algorithms Group Ltd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Between The Numerical Algorithms Group Ltd and The University of California, as Management and Operating Contractor for Lawrence Berkeley National Laboratory on a Visitor Exchange Program This Memorandum of Understanding (MOU) is by and between the Numerical Algorithms Group Ltd (NAG) with a registered address at: Wilkinson House, Jordan hill Road, Oxford, UK and the University of California, as Management and Operating Contractor for Lawrence Berkeley National Laboratory, including its

  2. Cleanroom Equipment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conventional Machining Engis Lapping and Polishing Machine MET One particle Counter Sand Blaster Cabinet Flycutting Machine Lithography Equipment Mann 600 Pattern Generator Oriel UV Exposure Station with Aligner Quintel UL7000-OBS Aligner and DUV Exposure Station Metrology Equipment AFT 210XP Nanospec Digital Instrument 3100 SPM Hitachi S-4500II Field Emission SEM Hitachi U-2001 NIR-UV-VUS Spectrophotometer Nikon MM-22U Measuroscope Nikon OPTIPHOT-88 Optical Microscope OXFORD Plasmalab System

  3. COLLOQUIUM: Industrialization of Nb3Sn conductor | Princeton Plasma Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab December 17, 2014, 4:00pm to 6:30pm Colloquia MBG Auditorium COLLOQUIUM: Industrialization of Nb3Sn conductor Dr. Jeffrey Parrell Oxford Instruments Superconductivity Technology Superconducting magnets are enabling tools for scientific research, and are also a vital component of our health care system. Advances in magnet technology are strongly linked to advances in superconductor performance. While particle accelerators for high energy physics and tokomaks for fusion are two prominent

  4. Cosmic strings in hidden sectors: 2. Cosmological and astrophysical signatures

    SciTech Connect (OSTI)

    Long, Andrew J.; Vachaspati, Tanmay E-mail: tvachasp@asu.edu

    2014-12-01

    Cosmic strings can arise in hidden sector models with a spontaneously broken Abelian symmetry group. We have studied the couplings of the Standard Model fields to these so-called dark strings in the companion paper. Here we survey the cosmological and astrophysical observables that could be associated with the presence of dark strings in our universe with an emphasis on low-scale models, perhaps TeV . Specifically, we consider constraints from nucleosynthesis and CMB spectral distortions, and we calculate the predicted fluxes of diffuse gamma ray cascade photons and cosmic rays. For strings as light as TeV, we find that the predicted level of these signatures is well below the sensitivity of the current experiments, and therefore low scale cosmic strings in hidden sectors remain unconstrained. Heavier strings with a mass scale in the range 10{sup 13} GeV to 10{sup 15} GeV are at tension with nucleosynthesis constraints.

  5. Cosmic strings in hidden sectors: 2. Cosmological and astrophysical signatures

    SciTech Connect (OSTI)

    Long, Andrew J.; Vachaspati, Tanmay

    2014-12-18

    Cosmic strings can arise in hidden sector models with a spontaneously broken Abelian symmetry group. We have studied the couplings of the Standard Model fields to these so-called dark strings in the companion paper. Here we survey the cosmological and astrophysical observables that could be associated with the presence of dark strings in our universe with an emphasis on low-scale models, perhaps TeV. Specifically, we consider constraints from nucleosynthesis and CMB spectral distortions, and we calculate the predicted fluxes of diffuse gamma ray cascade photons and cosmic rays. For strings as light as TeV, we find that the predicted level of these signatures is well below the sensitivity of the current experiments, and therefore low scale cosmic strings in hidden sectors remain unconstrained. Heavier strings with a mass scale in the range 10{sup 13} GeV to 10{sup 15} GeV are at tension with nucleosynthesis constraints.

  6. mosby_abstract

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutron capture by any means necessary Dr. Shea Mosby Nuclear Astrophysics and Structure, Los Alamos National Laboratory, Los Alamos, NM Abstract: Knowledge of nuclear reactions in general, and neutron capture cross sections in particular, are necessary to understand both heavy element nucleosynthesis and applications in nuclear energy and defense. While many nuclei of interest lie on or near the valley of stability and can be studied directly, many more are beyond the reach of any direct

  7. Microsoft Word - Document1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structure of exotic nuclei and understanding of the rp-process Abstract: New phenomena, such as nuclear halo, inversion of nuclear shells and exotic decay modes have been discovered in nuclei removed from the valley of stability. Understanding of these phenomena requires development of new theoretical approaches. Detailed experimental data on the structure of exotic nuclei is crucial for this development. Exotic nuclei also play an important role in understanding of explosive nucleosynthesis

  8. Microsoft Word - SUmar_08_11_2015.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NUCLEAR DYNAMICS FROM NEUTRON STARS TO SUPERHEAVY ELEMENTS Professor Sait Umar Dept. of Physics & Astronomy, Vanderbilt University, Nashville, TN Abstract Radioactive Ion Beam Facilities have opened up new opportunities in the areas of nuclear structure physics, nucleosynthesis, nuclear astrophysics, and tests of fundamental symmetry principles. These experimental developments have sparked renewed interest in quantum theories of many-body systems capable of addressing large amplitude

  9. The universe in the laboratory - Nuclear astrophysics opportunity at the facility for antiproton and ion research

    SciTech Connect (OSTI)

    Langanke, K. [GSI Helmholtzzentrum für Schwerionenforschung, Technische Universität Darmstadt, Frankfurt Institute of Advanced Studies, D-64291 Darmstadt (Germany)

    2014-05-09

    In the next years the Facility for Antiproton and Ion Research FAIR will be constructed at the GSI Helmholtzze-ntrum für Schwerionenforschung in Darmstadt, Germany. This new accelerator complex will allow for unprecedented and pathbreaking research in hadronic, nuclear, and atomic physics as well as in applied sciences. This manuscript will discuss some of these research opportunities, with a focus on supernova dynamics and nucleosynthesis.

  10. VI-13 INSTITUTE COLLOQUIA AND SEMINARS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2-March 31, 2013 2012 April 24 Dr. Antti Saastamoninen, University of Jyvaskyla and Cyclotron Institute, Texas A&M University, College Station, Texas Beta-Decay Studies for Nova Nucleosynthesis May 10 Professor Helmut Satz, Fakultaet fuer Physik, Universitaet Bielefeld, Bielefeld, Germany Quark Confinement and Hadrosythesis May 14 Dr. Daniel Abriola, Internaltional Atomic Energy Agrncy, Vienna, Austria LAEA's Research Coordinated Project (CRP) on Beta-Delayed Neutron Emission May 15 Dr. Dan

  11. Nuclear Astrophysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Astrophysics One of the great scientific challenges is understanding how elements form. This process, called nucleosynthesis, occurs at extreme stellar temperatures and pressures, making it difficult to simulate in the laboratory. The conditions produced by NIF experiments, however, are well matched to the conditions that exist in stars in several phases of their evolution. As a result, NIF is a powerful tool for exploring nuclear physics. Elements heavier than iron are formed either

  12. {gamma}-ray emitting radionuclide production in a multidimensional

    Office of Scientific and Technical Information (OSTI)

    supernovae model (Journal Article) | SciTech Connect {gamma}-ray emitting radionuclide production in a multidimensional supernovae model Citation Details In-Document Search Title: {gamma}-ray emitting radionuclide production in a multidimensional supernovae model We examine the effects of multidimensional hydrodynamics on {gamma}-ray emitting radionuclide yields from massive star progenitor supernovae. Significant differences are expected between explosive nucleosynthesis product yields from

  13. {gamma}-ray emitting radionuclide production in a multidimensional

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    supernovae model (Journal Article) | SciTech Connect {gamma}-ray emitting radionuclide production in a multidimensional supernovae model Citation Details In-Document Search Title: {gamma}-ray emitting radionuclide production in a multidimensional supernovae model We examine the effects of multidimensional hydrodynamics on {gamma}-ray emitting radionuclide yields from massive star progenitor supernovae. Significant differences are expected between explosive nucleosynthesis product yields from

  14. Studies of Nb3Sn Strands Based on the Restacked-Rod Process for High-Field Accelerator Magnets Nb3Sn

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Barzi, E; Bossert, M; Gallo, G; Lombardo, V; Turrioni, D; Yamada, R; Zlobin, A V

    2012-06-01

    A major thrust in Fermilab's accelerator magnet R&D program is the development of Nb3Sn wires which meet target requirements for high field magnets, such as high critical current density, low effective filament size, and the capability to withstand the cabling process. The performance of a number of strands with 150/169 restack design produced by Oxford Superconducting Technology was studied for round and deformed wires. To optimize the maximum plastic strain, finite element modeling was also used as an aid in the design. Results of mechanical, transport and metallographic analyses are presented for round and deformed wires.

  15. Beamline 11.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print Small-molecule crystallography Beamline 11.3.1 web site Scientific disciplines: Structural chemistry, magnetic materials, microporous materials. GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 6-17 keV Monochromator Channel-cut Si(111) Flux (1.9 GeV, 400 mA) 1x1011 photons/s/0.01%BW at 10 keV Resolving power (E/ΔE) 1000 Endstations Medium sized hutch with Bruker AXS D8 diffractometer and Oxford Cryosystems Cryostream Plus Detectors Bruker AXS

  16. Beamline 11.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print Small-molecule crystallography Beamline 11.3.1 web site Scientific disciplines: Structural chemistry, magnetic materials, microporous materials. GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 6-17 keV Monochromator Channel-cut Si(111) Flux (1.9 GeV, 400 mA) 1x1011 photons/s/0.01%BW at 10 keV Resolving power (E/ΔE) 1000 Endstations Medium sized hutch with Bruker AXS D8 diffractometer and Oxford Cryosystems Cryostream Plus Detectors Bruker AXS

  17. Beamline 11.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3.1 Print Small-molecule crystallography Beamline 11.3.1 web site Scientific disciplines: Structural chemistry, magnetic materials, microporous materials. GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 6-17 keV Monochromator Channel-cut Si(111) Flux (1.9 GeV, 400 mA) 1x1011 photons/s/0.01%BW at 10 keV Resolving power (E/ΔE) 1000 Endstations Medium sized hutch with Bruker AXS D8 diffractometer and Oxford Cryosystems Cryostream Plus Detectors Bruker

  18. Beamline 11.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print Small-molecule crystallography Beamline 11.3.1 web site Scientific disciplines: Structural chemistry, magnetic materials, microporous materials. GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 6-17 keV Monochromator Channel-cut Si(111) Flux (1.9 GeV, 400 mA) 1x1011 photons/s/0.01%BW at 10 keV Resolving power (E/ΔE) 1000 Endstations Medium sized hutch with Bruker AXS D8 diffractometer and Oxford Cryosystems Cryostream Plus Detectors Bruker AXS

  19. Beamline 11.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print Small-molecule crystallography Beamline 11.3.1 web site Scientific disciplines: Structural chemistry, magnetic materials, microporous materials. GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 6-17 keV Monochromator Channel-cut Si(111) Flux (1.9 GeV, 400 mA) 1x1011 photons/s/0.01%BW at 10 keV Resolving power (E/ΔE) 1000 Endstations Medium sized hutch with Bruker AXS D8 diffractometer and Oxford Cryosystems Cryostream Plus Detectors Bruker AXS

  20. Beamline 11.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3.1 Beamline 11.3.1 Print Tuesday, 20 October 2009 09:22 Small-molecule crystallography Beamline 11.3.1 web site Scientific disciplines: Structural chemistry, magnetic materials, microporous materials. GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 6-17 keV Monochromator Channel-cut Si(111) Flux (1.9 GeV, 400 mA) 1x1011 photons/s/0.01%BW at 10 keV Resolving power (E/ΔE) 1000 Endstations Medium sized hutch with Bruker AXS D8 diffractometer and Oxford

  1. Beamline 11.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3.1 Beamline 11.3.1 Print Tuesday, 20 October 2009 09:22 Small-molecule crystallography Beamline 11.3.1 web site Scientific disciplines: Structural chemistry, magnetic materials, microporous materials. GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 6-17 keV Monochromator Channel-cut Si(111) Flux (1.9 GeV, 400 mA) 1x1011 photons/s/0.01%BW at 10 keV Resolving power (E/ΔE) 1000 Endstations Medium sized hutch with Bruker AXS D8 diffractometer and Oxford

  2. Beamline 11.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print Small-molecule crystallography Beamline 11.3.1 web site Scientific disciplines: Structural chemistry, magnetic materials, microporous materials. GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 6-17 keV Monochromator Channel-cut Si(111) Flux (1.9 GeV, 400 mA) 1x1011 photons/s/0.01%BW at 10 keV Resolving power (E/ΔE) 1000 Endstations Medium sized hutch with Bruker AXS D8 diffractometer and Oxford Cryosystems Cryostream Plus Detectors Bruker AXS

  3. Beamline 11.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print Small-molecule crystallography Beamline 11.3.1 web site Scientific disciplines: Structural chemistry, magnetic materials, microporous materials. GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 6-17 keV Monochromator Channel-cut Si(111) Flux (1.9 GeV, 400 mA) 1x1011 photons/s/0.01%BW at 10 keV Resolving power (E/ΔE) 1000 Endstations Medium sized hutch with Bruker AXS D8 diffractometer and Oxford Cryosystems Cryostream Plus Detectors Bruker AXS

  4. SREL Reprint #3301

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Development of twenty-one polymorphic microsatellite markers for the fungus-growing ant, Mycocepurus goeldii (Formicidae: Attini), using Illumina paired-end genomic sequencing Christian Rabeling1, Cara N. Love2, Stacey L. Lance2, Kenneth L. Jones3, Naomi E. Pierce1, and Maurício Bacci Jr.4 1Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA 2Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA 3Department of Biochemistry and

  5. What future for nuclear power? Workshop report

    SciTech Connect (OSTI)

    1998-12-31

    A Workshop on this highly controversial subject, organized by the Energy and Environment Programme of the RIIA, was held on 10th November 1997 at Green College, Oxford. The meeting was attended by some forty people from eight countries, coming from the nuclear and electricity generating industry, governments, research organizations, academic institutions, environmental pressure groups and inter-governmental organizations. In addition, subsequent to this Workshop, there have been a number of smaller, more informal discussions on various aspects of the subject. This paper summarizes the main conclusions arising from the Workshop and from these later discussions.

  6. Microsoft Word - JRStone_Abs_2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Matter and Giant Resonance Constraints on Models of Nucleon-Nucleon Interaction. Professor J. Stone Oxford University, UK, and University of Tennesse, USA After more then 50 years of all-out effort by the nuclear physics community, models of the nucleon-nucleon interaction are not well constrained. This situation has a direct effect on determination of the equation of state (EoS) of nuclear matter over a wide range of density and temperature. The EoS is a key input to analysis and interpretation

  7. OSTIblog Posts by Dr. Walt Warnick | OSTI, US Dept of Energy, Office of

    Office of Scientific and Technical Information (OSTI)

    Scientific and Technical Information Dr. Walt Warnick Dr. Walt Warnick's picture Former Director, U.S. DOE Office of Scientific and Technical Information Before and after CrossRef Aquatint of a Doctor in divinity at the University of Oxford, shown wearing conv Published on Dec 19, 2013 It is truly wonderful when something comes along that speeds access to science. Such is the case with CrossRef's linking network for scholarly literature. Anyone that has ever done a literature search prior to

  8. OSTI, US Dept of Energy, Office of Scientific and Technical Information |

    Office of Scientific and Technical Information (OSTI)

    Speeding access to science information from DOE and Beyond CrossRef Topic Before and after CrossRef by Dr. Walt Warnick 19 Dec, 2013 in Personal Perspectives Aquatint of a Doctor in divinity at the University of Oxford, shown wearing conv It is truly wonderful when something comes along that speeds access to science. Such is the case with CrossRef's linking network for scholarly literature. Anyone that has ever done a literature search prior to 2000 is completely blown away today when they

  9. OSTI, US Dept of Energy, Office of Scientific and Technical Information |

    Office of Scientific and Technical Information (OSTI)

    Speeding access to science information from DOE and Beyond dissertation Topic Before and after CrossRef by Dr. Walt Warnick 19 Dec, 2013 in Personal Perspectives Aquatint of a Doctor in divinity at the University of Oxford, shown wearing conv It is truly wonderful when something comes along that speeds access to science. Such is the case with CrossRef's linking network for scholarly literature. Anyone that has ever done a literature search prior to 2000 is completely blown away today when

  10. OSTI, US Dept of Energy, Office of Scientific and Technical Information |

    Office of Scientific and Technical Information (OSTI)

    Speeding access to science information from DOE and Beyond literature review Topic Before and after CrossRef by Dr. Walt Warnick 19 Dec, 2013 in Personal Perspectives Aquatint of a Doctor in divinity at the University of Oxford, shown wearing conv It is truly wonderful when something comes along that speeds access to science. Such is the case with CrossRef's linking network for scholarly literature. Anyone that has ever done a literature search prior to 2000 is completely blown away today

  11. OSTI, US Dept of Energy, Office of Scientific and Technical Information |

    Office of Scientific and Technical Information (OSTI)

    Speeding access to science information from DOE and Beyond ETDEWEB Topic Before and after CrossRef by Dr. Walt Warnick 19 Dec, 2013 in Personal Perspectives Aquatint of a Doctor in divinity at the University of Oxford, shown wearing conv It is truly wonderful when something comes along that speeds access to science. Such is the case with CrossRef's linking network for scholarly literature. Anyone that has ever done a literature search prior to 2000 is completely blown away today when they

  12. Beamline 11.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print Small-molecule crystallography Beamline 11.3.1 web site Scientific disciplines: Structural chemistry, magnetic materials, microporous materials. GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 6-17 keV Monochromator Channel-cut Si(111) Flux (1.9 GeV, 400 mA) 1x1011 photons/s/0.01%BW at 10 keV Resolving power (E/ΔE) 1000 Endstations Medium sized hutch with Bruker AXS D8 diffractometer and Oxford Cryosystems Cryostream Plus Detectors Bruker AXS

  13. Browse by Discipline -- E-print Network Subject Pathways: Physics --

    Office of Scientific and Technical Information (OSTI)

    Energy, science, and technology for the research community -- hosted by the Office of Scientific and Technical Information, U.S. Department of Energy F G H I J K L M N O P Q R S T U V W X Y Z Eatock Taylor, Rodney (Rodney Eatock Taylor) - Department of Engineering Science, University of Oxford Eberhard, Marc O. (Marc O. Eberhard) - Department of Civil and Environmental Engineering, University of Washington at Seattle Eberhardt, Erik (Erik Eberhardt) - Department of Earth and Ocean Sciences,

  14. Ionfab Mill

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oxford Ionfab System 300+ Ion Mill For questions concerning this machines capabilities, please contact Varshni Singh, at 578-0248. ionfab.jpg (60579 bytes) Removal of metallic patterns from a surface can be performed evenly with this inert gas ion beam system, which uses a projected Ar ion beam to sputter etch the surface of a six inch wafer at the users choice of angle and rotation speed. The Ionfab 300+ can allow researchers to investigate thin film structures with vertical or angled side

  15. I|ex~

    Office of Legacy Management (LM)

    I|ex~ ~ ILKE&y~~~ *ORNL/RASA-92/14 OAK RIDGE NATIONAL LABORATORY Results of the Radiological Survey at the former Alba Craft Laboratory Site *z riiiriri-lrirfZ Properties, Oxford, Ohio (OX001) M. E. Murray K. S. Brown R. A. Mathis MANAGED BY MARTIN MARIETTA ENERGY SYSTEMS, INC. FOR THE UNITED STATES DEPARTMENT OF ENERGY | ~~DEPARTMENT OF ENERGY This report has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Techni-

  16. OAK RIDG:E NATlOlNAL

    Office of Legacy Management (LM)

    RIDG:E NATlOlNAL - - ~ I ~ O , R A T O I R Y - -~ Results of the Independent L O C J I H E g D Y A u . T I n , Radiological Verification Survey of the Remedial Action Performed at 525 S. Main Street Oxford, Ohio (0x0002) K. R. Kleinhans D. E. Rice M. E. Murray R. F. Carrier DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty,

  17. OAK RIDGE NATIONAL LABORATORY

    Office of Legacy Management (LM)

    Results of the Independent Radiological Verification Survey L O C K W R R D M A R T I N of the Remedial Action Performed at the Former Alba Craft Laboratory Site Oxford, Ohio (0x0001) K. R. Kleinhans M. E. Murray R. F. Camer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsi-

  18. P

    Office of Legacy Management (LM)

    P -.,. ~ * * , iy . * __.^ .--.. ~_____, __ l NATIONAL LEAD COMPANa * . -, - / _ 1 OF OHIO P. 0. BOX 158 MT. HEALTHY STATION CINCINNATI 31, OHIO Letter Subeontraet # S-18 Dated: September 15, 1952 Under Prime Contract A!T( 30-1)-l.l5ti ~0: E%EtRe M. Albaugh Alba Craft Shop 525 South Main Street Oxford, Ohio Gentlemen: .a 1. This letter, subject to your written acceptance and the approval of the Atomic Energy Commission (hereinafter called the "Commission"), sets forth the initial

  19. P I

    Office of Legacy Management (LM)

    - P I c I c - L - c Ln - II LI C c w ^C +-j-L (, i) c ORNL/RASA-92/14i OAK RIDGE NATiONAL LABORATORY Results of the Radiological Survey at the former Alba Craft Laboratory Site Properties, Oxford, Ohio (0x0001) M. E. Murray IS. S. Brown R. k Mathis MAWAGED BY MARTIM MARIETTA ENERGY SYSTEMS, INC. FOR THE UNfTED STATES DEPARTMENT OF ENERGY This report has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Techni- cal

  20. Secretary Chu to Give Keynote Address at World Forum on Enterprise and the

    Energy Savers [EERE]

    Environment | Department of Energy Give Keynote Address at World Forum on Enterprise and the Environment Secretary Chu to Give Keynote Address at World Forum on Enterprise and the Environment June 25, 2010 - 12:00am Addthis Washington, DC - On Sunday, June 27th, U.S. Energy Secretary Steven Chu will travel to the United Kingdom to deliver the keynote address at the World Forum on Enterprise and the Environment, hosted by the Oxford University Smith School of Enterprise and the Environment.

  1. Studies of ${\\rm Nb}_{3}{\\rm Sn}$ Strands Based on the Restacked-Rod Process for High Field Accelerator Magnets

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Barzi, E.; Bossert, M.; Gallo, G.; Lombardo, V.; Turrioni, D.; Yamada, R.; Zlobin, A. V.

    2011-12-21

    A major thrust in Fermilab's accelerator magnet R&D program is the development of Nb3Sn wires which meet target requirements for high field magnets, such as high critical current density, low effective filament size, and the capability to withstand the cabling process. The performance of a number of strands with 150/169 restack design produced by Oxford Superconducting Technology was studied for round and deformed wires. To optimize the maximum plastic strain, finite element modeling was also used as an aid in the design. Results of mechanical, transport and metallographic analyses are presented for round and deformed wires.

  2. Women @ Energy: Christina Swinson | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Women @ Energy: Christina Swinson Christina Swinson is a post doc. in Accelerator Physics at Brookhaven National Lab. She has a BSc. In Physics with Computing, Queen Mary College, University of London, United Kingdom, and a DPhil. (PhD.) in Accelerator Physics from the University of Oxford, United Kingtom. 1) What inspired you to work in STEM? My decision to work in STEM didn't come until I was in my twenties but the journey first began in high school. Unfortunately at the time I wasn't

  3. Observation of low-lying resonances in the quasicontinuum of 195,196Pt and enhanced astrophysical reaction rates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Giacoppo, F.; Bello Garrote, F. L.; Eriksen, T. K.; Görgen, A.; Guttormsen, M.; Hagen, T. W.; Larsen, A. C.; Kheswa, B. V.; Klintefjord, M.; Koehler, P. E.; et al

    2015-05-28

    An excess of strength on the low-energy tail of the giant dipole resonance recently has been observed in the γ-decay from the quasicontinuum of 195,196Pt. The nature of this phenomenon is not yet fully investigated. If this feature is present also in the γ-ray strength of the neutron-rich isotopes, it can affect the neutron-capture reactions involved in the formation of heavy-elements in stellar nucleosynthesis. The experimental level density and γ-ray strength function of 195,196Pt are presented together with preliminary calculations of the corresponding neutron-capture cross sections.

  4. Microsoft Word - abstract-lacognata-tx_2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    THE FLUORINE DESTRUCTION IN STARS: FIRST EXPERIMENTAL STUDY OF THE 19 F(p,α 0 ) 16 O REACTION AT ASTROPHYSICAL ENERGIES Dr. M. La Cognata INFN-Laboratori Nazionali del Sud, Catania, Italy ABSTRACT The 19 F(p,α) 16 O reaction is an important fluorine destruction channel in the proton-rich outer layers of asymptotic giant branch (AGB) stars and it might also play a role in hydrogen-deficient post- AGB star nucleosynthesis. So far, available direct measurements do not reach the energy region of

  5. SWIFT/BAT DETECTION OF HARD X-RAYS FROM TYCHO'S SUPERNOVA REMNANT: EVIDENCE FOR TITANIUM-44

    SciTech Connect (OSTI)

    Troja, E.; Baumgartner, W.; Markwardt, C.; Barthelmy, S.; Gehrels, N. [NASA, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Segreto, A.; La Parola, V.; Cusumano, G. [INAF—IASF Palermo, Via Ugo La Malfa, I-90146 Palermo (Italy); Hartmann, D., E-mail: eleonora.troja@nasa.gov [Department of Physics and Astronomy, Clemson University, Clemson, SC 29631-0978 (United States)

    2014-12-10

    We report Swift/Burst Alert Telescope survey observations of the Tycho's supernova remnant, performed over a period of 104 months since the mission's launch. The remnant is detected with high significance (>10?) below 50 keV. We detect significant hard X-ray emission in the 60-85 keV band, above the continuum level predicted by a simple synchrotron model. The location of the observed excess is consistent with line emission from radioactive titanium-44, so far reported only for Type II supernova explosions. We discuss the implications of these results in the context of the galactic supernova rate, and nucleosynthesis in Type Ia supernova.

  6. AGB stars and presolar grains (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    AGB stars and presolar grains Citation Details In-Document Search Title: AGB stars and presolar grains Among presolar materials recovered in meteorites, abundant SiC and Al{sub 2}O{sub 3} grains of AGB origins were found. They showed records of C, N, O, {sup 26}Al and s-element isotopic ratios that proved invaluable in constraining the nucleosynthesis models for AGB stars [1, 2]. In particular, when these ratios are measured in SiC grains, they clearly reveal their prevalent origin in cool AGB

  7. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Switch to Detail View for this search SciTech Connect Search Results Page 1 of 1 Search for: All records Creators/Authors contains: "Arnett, David" × Sort by Relevance Sort by Date (newest first) Sort by Date (oldest first) Sort by Relevance « Prev Next » Everything8 Electronic Full Text1 Citations7 Multimedia0 Datasets0 Software0 Filter Results Filter by Subject astrophysics, cosmology and astronomy (5) star evolution (5) nucleosynthesis (4) supernovae (4) abundance (3)

  8. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Switch to Detail View for this search SciTech Connect Search Results Page 1 of 8 Search for: All records Creators/Authors contains: "Hashimoto, M" × Sort by Relevance Sort by Date (newest first) Sort by Date (oldest first) Sort by Relevance « Prev Select page number Go to page: 1 of 8 1 » Next » Everything72 Electronic Full Text15 Citations57 Multimedia0 Datasets0 Software0 Filter Results Filter by Subject materials science (10) elements (7) matsci (6) nucleosynthesis (6) physics

  9. Workshop on the origin of the heavy elements: Astrophysical models and experimental challenges, Santa Fe, New Mexico, September 3-4, 1999

    SciTech Connect (OSTI)

    Robert C. Haight; John L. Ullmann; Daniel D. Strottman; Paul E. Koehler; Franz Kaeppeler

    2000-01-01

    This Workshop was held on September 3--4, 1999, following the 10th International Symposium on Capture Gamma-Ray Spectroscopy. Presentations were made by 14 speakers, 6 from the US and 8 from other countries on topics relevant to s-, r- and rp-process nucleosynthesis. Laboratory experiments, both present and planned, and astrophysical observations were represented as were astrophysical models. Approximately 50 scientists participated in this Workshop. These Proceedings consist of copies of vu-graphs presented at the Workshop. For further information, the interested readers are referred to the authors.

  10. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Switch to Detail View for this search SciTech Connect Search Results Page 2 of 8 Search for: All records Creators/Authors contains: "Hashimoto, M" × Sort by Relevance Sort by Date (newest first) Sort by Date (oldest first) Sort by Relevance « Prev Select page number Go to page: 2 of 8 2 » Next » Everything72 Electronic Full Text15 Citations57 Multimedia0 Datasets0 Software0 Filter Results Filter by Subject materials science (10) elements (7) matsci (6) nucleosynthesis (6) physics

  11. Observation of low-lying resonances in the quasicontinuum of 195,196Pt and enhanced astrophysical reaction rates

    SciTech Connect (OSTI)

    Giacoppo, F.; Bello Garrote, F. L.; Eriksen, T. K.; Görgen, A.; Guttormsen, M.; Hagen, T. W.; Larsen, A. C.; Kheswa, B. V.; Klintefjord, M.; Koehler, P. E.; Moretto, L. G.; Nyhus, H. T.; Renstrøm, T.; Sahin, E.; Siem, S.; Tornyi, T. G.; Schwengner, R.; Zuber, K.

    2015-05-28

    An excess of strength on the low-energy tail of the giant dipole resonance recently has been observed in the ?-decay from the quasicontinuum of 195,196Pt. The nature of this phenomenon is not yet fully investigated. If this feature is present also in the ?-ray strength of the neutron-rich isotopes, it can affect the neutron-capture reactions involved in the formation of heavy-elements in stellar nucleosynthesis. The experimental level density and ?-ray strength function of 195,196Pt are presented together with preliminary calculations of the corresponding neutron-capture cross sections.

  12. Direct reactions for nuclear structure and nuclear astrophysics

    SciTech Connect (OSTI)

    Jones, Katherine Louise

    2014-12-18

    Direct reactions are powerful probes for studying the atomic nucleus. Modern direct reaction studies are illuminating both the fundamental nature of the nucleus and its role in nucleosynthetic processes occurring in the cosmos. This report covers experiments using knockout reactions on neutron-deficient fragmentation beams, transfer reactions on fission fragment beams, and theoretical sensitivity studies relating to the astrophysical r-process. Results from experiments on 108,106Sn at the NSCL, and on 131Sn at HRIBF are presented as well as the results from the nucleosynthesis study.

  13. Neutron capture of /sup 122/Te, /sup 123/Te, /sup 124/Te, /sup 125/Te, and /sup 126/Te

    SciTech Connect (OSTI)

    Macklin, R.L.; Winters, R.R.

    1989-07-01

    Isotopically enriched samples of the tellurium isotopes from mass 122 to mass 126 were used to measure neutron capture in the energy range 2.6 keV to 600 keV at the Oak Ridge Electron Linear Accelerator pulsed neutron source. Starting at 2.6 keV, over 200 Breit-Wigner resonances for each isotope were used to describe the capture data. Least-squares adjustment gave parameters and their uncertainties for a total of 1659 resonances. Capture cross sections averaged over Maxwellian neutron distributions with temperatures ranging from kT = 5 keV to kT = 100 keV were derived for comparison with stellar nucleosynthesis calculations. For the three isotopes shielded from the astrophysical r-process, /sup 122/Te, /sup 123/Te and /sup 124/Te at kT = 30 keV the respective values were (280 /plus minus/ 10) mb, (819 /plus minus/ 30) mb and (154 /plus minus/ 6) mb. The corresponding products of cross section and solar system abundance are nearly equal in close agreement with s-process nucleosynthesis calculations. 26 refs., 8 figs., 10 tabs.

  14. Origin of anomalous Xe-H in nanodiamond stardust

    SciTech Connect (OSTI)

    Kratz, K. L.; Farouqi, K.; Hallmann, O.; Pfeiffer, B.; Ott, U.

    2014-05-09

    Still today, the nucleosynthesis origin of Xe-H in presolar nanodiamonds is far from understood. Historically possible explanations were proposed by a secondary “neutron-burst” process occurring in the He- or C/O-shells of a type-II supernova (SN-II), which are, however, not fully convincing in terms of modern nucleosynthesis conditions. Therefore, we have investigated Xe isotopic abundance features that may be diagnostic for different versions of a classical, primary r-process in high-entropy-wind (HEW) ejecta of core-collapse SN-II. We report here on parameter tests for non-standard r-process variants, by varying electron abundances (Y{sub e}), ranges of entropies (S) and expansion velocities (V{sub exp}) with their correlated neutron-freezeout times (?(freeze)) and temperatures (T{sub 9}(freeze)). From this study, we conclude that a best fi to the measured Xe-H abundance ratios {sup i}Xe/{sup 136}Xe can be obtained with the high-S “main” component of a “cold” r-process variant.

  15. Stellar Evolution/Supernova Research Data Archives from the SciDAC Computational Astrophysics Consortium

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Woosley, Stan [University of California, Santa Cruz

    Theoretical high-energy astrophysics studies the most violent explosions in the universe - supernovae (the massive explosions of dying stars) and gamma ray bursts (mysterious blasts of intense radiation). The evolution of massive stars and their explosion as supernovae and/or gamma ray bursts describes how the "heavy" elements needed for life, such as oxygen and iron, are forged (nucleosynthesis) and ejected to later form new stars and planets. The Computational Astrophysics Consortium's project includes a Science Application Partnership on Adaptive Algorithms that develops software involved. The principal science topics are - in order of priority - 1) models for Type Ia supernovae, 2) radiation transport, spectrum formation, and nucleosynthesis in model supernovae of all types; 3) the observational implications of these results for experiments in which DOE has an interest, especially the Joint Dark Energy Mission, Supernova/Acceleration Probe (SNAP) satellite observatory, the Large Synoptic Survey Telescope (LSST), and ground based supernova searches; 4) core collapse supernovae; 5) gamma-ray bursts; 6) hypernovae from Population III stars; and 7) x-ray bursts. Models of these phenomena share a common need for nuclear reactions and radiation transport coupled to multi-dimensional fluid flow. The team has developed and used supernovae simulation codes to study Type 1A and core-collapse supernovae. (Taken from http://www.scidac.gov/physics/grb.html) The Stellar Evolution Data Archives contains more than 225 Pre-SN models that can be freely accessed.

  16. Neutron physics of the Re/Os clock. III. Resonance analyses and stellar (n,gamma) cross sections of {sup 186,187,188}Os

    SciTech Connect (OSTI)

    Fujii, K.; Abbondanno, U.; Belloni, F.; Milazzo, P. M.; Moreau, C.; Mosconi, M.; Kaeppeler, F.; Audouin, L.; Dillmann, I.; Heil, M.; Plag, R.; Voss, F.; Walter, S.; Wisshak, K.; Mengoni, A.; Domingo-Pardo, C.; Aerts, G.; Andriamonje, S.; Berthoumieux, E.; Dridi, W.

    2010-07-15

    Neutron resonance analyses have been performed for the capture cross sections of {sup 186}Os, {sup 187}Os, and {sup 188}Os measured at the n{sub T}OF facility at cern. Resonance parameters have been extracted up to 5, 3, and 8 keV, respectively, using the sammy code for a full R-matrix fit of the capture yields. From these results average resonance parameters were derived by a statistical analysis to provide a comprehensive experimental basis for modeling of the stellar neutron capture rates of these isotopes in terms of the Hauser-Feshbach statistical model. Consistent calculations for the capture and inelastic reaction channels are crucial for the evaluation of stellar enhancement factors to correct the Maxwellian averaged cross sections obtained from experimental data for the effect of thermally populated excited states. These factors have been calculated for the full temperature range of current scenarios of s-process nucleosynthesis using the combined information of the experimental data in the region of resolved resonances and in the continuum. The consequences of this analysis for the s-process component of the {sup 187}Os abundance and the related impact on the evaluation of the time duration of galactic nucleosynthesis via the Re/Os cosmochronometer are discussed.

  17. Radiogenic p-isotopes from type Ia supernova, nuclear physics uncertainties, and galactic chemical evolution compared with values in primitive meteorites

    SciTech Connect (OSTI)

    Travaglio, C.; Gallino, R.; Rauscher, T.; Dauphas, N.; Röpke, F. K.; Hillebrandt, W. E-mail: claudia.travaglio@b2fh.org

    2014-11-10

    The nucleosynthesis of proton-rich isotopes is calculated for multi-dimensional Chandrasekhar-mass models of Type Ia supernovae (SNe Ia) with different metallicities. The predicted abundances of the short-lived radioactive isotopes {sup 92}Nb, {sup 97,} {sup 98}Tc, and {sup 146}Sm are given in this framework. The abundance seeds are obtained by calculating s-process nucleosynthesis in the material accreted onto a carbon-oxygen white dwarf from a binary companion. A fine grid of s-seeds at different metallicities and {sup 13}C-pocket efficiencies is considered. A galactic chemical evolution model is used to predict the contribution of SN Ia to the solar system p-nuclei composition measured in meteorites. Nuclear physics uncertainties are critical to determine the role of SNe Ia in the production of {sup 92}Nb and {sup 146}Sm. We find that, if standard Chandrasekhar-mass SNe Ia are at least 50% of all SN Ia, they are strong candidates for reproducing the radiogenic p-process signature observed in meteorites.

  18. Applying User Centered Design to Research Work

    SciTech Connect (OSTI)

    Scholtz, Jean; Love, Oriana J.; Pike, William A.; Bruce, Joseph R.; Kim, Dee DH; McBain, Arthur S.

    2014-07-01

    The SuperIdentity (SID) research project is a collaboration between six universities in the UK (Bath, Dundee, Kent, Leicester, Oxford, and Southampton) and the Pacific Northwest National Laboratory (PNNL). SID offers an innovative and exciting new approach to the concept of identity. The assumption underlying our hypothesis is that while there may be many dimensions to an identity - some more stable than others - all should ultimately reference back to a single core identity or a 'SuperIdentity.' The obvious consequence is that identification is improved by the combination of measures. Our work at PNNL has focused on the developing use cases to use in developing a model of identity and in developing visualizations for both researchers to explore the model and in the future for end users to use in determining various paths that may be possible to obtain various identity attributes from a set that is already known.

  19. OAiC RiDGE NATIONAL LABORAl-ORY LKCKKBSP HAITI MANA%ED AND OPERATED BY

    Office of Legacy Management (LM)

    OH42 -7 / i3-y OAiC RiDGE NATIONAL LABORAl-ORY LKCKKBSP HAITI MANA%ED AND OPERATED BY vxKHEEpyARluEwERoY fEsEARcHcxHtPoM~RN R3RmEuMYED~Am DEPMl' MEU?#bBgKiY . ORNL/TpvI-12968 Results of the Independent Radiological Verification Survey of the Remedial Action l?erformed at the Former Alba Craft Laboratory Site Oxford, Ohio (0x0001) K. R. Kleinhans M. E. Murray R. F. Carrier - This report has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office

  20. Charge-exchange QRPA with the Gogny Force for Axially-symmetric Deformed Nuclei

    SciTech Connect (OSTI)

    Martini, M.; Goriely, S.; Péru, S.

    2014-06-15

    In recent years fully consistent quasiparticle random-phase approximation (QRPA) calculations using finite range Gogny force have been performed to study electromagnetic excitations of several axially-symmetric deformed nuclei up to the {sup 238}U. Here we present the extension of this approach to the charge-exchange nuclear excitations (pnQRPA). In particular we focus on the Isobaric Analog and Gamow-Teller resonances. A comparison of the predicted GT strength distribution with existing experimental data is presented. The role of nuclear deformation is shown. Special attention is paid to β-decay half-lives calculations for which experimental data exist and for specific isotone chains of relevance for the r-process nucleosynthesis.

  1. Cosmology with hybrid expansion law: scalar field reconstruction of cosmic history and observational constraints

    SciTech Connect (OSTI)

    Akarsu, Özgür [Department of Physics, Koç University, 34450 Sariyer, ?stanbul (Turkey); Kumar, Suresh [Department of Mathematics, BITS Pilani, Pilani Campus, Rajasthan-333031 (India); Myrzakulov, R.; Sami, M. [Centre of Theoretical Physics, Jamia Millia Islamia, New Delhi-110025 (India); Xu, Lixin, E-mail: oakarsu@ku.edu.tr, E-mail: sukuyd@gmail.com, E-mail: rmyrzakulov@gmail.com, E-mail: samijamia@gmail.com, E-mail: lxxu@dlut.edu.cn [Institute of Theoretical Physics, Dalian University of Technology, Dalian, 116024 (China)

    2014-01-01

    In this paper, we consider a simple form of expansion history of Universe referred to as the hybrid expansion law - a product of power-law and exponential type of functions. The ansatz by construction mimics the power-law and de Sitter cosmologies as special cases but also provides an elegant description of the transition from deceleration to cosmic acceleration. We point out the Brans-Dicke realization of the cosmic history under consideration. We construct potentials for quintessence, phantom and tachyon fields, which can give rise to the hybrid expansion law in general relativity. We investigate observational constraints on the model with hybrid expansion law applied to late time acceleration as well as to early Universe a la nucleosynthesis.

  2. Energy and Technology Review

    SciTech Connect (OSTI)

    Not Available

    1983-03-01

    This journal contains 7 articles pertaining to astrophysics. The first article is an overview of the other 6 articles and also a tribute to Jim Wilson and his work in the fields of general relativity and numerical astrophysics. The six articles are on the following subjects: (1) computer simulations of black hole accretion; (2) calculations on the collapse of the iron core of a massive star; (3) stellar-collapse models which reveal a possible site for nucleosynthesis of elements heavier than iron; (4) modeling sources for gravitational radiation; (5) the development of a computer program for finite-difference mesh calculations and its applications to astrophysics; (6) the existence of neutrinos with nonzero rest mass are used to explain the universe. Abstracts of each of the articles were prepared separately. (SC)

  3. Recipe for potassium

    SciTech Connect (OSTI)

    Izutani, Natsuko [Department of Astronomy, School of Science, University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 (Japan)

    2012-11-12

    I investigate favorable conditions for producing potassium (K). Observations show [K/Fe] > 0 at low metallicities, while zero-metal supernova models show low [K/Fe] (< 0). Theoretically, it is natural that the odd-Z element, potassium decreases with lower metallicity, and thus, the observation should imply new and unknown sites for potassium. In this proceedings, I calculate proton-rich nucleosynthesis with three parameters, the initial Y{sub e} (from 0.51 to 0.60), the initial density {rho}{sub max} (10{sup 7}, 10{sup 8}, and 10{sup 9} [g/cm{sup 3}]), and the e-fold time {tau} for the density (0.01, 0.1, and 1.0 [sec]). Among 90 models I have calculated, only 26 models show [K/Fe] > 0, and they all have {rho}{sub max} = 10{sup 9}[g/cm{sup 3}]. I discuss parameter dependence of [K/Fe].

  4. Impact of individual nuclear masses on r-process abundances

    SciTech Connect (OSTI)

    Mumpower, M. R.; Surman, R.; Fang, D. -L.; Beard, M.; Möller, P.; Kawano, T.; Aprahamian, A.

    2015-09-15

    We have performed for the first time a comprehensive study of the sensitivity of r-process nucleosynthesis to individual nuclear masses across the chart of nuclides. Using the latest version (2012) of the Finite-Range Droplet Model, we consider mass variations of ±0.5 MeV and propagate each mass change to all affected quantities, including Q values, reaction rates, and branching ratios. We find such mass variations can result in up to an order of magnitude local change in the final abundance pattern produced in an r-process simulation. As a result, we identify key nuclei whose masses have a substantial impact on abundance predictions for hot, cold, and neutron star merger r-process scenarios and could be measured at future radioactive beam facilities.

  5. Impact of individual nuclear masses on r-process abundances

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mumpower, M. R.; Surman, R.; Fang, D. -L.; Beard, M.; Möller, P.; Kawano, T.; Aprahamian, A.

    2015-09-15

    We have performed for the first time a comprehensive study of the sensitivity of r-process nucleosynthesis to individual nuclear masses across the chart of nuclides. Using the latest version (2012) of the Finite-Range Droplet Model, we consider mass variations of ±0.5 MeV and propagate each mass change to all affected quantities, including Q values, reaction rates, and branching ratios. We find such mass variations can result in up to an order of magnitude local change in the final abundance pattern produced in an r-process simulation. As a result, we identify key nuclei whose masses have a substantial impact on abundancemore » predictions for hot, cold, and neutron star merger r-process scenarios and could be measured at future radioactive beam facilities.« less

  6. 102Pd(n, {gamma}) Cross Section Measurement Using DANCE

    SciTech Connect (OSTI)

    Hatarik, R.; Alpizar-Vicente, A. M. [Colorado School of Mines, Golden, CO 80401 (United States); Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Bredeweg, T. A.; Esch, E.-I.; Haight, R. C.; O'Donnell, J. M.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wouters, J. M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Greife, U. [Colorado School of Mines, Golden, CO 80401 (United States)

    2006-03-13

    The neutron capture cross section of the proton rich nucleus 102Pd was measured with the Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos Neutron Science Center. The target was a 2 mg Pd foil with 78% enriched 102Pd. It was held by a 0.9 {mu}m thick Mylar bag which was selected after comparing different thicknesses of Kapton and Mylar for their scattering background. To identify the contribution of the other Pd isotopes the data of a natural Pd sample was compared to the data of the 102Pd enriched sample. A 12C sample was used to determine the scattering background. The 102Pd(n, {gamma}) rate is of importance for the p-process nucleosynthesis.

  7. The {sup 13}C-pocket structure in AGB models: constraints from zirconium isotope abundances in single mainstream SiC grains

    SciTech Connect (OSTI)

    Liu, Nan; Davis, Andrew M.; Pellin, Michael J.; Gallino, Roberto; Bisterzo, Sara; Savina, Michael R.

    2014-06-20

    We present postprocess asymptotic giant branch (AGB) nucleosynthesis models with different {sup 13}C-pocket internal structures to better explain zirconium isotope measurements in mainstream presolar SiC grains by Nicolussi et al. and Barzyk et al. We show that higher-than-solar {sup 92}Zr/{sup 94}Zr ratios can be predicted by adopting a {sup 13}C-pocket with a flat {sup 13}C profile, instead of the previous decreasing-with-depth {sup 13}C profile. The improved agreement between grain data for zirconium isotopes and AGB models provides additional support for a recent proposal of a flat {sup 13}C profile based on barium isotopes in mainstream SiC grains by Liu et al.

  8. Spallation Model for the Titanium-Rich Supernova Remnant Cassiopeia A

    SciTech Connect (OSTI)

    Ouyed, Rachid; Leahy, Denis; Ouyed, Amir; Jaikumar, Prashanth

    2011-10-07

    Titanium-rich subluminous supernovae are rare and challenge current SN nucleosynthesis models. We present a model in which ejecta from a standard supernova is impacted by a second explosion of the neutron star (a quark nova), resulting in spallation reactions that lead to {sup 56}Ni destruction and {sup 44}Ti creation under the right conditions. Basic calculations of the spallation products shows that a delay between the two explosions of {approx}5 days reproduces the observed abundance of {sup 44}Ti in Cas A and explains its low luminosity as a result of the destruction of {sup 56}Ni. Our results could have important implications for light curves of subluminous as well as superluminous supernovae.

  9. Realistic fission models, new beta-decay half-lives and the r-process in neutron star mergers

    SciTech Connect (OSTI)

    Shibagaki, S.; Kajino, T. [Department of Astronomy, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan and National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Chiba, S. [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, 152-8850 (Japan); Lorusso, G.; Nishimura, S. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Mathews, G. J. [Center for Astrophysics, Department of Physics, University of Notre Dame, IN 46556 (United States)

    2014-05-02

    Almost half of heavy nuclei beyond iron are considered to be produced by rapid neutron capture process (r-process). This process occurs in the neutron-rich environment such as core-collapse supernovae or neutron star mergers, but the main production site is still unknown. In the r-process of neutron star mergers, nuclear fission reactions play an important role. Also beta-decay half-lives of magic nuclei are crucial for the r-process. We have carried out r-process nucleosynthesis calculations based upon new theoretical estimates of fission fragment distributions and new beta-decay half-lives for N=82 nuclei measured at RIBF-RIKEN. We investigate the effect of nuclear fission on abundance patterns in the matter ejected from neutron star mergers with two different fission fragment mass distributions. We also discuss how the new experimental beta-decay half-lives affect the r-process.

  10. Neutron physics of the Re/Os clock. II. The (n,n{sup '}) cross section of {sup 187}Os at 30 keV neutron energy

    SciTech Connect (OSTI)

    Mosconi, M.; Heil, M.; Kaeppeler, F.; Plag, R.; Mengoni, A.

    2010-07-15

    The inelastic neutron-scattering cross section of {sup 187}Os has been determined in a time-of-flight experiment at the Karlsruhe 3.7-MV Van de Graaff accelerator. An almost monoenergetic beam of 30-keV neutrons was produced at the threshold of the {sup 7}Li(p,n){sup 7}Be reaction. Information on the inelastic channel is required for reliable calculations of the so-called stellar enhancement factor, by which the laboratory cross section of {sup 187}Os must be corrected in order to account for the thermal population of low-lying excited states at the temperatures of s-process nucleosynthesis, in particular of the important state at 9.75 keV. This correction represents a crucial step in the interpretation of the {sup 187}Os/{sup 187}Re pair as a cosmochronometer.

  11. p process measurements with SuN

    SciTech Connect (OSTI)

    Spyrou, A.; Quinn, S.J.; Simon, A.; and others

    2012-11-20

    The astrophysical p process is considered the main nucleosynthesis mechanism for the creation of the p nuclei. The accurate description of this process still suffers from large uncertainties both in the astrophysical environment and the nuclear physics input. In the latter case, nuclear reaction sensitivity studies have identified a group of reactions that have a significant contribution to the final p-nuclei abundance distribution. The cross sections of such 'important' reactions need to be measured experimentally and for this reason there is a major experimental effort to provide experimental data for the relevant astrophysical energies. In the present work, we introduce a new experimental setup - the SuN detector - that was developed at the National Superconducting Cyclotron Laboratory for measurements of capture reactions of astrophysical interest.

  12. The National Ignition Facility: Ushering in a new age for high energy density science

    SciTech Connect (OSTI)

    Moses, E. I.; Boyd, R. N.; Remington, B. A.; Keane, C. J.; Al-Ayat, R.

    2009-04-15

    The National Ignition Facility (NIF) [E. I. Moses, J. Phys.: Conf. Ser. 112, 012003 (2008); https://lasers.llnl.gov/], completed in March 2009, is the highest energy laser ever constructed. The high temperatures and densities achievable at NIF will enable a number of experiments in inertial confinement fusion and stockpile stewardship, as well as access to new regimes in a variety of experiments relevant to x-ray astronomy, laser-plasma interactions, hydrodynamic instabilities, nuclear astrophysics, and planetary science. The experiments will impact research on black holes and other accreting objects, the understanding of stellar evolution and explosions, nuclear reactions in dense plasmas relevant to stellar nucleosynthesis, properties of warm dense matter in planetary interiors, molecular cloud dynamics and star formation, and fusion energy generation.

  13. I

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    n s'tellnr nucleosynthesis, neutron capture a t a r a t e which i s slow con- pared t o t h a t of Since t h e e a r l y quantitative s t u d i e s of t h e g-process by Clayton, Fowler, HULL, and Zimemaan (1961), considerable e f f o r t has been mc?e t o determine t h e possible distributions of neutron exposures which d g h t have led Lo the observed r e h solar-system abudances of those r u e l e i p r d u c e d i n t h e 2-process. g beta-decays has been designated as t h e s-process. I n p

  14. Progress at the TITAN-EBIT

    SciTech Connect (OSTI)

    Klawitter, R.; Alanssari, M.; Frekers, D.; Chowdhury, U.; Gwinner, G.; Chaudhuri, A.; Grossheim, A.; Kwiatkowski, A. A.; Leach, K.; Schultz, B. E.; Dilling, J.; López-Urrutia, J. R. Crespo; Ettenauer, S.; Gallant, A. T.; Macdonald, T. D.; Lennarz, A.; Simon, M. C.; Seeraji, S.; Andreoiu, C.

    2015-01-09

    Precision mass measurements of short-lived isotopes provide insight into a wide array of physics, including nuclear structure, nucleosynthesis, and tests of the Standard Model. The precision of Penning trap mass spectrometry (PTMS) measurements is limited by the lifetime of the isotopes of interest, but scales proportionally with their charge state q, making highly charged ions attractive for mass measurements of nuclides far from stability. TITAN, TRIUMF's Ion Trap(s) for Atomic and Nuclear science, is currently the only setup in the world coupling an EBIT to a rare isotope facility for the purpose of PTMS. Charge breeding ions for Penning trap mass spectrometry, however, entails specific set of challenges. To make use of its potential, efficiencies have to be high, breeding times have to be short and the ion energy spread has to be small. An overview of the TITAN facility and charge-breeding program is given, current and future developments are highlighted and some selected results are presented.

  15. Gravitational-wave generation in hybrid quintessential inflationary models

    SciTech Connect (OSTI)

    Sa, Paulo M.; Henriques, Alfredo B.

    2010-06-15

    We investigate the generation of gravitational waves in the hybrid quintessential inflationary model. The full gravitational-wave energy spectrum is calculated using the method of continuous Bogoliubov coefficients. The postinflationary kination period, characteristic of quintessential inflationary models, leaves a clear signature on the spectrum, namely, a peak at high frequencies. The maximum of the peak is firmly located at the megahertz-gigahertz region of the spectrum and corresponds to {Omega}{sub GW{approx_equal}}10{sup -12}. This peak is substantially smaller than the one appearing in the gravitational-wave energy spectrum of the original quintessential inflationary model, therefore avoiding any conflict with the nucleosynthesis constraint on {Omega}{sub GW}.

  16. Supernova constraints on neutrino oscillation and EoS for proto-neutron star

    SciTech Connect (OSTI)

    Kajino, T.; Aoki, W.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Shibagaki, S.; Mathews, G. J.; Nakamura, K.; Suzuki, T.

    2014-05-02

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We here discuss how to determine the neutrino temperatures and propose a method to determine still unknown neutrino oscillation parameters, mass hierarchy and ?{sub 13}, simultaneously. Combining the recent experimental constraints on ?{sub 13} with isotopic ratios of the light elements discovered in presolar grains from the Murchison meteorite, we show that our method suggests at a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  17. PRODUCTION OF ALL THE r-PROCESS NUCLIDES IN THE DYNAMICAL EJECTA OF NEUTRON STAR MERGERS

    SciTech Connect (OSTI)

    Wanajo, Shinya; Sekiguchi, Yuichiro; Kiuchi, Kenta; Shibata, Masaru; Nishimura, Nobuya; Kyutoku, Koutarou

    2014-07-10

    Recent studies suggest that binary neutron star (NS-NS) mergers robustly produce heavy r-process nuclei above the atomic mass number A ? 130 because their ejecta consist of almost pure neutrons (electron fraction of Y {sub e} < 0.1). However, the production of a small amount of the lighter r-process nuclei (A ? 90-120) conflicts with the spectroscopic results of r-process-enhanced Galactic halo stars. We present, for the first time, the result of nucleosynthesis calculations based on the fully general relativistic simulation of a NS-NS merger with approximate neutrino transport. It is found that the bulk of the dynamical ejecta are appreciably shock-heated and neutrino processed, resulting in a wide range of Y {sub e} (?0.09-0.45). The mass-averaged abundance distribution of calculated nucleosynthesis yields is in reasonable agreement with the full-mass range (A ? 90-240) of the solar r-process curve. This implies, if our model is representative of such events, that the dynamical ejecta of NS-NS mergers could be the origin of the Galactic r-process nuclei. Our result also shows that radioactive heating after ?1 day from the merging, which gives rise to r-process-powered transient emission, is dominated by the ?-decays of several species close to stability with precisely measured half-lives. This implies that the total radioactive heating rate for such an event can be well constrained within about a factor of two if the ejected material has a solar-like r-process pattern.

  18. PRODUCTION OF THE p-PROCESS NUCLEI IN THE CARBON-DEFLAGRATION MODEL FOR TYPE Ia SUPERNOVAE

    SciTech Connect (OSTI)

    Kusakabe, Motohiko; Iwamoto, Nobuyuki; Nomoto, Ken'ichi E-mail: iwamoto.nobuyuki@jaea.go.jp

    2011-01-01

    We calculate the nucleosynthesis of proton-rich isotopes in the carbon-deflagration model for Type Ia supernovae (SNe Ia). The seed abundances are obtained by calculating the s-process nucleosynthesis that is expected to occur in the repeating helium shell flashes on the carbon-oxygen (CO) white dwarf (WD) during mass accretion from a binary companion. When the deflagration wave passes through the outer layer of the CO WD, p-nuclei are produced by photodisintegration reactions on s-nuclei in a region where the peak temperature ranges from 1.9 to 3.6 x 10{sup 9} K. We confirm the sensitivity of the p-process on the initial distribution of s-nuclei. We show that the initial C/O ratio in the WD does not affect much the yield of p-nuclei. On the other hand, the abundance of {sup 22}Ne left after s-processing has a large influence on the p-process via the {sup 22}Ne({alpha},n) reaction. We find that about 50% of p-nuclides are co-produced when normalized to their solar abundances in all adopted cases of seed distribution. Mo and Ru, which are largely underproduced in Type II supernovae (SNe II), are produced more than in SNe II although they are underproduced with respect to the yield levels of other p-nuclides. The ratios between p-nuclei and iron in the ejecta are larger than the solar ratios by a factor of 1.2. We also compare the yields of oxygen, iron, and p-nuclides in SNe Ia and SNe II and suggest that SNe Ia could make a larger contribution than SNe II to the solar system content of p-nuclei.

  19. Need for an (n,?) Apparatus at the LANSCE

    SciTech Connect (OSTI)

    Koehler, Paul E.

    2014-03-05

    There is an urgent need for a new (n,?) measurement capability at the Los Alamos Neutrons Science Center (LANSCE) for several reasons. First, it has been shown that (n,?) measurements on medium- to heavy-mass nuclides can provide some of the best constraints on some of the most important reaction rates for explosive nucleosynthesis studies. A few such measurements have been made, but many more are needed. Second, there are a few (n,p) and (n,?) cross sections on lighter nuclides of importance to nuclear astrophysics that remain unmeasured. Third, it has been shown that (n,?) measurements can constrain photon strength functions (PSFs) at very low energies. This is important because recent experiments, theory, and astrophysical calculations have demonstrated that enhanced PSFs at these energies can have large impacts on nucleosynthesis occurring in explosive environments. Also, enhanced low-energy PSFs could have significant impact on (n,?) cross sections of interest to radiochemical diagnostics of nuclear devices. However, the shape of PSFs at low energies is a subject of considerable controversy, so new data are badly needed. Fourth, previous (n,?) data have revealed a number of puzzles and hints of exotic atomic-nuclear interactions. In addition to being interesting in their own light, these interactions could be important for understanding high-energy-density environments such as in nuclear explosion and at the National Ignition Facility. Simulations indicate that the high neutron flux at the Manuel Lujan Jr. Neutron Scattering Center (MLNSC) at the LANSCE will make many more of the needed measurements feasible. Hence, a new (n,?) instrument at the MLNSC would enable a wide range of important and interesting basic and applied science.

  20. DIVERSITY OF TYPE Ia SUPERNOVAE IMPRINTED IN CHEMICAL ABUNDANCES

    SciTech Connect (OSTI)

    Tsujimoto, Takuji [National Astronomical Observatory of Japan, Mitaka-shi, Tokyo 181-8588 (Japan); Shigeyama, Toshikazu, E-mail: taku.tsujimoto@nao.ac.jp [Research Center for the Early Universe, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2012-12-01

    A time delay of Type Ia supernova (SN Ia) explosions hinders the imprint of their nucleosynthesis on stellar abundances. However, some occasional cases give birth to stars that avoid enrichment of their chemical compositions by massive stars and thereby exhibit an SN-Ia-like elemental feature including a very low [Mg/Fe] ( Almost-Equal-To - 1). We highlight the elemental feature of Fe-group elements for two low-Mg/Fe objects detected in nearby galaxies, and propose the presence of a class of SNe Ia that yield the low abundance ratios of [Cr, Mn, Ni/Fe]. Our novel models of chemical evolution reveal that our proposed class of SNe Ia (slow SNe Ia) is associated with ones exploding on a long timescale after their stellar birth and give a significant impact on the chemical enrichment in the Large Magellanic Cloud (LMC). In the Galaxy, on the other hand, this effect is unseen due to the overwhelming enrichment by the major class of SNe Ia that explode promptly (prompt SNe Ia) and eject a large amount of Fe-group elements. This nicely explains the different [Cr, Mn, Ni/Fe] features between the two galaxies as well as the puzzling feature seen in the LMC stars exhibiting very low Ca but normal Mg abundances. Furthermore, the corresponding channel of slow SN Ia is exemplified by performing detailed nucleosynthesis calculations in the scheme of SNe Ia resulting from a 0.8 + 0.6 M{sub Sun} white dwarf merger.

  1. Progress in the long Nb3Sn quadrupole R&D by LARP

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ambrosio, G; Andreev, N; Anerella, M; Barzi, E; Bocian, D; Bossert, R; Buehler, M; Caspi, S; Chlachidze, G; Dietderich, D; et al

    2012-06-01

    After the successful test of the first long Nb3Sn quadrupole (LQS01) the US LHC Accelerator Research Program (LARP, a collaboration of BNL, FNAL, LBNL and SLAC) is assessing training memory, reproducibility, and other accelerator quality features of long Nb3Sn quadrupole magnets. LQS01b (a reassembly of LQS01 with more uniform and higher pre-stress) was subjected to a full thermal cycle and reached the previous plateau of 222 T/m at 4.5 K in two quenches. A new set of four coils, made of the same type of conductor used in LQS01 (RRP 54/61 by Oxford Superconducting Technology), was assembled in the LQS01more »structure and tested at 4.5 K and lower temperatures. The new magnet (LQS02) reached the target gradient (200 T/m) only at 2.6 K and lower temperatures, at intermediate ramp rates. The preliminary test analysis, here reported, showed a higher instability in the limiting coil than in the other coils of LQS01 and LQS02.« less

  2. Progress in the Long $${\\rm Nb}_{3}{\\rm Sn}$$ Quadrupole R&D by LARP

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ambrosio, G.; Andreev, N.; Anerella, M.; Barzi, E.; Bocian, D.; Bossert, R.; Buehler, M.; Caspi, S.; Chlachidze, G.; Dietderich, D.; et al

    2011-11-14

    After the successful test of the first long Nb3Sn quadrupole (LQS01) the US LHC Accelerator Research Program (LARP, a collaboration of BNL, FNAL, LBNL and SLAC) is assessing training memory, reproducibility, and other accelerator quality features of long Nb3Sn quadrupole magnets. LQS01b (a reassembly of LQS01 with more uniform and higher pre-stress) was subjected to a full thermal cycle and reached the previous plateau of 222 T/m at 4.5 K in two quenches. A new set of four coils, made of the same type of conductor used in LQS01 (RRP 54/61 by Oxford Superconducting Technology), was assembled in the LQS01more » structure and tested at 4.5 K and lower temperatures. The new magnet (LQS02) reached the target gradient (200 T/m) only at 2.6 K and lower temperatures, at intermediate ramp rates. The preliminary test analysis, here reported, showed a higher instability in the limiting coil than in the other coils of LQS01 and LQS02.« less

  3. Reduced Magnetization and Loss in Ag-Mg Sheathed Bi2212 Wires: Systematics With Sample Twist Pitch and Length

    SciTech Connect (OSTI)

    Myers, C. S.; Susner, M. A.; Miao, H.; Huang, Y.; Sumption, M. D.; Collings, E. W.

    2014-11-20

    Suppression of magnetization and effective filament diameter (deff) with twisting was investigated for a series of recent Bi2212 strands manufactured by Oxford Superconducting Technologies. We measured magnetization as a function of field (out to 14 T), at 5.1 K, of twisted and nontwisted 37 × 18 double restack design strands. The samples were helical coils 5-6 mm in height and approximately 5 mm in diameter. The strand diameter was 0.8 mm. The magnetization of samples having twist pitches of 25.4, 12.7, and 6.35 mm were examined and compared to nontwisted samples of the same filament configuration. The critical state model was used to extract the 12-T deff from magnetization data for comparison. Twisting the samples reduced deff by a factor of 1.5-3. The deff was shown to increase both with L and Lp. Mathematical expressions, based upon the anisotropic continuum model, were fit to the data, and a parameter ?2, which quantifies the electrical connectivity perpendicular to the filament axis, was extracted. The bundle-to-bundle connectivity along the radial axis was found to be approximately 0.2%. The deff was substantially reduced with Lp. In addition, the importance of understanding sample length dependence for quantitative measurements is discussed.

  4. Planck 2010

    ScienceCinema (OSTI)

    None

    2011-10-06

    Planck 2010 From the Planck Scale to the ElectroWeak Scale The conference will be the twelfth one in a series of meetings on physics beyond the Standard Model, organized jointly by several European groups: Bonn, CERN, Ecole Polytechnique, ICTP, Madrid, Oxford, Padua, Pisa, SISSA and Warsaw as part of activities in the framework of the European network UNILHC.Topics to be discussed: Supersymmetry Supergravity & string phenomenology Extra dimensions Electroweak symmetry breaking LHC and Tevatron Physics Collider physics Flavor & neutrinos physics Astroparticle & cosmology Gravity & holography Strongly coupled physics & CFT Registration: registration will be open until May 1st. Registration fees amount to 150 CHF and cover the cost of the coffee breaks and the social dinner. Payment has to be made online. The deadline for registration has been postponed to May 7th. However, after May 3th, we shall not accept any talk request any more. The meeting will be partly supported by ° the Marie Curie Initial Training Network "UNILHC" PITN-GA-2009-23792, ° the ERC Advanced Grant "MassTeV" 226371, ° and the CERN-TH unit.

  5. Gedanken densities and exact constraints in density functional theory

    SciTech Connect (OSTI)

    Perdew, John P.; Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122 ; Ruzsinszky, Adrienn; Sun, Jianwei; Burke, Kieron

    2014-05-14

    Approximations to the exact density functional for the exchange-correlation energy of a many-electron ground state can be constructed by satisfying constraints that are universal, i.e., valid for all electron densities. Gedanken densities are designed for the purpose of this construction, but need not be realistic. The uniform electron gas is an old gedanken density. Here, we propose a spherical two-electron gedanken density in which the dimensionless density gradient can be an arbitrary positive constant wherever the density is non-zero. The Lieb-Oxford lower bound on the exchange energy can be satisfied within a generalized gradient approximation (GGA) by bounding its enhancement factor or simplest GGA exchange-energy density. This enhancement-factor bound is well known to be sufficient, but our gedanken density shows that it is also necessary. The conventional exact exchange-energy density satisfies no such local bound, but energy densities are not unique, and the simplest GGA exchange-energy density is not an approximation to it. We further derive a strongly and optimally tightened bound on the exchange enhancement factor of a two-electron density, which is satisfied by the local density approximation but is violated by all published GGA's or meta-GGA’s. Finally, some consequences of the non-uniform density-scaling behavior for the asymptotics of the exchange enhancement factor of a GGA or meta-GGA are given.

  6. Reduced Magnetization and Loss in Ag-Mg Sheathed Bi2212 Wires: Systematics With Sample Twist Pitch and Length

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Myers, C. S.; Susner, M. A.; Miao, H.; Huang, Y.; Sumption, M. D.; Collings, E. W.

    2014-11-20

    Suppression of magnetization and effective filament diameter (deff) with twisting was investigated for a series of recent Bi2212 strands manufactured by Oxford Superconducting Technologies. We measured magnetization as a function of field (out to 14 T), at 5.1 K, of twisted and nontwisted 37 × 18 double restack design strands. The samples were helical coils 5-6 mm in height and approximately 5 mm in diameter. The strand diameter was 0.8 mm. The magnetization of samples having twist pitches of 25.4, 12.7, and 6.35 mm were examined and compared to nontwisted samples of the same filament configuration. The critical state modelmore » was used to extract the 12-T deff from magnetization data for comparison. Twisting the samples reduced deff by a factor of 1.5-3. The deff was shown to increase both with L and Lp. Mathematical expressions, based upon the anisotropic continuum model, were fit to the data, and a parameter γ2, which quantifies the electrical connectivity perpendicular to the filament axis, was extracted. The bundle-to-bundle connectivity along the radial axis was found to be approximately 0.2%. The deff was substantially reduced with Lp. In addition, the importance of understanding sample length dependence for quantitative measurements is discussed.« less

  7. High Energy Theory Workshops and Visitors at the Michigan Center for Theoretical Physics FY15

    SciTech Connect (OSTI)

    Pierce, Aaron T.

    2015-09-18

    The String theory workshop was held from March 4-7, 2015 on the University of Michigan campus. Local organizers were Gordon Kane and Aaron Pierce. Piyush Kumar (Yale), Jim Halverson (KITP), Bobby Acharya (ICTP) and Sven Krippendorf (Oxford) served as external organizers.The meeting focused on the status of work to project 10 or 11 dimensional string/M theories onto our 4 spacetime dimensions (compactification). The workshop had 31 participants, half from outside the U.S. Participants were encouraged to focus on predictions for recent and forthcoming data, particularly for Higgs physics and LHC and dark matter, rather than on the traditional approach of embedding the Standard Model particles and forces. The Higgs boson sympoosium was locally organized by James Wells (chair), Aaron Pierce and Jianming Qian. Additional input in the early stages by Stefan Pokorski (Warsaw) who was unable to attend in the end. The workshop consistent of 22 talks from experts around the world, both theoretical and experimental. Experimentalists summarized the current state of knowledge of the Higgs boson and its varients. The theory talks ranged from technical calculations of Standard Model processes to speculative novel ideas. The YHET visitor program invited weekly young visitors to the University of Michigan campus to present their work. This year 24 participants came under the program, with 17 of them receiving at least partial support for their visits.

  8. Planck 2010

    ScienceCinema (OSTI)

    None

    2011-10-06

    Planck 2010 From the Planck Scale to the ElectroWeak Scale The conference will be the twelfth one in a series of meetings on physics beyond the Standard Model, organized jointly by several European groups: Bonn, CERN, Ecole Polytechnique, ICTP, Madrid, Oxford, Padua, Pisa, SISSA and Warsaw as part of activities in the framework of the European network UNILHC.Topics to be discussed: Supersymmetry Supergravity & string phenomenology Extra dimensions Electroweak symmetry breaking LHC and Tevatron Physics Collider physics Flavor & neutrinos physics Astroparticle & cosmology Gravity & holography Strongly coupled physics & CFT Registration: registration will be open until May 1st. Registration fees amount to 150 CHF and cover the cost of the coffee breaks and the social dinner. Payment has to be made online. The deadline for registration has been postponed to May 7th. However, after May 3th, we shall not accept any talk request any more. The meeting will be partly supported by ° the Marie Curie Initial Training Network "UNILHC" PITN-GA-2009-23792, ° the ERC Advanced Grant "MassTeV" 226371, ° and the CERN-TH unit.

  9. Reheating dynamics affects non-perturbative decay of spectator fields

    SciTech Connect (OSTI)

    Enqvist, Kari; Lerner, Rose N.; Rusak, Stanislav E-mail: rose.lerner@helsinki.fi

    2013-11-01

    The behaviour of oscillating scalar spectator fields after inflation depends on the thermal background produced by inflaton decay. Resonant decay of the spectator is often blocked by large induced thermal masses. We account for the finite decay width of the inflaton and the protracted build-up of the thermal bath to determine the early evolution of a homogeneous spectator field ? coupled to the Higgs Boson ? through the term g{sup 2}?{sup 2}?{sup 2}, the only renormalisable coupling of a new scalar to the Standard Model. We find that for very large higgs-spectator coupling g?>10{sup ?3}, the resonance is not always blocked as was previously suggested. As a consequence, the oscillating spectator can decay quickly. For other parameter values, we find that although qualitative features of the thermal blocking still hold, the dynamics are altered compared to the instant decay case. These findings are important for curvaton models, where the oscillating field must be relatively long lived in order to produce the curvature perturbation. They are also relevant for other spectator fields, which must decay sufficiently early to avoid spoiling the predictions of baryogenesis and nucleosynthesis.

  10. A high-entropy-wind r-process study based on nuclear-structure quantities from the new finite-range droplet model FRDM(2012)

    SciTech Connect (OSTI)

    Kratz, Karl-Ludwig; Farouqi, Khalil; Möller, Peter E-mail: kfarouqi@lsw.uni-heidelberg.de

    2014-09-01

    Attempts to explain the source of r-process elements in our solar system (S.S.) by particular astrophysical sites still face entwined uncertainties, stemming from the extrapolation of nuclear properties far from stability, inconsistent sources of different properties (e.g., nuclear masses and ?-decay properties), and the poor understanding of astrophysical conditions, which are hard to disentangle. In this paper we present results from the investigation of r-process in the high-entropy wind (HEW) of core-collapse supernovae (here chosen as one of the possible scenarios for this nucleosynthesis process), using new nuclear-data input calculated in a consistent approach, for masses and ?-decay properties from the new finite-range droplet model FRDM(2012). The accuracy of the new mass model is 0.56 MeV with respect to AME2003, to which it was adjusted. We compare the new HEW r-process abundance pattern to the latest S.S. r-process residuals and to our earlier calculations with the nuclear-structure quantities based on FRDM(1992). Substantial overall and specific local improvements in the calculated pattern of the r-process between A ? 110 and {sup 209}Bi, as well as remaining deficiencies, are discussed in terms of the underlying spherical and deformed shell structure far from stability.

  11. Stellar yields of rotating first stars. I. Yields of weak supernovae and abundances of carbon-enhanced hyper-metal-poor stars

    SciTech Connect (OSTI)

    Takahashi, Koh; Umeda, Hideyuki [Department of Astronomy, The University of Tokyo, Bunkyo, Tokyo 113-0033 (Japan); Yoshida, Takashi, E-mail: ktakahashi@astron.s.u-tokyo.ac.jp [Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502 (Japan)

    2014-10-10

    We perform a stellar evolution simulation of first stars and calculate stellar yields from the first supernovae. The initial masses are taken from 12 to 140 M {sub ?} to cover the whole range of core-collapse supernova progenitors, and stellar rotation is included, which results in efficient internal mixing. A weak explosion is assumed in supernova yield calculations, thus only outer distributed matter, which is not affected by the explosive nucleosynthesis, is ejected in the models. We show that the initial mass and the rotation affect the explosion yield. All the weak explosion models have abundances of [C/O] larger than unity. Stellar yields from massive progenitors of >40-60 M {sub ?} show enhancement of Mg and Si. Rotating models yield abundant Na and Al, and Ca is synthesized in nonrotating heavy massive models of >80 M {sub ?}. We fit the stellar yields to the three most iron-deficient stars and constrain the initial parameters of the mother progenitor stars. The abundance pattern in SMSS 0313–6708 is well explained by 50-80 M {sub ?} nonrotating models, rotating 30-40 M {sub ?} models well fit the abundance of HE 0107-5240, and both nonrotating and rotating 15-40 M {sub ?} models explain HE 1327-2326. The presented analysis will be applicable to other carbon-enhanced hyper-metal-poor stars observed in the future. The abundance analyses will give valuable information about the characteristics of the first stars.

  12. FLUORINE IN THE SOLAR NEIGHBORHOOD: IS IT ALL PRODUCED IN ASYMPTOTIC GIANT BRANCH STARS?

    SciTech Connect (OSTI)

    Jönsson, H.; Ryde, N. [Lund Observatory, Department of Astronomy and Theoretical Physics, Lund University, Box 43, SE-221 00 Lund (Sweden); Harper, G. M. [School of Physics, Trinity College, Dublin 2 (Ireland); Richter, M. J. [Physics Department, University of California, Davis, CA 95616 (United States); Hinkle, K. H., E-mail: henrikj@astro.lu.se [National Optical Astronomy Observatory, P.O. Box 26732, Tucson, AZ 85726 (United States)

    2014-07-10

    The origin of ''cosmic'' fluorine is uncertain, but there are three proposed production sites/mechanisms for the origin: asymptotic giant branch (AGB) stars, ? nucleosynthesis in Type II supernovae, and/or the winds of Wolf-Rayet stars. The relative importance of these production sites has not been established even for the solar neighborhood, leading to uncertainties in stellar evolution models of these stars as well as uncertainties in the chemical evolution models of stellar populations. We determine the fluorine and oxygen abundances in seven bright, nearby giants with well determined stellar parameters. We use the 2.3 ?m vibrational-rotational HF line and explore a pure rotational HF line at 12.2 ?m. The latter has never been used before for an abundance analysis. To be able to do this, we have calculated a line list for pure rotational HF lines. We find that the abundances derived from the two diagnostics agree. Our derived abundances are well reproduced by chemical evolution models including only fluorine production in AGB stars and, therefore, we draw the conclusion that this might be the main production site of fluorine in the solar neighborhood. Furthermore, we highlight the advantages of using the 12 ?m HF lines to determine the possible contribution of the ? process to the fluorine budget at low metallicities where the difference between models including and excluding this process is dramatic.

  13. Experimental study of the electric dipole strength in the even Mo nuclei and its deformation dependence

    SciTech Connect (OSTI)

    Erhard, M.; Junghans, A. R.; Nair, C.; Schwengner, R.; Beyer, R.; Klug, J.; Kosev, K.; Wagner, A.; Grosse, E.

    2010-03-15

    Two methods based on bremsstrahlung were applied to the stable even Mo isotopes for the experimental determination of the photon strength function covering the high excitation energy range above 4 MeV with its increasing level density. Photon scattering was used up to the neutron separation energies S{sub n} and data up to the maximum of the isovector giant resonance (GDR) were obtained by photoactivation. After a proper correction for multistep processes the observed quasicontinuous spectra of scattered photons show a remarkably good match to the photon strengths derived from nuclear photoeffect data obtained previously by neutron detection and corrected in absolute scale by using the new activation results. The combined data form an excellent basis to derive a shape dependence of the E1 strength in the even Mo isotopes with increasing deviation from the N=50 neutron shell (i.e., with the impact of quadrupole deformation and triaxiality). The wide energy coverage of the data allows for a stringent assessment of the dipole sum rule and a test of a novel parametrization developed previously which is based on it. This parametrization for the electric dipole strength function in nuclei with A>80 deviates significantly from prescriptions generally used previously. In astrophysical network calculations it may help to quantify the role the p-process plays in cosmic nucleosynthesis. It also has impact on the accurate analysis of neutron capture data of importance for future nuclear energy systems and waste transmutation.

  14. A taste of dark matter: Flavour constraints on pseudoscalar mediators

    SciTech Connect (OSTI)

    Dolan, Matthew J.; Kahlhoefer, Felix; McCabe, Christopher; Schmidt-Hoberg, Kai

    2015-03-31

    Dark matter interacting via the exchange of a light pseudoscalar can induce observable signals in indirect detection experiments and experience large self-interactions while evading the strong bounds from direct dark matter searches. The pseudoscalar mediator will however induce flavour-changing interactions in the Standard Model, providing a promising alternative way to test these models. We investigate in detail the constraints arising from rare meson decays and fixed target experiments for different coupling structures between the pseudoscalar and Standard Model fermions. The resulting bounds are highly complementary to the information inferred from the dark matter relic density and the constraints from primordial nucleosynthesis. We discuss the implications of our findings for the dark matter self-interaction cross section and the prospects of probing dark matter coupled to a light pseudoscalar with direct or indirect detection experiments. In particular, we find that a pseudoscalar mediator can only explain the Galactic Centre excess if its mass is above that of the B mesons, and that it is impossible to obtain a sufficiently large direct detection cross section to account for the DAMA modulation.

  15. Neutron physics of the Re/Os clock. I. Measurement of the (n,gamma) cross sections of {sup 186,187,188}Os at the CERN n{sub T}OF facility

    SciTech Connect (OSTI)

    Mosconi, M.; Kaeppeler, F.; Audouin, L.; Dillmann, I.; Heil, M.; Plag, R.; Voss, F.; Walter, S.; Wisshak, K.; Fujii, K.; Abbondanno, U.; Belloni, F.; Milazzo, P. M.; Moreau, C.; Mengoni, A.; Domingo-Pardo, C.; Aerts, G.; Andriamonje, S.; Berthoumieux, E.; Dridi, W.

    2010-07-15

    The precise determination of the neutron capture cross sections of {sup 186}Os and {sup 187}Os is important to define the s-process abundance of {sup 187}Os at the formation of the solar system. This quantity can be used to evaluate the radiogenic component of the abundance of {sup 187}Os due to the decay of the unstable {sup 187}Re (t{sub 1/2}=41.2 Gyr) and from this to infer the time duration of the nucleosynthesis in our galaxy (Re/Os cosmochronometer). The neutron capture cross sections of {sup 186}Os, {sup 187}Os, and {sup 188}Os have been measured at the CERN n{sub T}OF facility from 1 eV to 1 MeV, covering the entire energy range of astrophysical interest. The measurement has been performed by time-of-flight technique using isotopically enriched samples and two C{sub 6}D{sub 6} scintillation detectors for recording the prompt gamma rays emitted in the capture events. Maxwellian averaged capture cross sections have been determined for thermal energies between kT=5 and 100 keV corresponding to all possible s-process scenarios. The estimated uncertainties for the values at 30 keV are 4.1, 3.3, and 4.7% for {sup 186}Os, {sup 187}Os, and {sup 188}Os, respectively.

  16. A taste of dark matter: Flavour constraints on pseudoscalar mediators

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dolan, Matthew J.; Kahlhoefer, Felix; McCabe, Christopher; Schmidt-Hoberg, Kai

    2015-03-31

    Dark matter interacting via the exchange of a light pseudoscalar can induce observable signals in indirect detection experiments and experience large self-interactions while evading the strong bounds from direct dark matter searches. The pseudoscalar mediator will however induce flavour-changing interactions in the Standard Model, providing a promising alternative way to test these models. We investigate in detail the constraints arising from rare meson decays and fixed target experiments for different coupling structures between the pseudoscalar and Standard Model fermions. The resulting bounds are highly complementary to the information inferred from the dark matter relic density and the constraints from primordialmore » nucleosynthesis. We discuss the implications of our findings for the dark matter self-interaction cross section and the prospects of probing dark matter coupled to a light pseudoscalar with direct or indirect detection experiments. In particular, we find that a pseudoscalar mediator can only explain the Galactic Centre excess if its mass is above that of the B mesons, and that it is impossible to obtain a sufficiently large direct detection cross section to account for the DAMA modulation.« less

  17. Ab Initio Nuclear Structure and Reaction Calculations for Rare Isotopes

    SciTech Connect (OSTI)

    Draayer, Jerry P.

    2014-09-28

    We have developed a novel ab initio symmetry-adapted no-core shell model (SA-NCSM), which has opened the intermediate-mass region for ab initio investigations, thereby providing an opportunity for first-principle symmetry-guided applications to nuclear structure and reactions for nuclear isotopes from the lightest p-shell systems to intermediate-mass nuclei. This includes short-lived proton-rich nuclei on the path of X-ray burst nucleosynthesis and rare neutron-rich isotopes to be produced by the Facility for Rare Isotope Beams (FRIB). We have provided ab initio descriptions of high accuracy for low-lying (including collectivity-driven) states of isotopes of Li, He, Be, C, O, Ne, Mg, Al, and Si, and studied related strong- and weak-interaction driven reactions that are important, in astrophysics, for further understanding stellar evolution, X-ray bursts and triggering of s, p, and rp processes, and in applied physics, for electron and neutrino-nucleus scattering experiments as well as for fusion ignition at the National Ignition Facility (NIF).

  18. The effect of 12C + 12C rate uncertainties on the weak s-process component

    SciTech Connect (OSTI)

    Fryer, Christopher Lee; Hungerford, Aimee L; Hirschi, Raphael; Pignatari, Marco; Bennett, Michael E; Diehl, Steven; Herwig, Falk; Hillary, William; Richman, Debra; Rockefeller, Gabriel; Timmes, Frank X; Wiescher, Michael

    2010-09-10

    The contribution by massive stars (M > 15M{sub {circle_dot}}) to the weak s-process component of the solar system abundances is primarily due to the {sup 22}Ne neutron source, which is activated near the end of helium-core burning. The residual {sup 22}Ne left over from helium-core burning is then reignited during carbon burning, initiating further s-processing that modifies the isotopic distribution. This modification is sensitive to the stellar structure and the carbon burning reaction rate. Recent work on the {sup 12}C + {sup 12}C reaction suggests that resonances located within the Gamow peak may exist, causing a strong increase in the astrophysical S-factor and consequently the reaction rate. To investigate the effect of such a rate, 25M{sub {circle_dot}} stellar models with different carbon burning rates, at solar metallicity, were generated using the Geneva Stellar Evolution Code (GENEC) with nucleosynthesis post-processing calculated using the NuGrid Multi-zone Post-Processing Network code (MPPNP). A strongly enhanced rate can cause carbon burning to occur in a convective core rather than a radiative one and the convective core mixes the matter synthesized there up into the carbon shell, significantly altering the initial composition of the carbon-shell. In addition, an enhanced rate causes carbon-shell burning episodes to ignite earlier in the evolution of the star, igniting the {sup 22}Ne source at lower temperatures and reducing the neutron density.

  19. THE MORPHOLOGY AND DYNAMICS OF JET-DRIVEN SUPERNOVA REMNANTS: THE CASE OF W49B

    SciTech Connect (OSTI)

    González-Casanova, Diego F.; De Colle, Fabio; Ramirez-Ruiz, Enrico; Lopez, Laura A.

    2014-02-01

    The circumstellar medium (CSM) of a massive star is modified by its winds before a supernova (SN) explosion occurs, and thus the evolution of the resulting supernova remnant (SNR) is influenced by both the geometry of the explosion as well as the complex structure of the CSM. Motivated by recent work suggesting the SNR W49B was a jet-driven SN expanding in a complex CSM, we explore how the dynamics and the metal distributions in a jet-driven explosion are modified by the interaction with the surrounding environment. In particular, we perform hydrodynamical calculations to study the dynamics and explosive nucleosynthesis of a jet-driven SN triggered by the collapse of a 25 M {sub ?} Wolf-Rayet star and its subsequent interaction with the CSM up to several hundred years following the explosion. We find that although the CSM has small-scale effects on the structure of the SNR, the overall morphology and abundance patterns are reflective of the initial asymmetry of the SN explosion. Thus, we predict that jet-driven SNRs, such as W49B, should be identifiable based on morphology and abundance patterns at ages up to several hundred years, even if they expand into a complex CSM environment.

  20. Total Cross Sections as a Surrogate for Neutron Capture: An Opportunity to Accurately Constrain (n,?) Cross Sections for Nuclides Beyond the Reach of Direct Measurements

    SciTech Connect (OSTI)

    Koehler, Paul E.

    2014-03-05

    There are many (n,?) cross sections of great interest to radiochemical diagnostics and to nuclear astrophysics which are beyond the reach of current measurement techniques, and likely to remain so for the foreseeable future. In contrast, total neutron cross sections currently are feasible for many of these nuclides and provide almost all the information needed to accurately calculate the (n,?) cross sections via the nuclear statistical model (NSM). I demonstrate this for the case of 151Sm; NSM calculations constrained using average resonance parameters obtained from total cross section measurements made in 1975, are in excellent agreement with recent 151Sm (n,?) measurements across a wide range of energy. Furthermore, I demonstrate through simulations that total cross section measurements can be made at the Manuel Lujan Jr. Neutron Scattering Center at the Los Alamos Neutron Science Center for samples as small as 10?g. Samples of this size should be attainable for many nuclides of interest. Finally, I estimate that over half of the radionuclides identified ?20 years ago as having (n,?) cross sections of importance to s-process nucleosynthesis studies (24/43) and radiochemical diagnostics (11/19), almost none of which have been measured, can be constrained using this technique.

  1. Long gamma-ray burst as a production site of r-process elements

    SciTech Connect (OSTI)

    Nakamrua, Ko; Harikae, Seiji; Kajino, Toshitaka; Mathews, Grant J.

    2012-11-12

    We simulated the r-process nucleosynthesis in and around a high entropy jet from a long gamma-ray burst (GRB). Our simulation is based on the collapsar scenario for long GRBs and on relativistic magnetohydrodynamic simulations (Harikae et al. 2009, 2010) including ray-tracing neutrino transport, which describe the development of the black hole accretion disk and the heating of the funnel region to produce a relativistic jet. The time evolution of the jet was then extended to later phase via axi-symmetric special relativistic hydrodynamic simulation to follow the temperature, entropy, electron fraction, and density evolution for representative test particles. The evolution of nuclear abundances from nucleons to heavy nuclei for representative test particle trajectories was solved in a large nuclear reaction network including more than 5000 isotopes. We show that a robust r-process successfully occurs within the collapsar jet outflow and that sufficient mass is ejected within the flow to account for the observed r-process abundance distribution along with the large dispersion in r-process elements observed in metal-poor halo stars.

  2. CHEMICAL SIGNATURE INDICATING A LACK OF MASSIVE STARS IN DWARF GALAXIES

    SciTech Connect (OSTI)

    Tsujimoto, Takuji, E-mail: taku.tsujimoto@nao.ac.jp [National Astronomical Observatory of Japan, Mitaka-shi, Tokyo 181-8588 (Japan)

    2011-08-01

    Growing evidence supports an unusual elemental feature appearing in nearby dwarf galaxies, especially dwarf spheroidals (dSphs), indicating a key process of galaxy evolution that is different from that of the Galaxy. In addition to the well-known deficiency of {alpha}-elements in dSphs, recent observations have clearly shown that s-process elements (Ba) are significantly enhanced relative to Fe, {alpha}-, and r-process elements. This enhancement occurs in some dSphs as well as in the Large Magellanic Cloud, but is unseen in the Galaxy. Here we report that this feature is evidence of the lack of very massive stars ({approx}>25 M{sub sun}) as predicted in the low star formation rate environment. We conclude that the unique elemental feature of dwarf galaxies including a low {alpha}/Fe ratio in some low-metallicity stars is, at least in some part, characterized by a different form of the initial mass function. We present a detailed model for the Fornax dSph galaxy and discuss its complex chemical enrichment history together with the nucleosynthesis site of the light s-process element Y.

  3. Sodium channel activation mechanisms. Insights from deuterium oxide substitution

    SciTech Connect (OSTI)

    Alicata, D.A.; Rayner, M.D.; Starkus, J.G. )

    1990-04-01

    Schauf and Bullock, using Myxicola giant axons, demonstrated that solvent substitution with deuterium oxide (D2O) significantly affects both sodium channel activation and inactivation kinetics without corresponding changes in gating current or tail current rates. They concluded that (a) no significant component of gating current derives from the final channel opening step, and (b) channels must deactivate (during tail currents) by a different pathway from that used in channel opening. By contrast, Oxford found in squid axons that when a depolarizing pulse is interrupted by a brief (approximately 100 microseconds) return to holding potential, subsequent reactivation (secondary activation) is very rapid and shows almost monoexponential kinetics. Increasing the interpulse interval resulted in secondary activation rate returning towards control, sigmoid (primary activation) kinetics. He concluded that channels open and close (deactivate) via the same pathway. We have repeated both sets of observations in crayfish axons, confirming the results obtained in both previous studies, despite the apparently contradictory conclusions reached by these authors. On the other hand, we find that secondary activation after a brief interpulse interval (50 microseconds) is insensitive to D2O, although reactivation after longer interpulse intervals (approximately 400 microseconds) returns towards a D2O sensitivity similar to that of primary activation. We conclude that D2O-sensitive primary activation and D2O-insensitive tail current deactivation involve separate pathways. However, D2O-insensitive secondary activation involves reversal of the D2O-insensitive deactivation step. These conclusions are consistent with parallel gate models, provided that one gating particle has a substantially reduced effective valence.

  4. Two-dimensional lift-up problem for a rigid porous bed

    SciTech Connect (OSTI)

    Chang, Y.; Huang, L. H.; Yang, F. P. Y.

    2015-05-15

    The present study analytically reinvestigates the two-dimensional lift-up problem for a rigid porous bed that was studied by Mei, Yeung, and Liu [“Lifting of a large object from a porous seabed,” J. Fluid Mech. 152, 203 (1985)]. Mei, Yeung, and Liu proposed a model that treats the bed as a rigid porous medium and performed relevant experiments. In their model, they assumed the gap flow comes from the periphery of the gap, and there is a shear layer in the porous medium; the flow in the gap is described by adhesion approximation [D. J. Acheson, Elementary Fluid Dynamics (Clarendon, Oxford, 1990), pp. 243-245.] and the pore flow by Darcy’s law, and the slip-flow condition proposed by Beavers and Joseph [“Boundary conditions at a naturally permeable wall,” J. Fluid Mech. 30, 197 (1967)] is applied to the bed interface. In this problem, however, the gap flow initially mainly comes from the porous bed, and the shear layer may not exist. Although later the shear effect becomes important, the empirical slip-flow condition might not physically respond to the shear effect, and the existence of the vertical velocity affects the situation so greatly that the slip-flow condition might not be appropriate. In contrast, the present study proposes a more general model for the problem, applying Stokes flow to the gap, the Brinkman equation to the porous medium, and Song and Huang’s [“Laminar poroelastic media flow,” J. Eng. Mech. 126, 358 (2000)] complete interfacial conditions to the bed interface. The exact solution to the problem is found and fits Mei’s experiments well. The breakout phenomenon is examined for different soil beds, mechanics that cannot be illustrated by Mei’s model are revealed, and the theoretical breakout times obtained using Mei’s model and our model are compared. The results show that the proposed model is more compatible with physics and provides results that are more precise.

  5. Measurement and calculation of recoil pressure produced during CO{sub 2} laser interaction with ice

    SciTech Connect (OSTI)

    Semak, V.V.; Knorovsky, G.A.; Maccallum, D.O.; Noble, D.R.; Kanouff, M.P.

    1999-12-09

    Evaporation is a classical physics problem which, because of its significant importance for many engineering applications, has drawn considerable attention by previous researchers. Classical theoretical models [Ta. I. Frenkel, Kinetic Theory of Liquids, Clarendon Press, Oxford, 1946] represent evaporation in a simplistic way as the escape of atoms with highest velocities from a potential well with the depth determined by the atomic binding energy. The processes taking place in the gas phase above the rapidly evaporating surface have also been studied in great detail [S.I.Anisimov and V. A. Khokhlov, Instabilities in Lasser-Matter Interaction, CRC Press, Boca Raton, 1995]. The description of evaporation utilizing these models is known to adequately characterize drilling with high beam intensity, e.g., >10{sup 7} W/cm{sup 2}. However, the interaction regimes when beam intensity is relatively low, such as during welding or cutting, lack both theoretical and experimental consideration of the evaporation. It was shown recently that if the evaporation is treated in accordance with Anisimov et.al.'s approach, then predicted evaporation recoil should be a substantial factor influencing melt flow and related heat transfer during laser beam welding and cutting. To verify the applicability of this model for low beam intensity interaction, the authors compared the results of measurements and calculations of recoil pressure generated during laser beam irradiation of a target. The target material used was water ice at {minus}10 C. The displacement of a target supported in a nearly frictionless air bearing under irradiation by a defocused laser beam from a 14 kW CO{sub 2} laser was recorded and Newton's laws of motion used to derive the recoil pressure.

  6. Differences in Brainstem Fiber Tract Response to Radiation: A Longitudinal Diffusion Tensor Imaging Study

    SciTech Connect (OSTI)

    Uh, Jinsoo; Merchant, Thomas E.; Li, Yimei; Feng, Tianshu; Gajjar, Amar; Ogg, Robert J.; Hua, Chiaho

    2013-06-01

    Purpose: To determine whether radiation-induced changes in white matter tracts are uniform across the brainstem. Methods and Materials: We analyzed serial diffusion tensor imaging data, acquired before radiation therapy and over 48 to 72 months of follow-up, from 42 pediatric patients (age 6-20 years) with medulloblastoma. FSL software (FMRIB, Oxford, UK) was used to calculate fractional anisotropy (FA) and axial, radial, and mean diffusivities. For a consistent identification of volumes of interest (VOIs), the parametric maps of each patient were transformed to a standard brain space (MNI152), on which we identified VOIs including corticospinal tract (CST), medial lemniscus (ML), transverse pontine fiber (TPF), and middle cerebellar peduncle (MCP) at the level of pons. Temporal changes of DTI parameters in VOIs were compared using a linear mixed effect model. Results: Radiation-induced white matter injury was marked by a decline in FA after treatment. The decline was often accompanied by decreased axial diffusivity, increased radial diffusivity, or both. This implied axonal damage and demyelination. We observed that the magnitude of the changes was not always uniform across substructures of the brainstem. Specifically, the changes in DTI parameters for TPF were more pronounced than in other regions (P<.001 for FA) despite similarities in the distribution of dose. We did not find a significant difference among CST, ML, and MCP in these patients (P>.093 for all parameters). Conclusions: Changes in the structural integrity of white matter tracts, assessed by DTI, were not uniform across the brainstem after radiation therapy. These results support a role for tract-based assessment in radiation treatment planning and determination of brainstem tolerance.

  7. Surgeons' Knowledge and Practices Regarding the Role of Radiation Therapy in Breast Cancer Management

    SciTech Connect (OSTI)

    Zhou, Jessica; Griffith, Kent A.; Hawley, Sarah T.; Zikmund-Fisher, Brian J.; Janz, Nancy K.; Sabel, Michael S.; Katz, Steven J.; Jagsi, Reshma

    2013-12-01

    Purpose: Population-based studies suggest underuse of radiation therapy, especially after mastectomy. Because radiation oncology is a referral-based specialty, knowledge and attitudes of upstream providers, specifically surgeons, may influence patients' decisions regarding radiation, including whether it is even considered. Therefore, we sought to evaluate surgeons' knowledge of pertinent risk information, their patterns of referral, and the correlates of surgeon knowledge and referral in specific breast cancer scenarios. Methods and Materials: We surveyed a national sample of 750 surgeons, with a 67% response rate. We analyzed responses from those who had seen at least 1 breast cancer patient in the past year (n=403), using logistic regression models to identify correlates of knowledge and appropriate referral. Results: Overall, 87% of respondents were general surgeons, and 64% saw >10 breast cancer patients in the previous year. In a scenario involving a 45-year-old undergoing lumpectomy, only 45% correctly estimated the risk of locoregional recurrence without radiation therapy, but 97% would refer to radiation oncology. In a patient with 2 of 20 nodes involved after mastectomy, 30% would neither refer to radiation oncology nor provide accurate information to make radiation decisions. In a patient with 4 of 20 nodes involved after mastectomy, 9% would not refer to radiation oncology. Fewer than half knew that the Oxford meta-analysis revealed a survival benefit from radiation therapy after lumpectomy (45%) or mastectomy (32%). Only 16% passed a 7-item knowledge test; female and more-experienced surgeons were more likely to pass. Factors significantly associated with appropriate referral to radiation oncology included breast cancer volume, tumor board participation, and knowledge. Conclusions: Many surgeons have inadequate knowledge regarding the role of radiation in breast cancer management, especially after mastectomy. Targeted educational interventions may improve the quality of care.

  8. Recent activities for ?-decay half-lives and ?-delayed neutron emission of very neutron-rich isotopes

    SciTech Connect (OSTI)

    Dillmann, Iris; Abriola, Daniel; Singh, Balraj

    2014-05-02

    Beta-delayed neutron (?n) emitters play an important, two-fold role in the stellar nucleosynthesis of heavy elements in the 'rapid neutron-capture process' (r process). On one hand they lead to a detour of the material ?-decaying back to stability. On the other hand, the released neutrons increase the neutron-to-seed ratio, and are re-captured during the freeze-out phase and thus influence the final solar r-abundance curve. A large fraction of the isotopes inside the r-process reaction path are not yet experimentally accessible and are located in the (experimental) 'Terra Incognita'. With the next generation of fragmentation and ISOL facilities presently being built or already in operation, one of the main motivation of all projects is the investigation of these very neutron-rich isotopes. A short overview of one of the planned programs to measure ?n-emitters at the limits of the presently know isotopes, the BRIKEN campaign (Beta delayed neutron emission measurements at RIKEN) will be given. Presently, about 600 ?-delayed one-neutron emitters are accessible, but only for a third of them experimental data are available. Reaching more neutron-rich isotopes means also that multiple neutron-emission becomes the dominant decay mechanism. About 460 ?-delayed two-, three-or four-neutron emitters are identified up to now but for only 30 of them experimental data about the neutron branching ratios are available, most of them in the light mass region below A=30. The International Atomic and Energy Agency (IAEA) has identified the urgency and picked up this topic recently in a 'Coordinated Research Project' on a 'Reference Database for Beta-Delayed Neutron Emission Data'. This project will review, compile, and evaluate the existing data for neutron-branching ratios and half-lives of ?-delayed neutron emitters and help to ensure a reliable database for the future discoveries of new isotopes and help to constrain astrophysical and theoretical models.

  9. THE OLD, SUPER-METAL-RICH OPEN CLUSTER, NGC 6791—ELEMENTAL ABUNDANCES IN TURN-OFF STARS FROM KECK/HIRES SPECTRA

    SciTech Connect (OSTI)

    Merchant Boesgaard, Ann; Lum, Michael G.; Deliyannis, Constantine P. E-mail: mikelum@ifa.hawaii.edu

    2015-02-01

    The study of star clusters has advanced our understanding of stellar evolution, Galactic chemical evolution, and nucleosynthesis. Here we investigate the composition of turn-off stars in the intriguing open cluster, NGC 6791, which is old, but super-metal-rich with high-resolution (R = 46,000) Keck/HIRES spectra. We find [Fe/H] = +0.30 ± 0.02 from measurements of some 40 unblended, unsaturated lines of both Fe I and Fe II in eight turn-off stars. Our O abundances come from the O I triplet near 7774 Å and we perform a differential analysis relative to the Sun from our Lunar spectrum also obtained with Keck/HIRES. The O results are corrected for small nLTE effects. We find consistent ratios of [O/Fe]{sub n} with a mean of –0.06 ± 0.02. This is low with respect to field stars that are also both old and metal-rich and continue the trend of decreasing [O/Fe] with increasing [Fe/H]. The small range in our oxygen abundances is consistent with a single population of stars. Our results for the alpha elements [Mg/Fe], [Si/Fe], [Ca/Fe], and [Ti/Fe] are near solar and compare well with those of the old, metal-rich field stars. The two Fe-peak elements, Cr and Ni, are consistent with Fe. These turn-off-star abundances provide benchmark abundances to investigate whether there are any observable abundance differences with the giants that might arise from nuclear-burning and dredge-up processes. Determinations of upper limits were found for Li by spectrum synthesis and are consistent with the upper limits in similar stars in the relatively old, super-metal-rich cluster NGC 6253. Our results support the prediction from standard theory that higher-metallicity stars deplete more Li. Probably no stars in NGC 6791 have retained their initial Li.

  10. Numerical Study of Gamma-Ray Burst Jet Formation in Collapsars

    SciTech Connect (OSTI)

    Nagataki, S.; /Kyoto U., Yukawa Inst., Kyoto /KIPAC, Menlo Park; Takahashi, R.; /Tokyo U.; Mizuta, A.; Takiwaki, T.; /Garching, Max Planck Inst. /Tokyo U.

    2007-06-08

    Two-dimensional MHD simulations are performed using the ZEUS-2D code to investigate the dynamics of a collapsar that generates a GRB jet, taking account of realistic equation of state, neutrino cooling and heating processes, magnetic fields, and gravitational force from the central black hole and self-gravity. It is found that neutrino heating processes are not efficient enough to launch a jet in this study. It is also found that a jet is launched mainly by B{sub {phi}} fields that are amplified by the winding-up effect. However, since the ratio of total energy relative to the rest-mass energy in the jet is not as high as several hundred, we conclude that the jets seen in this study are not GRB jets. This result suggests that general relativistic effects will be important to generating a GRB jet. Also, the accretion disk with magnetic fields may still play an important role in launching a GRB jet, although a simulation for much longer physical time ({approx}10-100 s) is required to confirm this effect. It is shown that a considerable amount of {sup 56}Ni is synthesized in the accretion disk. Thus, there will be a possibility for the accretion disk to supply the sufficient amount of {sup 56}Ni required to explain the luminosity of a hypernova. Also, it is shown that neutron-rich matter due to electron captures with high entropy per baryon is ejected along the polar axis. Thus, there will be a possibility that r-process nucleosynthesis occurs at such a region. Finally, many neutrons will be ejected from the jet, which suggests that signals from the neutron decays may be observed as the delayed bump of the light curve of the afterglow or gamma rays.

  11. On silicon group elements ejected by supernovae type IA

    SciTech Connect (OSTI)

    De, Soma; Timmes, F. X. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ (United States); Brown, Edward F. [Joint Institute for Nuclear Astrophysics, University of Notre Dame, IN 46556 (United States); Calder, Alan C. [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY (United States); Townsley, Dean M. [Department of Physics and Astronomy, The University of Alabama, Tuscaloosa, AL (United States); Athanassiadou, Themis [Swiss National Supercomputing Centre, Via Trevano 131, 6900 Lugano (Switzerland); Chamulak, David A. [Physics Division, Argonne National Laboratory, Argonne, IL (United States); Hawley, Wendy [Laboratoire d'Astrophysique de Marseille, Marseille cedex 13 F-13388 (France); Jack, Dennis, E-mail: somad@asu.edu [Departamento de Astronomía, Universidad de Guanajuato, Apartado Postal 144, 36000 Guanajuato (Mexico)

    2014-06-01

    There is evidence that the peak brightness of a Type Ia supernova is affected by the electron fraction Y {sub e} at the time of the explosion. The electron fraction is set by the aboriginal composition of the white dwarf and the reactions that occur during the pre-explosive convective burning. To date, determining the makeup of the white dwarf progenitor has relied on indirect proxies, such as the average metallicity of the host stellar population. In this paper, we present analytical calculations supporting the idea that the electron fraction of the progenitor systematically influences the nucleosynthesis of silicon group ejecta in Type Ia supernovae. In particular, we suggest the abundances generated in quasi-nuclear statistical equilibrium are preserved during the subsequent freeze-out. This allows potential recovery of Y {sub e} at explosion from the abundances recovered from an observed spectra. We show that measurement of {sup 28}Si, {sup 32}S, {sup 40}Ca, and {sup 54}Fe abundances can be used to construct Y {sub e} in the silicon-rich regions of the supernovae. If these four abundances are determined exactly, they are sufficient to recover Y {sub e} to 6%. This is because these isotopes dominate the composition of silicon-rich material and iron-rich material in quasi-nuclear statistical equilibrium. Analytical analysis shows the {sup 28}Si abundance is insensitive to Y {sub e}, the {sup 32}S abundance has a nearly linear trend with Y {sub e}, and the {sup 40}Ca abundance has a nearly quadratic trend with Y {sub e}. We verify these trends with post-processing of one-dimensional models and show that these trends are reflected in the model's synthetic spectra.

  12. Propagation and neutrino oscillations in the base of a highly magnetized gamma-ray burst fireball flow

    SciTech Connect (OSTI)

    Fraija, N. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Circuito Exterior, C.U., A. Postal 70-264, 04510 México D.F. (Mexico)

    2014-06-01

    Neutrons play an important role in the dynamics of gamma-ray bursts. The presence of neutrons in the baryon-loaded fireball is expected. If the neutron abundance is comparable to that of protons, important features may be observed, such as quasi-thermal multi-GeV neutrinos in coincidence with a subphotospheric ?-ray emission, nucleosynthesis at later times, and rebrightening of the afterglow emission. Additionally, thermal MeV neutrinos are created by electron-positron annihilation, electron (positron) capture on protons (neutrons), and nucleonic bremsstrahlung. Although MeV neutrinos are difficult to detect, quasi-thermal GeV neutrinos are expected in cubic kilometer detectors and/or DeepCore and IceCube. In this paper, we show that neutrino oscillations have outstanding implications for the dynamics of the fireball evolution and also that they can be detected through their flavor ratio on Earth. For that, we derive the resonance and charged-neutrality conditions as well as the neutrino self-energy and effective potential up to the order of m{sub W}{sup ?4} at strong, moderate, and weak magnetic field approximations to constrain the dynamics of the fireball. We found important implications: (1) resonant oscillations are suppressed for high baryon densities as well as neutron abundance larger than that of protons, and (2) the effect of magnetic field is to decrease the proton-to-neutron ratio aside from the number of multi-GeV neutrinos expected in the DeepCore detector. Also, we estimate the GeV neutrino flavor ratios along the jet and on Earth.

  13. QUARK-NOVAE IN LOW-MASS X-RAY BINARIES. II. APPLICATION TO G87-7 AND TO GRB 110328A

    SciTech Connect (OSTI)

    Ouyed, Rachid; Staff, Jan; Jaikumar, Prashanth

    2011-12-20

    We propose a simple model explaining two outstanding astrophysical problems related to compact objects: (1) that of stars such as G87-7 (alias EG 50) that constitute a class of relatively low-mass white dwarfs (WDs) which nevertheless fall away from the C/O composition and (2) that of GRB 110328A/Swift J164449.3+57345 which showed spectacularly long-lived strong X-ray flaring, posing a challenge to standard gamma-ray burst models. We argue that both these observations may have an explanation within the unified framework of a quark-nova (QN) occurring in a low-mass X-ray binary (LMXB; neutron star (NS)-WD). For LMXBs, where the binary separation is sufficiently tight, ejecta from the exploding NS triggers nuclear burning in the WD on impact, possibly leading to Fe-rich composition compact WDs with mass 0.43 M{sub Sun} < M{sub WD} < 0.72 M{sub Sun }, reminiscent of G87-7. Our results rely on the assumption, which ultimately needs to be tested by hydrodynamic and nucleosynthesis simulations, that under certain circumstances the WD can avoid the thermonuclear runaway. For heavier WDs (i.e., M{sub WD} > 0.72 M{sub Sun }) experiencing the QN shock, degeneracy will not be lifted when carbon burning begins, and a sub-Chandrasekhar Type Ia supernova may result in our model. Under slightly different conditions and for pure He WDs (i.e., M{sub WD} < 0.43 M{sub Sun }), the WD is ablated and its ashes raining down on the quark star (QS) leads to accretion-driven X-ray luminosity with energetics and duration reminiscent of GRB 110328A. We predict additional flaring activity toward the end of the accretion phase if the QS turns into a black hole.

  14. THE CHEMICAL COMPOSITION OF PRAESEPE (M44)

    SciTech Connect (OSTI)

    Boesgaard, Ann Merchant; Roper, Brian W.; Lum, Michael G. E-mail: brianwroper@gmail.com

    2013-09-20

    Star clusters have long been used to illuminate both stellar evolution and Galactic evolution. They also hold clues to the chemical and nucleosynthetic processes throughout the history of the Galaxy. We have taken high signal-to-noise (S/N), high-resolution spectra of 11 solar-type stars in the Praesepe open cluster to determine the chemical abundances of 16 elements: Li, C, O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Fe, Ni, Y, and Ba. We have determined Fe from Fe I and Fe II lines and find [Fe/H] = +0.12 ±0.04. We find that Li decreases with temperature due to increasing Li depletion in cooler stars; it matches the Li-temperature pattern found in the Hyades. The [C/Fe] and [O/Fe] abundances are below solar and lower than the field star samples due to the younger age of Praesepe (0.7 Gyr) than the field stars. The alpha-elements, Mg, Si, Ca, and Ti, have solar ratios with respect to Fe, and are also lower than the field star samples. The Fe-peak elements, Cr and Ni, track Fe and have solar values. The neutron capture element [Y/Fe] is found to be solar, but [Ba/Fe] is enhanced relative to solar and to the field stars. Three Praesepe giants were studied by Carrera and Pancino; they are apparently enhanced in Na, Mg, and Ba relative to the Praesepe dwarfs. The Na enhancement may indicate proton-capture nucleosynthesis in the Ne ? Na cycling with dredge-up into the atmospheres of the red giants.

  15. Compact binary mergers as the origin of r-process elements in the Galactic halo

    SciTech Connect (OSTI)

    Ishimaru, Yuhri; Wanajo, Shinya; Prantzos, Nikos

    2014-05-02

    Compact binary mergers (of double neutron star and black hole-neutron star systems) are suggested to be the major site of the r-process elements in the Galaxy by recent hydrodynamical and nucleosynthesis studies. It has been pointed out, however, that estimated long lifetimes of compact binaries are in conflict with the presence of r-process-enhanced stars at the metallicity [Fe/H] ? ?3. To resolve this problem, we examine the role of compact binary mergers in the early Galactic chemical evolution on the assumption that our Galactic halo was formed from merging sub-halos. The chemical evolutions are modeled for sub-halos with their total stellar masses between 10{sup 4}M{sub ?} and 2 × 10{sup 8}M{sub ?}. The lifetimes of compact binaries are assumed to be 100 Myr (95%) and 1 Myr (5%) according to recent binary population synthesis studies. We find that the r-process abundances (relative to iron; [r/Fe]) start increasing at [Fe/H] ? ?3 if the star formation rates are smaller for less massive sub-halos. Our models also suggest that the star-to-star scatter of [r/Fe]'s observed in Galactic halo stars can be interpreted as a consequence of greater gas outflow rates for less massive sub-halos. In addition, the sub-solar [r/Fe]'s (observed as [Ba/Fe] ? ?1.5 for [Fe/H] < ?3) are explained by the contribution from the short-lived (? 1 Myr) binaries. Our result indicates, therefore, that compact binary mergers can be potentially the origin of the r-process elements throughout the Galactic history.

  16. The best and brightest metal-poor stars

    SciTech Connect (OSTI)

    Schlaufman, Kevin C.; Casey, Andrew R., E-mail: kschlauf@mit.edu, E-mail: arc@ast.cam.ac.uk [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2014-12-10

    The chemical abundances of large samples of extremely metal-poor (EMP) stars can be used to investigate metal-free stellar populations, supernovae, and nucleosynthesis as well as the formation and galactic chemical evolution of the Milky Way and its progenitor halos. However, current progress on the study of EMP stars is being limited by their faint apparent magnitudes. The acquisition of high signal-to-noise spectra for faint EMP stars requires a major telescope time commitment, making the construction of large samples of EMP star abundances prohibitively expensive. We have developed a new, efficient selection that uses only public, all-sky APASS optical, 2MASS near-infrared, and WISE mid-infrared photometry to identify bright metal-poor star candidates through their lack of molecular absorption near 4.6 microns. We have used our selection to identify 11,916 metal-poor star candidates with V < 14, increasing the number of publicly available candidates by more than a factor of five in this magnitude range. Their bright apparent magnitudes have greatly eased high-resolution follow-up observations that have identified seven previously unknown stars with [Fe/H] ? –3.0. Our follow-up campaign has revealed that 3.8{sub ?1.1}{sup +1.3}% of our candidates have [Fe/H] ? –3.0 and 32.5{sub ?2.9}{sup +3.0}% have –3.0 ? [Fe/H] ? –2.0. The bulge is the most likely location of any existing Galactic Population III stars, and an infrared-only variant of our selection is well suited to the identification of metal-poor stars in the bulge. Indeed, two of our confirmed metal-poor stars with [Fe/H] ? –2.7 are within about 2 kpc of the Galactic center. They are among the most metal-poor stars known in the bulge.

  17. NUCLEOSYNTHETIC TUNGSTEN ISOTOPE ANOMALIES IN ACID LEACHATES OF THE MURCHISON CHONDRITE: IMPLICATIONS FOR HAFNIUM-TUNGSTEN CHRONOMETRY

    SciTech Connect (OSTI)

    Burkhardt, Christoph; Wieler, Rainer; Kleine, Thorsten; Dauphas, Nicolas

    2012-07-01

    Progressive dissolution of the Murchison carbonaceous chondrite with acids of increasing strengths reveals large internal W isotope variations that reflect a heterogeneous distribution of s- and r-process W isotopes among the components of primitive chondrites. At least two distinct carriers of nucleosynthetic W isotope anomalies must be present, which were produced in different nucleosynthetic environments. The co-variation of {sup 182}W/{sup 184}W and {sup 183}W/{sup 184}W in the leachates follows a linear trend that is consistent with a mixing line between terrestrial W and a presumed s-process-enriched component. The composition of the s-enriched component agrees reasonably well with that predicted by the stellar model of s-process nucleosynthesis. The co-variation of {sup 182}W/{sup 184}W and {sup 183}W/{sup 184}W in the leachates provides a means for correcting the measured {sup 182}W/{sup 184}W and {sup 182}W/{sup 183}W of Ca-Al-rich inclusions (CAI) for nucleosynthetic anomalies using the isotopic variations in {sup 183}W/{sup 184}W. This new correction procedure is different from that used previously, and results in a downward shift of the initial {epsilon}{sup 182}W of CAI to -3.51 {+-} 0.10 (where {epsilon}{sup 182}W is the variation in 0.01% of the {sup 182}W/{sup 183}W ratio relative to Earth's mantle). This revision leads to Hf-W model ages of core formation in iron meteorite parent bodies that are {approx}2 Myr younger than previously calculated. The revised Hf-W model ages are consistent with CAI being the oldest solids formed in the solar system, and indicate that core formation in some planetesimals occurred within {approx}2 Myr of the beginning of the solar system.

  18. Fine-grid calculations for stellar electron and positron capture rates on Fe isotopes

    SciTech Connect (OSTI)

    Nabi, Jameel-Un; Tawfik, Abdel Nasser

    2013-03-15

    The acquisition of precise and reliable nuclear data is a prerequisite to success for stellar evolution and nucleosynthesis studies. Core-collapse simulators find it challenging to generate an explosion from the collapse of the core of massive stars. It is believed that a better understanding of the microphysics of core-collapse can lead to successful results. The weak interaction processes are able to trigger the collapse and control the lepton-to-baryon ratio (Y{sub e}) of the corematerial. It is suggested that the temporal variation of Y{sub e} within the core of a massive star has a pivotal role to play in the stellar evolution and a fine-tuning of this parameter at various stages of presupernova evolution is the key to generate an explosion. During the presupernova evolution of massive stars, isotopes of iron, mainly {sup 54-56}Fe, are considered to be key players in controlling Y{sub e} ratio via electron capture on these nuclides. Recently an improved microscopic calculation of weak-interaction-mediated rates for iron isotopes was introduced using the proton-neutron quasiparticle random-phase-approximation (pn-QRPA) theory. The pn-QRPA theory allows a microscopic state-by-state calculation of stellar capture rates which greatly increases the reliability of calculated rates. The results were suggestive of some fine-tuning of the Y{sub e} ratio during various phases of stellar evolution. Here we present for the first time the fine-grid calculation of the electron and positron capture rates on {sup 54-56}Fe. The sensitivity of the pn-QRPA calculated capture rates to the deformation parameter is also studied in this work. Core-collapse simulators may find this calculation suitable for interpolation purposes and for necessary incorporation in the stellar evolution codes.

  19. STARLIB: A NEXT-GENERATION REACTION-RATE LIBRARY FOR NUCLEAR ASTROPHYSICS

    SciTech Connect (OSTI)

    Sallaska, A. L.; Iliadis, C.; Champange, A. E.; Goriely, S.; Starrfield, S.; Timmes, F. X.

    2013-07-15

    STARLIB is a next-generation, all-purpose nuclear reaction-rate library. For the first time, this library provides the rate probability density at all temperature grid points for convenient implementation in models of stellar phenomena. The recommended rate and its associated uncertainties are also included. Currently, uncertainties are absent from all other rate libraries, and, although estimates have been attempted in previous evaluations and compilations, these are generally not based on rigorous statistical definitions. A common standard for deriving uncertainties is clearly warranted. STARLIB represents a first step in addressing this deficiency by providing a tabular, up-to-date database that supplies not only the rate and its uncertainty but also its distribution. Because a majority of rates are lognormally distributed, this allows the construction of rate probability densities from the columns of STARLIB. This structure is based on a recently suggested Monte Carlo method to calculate reaction rates, where uncertainties are rigorously defined. In STARLIB, experimental rates are supplemented with: (1) theoretical TALYS rates for reactions for which no experimental input is available, and (2) laboratory and theoretical weak rates. STARLIB includes all types of reactions of astrophysical interest to Z = 83, such as (p, {gamma}), (p, {alpha}), ({alpha}, n), and corresponding reverse rates. Strong rates account for thermal target excitations. Here, we summarize our Monte Carlo formalism, introduce the library, compare methods of correcting rates for stellar environments, and discuss how to implement our library in Monte Carlo nucleosynthesis studies. We also present a method for accessing STARLIB on the Internet and outline updated Monte Carlo-based rates.

  20. TWO-COMPONENT GALACTIC BULGE PROBED WITH RENEWED GALACTIC CHEMICAL EVOLUTION MODEL

    SciTech Connect (OSTI)

    Tsujimoto, Takuji [National Astronomical Observatory of Japan, Mitaka-shi, Tokyo 181-8588 (Japan); Bekki, Kenji, E-mail: taku.tsujimoto@nao.ac.jp [ICRAR, M468, University of Western Australia, 35 Stirling Highway, Crawley Western Australia 6009 (Australia)

    2012-03-10

    Results of recent observations of the Galactic bulge demand that we discard a simple picture of its formation, suggesting the presence of two stellar populations represented by two peaks of stellar metallicity distribution (MDF) in the bulge. To assess this issue, we construct Galactic chemical evolution models that have been updated in two respects: first, the delay time distribution of Type Ia supernovae (SNe Ia) recently revealed by extensive SN Ia surveys is incorporated into the models. Second, the nucleosynthesis clock, the s-processing in asymptotic giant branch stars, is carefully considered in this study. This novel model first shows that the Galaxy feature tagged by the key elements, Mg, Fe, and Ba, for the bulge as well as thin and thick disks is compatible with a short-delay SN Ia. We present a successful modeling of a two-component bulge including the MDF and the evolutions of [Mg/Fe] and [Ba/Mg], and reveal its origin as follows. A metal-poor component (([Fe/H]) {approx} -0.5) is formed with a relatively short timescale of {approx}1 Gyr. These properties are identical to the thick disk's characteristics in the solar vicinity. Subsequently from its remaining gas mixed with a gas flow from the disk outside the bulge, a metal-rich component (([Fe/H]) {approx} +0.3) is formed with a longer timescale ({approx}4 Gyr) together with a top-heavy initial mass function that might be identified with the thin disk component within the bulge.

  1. SOME RECENT TECHNOLOGY DEVELOPMENTS FROM THE UK'S NATIONAL NUCLEAR LABORATORY TO ENABLE HAZARD CHARACTERISATION FOR NUCLEAR DECOMMISSIONING APPLICATIONS

    SciTech Connect (OSTI)

    Farfan, E.; Foley, T.

    2010-02-11

    Under its programme of self investment Internal Research and Development (IR&D), the UK's National Nuclear Laboratory (NNL) is addressing the requirement for development in technology to enable hazard characterisation for nuclear decommissioning applications. Three such examples are described here: (1) RadBall developed by the NNL (patent pending) is a deployable baseball-sized radiation mapping device which can, from a single location, locate and quantify radiation hazards. RadBall offers a means to collect information regarding the magnitude and distribution of radiation in a given cell, glovebox or room to support the development of a safe, cost effective decontamination strategy. RadBall requires no electrical supplies and is relatively small, making it easy to be deployed and used to map radiation hazards in hard to reach areas. Recent work conducted in partnership with the Savannah River National Laboratory (SRNL) is presented. (2) HiRAD (patent pending) has been developed by the NNL in partnership with Tracerco Ltd (UK). HiRAD is a real-time, remotely deployed, radiation detection device designed to operate in elevated levels of radiation (i.e. thousands and tens of thousands of Gray) as seen in parts of the nuclear industry. Like the RadBall technology, the HiRAD system does not require any electrical components, the small dimensions and flexibility of the device allow it to be positioned in difficult to access areas (such as pipe work). HiRAD can be deployed as a single detector, a chain, or as an array giving the ability to monitor large process areas. Results during the development and deployment of the technology are presented. (3) Wireless Sensor Network is a NNL supported development project led by the University of Manchester (UK) in partnership with Oxford University (UK). The project is concerned with the development of wireless sensor network technology to enable the underwater deployment and communication of miniaturised probes allowing pond monitoring and mapping. The potential uses, within the nuclear sector alone, are both numerous and significant in terms of the proceeding effort to clean up the UK's nuclear waste legacy.

  2. GULF OF MEXICO SEAFLOOR STABILITY AND GAS HYDRATE MONITORING STATION PROJECT

    SciTech Connect (OSTI)

    J. Robert Woolsey; Thomas M. McGee; Robin C. Buchannon

    2004-11-01

    The gas hydrates research Consortium (HRC), established and administered at the University if Mississippi's Center for Marine Research and Environmental Technology (CMRET) has been active on many fronts in FY 03. Extension of the original contract through March 2004, has allowed completion of many projects that were incomplete at the end of the original project period due, primarily, to severe weather and difficulties in rescheduling test cruises. The primary objective of the Consortium, to design and emplace a remote sea floor station for the monitoring of gas hydrates in the Gulf of Mexico by the year 2005 remains intact. However, the possibility of levering HRC research off of the Joint Industries Program (JIP) became a possibility that has demanded reevaluation of some of the fundamental assumptions of the station format. These provisions are discussed in Appendix A. Landmark achievements of FY03 include: (1) Continuation of Consortium development with new researchers and additional areas of research contribution being incorporated into the project. During this period, NOAA's National Undersea Research Program's (NURP) National Institute for Undersea Science and Technology (NIUST) became a Consortium funding partner, joining DOE and Minerals Management Service (MMS); (2) Very successful annual and semiannual meetings in Oxford Mississippi in February and September, 2003; (3) Collection of piston cores from MC798 in support of the effort to evaluate the site for possible monitoring station installation; (4) Completion of the site evaluation effort including reports of all localities in the northern Gulf of Mexico where hydrates have been documented or are strongly suspected to exist on the sea floor or in the shallow subsurface; (5) Collection and preliminary evaluation of vent gases and core samples of hydrate from sites in Green Canyon and Mississippi Canyon, northern Gulf of Mexico; (6) Monitoring of gas activity on the sea floor, acoustically and thermally; (7) Design, construction, and successful deployment of an in situ pore-water sampling device; (8) Improvements to the original Raman spectrometer (methane sensor); (9) Laboratory demonstration of the impact of bacterially-produced surfactants' rates of hydrate formation; (10) Construction and sea floor emplacement and testing--with both watergun and ship noise sources--of the prototypal vertical line array (VLA); (11) Initiation of studies of spatial controls on hydrates; (12) Compilation and analyses of seismic data, including mapping of surface anomalies; (13) Additional field verification (bottom samples recovered), in support of the site selection effort; (14) Collection and preliminary analyses of gas hydrates from new sites that exhibit variant structures; (15) Initial shear wave tests carried out in shallow water; (16) Isolation of microbes for potential medicinal products development; (17) Preliminary modeling of occurrences of gas hydrates.

  3. Numerical Study on GRB-Jet Formation in Collapsars

    SciTech Connect (OSTI)

    Nagataki, Shigehiro; /Kyoto U., Yukawa Inst., Kyoto /KIPAC, Menlo Park; Takahashi, Rohta; /Tokyo U.; Mizuta, Akira; /Garching, Max Planck Inst.; Takiwaki, Tomoya; /Tokyo U.

    2006-08-22

    Two-dimensional magnetohydrodynamic simulations are performed using the ZEUS-2D code to investigate the dynamics of a collapsar that generates a GRB jet, taking account of realistic equation of state, neutrino cooling and heating processes, magnetic fields, and gravitational force from the central black hole and self gravity. It is found that neutrino heating processes are not so efficient to launch a jet in this study. It is also found that a jet is launched mainly by B{sub {phi}} fields that are amplified by the winding-up effect. However, since the ratio of total energy relative to the rest mass energy in the jet is not so high as several hundred, we conclude that the jets seen in this study are not be a GRB jet. This result suggests that general relativistic effects, which are not included in this study, will be important to generate a GRB jet. Also, the accretion disk with magnetic fields may still play an important role to launch a GRB jet, although a simulation for much longer physical time {approx} 10-100 s is required to confirm this effect. It is shown that considerable amount of {sup 56}Ni is synthesized in the accretion disk. Thus there will be a possibility for the accretion disk to supply sufficient amount of {sup 56}Ni required to explain the luminosity of a hypernova. Also, it is shown that neutron-rich matter due to electron captures with high entropy per baryon is ejected along the polar axis. Moreover, it is found that the electron fraction becomes larger than 0.5 around the polar axis near the black hole by {nu}{sub e} capture at the region. Thus there will be a possibility that r-process and r/p-process nucleosynthesis occur at these regions. Finally, much neutrons will be ejected from the jet, which suggests that signals from the neutron decays may be observed as the delayed bump of the light curve of the afterglow or gamma-rays.

  4. Carbon-enhanced metal-poor stars: relics from the dark ages

    SciTech Connect (OSTI)

    Cooke, Ryan J.; Madau, Piero, E-mail: rcooke@ucolick.org [Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States)

    2014-08-20

    We use detailed nucleosynthesis calculations and a realistic prescription for the environment of the first stars to explore the first episodes of chemical enrichment that occurred during the dark ages. Based on these calculations, we propose a novel explanation for the increased prevalence of carbon-enhanced metal-poor (CEMP) stars with decreasing Fe abundance: the observed chemistry for the most metal-poor Galactic halo stars is the result of an intimate link between the explosions of the first stars and their host minihalo's ability to retain its gas. Specifically, high-energy supernovae produce a near solar ratio of C/Fe, but are effective in evacuating the gas from their host minihalo, thereby suppressing the formation of a second generation of stars. On the other hand, minihalos that host low-energy supernovae are able to retain their gas and form a second stellar generation, but, as a result, the second stars are born with a supersolar ratio of C/Fe. Our models are able to accurately reproduce the observed distributions of [C/Fe] and [Fe/H], as well as the fraction of CEMP stars relative to non-CEMP stars as a function of [Fe/H] without any free parameters. We propose that the present lack of chemical evidence for very massive stars (? 140 M {sub ?}) that ended their lives as a highly energetic pair-instability supernova does not imply that such stars were rare or did not exist; the chemical products of these very massive first stars may have been evacuated from their host minihalos and were never incorporated into subsequent generations of stars. Finally, our models suggest that the most Fe-poor stars currently known may have seen the enrichment from a small multiple of metal-free stars, and need not have been exclusively enriched by a solitary first star. These calculations also add further support to the possibility that some of the surviving dwarf satellite galaxies of the Milky Way are the relics of the first galaxies.

  5. High-resolution mineralogical characterization and biogeochemical modeling of uranium reaction pathways at the FRC

    SciTech Connect (OSTI)

    Chen Zhu

    2006-06-15

    High-Resolution Mineralogical Characterization and Biogeochemical Modeling of Uranium Reduction Pathways at the Oak Ridge Field-Research Center (FRC) Chen Zhu, Indiana University, David R. Veblen, Johns Hopkins University We have successfully completed a proof-of-concept, one-year grant on a three-year proposal from the former NABIR program, and here we seek additional two-year funding to complete and publish the research. Using a state-of-the-art 300-kV, atomic resolution, Field Emission Gun Transmission Electron Microscope (TEM), we have successfully identified three categories of mineral hosts for uranium in contaminated soils: (1) iron oxides; (2) mixed manganese-iron oxides; and (3) uranium phosphates. Method development using parallel electron energy loss spectroscopy (EELS) associated with the TEM shows great promise for characterizing the valence states of immobilized U during bioremediation. We have also collected 27 groundwater samples from two push-pull field biostimulation tests, which form two time series from zero to approximately 600 hours. The temporal evolution in major cations, anions, trace elements, and the stable isotopes 34S, 18O in sulfate, 15N in nitrate, and 13C in dissolved inorganic carbon (DIC) clearly show that biostimulation resulted in reduction of nitrate, Mn(IV), Fe(III), U(VI), sulfate, and Tc(VII), and these reduction reactions were intimately coupled with a complex network of inorganic reactions evident from alkalinity, pH, Na, K, Mg, and Ca concentrations. From these temporal trends, apparent zero order rates were regressed. However, our extensive suite of chemical and isotopic data sets, perhaps the first and only comprehensive data set available at the FRC, show that the derived rates from these field biostimulation experiments are composite and lump-sum rates. There were several reactions that were occurring at the same time but were masked by these pseudo-zero order rates. A reaction-path model comprising a total of nine redox couples (NO3–/NH4+, MnO2(s)/Mn2+, Fe(OH)3(s) /Fe2+, TcO4–/TcO2(s), UO22+/UO2(s), SO42–/HS–, CO2/CH4, ethanol/acetate, and H+/H2.) is used to simulate the temporal biogeochemical evolution observed in the field tests. Preliminary results show that the models based on thermodynamics and more complex rate laws can generate the apparent zero order rates when several concurrent or competing reactions occur. Professor Alex Halliday of Oxford University, UK, and his postdoctoral associates are measuring the uranium isotopes in our groundwater samples. Newly developed state-of-the-art analytical techniques in measuring variability in 235U/238U offer the potential to distinguish biotic and abiotic uranium reductive mechanisms.

  6. Supernova relic neutrinos and the supernova rate problem: Analysis of uncertainties and detectability of ONeMg and failed supernovae

    SciTech Connect (OSTI)

    Mathews, Grant J. [Center for Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Hidaka, Jun; Kajino, Toshitaka; Suzuki, Jyutaro [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2014-08-01

    Direct measurements of the core collapse supernova rate (R{sub SN}) in the redshift range 0 ? z ? 1 appear to be about a factor of two smaller than the rate inferred from the measured cosmic massive star formation rate (SFR). This discrepancy would imply that about one-half of the massive stars that have been born in the local observed comoving volume did not explode as luminous supernovae. In this work, we explore the possibility that one could clarify the source of this 'supernova rate problem' by detecting the energy spectrum of supernova relic neutrinos with a next generation 10{sup 6} ton water ?erenkov detector like Hyper-Kamiokande. First, we re-examine the supernova rate problem. We make a conservative alternative compilation of the measured SFR data over the redshift range 0 ?z ? 7. We show that by only including published SFR data for which the dust obscuration has been directly determined, the ratio of the observed massive SFR to the observed supernova rate R{sub SN} has large uncertainties ?1.8{sub ?0.6}{sup +1.6} and is statistically consistent with no supernova rate problem. If we further consider that a significant fraction of massive stars will end their lives as faint ONeMg SNe or as failed SNe leading to a black hole remnant, then the ratio reduces to ?1.1{sub ?0.4}{sup +1.0} and the rate problem is essentially solved. We next examine the prospects for detecting this solution to the supernova rate problem. We first study the sources of uncertainty involved in the theoretical estimates of the neutrino detection rate and analyze whether the spectrum of relic neutrinos can be used to independently identify the existence of a supernova rate problem and its source. We consider an ensemble of published and unpublished core collapse supernova simulation models to estimate the uncertainties in the anticipated neutrino luminosities and temperatures. We illustrate how the spectrum of detector events might be used to establish the average neutrino temperature and constrain SN models. We also consider supernova ?-process nucleosynthesis to deduce constraints on the temperature of the various neutrino flavors. We study the effects of neutrino oscillations on the detected neutrino energy spectrum and also show that one might distinguish the equation of state (EoS) as well as the cause of the possible missing luminous supernovae from the detection of supernova relic neutrinos. We also analyze a possible enhanced contribution from failed supernovae leading to a black hole remnant as a solution to the supernova rate problem. We conclude that indeed it might be possible (though difficult) to measure the neutrino temperature, neutrino oscillations, and the EoS and confirm this source of missing luminous supernovae by the detection of the spectrum of relic neutrinos.

  7. Physics Division annual report 2004.

    SciTech Connect (OSTI)

    Glover, J.

    2006-04-06

    This report highlights the research performed in 2004 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator research and development. The intellectual challenges of this research represent some of the most fundamental challenges in modern science, shaping our understanding of both tiny objects at the center of the atom and some of the largest structures in the universe. A great strength of these efforts is the critical interplay of theory and experiment. Notable results in research at ATLAS include a measurement of the charge radius of He-6 in an atom trap and its explanation in ab-initio calculations of nuclear structure. Precise mass measurements on critical waiting point nuclei in the rapid-proton-capture process set the time scale for this important path in nucleosynthesis. An abrupt fall-off was identified in the subbarrier fusion of several heavy-ion systems. ATLAS operated for 5559 hours of research in FY2004 while achieving 96% efficiency of beam delivery for experiments. In Medium Energy Physics, substantial progress was made on a long-term experiment to search for the violation of time-reversal invariance using trapped Ra atoms. New results from HERMES reveal the influence of quark angular momentum. Experiments at JLAB search for evidence of color transparency in rho-meson production and study the EMC effect in helium isotopes. New theoretical results include a Poincare covariant description of baryons as composites of confined quarks and non-point-like diquarks. Green's function Monte Carlo techniques give accurate descriptions of the excited states of light nuclei and these techniques been extended to scattering states for astrophysics studies. A theoretical description of the phenomena of proton radioactivity has been extended to triaxial nuclei. Argonne continues to lead in the development and exploitation of the new technical concepts that will truly make RIA, in the words of NSAC, ''the world-leading facility for research in nuclear structure and nuclear astrophysics''. The performance standards for new classes of superconducting cavities continue to increase. Driver linac transients and faults have been analyzed to understand reliability issues and failure modes. Liquid-lithium targets were shown to successfully survive the full-power deposition of a RIA beam. Our science and our technology continue to point the way to this major advance. It is a tremendously exciting time in science for RIA holds the keys to unlocking important secrets of nature. The work described here shows how far we have come and makes it clear we know the path to meet these intellectual challenges. The great progress that has been made in meeting the exciting intellectual challenges of modern nuclear physics reflects the talents and dedication of the Physics Division staff and the visitors, guests and students who bring so much to the research.

  8. Project Title: Nuclear Astrophysics Data from Radioactive Beam Facilities

    SciTech Connect (OSTI)

    Alan A. Chen

    2008-03-27

    The scientific aims of this project have been the evaluation and dissemination of key nuclear reactions in nuclear astrophysics, with a focus on ones to be studied at new radioactive beam facilities worldwide. These aims were maintained during the entire funding period from 2003 - 2006. In the following, a summary of the reactions evaluated during this period is provided. Year 1 (2003-04): {sup 21}Na(p,{gamma}){sup 22}Mg and {sup 18}Ne({alpha},p){sup 21}Na - The importance of the {sup 21}Na(p,{gamma}){sup 22}Mg and the {sup 18}Ne({alpha},p){sup 21}Na reactions in models of exploding stars has been well documented: the first is connected to the production of the radioisotope {sup 22}Na in nova nucleosynthesis, while the second is a key bridge between the Hot-CNO cycles and the rp-process in X-ray bursts. By the end of Summer 2004, our group had updated these reaction rates to include all published data up to September 2004, and cast the reaction rates into standard analytical and tabular formats with the assistance of Oak Ridge National Laboratory's computational infrastructure for reaction rates. Since September 2004, ongoing experiments on these two reactions have been completed, with our group's participation in both: {sup 21}Na(p,{gamma}){sup 22}Mg at the TRIUMF-ISAC laboratory (DRAGON collaboration), and 18Ne({alpha},p){sup 21}Na at Argonne National Laboratory (collaboration with Ernst Rehm, Argonne). The data from the former was subsequently published and included in our evaluation. Publication from the latter still awaits independent confirmation of the experimental results. Year 2 (2004-05): The 25Al(p,{gamma}){sup 26}Si and {sup 13}N(p,{gamma})14O reactions - For Year 2, we worked on evaluations of the {sup 25}Al(p,{gamma}){sup 26}Si and {sup 13}N(p,{gamma}){sup 14}O reactions, in accordance with our proposed deliverables and following similar standard procedures to those used in Year 1. The {sup 25}Al(p,{gamma}){sup 26}Si reaction is a key uncertainty in the understanding the origin of galactic {sup 26}Al, a target radioisotope for gamma ray astronomy; the {sup 13}N(p,{gamma}){sup 14}O reaction in turn is the trigger reaction for the transition into the Hot-CNO cycles in novae and X-ray bursts. A graduate student of mine, who has been supported part-time by this grant, completed the evaluation of the {sup 25}Al(p,{gamma}){sup 26}Si reaction as part of his plans to measure this reaction at TRIUMF for his Ph.D. thesis project. I also hired a part-time undergraduate student for the 2004-05 academic year to assist with the evaluations, including that of the {sup 13}N(p,{gamma}){sup 14}O reaction. Year 3 (2005-06): The {sup 40}Ca({alpha},{gamma}){sup 44}Ti and {sup 26}Al(p,{gamma}){sup 27}Si reactions - This year's progress was closely coupled to new results coming from our collaboration on the DRAGON spectrometer team at TRIUMF. The {sup 40}Ca({alpha},{gamma}){sup 44}Ti and {sup 26}Al(p,{gamma}){sup 27}Si reactions were both measured, and significant modifications to their respective reaction rates were required. Both are required input toward predicting the respective amounts of Titanium-44 and Aluminum-26 produced in our galaxy, in supernovae, massive stars, and nova explosions. The {sup 26}Al(p,{gamma}){sup 27}Si reaction rate was successfully completed. The {sup 40}Ca({alpha},{gamma}){sup 44}Ti reaction in particular served as the Ph.D. thesis for Christian Ouellet, and therefore the evaluation of this rate fell naturally within his thesis project. Christian successfully defended his thesis in 2007 and is now working for me on the McMaster DOE-funded Nuclear Data Project. In light of the recent data from his thesis, Christian is now putting the final touches on this evaluation, and will disseminate it through the Oak Ridge National Laboratory reaction rate database.

  9. 11,23,1,1,,19,10,"BANGOR HYDRO ELECTRIC CO","ELLSWORTH",0,,1179,"0A",1294,,,95,2941,0,0,3518,0,0,4870,0,0,1732,0,0,3252,0,0,2193,0,0,134,0,0,447,0,0,465,0,0,538,0,0,4295,0,0,3601,0,0,1469,6,50159,"WAT","HY"

    U.S. Energy Information Administration (EIA) Indexed Site

    NAD_UTIL","FILLER","EFFDATE","STATUS","MULTIST","YEAR","GEN01","CON01","STK01","GEN02","CON02","STK02","GEN03","CON03","STK03","GEN04","CON04","STK04","GEN05","CON05","STK05","GEN06","CON06","STK06","GEN07","CON07","STK07","GEN08","CON08","STK08","GEN09","CON09","STK09","GEN10","CON10","STK10","GEN11","CON11","STK11","GEN12","CON12","STK12","PCODE","NERC","UTILCODE","FUELDESC","PMDESC" 11,23,1,1,,19,10,"BANGOR HYDRO ELECTRIC CO","ELLSWORTH",0,,1179,"0A",1294,,,95,2941,0,0,3518,0,0,4870,0,0,1732,0,0,3252,0,0,2193,0,0,134,0,0,447,0,0,465,0,0,538,0,0,4295,0,0,3601,0,0,1469,6,50159,"WAT","HY" 11,23,1,1,,19,15,"BANGOR HYDRO ELECTRIC CO","HOWLAND",0,,1179,"0A",1294,,,95,772,0,0,858,0,0,1012,0,0,727,0,0,1061,0,0,917,0,0,385,0,0,118,0,0,0,0,0,657,0,0,905,0,0,820,0,0,1472,6,50159,"WAT","HY" 11,23,1,1,,19,30,"BANGOR HYDRO ELECTRIC CO","MEDWAY",0,,1179,"0A",1294,,,95,2116,0,0,1715,0,0,1459,0,0,1821,0,0,1946,0,0,2134,0,0,2157,0,0,1797,0,0,1745,0,0,1829,0,0,2224,0,0,2386,0,0,1474,6,50159,"WAT","HY" 11,23,1,3,2,19,30,"BANGOR HYDRO ELECTRIC CO","MEDWAY",0,"LIGHT OIL",1179,"0A",1294,,,95,0,0,553,181,307,419,0,0,593,31,55,538,66,120,418,219,399,383,324,598,481,313,579,614,97,178,575,1,2,573,0,0,608,98,171,611,1474,6,50159,"FO2","IC" 11,23,1,1,,19,35,"BANGOR HYDRO ELECTRIC CO","MILFORD",0,,1179,"0A",1294,,,95,3843,0,0,3348,0,0,4177,0,0,3759,0,0,4855,0,0,4740,0,0,2971,0,0,2432,0,0,1786,0,0,1561,0,0,3510,0,0,4606,0,0,1475,6,50159,"WAT","HY" 11,23,1,1,,19,45,"BANGOR HYDRO ELECTRIC CO","ORONO",0,,1179,"0A",1294,,,95,895,0,0,836,0,0,966,0,0,576,0,0,624,0,0,736,0,0,684,0,0,464,0,0,408,0,0,616,0,0,849,0,0,896,0,0,1476,6,50159,"WAT","HY" 11,23,1,1,,19,55,"BANGOR HYDRO ELECTRIC CO","STILLWATER",0,,1179,"0A",1294,,,95,1191,0,0,844,0,0,939,0,0,1021,0,0,1114,0,0,1181,0,0,1170,0,0,878,0,0,818,0,0,880,0,0,923,0,0,950,0,0,1478,6,50159,"WAT","HY" 11,23,1,1,,19,60,"BANGOR HYDRO ELECTRIC CO","VEAZIE A",0,,1179,"0A",1294,,,95,4314,0,0,3855,0,0,5043,0,0,5153,0,0,6053,0,0,5342,0,0,3542,0,0,2651,0,0,2281,0,0,3932,0,0,5128,0,0,3842,0,0,1479,6,50159,"WAT","HY" 11,23,1,1,,19,62,"BANGOR HYDRO ELECTRIC CO","VEAZIE B",0,,1179,"0A",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7199,6,50159,"WAT","HY" 11,23,1,3,2,19,68,"BANGOR HYDRO ELECTRIC CO","BAR HARBOR",0,"LIGHT OIL",1179,"0A",1294,,,95,42,73,538,379,659,574,0,0,574,73,128,446,69,125,512,225,420,440,312,579,556,449,813,455,32,60,586,49,89,497,6,10,487,152,264,571,1466,6,50159,"FO2","IC" 11,23,1,3,2,19,75,"BANGOR HYDRO ELECTRIC CO","EASTPORT",0,"LIGHT OIL",1179,"0A",1294,,,95,39,70,576,80,139,412,0,0,586,10,18,557,32,58,494,111,204,464,172,317,495,182,334,509,19,36,472,0,0,470,15,29,429,67,117,460,1468,6,50159,"FO2","IC" 11,23,1,1,,37,5,"CENTRAL MAINE POWER CO","ANDROSCOG 3",0,,3266,"0M",1294,,,95,2536,0,0,2573,0,0,2732,0,0,2703,0,0,2639,0,0,2235,0,0,2379,0,0,2201,0,0,1657,0,0,2352,0,0,2282,0,0,2805,0,0,1480,6,50491,"WAT","HY" 11,23,1,1,,37,10,"CENTRAL MAINE POWER CO","BAR MILLS",0,,3266,"0M",1294,,,95,2420,0,0,1389,0,0,2414,0,0,2364,0,0,2584,0,0,1195,0,0,623,0,0,586,0,0,293,0,0,1310,0,0,2401,0,0,2056,0,0,1481,6,50491,"WAT","HY" 11,23,1,1,,37,20,"CENTRAL MAINE POWER CO","BONNY EAGLE",0,,3266,"0M",1294,,,95,6041,0,0,3654,0,0,5858,0,0,5255,0,0,4575,0,0,2217,0,0,1233,0,0,1084,0,0,592,0,0,3323,0,0,7098,0,0,4100,0,0,1482,6,50491,"WAT","HY" 11,23,1,1,,37,40,"CENTRAL MAINE POWER CO","CATARACT",0,,3266,"0M",1294,,,95,5330,0,0,4194,0,0,4953,0,0,4656,0,0,4888,0,0,5331,0,0,818,0,0,662,0,0,102,0,0,2232,0,0,5064,0,0,4090,0,0,1486,6,50491,"WAT","HY" 11,23,1,1,,37,42,"CENTRAL MAINE POWER CO","CONTINENTAL",0,,3266,"0M",1294,,,95,-14,0,0,-15,0,0,322,0,0,72,0,0,147,0,0,12,0,0,3,0,0,13,0,0,15,0,0,109,0,0,555,0,0,-18,0,0,1487,6,50491,"WAT","HY" 11,23,1,1,,37,50,"CENTRAL MAINE POWER CO","DEER RIP 1",0,,3266,"0M",1294,,,95,2694,0,0,2434,0,0,4080,0,0,3776,0,0,4034,0,0,2023,0,0,686,0,0,215,0,0,83,0,0,1916,0,0,3984,0,0,3453,0,0,1488,6,50491,"WAT","HY" 11,23,1,1,,37,60,"CENTRAL MAINE POWER CO","FT HALIFAX",0,,3266,"0M",1294,,,95,959,0,0,424,0,0,1026,0,0,961,0,0,925,0,0,526,0,0,51,0,0,5,0,0,155,0,0,380,0,0,977,0,0,659,0,0,1490,6,50491,"WAT","HY" 11,23,1,1,,37,75,"CENTRAL MAINE POWER CO","GULF ISLAND",0,,3266,"0M",1294,,,95,10764,0,0,9131,0,0,13512,0,0,13282,0,0,13485,0,0,8299,0,0,5537,0,0,4070,0,0,2892,0,0,9130,0,0,15549,0,0,11464,0,0,1491,6,50491,"WAT","HY" 11,23,1,1,,37,80,"CENTRAL MAINE POWER CO","HARRIS",0,,3266,"0M",1294,,,95,14325,0,0,24479,0,0,22937,0,0,6538,0,0,5448,0,0,21283,0,0,13285,0,0,11928,0,0,12813,0,0,10770,0,0,19708,0,0,26783,0,0,1492,6,50491,"WAT","HY" 11,23,1,1,,37,85,"CENTRAL MAINE POWER CO","HIRAM",0,,3266,"0M",1294,,,95,5791,0,0,3447,0,0,5873,0,0,6762,0,0,6516,0,0,2778,0,0,1397,0,0,1182,0,0,155,0,0,2992,0,0,7160,0,0,4285,0,0,1493,6,50491,"WAT","HY" 11,23,1,1,,37,90,"CENTRAL MAINE POWER CO","MESALONSK 2",0,,3266,"0M",1294,,,95,1280,0,0,585,0,0,1625,0,0,606,0,0,869,0,0,350,0,0,2,0,0,-1,0,0,9,0,0,710,0,0,1668,0,0,745,0,0,1497,6,50491,"WAT","HY" 11,23,1,1,,37,95,"CENTRAL MAINE POWER CO","MESALONSK 3",0,,3266,"0M",1294,,,95,753,0,0,330,0,0,977,0,0,349,0,0,507,0,0,180,0,0,0,0,0,-6,0,0,0,0,0,414,0,0,1038,0,0,416,0,0,1498,6,50491,"WAT","HY" 11,23,1,1,,37,100,"CENTRAL MAINE POWER CO","MESALONSK 4",0,,3266,"0M",1294,,,95,405,0,0,183,0,0,451,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1499,6,50491,"WAT","HY" 11,23,1,1,,37,105,"CENTRAL MAINE POWER CO","MESALONSK 5",0,,3266,"0M",1294,,,95,699,0,0,292,0,0,0,0,0,378,0,0,0,0,0,203,0,0,13,0,0,9,0,0,4,0,0,408,0,0,923,0,0,390,0,0,1500,6,50491,"WAT","HY" 11,23,1,1,,37,110,"CENTRAL MAINE POWER CO","NO GORHAM",0,,3266,"0M",1294,,,95,1215,0,0,963,0,0,842,0,0,520,0,0,455,0,0,503,0,0,595,0,0,604,0,0,413,0,0,340,0,0,740,0,0,1180,0,0,1501,6,50491,"WAT","HY" 11,23,1,1,,37,125,"CENTRAL MAINE POWER CO","SHAWMUT",0,,3266,"0M",1294,,,95,5226,0,0,5495,0,0,6547,0,0,5776,0,0,5295,0,0,4910,0,0,3475,0,0,2346,0,0,2571,0,0,3529,0,0,4803,0,0,6066,0,0,1504,6,50491,"WAT","HY" 11,23,1,1,,37,130,"CENTRAL MAINE POWER CO","SKELTON",0,,3266,"0M",1294,,,95,13276,0,0,8614,0,0,12134,0,0,11304,0,0,11550,0,0,5199,0,0,2833,0,0,2610,0,0,687,0,0,6731,0,0,13037,0,0,9456,0,0,1505,6,50491,"WAT","HY" 11,23,1,1,,37,145,"CENTRAL MAINE POWER CO","WEST BUXTON",0,,3266,"0M",1294,,,95,4424,0,0,2556,0,0,4381,0,0,3723,0,0,3292,0,0,1602,0,0,798,0,0,745,0,0,418,0,0,1944,0,0,4334,0,0,3045,0,0,1508,6,50491,"WAT","HY" 11,23,1,1,,37,150,"CENTRAL MAINE POWER CO","WESTON",0,,3266,"0M",1294,,,95,8095,0,0,8443,0,0,9513,0,0,8520,0,0,7843,0,0,7850,0,0,5819,0,0,4618,0,0,4257,0,0,5361,0,0,7925,0,0,9347,0,0,1509,6,50491,"WAT","HY" 11,23,1,1,,37,155,"CENTRAL MAINE POWER CO","WILLIAMS",0,,3266,"0M",1294,,,95,9171,0,0,9162,0,0,10255,0,0,6585,0,0,7543,0,0,8658,0,0,6098,0,0,5593,0,0,5308,0,0,5891,0,0,8857,0,0,10646,0,0,1510,6,50491,"WAT","HY" 11,23,1,1,,37,160,"CENTRAL MAINE POWER CO","WYMAN HYDRO",0,,3266,"0M",1294,,,95,30298,0,0,37016,0,0,38382,0,0,18735,0,0,24745,0,0,31774,0,0,20433,0,0,17564,0,0,16353,0,0,19735,0,0,40234,0,0,38504,0,0,1511,6,50491,"WAT","HY" 11,23,1,4,2,37,175,"CENTRAL MAINE POWER CO","CAPE",0,"LIGHT OIL",3266,"0M",1294,,,95,40,282,7937,40,336,7601,-57,44,7557,-40,24,7533,5,162,7371,38,208,7316,611,1872,6581,497,1571,5887,-24,32,5855,-32,27,5828,-45,25,5803,-25,145,5552,1484,6,50491,"FO2","GT" 11,23,1,2,2,37,200,"CENTRAL MAINE POWER CO","WYMAN STEAM",0,"LIGHT OIL",3266,"0M",1294,,,95,707,1587,1149,810,1542,1579,117,264,1534,980,1825,1680,366,883,1468,854,1640,1807,783,1460,2327,653,1307,1677,115,266,1410,20,76,1335,486,1282,2039,604,1177,2212,1507,6,50491,"FO2","ST" 11,23,1,2,3,37,200,"CENTRAL MAINE POWER CO","WYMAN STEAM",0,"HEAVY OIL",3266,"0M",1294,,,95,47051,97029,319010,122493,214459,275338,22777,47240,228098,127804,222606,207728,22560,50003,278752,79660,140051,253816,153893,263859,173676,74046,134076,202289,16596,35140,288543,3258,10955,197963,18538,44437,353526,107031,192190,308382,1507,6,50491,"FO6","ST" 11,23,1,3,2,37,204,"CENTRAL MAINE POWER CO","ISLESBORO",0,"LIGHT OIL",3266,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1494,6,50491,"FO2","IC" 11,23,1,3,2,37,206,"CENTRAL MAINE POWER CO","PEAK IS",0,"LIGHT OIL",3266,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1502,6,50491,"FO2","IC" 11,23,1,1,,37,210,"CENTRAL MAINE POWER CO","BRUNSWICK",0,,3266,"0M",1294,,,95,7964,0,0,6898,0,0,11266,0,0,10237,0,0,10095,0,0,6009,0,0,3698,0,0,2974,0,0,2429,0,0,6541,0,0,12216,0,0,8541,0,0,1483,6,50491,"WAT","HY" 11,23,1,1,,37,215,"CENTRAL MAINE POWER CO","W CHANNEL",0,,3266,"0M",1294,,,95,0,0,0,-33,0,0,-20,0,0,-22,0,0,-1,0,0,-1,0,0,-1,0,0,-21,0,0,-1,0,0,19,0,0,-11,0,0,-22,0,0,695,6,50491,"WAT","HY" 11,23,1,1,,37,220,"CENTRAL MAINE POWER CO","BATES UPPER",0,,3266,"0M",1294,,,95,-41,0,0,-34,0,0,610,0,0,144,0,0,273,0,0,15,0,0,1,0,0,15,0,0,18,0,0,217,0,0,4223,0,0,-30,0,0,7044,6,50491,"WAT","HY" 11,23,1,1,,37,225,"CENTRAL MAINE POWER CO","BATES LOWER",0,,3266,"0M",1294,"S",,95,-17,0,0,-16,0,0,-8,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-3,0,0,-17,0,0,7045,6,50491,"WAT","HY" 11,23,1,1,,37,235,"CENTRAL MAINE POWER CO","ANDRO LOWER",0,,3266,"0M",1294,,,95,23,0,0,-11,0,0,21,0,0,-2,0,0,12,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,5,0,0,38,0,0,-14,0,0,7047,6,50491,"WAT","HY" 11,23,1,1,,37,240,"CENTRAL MAINE POWER CO","HILL MILL",0,,3266,"0M",1294,,,95,-3,0,0,-2,0,0,183,0,0,-6,0,0,60,0,0,2,0,0,1,0,0,0,0,0,1,0,0,105,0,0,467,0,0,-6,0,0,7048,6,50491,"WAT","HY" 11,23,1,1,,37,245,"CENTRAL MAINE POWER CO","C E MONTY",0,,3266,"0M",1294,,,95,11840,0,0,10124,0,0,14280,0,0,13297,0,0,13808,0,0,8324,0,0,5496,0,0,4271,0,0,3199,0,0,9333,0,0,15686,0,0,12247,0,0,805,6,50491,"WAT","HY" 11,23,1,1,,37,250,"CENTRAL MAINE POWER CO","SMELT HILL",0,,3266,"0M",294,"A",,95,0,0,0,400,0,0,352,0,0,239,0,0,180,0,0,162,0,0,191,0,0,178,0,0,-608,0,0,766,0,0,224,0,0,283,0,0,7514,6,50491,"WAT","HY" 11,23,1,2,"B",37,255,"CENTRAL MAINE POWER CO","AROOSTOOK V",0,"WOOD",3266,"0M",294,"A",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,165,0,0,134,0,0,0,0,0,0,0,0,7513,6,50491,"WD","ST" 11,23,1,1,,94,5,"MAINE PUBLIC SERVICE CO","CARIBOU",0,,11522,"0M",1294,,,95,454,0,0,469,0,0,519,0,0,451,0,0,454,0,0,410,0,0,48,0,0,1,0,0,-2,0,0,178,0,0,536,0,0,504,0,0,1513,6,51747,"WAT","HY" 11,23,1,2,3,94,5,"MAINE PUBLIC SERVICE CO","CARIBOU",0,"HEAVY OIL",11522,"0M",1294,,,95,343,903,9375,592,1410,7984,-32,0,8005,-29,0,7995,-26,6,8015,-27,4,8057,-26,0,8067,222,644,7448,-28,0,7396,-29,0,7390,857,1841,5557,2237,4973,2370,1513,6,51747,"FO6","ST" 11,23,1,3,2,94,5,"MAINE PUBLIC SERVICE CO","CARIBOU",0,"LIGHT OIL",11522,"0M",1294,,,95,50,251,1746,5,143,1693,-65,0,1583,78,225,1932,-18,17,1865,-9,6,1829,38,115,1683,233,500,1802,86,210,1776,-6,65,2071,-56,28,1948,244,599,2098,1513,6,51747,"FO2","IC" 11,23,1,1,,94,10,"MAINE PUBLIC SERVICE CO","SQUA PAN",0,,11522,"0M",1294,,,95,115,0,0,363,0,0,152,0,0,-10,0,0,-7,0,0,-3,0,0,-3,0,0,-4,0,0,-6,0,0,-7,0,0,3,0,0,223,0,0,1516,6,51747,"WAT","HY" 11,23,1,3,2,94,23,"MAINE PUBLIC SERVICE CO","FLOS INN",0,"LIGHT OIL",11522,"0M",1294,,,95,27,115,314,19,82,232,-29,0,232,19,79,373,-23,2,371,-16,0,371,13,80,290,124,284,232,74,135,323,-3,51,272,-25,8,264,217,451,388,1514,6,51747,"FO2","IC" 11,23,1,3,2,94,25,"MAINE PUBLIC SERVICE CO","HOULTON",0,"LIGHT OIL",11522,"0M",1294,,,95,6,28,13,-8,1,12,-8,2,10,-8,0,10,-6,0,10,-3,0,10,-2,0,10,-3,0,10,-3,0,10,-4,0,11,-4,2,8,14,34,6,1515,6,51747,"FO2","IC" 11,23,1,2,1,97,1,"MAINE YANKEE ATOMIC PWR C","MAIN YANKEE",0,"NUCLEAR",11525,"0M",1294,,,95,197577,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1517,6,51748,"UR","ST" 11,23,1,3,2,116,10,"PUB SERV CO OF NEW HAMP","SWANS FALLS",0,"LIGHT OIL",15472,"0M",1294,"R",180,95,-7,0,2,-7,0,2,-6,0,2,-3,0,2,-2,0,2,-1,0,2,-1,0,2,-1,0,2,-1,0,2,-1,0,2,-3,0,2,0,0,0,1518,6,52411,"FO2","IC" 11,23,5,1,,525,1,"LEWISTON (CITY OF)","ANDRO UPPER",0,,10963,"0A",1294,,,95,296,0,0,378,0,0,310,0,0,424,0,0,264,0,0,390,0,0,256,0,0,258,0,0,304,0,0,270,0,0,342,0,0,324,0,0,7046,6,54168,"WAT","HY" 11,23,5,1,,566,1,"MADISON (CITY OF)","NORRIDGEWCK",0,,11477,"0A",1294,,,95,306,0,0,241,0,0,261,0,0,291,0,0,379,0,0,277,0,0,75,0,0,0,0,0,26,0,0,121,0,0,197,0,0,224,0,0,6701,6,51737,"WAT","HY" 11,23,8,3,2,835,5,"EASTERN MAINE ELEC COOP","PORTABLE",0,"LIGHT OIL",5609,"0A",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6366,6,50848,"FO2","IC" 11,23,8,3,2,940,1,"SWANS ISLAND ELEC COOP","MINTURN",0,"LIGHT OIL",18368,"0A",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1550,6,52863,"FO2","IC" 12,33,1,1,,106,5,"NEW ENGLAND POWER CO","COMERFORD",0,,13433,"0M",1294,,90,95,34273,0,0,19125,0,0,43429,0,0,11874,0,0,22700,0,0,13853,0,0,5565,0,0,11061,0,0,5412,0,0,30636,0,0,45527,0,0,18948,0,0,2349,6,52007,"WAT","HY" 12,33,1,1,,106,10,"NEW ENGLAND POWER CO","MCINDOES",0,,13433,"0M",1294,,90,95,4420,0,0,3434,0,0,6350,0,0,3330,0,0,4648,0,0,2664,0,0,1453,0,0,2497,0,0,1353,0,0,4755,0,0,7050,0,0,3740,0,0,6483,6,52007,"WAT","HY" 12,33,1,1,,106,13,"NEW ENGLAND POWER CO","S C MOORE",0,,13433,"0M",1294,,90,95,29434,0,0,15866,0,0,34014,0,0,9521,0,0,19359,0,0,12124,0,0,4787,0,0,9805,0,0,4357,0,0,27013,0,0,40020,0,0,16551,0,0,2351,6,52007,"WAT","HY" 12,33,1,1,,106,15,"NEW ENGLAND POWER CO","VERNON",0,,13433,"0M",1294,,90,95,7120,0,0,5523,0,0,9186,0,0,7993,0,0,7582,0,0,3197,0,0,1355,0,0,2525,0,0,19,0,0,5912,0,0,9702,0,0,7342,0,0,2352,6,52007,"WAT","HY" 12,33,1,1,,106,20,"NEW ENGLAND POWER CO","WILDER",0,,13433,"0M",1294,,90,95,1974,0,0,3326,0,0,18722,0,0,7773,0,0,8911,0,0,4713,0,0,4047,0,0,5176,0,0,2849,0,0,9330,0,0,12667,0,0,7471,0,0,2353,6,52007,"WAT","HY" 12,33,1,2,1,123,1,"PUB SERV CO OF NEW HAMP","SEABROOK",0,"NUCLEAR",15472,"0M",1294,,180,95,857441,0,0,778373,0,0,863021,0,0,832472,0,0,865152,0,0,495425,0,0,690261,0,0,805711,0,0,800410,0,0,828658,0,0,60958,0,0,501494,0,0,6115,6,52411,"UR","ST" 12,33,1,1,,123,4,"PUB SERV CO OF NEW HAMP","AMOSKEAG",0,,15472,"0M",1294,,180,95,10690,0,0,7028,0,0,11425,0,0,749,0,0,15769,0,0,4245,0,0,2251,0,0,3257,0,0,434,0,0,5760,0,0,11044,0,0,6264,0,0,2354,6,52411,"WAT","HY" 12,33,1,1,,123,6,"PUB SERV CO OF NEW HAMP","AYERS IS",0,,15472,"0M",1294,,180,95,3909,0,0,2249,0,0,4743,0,0,3555,0,0,4487,0,0,1520,0,0,1448,0,0,1727,0,0,380,0,0,3303,0,0,5711,0,0,2632,0,0,2355,6,52411,"WAT","HY" 12,33,1,1,,123,16,"PUB SERV CO OF NEW HAMP","EASTMAN FLS",0,,15472,"0M",1294,,180,95,2843,0,0,1293,0,0,2781,0,0,2587,0,0,2725,0,0,1214,0,0,1763,0,0,10079,0,0,-9794,0,0,1729,0,0,3266,0,0,1701,0,0,2356,6,52411,"WAT","HY" 12,33,1,1,,123,20,"PUB SERV CO OF NEW HAMP","GARVIN FLS",0,,15472,"0M",1294,,180,95,5209,0,0,3143,0,0,5693,0,0,4388,0,0,3956,0,0,2019,0,0,755,0,0,1667,0,0,350,0,0,3233,0,0,6336,0,0,3913,0,0,2357,6,52411,"WAT","HY" 12,33,1,1,,123,22,"PUB SERV CO OF NEW HAMP","GORHAM",0,,15472,"0M",1294,,180,95,989,0,0,1031,0,0,1249,0,0,885,0,0,1193,0,0,756,0,0,568,0,0,530,0,0,580,0,0,864,0,0,1116,0,0,1202,0,0,2358,6,52411,"WAT","HY" 12,33,1,1,,123,28,"PUB SERV CO OF NEW HAMP","HOOKSETT",0,,15472,"0M",1294,,180,95,787,0,0,865,0,0,912,0,0,1164,0,0,1141,0,0,791,0,0,156,0,0,317,0,0,43,0,0,751,0,0,952,0,0,776,0,0,2359,6,52411,"WAT","HY" 12,33,1,1,,123,30,"PUB SERV CO OF NEW HAMP","JACKMAN",0,,15472,"0M",1294,,180,95,1997,0,0,535,0,0,1239,0,0,236,0,0,557,0,0,305,0,0,191,0,0,722,0,0,-8,0,0,1339,0,0,2326,0,0,864,0,0,2360,6,52411,"WAT","HY" 12,33,1,1,,123,50,"PUB SERV CO OF NEW HAMP","SMITH STA",0,,15472,"0M",1294,,180,95,8143,0,0,9737,0,0,11648,0,0,6108,0,0,8349,0,0,6172,0,0,4454,0,0,4871,0,0,3742,0,0,6861,0,0,10860,0,0,10308,0,0,2368,6,52411,"WAT","HY" 12,33,1,4,2,123,57,"PUB SERV CO OF NEW HAMP","LOST NATION",0,"LIGHT OIL",15472,"0M",1294,,180,95,-15,0,2159,79,306,1853,-15,0,1853,-12,0,1853,42,125,1728,50,140,1587,209,595,1527,275,828,1235,-11,0,1235,-11,0,1235,-10,0,1235,111,338,1076,2362,6,52411,"FO2","GT" 12,33,1,2,2,123,59,"PUB SERV CO OF NEW HAMP","MERRIMACK",0,"LIGHT OIL",15472,"0M",1294,,180,95,27,45,275,16,29,156,22,38,180,23,38,218,0,0,0,29,52,151,6,14,205,30,55,180,52,96,222,62,108,185,57,96,176,20,35,176,2364,6,52411,"FO2","ST" 12,33,1,2,6,123,59,"PUB SERV CO OF NEW HAMP","MERRIMACK",0,"BIT COAL",15472,"0M",1294,,180,95,266403,101539,253077,274308,103830,266334,256612,98157,263978,216443,80934,278945,76504,17154,315133,246563,95683,297713,281671,111493,247571,263463,95839,235114,181335,71786,264069,207269,81066,275589,253852,96425,269715,287608,108204,247069,2364,6,52411,"BIT","ST" 12,33,1,4,2,123,59,"PUB SERV CO OF NEW HAMP","MERRIMACK",0,"LIGHT OIL",15472,"0M",1294,,180,95,-47,0,3032,411,1048,3032,-21,0,1984,-18,0,1984,112,282,1702,122,334,1367,613,1576,1494,582,1554,2033,-14,0,2033,-11,20,2013,-20,0,2013,242,603,1411,2364,6,52411,"FO2","GT" 12,33,1,2,3,123,63,"PUB SERV CO OF NEW HAMP","SCHILLER",0,"HEAVY OIL",15472,"0M",1294,,180,95,1350,2702,31413,820,1554,92325,2073,4352,187620,1454,2823,184796,1826,3479,189663,2478,4626,184835,4062,7903,176932,2011,4193,53637,1321,2911,170000,1885,4329,165671,5233,10859,154812,3538,6785,118334,2367,6,52411,"FO6","ST" 12,33,1,2,6,123,63,"PUB SERV CO OF NEW HAMP","SCHILLER",0,"BIT COAL",15472,"0M",1294,,180,95,53534,27148,87087,68779,32692,50318,47008,24972,52027,65230,33724,53967,55312,27020,32185,49976,24400,75043,55074,26887,62380,30313,18396,42154,18241,9931,51974,16092,9642,54786,30357,16856,90418,65541,32424,72200,2367,6,52411,"BIT","ST" 12,33,1,4,2,123,63,"PUB SERV CO OF NEW HAMP","SCHILLER",0,"LIGHT OIL",15472,"0M",1294,,180,95,-13,0,804,95,260,723,-12,0,723,-9,0,723,57,118,604,-7,0,604,90,262,723,242,963,714,-7,0,714,0,0,714,-9,0,714,120,301,794,2367,6,52411,"FO2","GT" 12,33,1,4,9,123,63,"PUB SERV CO OF NEW HAMP","SCHILLER",0,"NAT GAS",15472,"0M",1294,,180,95,19,240,0,12,140,0,24,310,0,25,300,0,22,264,0,17,210,0,219,2700,0,121,2803,0,14,190,0,15,220,0,24,320,0,22,260,0,2367,6,52411,"NG","GT" 12,33,1,4,2,123,70,"PUB SERV CO OF NEW HAMP","WHITE LAKE",0,"LIGHT OIL",15472,"0M",1294,,180,95,-17,0,2383,97,350,2033,-14,4,2029,-7,0,2029,48,94,1935,136,341,1595,147,405,1763,357,924,1410,-3,0,1410,-3,0,1410,-13,0,1410,-6,129,1281,2369,6,52411,"FO2","GT" 12,33,1,2,2,123,72,"PUB SERV CO OF NEW HAMP","NEWINGTON",0,"LIGHT OIL",15472,"0M",1294,,180,95,2141,4247,1577,1729,3274,1766,1111,2327,1824,1584,4149,1209,1580,3072,1209,1589,3168,1640,1162,2239,1856,1703,3313,1598,1134,2258,1388,173,817,1751,1894,3703,1630,507,3096,1651,8002,6,52411,"FO2","ST" 12,33,1,2,3,123,72,"PUB SERV CO OF NEW HAMP","NEWINGTON",0,"HEAVY OIL",15472,"0M",1294,,180,95,73391,138116,328850,119485,206586,321529,32827,62816,434361,89003,159420,245596,100291,177704,321055,73382,134661,317462,125529,216497,100965,57182,118647,2305699,45699,82009,405756,1560,6611,399144,100544,177099,222046,136392,231245,388270,8002,6,52411,"FO6","ST" 12,33,1,2,9,123,72,"PUB SERV CO OF NEW HAMP","NEWINGTON",0,"NAT GAS",15472,"0M",1294,,180,95,1463,17053,0,0,0,0,0,0,0,0,0,0,35353,394385,0,45744,527451,0,57696,624462,0,48968,544320,0,10747,122302,0,57,1545,0,742,8312,0,0,0,0,8002,6,52411,"NG","ST" 13,50,1,1,,22,2,"CENTRAL VT PUB SERV CORP","ARNOLD FLS",0,,3292,"0A",1294,,350,95,112,0,0,27,0,0,168,0,0,290,0,0,100,0,0,18,0,0,33,0,0,37,0,0,17,0,0,172,0,0,245,0,0,135,0,0,3707,6,50503,"WAT","HY" 13,50,1,1,,22,10,"CENTRAL VT PUB SERV CORP","CAVENDISH",0,,3292,"0A",1294,,350,95,534,0,0,309,0,0,847,0,0,607,0,0,267,0,0,83,0,0,0,0,0,134,0,0,-3,0,0,391,0,0,928,0,0,383,0,0,3710,6,50503,"WAT","HY" 13,50,1,1,,22,11,"CENTRAL VT PUB SERV CORP","CLARKS FLS",0,,3292,"0A",1294,,350,95,1404,0,0,1026,0,0,1689,0,0,1865,0,0,1729,0,0,855,0,0,596,0,0,1076,0,0,567,0,0,1648,0,0,1970,0,0,1412,0,0,3711,6,50503,"WAT","HY" 13,50,1,1,,22,15,"CENTRAL VT PUB SERV CORP","FAIRFAX",0,,3292,"0A",1294,,350,95,1873,0,0,1589,0,0,2321,0,0,2516,0,0,2499,0,0,1241,0,0,878,0,0,1432,0,0,744,0,0,2114,0,0,2573,0,0,2233,0,0,3712,6,50503,"WAT","HY" 13,50,1,1,,22,16,"CENTRAL VT PUB SERV CORP","GAGE",0,,3292,"0A",1294,,350,95,221,0,0,24,0,0,244,0,0,307,0,0,290,0,0,73,0,0,85,0,0,38,0,0,48,0,0,305,0,0,523,0,0,226,0,0,3713,6,50503,"WAT","HY" 13,50,1,1,,22,18,"CENTRAL VT PUB SERV CORP","GLEN",0,,3292,"0A",1294,,350,95,1041,0,0,605,0,0,731,0,0,367,0,0,238,0,0,98,0,0,83,0,0,323,0,0,183,0,0,629,0,0,1307,0,0,401,0,0,3714,6,50503,"WAT","HY" 13,50,1,1,,22,22,"CENTRAL VT PUB SERV CORP","LW MIDLEBRY",0,,3292,"0A",1294,,350,95,725,0,0,534,0,0,1054,0,0,920,0,0,550,0,0,286,0,0,79,0,0,150,0,0,104,0,0,524,0,0,1220,0,0,492,0,0,3716,6,50503,"WAT","HY" 13,50,1,1,,22,26,"CENTRAL VT PUB SERV CORP","MILTON",0,,3292,"0A",1294,,350,95,3538,0,0,2446,0,0,4215,0,0,4336,0,0,3864,0,0,1806,0,0,1204,0,0,2514,0,0,1210,0,0,4046,0,0,4879,0,0,3192,0,0,3717,6,50503,"WAT","HY" 13,50,1,1,,22,28,"CENTRAL VT PUB SERV CORP","PASSUMPSIC",0,,3292,"0A",1294,,350,95,315,0,0,97,0,0,378,0,0,435,0,0,415,0,0,90,0,0,51,0,0,150,0,0,94,0,0,370,0,0,434,0,0,44,0,0,3718,6,50503,"WAT","HY" 13,50,1,1,,22,30,"CENTRAL VT PUB SERV CORP","PATCH",0,,3292,"0A",1294,,350,95,107,0,0,58,0,0,59,0,0,21,0,0,7,0,0,5,0,0,5,0,0,28,0,0,7,0,0,42,0,0,158,0,0,30,0,0,3719,6,50503,"WAT","HY" 13,50,1,1,,22,34,"CENTRAL VT PUB SERV CORP","PIERCE MLS",0,,3292,"0A",1294,,350,95,113,0,0,81,0,0,121,0,0,180,0,0,161,0,0,59,0,0,47,0,0,47,0,0,17,0,0,102,0,0,181,0,0,116,0,0,3721,6,50503,"WAT","HY" 13,50,1,1,,22,36,"CENTRAL VT PUB SERV CORP","PITTSFORD",0,,3292,"0A",1294,,350,95,1275,0,0,941,0,0,158,0,0,47,0,0,-2,0,0,9,0,0,0,0,0,489,0,0,354,0,0,726,0,0,1999,0,0,679,0,0,3722,6,50503,"WAT","HY" 13,50,1,1,,22,38,"CENTRAL VT PUB SERV CORP","SALISBURY",0,,3292,"0A",1294,,350,95,325,0,0,210,0,0,191,0,0,62,0,0,141,0,0,65,0,0,25,0,0,72,0,0,111,0,0,88,0,0,-6,0,0,303,0,0,3724,6,50503,"WAT","HY" 13,50,1,1,,22,40,"CENTRAL VT PUB SERV CORP","SILVER LAKE",0,,3292,"0A",1294,,350,95,800,0,0,508,0,0,722,0,0,405,0,0,402,0,0,227,0,0,103,0,0,275,0,0,84,0,0,500,0,0,973,0,0,535,0,0,3725,6,50503,"WAT","HY" 13,50,1,1,,22,41,"CENTRAL VT PUB SERV CORP","TAFTSVILLE",0,,3292,"0A",1294,,350,95,150,0,0,135,0,0,208,0,0,200,0,0,119,0,0,12,0,0,0,0,0,17,0,0,-1,0,0,55,0,0,175,0,0,162,0,0,3727,6,50503,"WAT","HY" 13,50,1,1,,22,44,"CENTRAL VT PUB SERV CORP","WEYBRIDGE",0,,3292,"0A",1294,,350,95,1391,0,0,616,0,0,1819,0,0,1459,0,0,991,0,0,370,0,0,156,0,0,354,0,0,167,0,0,1042,0,0,2031,0,0,856,0,0,3728,6,50503,"WAT","HY" 13,50,1,1,,22,45,"CENTRAL VT PUB SERV CORP","PETERSON",0,,3292,"0A",1294,,350,95,2522,0,0,1281,0,0,3601,0,0,3092,0,0,2335,0,0,1090,0,0,702,0,0,1605,0,0,681,0,0,2814,0,0,4021,0,0,1742,0,0,3720,6,50503,"WAT","HY" 13,50,1,4,2,22,48,"CENTRAL VT PUB SERV CORP","RUTLAND",0,"LIGHT OIL",3292,"0A",1294,,350,95,13,125,4525,45,327,4198,40,218,3979,19,143,3836,20,127,3709,101,381,3328,272,898,2430,277,932,1498,34,167,3475,-8,46,3429,32,195,3234,152,651,2583,3723,6,50503,"FO2","GT" 13,50,1,4,2,22,49,"CENTRAL VT PUB SERV CORP","ASCUTNEY",0,"LIGHT OIL",3292,"0A",1294,,350,95,27,136,2572,77,326,2246,69,300,1946,18,96,1851,8,65,1786,41,144,1641,268,895,2175,226,765,1409,-1,38,3277,-15,0,3277,-3,71,3206,88,353,2853,3708,6,50503,"FO2","GT" 13,50,1,3,2,22,60,"CENTRAL VT PUB SERV CORP","ST ALBANS",0,"LIGHT OIL",3292,"0A",1294,,350,95,-14,0,89,5,38,214,-11,4,210,-10,5,205,7,17,188,21,40,148,72,149,234,59,123,111,-1,2,110,-3,0,110,-6,0,108,9,42,236,3726,6,50503,"FO2","IC" 13,50,1,1,,22,65,"CENTRAL VT PUB SERV CORP","SMITH",0,,3292,"0A",1294,,350,95,361,0,0,154,0,0,495,0,0,658,0,0,519,0,0,163,0,0,121,0,0,123,0,0,72,0,0,258,0,0,692,0,0,170,0,0,3709,6,50503,"WAT","HY" 13,50,1,1,,22,70,"CENTRAL VT PUB SERV CORP","EAST BARNET",0,,3292,"0A",1294,,350,95,595,0,0,399,0,0,900,0,0,1046,0,0,922,0,0,325,0,0,322,0,0,358,0,0,203,0,0,790,0,0,1148,0,0,702,0,0,788,6,50503,"WAT","HY" 13,50,1,1,,24,5,"CITIZENS UTILITIES CO","CHARLESTON",0,,3611,"0A",1294,,,95,339,0,0,244,0,0,393,0,0,445,0,0,409,0,0,252,0,0,154,0,0,192,0,0,90,0,0,382,0,0,461,0,0,314,0,0,3729,6,50560,"WAT","HY" 13,50,1,1,,24,10,"CITIZENS UTILITIES CO","NEWPORT",0,,3611,"0A",1294,,,95,1625,0,0,946,0,0,1961,0,0,1655,0,0,1645,0,0,917,0,0,474,0,0,1107,0,0,331,0,0,1614,0,0,2652,0,0,1235,0,0,3731,6,50560,"WAT","HY" 13,50,1,3,2,24,15,"CITIZENS UTILITIES CO","NEWPORT DSL",0,"LIGHT OIL",3611,"0A",1294,,,95,0,0,377,16,33,290,0,0,259,0,0,229,0,0,206,0,0,206,0,0,206,7,12,194,8,16,177,0,0,177,0,0,137,0,0,85,3730,6,50560,"FO2","IC" 13,50,1,1,,24,20,"CITIZENS UTILITIES CO","TROY",0,,3611,"0A",1294,,,95,150,0,0,72,0,0,150,0,0,267,0,0,209,0,0,71,0,0,28,0,0,30,0,0,3,0,0,74,0,0,244,0,0,128,0,0,3733,6,50560,"WAT","HY" 13,50,1,1,,47,10,"GREEN MOUNTAIN POWER CORP","ESSEX 19",0,,7601,"0M",1294,,,95,2888,0,0,2870,0,0,4338,0,0,3931,0,0,3261,0,0,980,0,0,333,0,0,1531,0,0,936,0,0,2161,0,0,3540,0,0,2964,0,0,3737,6,51169,"WAT","HY" 13,50,1,3,2,47,10,"GREEN MOUNTAIN POWER CORP","ESSEX 19",0,"LIGHT OIL",7601,"0M",1294,,,95,0,0,311,11,27,284,1,1,283,0,0,283,7,16,267,28,61,385,45,85,300,33,65,235,9,19,394,0,0,394,0,0,394,12,25,369,3737,6,51169,"FO2","IC" 13,50,1,1,,47,15,"GREEN MOUNTAIN POWER CORP","GORGE NO 18",0,,7601,"0M",1294,,,95,901,0,0,986,0,0,1573,0,0,1661,0,0,1125,0,0,122,0,0,113,0,0,692,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6475,6,51169,"WAT","HY" 13,50,1,1,,47,20,"GREEN MOUNTAIN POWER CORP","MARSHFIELD6",0,,7601,"0M",1294,,,95,891,0,0,1188,0,0,245,0,0,107,0,0,0,0,0,3,0,0,2,0,0,54,0,0,53,0,0,604,0,0,1300,0,0,430,0,0,3739,6,51169,"WAT","HY" 13,50,1,1,,47,25,"GREEN MOUNTAIN POWER CORP","MIDDLESEX 2",0,,7601,"0M",1294,,,95,1134,0,0,848,0,0,1580,0,0,1697,0,0,1156,0,0,150,0,0,111,0,0,717,0,0,45,0,0,1158,0,0,2061,0,0,1133,0,0,3740,6,51169,"WAT","HY" 13,50,1,1,,47,40,"GREEN MOUNTAIN POWER CORP","VERGENNES 9",0,,7601,"0M",1294,,,95,972,0,0,799,0,0,1171,0,0,1224,0,0,968,0,0,441,0,0,247,0,0,499,0,0,318,0,0,590,0,0,1307,0,0,899,0,0,6519,6,51169,"WAT","HY" 13,50,1,3,2,47,40,"GREEN MOUNTAIN POWER CORP","VERGENNES 9",0,"LIGHT OIL",7601,"0M",1294,,,95,15,27,282,68,118,164,15,24,319,5,8,311,4,25,465,108,264,200,174,319,417,163,302,294,20,35,437,3,2,436,2,4,432,35,62,370,6519,6,51169,"FO2","IC" 13,50,1,1,,47,53,"GREEN MOUNTAIN POWER CORP","WATRBRY 22",0,,7601,"0M",1294,,,95,2101,0,0,2029,0,0,1441,0,0,318,0,0,823,0,0,444,0,0,464,0,0,1190,0,0,485,0,0,2251,0,0,2609,0,0,1566,0,0,6520,6,51169,"WAT","HY" 13,50,1,1,,47,55,"GREEN MOUNTAIN POWER CORP","W DANVIL 15",0,,7601,"0M",1294,,,95,445,0,0,146,0,0,507,0,0,509,0,0,301,0,0,77,0,0,87,0,0,220,0,0,103,0,0,544,0,0,661,0,0,151,0,0,3743,6,51169,"WAT","HY" 13,50,1,4,2,47,58,"GREEN MOUNTAIN POWER CORP","BERLIN NO 5",0,"LIGHT OIL",7601,"0M",1294,,,95,32,270,10962,606,1501,9460,21,72,9388,0,0,9338,254,677,8711,731,1834,7632,1214,3039,11011,1354,3377,12369,189,463,14376,681,1521,12855,79,209,12646,389,879,11767,3734,6,51169,"FO2","GT" 13,50,1,4,2,47,60,"GREEN MOUNTAIN POWER CORP","COLCHSTR 16",0,"LIGHT OIL",7601,"0M",1294,,,95,7,28,1071,86,296,775,5,25,750,0,0,750,9,33,717,6,26,1583,117,472,1112,76,320,791,0,0,1506,0,0,1506,0,0,1507,0,0,1506,3735,6,51169,"FO2","GT" 13,50,1,1,,47,65,"GREEN MOUNTAIN POWER CORP","BOLTON FALL",0,,7601,"0M",1294,,,95,3020,0,0,2253,0,0,3823,0,0,2884,0,0,2258,0,0,636,0,0,502,0,0,1603,0,0,428,0,0,2596,0,0,4478,0,0,2430,0,0,7056,6,51169,"WAT","HY" 13,50,1,7,"D",47,70,"GREEN MOUNTAIN POWER CORP","CARTHUSIANS",0,"N/A",7601,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7260,6,51169,"WI","WI" 13,50,1,1,,73,5,"NEW ENGLAND POWER CO","BELLOWS FLS",0,,13433,"0M",1294,,90,95,22299,0,0,16448,0,0,28735,0,0,22260,0,0,21635,0,0,10244,0,0,6175,0,0,10541,0,0,3991,0,0,19464,0,0,30239,0,0,18843,0,0,3745,6,52007,"WAT","HY" 13,50,1,1,,73,10,"NEW ENGLAND POWER CO","HARRIMAN",0,,13433,"0M",1294,,90,95,14391,0,0,13610,0,0,13092,0,0,2630,0,0,807,0,0,1394,0,0,2040,0,0,2968,0,0,2416,0,0,10136,0,0,16468,0,0,11713,0,0,3746,6,52007,"WAT","HY" 13,50,1,1,,73,15,"NEW ENGLAND POWER CO","SEARSBURG",0,,13433,"0M",1294,,90,95,3120,0,0,2878,0,0,3094,0,0,1942,0,0,1012,0,0,853,0,0,152,0,0,1319,0,0,954,0,0,2077,0,0,3042,0,0,2675,0,0,6529,6,52007,"WAT","HY" 13,50,1,1,,73,18,"NEW ENGLAND POWER CO","VERNON",0,,13433,"0M",1294,,90,95,4592,0,0,4182,0,0,5197,0,0,4922,0,0,4427,0,0,2397,0,0,1604,0,0,3525,0,0,1667,0,0,3876,0,0,4946,0,0,3693,0,0,8904,6,52007,"WAT","HY" 13,50,1,1,,73,20,"NEW ENGLAND POWER CO","WILDER",0,,13433,"0M",1294,,90,95,9053,0,0,5888,0,0,8525,0,0,1765,0,0,2559,0,0,1204,0,0,21,0,0,1756,0,0,407,0,0,4556,0,0,8802,0,0,2669,0,0,8905,6,52007,"WAT","HY" 13,50,1,1,,98,5,"PUB SERV CO OF NEW HAMP","CANAAN",0,,15472,"0M",1294,,180,95,729,0,0,718,0,0,805,0,0,483,0,0,569,0,0,345,0,0,252,0,0,190,0,0,195,0,0,728,0,0,765,0,0,738,0,0,3750,6,52411,"WAT","HY" 13,50,1,2,1,135,1,"VT YANKEE NUCLEAR PR CORP","VT YANKEE",0,"NUCLEAR",19796,"0M",1294,,,95,384928,0,0,346136,0,0,192519,0,0,0,0,0,335965,0,0,365673,0,0,371198,0,0,375476,0,0,363210,0,0,389313,0,0,379730,0,0,354361,0,0,3751,6,53128,"UR","ST" 13,50,1,1,,304,1,"VERMONT MARBLE CO","PROCTOR",0,,19794,"0A",1294,,,95,3213,0,0,2009,0,0,3559,0,0,3058,0,0,2032,0,0,1143,0,0,395,0,0,893,0,0,294,0,0,1839,0,0,3796,0,0,1853,0,0,6450,6,53127,"WAT","HY" 13,50,1,1,,304,5,"VERMONT MARBLE CO","CTR RUTLAND",0,,19794,"0A",1294,,,95,161,0,0,164,0,0,188,0,0,211,0,0,211,0,0,121,0,0,26,0,0,62,0,0,19,0,0,85,0,0,190,0,0,184,0,0,6453,6,53127,"WAT","HY" 13,50,1,1,,304,10,"VERMONT MARBLE CO","BELDENS",0,,19794,"0A",1294,,,95,2174,0,0,1009,0,0,2729,0,0,1624,0,0,972,0,0,405,0,0,95,0,0,369,0,0,149,0,0,1679,0,0,2997,0,0,1013,0,0,6451,6,53127,"WAT","HY" 13,50,1,4,2,304,15,"VERMONT MARBLE CO","FLORENCE",0,"LIGHT OIL",19794,"0A",1294,,,95,-2,95,12708,118,200,12076,184,475,11934,674,1762,7457,74,191,4607,157,358,9260,354,1040,6925,210,559,6363,167,435,4707,-11,3,10761,-13,60,8428,167,550,7887,7337,6,53127,"FO2","GT" 13,50,5,1,,520,1,"BARTON (VILLAGE OF)","W CHARLESTN",0,,1299,"0A",1294,,,95,477,0,0,231,0,0,556,0,0,533,0,0,570,0,0,256,0,0,132,0,0,351,0,0,83,0,0,382,0,0,680,0,0,196,0,0,3753,6,50178,"WAT","HY" 13,50,5,3,2,520,1,"BARTON (VILLAGE OF)","W CHARLESTN",0,"LIGHT OIL",1299,"0A",1294,,,95,0,0,206,14,34,172,0,0,172,0,0,172,1,3,169,19,51,118,39,103,190,42,112,78,7,19,59,0,0,59,0,0,118,10,86,32,3753,6,50178,"FO2","IC" 13,50,5,4,2,536,1,"BURLINGTON (CITY OF)","GAS TURB",0,"LIGHT OIL",2548,"0M",1294,,,95,0,1,1628,248,707,868,0,4,2022,0,0,2015,19,66,1949,459,1365,1742,608,1830,1698,485,1472,1476,56,189,1287,0,0,1285,84,242,1001,165,472,1772,3754,6,50375,"FO2","GT" 13,50,5,2,"B",536,10,"BURLINGTON (CITY OF)","J C MC NEIL",0,"WOD CHIPS",2548,"0M",1294,,,95,7742,0,0,12138,0,0,4790,0,0,12108,0,0,15618,0,0,11949,0,0,14425,0,0,8887,0,0,5359,0,0,3746,0,0,10817,0,0,19589,0,0,589,6,50375,"WOD","ST" 13,50,5,2,2,536,10,"BURLINGTON (CITY OF)","J C MC NEIL",0,"LIGHT OIL",2548,"0M",1294,,,95,136,326,2416,132,350,1989,41,99,1826,0,216,1559,0,39,1448,0,22,1351,4,23,1264,0,81,1183,0,52,1021,0,40,945,19,99,3170,24,98,2994,589,6,50375,"FO2","ST" 13,50,5,2,9,536,10,"BURLINGTON (CITY OF)","J C MC NEIL",0,"NAT GAS",2548,"0M",1294,,,95,1750,24386,0,816,12632,0,1337,18689,0,0,2252,0,0,3244,0,0,3721,0,177,4800,0,0,2471,0,0,2396,0,0,2708,0,449,13380,0,2064,47618,0,589,6,50375,"NG","ST" 13,50,5,1,,551,5,"ENOSBURG FALLS (VILLAGE)","KENDALL",0,,5915,"0A",1294,,,95,52,0,0,126,0,0,145,0,0,160,0,0,164,0,0,130,0,0,102,0,0,121,0,0,68,0,0,109,0,0,147,0,0,64,0,0,3757,6,50910,"WAT","HY" 13,50,5,3,2,551,10,"ENOSBURG FALLS (VILLAGE)","DIESEL PLT",0,"LIGHT OIL",5915,"0A",1294,,,95,1,5,320,14,24,296,0,1,296,1,3,293,4,13,280,16,34,246,20,37,351,23,44,307,2,6,301,0,0,301,0,0,0,12,21,279,4247,6,50910,"FO2","IC" 13,50,5,1,,551,15,"ENOSBURG FALLS (VILLAGE)","VILLAGE PLT",0,,5915,"0A",1294,,,95,370,0,0,204,0,0,298,0,0,433,0,0,408,0,0,218,0,0,87,0,0,140,0,0,45,0,0,324,0,0,364,0,0,395,0,0,4246,6,50910,"WAT","HY" 13,50,5,1,,567,1,"HARDWICK (VILLAGE OF)","WOLCOTT",0,,8104,"0A",1294,,,95,228,0,0,139,0,0,381,0,0,480,0,0,332,0,0,55,0,0,41,0,0,20,0,0,22,0,0,331,0,0,526,0,0,262,0,0,6477,6,51238,"WAT","HY" 13,50,5,3,2,567,5,"HARDWICK (VILLAGE OF)","HARDWICK",0,"LIGHT OIL",8104,"0A",1294,,,95,0,0,451,0,0,451,0,0,451,0,0,451,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6476,6,51238,"FO2","IC" 13,50,5,1,,644,5,"LYNDONVILLE (CITY OF)","GREAT FALLS",0,,11359,"0A",1294,,,95,160,0,0,115,0,0,308,0,0,489,0,0,746,0,0,350,0,0,273,0,0,122,0,0,171,0,0,457,0,0,558,0,0,437,0,0,3762,6,51721,"WAT","HY" 13,50,5,1,,644,10,"LYNDONVILLE (CITY OF)","VAIL",0,,11359,"0A",1294,,,95,100,0,0,71,0,0,99,0,0,123,0,0,225,0,0,93,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,107,0,0,3763,6,51721,"WAT","HY" 13,50,5,1,,659,5,"MORRISVILLE (VILLAGE OF)","CADYS FALLS",0,,12989,"0A",1294,,,95,396,0,0,268,0,0,387,0,0,226,0,0,403,0,0,133,0,0,101,0,0,2,0,0,71,0,0,356,0,0,337,0,0,160,0,0,3765,6,51943,"WAT","HY" 13,50,5,1,,659,10,"MORRISVILLE (VILLAGE OF)","MORRISVILLE",0,,12989,"0A",1294,,,95,250,0,0,312,0,0,619,0,0,801,0,0,581,0,0,131,0,0,-1,0,0,-1,0,0,-1,0,0,-1,0,0,-2,0,0,227,0,0,3764,6,51943,"WAT","HY" 13,50,5,1,,659,15,"MORRISVILLE (VILLAGE OF)","W K SANDERS",0,,12989,"0A",1294,,,95,-5,0,0,114,0,0,24,0,0,13,0,0,33,0,0,10,0,0,-1,0,0,38,0,0,-2,0,0,83,0,0,177,0,0,7,0,0,678,6,51943,"WAT","HY" 13,50,5,1,,737,5,"SWANTON (VILLAGE OF)","HIGHGATE FL",0,,18371,"0A",1294,,,95,3846,0,0,2084,0,0,5329,0,0,5012,0,0,4484,0,0,2556,0,0,711,0,0,1431,0,0,444,0,0,4486,0,0,6056,0,0,2920,0,0,6618,6,52864,"WAT","HY" 13,50,8,1,,800,5,"VERMONT ELECTRIC COOP","N HARTLAND",0,,19791,"0A",1294,,,95,1260,0,0,415,0,0,212,0,0,990,0,0,623,0,0,190,0,0,90,0,0,4,0,0,8,0,0,484,0,0,1466,0,0,734,0,0,590,6,53125,"WAT","HY" 13,50,8,1,,810,5,"WASHINGTON ELECTRIC COOP","WRIGHTSVILE",0,,20151,"0A",1294,,,95,270,0,0,88,0,0,334,0,0,327,0,0,246,0,0,50,0,0,54,0,0,128,0,0,47,0,0,3224,0,0,418,0,0,153,0,0,7051,6,58100,"WAT","HY" 14,25,1,2,1,23,1,"BOSTON EDISON CO","PILGRIM",0,"NUCLEAR",1998,"0M",1294,,,95,494219,0,0,433548,0,0,370903,0,0,0,0,0,0,0,0,313826,0,0,476983,0,0,486906,0,0,466384,0,0,470820,0,0,479805,0,0,492451,0,0,1590,6,50300,"UR","ST" 14,25,1,4,2,23,15,"BOSTON EDISON CO","EDGAR",0,"LIGHT OIL",1998,"0M",1294,,,95,43,139,1048,160,393,893,25,79,1053,64,124,929,28,74,855,110,379,953,323,950,955,245,760,910,38,108,1040,37,107,933,56,139,1032,134,337,934,1585,6,50300,"FO2","GT" 14,25,1,4,2,23,17,"BOSTON EDISON CO","FRAMINGHAM",0,"LIGHT OIL",1998,"0M",1294,,,95,141,378,1770,276,681,1804,67,203,1601,44,165,1674,70,215,1698,449,1329,1559,788,2383,1819,766,2306,1658,95,258,1630,53,142,1734,74,277,1695,278,761,1649,1586,6,50300,"FO2","GT" 14,25,1,4,2,23,20,"BOSTON EDISON CO","L STREET",0,"LIGHT OIL",1998,"0M",1294,,,95,18,71,606,223,524,481,31,74,586,101,254,571,64,181,628,302,790,611,232,657,597,450,1241,537,70,195,581,33,121,579,41,95,603,202,478,601,1587,6,50300,"FO2","GT" 14,25,1,2,2,23,25,"BOSTON EDISON CO","MYSTIC",0,"LIGHT OIL",1998,"0M",1294,,,95,251,519,1723,2082,3518,560,0,0,2480,874,1565,1748,1508,2858,1987,1285,2470,2852,2284,4277,1789,1325,2537,1992,119,230,1762,111,219,2019,220,439,1580,238,420,1327,1588,6,50300,"FO2","ST" 14,25,1,2,3,23,25,"BOSTON EDISON CO","MYSTIC",0,"HEAVY OIL",1998,"0M",1294,,,95,112692,212897,634701,250006,389639,396000,28170,35809,578539,46219,75659,622498,47350,81843,540595,74633,131731,529651,114158,195470,453259,65504,114254,339850,9543,16899,623019,18574,33314,589243,137777,234264,549412,333744,539006,466193,1588,6,50300,"FO6","ST" 14,25,1,2,9,23,25,"BOSTON EDISON CO","MYSTIC",0,"NAT GAS",1998,"0M",1294,,,95,54301,611365,0,41760,387451,0,199825,2260608,0,223483,2242300,0,121095,1295784,0,76698,835115,0,229079,2424349,0,221936,2420968,0,166749,1844575,0,138588,1545200,0,1185,12271,0,4690,47014,0,1588,6,50300,"NG","ST" 14,25,1,4,2,23,25,"BOSTON EDISON CO","MYSTIC",0,"LIGHT OIL",1998,"0M",1294,,,95,27,56,491,103,175,435,20,57,497,61,110,506,37,71,435,192,369,532,279,524,365,264,506,455,27,53,523,26,52,471,36,92,498,52,92,444,1588,6,50300,"FO2","GT" 14,25,1,2,2,23,30,"BOSTON EDISON CO","NEW BOSTON",0,"LIGHT OIL",1998,"0M",1294,,,95,0,0,60,0,0,60,0,0,60,0,0,60,0,0,60,0,0,60,0,0,60,0,0,60,0,0,60,0,0,60,0,0,60,0,0,60,1589,6,50300,"FO2","ST" 14,25,1,2,3,23,30,"BOSTON EDISON CO","NEW BOSTON",0,"HEAVY OIL",1998,"0M",1294,,,95,215120,320592,70394,155709,225131,71506,167349,258313,38374,0,0,38374,0,0,38374,0,0,38374,0,0,38403,0,0,38403,0,0,38403,0,0,38808,0,0,73197,633,1026,94600,1589,6,50300,"FO6","ST" 14,25,1,2,9,23,30,"BOSTON EDISON CO","NEW BOSTON",0,"NAT GAS",1998,"0M",1294,,,95,0,0,0,151,1334,0,2301,23751,0,201560,2042478,0,231080,2303282,0,366745,3613841,0,376840,3697457,0,381210,3746576,0,337660,3311625,0,328300,3254233,0,343010,3322669,0,159417,1573389,0,1589,6,50300,"NG","ST" 14,25,1,4,2,23,40,"BOSTON EDISON CO","WEST MEDWAY",0,"LIGHT OIL",1998,"0M",1294,,,95,532,1305,6724,2615,5858,6588,305,882,6659,441,1064,6548,648,1783,6907,1922,5806,5619,2304,7193,6789,2376,1139,6841,43,153,6688,33,101,6587,199,636,6665,2492,6199,6929,1592,6,50300,"FO2","GT" 14,25,1,4,9,23,40,"BOSTON EDISON CO","WEST MEDWAY",0,"NAT GAS",1998,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,963,16262,0,363,42170,0,305,906,0,134,2149,0,0,0,0,0,0,0,1592,6,50300,"NG","GT" 14,25,1,2,3,25,5,"COMMONWEALTH ENERGY SYS","BLACKSTONE",0,"HEAVY OIL",4120,"0M",1294,,80,95,12,9,1622,622,891,254,0,0,0,12,11,3277,4,9,3067,8,31,3303,19,66,3122,71,286,2313,8,25,2707,0,0,2900,388,267,2375,216,151,3016,1594,6,50412,"FO6","ST" 14,25,1,2,9,25,5,"COMMONWEALTH ENERGY SYS","BLACKSTONE",0,"NAT GAS",4120,"0M",1294,,80,95,643,3052,0,809,7234,0,0,0,0,329,1924,0,176,2782,0,306,7064,0,840,18553,0,641,16359,0,98,2009,0,0,0,0,26,113,0,3,12,0,1594,6,50412,"NG","ST" 14,25,1,2,3,25,10,"COMMONWEALTH ENERGY SYS","KENDALL SQ",0,"HEAVY OIL",4120,"0M",1294,,80,95,1966,3331,44639,4440,7426,46357,571,1025,43350,551,1184,40895,279,518,39729,76,146,39422,226,384,45928,178,367,45253,473,969,43288,91,206,42859,6937,10643,43043,10035,14044,33074,1595,6,50412,"FO6","ST" 14,25,1,2,9,25,10,"COMMONWEALTH ENERGY SYS","KENDALL SQ",0,"NAT GAS",4120,"0M",1294,,80,95,8305,87563,0,5498,57215,0,7487,85115,0,6963,94695,0,6096,81153,0,7445,90078,0,8638,93009,0,7941,103714,0,6154,79756,0,5898,84299,0,580,5629,0,447,3954,0,1595,6,50412,"NG","ST" 14,25,1,4,2,25,10,"COMMONWEALTH ENERGY SYS","KENDALL SQ",0,"LIGHT OIL",4120,"0M",1294,,80,95,0,0,1889,173,442,1930,0,0,1930,10,26,1904,381,951,1671,340,886,1969,587,1240,1863,822,2088,2078,160,754,1323,0,0,1561,0,0,1561,183,453,1925,1595,6,50412,"FO2","GT" 14,25,1,2,3,25,15,"COMMONWEALTH ENERGY SYS","CANAL",0,"HEAVY OIL",4120,"0M",1294,,80,95,162391,279085,64428,147412,254620,37606,178077,310890,35916,210807,342420,34150,172965,296386,68134,149960,274442,64297,204907,357210,66759,386648,623547,65078,202416,316252,66152,59087,109907,66707,307766,492512,64272,421791,645524,63446,1599,6,50412,"FO6","ST" 14,25,1,3,2,25,25,"COMMONWEALTH ENERGY SYS","OAK BLUFFS",0,"LIGHT OIL",4120,"0M",1294,,80,95,0,0,1131,70,125,1006,0,0,1006,3,6,1000,58,98,1011,55,97,1035,183,321,1005,196,350,1036,1,4,1032,0,0,1159,6,15,1144,63,118,1026,1597,6,50412,"FO2","IC" 14,25,1,3,2,25,30,"COMMONWEALTH ENERGY SYS","W TISBURY",0,"LIGHT OIL",4120,"0M",1294,,80,95,0,0,2023,42,87,1936,0,0,1936,2,4,1932,38,68,1918,40,70,1848,243,439,1711,204,373,1827,0,0,1827,0,0,2044,5,18,2026,47,98,1928,6049,6,50412,"FO2","IC" 14,25,1,3,2,25,35,"COMMONWEALTH ENERGY SYS","AIRPORT DIE",0,"LIGHT OIL",4120,"0M",1294,,80,95,2,4,65,20,32,57,6,9,48,14,26,23,3,17,6,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7184,6,50412,"FO2","IC" 14,25,1,4,2,46,1,"FITCHBURG GAS & ELEC LGT","FITCHBURG",0,"LIGHT OIL",6374,"0M",1294,,,95,113,320,1233,544,1372,812,0,0,1289,68,210,1079,120,416,1139,539,1444,1109,663,1798,2154,708,1974,1126,70,191,2125,49,166,1960,0,0,1960,461,1173,2216,1601,6,50990,"FO2","GT" 14,25,1,1,,59,5,"HOLYOKE WTR PWR CO","BB HOLBROOK",0,,8779,"0M",1294,,554,95,215,0,0,12,0,0,439,0,0,48,0,0,0,0,0,-4,0,0,-2,0,0,111,0,0,7,0,0,88,0,0,177,0,0,95,0,0,1602,6,51327,"WAT","HY" 14,25,1,1,,59,7,"HOLYOKE WTR PWR CO","CHEMICAL",0,,8779,"0M",1294,,554,95,390,0,0,65,0,0,264,0,0,560,0,0,1378,0,0,-3,0,0,-2,0,0,33,0,0,-2,0,0,199,0,0,228,0,0,152,0,0,1604,6,51327,"WAT","HY" 14,25,1,1,,59,10,"HOLYOKE WTR PWR CO","HADLEY FLLS",0,,8779,"0M",1294,,554,95,19318,0,0,16252,0,0,20835,0,0,17997,0,0,1047,0,0,10005,0,0,4815,0,0,8945,0,0,1536,0,0,13795,0,0,19251,0,0,19209,0,0,1605,6,51327,"WAT","HY" 14,25,1,1,,59,15,"HOLYOKE WTR PWR CO","RIVERSIDE",0,,8779,"0M",1294,,554,95,2283,0,0,798,0,0,2407,0,0,2806,0,0,1058,0,0,-32,0,0,-28,0,0,236,0,0,-31,0,0,991,0,0,1475,0,0,1658,0,0,1607,6,51327,"WAT","HY" 14,25,1,1,,59,20,"HOLYOKE WTR PWR CO","BOATLOCK",0,,8779,"0M",1294,,554,95,1401,0,0,440,0,0,1465,0,0,1749,0,0,-1985,0,0,-45,0,0,34,0,0,364,0,0,188,0,0,1015,0,0,1030,0,0,1719,0,0,1603,6,51327,"WAT","HY" 14,25,1,1,,59,21,"HOLYOKE WTR PWR CO","SKINNER",0,,8779,"0M",1294,,554,95,1087,0,0,-990,0,0,135,0,0,122,0,0,0,0,0,-3,0,0,-3,0,0,10,0,0,-5,0,0,48,0,0,88,0,0,144,0,0,1608,6,51327,"WAT","HY" 14,25,1,2,2,59,23,"HOLYOKE WTR PWR CO","MT TOM",0,"LIGHT OIL",8779,"0M",1294,,554,95,253,312,334,85,74,223,86,144,363,96,161,0,210,338,471,128,216,400,63,106,0,319,575,0,148,244,0,283,596,339,311,528,442,268,461,289,1606,6,51327,"FO2","ST" 14,25,1,2,6,59,23,"HOLYOKE WTR PWR CO","MT TOM",0,"BIT COAL",8779,"0M",1294,,554,95,83436,31625,65901,94304,36568,48767,100316,38568,48417,92219,34981,57613,86828,32256,68520,89522,33641,55040,96838,37232,50903,67013,26869,64337,58083,21428,72102,20300,9635,85211,75120,28714,96373,83498,33548,87268,1606,6,51327,"BIT","ST" 14,25,1,2,3,85,1,"MONTAUP ELECTRIC COMPANY","SOMERSET",0,"HEAVY OIL",12833,"0M",1294,,,95,5362,8778,70647,3605,6271,64376,3682,6389,57987,572,894,57093,4068,7388,49705,3861,6474,101371,1808,3090,98281,1729,8455,89825,4071,6826,83000,7484,12748,70251,8762,14647,55605,1259,3587,97942,1613,6,56511,"FO6","ST" 14,25,1,2,6,85,1,"MONTAUP ELECTRIC COMPANY","SOMERSET",0,"BIT COAL",12833,"0M",1294,,,95,57318,21462,76767,61443,26125,64290,61730,25219,52529,14739,5125,47404,25607,10149,50811,58410,21998,42203,65563,26654,42553,52228,21241,48670,53057,20314,65856,44642,17190,76089,48433,18499,83931,70559,26084,98563,1613,6,56511,"BIT","ST" 14,25,1,4,2,85,1,"MONTAUP ELECTRIC COMPANY","SOMERSET",0,"LIGHT OIL",12833,"0M",1294,,,95,143,374,5116,433,1118,3998,115,229,3769,65,186,3583,285,740,4510,629,1593,4110,1349,3410,5229,1777,4429,5348,136,348,5000,0,0,4999,5,26,5687,653,1369,4318,1613,6,56511,"FO2","GT" 14,25,1,3,2,90,15,"NANTUCKET ELEC CO","NANTUCKET",0,"LIGHT OIL",13206,"0M",1294,,,95,7539,12658,2602,7625,13184,8503,7218,12056,5494,6969,12757,2261,7465,13354,7937,7820,14759,9687,10453,19444,7486,10644,19689,5848,7894,13523,10626,6823,12246,7898,7832,14492,3042,9557,16800,2912,1615,6,51977,"FO2","IC" 14,25,1,1,,96,5,"NEW ENGLAND POWER CO","DEERFIELD 2",0,,13433,"0M",1294,,90,95,3908,0,0,2952,0,0,3971,0,0,2045,0,0,1064,0,0,520,0,0,442,0,0,617,0,0,404,0,0,2016,0,0,3583,0,0,2747,0,0,6047,6,52007,"WAT","HY" 14,25,1,1,,96,10,"NEW ENGLAND POWER CO","DEERFIELD 3",0,,13433,"0M",1294,,90,95,4040,0,0,3243,0,0,4233,0,0,2293,0,0,1182,0,0,848,0,0,445,0,0,722,0,0,460,0,0,1885,0,0,3570,0,0,3116,0,0,6083,6,52007,"WAT","HY" 14,25,1,1,,96,15,"NEW ENGLAND POWER CO","DEERFIELD 4",0,,13433,"0M",1294,,90,95,3691,0,0,2835,0,0,3555,0,0,1674,0,0,865,0,0,673,0,0,414,0,0,621,0,0,420,0,0,1920,0,0,3135,0,0,2638,0,0,6119,6,52007,"WAT","HY" 14,25,1,1,,96,20,"NEW ENGLAND POWER CO","DEERFIELD 5",0,,13433,"0M",1294,,90,95,8684,0,0,6946,0,0,8699,0,0,2314,0,0,807,0,0,564,0,0,515,0,0,177,0,0,0,0,0,0,0,0,3382,0,0,5810,0,0,1620,6,52007,"WAT","HY" 14,25,1,1,,96,25,"NEW ENGLAND POWER CO","SHERMAN",0,,13433,"0M",1294,,90,95,4117,0,0,3467,0,0,4264,0,0,1151,0,0,407,0,0,439,0,0,377,0,0,602,0,0,527,0,0,2183,0,0,3889,0,0,2917,0,0,6012,6,52007,"WAT","HY" 14,25,1,2,3,96,27,"NEW ENGLAND POWER CO","BRAYTON PT",0,"HEAVY OIL",13433,"0M",1294,,90,95,40093,74054,435541,65951,116563,318656,49098,75749,438283,41100,69916,368366,2212,5326,519600,0,0,519442,0,0,519401,488,4266,515767,0,0,516617,0,0,516584,7553,10954,505630,71672,125949,379784,1619,6,52007,"FO6","ST" 14,25,1,2,6,96,27,"NEW ENGLAND POWER CO","BRAYTON PT",0,"BIT COAL",13433,"0M",1294,,90,95,657136,245754,255528,538158,200282,277893,335153,130042,379361,336389,128159,523785,552184,203304,520224,709319,259373,461575,714608,267126,390587,681408,256270,431828,600517,222478,518312,676108,250140,322224,643066,226804,159986,692743,256541,166201,1619,6,52007,"BIT","ST" 14,25,1,2,9,96,27,"NEW ENGLAND POWER CO","BRAYTON PT",0,"NAT GAS",13433,"0M",1294,,90,95,2475,65992,0,19895,234494,0,87264,1046891,0,115149,1305242,0,165738,1925331,0,192541,2159965,0,121121,1465806,0,138514,1578722,0,90677,1067560,0,7950,208839,0,642,50267,0,499,65467,0,1619,6,52007,"NG","ST" 14,25,1,3,2,96,27,"NEW ENGLAND POWER CO","BRAYTON PT",0,"LIGHT OIL",13433,"0M",1294,,90,95,48,91,0,168,321,0,49,91,0,66,120,0,149,212,0,229,427,0,434,803,0,429,813,0,49,97,0,17,33,0,0,0,0,122,221,0,1619,6,52007,"FO2","IC" 14,25,1,2,3,96,33,"NEW ENGLAND POWER CO","SALEM HABR",0,"HEAVY OIL",13433,"0M",1294,,90,95,4216,6811,427550,19621,51462,372000,43825,80929,296042,52176,100975,196885,88546,157427,294207,74155,134469,405510,143472,245061,157683,78033,135040,315193,15952,29894,481681,10242,22800,451257,31856,63264,446411,130138,177251,300301,1626,6,52007,"FO6","ST" 14,25,1,2,6,96,33,"NEW ENGLAND POWER CO","SALEM HABR",0,"BIT COAL",13433,"0M",1294,,90,95,170230,67910,116594,174526,68827,87604,182421,75469,107334,180983,73494,87888,123760,53441,145441,149482,64633,132065,157915,67184,148469,169338,69504,116124,140768,59871,93091,133365,56779,72780,147538,65216,99054,158287,70574,72828,1626,6,52007,"BIT","ST" 14,25,1,3,2,96,40,"NEW ENGLAND POWER CO","GLOUCESTER",0,"LIGHT OIL",13433,"0M",1294,,90,95,180,400,1027,365,1056,1255,495,500,1183,191,320,863,798,1430,1148,331,615,1333,398,757,1219,767,1957,1197,100,165,1033,0,0,1031,2,3,1465,491,918,1190,1624,6,52007,"FO2","IC" 14,25,1,3,2,96,50,"NEW ENGLAND POWER CO","NEWBURYPORT",0,"LIGHT OIL",13433,"0M",1294,,90,95,23,31,898,242,431,942,1,0,943,124,222,720,79,135,986,279,516,828,384,714,746,466,834,770,24,47,723,5,10,715,0,0,929,200,360,998,1625,6,52007,"FO2","IC" 14,25,1,1,,96,55,"NEW ENGLAND POWER CO","FIFE BROOK",0,,13433,"0M",1294,,90,95,4107,0,0,3775,0,0,4880,0,0,1321,0,0,312,0,0,338,0,0,198,0,0,494,0,0,291,0,0,2274,0,0,4150,0,0,3161,0,0,8004,6,52007,"WAT","HY" 14,25,1,1,,96,60,"NEW ENGLAND POWER CO","BEAR SWAMP",0,"P-PUMPSTG",13433,"0M",1294,,90,95,-17861,61325,0,-15324,57381,0,-16082,58258,0,-15241,53916,0,-14630,56226,0,-16812,61971,0,-18159,63682,0,-15902,62948,0,-16995,61404,0,-17477,62001,0,-15650,58713,0,-16215,58454,0,8005,6,52007,"WAT","HY" 14,25,1,1,,145,5,"W MASSACHUSETTS ELEC CO","CABOT",0,,20455,"0M",1294,,555,95,27350,0,0,20962,0,0,33562,0,0,28813,0,0,2450,0,0,11373,0,0,5730,0,0,10888,0,0,1060,0,0,21360,0,0,32264,0,0,23532,0,0,1629,6,53266,"WAT","HY" 14,25,1,1,,145,10,"W MASSACHUSETTS ELEC CO","COBBLE MT",0,,20455,"0M",1294,,555,95,2687,0,0,2401,0,0,3134,0,0,1490,0,0,613,0,0,1371,0,0,1579,0,0,2606,0,0,404,0,0,934,0,0,679,0,0,2257,0,0,1630,6,53266,"WAT","HY" 14,25,1,1,,145,12,"W MASSACHUSETTS ELEC CO","DWIGHT",0,,20455,"0M",1294,,555,95,541,0,0,520,0,0,744,0,0,709,0,0,972,0,0,422,0,0,241,0,0,219,0,0,137,0,0,316,0,0,187,0,0,450,0,0,6378,6,53266,"WAT","HY" 14,25,1,1,,145,20,"W MASSACHUSETTS ELEC CO","GARDER FLS",0,,20455,"0M",1294,,555,95,1535,0,0,1501,0,0,2140,0,0,1273,0,0,591,0,0,393,0,0,159,0,0,373,0,0,244,0,0,740,0,0,1394,0,0,1292,0,0,1634,6,53266,"WAT","HY" 14,25,1,1,,145,30,"W MASSACHUSETTS ELEC CO","IND ORCHARD",0,,20455,"0M",1294,,555,95,1913,0,0,854,0,0,1614,0,0,786,0,0,661,0,0,177,0,0,8,0,0,59,0,0,4,0,0,434,0,0,1375,0,0,741,0,0,6379,6,53266,"WAT","HY" 14,25,1,1,,145,32,"W MASSACHUSETTS ELEC CO","PUTTS BRDGE",0,,20455,"0M",1294,,555,95,224,0,0,252,0,0,1368,0,0,249,0,0,550,0,0,741,0,0,249,0,0,393,0,0,186,0,0,1233,0,0,1150,0,0,251,0,0,1637,6,53266,"WAT","HY" 14,25,1,1,,145,33,"W MASSACHUSETTS ELEC CO","RED BRIDGE",0,,20455,"0M",1294,,555,95,2265,0,0,1259,0,0,1699,0,0,1592,0,0,1025,0,0,689,0,0,212,0,0,256,0,0,150,0,0,1248,0,0,7724,0,0,1271,0,0,1638,6,53266,"WAT","HY" 14,25,1,1,,145,35,"W MASSACHUSETTS ELEC CO","TURNERS FL",0,,20455,"0M",1294,,555,95,1180,0,0,-9,0,0,2580,0,0,457,0,0,2357,0,0,3,0,0,320,0,0,753,0,0,1529,0,0,1437,0,0,3487,0,0,96,0,0,6388,6,53266,"WAT","HY" 14,25,1,1,,145,37,"W MASSACHUSETTS ELEC CO","NORTHFLD MT",0,"P-PUMPSTG",20455,"0M",1294,,555,95,-40582,142177,0,-33131,122422,0,-34507,127754,0,-38191,123876,0,-53574,130653,0,-54650,139615,0,-65287,149806,0,-58299,150495,0,-60095,144418,0,-65178,152081,0,-51403,135668,0,-54958,140849,0,547,6,53266,"WAT","HY" 14,25,1,4,2,145,38,"W MASSACHUSETTS ELEC CO","DOREEN",0,"LIGHT OIL",20455,"0M",1294,,555,95,50,156,956,319,789,738,14,84,997,11,135,1029,31,63,967,166,460,863,117,360,1099,422,1231,1099,69,204,1073,-10,0,1073,34,122,951,162,418,771,1631,6,53266,"FO2","GT" 14,25,1,2,2,145,55,"W MASSACHUSETTS ELEC CO","W SPRINGFLD",0,"LIGHT OIL",20455,"0M",1294,,555,95,0,0,533,101,224,458,0,0,458,19,36,411,0,0,411,0,0,411,0,0,411,0,0,411,0,0,411,0,0,411,0,0,411,0,0,379,1642,6,53266,"FO2","ST" 14,25,1,2,3,145,55,"W MASSACHUSETTS ELEC CO","W SPRINGFLD",0,"HEAVY OIL",20455,"0M",1294,,555,95,3033,6175,75421,4119,8425,75374,344,607,80604,1867,3252,77352,19,33,77318,750,1321,75997,1456,2596,73401,758,1343,72058,0,0,72058,0,0,72923,2320,5181,76520,13739,24402,55074,1642,6,53266,"FO6","ST" 14,25,1,2,9,145,55,"W MASSACHUSETTS ELEC CO","W SPRINGFLD",0,"NAT GAS",20455,"0M",1294,,555,95,2167,27681,0,81,1046,0,24872,278755,0,28674,316564,0,33801,372726,0,33691,376470,0,34950,395433,0,39329,440670,0,21443,242289,0,3420,45099,0,110,1547,0,158,1773,0,1642,6,53266,"NG","ST" 14,25,1,4,2,145,55,"W MASSACHUSETTS ELEC CO","W SPRINGFLD",0,"LIGHT OIL",20455,"0M",1294,,555,95,45,159,682,84,220,801,-17,0,801,-12,0,801,-3,12,789,108,297,6777,282,717,1096,319,633,977,0,0,977,0,0,977,0,0,977,0,0,977,1642,6,53266,"FO2","GT" 14,25,1,4,2,145,60,"W MASSACHUSETTS ELEC CO","WOODLAND RD",0,"LIGHT OIL",20455,"0M",1294,,555,95,38,127,1027,218,623,814,3,20,1144,11,96,1048,22,56,992,219,604,924,341,963,1130,373,1030,1017,32,105,1090,-7,0,1090,5,59,1032,156,398,534,1643,6,53266,"FO2","GT" 14,25,5,3,2,532,5,"BRAINTREE (CITY OF)","POTTER",0,"LIGHT OIL",2144,"0M",1294,,,95,1,3,0,40,86,0,2,4,0,8,15,0,18,33,0,0,0,0,66,37,0,90,173,0,8,15,0,16,29,0,0,0,0,47,86,0,1660,6,50315,"FO2","IC" 14,25,5,5,9,532,5,"BRAINTREE (CITY OF)","POTTER",0,"WASTE HT",2144,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1660,6,50315,"NG","CC" 14,25,5,6,2,532,5,"BRAINTREE (CITY OF)","POTTER",0,"LIGHT OIL",2144,"0M",1294,,,95,597,1163,3860,1950,3916,4922,529,946,3897,722,1243,2632,0,0,2595,0,0,2595,0,0,0,0,0,0,0,0,0,418,803,0,0,0,0,563,1271,0,1660,6,50315,"FO2","CT" 14,25,5,6,9,532,5,"BRAINTREE (CITY OF)","POTTER",0,"NAT GAS",2144,"0M",1294,,,95,6985,76876,0,16116,164048,0,4161,42418,0,25648,268544,0,6647,61554,0,0,0,0,6439,68107,0,22225,231091,0,11633,125960,0,2826,30097,0,605,6473,0,2795,30378,0,1660,6,50315,"NG","CT" 14,25,5,1,,597,5,"HOLYOKE (CITY OF)","HOLYOKE",0,,8776,"0M",1294,,,95,1039,0,0,94,0,0,1200,0,0,538,0,0,244,0,0,216,0,0,169,0,0,308,0,0,243,0,0,308,0,0,843,0,0,63,0,0,9864,6,51325,"WAT","HY" 14,25,5,2,3,597,5,"HOLYOKE (CITY OF)","HOLYOKE",0,"HEAVY OIL",8776,"0M",1294,,,95,-34,8,21223,-7,161,18597,-32,0,17335,-149,242,9944,-157,0,11105,-26,144,12014,197,918,10400,173,751,10383,0,0,21744,-26,2,23445,-45,21,21407,48,571,24539,9864,6,51325,"FO6","ST" 14,25,5,2,9,597,5,"HOLYOKE (CITY OF)","HOLYOKE",0,"NAT GAS",8776,"0M",1294,,,95,-406,548,0,-47,7095,0,-432,0,0,-151,1508,0,-180,0,0,-82,2775,0,358,10343,0,495,13260,0,-282,0,0,-300,136,0,-310,907,0,116,8617,0,9864,6,51325,"NG","ST" 14,25,5,3,2,602,1,"HUDSON (CITY OF)","CHERRY ST",0,"LIGHT OIL",8973,"0A",1294,,,95,126,216,6535,468,801,5733,24,47,5687,49,79,5608,60,99,5509,136,242,5267,334,576,4687,237,442,10028,21,36,9992,0,0,9992,0,0,9992,0,613,9379,9038,6,51362,"FO2","IC" 14,25,5,3,9,602,1,"HUDSON (CITY OF)","CHERRY ST",0,"NAT GAS",8973,"0A",1294,,,95,16,177,0,0,0,0,0,0,0,27,276,0,223,2327,0,514,5353,0,813,8555,0,1067,10973,0,248,2679,0,0,0,0,0,0,0,0,0,0,9038,6,51362,"NG","IC" 14,25,5,3,2,613,1,"IPSWICH (CITY OF)","IPSWICH",0,"LIGHT OIL",9442,"0A",1294,,,95,3,144,1524,185,504,1020,-44,84,928,26,97,839,45,81,751,112,229,1817,221,430,1388,171,335,1053,42,71,981,0,0,1991,0,13,1901,70,285,1616,1670,6,51411,"FO2","IC" 14,25,5,3,9,613,1,"IPSWICH (CITY OF)","IPSWICH",0,"NAT GAS",9442,"0A",1294,,,95,0,0,0,0,0,0,-7,91,0,26,564,0,193,2049,0,356,4180,0,540,6225,0,488,5467,0,218,2149,0,0,0,0,0,164,0,0,0,0,1670,6,51411,"NG","IC" 14,25,5,3,2,630,20,"MARBLEHEAD (CITY OF)","COMM ST 2",0,"LIGHT OIL",11624,"0A",1294,,,95,0,0,134,30,54,153,0,0,124,1,4,109,8,23,86,22,43,163,30,67,96,40,77,139,3,3,134,0,0,129,0,0,107,16,31,153,6585,6,51769,"FO2","IC" 14,25,5,3,2,630,25,"MARBLEHEAD (CITY OF)","WILKINS STA",0,"LIGHT OIL",11624,"0A",1294,,,95,24,42,422,242,404,495,3,4,490,17,25,466,41,67,398,140,249,387,184,331,532,214,384,390,17,34,833,0,0,831,0,0,833,105,187,646,6586,6,51769,"FO2","IC" 14,25,5,4,2,640,5,"MASS MUN WHOLESALE ELEC","STONY BROOK",0,"LIGHT OIL",11806,"0M",1294,,,95,868,1812,0,3250,6760,0,1070,2159,0,1016,2152,0,1531,3641,0,3583,7206,0,6923,15010,0,5440,12228,0,1296,2825,0,251,525,0,0,0,0,2081,4355,0,6081,6,56516,"FO2","GT" 14,25,5,5,2,640,5,"MASS MUN WHOLESALE ELEC","STONY BROOK",0,"LIGHT OIL",11806,"0M",1294,,,95,4867,0,0,4882,0,0,1895,0,0,0,0,0,1645,0,0,1298,0,0,2909,0,0,2231,0,0,542,0,0,137,0,0,778,0,0,7866,0,0,6081,6,56516,"FO2","CC" 14,25,5,5,9,640,5,"MASS MUN WHOLESALE ELEC","STONY BROOK",0,"WASTE HT",11806,"0M",1294,,,95,667,6409,0,33,225,0,713,7903,0,38860,226425,0,32080,282829,0,30410,271547,0,30355,268417,0,22281,199679,0,16911,152536,0,13731,126250,0,649,6336,0,0,0,0,6081,6,56516,"NG","CC" 14,25,5,6,2,640,5,"MASS MUN WHOLESALE ELEC","STONY BROOK",0,"LIGHT OIL",11806,"0M",1294,,,95,16765,34499,275954,17076,35625,171066,1732,3145,164811,15194,31318,130811,4458,10049,117055,3259,6474,203614,7129,14689,223923,5719,12097,199458,1427,2966,193410,406,852,191674,2974,6318,192851,24527,50346,140778,6081,6,56516,"FO2","CT" 14,25,5,6,9,640,5,"MASS MUN WHOLESALE ELEC","STONY BROOK",0,"NAT GAS",11806,"0M",1294,,,95,2298,22081,0,33,225,0,7123,78947,0,38860,226425,0,85133,750563,0,75927,677993,0,74156,655728,0,57044,511219,0,44278,399380,0,38588,354794,0,2475,24166,0,0,0,0,6081,6,56516,"NG","CT" 14,25,5,4,2,668,10,"PEABODY (CITY OF)","WATERS RIVR",0,"LIGHT OIL",14605,"0M",1294,,,95,4,11,7009,461,990,6019,3,13,6006,114,218,5789,218,411,5378,259,572,4806,1447,3081,5724,79,204,5787,0,0,5770,0,0,5770,0,0,5770,751,1304,4214,1678,6,52270,"FO2","GT" 14,25,5,4,9,668,10,"PEABODY (CITY OF)","WATERS RIVR",0,"NAT GAS",14605,"0M",1294,,,95,71,948,0,818,8676,0,0,0,0,298,3898,0,500,6079,0,1161,14052,0,735,10563,0,2810,34245,0,871,10971,0,16,244,0,0,0,0,136,1612,0,1678,6,52270,"NG","GT" 14,25,5,3,2,695,1,"SHREWSBURY (CITY OF)","SHREWSBURY",0,"LIGHT OIL",17127,"0A",1294,,,95,-48,53,1717,-20,96,1621,-72,0,1621,-59,0,1621,-27,43,1577,28,133,1444,206,450,994,393,793,1630,-12,58,1571,-52,4,1568,-66,0,1568,5,146,1421,6125,6,52653,"FO2","IC" 14,25,5,2,3,711,10,"TAUNTON (CITY OF)","CLRY FLOOD",0,"HEAVY OIL",18488,"0M",1294,,,95,707,1487,45484,117,274,41056,124,1171,40232,227,881,38944,154,338,18232,1782,3821,13122,1997,4404,13146,1671,3714,26632,1017,1981,30701,285,1042,41468,209,665,43572,1269,2308,3691,1682,6,52885,"FO6","ST" 14,25,5,5,3,711,10,"TAUNTON (CITY OF)","CLRY FLOOD",0,"HEAVY OIL",18488,"0M",1294,,,95,2588,4259,0,3074,4987,0,7,71,0,264,1016,0,10569,21610,0,5376,8750,0,7132,10296,0,7761,11325,0,6430,8473,0,269,1218,0,135,435,0,7563,7563,0,1682,6,52885,"FO6","CC" 14,25,5,5,9,711,10,"TAUNTON (CITY OF)","CLRY FLOOD",0,"NAT GAS",18488,"0M",1294,,,95,0,0,0,88,2162,0,0,0,0,0,7,0,70,898,0,11828,118101,0,7953,72245,0,11517,102477,0,3409,38796,0,275,3743,0,0,0,0,0,0,0,1682,6,52885,"NG","CC" 14,25,5,6,2,711,10,"TAUNTON (CITY OF)","CLRY FLOOD",0,"LIGHT OIL",18488,"0M",1294,,,95,600,1721,500,1175,3321,414,0,10,405,0,0,405,23,155,250,230,719,0,424,1426,393,75,247,983,20,69,920,0,0,922,172,601,798,1596,4611,881,1682,6,52885,"FO2","CT" 14,25,5,6,3,711,10,"TAUNTON (CITY OF)","CLRY FLOOD",0,"HEAVY OIL",18488,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1682,6,52885,"FO6","CT" 14,25,5,6,9,711,10,"TAUNTON (CITY OF)","CLRY FLOOD",0,"NAT GAS",18488,"0M",1294,,,95,215,3547,0,0,0,0,0,0,0,9,220,0,91,2523,0,3269,55134,0,3573,59309,0,4974,79500,0,4776,58796,0,188,2751,0,2,41,0,0,0,0,1682,6,52885,"NG","CT" 15,44,1,3,2,59,1,"BLOCK ISLAND POWER CO","BLOCK ISL",0,"LIGHT OIL",1857,"0A",1294,,,95,640,929,1894,560,757,1368,454,801,1953,666,926,2412,871,1183,2384,728,1492,1815,1748,2173,1258,1686,2317,1251,852,1532,1104,890,1214,1044,683,904,1044,537,1042,1378,6567,6,50270,"FO2","IC" 15,44,1,2,3,60,5,"NEW ENGLAND POWER CO","MANCHSTR ST",0,"HEAVY OIL",13433,"0M",1294,,90,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6954,6984,12805,21121,8031,15471,21089,11950,17787,9381,10642,17134,20900,3236,6,52007,"FO6","ST" 15,44,1,2,6,60,5,"NEW ENGLAND POWER CO","MANCHSTR ST",0,"BIT COAL",13433,"0M",1294,,90,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3236,6,52007,"BIT","ST" 15,44,1,2,9,60,5,"NEW ENGLAND POWER CO","MANCHSTR ST",0,"NAT GAS",13433,"0M",1294,,90,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,185,6790,0,5496,108488,0,22180,283931,0,57696,544903,0,43911,426261,0,200212,1571059,0,273062,2060878,0,3236,6,52007,"NG","ST" 15,44,1,3,2,71,5,"NEWPORT ELECTRIC CORP","ELDRED",0,"LIGHT OIL",13549,"0A",1294,,,95,0,0,912,146,241,919,0,0,916,14,24,893,280,476,872,38,285,806,254,445,603,431,759,765,53,97,884,0,0,884,30,55,818,186,311,942,3240,6,52046,"FO2","IC" 15,44,1,3,2,71,15,"NEWPORT ELECTRIC CORP","JEPSON",0,"LIGHT OIL",13549,"0A",1294,,,95,10,19,1047,104,179,864,0,0,1112,13,24,1094,58,103,998,35,303,926,228,421,966,339,620,1037,31,56,977,0,0,977,0,0,977,162,273,920,3241,6,52046,"FO2","IC" 15,44,5,1,,600,1,"PROVIDENCE (CITY OF)","PROVIDENCE",0,,15440,"0A",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3245,6,52404,"WAT","HY" 16,9,1,1,,21,1,"GILMAN BROTHERS CO","GILMAN",0,,6885,"0A",1294,"R",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,536,6,50309,"WAT","HY" 16,9,1,1,,37,5,"CONNECTICUT LGT & PWR CO","BULLS BRDGE",0,,4176,"0M",1294,,550,95,4542,0,0,3859,0,0,4535,0,0,4526,0,0,711,0,0,1545,0,0,596,0,0,576,0,0,83,0,0,3291,0,0,5258,0,0,4512,0,0,541,6,50651,"WAT","HY" 16,9,1,1,,37,15,"CONNECTICUT LGT & PWR CO","ROBERTSVLE",0,,4176,"0M",1294,,550,95,228,0,0,144,0,0,74,0,0,117,0,0,0,0,0,23,0,0,4,0,0,14,0,0,1,0,0,58,0,0,0,0,0,7,0,0,549,6,50651,"WAT","HY" 16,9,1,1,,37,20,"CONNECTICUT LGT & PWR CO","ROCKY RIVER",0,"C-PUMPSTG",4176,"0M",1294,,550,95,-532,573,0,-108,831,0,-5011,4942,0,-3890,3881,0,-2483,2464,0,-30,0,0,-50,160,0,-45,941,0,-34,0,0,-295,262,0,3242,0,0,3543,0,0,539,6,50651,"WAT","HY" 16,9,1,1,,37,25,"CONNECTICUT LGT & PWR CO","SCOTLAND DM",0,,4176,"0M",1294,,550,95,1196,0,0,762,0,0,1285,0,0,753,0,0,65,0,0,169,0,0,32,0,0,83,0,0,9,0,0,401,0,0,43,0,0,524,0,0,551,6,50651,"WAT","HY" 16,9,1,1,,37,28,"CONNECTICUT LGT & PWR CO","SHEPAUG",0,,4176,"0M",1294,,550,95,19987,0,0,8510,0,0,16746,0,0,8668,0,0,479,0,0,3113,0,0,1323,0,0,1665,0,0,561,0,0,4280,0,0,17593,0,0,9586,0,0,552,6,50651,"WAT","HY" 16,9,1,1,,37,30,"CONNECTICUT LGT & PWR CO","STEVENSON",0,,4176,"0M",1294,,550,95,14594,0,0,6873,0,0,12878,0,0,7022,0,0,5946,0,0,2333,0,0,1155,0,0,1565,0,0,585,0,0,7574,0,0,15018,0,0,7269,0,0,553,6,50651,"WAT","HY" 16,9,1,1,,37,33,"CONNECTICUT LGT & PWR CO","TAFTVILLE",0,,4176,"0M",1294,,550,95,1047,0,0,773,0,0,1181,0,0,662,0,0,0,0,0,286,0,0,106,0,0,168,0,0,58,0,0,376,0,0,802,0,0,539,0,0,554,6,50651,"WAT","HY" 16,9,1,1,,37,35,"CONNECTICUT LGT & PWR CO","TUNNEL",0,,4176,"0M",1294,,550,95,1344,0,0,790,0,0,1127,0,0,808,0,0,808,0,0,130,0,0,51,0,0,62,0,0,13,0,0,528,0,0,1238,0,0,756,0,0,557,6,50651,"WAT","HY" 16,9,1,4,2,37,35,"CONNECTICUT LGT & PWR CO","TUNNEL",0,"LIGHT OIL",4176,"0M",1294,,550,95,92,241,1121,148,413,1052,-10,0,1052,8,34,1017,-9,0,1017,174,492,1054,399,1075,1028,391,1123,1060,-10,0,1060,-9,0,1060,-8,0,1060,247,642,1013,557,6,50651,"FO2","GT" 16,9,1,4,2,37,37,"CONNECTICUT LGT & PWR CO","COS COB",0,"LIGHT OIL",4176,"0M",1294,,550,95,338,879,6366,1004,2550,5530,-6,0,6730,61,328,6402,100,252,6836,1043,2766,6164,1606,4183,6744,1574,4512,6417,89,372,6045,10,115,5931,-7,47,5884,478,1250,6205,542,6,50651,"FO2","GT" 16,9,1,2,2,37,40,"CONNECTICUT LGT & PWR CO","DEVON",0,"LIGHT OIL",4176,"0M",1294,,550,95,4,7,607,26,48,738,10,19,719,8,14,705,6,12,693,5,10,683,12,21,662,5,10,652,35,67,586,12,21,564,10,19,545,126,250,652,544,6,50651,"FO2","ST" 16,9,1,2,3,37,40,"CONNECTICUT LGT & PWR CO","DEVON",0,"HEAVY OIL",4176,"0M",1294,,550,95,1691,2896,140820,5317,8938,131882,6310,10503,160145,2309,3909,156236,1040,1748,154488,1026,1746,152742,366,624,152118,0,0,152118,0,0,152118,1119,1895,186866,0,0,223227,52715,95704,164704,544,6,50651,"FO6","ST" 16,9,1,2,9,37,40,"CONNECTICUT LGT & PWR CO","DEVON",0,"NAT GAS",4176,"0M",1294,,550,95,139882,1480772,0,125833,1333372,0,140034,1484076,0,74718,805341,0,129292,1364215,0,113222,1209824,0,134347,1440396,0,141005,1520883,0,84240,919763,0,92690,988325,0,85651,910220,0,1027,11734,0,544,6,50651,"NG","ST" 16,9,1,4,2,37,40,"CONNECTICUT LGT & PWR CO","DEVON",0,"LIGHT OIL",4176,"0M",1294,,550,95,-8,0,826,52,143,1016,-6,0,1016,11,41,975,15,50,924,93,252,873,213,464,899,323,840,1155,12,42,1113,14,46,864,-8,0,864,126,312,755,544,6,50651,"FO2","GT" 16,9,1,2,2,37,45,"CONNECTICUT LGT & PWR CO","MONTVILLE",0,"LIGHT OIL",4176,"0M",1294,,550,95,79,187,224,71,184,282,0,0,277,35,81,316,26,52,254,126,275,254,225,460,205,169,342,281,13,78,193,-9,27,344,11,35,57,248,530,404,546,6,50651,"FO2","ST" 16,9,1,2,3,37,45,"CONNECTICUT LGT & PWR CO","MONTVILLE",0,"HEAVY OIL",4176,"0M",1294,,550,95,19404,42123,179930,11903,28403,229734,496,984,267130,8852,18669,287361,73,131,287230,16090,31789,255441,33046,60820,194621,29759,54794,250449,448,2452,286041,-459,1261,284780,4782,14127,272628,50192,96782,219079,546,6,50651,"FO6","ST" 16,9,1,2,9,37,45,"CONNECTICUT LGT & PWR CO","MONTVILLE",0,"NAT GAS",4176,"0M",1294,,550,95,2644,35575,0,1337,19886,0,14239,177907,0,15760,209674,0,26332,300080,0,15321,191070,0,33080,384304,0,29657,341116,0,660,22744,0,-410,7132,0,948,17617,0,2622,31910,0,546,6,50651,"NG","ST" 16,9,1,3,2,37,45,"CONNECTICUT LGT & PWR CO","MONTVILLE",0,"LIGHT OIL",4176,"0M",1294,,550,95,5,11,429,51,91,429,3,5,429,21,47,429,5,10,429,32,60,429,47,88,429,44,82,429,5,10,429,0,0,429,7,15,429,14,27,429,546,6,50651,"FO2","IC" 16,9,1,2,2,37,46,"CONNECTICUT LGT & PWR CO","NORWALK HAR",0,"LIGHT OIL",4176,"0M",1294,,550,95,1942,3751,1166,1049,1831,1166,1411,2570,1166,801,1409,746,830,1566,1275,1306,2393,1275,1212,2164,1208,1005,1793,1129,448,996,1090,743,1549,1201,1863,3623,816,1573,2830,1073,548,6,50651,"FO2","ST" 16,9,1,2,3,37,46,"CONNECTICUT LGT & PWR CO","NORWALK HAR",0,"HEAVY OIL",4176,"0M",1294,,550,95,61485,109340,281515,116317,186438,251428,53269,89422,277523,112195,177490,244461,49615,86635,387526,72024,117143,423659,87276,142042,395624,69104,110519,365065,12764,26032,444868,12966,24423,458286,56112,97835,437824,98414,160154,343905,548,6,50651,"FO6","ST" 16,9,1,4,2,37,46,"CONNECTICUT LGT & PWR CO","NORWALK HAR",0,"LIGHT OIL",4176,"0M",1294,"R",550,95,0,0,0,0,0,0,-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,548,6,50651,"FO2","GT" 16,9,1,1,,37,60,"CONNECTICUT LGT & PWR CO","BANTAM",0,,4176,"0M",1294,,550,95,166,0,0,122,0,0,177,0,0,99,0,0,0,0,0,24,0,0,2,0,0,9,0,0,0,0,0,66,0,0,182,0,0,126,0,0,6457,6,50651,"WAT","HY" 16,9,1,1,,37,65,"CONNECTICUT LGT & PWR CO","FLS VILLAGE",0,,4176,"0M",1294,,550,95,6485,0,0,3067,0,0,6148,0,0,4269,0,0,57,0,0,1043,0,0,359,0,0,386,0,0,86,0,0,3283,0,0,6134,0,0,3241,0,0,560,6,50651,"WAT","HY" 16,9,1,4,2,37,70,"CONNECTICUT LGT & PWR CO","FRANKLIN DR",0,"LIGHT OIL",4176,"0M",1294,,550,95,87,251,1073,112,303,770,-21,0,770,6,41,429,9,45,1229,156,508,1033,386,937,931,385,1480,880,-11,0,808,-12,0,808,-14,0,0,109,306,1000,561,6,50651,"FO2","GT" 16,9,1,2,2,37,75,"CONNECTICUT LGT & PWR CO","MIDDLETOWN",0,"LIGHT OIL",4176,"0M",1294,,550,95,52,116,72,106,200,205,37,72,134,69,119,181,93,171,177,62,115,62,142,274,121,143,283,195,159,331,184,25,61,123,89,174,116,58,124,159,562,6,50651,"FO2","ST" 16,9,1,2,3,37,75,"CONNECTICUT LGT & PWR CO","MIDDLETOWN",0,"HEAVY OIL",4176,"0M",1294,,550,95,28156,57773,619646,82338,144562,470965,28954,52136,494722,112799,180932,367774,91771,154447,321716,103385,178821,285273,180564,315539,192342,120265,219668,308678,14240,27382,395204,9172,20697,432521,29631,53865,465010,116423,197687,379501,562,6,50651,"FO6","ST" 16,9,1,4,2,37,75,"CONNECTICUT LGT & PWR CO","MIDDLETOWN",0,"LIGHT OIL",4176,"0M",1294,,550,95,0,0,986,60,155,998,2,12,986,0,0,986,18,56,1096,133,235,803,220,518,962,326,864,969,6,21,948,0,0,946,0,0,936,0,0,936,562,6,50651,"FO2","GT" 16,9,1,2,"C",37,80,"CONNECTICUT LGT & PWR CO","S MEADOW",0,"REFUSE",4176,"0M",1294,,550,95,36668,0,0,31584,0,0,30750,0,0,36558,0,0,4988,0,0,38064,0,0,35273,0,0,35840,0,0,37803,0,0,39379,0,0,36583,0,0,40236,0,0,563,6,50651,"GEO","ST" 16,9,1,4,2,37,80,"CONNECTICUT LGT & PWR CO","S MEADOW",0,"LIGHT OIL",4176,"0M",1294,,550,95,547,1286,33605,2263,5797,27807,-4,195,27613,257,794,4952,465,1373,43574,2527,6621,35953,4081,8784,28189,3486,11650,34410,234,1143,29931,-49,0,29931,56,271,29660,2479,6072,23588,563,6,50651,"FO2","GT" 16,9,1,4,2,37,85,"CONNECTICUT LGT & PWR CO","TORRINGTN T",0,"LIGHT OIL",4176,"0M",1294,,550,95,80,183,802,-19,0,802,9,49,753,4,24,729,-6,0,1062,163,373,867,4081,6864,28189,583,1059,947,4,16,931,-7,0,931,-8,0,931,173,446,1006,565,6,50651,"FO2","GT" 16,9,1,4,2,37,90,"CONNECTICUT LGT & PWR CO","BRANFORD",0,"LIGHT OIL",4176,"0M",1294,,550,95,-23,0,993,-11,0,993,-12,0,983,-9,0,993,-12,0,993,-15,0,963,303,888,1170,580,1248,981,112,115,1073,-7,12,1061,12,62,999,103,312,1042,540,6,50651,"FO2","GT" 16,9,1,2,1,45,1,"CONN YANKEE ATOMIC PWR CO","HADDAM NECK",0,"NUCLEAR",4187,"0M",1294,,551,95,349804,0,0,-2724,0,0,-2714,0,0,80321,0,0,411060,0,0,385019,0,0,346822,0,0,397229,0,0,404771,0,0,427136,0,0,421633,0,0,435253,0,0,558,6,50652,"UR","ST" 16,9,1,1,,70,1,"FARMINGTON RIVER POWER CO","RAINBOW",0,,6207,"0A",1294,,,95,4465,0,0,2602,0,0,3654,0,0,2574,0,0,1712,0,0,1108,0,0,787,0,0,842,0,0,700,0,0,2530,0,0,4222,0,0,2756,0,0,559,6,50970,"WAT","HY" 16,9,1,2,1,85,1,"NORTHEAST NUCL ENERGY CO","MILLSTONE",0,"NUCLEAR",21687,"0M",1294,,553,95,474794,0,0,424364,0,0,479164,0,0,452923,0,0,470915,0,0,397551,0,0,307242,0,0,369216,0,0,459416,0,0,478184,0,0,46176,0,0,-2630,0,0,566,6,50005,"UR","ST" 16,9,1,2,1,85,2,"NORTHEAST NUCL ENERGY CO","MILLSTONE",0,"NUCLEAR",21687,"0M",1294,,553,95,-2968,0,0,-3117,0,0,-2841,0,0,12840,0,0,0,0,0,0,0,0,-8427,0,0,340333,0,0,625348,0,0,645987,0,0,618792,0,0,511064,0,0,566,6,50005,"UR","ST" 16,9,1,2,1,85,3,"NORTHEAST NUCL ENERGY CO","MILLSTONE",0,"NUCLEAR",21687,"0M",1294,,553,95,853882,0,0,758672,0,0,851613,0,0,328284,0,0,0,0,0,594786,0,0,853005,0,0,844847,0,0,822134,0,0,852985,0,0,817800,0,0,422956,0,0,566,6,50005,"UR","ST" 16,9,1,2,2,159,3,"UNITED ILLUMINATING CO","BRDGEPT HBR",0,"LIGHT OIL",19497,"0M",1294,,,95,289,498,533,83,144,555,103,183,538,278,575,297,94,164,466,159,276,523,127,224,632,239,436,363,60,105,591,207,368,557,52,92,465,58,101,530,568,6,53003,"FO2","ST" 16,9,1,2,3,159,3,"UNITED ILLUMINATING CO","BRDGEPT HBR",0,"HEAVY OIL",19497,"0M",1294,,,95,12678,20036,157706,31465,49414,142873,1716,2749,140124,28015,51807,143380,11615,18496,124884,34707,55499,150609,43253,69685,122107,18699,30642,149294,6814,10677,163242,4908,7842,155400,4195,6665,148735,54634,86347,0,568,6,53003,"FO6","ST" 16,9,1,2,6,159,3,"UNITED ILLUMINATING CO","BRDGEPT HBR",0,"BIT COAL",19497,"0M",1294,,,95,193441,73716,182983,223214,85285,166858,221070,86802,148636,4755,2176,201542,224862,86475,170775,217578,84500,168741,225684,88542,121774,166492,67303,123827,199715,77070,157924,143992,56780,199095,198867,77375,176894,249682,95223,163986,568,6,53003,"BIT","ST" 16,9,1,4,2,159,3,"UNITED ILLUMINATING CO","BRDGEPT HBR",0,"LIGHT OIL",19497,"0M",1294,,,95,4,8,549,151,259,469,0,0,647,5,12,635,10,18,617,12,22,595,145,256,696,308,560,493,63,111,560,0,0,560,9,16,545,75,130,594,568,6,53003,"FO2","GT" 16,9,1,2,2,159,5,"UNITED ILLUMINATING CO","ENGLISH",0,"LIGHT OIL",19497,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,569,6,53003,"FO2","ST" 16,9,1,2,3,159,5,"UNITED ILLUMINATING CO","ENGLISH",0,"HEAVY OIL",19497,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,569,6,53003,"FO6","ST" 16,9,1,2,2,159,12,"UNITED ILLUMINATING CO","N HAVEN HBR",0,"LIGHT OIL",19497,"0M",1294,,,95,876,1540,484,437,731,468,424,737,445,327,564,583,511,892,406,254,441,667,361,632,570,401,702,762,359,651,646,23,502,680,959,1741,546,779,1314,482,6156,6,53003,"FO2","ST" 16,9,1,2,3,159,12,"UNITED ILLUMINATING CO","N HAVEN HBR",0,"HEAVY OIL",19497,"0M",1294,,,95,104071,166097,286634,171042,260046,151260,95848,151028,241794,147390,227183,379543,69013,110799,306351,74009,117219,286218,97251,153426,333078,88533,139665,374595,39346,64393,310202,163,3184,307018,72476,120773,186245,162959,252660,0,6156,6,53003,"FO6","ST" 16,9,1,2,9,159,12,"UNITED ILLUMINATING CO","N HAVEN HBR",0,"NAT GAS",19497,"0M",1294,,,95,0,0,0,0,0,0,31250,307224,0,64504,630374,0,76077,749979,0,81590,800742,0,99404,985733,0,49501,489902,0,13044,134068,0,34,4180,0,0,0,0,0,0,0,6156,6,53003,"NG","ST" 16,9,5,1,,556,5,"NORWICH (CITY OF)","SECOND ST",0,,13831,"0A",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,174,0,0,101,0,0,67,0,0,17,0,0,180,0,0,272,0,0,324,0,0,580,6,52123,"WAT","HY" 16,9,5,1,,556,10,"NORWICH (CITY OF)","OCCUM",0,,13831,"0A",1294,,,95,516,0,0,356,0,0,529,0,0,370,0,0,225,0,0,257,0,0,63,0,0,95,0,0,42,0,0,215,0,0,420,0,0,292,0,0,582,6,52123,"WAT","HY" 16,9,5,1,,556,13,"NORWICH (CITY OF)","TENTH ST",0,,13831,"0A",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,83,0,0,0,0,0,113,0,0,54,0,0,255,0,0,534,0,0,636,0,0,583,6,52123,"WAT","HY" 16,9,5,4,2,556,20,"NORWICH (CITY OF)","N MAIN ST",0,"LIGHT OIL",13831,"0A",1294,,,95,0,0,1935,53,168,1767,0,0,1767,0,0,1767,23,56,1711,62,161,1550,402,1007,1693,531,1325,1518,0,0,1518,0,0,1518,0,0,1518,117,296,2388,581,6,52123,"FO2","GT" 16,9,5,3,2,560,1,"SOUTH NORWALK (CITY OF)","SO NORWALK",0,"LIGHT OIL",17569,"0A",1294,,,95,50,90,1114,84,147,1614,27,49,1523,27,45,1455,71,123,1331,70,125,1235,242,444,819,209,351,1604,20,34,1570,2,4,1736,9,13,1671,98,158,1418,6598,6,52704,"FO2","IC" 16,9,5,2,3,567,1,"WALLINGFORD (CITY OF)","PIERCE",0,"HEAVY OIL",20038,"0A",1294,,,95,0,15,1540,368,1067,2318,0,0,2318,0,0,2318,0,0,2318,0,0,2318,0,0,2318,0,0,2318,146,445,1873,0,0,1873,0,0,1873,0,0,1873,6635,6,53175,"FO6","ST" 21,36,1,1,,35,10,"CENTRAL HUDSON GAS & ELEC","DASHVILLE",0,,3249,"0M",1294,,,95,2381,0,0,502,0,0,1130,0,0,814,0,0,844,0,0,273,0,0,156,0,0,52,0,0,6,0,0,1173,0,0,1735,0,0,901,0,0,2481,6,50484,"WAT","HY" 21,36,1,1,,35,18,"CENTRAL HUDSON GAS & ELEC","NEVERSINK",0,,3249,"0M",1294,,,95,4408,0,0,4221,0,0,4645,0,0,2716,0,0,2618,0,0,2849,0,0,10968,0,0,9289,0,0,3298,0,0,2724,0,0,2482,0,0,4970,0,0,2483,6,50484,"WAT","HY" 21,36,1,1,,35,20,"CENTRAL HUDSON GAS & ELEC","STURGEON PL",0,,3249,"0M",1294,,,95,9300,0,0,4140,0,0,8251,0,0,4665,0,0,3127,0,0,1123,0,0,872,0,0,359,0,0,111,0,0,5834,0,0,7954,0,0,3663,0,0,2486,6,50484,"WAT","HY" 21,36,1,2,3,35,25,"CENTRAL HUDSON GAS & ELEC","DANSKAMMER",0,"HEAVY OIL",3249,"0M",1294,,,95,0,0,10567,2887,4585,13091,0,0,13091,0,0,13091,377,619,12472,1176,2123,10349,198,406,9943,0,0,9943,0,0,9943,0,0,9943,16,30,9913,0,0,9913,2480,6,50484,"FO6","ST" 21,36,1,2,6,35,25,"CENTRAL HUDSON GAS & ELEC","DANSKAMMER",0,"BIT COAL",3249,"0M",1294,,,95,180547,67912,176943,208851,77841,149786,144579,54893,173619,180437,67955,164986,58267,23110,161831,149627,57630,163884,131893,51114,152154,127793,49654,170960,144488,55872,134561,60315,24424,150152,137406,60589,138420,208309,77898,129136,2480,6,50484,"BIT","ST" 21,36,1,2,9,35,25,"CENTRAL HUDSON GAS & ELEC","DANSKAMMER",0,"NAT GAS",3249,"0M",1294,,,95,12788,136338,0,5348,58875,0,52133,554622,0,1003,12881,0,26410,269381,0,9355,110458,0,50047,563362,0,64005,727957,0,42268,475832,0,72329,806049,0,21208,238996,0,526,5007,0,2480,6,50484,"NG","ST" 21,36,1,3,2,35,25,"CENTRAL HUDSON GAS & ELEC","DANSKAMMER",0,"LIGHT OIL",3249,"0M",1294,,,95,38,70,119,10,15,278,29,38,240,10,9,231,5,9,222,30,55,167,29,60,281,48,81,200,48,99,274,48,83,191,38,76,289,9,16,273,2480,6,50484,"FO2","IC" 21,36,1,4,2,35,35,"CENTRAL HUDSON GAS & ELEC","SOUTH CAIRO",0,"LIGHT OIL",3249,"0M",1294,,,95,74,178,2486,0,0,2486,0,0,2486,0,0,2486,13,31,2455,198,577,1878,16,34,1844,70,197,1647,0,0,2719,0,0,2719,39,93,2626,18,49,2577,2485,6,50484,"FO2","GT" 21,36,1,4,2,35,40,"CENTRAL HUDSON GAS & ELEC","W COXSACKIE",0,"LIGHT OIL",3249,"0M",1294,,,95,0,0,2176,0,0,2176,0,0,2176,0,0,2176,0,0,2176,0,0,2176,0,0,2176,0,0,2176,0,0,2176,0,0,2176,0,0,2176,0,0,2176,2487,6,50484,"FO2","GT" 21,36,1,4,9,35,40,"CENTRAL HUDSON GAS & ELEC","W COXSACKIE",0,"NAT GAS",3249,"0M",1294,,,95,90,1181,0,32,427,0,0,0,0,45,632,0,59,962,0,631,9351,0,109,1557,0,530,7243,0,0,0,0,52,789,0,180,2430,0,69,1043,0,2487,6,50484,"NG","GT" 21,36,1,2,2,35,45,"CENTRAL HUDSON GAS & ELEC","ROSETON JO",0,"LIGHT OIL",3249,"0M",1294,,,95,1744,3069,2289,782,1361,3014,1071,2036,2369,0,0,2542,0,0,2542,0,0,2542,0,0,2542,0,0,2542,0,0,2542,0,17,2525,654,2512,1229,581,1004,2137,8006,6,50484,"FO2","ST" 21,36,1,2,3,35,45,"CENTRAL HUDSON GAS & ELEC","ROSETON JO",0,"HEAVY OIL",3249,"0M",1294,,,95,49649,80148,781308,157108,249990,495225,13890,23984,478029,0,0,478029,0,0,478029,0,0,604069,0,0,604069,0,0,604069,0,0,604069,0,0,589640,1356,4755,599314,189513,299562,451927,8006,6,50484,"FO6","ST" 21,36,1,2,9,35,45,"CENTRAL HUDSON GAS & ELEC","ROSETON JO",0,"NAT GAS",3249,"0M",1294,,,95,33526,336575,0,69660,692555,0,24026,260204,0,0,0,0,177930,1880760,0,186946,1950511,0,310122,3310810,0,247281,2627847,0,0,0,0,0,0,0,2849,61824,0,7068,69278,0,8006,6,50484,"NG","ST" 21,36,1,1,,35,50,"CENTRAL HUDSON GAS & ELEC","HIGH FALLS",0,,3249,"0M",1294,,,95,1184,0,0,92,0,0,1122,0,0,69,0,0,143,0,0,23,0,0,26,0,0,0,0,0,0,0,0,340,0,0,1057,0,0,170,0,0,579,6,50484,"WAT","HY" 21,36,1,1,,37,5,"CENTRAL VT PUB SERV CORP","CARVERS FLS",0,,3292,"0A",1294,,350,95,921,0,0,597,0,0,1182,0,0,1121,0,0,691,0,0,250,0,0,18,0,0,58,0,0,0,0,0,391,0,0,1196,0,0,502,0,0,6456,6,50503,"WAT","HY" 21,36,1,2,3,40,1,"CONSOL EDISON CO N Y INC","ARTHUR KILL",0,"HEAVY OIL",4226,"0M",1294,,,95,0,0,5711,0,0,5711,0,0,5711,0,0,5711,0,0,5711,0,0,5711,0,0,5711,7328,11940,18519,0,0,18519,0,0,18519,0,0,18513,0,0,18513,2490,6,50653,"FO6","ST" 21,36,1,2,9,40,1,"CONSOL EDISON CO N Y INC","ARTHUR KILL",0,"NAT GAS",4226,"0M",1294,,,95,-1408,17220,0,-1393,16473,0,-1276,5546,0,42517,495291,0,55216,582417,0,194234,1938196,0,301093,2957985,0,278373,2754690,0,147636,1480827,0,-1783,3561,0,-1398,5,0,-1433,5,0,2490,6,50653,"NG","ST" 21,36,1,4,2,40,1,"CONSOL EDISON CO N Y INC","ARTHUR KILL",0,"LIGHT OIL",4226,"0M",1294,,,95,13,44,1913,67,194,1823,0,0,1823,36,79,1744,215,635,1882,298,918,2083,566,1739,2154,371,1201,1884,0,0,0,0,0,0,0,0,0,0,0,0,2490,6,50653,"FO2","GT" 21,36,1,2,1,40,2,"CONSOL EDISON CO N Y INC","INDIAN PT",0,"NUCLEAR",4226,"0M",1294,,,95,562851,0,0,52711,0,0,-6970,0,0,-3790,0,0,-13730,0,0,241777,0,0,674078,0,0,678357,0,0,681364,0,0,661697,0,0,694091,0,0,636105,0,0,2497,6,50653,"UR","ST" 21,36,1,2,3,40,3,"CONSOL EDISON CO N Y INC","ASTORIA",0,"HEAVY OIL",4226,"0M",1294,,,95,44284,69523,204071,87234,136417,162405,51168,80603,150832,37361,58624,135192,36339,59441,192317,36196,59149,130130,89762,143025,106180,87335,138221,98117,59995,93814,117887,54037,87216,125085,64568,101738,117638,289554,461968,161157,8906,6,50653,"FO6","ST" 21,36,1,2,9,40,3,"CONSOL EDISON CO N Y INC","ASTORIA",0,"NAT GAS",4226,"0M",1294,,,95,270672,2666431,0,244705,2376465,0,354262,3528212,0,241575,2383868,0,275033,2732177,0,466083,4630924,0,417404,4132582,0,422777,4216725,0,331846,3235732,0,333120,3377003,0,267480,2653281,0,78615,787377,0,8906,6,50653,"NG","ST" 21,36,1,4,2,40,3,"CONSOL EDISON CO N Y INC","ASTORIA",0,"LIGHT OIL",4226,"0M",1294,,,95,1484,3523,70541,935,2176,68112,695,1314,66869,1270,3125,63744,1033,2385,61076,1517,3666,57410,5121,12698,44790,1655,4191,48468,794,1989,67296,758,1842,65454,651,1541,63965,4785,11328,52945,8906,6,50653,"FO2","GT" 21,36,1,4,9,40,3,"CONSOL EDISON CO N Y INC","ASTORIA",0,"NAT GAS",4226,"0M",1294,,,95,1238,16825,0,4723,63317,0,9436,102713,0,19761,279920,0,13199,175023,0,14602,203072,0,50641,721027,0,30754,443611,0,22755,324431,0,10683,150198,0,29807,410036,0,1300,17862,0,8906,6,50653,"NG","GT" 21,36,1,2,3,40,5,"CONSOL EDISON CO N Y INC","EAST RIVER",0,"HEAVY OIL",4226,"0M",1294,,,95,48411,100447,260377,52328,112594,251467,22577,46041,196293,14368,29471,111609,10915,20599,75923,9443,18148,129321,17347,33410,143239,17145,35799,154704,57,119,208820,391,883,155405,24581,53489,125358,26299,56899,135819,2493,6,50653,"FO6","ST" 21,36,1,2,9,40,5,"CONSOL EDISON CO N Y INC","EAST RIVER",0,"NAT GAS",4226,"0M",1294,,,95,22936,297706,0,16423,222129,0,33740,432005,0,32894,424765,0,83114,976015,0,52018,626673,0,74759,901280,0,43540,571392,0,62070,814818,0,38780,549257,0,26334,362630,0,4079,55677,0,2493,6,50653,"NG","ST" 21,36,1,2,3,40,8,"CONSOL EDISON CO N Y INC","59TH STREET",0,"HEAVY OIL",4226,"0M",1294,,,95,134,711,28019,-168,0,13932,-186,0,17029,-180,0,14663,-186,0,16921,-180,0,14962,-186,0,34238,-186,0,28013,0,0,18655,-186,0,24175,-180,0,21506,-186,0,15408,2503,6,50653,"FO6","ST" 21,36,1,2,9,40,8,"CONSOL EDISON CO N Y INC","59TH STREET",0,"NAT GAS",4226,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-180,0,0,0,0,0,0,0,0,0,0,0,2503,6,50653,"NG","ST" 21,36,1,4,2,40,8,"CONSOL EDISON CO N Y INC","59TH STREET",0,"LIGHT OIL",4226,"0M",1294,,,95,0,0,2421,12,43,2379,0,0,2379,34,63,2315,382,920,2169,220,532,2101,517,1422,2132,154,399,2018,0,0,2018,0,0,2018,0,0,2019,0,0,2019,2503,6,50653,"FO2","GT" 21,36,1,4,2,40,10,"CONSOL EDISON CO N Y INC","GOWANUS",0,"LIGHT OIL",4226,"0M",1294,,,95,3431,10187,54995,3032,8863,61517,3332,9885,51514,5596,16946,54888,9656,30399,58173,10867,35156,51183,35078,112111,54362,18095,69179,54055,9925,32320,51120,3062,9091,61678,11850,35551,63660,11082,31386,52408,2494,6,50653,"FO2","GT" 21,36,1,4,2,40,17,"CONSOL EDISON CO N Y INC","INDIAN PT",0,"LIGHT OIL",4226,"0M",1294,,,95,10,470,1357,110,334,1476,0,0,1438,10,26,1387,190,648,1553,120,502,1367,618,1994,1429,339,1276,1561,10,65,1518,10,49,1466,70,568,1361,10,79,1524,2497,6,50653,"FO2","GT" 21,36,1,2,3,40,18,"CONSOL EDISON CO N Y INC","HUDSON AVE",0,"HEAVY OIL",4226,"0M",1294,,,95,13942,16640,116475,22892,27677,121761,19571,25683,88715,5881,7513,112117,13579,17821,145862,8960,11221,121321,17004,23012,156902,16358,21789,184711,8488,11589,233738,9039,12876,207818,15377,22058,190563,21649,30797,210122,2496,6,50653,"FO6","ST" 21,36,1,4,2,40,18,"CONSOL EDISON CO N Y INC","HUDSON AVE",0,"LIGHT OIL",4226,"0M",1294,,,95,32,106,3790,262,520,3270,24,63,4088,0,0,4088,318,932,4131,366,1254,4363,1154,3982,3948,684,2253,4361,44,148,4212,7,28,4185,255,954,4157,0,0,4471,2496,6,50653,"FO2","GT" 21,36,1,4,2,40,23,"CONSOL EDISON CO N Y INC","NARROWS BAY",0,"LIGHT OIL",4226,"0M",1294,,,95,1815,5002,70995,2374,6488,64363,3121,8503,70742,4829,13085,57595,4696,13259,61188,7112,20641,70359,14360,43802,86922,0,0,86754,113,310,61193,358,1046,60146,2527,7040,53007,5977,17365,64411,2499,6,50653,"FO2","GT" 21,36,1,4,9,40,23,"CONSOL EDISON CO N Y INC","NARROWS BAY",0,"NAT GAS",4226,"0M",1294,,,95,160,2545,0,0,0,0,1437,23105,0,3151,50378,0,5478,91177,0,7841,132409,0,26727,472807,0,23321,410674,0,8725,137237,0,6684,112244,0,14121,266734,0,726,12168,0,2499,6,50653,"NG","GT" 21,36,1,2,3,40,25,"CONSOL EDISON CO N Y INC","RAVENSWOOD",0,"HEAVY OIL",4226,"0M",1294,,,95,56562,96769,43835,156038,248776,28947,15866,27428,34677,22910,42845,42500,30055,54093,37926,31922,55970,39660,31596,55334,44269,54612,90412,42941,11656,19796,32055,4144,7555,26939,45172,77641,44297,97823,181018,43354,2500,6,50653,"FO6","ST" 21,36,1,2,9,40,25,"CONSOL EDISON CO N Y INC","RAVENSWOOD",0,"NAT GAS",4226,"0M",1294,,,95,209768,2234824,0,193780,1928735,0,161992,1747544,0,161776,1895581,0,200509,2260799,0,241862,2659354,0,377330,4132582,0,492580,5112387,0,269868,2872681,0,121326,1378858,0,190022,2065045,0,34903,408143,0,2500,6,50653,"NG","ST" 21,36,1,4,2,40,25,"CONSOL EDISON CO N Y INC","RAVENSWOOD",0,"LIGHT OIL",4226,"0M",1294,,,95,317,1144,40469,1114,3166,37304,412,1109,36195,1364,3752,32443,0,0,32613,292,765,31848,1020,2785,39004,707,2001,37003,43,116,38759,232,819,37940,91,256,37684,3105,8078,40525,2500,6,50653,"FO2","GT" 21,36,1,4,9,40,25,"CONSOL EDISON CO N Y INC","RAVENSWOOD",0,"NAT GAS",4226,"0M",1294,,,95,699,14506,0,461,7543,0,1614,25061,0,3849,61087,0,2639,36379,0,6191,93115,0,11215,178768,0,7292,120354,0,2766,43431,0,1873,38571,0,2782,45521,0,533,8123,0,2500,6,50653,"NG","GT" 21,36,1,2,3,40,30,"CONSOL EDISON CO N Y INC","74TH STREET",0,"HEAVY OIL",4226,"0M",1294,,,95,4001,11849,37330,7337,16422,1428,4042,7539,1190,6302,7774,1190,11192,14181,1190,8567,12004,1190,7521,9483,1190,3846,5472,1365,3937,4892,1428,-949,0,1429,3253,6242,1429,3602,5677,1429,2504,6,50653,"FO6","ST" 21,36,1,4,2,40,30,"CONSOL EDISON CO N Y INC","74TH STREET",0,"LIGHT OIL",4226,"0M",1294,,,95,-13,0,1690,-11,0,2143,-12,0,2083,-12,0,1952,-3,12,1881,-12,0,1762,-12,24,1738,-13,0,1747,-12,0,1548,-12,0,1524,-12,0,1595,-12,0,2202,2504,6,50653,"FO2","GT" 21,36,1,2,3,40,40,"CONSOL EDISON CO N Y INC","WATERSIDE",0,"HEAVY OIL",4226,"0M",1294,,,95,3119,5797,0,25178,41438,0,1003,1798,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,146,266,0,2502,6,50653,"FO6","ST" 21,36,1,2,9,40,40,"CONSOL EDISON CO N Y INC","WATERSIDE",0,"NAT GAS",4226,"0M",1294,,,95,59934,697096,0,47441,490868,0,53623,603408,0,39082,449151,0,37250,448243,0,36423,288224,0,55999,633276,0,55829,627391,0,38346,480259,0,35286,396996,0,48220,540897,0,63071,723341,0,2502,6,50653,"NG","ST" 21,36,1,2,3,40,50,"CONSOL EDISON CO N Y INC","OIL STORAGE",0,"HEAVY OIL",4226,"0M",1294,,,95,0,0,2766499,0,0,2324286,0,0,2545579,0,0,2254272,0,0,1899927,0,0,1649376,0,0,1484314,0,0,1332860,0,0,1420463,0,0,1532278,0,0,1814997,0,0,1473629,8801,6,50653,"FO6","ST" 21,36,1,4,2,40,60,"CONSOL EDISON CO N Y INC","OIL STORAGE",0,"LIGHT OIL",4226,"0M",1294,,,95,0,0,204071,0,0,265070,0,0,259969,0,0,242953,0,0,247234,0,0,245330,0,0,259288,0,0,251578,0,0,241219,0,0,257945,0,0,250930,0,0,243796,8802,6,50653,"FO2","GT" 21,36,1,4,2,40,65,"CONSOL EDISON CO N Y INC","BUCHANAN",0,"LIGHT OIL",4226,"0M",1294,,,95,55,213,3746,295,599,4326,12,22,4481,20,42,4440,199,586,4211,634,1857,4497,979,2573,4452,907,2783,4475,35,172,4303,63,247,4282,398,1093,4230,56,191,4039,4233,6,50653,"FO2","GT" 21,36,1,1,,49,5,"HYDRO DEV GROUP INC","DEXTER",0,,9145,"0A",1294,,,95,2082,0,0,1260,0,0,2412,0,0,1860,0,0,1134,0,0,690,0,0,834,0,0,558,0,0,666,0,0,1998,0,0,2619,0,0,1908,0,0,2505,6,50785,"WAT","HY" 21,36,1,1,,49,10,"HYDRO DEV GROUP INC","PYRITES #1",0,,9145,"0A",1294,,,95,228,0,0,53,0,0,337,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2506,6,50785,"WAT","HY" 21,36,1,1,,49,12,"HYDRO DEV GROUP INC","PYRITES #2",0,,9145,"0A",1294,,,95,2658,0,0,1453,0,0,3335,0,0,2856,0,0,2370,0,0,1044,0,0,630,0,0,678,0,0,606,0,0,2458,0,0,3186,0,0,2166,0,0,7031,6,50785,"WAT","HY" 21,36,1,1,,49,15,"HYDRO DEV GROUP INC","HAILESBORO",0,,9145,"0A",1294,,,95,1037,0,0,706,0,0,1087,0,0,1097,0,0,854,0,0,509,0,0,415,0,0,624,0,0,389,0,0,982,0,0,1159,0,0,780,0,0,6573,6,50785,"WAT","HY" 21,36,1,1,,49,20,"HYDRO DEV GROUP INC","FOWLER",0,,9145,"0A",1294,,,95,426,0,0,394,0,0,515,0,0,491,0,0,515,0,0,316,0,0,245,0,0,349,0,0,250,0,0,398,0,0,507,0,0,434,0,0,6572,6,50785,"WAT","HY" 21,36,1,1,,49,25,"HYDRO DEV GROUP INC","#6 MILL",0,,9145,"0A",1294,,,95,471,0,0,407,0,0,463,0,0,491,0,0,394,0,0,231,0,0,201,0,0,313,0,0,208,0,0,384,0,0,494,0,0,499,0,0,453,6,50785,"WAT","HY" 21,36,1,1,,49,50,"HYDRO DEV GROUP INC","COPENHAGEN",0,,9145,"0A",1294,,,95,1176,0,0,560,0,0,1460,0,0,1532,0,0,460,0,0,108,0,0,360,0,0,112,0,0,312,0,0,1396,0,0,1884,0,0,924,0,0,742,6,50785,"WAT","HY" 21,36,1,1,,49,55,"HYDRO DEV GROUP INC","DIAMOND IS",0,,9145,"0A",1294,,,95,665,0,0,468,0,0,733,0,0,702,0,0,504,0,0,251,0,0,228,0,0,190,0,0,239,0,0,583,0,0,773,0,0,616,0,0,2553,6,50785,"WAT","HY" 21,36,1,1,,49,60,"HYDRO DEV GROUP INC","THERESA",0,,9145,"0A",1294,,,95,752,0,0,606,0,0,800,0,0,836,0,0,556,0,0,150,0,0,78,0,0,202,0,0,34,0,0,710,0,0,842,0,0,794,0,0,2618,6,50785,"WAT","HY" 21,36,1,1,,49,70,"HYDRO DEV GROUP INC","#3 MILL",0,,9145,"0A",1294,,,95,456,0,0,350,0,0,485,0,0,483,0,0,398,0,0,240,0,0,157,0,0,294,0,0,180,0,0,283,0,0,456,0,0,346,0,0,743,6,50785,"WAT","HY" 21,36,1,1,,49,75,"HYDRO DEV GROUP INC","GOODYEAR LK",0,,9145,"0A",1294,,,95,640,0,0,400,0,0,757,0,0,542,0,0,315,0,0,166,0,0,49,0,0,25,0,0,19,0,0,171,0,0,575,0,0,550,0,0,7358,6,50785,"WAT","HY" 21,36,1,3,2,59,1,"FISHERS IS ELEC CORP (THE","FISHERS ISL",0,"LIGHT OIL",6369,"0A",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6575,6,50989,"FO2","IC" 21,36,1,4,2,87,1,"LONG ISLAND LIGHTING CO","W BABYLON",0,"LIGHT OIL",11172,"0M",1294,,,95,-9,0,10978,184,398,10580,-10,0,10580,-8,0,10580,-10,0,10580,-10,0,10580,1589,3799,6781,1012,2525,9994,-8,0,9994,23,63,9931,12,52,9878,-6,0,9878,2521,6,51685,"FO2","GT" 21,36,1,2,2,87,2,"LONG ISLAND LIGHTING CO","E F BARRETT",0,"LIGHT OIL",11172,"0M",1294,,,95,0,0,382,0,0,382,0,0,382,0,0,382,0,0,382,0,0,382,0,0,382,0,0,382,189,351,31,0,0,31,0,0,0,0,0,0,2511,6,51685,"FO2","ST" 21,36,1,2,3,87,2,"LONG ISLAND LIGHTING CO","E F BARRETT",0,"HEAVY OIL",11172,"0M",1294,,,95,7679,13204,183912,19277,32691,151221,6888,12026,167809,7622,13054,154755,21364,35883,118872,5001,8521,110351,0,0,100351,0,0,150055,0,0,176621,0,0,176621,4499,7876,168745,30931,52133,130983,2511,6,51685,"FO6","ST" 21,36,1,2,9,87,2,"LONG ISLAND LIGHTING CO","E F BARRETT",0,"NAT GAS",11172,"0M",1294,,,95,88641,923891,0,72376,743992,0,119516,1265049,0,108791,1129535,0,161464,1644681,0,176300,1817157,0,201713,2124759,0,207176,2182914,0,194067,2023621,0,176719,1855067,0,152642,1622397,0,111293,1143313,0,2511,6,51685,"NG","ST" 21,36,1,4,2,87,2,"LONG ISLAND LIGHTING CO","E F BARRETT",0,"LIGHT OIL",11172,"0M",1294,,,95,0,0,21322,0,0,21322,0,0,21322,0,0,21322,0,0,21322,0,0,21322,0,0,21322,0,0,21322,0,0,21322,0,0,21322,0,0,21322,89,272,21050,2511,6,51685,"FO2","GT" 21,36,1,4,9,87,2,"LONG ISLAND LIGHTING CO","E F BARRETT",0,"NAT GAS",11172,"0M",1294,,,95,2584,48858,0,2455,39578,0,396,9580,0,7540,115964,0,15423,241318,0,13024,203027,0,13183,202506,0,13611,214090,0,2215,41056,0,3367,60239,0,3070,49795,0,1324,23100,0,2511,6,51685,"NG","GT" 21,36,1,2,3,87,5,"LONG ISLAND LIGHTING CO","FAR ROCKWAY",0,"HEAVY OIL",11172,"0M",1294,,,95,0,0,630,0,0,630,0,0,630,0,0,630,0,0,630,0,0,630,0,0,630,0,0,630,0,0,630,0,0,630,0,0,630,0,0,630,2513,6,51685,"FO6","ST" 21,36,1,2,9,87,5,"LONG ISLAND LIGHTING CO","FAR ROCKWAY",0,"NAT GAS",11172,"0M",1294,,,95,35652,370173,0,-382,0,0,37901,413154,0,47344,499677,0,39814,418408,0,43785,454694,0,44918,522402,0,46370,490439,0,46043,485717,0,32114,356625,0,40424,437203,0,48243,507731,0,2513,6,51685,"NG","ST" 21,36,1,2,3,87,15,"LONG ISLAND LIGHTING CO","GLENWOOD",0,"HEAVY OIL",11172,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2514,6,51685,"FO6","ST" 21,36,1,2,9,87,15,"LONG ISLAND LIGHTING CO","GLENWOOD",0,"NAT GAS",11172,"0M",1294,,,95,57152,656357,0,88875,989013,0,43090,513102,0,64609,758501,0,65972,764067,0,85437,987225,0,91585,1053103,0,91614,1044546,0,87436,984844,0,70615,831640,0,65930,771090,0,72860,814525,0,2514,6,51685,"NG","ST" 21,36,1,4,2,87,15,"LONG ISLAND LIGHTING CO","GLENWOOD",0,"LIGHT OIL",11172,"0M",1294,,,95,-13,0,28987,348,833,28155,-2,113,28042,-10,0,28042,-15,0,28042,308,112,27929,1020,3353,24576,1330,3635,20941,-16,0,20941,52,122,20819,-18,0,20787,-15,0,20787,2514,6,51685,"FO2","GT" 21,36,1,3,2,87,17,"LONG ISLAND LIGHTING CO","E HAMPTON",0,"LIGHT OIL",11172,"0M",1294,,,95,-6,0,971,33,69,902,-4,4,898,-6,0,898,-1,8,890,2,12,878,464,935,369,527,862,816,51,112,705,-6,0,705,-1,4,915,0,3,911,2512,6,51685,"FO2","IC" 21,36,1,4,2,87,17,"LONG ISLAND LIGHTING CO","E HAMPTON",0,"LIGHT OIL",11172,"0M",1294,,,95,-17,0,2876,-11,17,2859,-15,0,2859,-9,0,2859,-4,25,2834,34,116,2718,2330,5851,265,2246,5851,2259,76,212,2471,-10,0,2471,27,113,2789,-12,0,2789,2512,6,51685,"FO2","GT" 21,36,1,4,2,87,18,"LONG ISLAND LIGHTING CO","SOUTHOLD",0,"LIGHT OIL",11172,"0M",1294,,,95,-8,0,2716,-15,0,2716,-15,0,2716,-11,0,2716,-9,0,2716,14,79,2637,79,316,2534,39,174,2784,-8,0,2784,-8,0,2784,33,160,2624,-15,0,2624,2520,6,51685,"FO2","GT" 21,36,1,2,2,87,21,"LONG ISLAND LIGHTING CO","NORTHPORT",0,"LIGHT OIL",11172,"0M",1294,,,95,393,703,2446,1919,3360,10568,787,1448,10918,244,438,10694,0,0,10694,1255,2346,10708,543,987,10787,859,1604,10653,1224,1286,10857,0,0,11070,42,78,10992,866,1558,10948,2516,6,51685,"FO2","ST" 21,36,1,2,3,87,21,"LONG ISLAND LIGHTING CO","NORTHPORT",0,"HEAVY OIL",11172,"0M",1294,,,95,251839,410183,917940,419721,669714,545119,137170,230153,627264,93546,156459,751601,4614,7948,743653,138528,235371,730114,232571,387065,831393,198326,339587,780654,65679,111985,948390,0,0,1048629,13006,22156,1026473,263245,435054,787488,2516,6,51685,"FO6","ST" 21,36,1,2,9,87,21,"LONG ISLAND LIGHTING CO","NORTHPORT",0,"NAT GAS",11172,"0M",1294,,,95,161173,1656185,0,109357,1099738,0,179917,1902183,0,179876,1858552,0,249772,2620522,0,277680,2980882,0,392501,4094975,0,395601,4243388,0,332956,3533654,0,339896,3613412,0,310631,3313635,0,259449,2673147,0,2516,6,51685,"NG","ST" 21,36,1,4,2,87,21,"LONG ISLAND LIGHTING CO","NORTHPORT",0,"LIGHT OIL",11172,"0M",1294,,,95,-16,0,2030,-16,0,2030,11,87,1943,-13,0,1943,-12,0,1943,-8,15,1928,10,25,1904,24,175,1729,-2,17,1712,-7,0,0,-15,0,1290,-10,0,1506,2516,6,51685,"FO2","GT" 21,36,1,3,2,87,23,"LONG ISLAND LIGHTING CO","SHOREHAM",0,"LIGHT OIL",11172,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2518,6,51685,"FO2","IC" 21,36,1,4,2,87,23,"LONG ISLAND LIGHTING CO","SHOREHAM",0,"LIGHT OIL",11172,"0M",1294,,,95,-4,0,10375,81,259,11414,11,38,11377,-7,0,11377,340,528,10848,91,128,10720,441,1417,9303,551,846,15679,5,41,15638,18,32,15605,-4,0,15605,-7,3,15602,2518,6,51685,"FO2","GT" 21,36,1,2,2,87,24,"LONG ISLAND LIGHTING CO","P JEFFERSON",0,"LIGHT OIL",11172,"0M",1294,,,95,505,940,248,368,651,173,451,865,267,430,769,71,340,624,210,273,507,271,308,573,265,205,379,265,120,230,224,260,511,310,181,337,162,173,317,229,2517,6,51685,"FO2","ST" 21,36,1,2,3,87,24,"LONG ISLAND LIGHTING CO","P JEFFERSON",0,"HEAVY OIL",11172,"0M",1294,,,95,83231,142447,374658,116002,187180,292517,84682,149701,363973,88134,146337,217636,86246,147673,240914,86540,147162,367784,119762,202643,388397,116504,197519,283029,62653,110443,267311,37059,67418,404544,57551,98596,305948,73017,122780,291514,2517,6,51685,"FO6","ST" 21,36,1,4,2,87,24,"LONG ISLAND LIGHTING CO","P JEFFERSON",0,"LIGHT OIL",11172,"0M",1294,,,95,14,70,2055,36,150,1905,-16,0,1905,-11,0,1905,30,100,1805,15,79,1726,94,282,1444,49,175,2118,-8,0,2118,2,49,2069,-12,0,2069,-14,0,2069,2517,6,51685,"FO2","GT" 21,36,1,4,2,87,26,"LONG ISLAND LIGHTING CO","SOUTHAMPTON",0,"LIGHT OIL",11172,"0M",1294,,,95,-16,0,2575,22,137,2438,-17,0,2438,-9,0,2438,-4,9,2430,36,153,2277,200,649,2266,170,698,2628,-11,0,2628,-8,0,2628,-2,0,2628,-18,0,2628,2519,6,51685,"FO2","GT" 21,36,1,3,2,87,29,"LONG ISLAND LIGHTING CO","MONTAUK",0,"LIGHT OIL",11172,"0M",1294,,,95,-6,0,685,34,66,619,-6,0,619,-6,0,619,0,0,619,2,46,572,274,574,424,184,319,529,57,109,420,-6,0,420,0,23,611,-6,0,611,2515,6,51685,"FO2","IC" 21,36,1,4,2,87,30,"LONG ISLAND LIGHTING CO","HOLTSVILLE",0,"LIGHT OIL",11172,"0M",1294,,,95,3418,7966,65483,2730,6945,98989,1349,3183,95807,3573,8991,86815,1220,3009,83806,4957,12317,71489,13538,28073,71475,15481,41712,89159,785,2396,86763,-94,234,86529,427,1487,85042,2296,5778,79264,8007,6,51685,"FO2","GT" 21,36,1,4,2,87,35,"LONG ISLAND LIGHTING CO","BROOKHAVEN",0,"LIGHT OIL",11172,"0M",1294,,,95,2290,4982,38416,2652,6010,38901,226,279,38622,3165,6704,37310,6210,13571,28376,6235,12488,40846,9816,21210,30472,9736,19194,39142,-52,0,39142,113,688,40071,528,1470,40751,2660,5996,37572,7146,6,51685,"FO2","GT" 21,36,1,1,,100,1,"N Y STATE ELEC & GAS CORP","CADYVILLE",0,,13511,"0M",1294,,,95,2289,0,0,1760,0,0,2697,0,0,2249,0,0,2033,0,0,1277,0,0,1043,0,0,1271,0,0,873,0,0,1835,0,0,2411,0,0,1256,0,0,2522,6,52036,"WAT","HY" 21,36,1,1,,100,3,"N Y STATE ELEC & GAS CORP","MILL 'C'",0,,13511,"0M",1294,,,95,1082,0,0,1120,0,0,1325,0,0,1217,0,0,1424,0,0,918,2,0,782,0,0,1153,0,0,591,0,0,1982,0,0,2696,0,0,728,0,0,6486,6,52036,"WAT","HY" 21,36,1,1,,100,8,"N Y STATE ELEC & GAS CORP","HIGH FALLS",0,,13511,"0M",1294,,,95,8036,0,0,6467,0,0,9348,0,0,7548,0,0,6945,0,0,4111,0,0,3127,0,0,4402,0,0,2270,0,0,1885,0,0,8998,0,0,6023,0,0,2530,6,52036,"WAT","HY" 21,36,1,1,,100,9,"N Y STATE ELEC & GAS CORP","KENT FALLS",0,,13511,"0M",1294,,,95,4267,0,0,3614,0,0,5729,0,0,4500,0,0,4403,0,0,2459,0,0,1821,0,0,2011,0,0,1112,0,0,2429,0,0,0,0,0,2462,0,0,2532,6,52036,"WAT","HY" 21,36,1,1,,100,11,"N Y STATE ELEC & GAS CORP","KEUKA",0,,13511,"0M",1294,,,95,479,0,0,618,0,0,1104,0,0,424,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,246,0,0,368,0,0,87,0,0,2533,6,52036,"WAT","HY" 21,36,1,1,,100,18,"N Y STATE ELEC & GAS CORP","RAINBOW FLS",0,,13511,"0M",1294,,,95,844,0,0,484,0,0,1136,0,0,1424,0,0,2008,0,0,1044,0,0,972,0,0,828,0,0,572,0,0,920,0,0,1432,0,0,800,0,0,6526,6,52036,"WAT","HY" 21,36,1,1,,100,20,"N Y STATE ELEC & GAS CORP","SENECA FLS",0,,13511,"0M",1294,,,95,929,0,0,0,0,0,237,0,0,418,0,0,57,0,0,12,0,0,35,0,0,0,0,0,0,0,0,144,0,0,1097,0,0,1515,0,0,6525,6,52036,"WAT","HY" 21,36,1,1,,100,26,"N Y STATE ELEC & GAS CORP","WATERLOO",0,,13511,"0M",1294,,,95,218,0,0,0,0,0,91,0,0,167,0,0,47,0,0,38,0,0,63,0,0,15,0,0,0,0,0,28,0,0,273,0,0,435,0,0,2538,6,52036,"WAT","HY" 21,36,1,2,2,100,28,"N Y STATE ELEC & GAS CORP","GOUDEY",0,"LIGHT OIL",13511,"0M",1294,,,95,4,6,902,7,12,922,38,860,816,166,1093,889,115,412,787,23,40,755,14,25,726,19,34,1012,88,159,674,17,29,652,15,27,781,57,99,755,2526,6,52036,"FO2","ST" 21,36,1,2,6,100,28,"N Y STATE ELEC & GAS CORP","GOUDEY",0,"BIT COAL",13511,"0M",1294,,,95,49140,18404,38386,47957,17309,33487,38535,14154,31196,29944,11570,19706,47570,19243,17396,46082,17833,16951,48114,18609,8401,48907,19270,14458,47509,18547,11816,46734,17563,21803,47743,17962,29205,49938,18814,16951,2526,6,52036,"BIT","ST" 21,36,1,2,2,100,30,"N Y STATE ELEC & GAS CORP","GREENIDGE",0,"LIGHT OIL",13511,"0M",1294,,,95,49,84,1482,143,249,1673,49,85,1663,69,118,1503,97,194,1276,101,268,963,140,255,1024,312,565,929,134,232,1184,28,65,1082,27,47,1003,135,254,963,2527,6,52036,"FO2","ST" 21,36,1,2,6,100,30,"N Y STATE ELEC & GAS CORP","GREENIDGE",0,"BIT COAL",13511,"0M",1294,,,95,59064,22369,46139,64896,24628,34337,56536,21560,33567,61588,23327,27754,60141,23147,16512,44718,17812,44179,56844,23346,35975,63282,25535,39483,33115,12718,51031,52461,19935,48906,51733,19814,48981,79778,32545,44179,2527,6,52036,"BIT","ST" 21,36,1,2,6,100,32,"N Y STATE ELEC & GAS CORP","HICKLING",0,"BIT COAL",13511,"0M",1294,,,95,29937,25353,59845,37278,28317,42388,31428,24287,26231,36848,29367,9739,25540,20965,7417,26619,21486,11619,19927,15033,13417,19292,17747,12211,16109,14260,19398,15799,13125,25995,15584,11444,38506,16518,14020,11619,2529,6,52036,"BIT","ST" 21,36,1,2,"B",100,34,"N Y STATE ELEC & GAS CORP","JENNISON",0,"WOOD CHIP",13511,"0M",1294,,,95,1937,0,0,2506,0,0,1706,0,0,446,0,0,510,0,0,631,0,0,0,0,0,966,0,0,1443,0,0,1357,0,0,215,0,0,517,0,0,2531,6,52036,"WOD","ST" 21,36,1,2,6,100,34,"N Y STATE ELEC & GAS CORP","JENNISON",0,"BIT COAL",13511,"0M",1294,,,95,18813,12027,31771,27918,18374,13300,18598,13682,9272,12405,9568,1166,10568,8258,1035,8066,6810,737,10639,7167,2889,9803,7780,5121,7664,6371,9926,7104,5362,9933,11173,7198,8195,18436,12369,737,2531,6,52036,"BIT","ST" 21,36,1,2,2,100,35,"N Y STATE ELEC & GAS CORP","MILLIKEN",0,"LIGHT OIL",13511,"0M",1294,,,95,206,337,1812,188,320,1856,273,465,1873,142,244,1879,53,94,1978,249,452,1841,116,209,1815,158,288,1863,211,385,1831,258,462,1670,59,105,1738,26,47,1841,2535,6,52036,"FO2","ST" 21,36,1,2,6,100,35,"N Y STATE ELEC & GAS CORP","MILLIKEN",0,"BIT COAL",13511,"0M",1294,,,95,192258,68792,79141,180255,67185,80127,183681,68408,89806,153861,58397,69230,98273,37927,98714,132074,52498,118633,185234,73165,90889,184163,73756,101056,131693,53020,97110,185372,73940,102961,167135,65625,99048,191784,76075,118633,2535,6,52036,"BIT","ST" 21,36,1,3,2,100,35,"N Y STATE ELEC & GAS CORP","MILLIKEN",0,"LIGHT OIL",13511,"0M",1294,,,95,0,1,0,20,38,0,3,84,0,104,107,0,54,144,0,1,38,0,-64,39,0,10,20,0,0,1,0,12,39,0,11,44,0,17,32,0,2535,6,52036,"FO2","IC" 21,36,1,3,2,100,40,"N Y STATE ELEC & GAS CORP","HARRIS LAKE",0,"LIGHT OIL",13511,"0M",1294,,,95,-11,0,405,0,0,349,0,0,0,-4,0,313,0,0,260,0,0,242,64,122,269,12,25,244,2,0,436,0,0,357,0,0,290,-13,0,242,2528,6,52036,"FO2","IC" 21,36,1,1,,100,43,"N Y STATE ELEC & GAS CORP","MECHANICVLE",0,,13511,"0M",1294,,,95,9072,0,0,6867,0,0,9702,0,0,6867,0,0,4347,0,0,2961,0,0,1134,0,0,2331,0,0,1953,0,0,5670,0,0,12663,0,0,8946,0,0,625,6,52036,"WAT","HY" 21,36,1,2,2,100,50,"N Y STATE ELEC & GAS CORP","KINTIGH",0,"LIGHT OIL",13511,"0M",1294,,,95,219,378,4169,770,1322,2904,474,811,3335,953,1656,3113,165,283,2839,314,543,2288,879,1523,3426,394,685,2738,627,1087,4124,1183,2162,2118,626,1094,4657,509,873,2288,6082,6,52036,"FO2","ST" 21,36,1,2,6,100,50,"N Y STATE ELEC & GAS CORP","KINTIGH",0,"BIT COAL",13511,"0M",1294,,,95,429496,166336,132032,393694,148405,142690,419527,160683,178911,416807,160659,178855,418612,159916,174957,381565,146069,162034,348178,133246,124345,413546,158604,73112,376458,141570,75380,181079,73253,130474,363691,142233,133771,423315,159637,162034,6082,6,52036,"BIT","ST" 21,36,1,2,1,105,1,"NIAGARA MOHAWK POWER CORP","NINE MILE P",0,"NUCLEAR",13573,"0M",1294,,190,95,368414,0,0,58742,0,0,0,0,0,332154,0,0,459193,0,0,439571,0,0,434942,0,0,437261,0,0,420930,0,0,452099,0,0,441551,0,0,459844,0,0,2589,6,52053,"UR","ST" 21,36,1,2,1,105,2,"NIAGARA MOHAWK POWER CORP","NINE MILE P",0,"NUCLEAR",13573,"0M",1294,,190,95,694823,0,0,533574,0,0,742888,0,0,149501,0,0,0,0,0,575400,0,0,821880,0,0,766368,0,0,443850,0,0,845303,0,0,824493,0,0,841323,0,0,2589,6,52053,"UR","ST" 21,36,1,1,,105,5,"NIAGARA MOHAWK POWER CORP","ALLENS FLS",0,,13573,"0M",1294,,190,95,2087,0,0,1758,0,0,2479,0,0,2662,0,0,2344,0,0,1289,0,0,1268,0,0,1240,0,0,1099,0,0,2308,0,0,2305,0,0,2092,0,0,2540,6,52053,"WAT","HY" 21,36,1,1,,105,10,"NIAGARA MOHAWK POWER CORP","BALDWINSVLE",0,,13573,"0M",1294,,190,95,205,0,0,112,0,0,221,0,0,171,0,0,60,0,0,7,0,0,-3,0,0,16,0,0,1,0,0,57,0,0,217,0,0,140,0,0,2542,6,52053,"WAT","HY" 21,36,1,1,,105,15,"NIAGARA MOHAWK POWER CORP","BELFORT",0,,13573,"0M",1294,,190,95,861,0,0,751,0,0,805,0,0,464,0,0,550,0,0,561,0,0,714,0,0,764,0,0,730,0,0,557,0,0,1171,0,0,1354,0,0,2544,6,52053,"WAT","HY" 21,36,1,1,,105,20,"NIAGARA MOHAWK POWER CORP","BENNETTS B",0,,13573,"0M",1294,,190,95,10231,0,0,5759,0,0,9838,0,0,5346,0,0,4404,0,0,1938,0,0,-33,0,0,313,0,0,5443,0,0,9001,0,0,13335,0,0,6313,0,0,2545,6,52053,"WAT","HY" 21,36,1,1,,105,25,"NIAGARA MOHAWK POWER CORP","BLACK RIVER",0,,13573,"0M",1294,,190,95,3477,0,0,2422,0,0,3823,0,0,3907,0,0,2562,0,0,1270,0,0,1501,0,0,948,0,0,1559,0,0,3563,0,0,4456,0,0,3477,0,0,2546,6,52053,"WAT","HY" 21,36,1,1,,105,30,"NIAGARA MOHAWK POWER CORP","BLAKE",0,,13573,"0M",1294,,190,95,6604,0,0,6486,0,0,5072,0,0,2962,0,0,3721,0,0,3715,0,0,672,0,0,2828,0,0,1682,0,0,3534,0,0,9144,0,0,6300,0,0,2547,6,52053,"WAT","HY" 21,36,1,1,,105,35,"NIAGARA MOHAWK POWER CORP","BROWNS FLS",0,,13573,"0M",1294,,190,95,6785,0,0,3738,0,0,4510,0,0,1724,0,0,1746,0,0,1866,0,0,545,0,0,2901,0,0,1160,0,0,4896,0,0,7492,0,0,3767,0,0,2548,6,52053,"WAT","HY" 21,36,1,1,,105,40,"NIAGARA MOHAWK POWER CORP","CHASM",0,,13573,"0M",1294,,190,95,1902,0,0,1138,0,0,1426,0,0,1777,0,0,1751,0,0,1323,0,0,994,0,0,1236,0,0,1014,0,0,1752,0,0,1795,0,0,1489,0,0,2550,6,52053,"WAT","HY" 21,36,1,1,,105,45,"NIAGARA MOHAWK POWER CORP","COLTON",0,,13573,"0M",1294,,190,95,20600,0,0,18761,0,0,20043,0,0,13701,0,0,15937,0,0,15548,0,0,9456,0,0,14510,0,0,7469,0,0,15049,0,0,2073,0,0,19935,0,0,2551,6,52053,"WAT","HY" 21,36,1,1,,105,50,"NIAGARA MOHAWK POWER CORP","DEFERIET",0,,13573,"0M",1294,,190,95,4478,0,0,3495,0,0,5869,0,0,5234,0,0,3642,0,0,1740,0,0,1638,0,0,1204,0,0,1248,0,0,5355,0,0,7027,0,0,4656,0,0,2552,6,52053,"WAT","HY" 21,36,1,1,,105,65,"NIAGARA MOHAWK POWER CORP","EAGLE",0,,13573,"0M",1294,,190,95,2653,0,0,2021,0,0,2505,0,0,1200,0,0,1421,0,0,1737,0,0,2331,0,0,1979,0,0,2045,0,0,1398,0,0,3203,0,0,3777,0,0,2555,6,52053,"WAT","HY" 21,36,1,1,,105,70,"NIAGARA MOHAWK POWER CORP","EEL WEIR",0,,13573,"0M",1294,,190,95,866,0,0,622,0,0,964,0,0,803,0,0,524,0,0,203,0,0,115,0,0,125,0,0,7,0,0,655,0,0,1332,0,0,994,0,0,2556,6,52053,"WAT","HY" 21,36,1,1,,105,75,"NIAGARA MOHAWK POWER CORP","EFFLEY",0,,13573,"0M",1294,,190,95,1093,0,0,986,0,0,1153,0,0,580,0,0,694,0,0,845,0,0,905,0,0,982,0,0,900,0,0,740,0,0,1558,0,0,1767,0,0,2557,6,52053,"WAT","HY" 21,36,1,1,,105,80,"NIAGARA MOHAWK POWER CORP","ELMER",0,,13573,"0M",1294,,190,95,812,0,0,575,0,0,796,0,0,380,0,0,439,0,0,552,0,0,441,0,0,640,0,0,593,0,0,496,0,0,1010,0,0,1135,0,0,2559,6,52053,"WAT","HY" 21,36,1,1,,105,85,"NIAGARA MOHAWK POWER CORP","ET NORFOLK",0,,13573,"0M",1294,,190,95,2479,0,0,1995,0,0,2559,0,0,1703,0,0,1975,0,0,1859,0,0,1059,0,0,1731,0,0,851,0,0,1883,0,0,2471,0,0,2519,0,0,2561,6,52053,"WAT","HY" 21,36,1,1,,105,90,"NIAGARA MOHAWK POWER CORP","FIVE FALLS",0,,13573,"0M",1294,,190,95,10795,0,0,10405,0,0,8347,0,0,4782,0,0,5926,0,0,5896,0,0,3396,0,0,5619,0,0,2631,0,0,5807,0,0,14654,0,0,10198,0,0,2562,6,52053,"WAT","HY" 21,36,1,1,,105,95,"NIAGARA MOHAWK POWER CORP","FLAT ROCK",0,,13573,"0M",1294,,190,95,1503,0,0,871,0,0,1489,0,0,592,0,0,450,0,0,401,0,0,136,0,0,528,0,0,169,0,0,1414,0,0,1912,0,0,876,0,0,2563,6,52053,"WAT","HY" 21,36,1,1,,105,98,"NIAGARA MOHAWK POWER CORP","FRANKLIN F",0,,13573,"0M",1294,,190,95,775,0,0,767,0,0,1052,0,0,613,0,0,385,0,0,496,0,0,336,0,0,352,0,0,-1,0,0,-1,0,0,-1,0,0,-1,0,0,2564,6,52053,"WAT","HY" 21,36,1,1,,105,100,"NIAGARA MOHAWK POWER CORP","FULTON",0,,13573,"0M",1294,,190,95,464,0,0,333,0,0,608,0,0,437,0,0,459,0,0,300,0,0,406,0,0,363,0,0,304,0,0,474,0,0,653,0,0,625,0,0,2566,6,52053,"WAT","HY" 21,36,1,1,,105,105,"NIAGARA MOHAWK POWER CORP","GRANBY",0,,13573,"0M",1294,,190,95,5845,0,0,3502,0,0,6558,0,0,1324,0,0,640,0,0,477,0,0,-38,0,0,491,0,0,-42,0,0,3025,0,0,5404,0,0,5157,0,0,2569,6,52053,"WAT","HY" 21,36,1,1,,105,110,"NIAGARA MOHAWK POWER CORP","HANNAWA",0,,13573,"0M",1294,,190,95,5253,0,0,4772,0,0,5248,0,0,3332,0,0,4051,0,0,3941,0,0,2329,0,0,3797,0,0,1747,0,0,1086,0,0,2696,0,0,5321,0,0,2571,6,52053,"WAT","HY" 21,36,1,1,,105,115,"NIAGARA MOHAWK POWER CORP","HERRINGS",0,,13573,"0M",1294,,190,95,1980,0,0,1586,0,0,2151,0,0,2116,0,0,1509,0,0,629,0,0,705,0,0,371,0,0,337,0,0,1747,0,0,2341,0,0,2187,0,0,2572,6,52053,"WAT","HY" 21,36,1,1,,105,120,"NIAGARA MOHAWK POWER CORP","HEUVELTON",0,,13573,"0M",1294,,190,95,458,0,0,468,0,0,484,0,0,556,0,0,455,0,0,254,0,0,195,0,0,277,0,0,149,0,0,433,0,0,506,0,0,588,0,0,2573,6,52053,"WAT","HY" 21,36,1,1,,105,125,"NIAGARA MOHAWK POWER CORP","HIGH DAM 6",0,,13573,"0M",1294,,190,95,0,0,0,0,0,0,1863,0,0,2023,0,0,1494,0,0,922,0,0,725,0,0,989,0,0,179,0,0,2024,0,0,2607,0,0,3766,0,0,2574,6,52053,"WAT","HY" 21,36,1,1,,105,126,"NIAGARA MOHAWK POWER CORP","HIGH FALLS",0,,13573,"0M",1294,,190,95,2622,0,0,1900,0,0,2648,0,0,1268,0,0,1439,0,0,1814,0,0,2106,0,0,1998,0,0,1847,0,0,1571,0,0,3045,0,0,3527,0,0,2575,6,52053,"WAT","HY" 21,36,1,1,,105,130,"NIAGARA MOHAWK POWER CORP","HIGLEY",0,,13573,"0M",1294,,190,95,3414,0,0,2999,0,0,3075,0,0,1774,0,0,2177,0,0,2037,0,0,1416,0,0,2086,0,0,1120,0,0,2315,0,0,3556,0,0,3242,0,0,2576,6,52053,"WAT","HY" 21,36,1,1,,105,135,"NIAGARA MOHAWK POWER CORP","HOGANSBURG",0,,13573,"0M",1294,,190,95,98,0,0,143,0,0,192,0,0,192,0,0,148,0,0,129,0,0,87,0,0,146,0,0,79,0,0,113,0,0,186,0,0,218,0,0,2577,6,52053,"WAT","HY" 21,36,1,1,,105,140,"NIAGARA MOHAWK POWER CORP","KAMARGO",0,,13573,"0M",1294,,190,95,2374,0,0,1857,0,0,2750,0,0,2638,0,0,1924,0,0,960,0,0,1034,0,0,398,0,0,612,0,0,2497,0,0,3433,0,0,1788,0,0,2581,6,52053,"WAT","HY" 21,36,1,1,,105,145,"NIAGARA MOHAWK POWER CORP","LIGHTHOUSE",0,,13573,"0M",1294,,190,95,2431,0,0,1342,0,0,2514,0,0,1178,0,0,925,0,0,399,0,0,-14,0,0,-14,0,0,1080,0,0,1999,0,0,3282,0,0,1507,0,0,2582,6,52053,"WAT","HY" 21,36,1,1,,105,155,"NIAGARA MOHAWK POWER CORP","MACOMB",0,,13573,"0M",1294,,190,95,434,0,0,398,0,0,641,0,0,569,0,0,481,0,0,319,0,0,-4,0,0,-4,0,0,132,0,0,534,0,0,627,0,0,520,0,0,2583,6,52053,"WAT","HY" 21,36,1,1,,105,160,"NIAGARA MOHAWK POWER CORP","MINETTO",0,,13573,"0M",1294,,190,95,3847,0,0,2604,0,0,4467,0,0,2022,0,0,1607,0,0,940,0,0,602,0,0,800,0,0,427,0,0,1690,0,0,4151,0,0,4554,0,0,2586,6,52053,"WAT","HY" 21,36,1,1,,105,165,"NIAGARA MOHAWK POWER CORP","MOSHIER",0,,13573,"0M",1294,,190,95,2698,0,0,2561,0,0,2447,0,0,1064,0,0,1751,0,0,2554,0,0,2993,0,0,2896,0,0,2791,0,0,736,0,0,3994,0,0,5506,0,0,2588,6,52053,"WAT","HY" 21,36,1,1,,105,170,"NIAGARA MOHAWK POWER CORP","NORFOLK",0,,13573,"0M",1294,,190,95,2391,0,0,2156,0,0,2979,0,0,1872,0,0,2207,0,0,2139,0,0,1223,0,0,2018,0,0,958,0,0,2054,0,0,3088,0,0,2630,0,0,2590,6,52053,"WAT","HY" 21,36,1,1,,105,175,"NIAGARA MOHAWK POWER CORP","NORWOOD",0,,13573,"0M",1294,,190,95,1536,0,0,1408,0,0,1536,0,0,938,0,0,1146,0,0,1136,0,0,605,0,0,1104,0,0,480,0,0,1072,0,0,1232,0,0,1488,0,0,2591,6,52053,"WAT","HY" 21,36,1,1,,105,180,"NIAGARA MOHAWK POWER CORP","OSWEGATCHIE",0,,13573,"0M",1294,,190,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2593,6,52053,"WAT","HY" 21,36,1,1,,105,182,"NIAGARA MOHAWK POWER CORP","OSWEGO FL E",0,,13573,"0M",1294,,190,95,2890,0,0,2449,0,0,2510,0,0,1688,0,0,1604,0,0,996,0,0,637,0,0,679,0,0,550,0,0,1991,0,0,2836,0,0,2816,0,0,2595,6,52053,"WAT","HY" 21,36,1,1,,105,183,"NIAGARA MOHAWK POWER CORP","OSWEGO FL W",0,,13573,"0M",1294,,190,95,1223,0,0,423,0,0,1212,0,0,176,0,0,-1,0,0,28,0,0,-2,0,0,47,0,0,14,0,0,385,0,0,730,0,0,1172,0,0,2596,6,52053,"WAT","HY" 21,36,1,1,,105,185,"NIAGARA MOHAWK POWER CORP","PARISHVILLE",0,,13573,"0M",1294,,190,95,0,0,0,690,0,0,1562,0,0,1603,0,0,1516,0,0,848,0,0,849,0,0,763,0,0,749,0,0,1395,0,0,1488,0,0,1298,0,0,2597,6,52053,"WAT","HY" 21,36,1,1,,105,187,"NIAGARA MOHAWK POWER CORP","PIERCEFIELD",0,,13573,"0M",1294,,190,95,1488,0,0,1283,0,0,1529,0,0,1482,0,0,1341,0,0,627,0,0,429,0,0,881,0,0,370,0,0,1195,0,0,1783,0,0,1527,0,0,2598,6,52053,"WAT","HY" 21,36,1,1,,105,192,"NIAGARA MOHAWK POWER CORP","PROSPECT",0,,13573,"0M",1294,,190,95,1704,0,0,0,0,0,4257,0,0,5788,0,0,3672,0,0,2881,0,0,2386,0,0,1689,0,0,184,0,0,6691,0,0,11309,0,0,6904,0,0,2599,6,52053,"WAT","HY" 21,36,1,1,,105,195,"NIAGARA MOHAWK POWER CORP","RAINBOW",0,,13573,"0M",1294,,190,95,10771,0,0,10270,0,0,8298,0,0,4779,0,0,5959,0,0,5843,0,0,3452,0,0,5583,0,0,2641,0,0,5774,0,0,14120,0,0,9950,0,0,2600,6,52053,"WAT","HY" 21,36,1,1,,105,200,"NIAGARA MOHAWK POWER CORP","RAYMONDVLE",0,,13573,"0M",1294,,190,95,932,0,0,816,0,0,1452,0,0,926,0,0,670,0,0,1102,0,0,674,0,0,1036,0,0,530,0,0,1056,0,0,1404,0,0,1120,0,0,2601,6,52053,"WAT","HY" 21,36,1,1,,105,210,"NIAGARA MOHAWK POWER CORP","S EDWARDS",0,,13573,"0M",1294,,190,95,1404,0,0,1076,0,0,1387,0,0,973,0,0,1018,0,0,736,0,0,427,0,0,1020,0,0,558,0,0,1359,0,0,1919,0,0,1392,0,0,2604,6,52053,"WAT","HY" 21,36,1,1,,105,215,"NIAGARA MOHAWK POWER CORP","SEWALLS",0,,13573,"0M",1294,,190,95,1372,0,0,889,0,0,1518,0,0,1486,0,0,1205,0,0,544,0,0,246,0,0,320,0,0,319,0,0,1211,0,0,1489,0,0,1514,0,0,2608,6,52053,"WAT","HY" 21,36,1,1,,105,220,"NIAGARA MOHAWK POWER CORP","SOFT MAPLE",0,,13573,"0M",1294,,190,95,2633,0,0,1616,0,0,2359,0,0,882,0,0,1236,0,0,1714,0,0,2341,0,0,1918,0,0,1850,0,0,1760,0,0,3432,0,0,4125,0,0,2610,6,52053,"WAT","HY" 21,36,1,1,,105,225,"NIAGARA MOHAWK POWER CORP","SOTH COLTON",0,,13573,"0M",1294,,190,95,8860,0,0,8292,0,0,6906,0,0,3510,0,0,4607,0,0,4842,0,0,2861,0,0,4595,0,0,2211,0,0,4731,0,0,12247,0,0,8305,0,0,2611,6,52053,"WAT","HY" 21,36,1,1,,105,230,"NIAGARA MOHAWK POWER CORP","STARK",0,,13573,"0M",1294,,190,95,10035,0,0,10162,0,0,7531,0,0,4401,0,0,5629,0,0,5788,0,0,3281,0,0,5363,0,0,2475,0,0,5187,0,0,14852,0,0,9960,0,0,2613,6,52053,"WAT","HY" 21,36,1,1,,105,235,"NIAGARA MOHAWK POWER CORP","SUGAR IS",0,,13573,"0M",1294,,190,95,2908,0,0,2519,0,0,2995,0,0,2818,0,0,2884,0,0,2757,0,0,1893,0,0,2754,0,0,1376,0,0,2667,0,0,2781,0,0,2983,0,0,2616,6,52053,"WAT","HY" 21,36,1,1,,105,240,"NIAGARA MOHAWK POWER CORP","TAYLORVILLE",0,,13573,"0M",1294,,190,95,2219,0,0,1663,0,0,2176,0,0,1051,0,0,1247,0,0,1560,0,0,1566,0,0,1692,0,0,1630,0,0,1392,0,0,2700,0,0,3109,0,0,2617,6,52053,"WAT","HY" 21,36,1,1,,105,250,"NIAGARA MOHAWK POWER CORP","TRENTON",0,,13573,"0M",1294,,190,95,12363,0,0,10763,0,0,12685,0,0,10309,0,0,6711,0,0,6004,0,0,5262,0,0,4565,0,0,3995,0,0,8295,0,0,14603,0,0,11617,0,0,2619,6,52053,"WAT","HY" 21,36,1,1,,105,255,"NIAGARA MOHAWK POWER CORP","VARICK",0,,13573,"0M",1294,,190,95,3510,0,0,2348,0,0,3552,0,0,1467,0,0,836,0,0,546,0,0,363,0,0,629,0,0,211,0,0,2344,0,0,3490,0,0,3553,0,0,2621,6,52053,"WAT","HY" 21,36,1,1,,105,265,"NIAGARA MOHAWK POWER CORP","YALEVILLE",0,,13573,"0M",1294,,190,95,293,0,0,255,0,0,406,0,0,320,0,0,373,0,0,341,0,0,243,0,0,407,0,0,242,0,0,346,0,0,275,0,0,248,0,0,2624,6,52053,"WAT","HY" 21,36,1,3,2,105,270,"NIAGARA MOHAWK POWER CORP","NINE MILE P",0,"LIGHT OIL",13573,"0M",1294,,190,95,6,136,4435,3,121,4470,11,87,4380,0,100,4256,13,323,4316,10,36,4349,6,164,4288,7,218,4320,6,11,535,6,12,573,6,13,557,6,12,543,2589,6,52053,"FO2","IC" 21,36,1,2,3,105,275,"NIAGARA MOHAWK POWER CORP","OSWEGO",0,"HEAVY OIL",13573,"0M",1294,,190,95,0,0,632933,120407,215553,417380,0,0,417380,26504,46741,370639,0,0,370639,1371,4130,366508,44092,30232,330715,13690,33269,298197,9883,21973,276183,0,0,276183,0,0,542213,0,0,542213,2594,6,52053,"FO6","ST" 21,36,1,2,9,105,275,"NIAGARA MOHAWK POWER CORP","OSWEGO",0,"NAT GAS",13573,"0M",1294,,190,95,999,22854,0,10635,117884,0,0,0,0,0,0,0,0,0,0,0,0,0,108,461,0,38513,570000,0,15497,213000,0,0,0,0,0,0,0,0,0,0,2594,6,52053,"NG","ST" 21,36,1,3,2,105,275,"NIAGARA MOHAWK POWER CORP","OSWEGO",0,"LIGHT OIL",13573,"0M",1294,,190,95,0,0,2149,0,0,2149,0,0,2149,0,0,2149,0,0,2149,0,0,2149,0,0,2149,0,0,2149,4,11,2138,0,0,2138,0,0,2138,0,0,2138,2594,6,52053,"FO2","IC" 21,36,1,1,,105,285,"NIAGARA MOHAWK POWER CORP","BEARDSLEE F",0,,13573,"0M",1294,,190,95,5266,0,0,1946,0,0,6556,0,0,4417,0,0,2463,0,0,1946,0,0,895,0,0,759,0,0,741,0,0,5400,0,0,6369,0,0,2631,0,0,2543,6,52053,"WAT","HY" 21,36,1,1,,105,290,"NIAGARA MOHAWK POWER CORP","BAKER FALLS",0,,13573,"0M",1294,"R",190,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2541,6,52053,"WAT","HY" 21,36,1,1,,105,300,"NIAGARA MOHAWK POWER CORP","EL J WEST",0,,13573,"0M",1294,,190,95,5989,0,0,5250,0,0,1580,0,0,972,0,0,1241,0,0,3218,0,0,3059,0,0,2326,0,0,4257,0,0,1425,0,0,10684,0,0,8834,0,0,6527,6,52053,"WAT","HY" 21,36,1,1,,105,305,"NIAGARA MOHAWK POWER CORP","EPHRATAH",0,,13573,"0M",1294,,190,95,2045,0,0,902,0,0,1493,0,0,780,0,0,337,0,0,463,0,0,97,0,0,147,0,0,127,0,0,1599,0,0,1298,0,0,1198,0,0,2560,6,52053,"WAT","HY" 21,36,1,1,,105,315,"NIAGARA MOHAWK POWER CORP","GLEN FALLS",0,,13573,"0M",1294,,190,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2567,6,52053,"WAT","HY" 21,36,1,1,,105,317,"NIAGARA MOHAWK POWER CORP","GREEN ISL",0,,13573,"0M",1294,,190,95,3672,0,0,3067,0,0,3470,0,0,3478,0,0,2678,0,0,2110,0,0,1303,0,0,1440,0,0,1476,0,0,2837,0,0,2513,0,0,3722,0,0,6528,6,52053,"WAT","HY" 21,36,1,1,,105,320,"NIAGARA MOHAWK POWER CORP","INGHAMS",0,,13573,"0M",1294,,190,95,2951,0,0,1446,0,0,3570,0,0,3006,0,0,1806,0,0,1403,0,0,605,0,0,518,0,0,480,0,0,2716,0,0,3695,0,0,1829,0,0,2579,6,52053,"WAT","HY" 21,36,1,1,,105,325,"NIAGARA MOHAWK POWER CORP","JOHNSONVLE",0,,13573,"0M",1294,,190,95,783,0,0,709,0,0,698,0,0,730,0,0,706,0,0,415,0,0,84,0,0,196,0,0,71,0,0,754,0,0,1347,0,0,777,0,0,2580,6,52053,"WAT","HY" 21,36,1,1,,105,340,"NIAGARA MOHAWK POWER CORP","MOREAU",0,,13573,"0M",1294,"R",190,95,0,0,0,2501,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2587,6,52053,"WAT","HY" 21,36,1,1,,105,350,"NIAGARA MOHAWK POWER CORP","SCH ST COHS",0,,13573,"0M",1294,,190,95,17365,0,0,13801,0,0,18549,0,0,16246,0,0,8330,0,0,6836,0,0,4087,0,0,3410,0,0,3303,0,0,14028,0,0,23804,0,0,15352,0,0,2605,6,52053,"WAT","HY" 21,36,1,1,,105,355,"NIAGARA MOHAWK POWER CORP","SCHAGHTICKE",0,,13573,"0M",1294,,190,95,6959,0,0,4628,0,0,1779,0,0,7008,0,0,3998,0,0,2703,0,0,925,0,0,1694,0,0,513,0,0,4157,0,0,7065,0,0,4122,0,0,2606,6,52053,"WAT","HY" 21,36,1,1,,105,360,"NIAGARA MOHAWK POWER CORP","SCHUYLERVLE",0,,13573,"0M",1294,,190,95,766,0,0,454,0,0,951,0,0,408,0,0,291,0,0,185,0,0,26,0,0,77,0,0,-5,0,0,527,0,0,1089,0,0,771,0,0,2607,6,52053,"WAT","HY" 21,36,1,1,,105,365,"NIAGARA MOHAWK POWER CORP","SHERMAN",0,,13573,"0M",1294,,190,95,14937,0,0,11480,0,0,11483,0,0,9158,0,0,6495,0,0,5892,0,0,5453,0,0,6179,0,0,6999,0,0,9121,0,0,7996,0,0,9198,0,0,2609,6,52053,"WAT","HY" 21,36,1,1,,105,370,"NIAGARA MOHAWK POWER CORP","SPIER FALLS",0,,13573,"0M",1294,,190,95,22054,0,0,16130,0,0,18521,0,0,13202,0,0,8844,0,0,7373,0,0,6467,0,0,7246,0,0,8844,0,0,15741,0,0,12177,0,0,20353,0,0,2612,6,52053,"WAT","HY" 21,36,1,1,,105,380,"NIAGARA MOHAWK POWER CORP","STEWARTS BR",0,,13573,"0M",1294,,190,95,10770,0,0,11203,0,0,3959,0,0,1818,0,0,5172,0,0,2348,0,0,5366,0,0,4271,0,0,7737,0,0,2666,0,0,19084,0,0,17328,0,0,2614,6,52053,"WAT","HY" 21,36,1,1,,105,385,"NIAGARA MOHAWK POWER CORP","STUYVESANT",0,,13573,"0M",1294,,190,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2615,6,52053,"WAT","HY" 21,36,1,2,2,105,395,"NIAGARA MOHAWK POWER CORP","ALBANY",0,"LIGHT OIL",13573,"0M",1294,,190,95,0,0,220,0,0,220,0,0,220,0,0,220,0,0,220,0,0,220,0,0,201,0,0,201,0,0,195,0,0,192,0,0,189,0,0,185,2539,6,52053,"FO2","ST" 21,36,1,2,3,105,395,"NIAGARA MOHAWK POWER CORP","ALBANY",0,"HEAVY OIL",13573,"0M",1294,,190,95,58267,97691,332532,62750,94595,237938,5641,8097,184840,0,0,184840,0,0,184840,1711,4230,180610,0,0,180610,0,0,180610,0,0,180610,0,0,180610,18591,30657,149952,25930,42050,107902,2539,6,52053,"FO6","ST" 21,36,1,2,9,105,395,"NIAGARA MOHAWK POWER CORP","ALBANY",0,"NAT GAS",13573,"0M",1294,,190,95,57789,665226,0,58253,669709,0,144263,1550322,0,53054,571524,0,31237,333909,0,47841,524896,0,130139,1434248,0,147338,1604315,0,50979,541649,0,49257,521886,0,6001,121469,0,5994,104410,0,2539,6,52053,"NG","ST" 21,36,1,3,2,105,395,"NIAGARA MOHAWK POWER CORP","ALBANY",0,"LIGHT OIL",13573,"0M",1294,,190,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2539,6,52053,"FO2","IC" 21,36,1,4,2,105,395,"NIAGARA MOHAWK POWER CORP","ALBANY",0,"LIGHT OIL",13573,"0M",1294,,190,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2539,6,52053,"FO2","GT" 21,36,1,4,9,105,395,"NIAGARA MOHAWK POWER CORP","ALBANY",0,"NAT GAS",13573,"0M",1294,,190,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2539,6,52053,"NG","GT" 21,36,1,1,,105,420,"NIAGARA MOHAWK POWER CORP","GLENWOOD",0,,13573,"0M",1294,,190,95,584,0,0,584,0,0,712,0,0,35,0,0,602,0,0,501,0,0,510,0,0,499,0,0,459,0,0,493,0,0,412,0,0,213,0,0,2568,6,52053,"WAT","HY" 21,36,1,1,,105,425,"NIAGARA MOHAWK POWER CORP","HYDRAULIC R",0,,13573,"0M",1294,,190,95,0,0,0,0,0,0,0,0,0,247,0,0,1980,0,0,1737,0,0,1757,0,0,1761,0,0,1655,0,0,1715,0,0,209,0,0,0,0,0,2578,6,52053,"WAT","HY" 21,36,1,1,,105,440,"NIAGARA MOHAWK POWER CORP","WATERPORT",0,,13573,"0M",1294,,190,95,1372,0,0,1372,0,0,1447,0,0,69,0,0,924,0,0,779,0,0,723,0,0,727,0,0,684,0,0,922,0,0,936,0,0,428,0,0,2623,6,52053,"WAT","HY" 21,36,1,2,2,105,445,"NIAGARA MOHAWK POWER CORP","DUNKIRK",0,"LIGHT OIL",13573,"0M",1294,,190,95,1601,2790,0,653,1081,0,675,1178,0,599,1017,0,1403,2417,0,539,896,0,638,1090,0,1031,1725,0,723,1216,0,997,1731,0,914,1625,0,396,651,0,2554,6,52053,"FO2","ST" 21,36,1,2,6,105,445,"NIAGARA MOHAWK POWER CORP","DUNKIRK",0,"BIT COAL",13573,"0M",1294,,190,95,254022,99455,112963,311173,114689,97723,298538,114582,80138,317020,119632,52831,259603,99967,52456,255038,95545,74556,311521,120965,80149,307244,117398,77577,307482,116339,76599,257442,99939,138351,253614,100750,153571,354614,131876,151153,2554,6,52053,"BIT","ST" 21,36,1,3,2,105,445,"NIAGARA MOHAWK POWER CORP","DUNKIRK",0,"LIGHT OIL",13573,"0M",1294,,190,95,0,0,1079,0,0,1334,0,0,1300,0,0,1323,0,0,635,0,0,1174,0,0,1343,0,0,1234,0,0,1317,0,0,1090,0,0,1325,0,0,1484,2554,6,52053,"FO2","IC" 21,36,1,2,2,105,450,"NIAGARA MOHAWK POWER CORP","C R HUNTLEY",0,"LIGHT OIL",13573,"0M",1294,,190,95,681,1256,1160,349,688,1247,690,1294,1076,1705,3207,1221,704,1326,1175,1004,1818,1727,1072,1981,1452,554,1037,1301,324,570,1193,1215,2237,1180,832,1567,1213,253,461,1135,2549,6,52053,"FO2","ST" 21,36,1,2,6,105,450,"NIAGARA MOHAWK POWER CORP","C R HUNTLEY",0,"BIT COAL",13573,"0M",1294,,190,95,272246,110975,103175,276497,121255,106086,220640,91915,179212,270614,112094,162277,265384,109603,157439,267756,107734,190733,286378,118727,131748,337035,139658,120591,316597,122391,136393,245260,100618,129570,236599,99435,197282,339259,137453,168549,2549,6,52053,"BIT","ST" 21,36,1,3,2,105,450,"NIAGARA MOHAWK POWER CORP","C R HUNTLEY",0,"LIGHT OIL",13573,"0M",1294,,190,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2549,6,52053,"FO2","IC" 21,36,1,1,,105,460,"NIAGARA MOHAWK POWER CORP","OAK ORCHARD",0,,13573,"0M",1294,,190,95,0,0,0,0,0,0,0,0,0,0,0,0,178,0,0,186,0,0,185,0,0,187,0,0,174,0,0,176,0,0,46,0,0,0,0,0,2592,6,52053,"WAT","HY" 21,36,1,1,,105,465,"NIAGARA MOHAWK POWER CORP","BEEBEE IS",0,,13573,"0M",1294,,190,95,3633,0,0,2768,0,0,5208,0,0,4383,0,0,3010,0,0,1959,0,0,2292,0,0,1754,0,0,2115,0,0,4754,0,0,5881,0,0,3959,0,0,6434,6,52053,"WAT","HY" 21,36,1,1,,105,470,"NIAGARA MOHAWK POWER CORP","FEEDER DAM",0,,13573,"0M",1294,,190,95,3058,0,0,0,0,0,2491,0,0,1680,0,0,1085,0,0,869,0,0,595,0,0,648,0,0,1046,0,0,1795,0,0,3058,0,0,2885,0,0,2666,6,52053,"WAT","HY" 21,36,1,1,,115,3,"ORANGE & ROCKLAND UTL INC","GRAHAMSVILE",0,,14154,"0M",1294,,,95,7995,0,0,10213,0,0,10828,0,0,5471,0,0,3765,0,0,6843,0,0,11715,0,0,11385,0,0,6049,0,0,6915,0,0,5017,0,0,7158,0,0,2627,6,52181,"WAT","HY" 21,36,1,1,,115,5,"ORANGE & ROCKLAND UTL INC","MONGAUP FLS",0,,14154,"0M",1294,,,95,1849,0,0,830,0,0,1994,0,0,1152,0,0,218,0,0,502,0,0,749,0,0,605,0,0,91,0,0,475,0,0,1859,0,0,1637,0,0,2630,6,52181,"WAT","HY" 21,36,1,1,,115,10,"ORANGE & ROCKLAND UTL INC","RIO",0,,14154,"0M",1294,,,95,4380,0,0,1792,0,0,4911,0,0,2578,0,0,759,0,0,986,0,0,1125,0,0,978,0,0,116,0,0,1041,0,0,4467,0,0,3352,0,0,2631,6,52181,"WAT","HY" 21,36,1,1,,115,15,"ORANGE & ROCKLAND UTL INC","SWING BR 1",0,,14154,"0M",1294,,,95,1041,0,0,442,0,0,1445,0,0,608,0,0,266,0,0,374,0,0,391,0,0,409,0,0,76,0,0,299,0,0,1316,0,0,873,0,0,2633,6,52181,"WAT","HY" 21,36,1,1,,115,20,"ORANGE & ROCKLAND UTL INC","SWING BR 2",0,,14154,"0M",1294,,,95,687,0,0,340,0,0,661,0,0,428,0,0,16,0,0,-84,0,0,164,0,0,42,0,0,-68,0,0,68,0,0,889,0,0,593,0,0,2634,6,52181,"WAT","HY" 21,36,1,2,3,115,25,"ORANGE & ROCKLAND UTL INC","BOWLINE PT",0,"HEAVY OIL",14154,"0M",1294,,,95,43906,73730,656595,138605,222519,509921,36874,60431,690856,47123,77864,612992,171664,281797,399693,132603,218077,395393,121658,204130,412273,93622,159538,457749,16475,28676,564249,22772,39554,562775,23802,41159,590697,87447,145316,516559,2625,6,52181,"FO6","ST" 21,36,1,2,9,115,25,"ORANGE & ROCKLAND UTL INC","BOWLINE PT",0,"NAT GAS",14154,"0M",1294,,,95,168974,1723560,0,82272,1239913,0,246716,2463200,0,218627,2199380,0,99656,966090,0,197607,1984380,0,277722,2939140,0,259468,2692570,0,188365,2000250,0,195838,2071510,0,142378,1499610,0,41983,424600,0,2625,6,52181,"NG","ST" 21,36,1,2,3,115,30,"ORANGE & ROCKLAND UTL INC","LOVETT",0,"HEAVY OIL",14154,"0M",1294,,,95,8,15,100319,1955,3363,96956,1,1,96927,0,0,96968,162,289,96714,7,13,96701,10,18,96682,5,10,96706,6,11,96717,0,0,96732,0,0,96732,5,10,96723,2629,6,52181,"FO6","ST" 21,36,1,2,6,115,30,"ORANGE & ROCKLAND UTL INC","LOVETT",0,"BIT COAL",14154,"0M",1294,,,95,111799,49067,63359,155251,65603,75519,116513,50062,70545,69873,29960,67950,67316,29174,75567,80224,36666,84715,138923,58882,82515,118307,52178,76055,140703,61690,59229,113469,49704,60388,125569,51656,62679,132749,58514,56774,2629,6,52181,"BIT","ST" 21,36,1,2,9,115,30,"ORANGE & ROCKLAND UTL INC","LOVETT",0,"NAT GAS",14154,"0M",1294,,,95,29773,323525,0,26698,280445,0,15824,169812,0,33214,357965,0,35392,384353,0,65900,754578,0,47901,513697,0,42001,470557,0,20369,222754,0,24743,268834,0,21096,220661,0,31665,346005,0,2629,6,52181,"NG","ST" 21,36,1,4,2,115,35,"ORANGE & ROCKLAND UTL INC","HILLBURN",0,"LIGHT OIL",14154,"0M",1294,,,95,0,0,4238,0,0,4238,0,0,4238,0,0,4238,0,9,4229,0,0,4229,52,164,4065,108,334,3731,0,0,3731,0,0,3731,0,0,3731,0,0,3731,2628,6,52181,"FO2","GT" 21,36,1,4,9,115,35,"ORANGE & ROCKLAND UTL INC","HILLBURN",0,"NATURAL G",14154,"0M",1294,,,95,44,1217,0,0,0,0,37,1143,0,565,8996,0,-13,1208,0,256,5250,0,276,4745,0,945,15862,0,444,6906,0,-18,82,0,-27,456,0,24,430,0,2628,6,52181,"NG","GT" 21,36,1,4,2,115,40,"ORANGE & ROCKLAND UTL INC","SHOEMAKER",0,"LIGHT OIL",14154,"0M",1294,,,95,0,0,4599,73,30,4569,29,103,4466,-1,30,4485,1,2,4463,45,124,4068,0,0,4068,1,3,4065,0,0,4065,22,81,3984,84,247,3738,0,0,3738,2632,6,52181,"FO2","GT" 21,36,1,4,9,115,40,"ORANGE & ROCKLAND UTL INC","SHOEMAKER",0,"NAT GAS",14154,"0M",1294,,,95,217,4023,0,342,7789,0,599,11559,0,-31,207,0,1856,30143,0,3256,49008,0,4402,75566,0,4597,74746,0,2492,42150,0,713,14586,0,45,456,0,53,1654,0,2632,6,52181,"NG","GT" 21,36,1,2,1,135,1,"ROCHESTER GAS & ELEC CORP","GINNA",0,"NUCLEAR",16183,"0M",1294,,,95,351805,0,0,321771,0,0,293087,0,0,-2750,0,0,299117,0,0,334397,0,0,342637,0,0,305248,0,0,336763,0,0,353447,0,0,342871,0,0,354889,0,0,6122,6,52501,"UR","ST" 21,36,1,1,,135,5,"ROCHESTER GAS & ELEC CORP","MILLS M 172",0,,16183,"0M",1294,,,95,68,0,0,0,0,0,79,0,0,31,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2636,6,52501,"WAT","HY" 21,36,1,1,,135,10,"ROCHESTER GAS & ELEC CORP","MT MORR 160",0,,16183,"0M",1294,,,95,0,0,0,75,0,0,0,0,0,0,0,0,49,0,0,121,0,0,87,0,0,44,0,0,16,0,0,124,0,0,132,0,0,67,0,0,2637,6,52501,"WAT","HY" 21,36,1,1,,135,15,"ROCHESTER GAS & ELEC CORP","ROCHESTER 2",0,,16183,"0M",1294,,,95,3983,0,0,3890,0,0,4861,0,0,4119,0,0,4073,0,0,2681,0,0,1898,0,0,1483,0,0,708,0,0,3228,0,0,4230,0,0,3509,0,0,2639,6,52501,"WAT","HY" 21,36,1,1,,135,25,"ROCHESTER GAS & ELEC CORP","ROCHESTER 5",0,,16183,"0M",1294,,,95,18727,0,0,8869,0,0,21670,0,0,13445,0,0,7303,0,0,4173,0,0,5885,0,0,2422,0,0,1347,0,0,9730,0,0,15462,0,0,12738,0,0,2641,6,52501,"WAT","HY" 21,36,1,1,,135,28,"ROCHESTER GAS & ELEC CORP","RCHESTER 26",0,,16183,"0M",1294,,,95,596,0,0,1040,0,0,1215,0,0,1302,0,0,1083,0,0,420,0,0,405,0,0,282,0,0,135,0,0,726,0,0,1174,0,0,1054,0,0,2638,6,52501,"WAT","HY" 21,36,1,1,,135,35,"ROCHESTER GAS & ELEC CORP","WISCOY 170",0,,16183,"0M",1294,,,95,517,0,0,408,0,0,590,0,0,391,0,0,204,0,0,97,0,0,121,0,0,83,0,0,55,0,0,240,0,0,470,0,0,462,0,0,2646,6,52501,"WAT","HY" 21,36,1,2,2,135,45,"ROCHESTER GAS & ELEC CORP","ROCHESTER 3",0,"LIGHT OIL",16183,"0M",394,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,102,143,2305,77,143,2008,122,214,1718,91,167,1882,68,119,1700,27,58,1645,2640,6,52501,"FO2","ST" 21,36,1,2,3,135,45,"ROCHESTER GAS & ELEC CORP","ROCHESTER 3",0,"HEAVY OIL",16183,"0M",1294,"R",,95,27,48,2860,14,24,2809,14,24,2745,14,24,2703,0,0,2703,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2640,6,52501,"FO6","ST" 21,36,1,2,6,135,45,"ROCHESTER GAS & ELEC CORP","ROCHESTER 3",0,"BIT COAL",16183,"0M",1294,,,95,36334,13900,770,42264,15300,1458,40715,15300,1556,45572,16900,817,17481,6500,1591,36715,14100,1438,41179,15700,936,37637,15017,1800,37010,13802,1800,27740,10832,1630,33466,12558,1431,34731,13210,1105,2640,6,52501,"BIT","ST" 21,36,1,4,2,135,45,"ROCHESTER GAS & ELEC CORP","ROCHESTER 3",0,"LIGHT OIL",16183,"0M",1294,,,95,26,81,0,4,27,0,13,41,0,3,18,0,0,0,0,6,34,0,4,6,0,46,154,0,25,76,0,8,26,0,13,63,0,1,7,0,2640,6,52501,"FO2","GT" 21,36,1,2,2,135,50,"ROCHESTER GAS & ELEC CORP","ROCHESTER 7",0,"LIGHT OIL",16183,"0M",1294,,,95,299,571,1111,90,167,1127,375,690,1162,173,310,1211,249,452,1299,566,1071,1121,331,643,1190,434,833,1065,37,71,1065,373,738,1065,345,643,958,311,571,1102,2642,6,52501,"FO2","ST" 21,36,1,2,6,135,50,"ROCHESTER GAS & ELEC CORP","ROCHESTER 7",0,"BIT COAL",16183,"0M",1294,,,95,66357,27700,114902,86515,35300,90431,90609,36600,83204,137634,53400,75835,121093,47500,85250,104898,43000,113923,112687,47700,112973,116634,48507,127749,110993,45157,153399,77990,33362,173353,81051,33064,173047,90029,35948,150667,2642,6,52501,"BIT","ST" 21,36,1,4,2,135,60,"ROCHESTER GAS & ELEC CORP","ROCHESTER 9",0,"LIGHT OIL",16183,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2644,6,52501,"FO2","GT" 21,36,1,4,9,135,60,"ROCHESTER GAS & ELEC CORP","ROCHESTER 9",0,"NAT GAS",16183,"0M",1294,,,95,26,383,0,2,74,0,14,216,0,4,174,0,0,0,0,8,290,0,17,280,0,3,89,0,24,381,0,0,0,0,3,98,0,8,143,0,2644,6,52501,"NG","GT" 21,36,5,3,2,578,5,"FREEPORT (VILLAGE OF)","PLANT NO 2",0,"LIGHT OIL",6775,"0M",1294,,,95,1463,3067,3172,1434,3271,2622,413,1557,2551,-162,121,3525,-118,217,5782,984,2264,6164,3712,7100,3595,3729,7301,5720,584,1625,6684,895,1423,5789,787,2037,3752,1869,3903,3213,2679,6,51057,"FO2","IC" 21,36,5,4,2,578,5,"FREEPORT (VILLAGE OF)","PLANT NO 2",0,"LIGHT OIL",6775,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,12,0,13,58,0,18,95,0,0,0,0,0,0,0,0,0,0,0,0,0,2679,6,51057,"FO2","GT" 21,36,5,3,2,578,10,"FREEPORT (VILLAGE OF)","PLANT NO 1",0,"LIGHT OIL",6775,"0M",1294,,,95,182,658,1479,376,1032,1630,468,1254,1391,320,920,1697,251,803,1542,452,1093,1119,571,1281,1220,740,1757,1321,639,1551,1424,175,575,1295,402,1078,1704,465,1231,1436,2678,6,51057,"FO2","IC" 21,36,5,1,,586,1,"GOUVERNEUR (CITY OF)","GOUVERNEUR",0,,7422,"0A",1294,,,95,46,0,0,92,0,0,47,0,0,50,0,0,50,0,0,38,0,0,13,0,0,45,0,0,29,0,0,20,0,0,26,0,0,41,0,0,2680,6,51137,"WAT","HY" 21,36,5,3,2,599,1,"GREENPORT (CITY OF)","GREENPORT",0,"LIGHT OIL",7630,"0A",1294,,,95,-32,0,183,-32,0,183,-27,0,183,0,2,181,0,0,0,0,1,180,-20,0,180,-4,28,152,-10,14,182,-19,0,182,0,0,182,-1,26,181,2681,6,51177,"FO2","IC" 21,36,5,2,2,624,1,"JAMESTOWN (CITY OF)","S A CARLSON",0,"LIGHT OIL",9645,"0M",1294,,,95,105,273,377,41,102,275,21,59,394,24,59,335,20,54,281,26,64,394,57,144,250,59,144,281,26,66,215,26,69,323,44,114,209,51,136,250,2682,6,51437,"FO2","ST" 21,36,5,2,6,624,1,"JAMESTOWN (CITY OF)","S A CARLSON",0,"BIT COAL",9645,"0M",1294,,,95,17974,10638,3526,17648,10013,3826,11794,7305,3597,9844,5439,3428,9879,6006,2629,11487,6255,2811,13511,7717,2530,13208,7291,3578,9538,5398,3370,10505,6096,2827,12704,7245,3946,16956,10165,3924,2682,6,51437,"BIT","ST" 21,36,5,3,2,675,1,"ROCKVILLE CTR(VILLAGE OF)","ROCKVILLE C",0,"LIGHT OIL",16217,"0M",1294,,,95,105,294,2332,321,741,2091,43,283,1808,-60,82,1726,-18,114,2338,244,637,2368,957,2138,1919,2160,4073,1884,560,1129,2277,20,216,2061,38,213,2151,101,381,1770,2695,6,52509,"FO2","IC" 21,36,5,3,9,675,1,"ROCKVILLE CTR(VILLAGE OF)","ROCKVILLE C",0,"NAT GAS",16217,"0M",1294,,,95,642,7257,0,510,5912,0,15,471,0,0,325,0,-11,282,0,1931,20033,0,4455,46010,0,2523,26516,0,352,4031,0,47,1369,0,46,1025,0,450,5750,0,2695,6,52509,"NG","IC" 21,36,5,3,2,700,5,"SKANEATELES VILLAGE OF","SKANEATELES",0,"LIGHT OIL",17280,"0A",1294,"R",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2697,6,52670,"FO2","IC" 21,36,5,1,,712,1,"SPRINGVILLE (CITY OF)","SPRINGVILLE",0,,17846,"0A",1294,,,95,145,0,0,118,0,0,104,0,0,166,0,0,172,0,0,129,0,0,84,0,0,63,0,0,12,0,0,39,0,0,110,0,0,124,0,0,2698,6,52772,"WAT","HY" 21,36,5,1,,725,1,"WATERTOWN (CITY OF)","WATERTOWN",0,,20188,"0A",1294,,,95,2508,0,0,1826,0,0,2861,0,0,2520,0,0,2042,0,0,715,0,0,684,0,0,252,0,0,458,0,0,1925,0,0,2671,0,0,2141,0,0,2700,6,53199,"WAT","HY" 21,36,9,1,,668,1,"POWER AUTHY OF ST OF N Y","LEWISTON PG",0,"C-PUMPSTG",15296,"0M",1294,,,95,-23392,48481,0,-16321,48107,0,-18062,52914,0,-34170,75041,0,-32754,81523,0,-35246,84639,0,-35971,80543,0,-31970,78905,0,-33926,76500,0,-34404,82531,0,-25619,66689,0,-26848,63831,0,2692,6,52375,"WAT","HY" 21,36,9,2,1,668,1,"POWER AUTHY OF ST OF N Y","FITZPATRICK",0,"NUCLEAR",15296,"0M",1294,,,95,0,0,0,0,0,0,34055,0,0,544665,0,0,562170,0,0,384520,0,0,579310,0,0,577530,0,0,402855,0,0,590100,0,0,572680,0,0,580835,0,0,6110,6,52375,"UR","ST" 21,36,9,1,,668,3,"POWER AUTHY OF ST OF N Y","MOSES NIAG",0,,15296,"0M",1294,,,95,1463973,0,0,1230590,0,0,1418230,0,0,1163933,0,0,1279083,0,0,1132981,0,0,1197133,0,0,1148436,0,0,1021706,0,0,1145560,0,0,1382957,0,0,1354956,0,0,2693,6,52375,"WAT","HY" 21,36,9,2,1,668,3,"POWER AUTHY OF ST OF N Y","INDIAN PT 3",0,"NUCLEAR",15296,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,17,0,0,434533,0,0,716433,0,0,320544,0,0,0,0,0,0,0,0,-2,0,0,8907,6,52375,"UR","ST" 21,36,9,1,,668,5,"POWER AUTHY OF ST OF N Y","MOSES PR DM",0,,15296,"0M",1294,,,95,524759,0,0,481624,0,0,585412,0,0,549618,0,0,532348,0,0,526743,0,0,545520,0,0,559232,0,0,538635,0,0,554432,0,0,576778,0,0,569302,0,0,2694,6,52375,"WAT","HY" 21,36,9,1,,668,8,"POWER AUTHY OF ST OF N Y","BLENHEIM G",0,"P-PUMPSTG",15296,"0M",1294,,,95,-80117,223900,0,-66116,187582,0,-64757,198518,0,-71547,180530,0,-58305,185571,0,-61293,196731,0,-78558,215353,0,-75753,237341,0,-63547,183628,0,-66325,194141,0,-57795,177791,0,-70135,192222,0,2691,6,52375,"WAT","HY" 21,36,9,2,3,668,15,"POWER AUTHY OF ST OF N Y","POLETTI",0,"HEAVY OIL",15296,"0M",1294,,,95,33400,61649,303226,126069,209523,203682,20403,35475,168236,17269,37577,130679,19806,35708,94972,47803,62254,32718,36004,60668,68293,14149,23707,150452,35247,61190,430389,17481,30727,459549,62862,110242,349307,252627,421942,245156,2491,6,52375,"FO6","ST" 21,36,9,2,9,668,15,"POWER AUTHY OF ST OF N Y","POLETTI",0,"NAT GAS",15296,"0M",1294,,,95,99454,1128061,0,99940,1020449,0,202945,2167293,0,211435,2738075,0,258894,2862705,0,324525,2604689,0,262599,2721610,0,310920,3222176,0,205757,2168448,0,224611,2374781,0,128580,1368464,0,2466,25078,0,2491,6,52375,"NG","ST" 21,36,9,1,,668,20,"POWER AUTHY OF ST OF N Y","ASHOKAN",0,,15296,"0M",1294,,,95,1615,0,0,587,0,0,1045,0,0,2214,0,0,2450,0,0,2277,0,0,2117,0,0,2126,0,0,1756,0,0,1286,0,0,1083,0,0,1303,0,0,88,6,52375,"WAT","HY" 21,36,9,1,,668,25,"POWER AUTHY OF ST OF N Y","KENSICO",0,,15296,"0M",1294,,,95,802,0,0,73,0,0,0,0,0,1521,0,0,150,0,0,271,0,0,1411,0,0,1244,0,0,1418,0,0,1191,0,0,880,0,0,0,0,0,650,6,52375,"WAT","HY" 21,36,9,1,,668,30,"POWER AUTHY OF ST OF N Y","JARVIS",0,,15296,"0M",1294,,,95,4048,0,0,2165,0,0,2416,0,0,2485,0,0,1720,0,0,1501,0,0,1162,0,0,1003,0,0,575,0,0,2833,0,0,5091,0,0,2476,0,0,808,6,52375,"WAT","HY" 21,36,9,1,,668,35,"POWER AUTHY OF ST OF N Y","CRESCENT",0,,15296,"0M",1294,,,95,6303,0,0,4034,0,0,7316,0,0,4624,0,0,3019,0,0,2031,0,0,104,0,0,713,0,0,703,0,0,3132,0,0,6120,0,0,4690,0,0,2685,6,52375,"WAT","HY" 21,36,9,1,,668,40,"POWER AUTHY OF ST OF N Y","VISCHER FER",0,,15296,"0M",1294,,,95,5945,0,0,3714,0,0,6024,0,0,4504,0,0,2789,0,0,1833,0,0,986,0,0,123,0,0,654,0,0,2259,0,0,5980,0,0,4591,0,0,2686,6,52375,"WAT","HY" 21,36,9,5,9,668,45,"POWER AUTHY OF ST OF N Y","FLYNN",0,"WASTE HT",15296,"0M",1294,,,95,24819,192100,0,17369,134483,0,27383,211172,0,18948,146928,0,26056,199854,0,24430,188777,0,23492,184084,0,25126,194127,0,24424,188668,0,23749,183457,0,20261,158951,0,19720,154115,0,7314,6,52375,"WH","CC" 21,36,9,6,2,668,45,"POWER AUTHY OF ST OF N Y","FLYNN",0,"LIGHT OIL",15296,"0M",1294,,,95,7722,10369,101959,21462,28859,72145,0,0,72242,14,20,72083,0,0,72104,0,0,72094,0,0,72044,0,0,72052,0,0,72062,157,211,71873,9447,12866,58992,27271,36998,78070,7314,6,52375,"FO2","CT" 21,36,9,6,9,668,45,"POWER AUTHY OF ST OF N Y","FLYNN",0,"NAT GAS",15296,"0M",1294,,,95,74458,576302,0,52111,403450,0,82153,633518,0,56849,440785,0,78170,599562,0,73293,566331,0,71470,552251,0,75381,582382,0,73276,566005,0,71251,550371,0,60784,476853,0,59162,462344,0,7314,6,52375,"NG","CT" 22,34,1,2,2,24,1,"ATLANTIC CITY ELEC CO","DEEPWATER",0,"LIGHT OIL",963,"0M",1294,,181,95,0,0,123,81,130,93,0,0,131,0,0,138,14,28,165,67,129,202,80,160,147,5,10,137,40,91,189,0,29,160,0,29,131,4,8,123,2384,3,56513,"FO2","ST" 22,34,1,2,3,24,1,"ATLANTIC CITY ELEC CO","DEEPWATER",0,"HEAVY OIL",963,"0M",1294,,181,95,1345,2425,95467,4563,6516,88951,0,0,88951,0,0,88261,0,0,88261,1177,2026,86235,3361,5958,80277,5273,9351,70926,5555,8624,62302,0,0,62302,0,0,62302,0,0,62302,2384,3,56513,"FO6","ST" 22,34,1,2,6,24,1,"ATLANTIC CITY ELEC CO","DEEPWATER",0,"BIT COAL",963,"0M",1294,,181,95,29945,12519,39313,35838,15203,23710,8276,3561,20149,0,0,34389,5810,3059,52665,34469,14723,52014,42129,18253,40567,44451,19515,27979,11926,4625,44084,33654,13941,51248,53859,21346,70836,57721,22974,63900,2384,3,56513,"BIT","ST" 22,34,1,2,9,24,1,"ATLANTIC CITY ELEC CO","DEEPWATER",0,"NAT GAS",963,"0M",1294,,181,95,1491,16310,0,0,0,0,944,9940,0,1878,22040,0,11307,122240,0,11062,117040,0,27862,302860,0,29442,321050,0,12534,120040,0,807,8090,0,1552,15370,0,0,0,0,2384,3,56513,"NG","ST" 22,34,1,4,2,24,1,"ATLANTIC CITY ELEC CO","DEEPWATER",0,"LIGHT OIL",963,"0M",1294,,181,95,-8,0,770,27,44,729,14,39,690,20,103,587,0,0,587,0,0,587,0,0,587,0,0,587,0,0,587,0,0,587,0,0,587,0,0,0,2384,3,56513,"FO2","GT" 22,34,1,4,9,24,1,"ATLANTIC CITY ELEC CO","DEEPWATER",0,"NAT GAS",963,"0M",1294,,181,95,-8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,629,6657,0,3831,41649,0,3649,39793,0,1027,14649,0,628,9167,0,1061,10505,0,694,6875,0,2384,3,56513,"NG","GT" 22,34,1,4,2,24,2,"ATLANTIC CITY ELEC CO","MISSOURI AV",0,"LIGHT OIL",963,"0M",1294,,181,95,-4,100,9869,278,791,9635,3,53,9582,-21,5,9576,-17,8,9568,177,455,9113,2101,5546,7361,1882,5382,8451,605,2439,10201,-18,16,10185,-16,19,10167,2,70,10097,2383,3,56513,"FO2","GT" 22,34,1,2,2,24,5,"ATLANTIC CITY ELEC CO","B L ENGLAND",0,"LIGHT OIL",963,"0M",1294,,181,95,510,999,1734,317,596,1818,213,395,1756,107,200,1734,125,224,1843,424,778,1734,424,814,1508,552,1027,1647,500,1086,1588,450,958,1654,643,1122,1377,242,442,1435,2378,3,56513,"FO2","ST" 22,34,1,2,3,24,5,"ATLANTIC CITY ELEC CO","B L ENGLAND",0,"HEAVY OIL",963,"0M",1294,,181,95,4583,8307,99579,7833,13643,103560,0,0,103560,0,0,103560,0,0,103560,8731,14731,88829,37756,66914,51324,29729,50813,69931,850,2842,113855,18800,33751,80103,0,0,80103,15770,26499,87607,2378,3,56513,"FO6","ST" 22,34,1,2,6,24,5,"ATLANTIC CITY ELEC CO","B L ENGLAND",0,"BIT COAL",963,"0M",1294,,181,95,68381,30282,165387,127521,54088,125492,123787,53379,95025,85963,36061,88754,176115,72435,61413,155554,64926,62658,185411,80134,49009,173888,73305,41509,130330,53650,71904,83030,32962,118367,145947,62033,109160,196038,81549,81843,2378,3,56513,"BIT","ST" 22,34,1,3,2,24,5,"ATLANTIC CITY ELEC CO","B L ENGLAND",0,"LIGHT OIL",963,"0M",1294,,181,95,0,0,0,5,11,0,0,0,0,0,0,0,0,0,0,12,23,0,133,257,0,321,597,0,5,10,0,0,0,0,0,0,0,0,0,0,2378,3,56513,"FO2","IC" 22,34,1,4,2,24,20,"ATLANTIC CITY ELEC CO","MIDDLE STA",0,"LIGHT OIL",963,"0M",1294,,181,95,-834,144,15410,-227,1590,15128,-1342,459,14669,-815,159,14510,-333,16,14494,-558,315,9113,2009,5421,12193,2243,7786,14637,-670,677,15327,-729,232,15284,-745,423,15069,-730,254,14814,2382,3,56513,"FO2","GT" 22,34,1,4,2,24,25,"ATLANTIC CITY ELEC CO","CEDAR STA",0,"LIGHT OIL",963,"0M",1294,,181,95,-474,179,21675,-321,918,21875,-42,70,21804,-546,56,21748,-110,38,21710,62,61,21650,3843,9672,14702,3756,10444,18151,-253,1075,20407,-631,431,21246,-535,219,21027,-679,322,20705,2380,3,56513,"FO2","GT" 22,34,1,4,2,24,30,"ATLANTIC CITY ELEC CO","CARLL CORNR",0,"LIGHT OIL",963,"0M",1294,,181,95,-28,8,13554,78,379,13175,-43,0,13175,-20,0,13175,-965,8,13167,-121,166,13002,1394,2899,10102,1615,4499,9171,-32,0,13713,-16,0,14849,-44,0,14849,49,332,14517,2379,3,56513,"FO2","GT" 22,34,1,4,9,24,30,"ATLANTIC CITY ELEC CO","CARLL CORNR",0,"NAT GAS",963,"0M",1294,,181,95,35,1120,0,452,8170,0,-76,50,0,-19,1010,0,73,2450,0,835,15970,0,6072,93380,0,5324,82370,0,-117,28460,0,861,14250,0,-44,7170,0,172,150,0,2379,3,56513,"NG","GT" 22,34,1,4,2,24,32,"ATLANTIC CITY ELEC CO","MICKETON ST",0,"LIGHT OIL",963,"0M",1294,,181,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8008,3,56513,"FO2","GT" 22,34,1,4,9,24,32,"ATLANTIC CITY ELEC CO","MICKETON ST",0,"NAT GAS",963,"0M",1294,,181,95,665,11020,0,1084,16250,0,714,11030,0,1017,15170,0,334,6070,0,2355,35610,0,9801,143090,0,8665,129480,0,2856,42750,0,30,1480,0,2277,33340,0,276,5380,0,8008,3,56513,"NG","GT" 22,34,1,4,2,24,33,"ATLANTIC CITY ELEC CO","CUMBERLAND",0,"LIGHT OIL",963,"0M",1294,,181,95,-76,0,18141,-10,0,18141,-38,0,18141,-31,0,18141,-30,0,18141,0,0,18141,5894,12888,17367,7323,16647,12470,3,249,14661,0,0,17077,-158,198,17249,60,412,16838,5083,3,56513,"FO2","GT" 22,34,1,4,9,24,33,"ATLANTIC CITY ELEC CO","CUMBERLAND",0,"NAT GAS",963,"0M",1294,,181,95,-76,0,0,-10,0,0,-38,0,0,-31,0,0,0,0,0,-27,130,0,342,4020,0,16,200,0,1,380,0,-93,0,0,0,0,0,101,3810,0,5083,3,56513,"NG","GT" 22,34,1,4,2,24,35,"ATLANTIC CITY ELEC CO","MANTU DEPOT",0,"LIGHT OIL",963,"0M",1294,,181,95,0,0,53843,0,0,50861,0,0,80853,0,0,80853,0,0,80853,0,0,80853,0,0,58245,0,0,12871,0,0,12871,0,0,52645,0,0,52645,0,0,82122,8803,3,56513,"FO2","GT" 22,34,1,4,3,24,40,"ATLANTIC CITY ELEC CO","MANTU DEPOT",0,"HEAVY OIL",963,"0M",1294,,181,95,0,0,128847,0,0,111223,0,0,111223,0,0,111223,0,0,111223,0,0,111223,0,0,81814,0,0,111865,0,0,111865,0,0,115694,0,0,115694,0,0,131074,8804,3,56513,"FO6","GT" 22,34,1,4,2,24,45,"ATLANTIC CITY ELEC CO","SHERMAN AVE",0,"LIGHT OIL",963,"0M",1294,,181,95,70,186,14708,-45,0,14708,-30,0,14708,0,0,14708,-11,0,14708,0,0,14708,0,0,14708,-190,0,14708,0,0,14708,0,0,14708,76,193,14515,232,590,14513,7288,3,56513,"FO2","GT" 22,34,1,4,9,24,45,"ATLANTIC CITY ELEC CO","SHERMAN AVE",0,"NAT GAS",963,"0M",1294,,181,95,1386,19950,0,-45,0,0,-30,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-190,0,0,0,0,0,0,0,0,1704,23780,0,2984,41500,0,7288,3,56513,"NG","GT" 22,34,1,2,1,50,1,"GPU NUCLEAR CORP","OYSTER CRK",0,"NUCLEAR",7423,"0M",1294,,,95,471880,0,0,400185,0,0,466040,0,0,457427,0,0,440064,0,0,447364,0,0,438119,0,0,420825,0,0,447572,0,0,468215,0,0,428423,0,0,307964,0,0,2388,3,58850,"UR","ST" 22,34,1,1,,78,5,"JERSEY CENTRAL PWR & LGT","YARDS CR JO",0,"P-PUMPSTG",9726,"0M",1294,,,95,-9476,31075,0,-6121,19602,0,-8606,30644,0,-9596,30043,0,-9800,36086,0,-15417,52655,0,-13938,46076,0,-11848,42668,0,-7525,27636,0,0,0,0,0,0,0,-2205,5358,0,6522,3,56512,"WAT","HY" 22,34,1,4,2,78,7,"JERSEY CENTRAL PWR & LGT","GLEN GARDNR",0,"LIGHT OIL",9726,"0M",1294,,,95,357,1074,17830,457,1242,16588,29,247,16340,30,141,16199,0,0,16199,360,1062,15138,0,0,15138,0,0,15138,149,445,14693,21,60,14633,69,223,14409,10,63,16838,8227,3,56512,"FO2","GT" 22,34,1,4,9,78,7,"JERSEY CENTRAL PWR & LGT","GLEN GARDNR",0,"NAT GAS",9726,"0M",1294,,,95,1,10,0,31,485,0,2,90,0,0,0,0,0,0,0,698,11690,0,15562,248730,0,18982,309960,0,4246,71580,0,3046,50662,0,1111,20594,0,10,377,0,8227,3,56512,"NG","GT" 22,34,1,2,3,78,9,"JERSEY CENTRAL PWR & LGT","GILBERT",0,"HEAVY OIL",9726,"0M",1294,,,95,268,611,153901,2150,4403,149484,0,0,149488,0,0,149544,0,0,149379,0,0,150080,0,0,150051,0,0,149974,0,0,150075,0,0,149949,0,0,149926,8990,12417,137518,2393,3,56512,"FO6","ST" 22,34,1,2,9,78,9,"JERSEY CENTRAL PWR & LGT","GILBERT",0,"NAT GAS",9726,"0M",1294,,,95,1658,32084,0,198,3865,0,-452,0,0,-364,0,0,-363,0,0,6011,80854,0,28213,364986,0,24888,306021,0,915,14545,0,340,8670,0,825,13717,0,331,2840,0,2393,3,56512,"NG","ST" 22,34,1,4,2,78,9,"JERSEY CENTRAL PWR & LGT","GILBERT",0,"LIGHT OIL",9726,"0M",1294,,,95,150,431,0,803,2747,0,39,127,0,0,0,0,0,0,0,1,8,0,1,3,0,791,2604,0,31,88,0,0,0,0,0,0,0,0,0,0,2393,3,56512,"FO2","GT" 22,34,1,4,9,78,9,"JERSEY CENTRAL PWR & LGT","GILBERT",0,"NAT GAS",9726,"0M",1294,,,95,1,16,0,0,0,0,1,15,0,0,0,0,0,0,0,3,79,0,2862,50800,0,6493,121452,0,911,15880,0,4,174,0,979,364,0,29,249,0,2393,3,56512,"NG","GT" 22,34,1,5,2,78,9,"JERSEY CENTRAL PWR & LGT","GILBERT",0,"LIGHT OIL",9726,"0M",1294,,,95,728,0,0,3136,0,0,1259,0,0,1612,0,0,-587,0,0,5741,0,0,26058,0,0,28272,0,0,20554,0,0,8047,0,0,19296,0,0,18926,0,0,2393,3,56512,"FO2","CC" 22,34,1,5,9,78,9,"JERSEY CENTRAL PWR & LGT","GILBERT",0,"WASTE HT",9726,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2393,3,56512,"NG","CC" 22,34,1,6,2,78,9,"JERSEY CENTRAL PWR & LGT","GILBERT",0,"LIGHT OIL",9726,"0M",1294,,,95,1147,2566,252704,5572,11989,236313,1136,2545,232067,367,826,230086,0,0,229824,2660,6112,221348,82,189,219853,2038,4709,211204,942,1977,207539,163,373,205587,83,183,203671,5739,8660,193069,2393,3,56512,"FO2","CT" 22,34,1,6,9,78,9,"JERSEY CENTRAL PWR & LGT","GILBERT",0,"NAT GAS",9726,"0M",1294,,,95,5385,68331,0,8729,106467,0,6306,80671,0,7352,94029,0,-100,0,0,15594,203104,0,61026,877903,0,70864,931070,0,54572,701754,0,24094,329931,0,60664,796524,0,81101,693848,0,2393,3,56512,"NG","CT" 22,34,1,2,3,78,10,"JERSEY CENTRAL PWR & LGT","SAYREVILLE",0,"HEAVY OIL",9726,"0M",1294,,,95,4224,7914,90214,19448,37587,72103,7,16,72200,0,0,72163,792,1710,90373,6448,15362,75189,42812,86857,27305,24793,50118,55888,1650,3646,52242,0,0,71301,7,18,90540,10844,23847,66865,2390,3,56512,"FO6","ST" 22,34,1,2,9,78,10,"JERSEY CENTRAL PWR & LGT","SAYREVILLE",0,"NAT GAS",9726,"0M",1294,,,95,20137,245800,0,2651,32100,0,6917,89800,0,-727,100,0,-407,2800,0,141,2100,0,224,4900,0,16338,199000,0,1429,25400,0,-704,0,0,2904,47900,0,306,4100,0,2390,3,56512,"NG","ST" 22,34,1,4,2,78,10,"JERSEY CENTRAL PWR & LGT","SAYREVILLE",0,"LIGHT OIL",9726,"0M",1294,,,95,93,224,31996,752,2238,29758,0,0,29758,0,0,29758,139,640,29118,0,0,29118,0,0,29118,0,0,29118,0,0,29118,0,0,29118,0,0,29118,0,0,29118,2390,3,56512,"FO2","GT" 22,34,1,4,9,78,10,"JERSEY CENTRAL PWR & LGT","SAYREVILLE",0,"NAT GAS",9726,"0M",1294,,,95,1500,19800,0,1294,21300,0,831,12100,0,898,13300,0,187,4800,0,2507,37100,0,16534,266200,0,24165,379300,0,3245,51100,0,2451,37300,0,265,3800,0,22,300,0,2390,3,56512,"NG","GT" 22,34,1,2,3,78,15,"JERSEY CENTRAL PWR & LGT","WERNER",0,"HEAVY OIL",9726,"0M",1294,,,95,259,628,28845,5405,11437,18060,1926,4703,13792,-265,311,13764,-275,69,13780,1352,3366,28845,10346,20351,28459,7922,15595,12784,55,70,13159,-271,197,32022,-298,546,32144,3509,7954,24818,2385,3,56512,"FO6","ST" 22,34,1,4,2,78,15,"JERSEY CENTRAL PWR & LGT","WERNER",0,"LIGHT OIL",9726,"0M",1294,,,95,44,115,40240,398,1664,37864,88,236,37615,0,0,37379,13,702,36473,348,618,35855,2640,8238,27453,4764,13326,33888,215,290,33598,10,269,33202,0,25,42792,3,278,41910,2385,3,56512,"FO2","GT" 22,34,1,4,2,78,20,"JERSEY CENTRAL PWR & LGT","FORKED RVR",0,"LIGHT OIL",9726,"0M",1294,,,95,0,0,16388,1066,2219,17602,713,1618,15984,0,0,15971,0,0,15989,0,0,15969,0,0,15974,0,0,15980,0,0,15980,5,12,15970,0,0,15994,221,489,15505,7138,3,56512,"FO2","GT" 22,34,1,4,9,78,20,"JERSEY CENTRAL PWR & LGT","FORKED RVR",0,"NAT GAS",9726,"0M",1294,,,95,364,4569,0,160,1908,0,1306,15609,0,1647,20147,0,1120,14174,0,2225,28309,0,12875,162923,0,11844,149957,0,4227,53220,0,1880,23454,0,1759,25611,0,749,9475,0,7138,3,56512,"NG","GT" 22,34,1,2,1,131,1,"PUBLIC SERV ELEC & GAS CO","SALEM",0,"NUCLEAR",15477,"0M",1294,,,95,818199,0,0,47631,0,0,687443,0,0,753981,0,0,247176,0,0,-8310,0,0,-7985,0,0,-5500,0,0,-3133,0,0,-2112,0,0,-2002,0,0,-2639,0,0,2410,3,52414,"UR","ST" 22,34,1,2,1,131,1,"PUBLIC SERV ELEC & GAS CO","HOPE CREEK",0,"NUCLEAR",15477,"0M",1294,,,95,778188,0,0,711976,0,0,566874,0,0,750262,0,0,767051,0,0,742345,0,0,309223,0,0,760021,0,0,742281,0,0,733449,0,0,210606,0,0,-8357,0,0,6118,3,52414,"UR","ST" 22,34,1,2,1,131,2,"PUBLIC SERV ELEC & GAS CO","SALEM",0,"NUCLEAR",15477,"0M",1294,,,95,-17867,0,0,12090,0,0,369001,0,0,767911,0,0,765246,0,0,157494,0,0,-5523,0,0,-7400,0,0,-4042,0,0,-4499,0,0,-4002,0,0,-3638,0,0,2410,3,52414,"UR","ST" 22,34,1,4,2,131,2,"PUBLIC SERV ELEC & GAS CO","BAYONNE 1",0,"LIGHT OIL",15477,"0M",1294,,,95,-19,40,3837,74,282,453,-9,0,453,-44,0,1097,-18,0,3930,-2,0,3930,252,805,3125,134,585,2744,-24,0,3373,-42,0,3744,0,26,3744,-33,25,3898,2397,3,52414,"FO2","GT" 22,34,1,2,9,131,3,"PUBLIC SERV ELEC & GAS CO","BERGEN",0,"NAT GAS",15477,"0M",1294,,,95,-2112,0,0,-2514,3702,0,8759,159907,0,3706,93882,0,82739,754972,0,167861,1271630,0,281448,2131152,0,334990,2488678,0,184434,1379778,0,154884,1248547,0,151551,1232638,0,151368,1176288,0,2398,3,52414,"NG","ST" 22,34,1,4,2,131,3,"PUBLIC SERV ELEC & GAS CO","BERGEN",0,"LIGHT OIL",15477,"0M",1294,,,95,0,0,0,0,0,21622,0,0,21622,0,0,38592,0,0,38592,0,0,61623,2310,3197,102565,0,0,118429,0,0,118396,3765,5367,113029,4832,7091,116664,465,652,117805,2398,3,52414,"FO2","GT" 22,34,1,4,9,131,3,"PUBLIC SERV ELEC & GAS CO","BERGEN",0,"NAT GAS",15477,"0M",1294,,,95,-13,0,0,0,0,0,-6,664,0,-6,644,0,-9,0,0,0,0,0,347,35845,0,505,5090,0,0,0,0,-7,0,0,-7,0,0,-8,0,0,2398,3,52414,"NG","GT" 22,34,1,2,2,131,5,"PUBLIC SERV ELEC & GAS CO","BURLINGTON",0,"LIGHT OIL",15477,"0M",1294,,,95,922,1740,0,1014,1683,0,707,1131,0,668,1366,0,0,0,0,911,1528,0,1631,2761,0,200,501,0,0,0,0,0,0,0,0,0,0,0,0,0,2399,3,52414,"FO2","ST" 22,34,1,2,3,131,5,"PUBLIC SERV ELEC & GAS CO","BURLINGTON",0,"HEAVY OIL",15477,"0M",1294,,,95,9046,15688,55522,11250,17153,88452,0,0,88452,0,0,88452,-534,0,88437,2949,4515,83916,25958,40320,43596,1803,5025,88868,-545,0,88868,-541,0,88868,-541,0,88868,-573,0,88868,2399,3,52414,"FO6","ST" 22,34,1,4,2,131,5,"PUBLIC SERV ELEC & GAS CO","BURLINGTON",0,"LIGHT OIL",15477,"0M",1294,,,95,1176,2221,83444,10436,17314,64340,158,253,93381,55,114,91811,-75,14,91811,57,96,90581,102,173,81026,4040,11276,88868,-82,16,87601,-75,58,86367,29,348,84382,4578,8912,83631,2399,3,52414,"FO2","GT" 22,34,1,4,9,131,5,"PUBLIC SERV ELEC & GAS CO","BURLINGTON",0,"NAT GAS",15477,"0M",1294,,,95,60222,642634,0,62039,580691,0,60695,548854,0,9404,108237,0,42361,363894,0,31693,299006,0,63357,605299,0,60174,537745,0,21155,187254,0,17575,158420,0,24156,217635,0,18363,172905,0,2399,3,52414,"NG","GT" 22,34,1,6,2,131,5,"PUBLIC SERV ELEC & GAS CO","BURLINGTON",0,"LIGHT OIL",15477,"0M",894,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,144,235,0,0,0,0,0,0,0,0,0,0,0,0,0,2399,3,52414,"FO2","CT" 22,34,1,4,2,131,7,"PUBLIC SERV ELEC & GAS CO","EDISON",0,"LIGHT OIL",15477,"0M",1294,,,95,152,366,106308,281,513,105795,252,403,105392,7,135,105257,0,0,105257,88,644,104610,675,1783,102827,687,1976,100851,0,0,110803,0,0,110803,126,444,110359,742,2206,108153,2400,3,52414,"FO2","GT" 22,34,1,4,9,131,7,"PUBLIC SERV ELEC & GAS CO","EDISON",0,"NAT GAS",15477,"0M",1294,,,95,-33,582,0,70,992,0,-80,345,0,0,0,0,-162,750,0,0,0,0,3046,44211,0,2441,36716,0,-100,537,0,120,3310,0,89,2079,0,28,428,0,2400,3,52414,"NG","GT" 22,34,1,4,2,131,8,"PUBLIC SERV ELEC & GAS CO","ESSEX",0,"LIGHT OIL",15477,"0M",1294,,,95,0,0,112211,4598,10660,104446,0,0,104446,0,0,103802,0,0,96326,4,10,91990,0,0,91990,0,0,91990,0,0,112914,2,185,112914,234,400,112327,894,2118,110210,2401,3,52414,"FO2","GT" 22,34,1,4,9,131,8,"PUBLIC SERV ELEC & GAS CO","ESSEX",0,"NAT GAS",15477,"0M",1294,,,95,20171,250330,0,38746,466002,0,28312,330527,0,6195,75506,0,7086,87770,0,17745,236062,0,65291,864255,0,62756,803138,0,18682,243317,0,3599,40505,0,3163,40505,0,1420,2118,0,2401,3,52414,"NG","GT" 22,34,1,2,2,131,13,"PUBLIC SERV ELEC & GAS CO","HUDSON",0,"LIGHT OIL",15477,"0M",1294,,,95,119,251,0,0,0,0,0,0,0,0,0,0,0,0,0,3,6,0,4,9,0,4,9,0,0,0,0,0,0,0,0,0,0,0,0,0,2403,3,52414,"FO2","ST" 22,34,1,2,3,131,13,"PUBLIC SERV ELEC & GAS CO","HUDSON",0,"HEAVY OIL",15477,"0M",1294,,,95,11188,21576,147242,40039,87268,59974,0,0,59974,158,379,13064,0,0,13064,0,0,13064,0,0,13064,0,0,0,0,0,0,0,0,0,0,0,0,-2401,3164,109182,2403,3,52414,"FO6","ST" 22,34,1,2,6,131,13,"PUBLIC SERV ELEC & GAS CO","HUDSON",0,"BIT COAL",15477,"0M",1294,,,95,0,0,239403,0,0,239403,46093,19713,219690,82549,35226,208484,158939,68702,225010,141427,62425,162585,235608,99546,193639,263396,110928,173063,10310,4383,258904,0,0,349753,57703,21908,369380,339660,132744,293504,2403,3,52414,"BIT","ST" 22,34,1,2,9,131,13,"PUBLIC SERV ELEC & GAS CO","HUDSON",0,"NAT GAS",15477,"0M",1294,,,95,30599,362930,0,7194,97478,0,122788,1378604,0,43966,500739,0,16188,203737,0,20750,232325,0,137870,1458255,0,96187,1102638,0,1254,45160,0,-3375,2793,0,356,3383,0,1493,16683,0,2403,3,52414,"NG","ST" 22,34,1,4,2,131,13,"PUBLIC SERV ELEC & GAS CO","HUDSON",0,"LIGHT OIL",15477,"0M",1294,,,95,119,251,352215,256,609,34606,-63,0,34606,-54,0,34597,-48,0,34597,0,0,34597,1239,2320,32262,396,2283,29962,-50,0,29962,-46,0,29962,-55,0,29962,-71,0,29959,2403,3,52414,"FO2","GT" 22,34,1,4,9,131,13,"PUBLIC SERV ELEC & GAS CO","HUDSON",0,"NAT GAS",15477,"0M",1294,,,95,0,0,0,7,103,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,38,0,0,0,0,0,0,0,0,0,0,0,0,0,2403,3,52414,"NG","GT" 22,34,1,2,2,131,16,"PUBLIC SERV ELEC & GAS CO","KEARNY",0,"LIGHT OIL",15477,"0M",1294,,,95,0,0,0,47,160,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2404,3,52414,"FO2","ST" 22,34,1,2,3,131,16,"PUBLIC SERV ELEC & GAS CO","KEARNY",0,"HEAVY OIL",15477,"0M",1294,,,95,-1419,0,47358,3162,9747,46218,-1264,0,46218,-811,0,43218,-763,0,46218,2322,7151,47602,25660,53229,45133,22324,46979,41775,-837,0,41775,-758,0,41755,-1135,0,41775,-1308,0,46698,2404,3,52414,"FO6","ST" 22,34,1,4,2,131,16,"PUBLIC SERV ELEC & GAS CO","KEARNY",0,"LIGHT OIL",15477,"0M",1294,,,95,375,941,65441,656,2205,61502,0,175,60444,-48,459,59831,-54,459,66419,-11,40,64109,2241,5425,58552,1592,6227,53502,-37,0,73227,-117,0,73054,-84,226,71810,-19,331,69761,2404,3,52414,"FO2","GT" 22,34,1,4,9,131,16,"PUBLIC SERV ELEC & GAS CO","KEARNY",0,"NAT GAS",15477,"0M",1294,,,95,778,10891,0,531,10070,0,-183,586,0,-132,928,0,-131,324,0,1324,24641,0,4064,67350,0,6293,99804,0,-119,0,0,-6,0,0,-8,139,0,-23,0,0,2404,3,52414,"NG","GT" 22,34,1,2,3,131,18,"PUBLIC SERV ELEC & GAS CO","LINDEN",0,"HEAVY OIL",15477,"0M",1294,,,95,-2975,0,169370,18699,47791,121579,1724,8149,41900,-1941,0,88431,-2550,0,88431,1771,15138,11078,59268,130643,95281,51534,115049,125814,-2711,0,128815,-1641,0,126134,-2551,10434,115700,-1747,0,115700,2406,3,52414,"FO6","ST" 22,34,1,4,2,131,18,"PUBLIC SERV ELEC & GAS CO","LINDEN",0,"LIGHT OIL",15477,"0M",1294,,,95,26,253,53370,313,1361,52009,448,1157,50882,3498,6627,44255,6478,14170,30085,0,0,30085,0,0,30085,564,1160,28925,0,0,49924,-37,195,49604,202,372,49037,451,1756,51571,2406,3,52414,"FO2","GT" 22,34,1,4,9,131,18,"PUBLIC SERV ELEC & GAS CO","LINDEN",0,"NAT GAS",15477,"0M",1294,,,95,-96,0,0,43,2616,0,3961,49847,0,1854,18696,0,15141,180135,0,13553,160573,0,33255,393680,0,32192,409006,0,8666,121819,0,8374,103539,0,3980,41596,0,1468,15561,0,2406,3,52414,"NG","GT" 22,34,1,2,6,131,22,"PUBLIC SERV ELEC & GAS CO","MERCER",0,"BIT COAL",15477,"0M",1294,,,95,260338,90961,263541,283481,98338,252219,105820,38401,312566,69927,25278,364038,58034,23857,399943,121372,47152,419711,144178,55677,392291,111773,44297,360087,169493,64917,301841,40666,17201,334307,135703,47712,346850,209008,71876,359245,2408,3,52414,"BIT","ST" 22,34,1,2,9,131,22,"PUBLIC SERV ELEC & GAS CO","MERCER",0,"NAT GAS",15477,"0M",1294,,,95,15072,160572,0,10698,100608,0,12860,134613,0,17393,171693,0,23606,242604,0,33578,373796,0,130882,1357300,0,110572,1186167,0,12727,142016,0,7184,77196,0,1387,12188,0,362,30224,0,2408,3,52414,"NG","ST" 22,34,1,4,2,131,22,"PUBLIC SERV ELEC & GAS CO","MERCER",0,"LIGHT OIL",15477,"0M",1294,,,95,58,452,0,99,166,0,-80,45,0,-80,22,0,-90,0,0,-84,0,0,174,1003,0,1250,2375,0,-74,0,0,-89,0,0,-86,0,0,65,504,0,2408,3,52414,"FO2","GT" 22,34,1,4,9,131,22,"PUBLIC SERV ELEC & GAS CO","MERCER",0,"NAT GAS",15477,"0M",1294,,,95,0,0,0,11,107,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,23,252,0,0,0,0,0,0,0,0,0,0,0,0,0,2408,3,52414,"NG","GT" 22,34,1,4,2,131,24,"PUBLIC SERV ELEC & GAS CO","NATIONAL PK",0,"LIGHT OIL",15477,"0M",1294,,,95,-7,0,2850,-5,0,2850,-6,0,168,-6,0,167,-7,0,1390,-6,0,3548,-6,0,3548,33,67,3481,-6,0,3481,3,25,3456,2,22,3434,-6,0,3434,2409,3,52414,"FO2","GT" 22,34,1,2,3,131,25,"PUBLIC SERV ELEC & GAS CO","SEWAREN",0,"HEAVY OIL",15477,"0M",1294,,,95,915,2021,98313,16425,33366,104241,341,778,103613,0,0,103613,1016,2372,101241,0,0,101241,128,279,100962,2211,4787,96175,4969,9343,86832,2764,7861,78971,2025,6536,72435,11423,30324,105394,2411,3,52414,"FO6","ST" 22,34,1,2,9,131,25,"PUBLIC SERV ELEC & GAS CO","SEWAREN",0,"NAT GAS",15477,"0M",1294,,,95,30968,435199,0,63113,771440,0,13222,183529,0,3478,58360,0,10032,124996,0,30077,426413,0,86401,1129748,0,69754,958979,0,7865,101861,0,-868,15021,0,1354,26896,0,943,15389,0,2411,3,52414,"NG","ST" 22,34,1,4,2,131,25,"PUBLIC SERV ELEC & GAS CO","SEWAREN",0,"LIGHT OIL",15477,"0M",1294,,,95,51,704,34543,121,263,34280,-71,0,34280,-133,0,34280,-130,0,34280,-22,30,38575,438,1523,37052,831,2943,34109,-123,0,34109,-124,0,34109,23,82,34027,80,208,33819,2411,3,52414,"FO2","GT" 22,34,1,4,9,131,25,"PUBLIC SERV ELEC & GAS CO","SEWAREN",0,"NAT GAS",15477,"0M",1294,,,95,0,0,0,2,31,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,2411,3,52414,"NG","GT" 22,34,1,4,2,131,27,"PUBLIC SERV ELEC & GAS CO","SALEM JO",0,"LIGHT OIL",15477,"0M",1294,,,95,-18,3,16640,85,264,16528,-5,49,16528,-14,28,17721,-15,0,17581,0,0,17581,398,125,32262,152,455,31807,-6,0,16295,2764,7861,78971,-14,0,14970,54,170,12261,2410,3,52414,"FO2","GT" 22,34,5,2,3,645,1,"VINELAND (CITY OF)","HOWARD DOWN",0,"HEAVY OIL",19856,"0M",1294,,,95,0,0,24261,803,2139,23900,486,1664,22238,294,1029,21209,2656,6649,16338,890,2102,21318,4629,11673,9645,3246,7549,10200,0,0,10347,0,0,10397,0,0,10320,2429,6628,6595,2434,3,53140,"FO6","ST" 22,34,5,2,6,645,1,"VINELAND (CITY OF)","HOWARD DOWN",0,"BIT COAL",19856,"0M",1294,,,95,7844,4284,7953,7472,4143,6788,3415,1988,9938,0,0,9849,2186,1111,8737,7260,3928,6843,6950,3861,9709,3584,3042,7673,388,209,9251,1581,798,8709,5259,2954,5755,3724,2035,5931,2434,3,53140,"BIT","ST" 22,34,5,4,2,645,10,"VINELAND (CITY OF)","WEST",0,"LIGHT OIL",19856,"0M",1294,,,95,74,199,9430,353,887,8543,45,128,8417,0,0,8417,0,0,8417,315,901,7389,2079,6227,5808,2543,5808,3568,151,900,3206,36,73,3061,6,80,2981,129,339,2818,6776,3,53140,"FO2","GT" 23,42,1,2,1,52,1,"DUQUESNE LGT CO","B VALLEY",0,"NUCLEAR",5487,"0M",1294,,,95,17240,0,0,-6300,0,0,367420,0,0,596300,0,0,615700,0,0,589500,0,0,604900,0,0,561482,0,0,591490,0,0,614130,0,0,582150,0,0,452460,0,0,6040,1,50827,"UR","ST" 23,42,1,2,1,52,2,"DUQUESNE LGT CO","B VALLEY",0,"NUCLEAR",5487,"0M",1294,,,95,610052,0,0,558397,0,0,377306,0,0,-2502,0,0,358108,0,0,592883,0,0,609130,0,0,296500,0,0,598381,0,0,622939,0,0,557126,0,0,601216,0,0,6040,1,50827,"UR","ST" 23,42,1,2,6,52,5,"DUQUESNE LGT CO","CHESWICK",0,"BIT COAL",5487,"0M",1294,,,95,355392,137291,317861,331090,126419,307477,249582,96410,291500,17430,8507,318494,299247,119774,288017,339756,132948,261655,256633,102182,276100,296500,118467,263069,297357,118900,201464,311698,126308,186349,351416,139379,173501,306740,121467,188856,8226,1,50827,"BIT","ST" 23,42,1,2,9,52,5,"DUQUESNE LGT CO","CHESWICK",0,"NAT GAS",5487,"0M",1294,,,95,1427,13928,0,331,3531,0,1002,9220,0,1172,14418,0,1806,18532,0,1364,13508,0,1549,14158,0,2639,26716,0,2701,26104,0,1881,19412,0,1411,14459,0,1232,12044,0,8226,1,50827,"NG","ST" 23,42,1,2,2,52,13,"DUQUESNE LGT CO","ELRAMA",0,"LIGHT OIL",5487,"0M",1294,,,95,1941,3768,1508,1330,2779,1204,1589,3262,979,1253,2681,1633,1006,2112,1445,803,1634,1382,1389,3062,1487,1368,2719,1591,1136,2443,1644,986,1991,1570,898,1981,1539,1195,2526,782,3098,1,50827,"FO2","ST" 23,42,1,2,6,52,13,"DUQUESNE LGT CO","ELRAMA",0,"BIT COAL",5487,"0M",1294,,,95,240736,111790,172599,220356,101044,171860,197080,90684,191628,207597,94541,190808,200161,89633,171686,159939,73949,169611,197010,95313,150545,226664,107371,139013,188236,90982,151708,97661,45101,189092,223530,101521,181601,237771,106889,154459,3098,1,50827,"BIT","ST" 23,42,1,2,2,52,15,"DUQUESNE LGT CO","F PHILLIPS",0,"LIGHT OIL",5487,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3099,1,50827,"FO2","ST" 23,42,1,2,6,52,15,"DUQUESNE LGT CO","F PHILLIPS",0,"BIT COAL",5487,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3099,1,50827,"BIT","ST" 23,42,1,4,2,52,27,"DUQUESNE LGT CO","BRUNOT ILND",0,"LIGHT OIL",5487,"0M",1294,,,95,-733,567,24237,-801,692,23545,-848,9,23536,-662,220,23316,-662,0,23316,-579,460,22856,1005,4706,18150,5198,15710,17539,-587,0,19993,-604,0,19993,-808,0,19993,-777,582,20583,3096,1,50827,"FO2","GT" 23,42,1,5,2,52,27,"DUQUESNE LGT CO","BRUNOT ILND",0,"LIGHT OIL",5487,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3096,1,50827,"FO2","CC" 23,42,1,6,2,52,27,"DUQUESNE LGT CO","BRUNOT ILND",0,"LIGHT OIL",5487,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3096,1,50827,"FO2","CT" 23,42,1,2,1,100,1,"GPU NUCLEAR CORP","3 MI ISLAND",0,"NUCLEAR",7423,"0M",1294,,,95,611412,0,0,552321,0,0,609022,0,0,586279,0,0,599986,0,0,573186,0,0,584601,0,0,586748,0,0,144888,0,0,338797,0,0,590553,0,0,610193,0,0,8011,3,58850,"UR","ST" 23,42,1,1,,114,15,"METROPOLITAN EDISON CO","YORK HAVEN",0,,12390,"0M",1294,,,95,8890,0,0,9724,0,0,12867,0,0,10005,0,0,12383,0,0,12781,0,0,10950,0,0,1654,0,0,3141,0,0,8336,0,0,12409,0,0,9435,0,0,3117,3,54020,"WAT","HY" 23,42,1,4,2,114,24,"METROPOLITAN EDISON CO","HAMILTON",0,"LIGHT OIL",12390,"0M",1294,,,95,0,44,4643,342,858,4499,38,102,4397,28,68,4330,-2,0,4330,0,0,4330,432,1398,2932,1179,2884,2369,143,356,3085,0,0,3085,47,129,3491,190,511,4606,3109,3,54020,"FO2","GT" 23,42,1,4,2,114,25,"METROPOLITAN EDISON CO","HUNTERSTOWN",0,"LIGHT OIL",12390,"0M",1294,,,95,44,117,8244,904,2365,9808,139,361,9448,53,150,8583,0,1,8583,0,0,8582,1,3,8579,16,42,8895,2,7,9067,19,50,9017,7,22,8995,281,706,8304,3110,3,54020,"FO2","GT" 23,42,1,4,9,114,25,"METROPOLITAN EDISON CO","HUNTERSTOWN",0,"NAT GAS",12390,"0M",1294,,,95,1133,17680,0,1048,17830,0,7,180,0,729,13320,0,504,8500,0,1339,19320,0,3546,41940,0,6556,84500,0,3434,53290,0,1503,23470,0,1262,20430,0,1780,27282,0,3110,3,54020,"NG","GT" 23,42,1,4,2,114,27,"METROPOLITAN EDISON CO","MOUNTAIN",0,"LIGHT OIL",12390,"0M",1294,,,95,71,188,6429,964,2523,5157,48,126,5031,4,12,5912,0,0,5912,0,1,5911,0,2,5910,0,0,5910,36,175,5913,0,0,6270,0,2,6804,367,1234,6575,3111,3,54020,"FO2","GT" 23,42,1,4,9,114,27,"METROPOLITAN EDISON CO","MOUNTAIN",0,"NATURAL G",12390,"0M",1294,,,95,297,5940,0,476,8360,0,443,6390,0,469,7770,0,208,3710,0,328,5630,0,1743,26610,0,3541,53620,0,894,14500,0,170,2840,0,572,8810,0,1301,18260,0,3111,3,54020,"NG","GT" 23,42,1,4,2,114,31,"METROPOLITAN EDISON CO","ORRTANNA",0,"LIGHT OIL",12390,"0M",1294,,,95,48,116,4401,346,875,4418,88,218,4200,26,66,4135,0,0,4135,0,0,4135,593,1575,2917,1316,3402,1824,159,409,2667,26,65,3674,0,7,5453,229,581,4898,3112,3,54020,"FO2","GT" 23,42,1,2,2,114,32,"METROPOLITAN EDISON CO","PORTLAND",0,"LIGHT OIL",12390,"0M",1294,,,95,1210,2219,56721,612,1085,51313,671,1307,49944,1587,3013,45429,432,812,42830,190,349,41500,955,1701,39591,434,783,37499,499,951,35882,161,335,60358,2066,4127,57233,222,397,56872,3113,3,54020,"FO2","ST" 23,42,1,2,6,114,32,"METROPOLITAN EDISON CO","PORTLAND",0,"BIT COAL",12390,"0M",1294,,,95,132808,53399,109521,182821,71489,66961,66747,28478,108572,54477,22914,130642,57698,23989,150827,144768,58703,134821,179344,71804,85267,178789,70856,51093,83228,35019,46481,11852,5425,93489,58689,25583,120272,183470,71507,85462,3113,3,54020,"BIT","ST" 23,42,1,4,2,114,32,"METROPOLITAN EDISON CO","PORTLAND",0,"LIGHT OIL",12390,"0M",1294,,,95,77,142,2671,1704,3020,3973,50,98,3938,790,1501,3938,951,1787,3938,662,1215,3705,281,501,3412,727,1310,3410,2125,4049,3409,1,3,3407,122,245,3406,1839,3288,3291,3113,3,54020,"FO2","GT" 23,42,1,4,9,114,32,"METROPOLITAN EDISON CO","PORTLAND",0,"NAT GAS",12390,"0M",1294,,,95,7,72,0,1596,15661,0,2973,32178,0,2051,22130,0,3978,42351,0,12035,125176,0,33248,336088,0,28922,295790,0,5224,56353,0,750,8818,0,2029,22553,0,597,5955,0,3113,3,54020,"NG","GT" 23,42,1,4,2,114,34,"METROPOLITAN EDISON CO","SHAWNEE",0,"LIGHT OIL",12390,"0M",1294,,,95,73,171,6099,265,687,6483,16,27,6472,20,60,6412,44,112,6301,35,90,6211,135,371,5839,869,2245,3594,68,177,3417,0,0,4845,68,117,5622,0,0,5679,3114,3,54020,"FO2","GT" 23,42,1,2,2,114,35,"METROPOLITAN EDISON CO","TITUS",0,"LIGHT OIL",12390,"0M",1294,,,95,102,198,885,73,138,926,387,772,869,487,933,1186,472,874,1205,168,334,1228,294,559,1026,220,409,617,291,530,803,369,699,998,321,614,560,227,431,880,3115,3,54020,"FO2","ST" 23,42,1,2,6,114,35,"METROPOLITAN EDISON CO","TITUS",0,"BIT COAL",12390,"0M",1294,,,95,73788,31030,99475,51570,21149,100003,47245,20126,101173,38103,15904,107895,66063,26455,103387,95872,40846,84743,118659,48529,57453,118052,46687,37871,105060,41177,26170,83805,34936,50826,103029,42373,57757,128752,52966,41217,3115,3,54020,"BIT","ST" 23,42,1,4,2,114,35,"METROPOLITAN EDISON CO","TITUS",0,"LIGHT OIL",12390,"0M",1294,,,95,58,114,4000,793,1492,4117,0,0,4117,1,2,4115,0,0,4115,4,8,4106,65,124,3983,133,248,3983,0,0,3983,131,248,3734,20,39,3695,0,0,3755,3115,3,54020,"FO2","GT" 23,42,1,4,9,114,35,"METROPOLITAN EDISON CO","TITUS",0,"NAT GAS",12390,"0M",1294,,,95,53,575,0,23,240,0,80,890,0,60,640,0,52,541,0,22,250,0,1587,16770,0,2936,30250,0,319,3230,0,110,1190,0,149,1590,0,5,60,0,3115,3,54020,"NG","GT" 23,42,1,4,2,114,38,"METROPOLITAN EDISON CO","TOLNA",0,"LIGHT OIL",12390,"0M",1294,,,95,68,175,6400,563,1516,6278,90,224,6054,0,1,6053,0,0,6053,0,0,6053,759,2033,4020,2323,6134,2677,164,447,5438,64,349,6339,62,101,6238,114,281,6229,3116,3,54020,"FO2","GT" 23,42,1,2,2,133,1,"PENNSYLVANIA ELEC CO","CONMAUGH JO",0,"LIGHT OIL",14711,"0M",1294,,250,95,514,827,5361,559,930,4122,454,736,6813,810,1319,5181,459,747,4344,78,121,4153,878,1456,2385,538,892,3017,74,121,5479,0,0,5356,3148,5217,7748,383,627,6559,3118,3,54025,"FO2","ST" 23,42,1,2,6,133,1,"PENNSYLVANIA ELEC CO","CONMAUGH JO",0,"BIT COAL",14711,"0M",1294,,250,95,1122156,419851,722958,925303,359096,640938,1076935,406220,574117,992331,375372,600365,1073542,404411,660222,1082614,409954,586984,1087889,419782,543363,1144736,439047,524854,727433,274855,587632,579871,221827,735222,799742,308937,733868,1107177,421853,608881,3118,3,54025,"BIT","ST" 23,42,1,2,9,133,1,"PENNSYLVANIA ELEC CO","CONMAUGH JO",0,"NAT GAS",14711,"0M",1294,,250,95,1516,13798,0,1026,9654,0,566,5184,0,1707,15719,0,1710,15719,0,264,2319,0,2347,22035,0,3446,32313,0,452,4120,0,258,2408,0,2434,22766,0,571,5283,0,3118,3,54025,"NG","ST" 23,42,1,3,2,133,1,"PENNSYLVANIA ELEC CO","CONMAUGH JO",0,"LIGHT OIL",14711,"0M",1294,,250,95,59,96,0,34,57,0,59,97,0,181,295,0,54,89,0,45,71,0,187,311,0,146,243,0,46,75,0,31,52,0,78,130,0,46,76,0,3118,3,54025,"FO2","IC" 23,42,1,1,,133,5,"PENNSYLVANIA ELEC CO","PINEY",0,,14711,"0M",1294,,250,95,7087,0,0,2980,0,0,8315,0,0,7025,0,0,7405,0,0,7866,0,0,1807,0,0,900,0,0,618,0,0,1506,0,0,5259,0,0,4760,0,0,3124,3,54025,"WAT","HY" 23,42,1,1,,133,13,"PENNSYLVANIA ELEC CO","SENECA JO",0,"C-PUMPSTG",14711,"0M",1294,,250,95,-18038,60718,0,-12762,44459,0,-13759,53339,0,-14476,46086,0,-10189,43886,0,-20535,71955,0,-32632,124316,0,-31819,130160,0,-23462,98242,0,-26851,110227,0,-17180,96885,0,-19235,101307,0,8225,3,54025,"WAT","HY" 23,42,1,4,9,133,17,"PENNSYLVANIA ELEC CO","BLOSSBURG",0,"NAT GAS",14711,"0M",1294,,250,95,-5,0,0,248,3769,0,-4,0,0,0,0,0,0,0,0,0,0,0,502,7485,0,846,9556,0,243,7354,0,-5,0,0,-4,0,0,-4,0,0,3120,3,54025,"NG","GT" 23,42,1,2,2,133,25,"PENNSYLVANIA ELEC CO","HOMER CTYJO",0,"LIGHT OIL",14711,"0M",1294,,250,95,724,1106,10724,239,368,10825,1397,2089,8613,678,1026,8717,2469,3709,5517,3227,5084,7324,1158,1765,5736,474,737,6933,1569,3909,7274,769,1187,8528,7523,12170,9104,4070,6343,6965,3122,3,54025,"FO2","ST" 23,42,1,2,6,133,25,"PENNSYLVANIA ELEC CO","HOMER CTYJO",0,"BIT COAL",14711,"0M",1294,,250,95,1185616,454082,568142,1188794,455176,479305,1210546,457862,391125,1087359,409749,340123,685495,258590,520058,1050104,414471,562956,1147586,445483,356766,1213094,474606,228657,448257,271599,331273,758425,290978,460056,823682,334855,431770,991225,388795,409243,3122,3,54025,"BIT","ST" 23,42,1,2,2,133,45,"PENNSYLVANIA ELEC CO","SEWARD",0,"LIGHT OIL",14711,"0M",1294,,250,95,662,1281,675,306,595,618,281,535,616,145,261,535,122,305,409,432,940,535,285,552,414,274,531,585,416,789,657,463,878,671,432,834,724,340,657,600,3130,3,54025,"FO2","ST" 23,42,1,2,6,133,45,"PENNSYLVANIA ELEC CO","SEWARD",0,"BIT COAL",14711,"0M",1294,,250,95,101596,46820,104963,110101,50567,86392,110470,50520,76721,54307,23628,78208,29270,17347,91227,52721,27510,83682,115539,53769,77789,119322,55517,67991,102723,46904,73094,107866,49063,74467,105367,48397,85472,116951,53923,61526,3130,3,54025,"BIT","ST" 23,42,1,2,2,133,48,"PENNSYLVANIA ELEC CO","SHAWVILLE",0,"LIGHT OIL",14711,"0M",1294,,250,95,1123,1920,8833,2602,4605,6882,3250,5700,8490,1312,2317,8459,872,1542,9545,917,1633,7965,912,1584,7411,1122,2141,8065,1665,3195,7890,1607,2973,8086,2444,4275,8035,3504,6399,6379,3131,3,54025,"FO2","ST" 23,42,1,2,6,133,48,"PENNSYLVANIA ELEC CO","SHAWVILLE",0,"BIT COAL",14711,"0M",1294,,250,95,269348,109338,102763,256827,107901,105884,326710,136132,96046,350160,145852,80632,328883,137262,84982,336010,141689,79617,350851,144610,79435,304942,138068,76369,248206,112475,83476,317261,138069,65107,346273,142913,61290,323453,141293,48123,3131,3,54025,"BIT","ST" 23,42,1,3,2,133,48,"PENNSYLVANIA ELEC CO","SHAWVILLE",0,"LIGHT OIL",14711,"0M",1294,,250,95,31,54,764,42,75,689,26,47,797,22,39,757,20,37,721,29,52,669,42,74,740,203,388,705,22,43,662,24,46,763,18,32,731,24,44,819,3131,3,54025,"FO2","IC" 23,42,1,2,2,133,60,"PENNSYLVANIA ELEC CO","WARREN",0,"LIGHT OIL",14711,"0M",1294,,250,95,101,246,375,38,94,281,58,147,313,65,158,336,29,123,391,38,93,297,45,104,725,30,76,657,8,20,637,47,126,511,41,109,402,38,97,482,3132,3,54025,"FO2","ST" 23,42,1,2,6,133,60,"PENNSYLVANIA ELEC CO","WARREN",0,"BIT COAL",14711,"0M",1294,,250,95,23223,13460,34201,30943,18008,26672,17000,10379,34033,20947,11998,35372,16865,16419,30837,28698,16502,23133,35556,19496,14235,32084,18799,17943,18322,10742,21117,17556,10786,25392,16779,10295,31120,32207,19202,23049,3132,3,54025,"BIT","ST" 23,42,1,4,2,133,60,"PENNSYLVANIA ELEC CO","WARREN",0,"LIGHT OIL",14711,"0M",1294,,250,95,2,7,9205,924,2260,9835,124,314,9521,0,1,9519,94,389,9130,154,374,8757,2078,4788,7154,3447,8693,6033,514,1272,7934,0,0,7934,105,276,7658,393,986,9466,3132,3,54025,"FO2","GT" 23,42,1,4,9,133,60,"PENNSYLVANIA ELEC CO","WARREN",0,"NAT GAS",14711,"0M",1294,,250,95,0,10,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3132,3,54025,"NG","GT" 23,42,1,3,2,133,75,"PENNSYLVANIA ELEC CO","BENTON",0,"LIGHT OIL",14711,"0M",1294,"R",250,95,-3,0,0,-2,0,0,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3119,3,54025,"FO2","IC" 23,42,1,4,2,133,87,"PENNSYLVANIA ELEC CO","WAYNE",0,"LIGHT OIL",14711,"0M",1294,,250,95,-99,18,20263,508,1505,18758,-92,0,18758,-86,0,18758,-70,1,18757,-54,0,18757,1349,3469,15288,3798,9355,11397,490,1027,13199,-52,0,13199,141,1098,14037,154,691,18031,3134,3,54025,"FO2","GT" 23,42,1,2,2,133,90,"PENNSYLVANIA ELEC CO","KEYSTONE JO",0,"LIGHT OIL",14711,"0M",1294,,250,95,2244,3690,6503,1272,2084,8137,0,0,8969,4533,7554,9207,714,1204,9434,965,1623,9346,2145,3684,9013,3083,5243,9005,923,1553,9324,753,1254,8496,1264,2066,8810,0,0,8724,3136,3,54025,"FO2","ST" 23,42,1,2,6,133,90,"PENNSYLVANIA ELEC CO","KEYSTONE JO",0,"BIT COAL",14711,"0M",1294,,250,95,1102214,423987,311858,582793,225211,453587,563417,222247,605342,809149,315890,648804,1078337,426399,648546,1084349,429852,601163,1034268,420581,454702,938657,378854,582342,1033031,410618,649687,1088547,426659,795799,1058746,408591,711979,1180880,456067,560683,3136,3,54025,"BIT","ST" 23,42,1,3,2,133,90,"PENNSYLVANIA ELEC CO","KEYSTONE JO",0,"LIGHT OIL",14711,"0M",1294,,250,95,349,575,0,349,573,0,34,59,0,204,341,0,100,170,0,35,60,0,207,356,0,870,1480,0,155,262,0,66,110,0,178,291,0,46,86,0,3136,3,54025,"FO2","IC" 23,42,1,2,2,135,1,"PENNSYLVANIA POWER CO","NEW CASTLE",0,"LIGHT OIL",14716,"0M",1294,,,95,157,295,104,61,118,158,276,532,107,184,352,158,327,657,138,250,493,138,176,344,140,152,297,106,171,327,131,192,372,116,117,218,145,156,288,161,3138,1,52289,"FO2","ST" 23,42,1,2,6,135,1,"PENNSYLVANIA POWER CO","NEW CASTLE",0,"BIT COAL",14716,"0M",1294,,,95,167856,72057,99647,154279,67443,98213,130534,58811,77871,125682,55847,86191,67772,31976,90113,98557,45757,95531,118202,53998,90022,140629,64008,74786,116270,52148,73949,88872,40250,91385,140709,61724,82726,150687,61716,63171,3138,1,52289,"BIT","ST" 23,42,1,3,2,135,1,"PENNSYLVANIA POWER CO","NEW CASTLE",0,"LIGHT OIL",14716,"0M",1294,,,95,22,56,1012,6,7,1012,7,22,863,1,3,991,4,9,875,1,7,1095,68,120,980,348,650,769,21,48,895,12,25,914,9,4,978,1,5,846,3138,1,52289,"FO2","IC" 23,42,1,2,2,135,12,"PENNSYLVANIA POWER CO","MANSFLD JO",0,"LIGHT OIL",14716,"0M",1294,,,95,1007,1692,29171,723,1155,27861,1506,2563,20232,2103,3540,37005,3377,5991,30895,1363,2382,49447,1396,2364,47084,1578,2757,44327,1128,2011,40209,852,1442,3868,625,1076,37528,5978,10675,26852,6094,1,52289,"FO2","ST" 23,42,1,2,6,135,12,"PENNSYLVANIA POWER CO","MANSFLD JO",0,"BIT COAL",14716,"0M",1294,,,95,1000025,404047,691181,900788,348267,715644,764097,314521,842427,1018498,413184,894368,1102944,466816,876286,1268001,530524,794307,1358940,556273,756092,1346419,567300,719388,816664,349651,802659,889136,365870,922037,897824,373667,888666,766127,330985,1035343,6094,1,52289,"BIT","ST" 23,42,1,2,1,137,1,"PENNSYLVANIA PWR & LGT CO","SUSQUEHANNA",0,"NUCLEAR",14715,"0M",1294,,,95,784581,0,0,707744,0,0,597267,0,0,-6623,0,0,455272,0,0,764570,0,0,800626,0,0,807866,0,0,781516,0,0,816456,0,0,256044,0,0,663200,0,0,6103,3,52288,"UR","ST" 23,42,1,2,1,137,2,"PENNSYLVANIA PWR & LGT CO","SUSQUEHANNA",0,"NUCLEAR",14715,"0M",1294,,,95,819260,0,0,744537,0,0,809836,0,0,572523,0,0,800757,0,0,763767,0,0,784244,0,0,790491,0,0,327567,0,0,158303,0,0,801099,0,0,820399,0,0,6103,3,52288,"UR","ST" 23,42,1,1,,137,8,"PENNSYLVANIA PWR & LGT CO","HOLTWOOD",0,,14715,"0M",1294,,,95,63368,0,0,44815,0,0,66767,0,0,61784,0,0,47914,0,0,44060,0,0,38745,0,0,15029,0,0,8892,0,0,3395,0,0,54454,0,0,52183,0,0,3145,3,52288,"WAT","HY" 23,42,1,2,2,137,8,"PENNSYLVANIA PWR & LGT CO","HOLTWOOD",0,"LIGHT OIL",14715,"0M",1294,,,95,2,293,307,92,564,453,76,299,502,6,12,486,9,103,375,64,316,412,48,185,402,32,69,513,156,340,542,105,324,374,44,96,457,71,158,639,3145,3,52288,"FO2","ST" 23,42,1,2,4,137,8,"PENNSYLVANIA PWR & LGT CO","HOLTWOOD",0,"ANTH COAL",14715,"0M",1294,,,95,16657,10967,92177,28295,20094,81874,38352,28374,83310,37995,26901,93553,28887,20504,97262,21957,15483,110941,27038,19535,107719,38254,26848,105902,36692,25935,106839,27783,20333,110563,38411,27438,93901,40473,29360,79473,3145,3,52288,"ANT","ST" 23,42,1,2,5,137,8,"PENNSYLVANIA PWR & LGT CO","HOLTWOOD",0,"COKE",14715,"0M",1294,,,95,5600,3687,7954,10386,7347,6463,12376,9136,6569,13390,9479,6750,10455,7419,8863,7778,5469,5689,9256,6676,3115,13170,9235,2168,11989,8438,3400,7495,5464,2289,8623,7102,1550,11704,5956,0,3145,3,52288,"PC","ST" 23,42,1,1,,137,14,"PENNSYLVANIA PWR & LGT CO","WALLENPAUPK",0,,14715,"0M",1294,,,95,12278,0,0,38773,0,0,4171,0,0,-24207,0,0,735,0,0,560,0,0,5204,0,0,2717,0,0,244,0,0,24,0,0,11908,0,0,11545,0,0,3153,3,52288,"WAT","HY" 23,42,1,4,2,137,15,"PENNSYLVANIA PWR & LGT CO","ALLENTOWN",0,"LIGHT OIL",14715,"0M",1294,,,95,64,195,4597,200,523,4444,0,0,4446,40,90,4355,0,0,4356,122,333,4024,199,561,4006,2797,7611,4017,44,168,4389,12,34,4355,0,0,4351,134,369,4531,3139,3,52288,"FO2","GT" 23,42,1,2,2,137,20,"PENNSYLVANIA PWR & LGT CO","BRUNNER ISL",0,"LIGHT OIL",14715,"0M",1294,,,95,5215,9667,5220,2811,6985,2945,2623,7457,4341,1006,3274,4688,1673,5855,4747,623,3511,4635,1145,3027,3800,192,491,4638,1850,4455,1752,956,1998,4421,1497,3195,3955,6348,15226,4765,3140,3,52288,"FO2","ST" 23,42,1,2,6,137,20,"PENNSYLVANIA PWR & LGT CO","BRUNNER ISL",0,"BIT COAL",14715,"0M",1294,,,95,726861,278333,624176,797416,299207,615563,638681,243796,659948,618218,235042,726562,483331,182515,843219,636052,246917,774595,729927,280541,565746,770922,293672,454478,661164,258193,418744,632910,240757,448356,500569,201629,451028,542332,211139,476821,3140,3,52288,"BIT","ST" 23,42,1,3,2,137,20,"PENNSYLVANIA PWR & LGT CO","BRUNNER ISL",0,"LIGHT OIL",14715,"0M",1294,,,95,43,75,0,27,35,0,29,50,0,11,33,0,29,50,0,27,47,0,38,66,0,41,123,0,30,52,0,27,47,0,21,37,0,28,47,0,3140,3,52288,"FO2","IC" 23,42,1,4,2,137,26,"PENNSYLVANIA PWR & LGT CO","FISHBACH",0,"LIGHT OIL",14715,"0M",1294,,,95,0,0,2203,37,115,2088,0,0,2076,11,33,2043,0,0,2039,16,52,1987,102,265,2080,1274,3289,1978,63,218,2105,0,0,2095,0,0,2105,13,33,2071,3142,3,52288,"FO2","GT" 23,42,1,4,2,137,28,"PENNSYLVANIA PWR & LGT CO","HARWOOD",0,"LIGHT OIL",14715,"0M",1294,,,95,0,0,2216,83,240,2157,0,0,2152,44,152,2171,0,0,2171,13,61,2272,289,883,2098,1064,3093,1958,134,415,2230,60,205,2217,0,0,2217,0,0,2208,3144,3,52288,"FO2","GT" 23,42,1,4,2,137,29,"PENNSYLVANIA PWR & LGT CO","HARRISBURG",0,"LIGHT OIL",14715,"0M",1294,,,95,0,0,4184,328,916,4530,0,0,4528,34,103,4425,7,31,4394,111,326,4426,221,659,4486,3286,9229,3610,329,960,4424,0,0,4424,8,0,4410,101,283,4486,3143,3,52288,"FO2","GT" 23,42,1,2,2,137,32,"PENNSYLVANIA PWR & LGT CO","MARTINS CRK",0,"LIGHT OIL",14715,"0M",1294,,,95,1397,3966,1367,1654,3961,905,487,1818,1153,845,3118,1197,886,4111,1282,1222,4052,1400,1679,4825,803,2026,5349,775,303,753,1408,633,2680,1365,1511,3919,1485,2510,5735,1078,3148,3,52288,"FO2","ST" 23,42,1,2,3,137,32,"PENNSYLVANIA PWR & LGT CO","MARTINS CRK",0,"HEAVY OIL",14715,"0M",1294,,,95,3313,20105,1792976,137098,246817,1537637,4594,16136,1518993,7837,26024,1486208,0,0,1482804,46574,94076,1387076,225007,410380,970823,241933,469387,1094662,32635,57250,1132457,11373,23775,1505839,59422,125764,1590347,265457,506756,1125474,3148,3,52288,"FO6","ST" 23,42,1,2,6,137,32,"PENNSYLVANIA PWR & LGT CO","MARTINS CRK",0,"BIT COAL",14715,"0M",1294,,,95,77736,33553,94127,107453,45145,78631,33245,15373,94972,56476,25532,79013,56350,25210,63411,56558,24356,57931,77903,34985,45157,72539,34251,53601,19134,10553,62015,28384,12765,56271,68305,31511,46146,107135,53235,34362,3148,3,52288,"BIT","ST" 23,42,1,3,2,137,32,"PENNSYLVANIA PWR & LGT CO","MARTINS CRK",0,"LIGHT OIL",14715,"0M",1294,,,95,19,33,0,53,92,0,70,124,0,63,90,0,15,57,0,18,30,0,7,12,0,39,74,0,10,20,0,7,13,0,4,7,0,20,9,0,3148,3,52288,"FO2","IC" 23,42,1,4,2,137,32,"PENNSYLVANIA PWR & LGT CO","MARTINS CRK",0,"LIGHT OIL",14715,"0M",1294,,,95,0,0,5154,253,713,4491,0,0,4487,23,66,4408,0,0,4408,97,271,4056,301,924,3141,2928,8451,3433,332,1023,4044,0,0,4797,34,92,6619,47,134,6156,3148,3,52288,"FO2","GT" 23,42,1,4,2,137,34,"PENNSYLVANIA PWR & LGT CO","JENKINS",0,"LIGHT OIL",14715,"0M",1294,,,95,0,0,2287,49,143,2325,0,0,2326,12,59,2267,0,0,2265,0,0,2261,285,831,1773,1377,3617,2093,62,169,2280,17,50,2230,0,0,2177,0,0,2170,3146,3,52288,"FO2","GT" 23,42,1,4,2,137,36,"PENNSYLVANIA PWR & LGT CO","LOCK HAVEN",0,"LIGHT OIL",14715,"0M",1294,,,95,2,17,2072,0,0,2072,0,0,2071,0,0,2072,0,0,2231,19,50,2181,47,187,2160,309,776,1940,29,62,2234,0,0,2233,0,0,2229,0,0,2223,3147,3,52288,"FO2","GT" 23,42,1,2,2,137,38,"PENNSYLVANIA PWR & LGT CO","MONTOUR",0,"LIGHT OIL",14715,"0M",1294,,,95,5284,3061,15269,1120,9829,7128,603,1538,7267,606,3951,8198,13,2000,6913,5227,30521,8337,1368,7253,4923,878,2071,5843,1573,7626,7055,7633,17598,7723,1969,8730,7062,7059,10859,7500,3149,3,52288,"FO2","ST" 23,42,1,2,6,137,38,"PENNSYLVANIA PWR & LGT CO","MONTOUR",0,"BIT COAL",14715,"0M",1294,,,95,847074,335924,519372,875346,340631,445625,780698,304571,380887,372505,141113,452083,435583,162563,503087,625764,248102,531404,836431,328954,481373,911902,352540,306054,690630,264412,407406,817637,314073,299288,838531,328858,291789,880367,352324,220532,3149,3,52288,"BIT","ST" 23,42,1,2,2,137,40,"PENNSYLVANIA PWR & LGT CO","SUNBURY",0,"LIGHT OIL",14715,"0M",1294,,,95,120,1018,953,89,415,868,270,1417,1025,212,1169,913,362,1349,784,121,240,1084,94,305,938,95,427,967,167,1398,1038,316,896,961,315,1038,893,516,1056,864,3152,3,52288,"FO2","ST" 23,42,1,2,4,137,40,"PENNSYLVANIA PWR & LGT CO","SUNBURY",0,"ANTH COAL",14715,"0M",1294,,,95,59791,48178,418732,52800,43904,407593,42379,34783,387855,56229,44534,380823,54876,44151,401119,43071,35250,457310,34960,27900,513983,38518,30044,586494,54062,41683,635399,58158,44699,652259,58144,45249,613424,56311,42856,591156,3152,3,52288,"ANT","ST" 23,42,1,2,5,137,40,"PENNSYLVANIA PWR & LGT CO","SUNBURY",0,"COKE",14715,"0M",1294,,,95,32080,14266,18014,37875,17579,8930,34489,14591,2989,39190,17032,15602,35966,15206,24516,28052,11818,24368,21736,9175,21882,27009,11174,25559,37827,15339,20820,35544,14870,22116,40820,17176,11347,43815,18422,22426,3152,3,52288,"PC","ST" 23,42,1,2,6,137,40,"PENNSYLVANIA PWR & LGT CO","SUNBURY",0,"BIT COAL",14715,"0M",1294,,,95,38602,20937,145827,50229,27422,136935,127350,62833,126363,110076,53702,131074,110470,54187,128876,117078,56381,126273,137002,67568,99984,129986,64144,93470,121920,58717,95585,117436,55949,93435,118781,56941,78649,145641,68789,57848,3152,3,52288,"BIT","ST" 23,42,1,3,2,137,40,"PENNSYLVANIA PWR & LGT CO","SUNBURY",0,"LIGHT OIL",14715,"0M",1294,,,95,29,54,0,17,32,0,22,41,0,12,22,0,18,33,0,15,28,0,10,19,0,41,76,0,14,26,0,21,39,0,16,30,0,15,28,0,3152,3,52288,"FO2","IC" 23,42,1,4,2,137,40,"PENNSYLVANIA PWR & LGT CO","SUNBURY",0,"LIGHT OIL",14715,"0M",1294,,,95,0,0,4196,0,0,4357,0,0,4367,0,0,4367,0,0,4367,12,34,4284,56,161,4122,1269,3772,3896,136,375,4425,0,0,4425,0,0,4304,59,188,4116,3152,3,52288,"FO2","GT" 23,42,1,4,2,137,41,"PENNSYLVANIA PWR & LGT CO","WEST SHORE",0,"LIGHT OIL",14715,"0M",1294,,,95,0,0,1981,146,397,2124,0,0,2125,23,63,2063,0,0,2063,27,85,2157,93,275,2060,1581,3944,1664,97,247,1948,0,0,1948,0,0,1943,0,0,1936,3154,3,52288,"FO2","GT" 23,42,1,4,2,137,42,"PENNSYLVANIA PWR & LGT CO","WILLIAMPORT",0,"LIGHT OIL",14715,"0M",1294,,,95,11,25,2095,108,303,2299,33,89,2120,24,80,2130,0,0,1062,31,83,2085,166,469,2282,1685,4637,1796,229,615,2348,0,1,2347,0,0,2347,47,129,2218,3155,3,52288,"FO2","GT" 23,42,1,2,4,137,44,"PENNSYLVANIA PWR & LGT CO","COAL STORAG",0,"ANTH COAL",14715,"0M",1294,,,95,0,0,4326102,0,0,4287048,0,0,4250306,0,0,4192077,0,0,4116068,0,0,4024607,0,0,3949307,0,0,3858966,0,0,3770991,0,0,3712178,0,0,3655315,0,0,3627389,8805,3,52288,"ANT","ST" 23,42,1,2,1,144,1,"PECO ENERGY CO","LIMERICK",0,"NUCLEAR",14940,"0M",1294,,260,95,758738,0,0,649503,0,0,788638,0,0,741991,0,0,644273,0,0,749037,0,0,735331,0,0,472319,0,0,293869,0,0,781359,0,0,758883,0,0,774008,0,0,6105,3,52304,"UR","ST" 23,42,1,2,1,144,2,"PECO ENERGY CO","LIMERICK",0,"NUCLEAR",14940,"0M",1294,,260,95,305997,0,0,145495,0,0,841460,0,0,792169,0,0,828631,0,0,759339,0,0,812705,0,0,648469,0,0,793584,0,0,839715,0,0,794719,0,0,838665,0,0,6105,3,52304,"UR","ST" 23,42,1,2,1,144,2,"PECO ENERGY CO","PEACHBOTTOM",0,"NUCLEAR",14940,"0M",1294,,260,95,835865,0,0,758077,0,0,833805,0,0,783656,0,0,813085,0,0,767048,0,0,814131,0,0,781700,0,0,787889,0,0,812587,0,0,755502,0,0,620649,0,0,3166,3,52304,"UR","ST" 23,42,1,1,,144,3,"PECO ENERGY CO","MUDDY RUN",0,"P-PUMPSTG",14940,"0M",1294,,260,95,-58588,197635,0,-48050,161907,0,-57936,201052,0,-62063,184331,0,-54454,193555,0,-64502,219733,0,-77254,238571,0,-71435,248510,0,-71632,228867,0,-151911,225998,0,-140643,200522,0,-140747,207063,0,3164,3,52304,"WAT","HY" 23,42,1,2,1,144,3,"PECO ENERGY CO","PEACHBOTTOM",0,"NUCLEAR",14940,"0M",1294,,260,95,777483,0,0,711496,0,0,640321,0,0,740258,0,0,699846,0,0,588449,0,0,497410,0,0,423621,0,0,284823,0,0,314451,0,0,800042,0,0,695148,0,0,3166,3,52304,"UR","ST" 23,42,1,4,2,144,10,"PECO ENERGY CO","CHESTER",0,"LIGHT OIL",14940,"0M",1294,,260,95,40,143,6303,283,871,5973,4,13,5960,0,0,5960,0,0,5960,134,251,5709,1965,3097,5088,2547,9094,4622,135,622,5417,6,46,5371,9,117,5615,0,0,5615,3157,3,52304,"FO2","GT" 23,42,1,2,2,144,18,"PECO ENERGY CO","CROMBY",0,"LIGHT OIL",14940,"0M",1294,,260,95,552,1065,739,136,247,742,559,972,675,596,1108,639,800,1555,694,542,1023,717,107,204,786,442,846,656,532,1027,700,390,751,648,1349,2625,514,669,1263,679,3159,3,52304,"FO2","ST" 23,42,1,2,3,144,18,"PECO ENERGY CO","CROMBY",0,"HEAVY OIL",14940,"0M",1294,,260,95,2359,4204,37192,40300,66566,38230,6132,9753,28477,2439,4170,38531,1755,3147,35384,2326,3992,31392,2427,4219,27173,2684,4698,32767,5362,9562,23250,2962,5168,40075,2887,5164,35070,3164,5422,36172,3159,3,52304,"FO6","ST" 23,42,1,2,6,144,18,"PECO ENERGY CO","CROMBY",0,"BIT COAL",14940,"0M",1294,,260,95,74489,31603,37801,84553,33984,30569,59404,28393,32942,68130,28446,39783,56042,24391,55616,62095,25757,51736,68743,28828,37015,81385,34554,29542,73288,31653,35675,82081,34906,31898,75734,32689,34891,88164,36436,31030,3159,3,52304,"BIT","ST" 23,42,1,2,9,144,18,"PECO ENERGY CO","CROMBY",0,"NAT GAS",14940,"0M",1294,,260,95,71643,785884,0,61834,634083,0,79727,785913,0,51172,541950,0,54177,597370,0,81502,865110,0,111181,1192120,0,110008,1192120,0,68568,752990,0,0,0,0,0,0,0,69,740,0,3159,3,52304,"NG","ST" 23,42,1,3,2,144,18,"PECO ENERGY CO","CROMBY",0,"LIGHT OIL",14940,"0M",1294,,260,95,0,0,425,2,5,382,1,2,380,1,3,377,0,0,377,0,1,376,6,13,363,0,0,363,2,5,358,0,0,358,3,6,352,0,0,352,3159,3,52304,"FO2","IC" 23,42,1,2,2,144,20,"PECO ENERGY CO","DELAWARE",0,"LIGHT OIL",14940,"0M",1294,,260,95,83,167,285,230,443,159,379,1037,262,0,1258,270,63,112,285,407,948,313,503,939,296,248,512,251,125,311,303,0,535,306,0,1886,292,1548,3097,274,3160,3,52304,"FO2","ST" 23,42,1,2,3,144,20,"PECO ENERGY CO","DELAWARE",0,"HEAVY OIL",14940,"0M",1294,,260,95,7566,13842,54536,40968,72617,57755,6149,15501,61363,-988,853,60510,1023,1674,58836,10372,22370,60784,73226,125872,59240,61586,116298,48551,3817,8670,64382,-880,0,64382,-848,109,64273,42071,77005,46160,3160,3,52304,"FO6","ST" 23,42,1,3,2,144,20,"PECO ENERGY CO","DELAWARE",0,"LIGHT OIL",14940,"0M",1294,,260,95,4,8,0,6,12,0,0,0,0,8,4,0,0,0,0,0,0,0,0,0,0,5,12,0,0,0,0,0,0,0,3,6,0,0,0,0,3160,3,52304,"FO2","IC" 23,42,1,4,2,144,20,"PECO ENERGY CO","DELAWARE",0,"LIGHT OIL",14940,"0M",1294,,260,95,14,29,4606,471,908,4510,16,46,5120,42,103,4834,0,0,5221,137,321,4998,1693,3157,5919,4022,8277,4823,175,434,5097,11,64,4495,0,0,4139,3,6,3960,3160,3,52304,"FO2","GT" 23,42,1,2,2,144,23,"PECO ENERGY CO","EDDYSTONE",0,"LIGHT OIL",14940,"0M",1294,,260,95,2860,5785,8309,7265,14150,6730,691,1392,5338,656,1353,6842,1090,2439,5446,1497,2992,3502,265,545,7647,1122,2234,5367,200,403,4943,1397,2645,5855,940,1740,11279,4634,8834,12016,3161,3,52304,"FO2","ST" 23,42,1,2,3,144,23,"PECO ENERGY CO","EDDYSTONE",0,"HEAVY OIL",14940,"0M",1294,,260,95,28189,52308,219884,149450,269038,232369,3289,6168,226201,212,405,225796,779,1602,224194,12605,22920,225716,34139,63954,190796,58828,107390,228949,6004,24353,228406,13370,23208,205198,25814,43623,161575,159697,281810,186014,3161,3,52304,"FO6","ST" 23,42,1,2,6,144,23,"PECO ENERGY CO","EDDYSTONE",0,"BIT COAL",14940,"0M",1294,,260,95,230611,102377,114701,145600,63304,115351,142036,63132,95986,141196,64796,114142,75987,37394,136129,72749,31969,156190,38241,17251,161746,115645,50809,196139,101095,70609,237844,255413,106924,214128,279475,114586,204428,343647,144382,154263,3161,3,52304,"BIT","ST" 23,42,1,2,9,144,23,"PECO ENERGY CO","EDDYSTONE",0,"NAT GAS",14940,"0M",1294,,260,95,44577,509816,0,75572,836629,0,64058,732536,0,42770,502085,0,37425,473140,0,199205,2238826,0,248894,2876189,0,290649,3273871,0,116178,2028607,0,136486,1466691,0,26917,282787,0,17773,193338,0,3161,3,52304,"NG","ST" 23,42,1,4,2,144,23,"PECO ENERGY CO","EDDYSTONE",0,"LIGHT OIL",14940,"0M",1294,,260,95,88,179,7824,301,588,7236,23,47,7189,0,0,7189,59,133,7056,38,77,6979,2082,4276,7703,5802,11553,9393,213,2838,8159,40,77,8082,74,138,7944,162,310,8951,3161,3,52304,"FO2","GT" 23,42,1,2,3,144,25,"PECO ENERGY CO","OIL STORAGE",0,"HEAVY OIL",14940,"0M",1294,,260,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8806,3,52304,"FO6","ST" 23,42,1,4,2,144,26,"PECO ENERGY CO","FALLS",0,"LIGHT OIL",14940,"0M",1294,,260,95,6,16,10772,174,460,10312,0,0,10312,0,0,10312,0,0,10312,323,626,9686,1716,2316,9307,2167,6952,8374,53,261,8289,8,112,8177,0,0,8503,0,0,8503,3162,3,52304,"FO2","GT" 23,42,1,4,2,144,27,"PECO ENERGY CO","MOSER",0,"LIGHT OIL",14940,"0M",1294,,260,95,62,154,10920,416,1304,10329,2,7,10322,0,0,10322,0,0,10322,174,159,10163,2401,3681,8582,3033,9617,8076,165,385,7691,0,0,7691,49,1948,8854,0,0,8854,3163,3,52304,"FO2","GT" 23,42,1,4,2,144,30,"PECO ENERGY CO","RICHMOND",0,"LIGHT OIL",14940,"0M",1294,,260,95,73,705,25225,1538,2518,24154,176,209,23945,0,0,23945,0,0,23945,546,1092,22853,7883,15050,19654,8358,22812,19604,1489,4282,16208,573,1391,19605,1780,4530,22192,2646,5558,20232,3168,3,52304,"FO2","GT" 23,42,1,2,2,144,35,"PECO ENERGY CO","SCHUYLKILL",0,"LIGHT OIL",14940,"0M",1294,,260,95,10,31,177,29,55,282,0,13,330,0,0,58,5,32,173,21,41,260,32,63,204,31,64,224,0,0,285,0,0,204,0,13,117,174,366,292,3169,3,52304,"FO2","ST" 23,42,1,2,3,144,35,"PECO ENERGY CO","SCHUYLKILL",0,"HEAVY OIL",14940,"0M",1294,,260,95,2569,7049,0,27433,47982,0,-514,221,0,-442,0,0,787,4441,0,7540,12988,0,45149,79435,0,40737,74952,0,2171,4408,0,-450,0,0,-487,0,0,33696,64594,0,3169,3,52304,"FO6","ST" 23,42,1,3,2,144,35,"PECO ENERGY CO","SCHUYLKILL",0,"LIGHT OIL",14940,"0M",1294,,260,95,0,0,0,11,21,0,1,6,0,0,0,0,0,0,0,0,0,0,0,0,0,4,9,0,2,8,0,0,0,0,0,0,0,0,0,0,3169,3,52304,"FO2","IC" 23,42,1,4,2,144,35,"PECO ENERGY CO","SCHUYLKILL",0,"LIGHT OIL",14940,"0M",1294,,260,95,0,0,4077,183,347,4272,0,0,4454,0,0,4454,16,102,4352,25,48,4304,1060,2033,4025,3086,6214,3655,57,113,3542,0,0,3542,0,0,4435,0,0,4435,3169,3,52304,"FO2","GT" 23,42,1,4,2,144,39,"PECO ENERGY CO","SOUTHWARK",0,"LIGHT OIL",14940,"0M",1294,,260,95,7,10,6164,245,786,6101,28,123,5978,0,0,5978,0,0,5978,21,33,5945,2299,3702,5765,2572,9427,4876,120,646,4593,9,18,4592,0,0,5461,12,32,5429,3170,3,52304,"FO2","GT" 23,42,1,4,2,144,62,"PECO ENERGY CO","CROYDON",0,"LIGHT OIL",14940,"0M",1294,,260,95,908,1378,96105,5368,13129,82976,1206,2774,80202,185,1674,78528,-30,449,78079,2904,7166,70913,28748,58359,102954,34047,90855,75978,5816,17011,58967,4006,14190,124677,9344,33758,90919,20108,59103,81811,8012,3,52304,"FO2","GT" 23,42,1,1,,166,1,"SAFE HARBOR WATERPOWER CO","SAFE HARBOR",0,,16537,"0M",1294,,,95,143384,0,0,59393,0,0,126476,0,0,89759,0,0,63828,0,0,55553,0,0,43077,0,0,14256,0,0,7655,0,0,60191,0,0,112079,0,0,82918,0,0,3175,3,52553,"WAT","HY" 23,42,1,2,2,182,5,"UNITED GAS IMP CO (THE)","HUNLOCK CRK",0,"LIGHT OIL",19390,"0M",1294,,,95,513,820,149,94,161,167,202,328,185,435,618,244,11,18,226,1,2,224,140,230,170,0,0,170,514,892,135,73,127,175,21,35,140,24,41,99,3176,3,52988,"FO2","ST" 23,42,1,2,4,182,5,"UNITED GAS IMP CO (THE)","HUNLOCK CRK",0,"ANTH COAL",19390,"0M",1294,,,95,22922,15408,12384,27213,18489,14764,29884,19399,26578,8930,5383,44202,31976,21379,41110,31087,20919,40663,28632,19193,37106,32217,21657,39145,28079,19274,38194,32138,21308,38517,32139,20464,33331,30924,20327,26649,3176,3,52988,"ANT","ST" 23,42,1,2,2,187,1,"WEST PENN POWER CO","ARMSTRONG",0,"LIGHT OIL",20387,"0M",1294,,71,95,1137,2044,435,250,438,461,208,349,465,208,340,516,357,602,494,249,434,577,87,154,405,77,134,448,175,297,469,719,1212,478,755,1324,33,100,171,531,3178,1,54030,"FO2","ST" 23,42,1,2,6,187,1,"WEST PENN POWER CO","ARMSTRONG",0,"BIT COAL",20387,"0M",1294,,71,95,116602,48997,133134,169087,69152,118235,94695,37329,143043,106738,41224,154005,90547,35992,160453,93589,37605,145126,109058,44341,133889,108429,43934,141795,50453,20094,155423,132983,52637,143306,163282,66595,118118,227115,90923,97838,3178,1,54030,"BIT","ST" 23,42,1,2,2,187,5,"WEST PENN POWER CO","HATFIELD",0,"LIGHT OIL",20387,"0M",1294,,71,95,431,715,4466,429,677,4860,16,26,4860,109,176,5175,295,498,4642,232,393,4202,112,193,4003,116,200,3858,440,729,3846,625,1001,3653,200,324,4266,345,551,4530,3179,1,54030,"FO2","ST" 23,42,1,2,6,187,5,"WEST PENN POWER CO","HATFIELD",0,"BIT COAL",20387,"0M",1294,,71,95,924993,349235,573422,796344,286253,580468,654622,239981,562743,652050,240234,569141,751057,287421,561772,807472,310567,503117,873489,338429,425399,814220,315517,429242,611272,228129,438816,665375,244419,472140,717809,264457,471668,976850,352523,470255,3179,1,54030,"BIT","ST" 23,42,1,2,2,187,15,"WEST PENN POWER CO","MITCHELL",0,"LIGHT OIL",20387,"0M",1294,,71,95,1099,1660,62781,14264,26130,36652,9573,16358,20294,0,0,95,0,0,20294,0,0,20294,2975,5533,14761,9534,17307,37248,0,0,37248,370,623,36693,0,0,102,0,0,36712,3181,1,54030,"FO2","ST" 23,42,1,2,6,187,15,"WEST PENN POWER CO","MITCHELL",0,"BIT COAL",20387,"0M",1294,,71,95,133543,54702,81824,96423,41467,82859,153555,62524,77796,125039,49503,90740,49588,20363,93045,53622,23986,82955,92131,39751,72392,131370,55646,87997,44218,20045,99480,112797,45127,97501,86006,35430,95483,91125,37261,96203,3181,1,54030,"BIT","ST" 23,42,1,2,9,187,15,"WEST PENN POWER CO","MITCHELL",0,"NAT GAS",20387,"0M",1294,,71,95,997,8782,0,512,5468,0,649,6574,0,362,3518,0,98,1012,0,493,5639,0,384,4175,0,352,3732,0,608,6884,0,229,2287,0,632,6538,0,411,4215,0,3181,1,54030,"NG","ST" 23,42,1,2,3,187,25,"WEST PENN POWER CO","SPRINGDALE",0,"HEAVY OIL",20387,"0M",1294,"S",71,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3182,1,54030,"FO6","ST" 23,42,8,1,,800,5,"ALLEGHENY ELECTRIC COOP","RAYSTOWN",0,,332,"0A",1294,,,95,10581,0,0,4872,0,0,10420,0,0,7145,0,0,9214,0,0,7292,0,0,7823,0,0,1871,0,0,1862,0,0,6232,0,0,13092,0,0,11263,0,0,7128,1,58500,"WAT","HY" 31,39,1,2,2,30,5,"CARDINAL OPERATING CO","CARDINAL",0,"LIGHT OIL",3006,"0M",1294,,365,95,1506,2512,16004,1987,3269,21891,793,1326,20561,810,1358,18998,750,1207,17783,5623,9537,7493,587,994,18460,1462,2531,15746,996,1682,14054,1293,2176,11850,586,984,10858,3751,6207,17605,2828,1,50359,"FO2","ST" 31,39,1,2,6,30,5,"CARDINAL OPERATING CO","CARDINAL",0,"BIT COAL",3006,"0M",1294,,365,95,964403,385031,651565,952635,371878,631820,970861,386058,589923,907026,357640,591393,523077,201759,670651,745173,300966,631446,1013299,410501,467099,1010121,415926,370224,984185,397240,345127,996339,400914,397108,987234,392815,487317,940659,377797,434608,2828,1,50359,"BIT","ST" 31,39,1,4,2,43,1,"CINCINNATI GAS ELEC CO","DICKS CREEK",0,"LIGHT OIL",3542,"0M",1294,,210,95,20,1175,6144,23,332,5811,9,35,5776,18,399,5377,0,0,5377,10,47,5330,233,987,4343,377,1342,3001,3,41,5373,8,49,5325,18,65,5260,1,7,5253,2831,1,50556,"FO2","GT" 31,39,1,4,9,43,1,"CINCINNATI GAS ELEC CO","DICKS CREEK",0,"NAT GAS",3542,"0M",1294,,210,95,74,4943,0,-217,0,0,17,13,0,-138,563,0,-109,0,0,227,871,0,3843,78877,0,4803,89226,0,-34,0,0,-101,1423,0,240,6693,0,672,17724,0,2831,1,50556,"NG","GT" 31,39,1,2,2,43,2,"CINCINNATI GAS ELEC CO","WC BECKJORD",0,"LIGHT OIL",3542,"0M",1294,,210,95,1063,1868,0,520,909,0,1246,2193,0,616,1040,0,909,1575,0,1694,2920,0,83,148,0,648,1175,0,673,1200,0,1185,2032,0,1335,2313,0,1124,2076,0,2830,1,50556,"FO2","ST" 31,39,1,2,6,43,2,"CINCINNATI GAS ELEC CO","WC BECKJORD",0,"BIT COAL",3542,"0M",1294,,210,95,376000,158991,137317,393834,167236,139827,297378,127194,171002,437582,181317,177440,274678,116442,192793,481664,200911,197721,528583,228082,195580,602321,260506,195850,213081,91113,206835,487454,202145,200676,427365,176777,196004,493746,218176,193234,2830,1,50556,"BIT","ST" 31,39,1,4,2,43,2,"CINCINNATI GAS ELEC CO","WC BECKJORD",0,"LIGHT OIL",3542,"0M",1294,,210,95,904,1589,30711,253,443,29179,30,54,26769,24,41,25499,30,53,23746,206,356,41971,10845,19305,22349,18056,32731,31385,523,933,29084,23,40,26796,38,67,23956,1551,2863,41821,2830,1,50556,"FO2","GT" 31,39,1,2,2,43,5,"CINCINNATI GAS ELEC CO","MIAMI FORT",0,"LIGHT OIL",3542,"0M",1294,,210,95,1008,1795,0,465,820,0,830,1457,0,436,757,0,862,1538,0,1665,3001,0,1804,3164,0,3368,6051,0,1292,2324,0,260,450,0,548,956,0,3202,5528,0,2832,1,50556,"FO2","ST" 31,39,1,2,6,43,5,"CINCINNATI GAS ELEC CO","MIAMI FORT",0,"BIT COAL",3542,"0M",1294,,210,95,637745,262491,294369,502865,207419,302760,559242,231277,318869,305741,124954,357678,414341,174583,369622,502174,211728,359534,599203,248510,325680,672906,285623,264937,557339,235511,249465,607306,250021,246891,553335,226505,248836,594845,241403,260437,2832,1,50556,"BIT","ST" 31,39,1,4,2,43,5,"CINCINNATI GAS ELEC CO","MIAMI FORT",0,"LIGHT OIL",3542,"0M",1294,,210,95,184,328,29994,104,184,28839,51,90,27190,104,182,26060,90,161,23971,260,470,20424,2604,4567,34307,5930,10654,29284,0,0,26912,56,98,26221,132,231,25022,4,7,19483,2832,1,50556,"FO2","GT" 31,39,1,2,2,43,10,"CINCINNATI GAS ELEC CO","W H ZIMMER",0,"LIGHT OIL",3542,"0M",1294,,210,95,387,627,43117,405,662,42455,266,437,42018,446,721,41297,544,908,40390,5437,9067,40610,3869,6259,34351,2406,3947,30404,654,1074,29331,0,0,28641,10375,17945,31644,228,326,31318,6019,1,50556,"FO2","ST" 31,39,1,2,6,43,10,"CINCINNATI GAS ELEC CO","W H ZIMMER",0,"BIT COAL",3542,"0M",1294,,210,95,945287,364436,470303,860575,334587,468422,931671,360276,429932,905494,345488,449089,895923,353208,433131,685071,269191,462164,813824,313887,471999,817013,315668,465279,858265,326707,439814,-6015,0,440306,643755,258809,446427,954218,369625,445092,6019,1,50556,"BIT","ST" 31,39,1,4,2,43,15,"CINCINNATI GAS ELEC CO","WOODSDALE",0,"PROPANE",3542,"0M",1294,,210,95,3264,17257,47281,251,6836,40445,206,1875,39359,655,3378,35981,0,2040,33941,765,1976,31965,599,1450,30515,128,307,30208,2,8,30200,22,122,30078,2291,8079,47000,9027,29590,47410,7158,1,50556,"FO2","GT" 31,39,1,4,9,43,15,"CINCINNATI GAS ELEC CO","WOODSDALE",0,"NAT GAS",3542,"0M",1294,,210,95,150,4500,0,6,900,0,329,16900,0,549,16100,0,-24,5400,0,8444,123700,0,78223,1073891,0,127374,1732000,0,11241,209600,0,798,24900,0,8079,161217,0,5288,98400,0,7158,1,50556,"NG","GT" 31,39,1,2,1,47,1,"CLEVELAND ELEC ILLUM CO","PERRY",0,"NUCLEAR",3755,"0M",1294,,,95,876776,0,0,768903,0,0,819283,0,0,488364,0,0,856246,0,0,825532,0,0,844484,0,0,836109,0,0,563058,0,0,867378,0,0,562127,0,0,802040,0,0,6020,1,50587,"UR","ST" 31,39,1,2,2,47,5,"CLEVELAND ELEC ILLUM CO","ASHTABULA",0,"LIGHT OIL",3755,"0M",1294,,,95,42,104,847,0,0,847,118,290,165,18,45,836,36,88,1105,993,2435,781,1126,2764,920,735,1805,1069,508,1246,1250,554,1359,961,372,912,1126,318,78,1063,2835,1,50587,"FO2","ST" 31,39,1,2,6,47,5,"CLEVELAND ELEC ILLUM CO","ASHTABULA",0,"BIT COAL",3755,"0M",1294,,,95,52796,31491,71024,49964,29829,71024,55761,34212,70589,75864,42918,70589,57256,34078,70589,75393,41494,70589,152351,73482,69602,185535,87655,62911,92554,48842,63273,134786,62671,50375,152108,70363,39853,183631,84228,39391,2835,1,50587,"BIT","ST" 31,39,1,2,2,47,10,"CLEVELAND ELEC ILLUM CO","AVON",0,"LIGHT OIL",3755,"0M",1294,,,95,545,1336,12357,217,533,11823,334,820,11003,71,175,13126,623,1529,11274,103,252,10337,204,501,9328,209,514,12564,219,537,11551,455,1117,10529,439,1076,9330,211,518,8657,2836,1,50587,"FO2","ST" 31,39,1,2,6,47,10,"CLEVELAND ELEC ILLUM CO","AVON",0,"BIT COAL",3755,"0M",1294,,,95,418792,166008,147432,412531,162705,122460,424163,169344,131476,363532,138488,180398,251231,98651,203325,203947,82859,218224,353614,137703,162497,424161,173437,95914,388690,173071,75855,373672,144052,89758,227150,92153,101135,197850,84233,81208,2836,1,50587,"BIT","ST" 31,39,1,4,2,47,10,"CLEVELAND ELEC ILLUM CO","AVON",0,"LIGHT OIL",3755,"0M",1294,,,95,-48,0,1833,46,308,1525,-44,0,1525,16,93,1432,-27,0,1432,51,171,1260,97,283,1453,726,2175,826,-20,0,1302,-23,0,1326,-40,0,1326,-55,0,1861,2836,1,50587,"FO2","GT" 31,39,1,2,2,47,15,"CLEVELAND ELEC ILLUM CO","EASTLAKE",0,"LIGHT OIL",3755,"0M",1294,,,95,1497,3674,9572,911,2234,8964,764,1874,9624,751,1842,8674,1166,2861,7850,1418,3479,8310,853,2092,5787,966,2369,13472,911,2234,13178,758,1860,11437,682,1673,13358,1121,2750,10965,2837,1,50587,"FO2","ST" 31,39,1,2,6,47,15,"CLEVELAND ELEC ILLUM CO","EASTLAKE",0,"BIT COAL",3755,"0M",1294,,,95,563066,214828,125324,531721,201833,127529,552063,214200,127558,603752,229103,113946,476696,183152,148312,528305,201681,134280,545020,211638,133115,580108,227637,126504,418750,164875,155538,237147,95621,161064,619540,234785,116588,554005,216330,121544,2837,1,50587,"BIT","ST" 31,39,1,4,2,47,15,"CLEVELAND ELEC ILLUM CO","EASTLAKE",0,"LIGHT OIL",3755,"0M",1294,,,95,-26,411,1392,-34,64,1328,-7,96,1232,-39,0,1232,-17,48,1184,80,272,913,110,487,2330,416,1227,1642,-21,0,1642,-29,0,1642,-48,0,1642,-62,0,1642,2837,1,50587,"FO2","GT" 31,39,1,2,2,47,20,"CLEVELAND ELEC ILLUM CO","LAKE SHORE",0,"LIGHT OIL",3755,"0M",1294,,,95,1807,4433,0,1095,2687,0,655,1878,10867,822,2016,9030,822,2016,9030,822,2016,9030,822,2016,9030,0,0,9030,0,0,9030,0,0,9030,0,0,9030,0,0,9030,2838,1,50587,"FO2","ST" 31,39,1,2,3,47,20,"CLEVELAND ELEC ILLUM CO","LAKE SHORE",0,"HEAVY OIL",3755,"0M",1294,,,95,-1345,0,0,-1121,0,0,-1101,0,0,-967,0,0,-1013,0,0,-1144,0,0,-1177,0,0,-1109,0,0,-1101,0,0,-886,0,0,-1113,0,0,-1190,0,0,2838,1,50587,"FO6","ST" 31,39,1,2,6,47,20,"CLEVELAND ELEC ILLUM CO","LAKE SHORE",0,"BIT COAL",3755,"0M",1294,,,95,-2869,0,0,-2051,0,0,-8655,0,0,-1765,0,0,-1630,0,0,-1592,0,0,-1511,0,0,-680,0,0,-664,0,0,-785,0,0,-839,0,0,-939,0,0,2838,1,50587,"BIT","ST" 31,39,1,3,2,47,20,"CLEVELAND ELEC ILLUM CO","LAKE SHORE",0,"LIGHT OIL",3755,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2838,1,50587,"FO2","IC" 31,39,1,2,2,50,5,"COLUMBUS SOUTHERN PWR CO","CONESVILLE",0,"LIGHT OIL",4062,"0M",1294,,369,95,781,1346,11167,848,1487,10088,1527,2569,9973,647,1108,10480,1150,1863,10818,808,1412,11137,1992,3195,10638,911,1520,12206,2980,5206,7444,848,1360,7419,1411,2362,6092,1247,2194,6515,2840,1,50633,"FO2","ST" 31,39,1,2,6,50,5,"COLUMBUS SOUTHERN PWR CO","CONESVILLE",0,"BIT COAL",4062,"0M",1294,,369,95,839897,361439,480236,776708,341510,409270,577474,241703,450938,516809,220156,545479,471259,188870,589930,540735,233443,590510,666114,292069,537443,960463,414977,380548,748475,319718,311923,775359,307972,333993,824448,339869,356943,594247,257598,411899,2840,1,50633,"BIT","ST" 31,39,1,2,2,50,15,"COLUMBUS SOUTHERN PWR CO","PICWAY",0,"LIGHT OIL",4062,"0M",1294,,369,95,77,157,318,80,151,162,0,0,158,0,0,163,0,0,150,271,581,410,67,164,258,153,329,279,86,168,293,52,109,355,102,206,330,71,149,354,2843,1,50633,"FO2","ST" 31,39,1,2,6,50,15,"COLUMBUS SOUTHERN PWR CO","PICWAY",0,"BIT COAL",4062,"0M",1294,,369,95,24098,12576,18902,17338,8355,10547,0,0,10547,0,0,10547,0,0,10547,12062,7059,8508,8499,5099,16411,33626,17892,7051,12493,6357,14305,11264,6148,20174,12256,6425,23762,14575,8110,25135,2843,1,50633,"BIT","ST" 31,39,1,3,2,56,15,"DAYTON PWR & LGT CO (THE)","FRANK TAIT",0,"LIGHT OIL",4922,"0M",1294,,,95,10,18,2118,30,55,1880,24,44,4879,67,123,5809,5,9,5601,0,0,8437,59,128,8308,638,1170,6968,8,15,6953,0,0,6953,4,31,12908,0,0,12704,2847,1,50752,"FO2","IC" 31,39,1,4,2,56,15,"DAYTON PWR & LGT CO (THE)","FRANK TAIT",0,"LIGHT OIL",4922,"0M",494,,,95,0,0,0,0,0,0,0,0,0,8,31,0,2615,5585,0,2094,4660,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,87,204,0,2847,1,50752,"FO2","GT" 31,39,1,4,9,56,15,"DAYTON PWR & LGT CO (THE)","FRANK TAIT",0,"NAT GAS",4922,"0M",494,,,95,0,0,0,0,0,0,0,0,0,206,4610,0,2453,30366,0,2250,29020,0,2757,33743,0,5899,80360,0,392,7740,0,65,1370,0,35,1210,0,1279,17010,0,2847,1,50752,"NG","GT" 31,39,1,2,6,56,20,"DAYTON PWR & LGT CO (THE)","HUTCHINGS",0,"BIT COAL",4922,"0M",1294,,,95,1189,1204,103680,11354,5882,97799,-864,0,97799,0,0,97799,-467,0,97799,38657,18515,85185,73119,34885,59277,140943,65371,20520,7427,3975,45638,4351,2521,84275,3553,2065,93826,62576,27616,66210,2848,1,50752,"BIT","ST" 31,39,1,2,9,56,20,"DAYTON PWR & LGT CO (THE)","HUTCHINGS",0,"NAT GAS",4922,"0M",1294,,,95,408,9899,0,595,6448,0,0,0,0,-804,48,0,4,164,0,1487,14801,0,2254,22264,0,5404,59821,0,688,9010,0,440,6133,0,353,5099,0,1464,15898,0,2848,1,50752,"NG","ST" 31,39,1,4,2,56,20,"DAYTON PWR & LGT CO (THE)","HUTCHINGS",0,"LIGHT OIL",4922,"0M",1294,,,95,71,303,1433,82,157,1275,0,1,1275,0,0,1275,0,0,1274,0,0,1274,0,0,1274,0,1,1274,0,0,1274,0,0,1274,58,147,1127,49,94,1395,2848,1,50752,"FO2","GT" 31,39,1,4,9,56,20,"DAYTON PWR & LGT CO (THE)","HUTCHINGS",0,"NAT GAS",4922,"0M",1294,,,95,0,10,0,0,0,0,5,1130,0,16,400,0,8,327,0,0,0,0,140,1384,0,423,4690,0,0,0,0,0,0,0,0,0,0,41,453,0,2848,1,50752,"NG","GT" 31,39,1,2,2,56,23,"DAYTON PWR & LGT CO (THE)","J M STUART",0,"LIGHT OIL",4922,"0M",1294,,,95,1332,2321,1749,646,1073,2134,623,1061,2140,1223,2081,1858,1631,2823,2062,975,1647,2197,223,358,2194,623,1047,2043,1054,1794,2183,2669,4498,2177,1035,1708,1924,2772,4191,2252,2850,1,50752,"FO2","ST" 31,39,1,2,6,56,23,"DAYTON PWR & LGT CO (THE)","J M STUART",0,"BIT COAL",4922,"0M",1294,,,95,1324209,556655,951299,1313535,540148,931841,981133,406226,1101726,963505,397393,1210633,1235488,518718,880851,1223521,506083,868835,1340550,537277,869585,1339861,554937,815555,984147,409972,981044,990034,409244,867049,1361690,549068,888832,1361213,508529,976472,2850,1,50752,"BIT","ST" 31,39,1,3,2,56,23,"DAYTON PWR & LGT CO (THE)","J M STUART",0,"LIGHT OIL",4922,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2850,1,50752,"FO2","IC" 31,39,1,4,2,56,28,"DAYTON PWR & LGT CO (THE)","YANKEE ST",0,"LIGHT OIL",4922,"0M",1294,,,95,392,1042,6368,143,449,7390,1,3,5791,0,0,5791,0,1,5790,0,2,5788,0,0,5788,0,2,6395,2,7,6388,0,1,6388,60,192,6195,298,738,6316,2854,1,50752,"FO2","GT" 31,39,1,4,9,56,28,"DAYTON PWR & LGT CO (THE)","YANKEE ST",0,"NAT GAS",4922,"0M",1294,,,95,10,160,0,62,1100,0,162,1963,0,84,1410,0,82,1499,0,110,1913,0,390,6135,0,2583,45005,0,16,299,0,118,2067,0,15,279,0,1,15,0,2854,1,50752,"NG","GT" 31,39,1,3,2,56,34,"DAYTON PWR & LGT CO (THE)","MONUMENT",0,"LIGHT OIL",4922,"0M",1294,,,95,48,88,666,38,70,596,24,44,749,8,15,735,20,37,698,0,0,698,0,0,698,868,1591,510,12,22,679,8,15,664,3,6,658,23,73,586,2851,1,50752,"FO2","IC" 31,39,1,3,2,56,38,"DAYTON PWR & LGT CO (THE)","SIDNEY",0,"LIGHT OIL",4922,"0M",1294,,,95,36,66,654,39,72,582,19,35,547,12,22,525,27,50,476,38,70,594,200,367,418,928,1701,298,12,22,467,14,26,441,11,20,599,27,50,550,2852,1,50752,"FO2","IC" 31,39,1,2,2,56,40,"DAYTON PWR & LGT CO (THE)","KILLEN",0,"LIGHT OIL",4922,"0M",1294,,,95,1515,2654,38401,2032,3512,34941,568,957,33906,811,1364,32383,2303,3935,28369,2103,3623,24697,1150,1949,22638,3905,6750,39224,3140,5527,33621,140,241,33352,1226,2214,31022,7796,9042,43816,6031,1,50752,"FO2","ST" 31,39,1,2,6,56,40,"DAYTON PWR & LGT CO (THE)","KILLEN",0,"BIT COAL",4922,"0M",1294,,,95,396655,162048,146219,299969,123570,141430,380134,154283,172985,326056,132202,166969,335211,138111,191956,337194,139038,170239,357281,145509,178055,407089,168349,129255,293108,123208,110897,435673,179182,98466,52201,22774,186101,115941,32572,227624,6031,1,50752,"BIT","ST" 31,39,1,2,2,133,10,"OHIO EDISON CO","EDGEWATER",0,"LIGHT OIL",13998,"0M",1294,"A",,95,0,0,0,0,0,0,255,723,33,159,366,33,0,0,0,308,793,33,68,152,33,5,124,33,27,86,33,7,17,33,1286,2860,33,3,6,33,2857,1,52154,"FO2","ST" 31,39,1,2,9,133,10,"OHIO EDISON CO","EDGEWATER",0,"NAT GAS",13998,"0M",394,,,95,0,0,0,0,0,0,7097,98907,0,15050,194824,0,0,0,0,5911,86537,0,13656,173637,0,24053,289252,0,13182,151945,0,7495,97750,0,13698,169535,0,9290,104799,0,2857,1,52154,"NG","ST" 31,39,1,4,2,133,10,"OHIO EDISON CO","EDGEWATER",0,"LIGHT OIL",13998,"0M",1294,,,95,39,51,10875,58,329,9555,-8,73,8938,-14,44,9839,0,0,9464,200,693,10736,984,3224,10487,1718,5378,9687,120,437,8935,-17,0,8918,15,18,8748,20,140,9834,2857,1,52154,"FO2","GT" 31,39,1,2,2,133,15,"OHIO EDISON CO","GORGE STEAM",0,"LIGHT OIL",13998,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2858,1,52154,"FO2","ST" 31,39,1,2,6,133,15,"OHIO EDISON CO","GORGE STEAM",0,"BIT COAL",13998,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2858,1,52154,"BIT","ST" 31,39,1,4,2,133,30,"OHIO EDISON CO","MAD RIVER",0,"LIGHT OIL",13998,"0M",1294,,,95,-78,0,15547,-26,273,15273,-54,0,15273,-54,0,15273,363,2822,15479,99,426,15053,1080,3857,14177,3295,9983,13051,179,602,14577,62,386,15260,60,421,14839,73,357,15562,2860,1,52154,"FO2","GT" 31,39,1,2,2,133,43,"OHIO EDISON CO","NILES",0,"LIGHT OIL",13998,"0M",1294,,,95,5,9,253,86,166,190,142,266,280,33,64,216,17,38,406,275,522,253,67,130,224,50,97,303,45,88,221,63,123,320,28,54,266,27,53,213,2861,1,52154,"FO2","ST" 31,39,1,2,6,133,43,"OHIO EDISON CO","NILES",0,"BIT COAL",13998,"0M",1294,,,95,123871,55965,73387,98573,45856,68795,100911,45527,84171,102317,46469,88241,6938,3797,109930,76341,34497,104722,105408,49207,76769,73326,33732,70283,103996,47562,47231,111221,52359,33613,108872,49872,33134,113766,51273,29923,2861,1,52154,"BIT","ST" 31,39,1,4,2,133,43,"OHIO EDISON CO","NILES",0,"LIGHT OIL",13998,"0M",1294,,,95,55,295,7474,75,333,7682,-36,56,7626,-41,0,7626,-25,30,7596,100,416,7180,647,2274,6851,1403,4579,5630,65,256,6970,-7,118,6852,3,124,6728,61,335,7293,2861,1,52154,"FO2","GT" 31,39,1,2,2,133,45,"OHIO EDISON CO","R E BURGER",0,"LIGHT OIL",13998,"0M",1294,,,95,101,204,570,57,119,629,70,132,675,95,173,502,63,117,562,95,188,374,81,156,558,51,100,633,44,83,549,46,91,458,2,3,632,119,296,336,2864,1,52154,"FO2","ST" 31,39,1,2,6,133,45,"OHIO EDISON CO","R E BURGER",0,"BIT COAL",13998,"0M",1294,,,95,220103,104240,157034,164294,78521,184267,126512,54034,193327,150997,63973,186573,81596,35961,201217,96775,43949,193287,127163,56391,181386,166656,74197,142563,130934,57102,99030,67387,30839,87088,93946,40429,64542,82572,48775,54306,2864,1,52154,"BIT","ST" 31,39,1,3,2,133,45,"OHIO EDISON CO","R E BURGER",0,"LIGHT OIL",13998,"0M",1294,,,95,7,10,1284,23,46,1417,9,11,1407,0,0,1407,0,0,1407,34,84,1323,236,429,1243,566,1044,904,17,35,1224,23,43,1181,0,0,1181,30,77,1647,2864,1,52154,"FO2","IC" 31,39,1,2,2,133,57,"OHIO EDISON CO","W H SAMMIS",0,"LIGHT OIL",13998,"0M",1294,,,95,1482,2546,867,528,903,1046,558,954,844,550,932,638,695,1199,912,544,955,1493,706,1274,1304,451,1354,1217,1142,2017,1181,1316,2293,1036,94,160,983,2104,3601,973,2866,1,52154,"FO2","ST" 31,39,1,2,6,133,57,"OHIO EDISON CO","W H SAMMIS",0,"BIT COAL",13998,"0M",1294,,,95,1276095,514756,525945,1279324,511426,457910,1239563,502275,472374,1278563,515393,459047,1160892,479648,563045,1211972,504994,605054,1203599,510803,549162,1367687,590999,470321,991825,414819,354704,1017793,422778,445492,1052538,422578,399901,1094820,447068,288610,2866,1,52154,"BIT","ST" 31,39,1,3,2,133,57,"OHIO EDISON CO","W H SAMMIS",0,"LIGHT OIL",13998,"0M",1294,,,95,21,47,2208,62,132,2422,24,52,2506,21,51,2619,18,49,2690,84,169,2569,424,916,2504,994,1895,1445,56,115,2687,17,62,1885,61,120,2363,49,78,2264,2866,1,52154,"FO2","IC" 31,39,1,5,2,133,80,"OHIO EDISON CO","W LORAIN JO",0,"LIGHT OIL",13998,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2869,1,52154,"FO2","CC" 31,39,1,6,2,133,80,"OHIO EDISON CO","W LORAIN JO",0,"LIGHT OIL",13998,"0M",1294,"A",,95,0,0,0,0,0,0,18,114,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2869,1,52154,"FO2","CT" 31,39,1,2,2,141,28,"OHIO POWER CO","MUSKINGUM R",0,"LIGHT OIL",14006,"0M",1294,,364,95,3882,6525,18086,2171,3713,17991,1663,2732,19038,2100,3500,20732,2616,4271,21458,2357,4274,22882,1323,2298,23072,3025,5284,24028,1082,2039,25141,1349,2367,24554,1527,2671,21638,6433,9974,10617,2872,1,54028,"FO2","ST" 31,39,1,2,6,141,28,"OHIO POWER CO","MUSKINGUM R",0,"BIT COAL",14006,"0M",1294,,364,95,535201,215186,421884,537048,220375,419768,597967,235236,427281,521184,207858,375208,449068,175136,430680,464394,194776,458208,580017,239178,402984,570215,237224,362814,265479,117802,367772,240284,100504,368567,286463,120853,342833,504050,190482,323803,2872,1,54028,"BIT","ST" 31,39,1,2,2,141,30,"OHIO POWER CO","GAVIN",0,"LIGHT OIL",14006,"0M",1294,,364,95,3763,6775,47403,769,1320,46083,4239,7491,38592,399,722,37870,719,1203,36667,2089,3543,33123,1042,1767,31357,1100,2128,29229,787,1372,39659,1447,2509,37150,1827,3076,34074,190,326,33748,8102,1,54028,"FO2","ST" 31,39,1,2,6,141,30,"OHIO POWER CO","GAVIN",0,"BIT COAL",14006,"0M",1294,,364,95,64858,30038,1931820,651490,284413,2186971,988276,436625,1888556,1196488,552083,1872871,1419448,615414,1838157,1182854,513910,1760692,1417031,613808,1615051,1643009,713610,1363516,1514789,657244,1159863,1269184,559173,1152059,1395530,601427,1176037,1375641,605361,1157372,8102,1,54028,"BIT","ST" 31,39,1,1,,141,35,"OHIO POWER CO","RACINE",0,,14006,"0M",1294,,364,95,18331,0,0,19396,0,0,21002,0,0,26318,0,0,19638,0,0,23776,0,0,16330,0,0,12023,0,0,7551,0,0,14526,0,0,23751,0,0,24817,0,0,6006,1,54028,"WAT","HY" 31,39,1,2,6,141,40,"OHIO POWER CO","TIDD",0,"BIT COAL",14006,"0M",1294,"S",364,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2874,1,54028,"BIT","ST" 31,39,1,2,2,147,1,"OHIO VALLEY ELEC CORP","KYGER CREEK",0,"LIGHT OIL",14015,"0M",1294,,506,95,214,364,1335,346,582,1079,478,772,930,80,131,1631,298,520,1248,203,342,1489,97,168,1464,0,0,1642,55,92,1550,582,973,577,236,390,1258,83,146,1373,2876,1,52156,"FO2","ST" 31,39,1,2,6,147,1,"OHIO VALLEY ELEC CORP","KYGER CREEK",0,"BIT COAL",14015,"0M",1294,,506,95,702913,271965,605907,555922,215202,643003,623778,230327,685798,645615,237897,675827,712862,278407,639864,676683,252935,580389,702720,270228,524058,722985,274975,470824,637930,231881,406765,609383,225508,431319,645928,235364,421426,715380,277692,649924,2876,1,52156,"BIT","ST" 31,39,1,2,1,168,1,"TOLEDO EDISON CO (THE)","DAVIS-BESSE",0,"NUCLEAR",18997,"0M",1294,,,95,658580,0,0,596841,0,0,657111,0,0,620608,0,0,643953,0,0,629968,0,0,645923,0,0,643124,0,0,630210,0,0,652469,0,0,633467,0,0,645496,0,0,6149,1,52927,"UR","ST" 31,39,1,2,2,168,9,"TOLEDO EDISON CO (THE)","ACME",0,"PROPANE",18997,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2877,1,52927,"FO2","ST" 31,39,1,2,6,168,9,"TOLEDO EDISON CO (THE)","ACME",0,"BIT COAL",18997,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2877,1,52927,"BIT","ST" 31,39,1,2,9,168,9,"TOLEDO EDISON CO (THE)","ACME",0,"NAT GAS",18997,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2877,1,52927,"NG","ST" 31,39,1,2,2,168,11,"TOLEDO EDISON CO (THE)","BAY SHORE",0,"LIGHT OIL",18997,"0M",1294,,,95,136,448,525,273,439,445,156,255,550,380,622,464,160,607,393,170,407,521,159,530,700,226,457,598,155,367,588,238,402,364,76,315,588,112,197,572,2878,1,52927,"FO2","ST" 31,39,1,2,6,168,11,"TOLEDO EDISON CO (THE)","BAY SHORE",0,"BIT COAL",18997,"0M",1294,,,95,271495,103216,169716,328463,121979,150035,259418,97335,167411,220548,81660,204738,228937,86543,252579,283830,108691,226673,265296,101256,155041,323077,180415,73781,309205,109740,75119,176674,67648,106761,254611,97258,111939,278242,107020,82847,2878,1,52927,"BIT","ST" 31,39,1,4,2,168,11,"TOLEDO EDISON CO (THE)","BAY SHORE",0,"LIGHT OIL",18997,"0M",1294,,,95,14,64,566,36,59,688,0,0,782,14,24,758,0,0,758,17,30,1086,46,267,997,175,646,886,8,62,825,2,5,820,0,19,979,1,53,926,2878,1,52927,"FO2","GT" 31,39,1,4,2,168,18,"TOLEDO EDISON CO (THE)","RICHLAND",0,"LIGHT OIL",18997,"0M",1294,,,95,0,40,2793,0,0,2793,0,0,2793,0,25,2768,0,3,2764,27,124,2641,49,260,2380,192,729,1652,0,0,1652,0,44,1607,0,0,2325,0,0,2325,2880,1,52927,"FO2","GT" 31,39,1,4,9,168,18,"TOLEDO EDISON CO (THE)","RICHLAND",0,"NAT GAS",18997,"0M",1294,,,95,0,276,0,0,594,0,0,324,0,0,621,0,0,756,0,25,675,0,71,2079,0,345,7385,0,0,215,0,0,3046,0,0,92,0,2,392,0,2880,1,52927,"NG","GT" 31,39,1,4,2,168,19,"TOLEDO EDISON CO (THE)","STRYKER",0,"LIGHT OIL",18997,"0M",1294,,,95,10,159,1191,0,0,1191,0,0,1191,0,0,1191,0,0,1191,0,0,1191,0,0,1191,0,8,1183,0,0,1183,16,41,1142,0,0,92,0,29,1113,2881,1,52927,"FO2","GT" 31,39,5,3,2,522,1,"ARCANUM (CITY OF)","ARCANUM",0,"LIGHT OIL",768,"0A",1294,,,95,27,51,203,49,90,186,15,31,155,4,8,148,3,5,143,17,33,110,14,27,82,52,101,101,4,8,93,3,6,87,4,13,74,8,21,171,2902,1,50096,"FO2","IC" 31,39,5,3,2,552,1,"BRYAN (CITY OF)","BRYAN",0,"LIGHT OIL",2439,"0M",1294,,,95,14,23,355,14,25,329,0,0,329,178,304,378,39,68,310,12,21,289,145,250,215,87,158,235,29,50,179,16,27,153,37,63,268,9,32,237,2903,1,50356,"FO2","IC" 31,39,5,4,2,552,1,"BRYAN (CITY OF)","BRYAN",0,"LIGHT OIL",2439,"0M",1294,,,95,22,50,6950,0,0,6950,2,156,6795,0,0,6790,0,0,6790,0,0,6790,0,0,6790,0,0,6790,0,0,6760,0,0,6720,6,12,6690,1,5,6682,2903,1,50356,"FO2","GT" 31,39,5,4,9,552,1,"BRYAN (CITY OF)","BRYAN",0,"NAT GAS",2439,"0M",1294,,,95,22,566,0,82,2330,0,0,0,0,254,4926,0,3992,62915,0,6018,86797,0,4936,89292,0,8968,190437,0,6094,104355,0,104,2299,0,132,2762,0,420,8161,0,2903,1,50356,"NG","GT" 31,39,5,4,2,561,2,"CLEVELAND (CITY OF)","COLLINWOOD",0,"LIGHT OIL",3762,"0M",1294,,,95,0,1,1070,0,4,1066,83,263,803,0,0,803,4,238,565,0,0,922,0,0,922,50,256,1022,0,0,1022,0,0,1022,0,0,1022,0,0,1022,2906,1,50589,"FO2","GT" 31,39,5,4,9,561,2,"CLEVELAND (CITY OF)","COLLINWOOD",0,"NAT GAS",3762,"0M",1294,,,95,27,729,0,0,0,0,1,32,0,0,33,0,0,0,0,674,8563,0,274,8962,0,32,941,0,17,380,0,0,3,0,0,7,0,0,4,0,2906,1,50589,"NG","GT" 31,39,5,2,2,561,10,"CLEVELAND (CITY OF)","LAKE ROAD",0,"LIGHT OIL",3762,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2908,1,50589,"FO2","ST" 31,39,5,2,6,561,10,"CLEVELAND (CITY OF)","LAKE ROAD",0,"BIT COAL",3762,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2908,1,50589,"BIT","ST" 31,39,5,4,2,561,20,"CLEVELAND (CITY OF)","W 41ST ST",0,"LIGHT OIL",3762,"0M",1294,,,95,0,1,1995,0,0,1994,0,0,1994,0,0,1993,0,0,1993,0,0,1992,0,1,1992,0,1,1991,0,0,1990,0,0,1990,0,1,1989,0,0,1989,2909,1,50589,"FO2","GT" 31,39,5,4,9,561,20,"CLEVELAND (CITY OF)","W 41ST ST",0,"NAT GAS",3762,"0M",1294,,,95,477,14950,0,526,10745,0,431,12673,0,247,6523,0,221,6443,0,340,8176,0,1197,15109,0,4074,94135,0,593,26459,0,537,13366,0,668,16240,0,628,17345,0,2909,1,50589,"NG","GT" 31,39,5,2,6,579,1,"DOVER (CITY OF)","DOVER",0,"BIT COAL",5336,"0M",1294,,,95,7510,5164,474,5838,3935,612,7700,4900,592,6987,4742,130,0,7,150,0,0,623,5223,3579,213,7330,5046,506,6122,4199,218,2658,1764,200,6852,5320,346,7262,4963,413,2914,1,50806,"BIT","ST" 31,39,5,2,9,579,1,"DOVER (CITY OF)","DOVER",0,"NAT GAS",5336,"0M",794,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,27,403,0,884,12716,0,410,6737,0,110,1163,0,663,9798,0,637,9130,0,2914,1,50806,"NG","ST" 31,39,5,3,2,579,1,"DOVER (CITY OF)","DOVER",0,"LIGHT OIL",5336,"0M",1294,,,95,0,0,66,0,0,66,4,9,61,0,0,66,0,0,57,18,228,79,36,74,109,29,75,101,0,0,101,0,0,101,0,0,101,0,0,101,2914,1,50806,"FO2","IC" 31,39,5,4,9,579,5,"DOVER (CITY OF)","DOVER",0,"NAT GAS",5336,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,65,1022,0,0,0,0,0,0,0,0,0,0,48,698,0,0,0,0,0,0,0,0,0,0,0,0,0,2914,1,50806,"NG","GT" 31,39,5,2,2,605,1,"HAMILTON (CITY OF)","HAM MUN EL",0,"LIGHT OIL",7977,"0M",1294,,,95,5,11,1751,1,3,1749,1,4,1747,1,5,1744,1,4,1743,4,10,1737,3,7,1734,4,9,1730,4,11,1724,1,4,1722,1,6,1719,7,16,1711,2917,1,51225,"FO2","ST" 31,39,5,2,6,605,1,"HAMILTON (CITY OF)","HAM MUN EL",0,"BIT COAL",7977,"0M",1294,,,95,22703,11176,13737,252,146,15989,5474,3315,16142,8640,5428,12982,9803,5101,7881,11553,6584,1297,16363,9478,2000,22973,9375,5688,24478,13592,4621,4956,3752,6715,4870,4046,7024,23079,11772,7422,2917,1,51225,"BIT","ST" 31,39,5,2,9,605,1,"HAMILTON (CITY OF)","HAM MUN EL",0,"NAT GAS",7977,"0M",1294,,,95,157,1874,0,13990,195116,0,5260,76784,0,483,7231,0,4563,57272,0,9310,123945,0,17338,207709,0,14384,141922,0,1816,24404,0,676,12116,0,270,5334,0,784,9339,0,2917,1,51225,"NG","ST" 31,39,5,4,2,605,1,"HAMILTON (CITY OF)","HAM MUN EL",0,"LIGHT OIL",7977,"0M",1294,,,95,0,0,1751,0,0,1749,0,0,1748,0,0,1745,0,0,1742,0,0,1738,0,0,1735,0,0,1730,0,0,1725,0,0,1723,0,0,1719,0,0,1711,2917,1,51225,"FO2","GT" 31,39,5,4,9,605,1,"HAMILTON (CITY OF)","HAM MUN EL",0,"NAT GAS",7977,"0M",1294,,,95,11,142,0,174,2439,0,83,1220,0,26,393,0,18,234,0,55,745,0,1064,12754,0,1170,28673,0,18,250,0,134,2411,0,10,207,0,18,217,0,2917,1,51225,"NG","GT" 31,39,5,1,,605,5,"HAMILTON (CITY OF)","HMLTN HYDRO",0,,7977,"0M",1294,"R",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7807,1,51225,"WAT","HY" 31,39,5,3,2,629,1,"LEBANON (CITY OF)","LEBANON",0,"LIGHT OIL",10830,"0M",1294,,,95,3,23,1067,0,0,1067,90,268,799,0,0,799,0,0,799,0,0,799,29,63,734,52,106,805,0,0,805,0,0,805,0,0,805,0,0,805,2921,1,51615,"FO2","IC" 31,39,5,4,2,629,1,"LEBANON (CITY OF)","LEBANON",0,"LIGHT OIL",10830,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2921,1,51615,"FO2","GT" 31,39,5,3,2,684,1,"OBERLIN (CITY OF)","OBERLIN",0,"LIGHT OIL",13949,"0A",1294,,,95,5,65,637,21,41,596,0,37,558,8,17,528,0,0,509,33,80,429,17,210,218,239,528,405,11,41,364,8,17,348,194,525,358,145,391,324,2933,1,52140,"FO2","IC" 31,39,5,3,9,684,1,"OBERLIN (CITY OF)","OBERLIN",0,"NAT GAS",13949,"0A",1294,,,95,275,2724,0,260,2802,0,5,1676,0,75,826,0,13,132,0,200,1734,0,339,3535,0,552,5958,0,39,487,0,82,884,0,969,9721,0,63,1533,0,2933,1,52140,"NG","IC" 31,39,5,2,6,689,1,"ORRVILLE (CITY OF)","ORRVILLE",0,"BIT COAL",14194,"0M",1294,,,95,30925,20332,2401,27128,23359,528,19190,7163,1721,22147,13962,524,29670,13038,1437,23583,15893,1741,24259,14697,2641,28372,19561,2485,22121,14691,1281,18235,13105,1557,28993,15643,959,24197,16177,783,2935,1,52192,"BIT","ST" 31,39,5,2,9,689,1,"ORRVILLE (CITY OF)","ORRVILLE",0,"NAT GAS",14194,"0M",1294,,,95,45,744,0,42,811,0,122,1020,0,127,1797,0,112,1116,0,51,780,0,63,856,0,72,1126,0,22,331,0,46,762,0,78,961,0,76,1181,0,2935,1,52192,"NG","ST" 31,39,5,2,2,691,1,"PAINESVILLE (CITY OF)","PAINESVILLE",0,"LIGHT OIL",14381,"0M",1294,,,95,0,0,1518,0,0,1518,0,0,1518,36,100,1776,5,13,1762,0,0,1048,0,0,1762,25,73,1689,25,73,1616,4,14,1602,17,53,1548,10,20,1528,2936,1,52227,"FO2","ST" 31,39,5,2,6,691,1,"PAINESVILLE (CITY OF)","PAINESVILLE",0,"BIT COAL",14381,"0M",1294,,,95,17099,10622,1607,15231,10037,2990,13188,8922,6467,12361,8060,7830,13138,7996,7962,15287,8544,8154,15901,9966,8093,12362,8310,8580,11176,7757,8780,11298,8213,9293,8336,6116,9293,7235,5099,7825,2936,1,52227,"BIT","ST" 31,39,5,2,9,691,1,"PAINESVILLE (CITY OF)","PAINESVILLE",0,"NAT GAS",14381,"0M",1294,,,95,16,258,0,29,464,0,152,2440,0,67,1072,0,27,394,0,18,254,0,42,658,0,113,1904,0,81,1386,0,46,839,0,100,1812,0,97,1715,0,2936,1,52227,"NG","ST" 31,39,5,2,2,700,10,"PIQUA (CITY OF)","PIQUA",0,"LIGHT OIL",15095,"0M",1294,,,95,0,1,33,1,9,24,0,0,35,1,7,27,0,0,32,0,1,31,0,1,30,0,0,30,0,0,30,0,4,26,0,3,23,1,6,36,2937,1,52334,"FO2","ST" 31,39,5,2,6,700,10,"PIQUA (CITY OF)","PIQUA",0,"BIT COAL",15095,"0M",1294,,,95,2963,3832,1560,2779,3526,1061,2427,2994,1038,1970,2648,582,2418,2789,195,1914,2556,734,1374,2211,15,1611,2421,41,1481,2312,382,2468,3140,627,2650,3515,1751,2688,3569,2090,2937,1,52334,"BIT","ST" 31,39,5,4,2,700,10,"PIQUA (CITY OF)","PIQUA",0,"LIGHT OIL",15095,"0M",1294,,,95,24,119,2949,51,239,3071,-37,127,2947,119,588,2896,109,897,3032,277,1359,2730,469,2758,2645,595,2956,2720,-11,101,2619,37,176,2979,59,288,3048,121,591,2992,2937,1,52334,"FO2","GT" 31,39,5,2,6,722,1,"SAINT MARYS (CITY OF)","ST MARYS",0,"BIT COAL",17891,"0M",1294,,,95,1250,698,645,3927,2565,332,4111,3269,140,0,0,150,0,0,150,1641,1050,490,5298,3368,489,222,149,638,1630,1068,419,4646,3274,449,4461,2807,449,4928,3119,495,2942,1,52789,"BIT","ST" 31,39,5,4,2,722,1,"SAINT MARYS (CITY OF)","ST MARYS",0,"LIGHT OIL",17891,"0M",1294,,,95,1,12,318,0,0,307,28,146,352,0,0,352,0,0,352,1,4,348,59,83,428,3,8,420,1,24,396,0,0,520,1,3,518,2,6,512,2942,1,52789,"FO2","GT" 31,39,5,2,6,726,1,"SHELBY (CITY OF)","SHELBY",0,"BIT COAL",17043,"0M",1294,,,95,8039,5710,300,7249,5098,300,7132,4852,300,6141,3985,300,6694,4389,300,8103,4859,300,6796,4831,300,7378,5266,0,6897,3944,300,6844,4580,300,7615,5188,300,8726,5206,300,2943,1,52637,"BIT","ST" 31,39,5,2,9,726,1,"SHELBY (CITY OF)","SHELBY",0,"NAT GAS",17043,"0M",1294,,,95,134,1996,0,47,686,0,36,517,0,9,134,0,0,0,0,30,381,0,96,1415,0,11,164,0,19,230,0,41,576,0,48,685,0,44,555,0,2943,1,52637,"NG","ST" 31,39,5,3,2,726,1,"SHELBY (CITY OF)","SHELBY",0,"LIGHT OIL",17043,"0M",1294,,,95,0,0,73,0,0,73,0,0,73,0,0,103,0,0,103,0,0,103,1,5,93,1,4,83,2,5,78,0,1,77,0,1,76,0,1,45,2943,1,52637,"FO2","IC" 31,39,5,3,9,726,1,"SHELBY (CITY OF)","SHELBY",0,"NAT GAS",17043,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2943,1,52637,"NG","IC" 31,39,5,3,2,774,1,"WOODSFIELD (CITY OF)","WOODSFIELD",0,"LIGHT OIL",20977,"0A",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2945,1,53350,"FO2","IC" 31,39,5,3,9,774,1,"WOODSFIELD (CITY OF)","WOODSFIELD",0,"NAT GAS",20977,"0A",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2945,1,53350,"NG","IC" 31,39,8,2,6,800,1,"AMER MUN POWER-OHIO INC","R GORSUCH",0,"BIT COAL",40577,"0M",1294,,,95,99037,64265,81413,104738,67228,84252,126378,79745,86718,63579,42733,100556,123281,76701,94920,115392,69307,101317,117333,72018,101225,121473,79176,86641,108722,66669,90892,126955,78956,87022,103717,67360,86260,126485,80616,78276,7286,1,58910,"BIT","ST" 31,39,8,2,9,800,1,"AMER MUN POWER-OHIO INC","R GORSUCH",0,"NAT GAS",40577,"0M",1294,,,95,1576,22702,0,1469,21157,0,638,9083,0,541,8226,0,767,10634,0,1094,14686,0,877,12191,0,505,7352,0,810,11188,0,528,7439,0,733,10544,0,821,11624,0,7286,1,58910,"NG","ST" 32,18,1,2,6,25,1,"COMMONWEALTH ED CO IND","STATE LINE",0,"BIT COAL",4111,"0M",1294,,101,95,111368,64033,111935,149730,82697,41943,169301,90886,94463,49952,30907,197006,107334,61118,203229,185763,102059,199201,147171,80912,167481,211732,117972,103696,93902,54629,131796,97942,56647,95060,141995,78255,74660,93050,52182,100094,981,4,54003,"BIT","ST" 32,18,1,2,9,25,1,"COMMONWEALTH ED CO IND","STATE LINE",0,"NAT GAS",4111,"0M",1294,,101,95,6077,64670,0,5326,53012,0,4895,48146,0,1349,14775,0,4538,48258,0,4988,51500,0,4470,45645,0,4498,45907,0,2972,32243,0,3706,39699,0,5098,51893,0,3793,39849,0,981,4,54003,"NG","ST" 32,18,1,2,2,45,1,"INDIANA-KENTUCKY EL CORP","CLIFTY CRK",0,"LIGHT OIL",9269,"0M",1294,,505,95,186,351,3905,152,276,3630,241,444,3700,377,692,3522,263,551,3142,200,360,3468,175,320,4005,93,171,4177,112,189,3988,183,330,3658,234,419,3925,187,321,3947,983,1,54010,"FO2","ST" 32,18,1,2,6,45,1,"INDIANA-KENTUCKY EL CORP","CLIFTY CRK",0,"BIT COAL",9269,"0M",1294,,505,95,680000,340288,711560,681685,332462,794224,771872,377298,719124,715568,349771,768331,774831,394798,790608,706890,347717,739042,846234,432529,698423,836401,439085,664104,841295,424266,608234,755940,378632,751924,859900,416889,759244,867253,423226,804472,983,1,54010,"BIT","ST" 32,18,1,1,,57,5,"INDIANA MICHIGAN POWER CO","ELKHART",0,,9324,"0M",1294,,363,95,1650,0,0,1194,0,0,1755,0,0,1250,0,0,1341,0,0,1179,0,0,1157,0,0,1230,0,0,728,0,0,610,0,0,606,0,0,1138,0,0,986,1,57745,"WAT","HY" 32,18,1,1,,57,15,"INDIANA MICHIGAN POWER CO","TWIN BRANCH",0,,9324,"0M",1294,,363,95,2749,0,0,2559,0,0,3177,0,0,3035,0,0,3169,0,0,2570,0,0,2394,0,0,2550,0,0,1769,0,0,1707,0,0,2868,0,0,2542,0,0,989,1,57745,"WAT","HY" 32,18,1,2,2,57,40,"INDIANA MICHIGAN POWER CO","TANNERS CRK",0,"LIGHT OIL",9324,"0M",1294,,363,95,1203,1922,5959,701,1134,5915,1180,2025,6714,1059,1682,6177,1112,1829,5848,1144,1978,6336,1259,2060,7095,1078,1912,5713,665,1191,4522,206,409,5361,886,1592,4308,1326,2011,4418,988,1,57745,"FO2","ST" 32,18,1,2,6,57,40,"INDIANA MICHIGAN POWER CO","TANNERS CRK",0,"BIT COAL",9324,"0M",1294,,363,95,432338,162155,420217,485332,183170,404434,427268,171172,375261,371083,146417,383926,364601,144830,374644,383224,158993,372917,442272,183537,275408,494886,200826,195877,151186,61682,248353,10073,4559,312659,189477,75997,327350,330050,118848,262047,988,1,57745,"BIT","ST" 32,18,1,4,2,57,55,"INDIANA MICHIGAN POWER CO","FOURTH ST",0,"LIGHT OIL",9324,"0M",1294,,363,95,0,0,90,0,0,90,0,0,90,0,0,90,0,0,90,0,0,90,0,0,90,0,0,90,0,0,90,0,0,90,0,0,90,0,0,90,1025,1,57745,"FO2","GT" 32,18,1,2,2,57,60,"INDIANA MICHIGAN POWER CO","ROCKPORT",0,"LIGHT OIL",9324,"0M",1294,,363,95,1253,2167,36532,1335,2320,34384,3886,6841,48740,4321,7609,41131,3580,6420,34711,5662,10180,45654,3887,6888,38767,4216,7569,31198,1478,2587,28611,1002,1634,26976,690,1194,25782,1723,4126,33355,6166,1,57745,"FO2","ST" 32,18,1,2,6,57,60,"INDIANA MICHIGAN POWER CO","ROCKPORT",0,"BIT COAL",9324,"0M",1294,,363,95,1749008,1032186,1725862,1579775,933220,1565332,1339465,797497,1717887,1321428,787392,1749794,910898,553161,1861348,1507665,916281,1691338,1420244,862282,1685879,1514621,918947,1761783,1599963,954251,1694782,1691163,933949,1738612,1640828,959611,1762887,1464158,854236,1918162,6166,1,57745,"BIT","ST" 32,18,1,2,2,63,5,"INDIANAPOLIS PWR & LGT CO","E W STOUT",0,"LIGHT OIL",9273,"0M",1294,,,95,566,1401,20541,856,1914,17945,116,609,17337,446,1143,15565,419,1038,14023,233,762,13073,334,805,11083,970,3484,18728,223,679,18049,471,1101,16948,1380,2012,14910,618,1456,13138,990,1,51394,"FO2","ST" 32,18,1,2,6,63,5,"INDIANAPOLIS PWR & LGT CO","E W STOUT",0,"BIT COAL",9273,"0M",1294,,,95,194584,90056,252587,180919,84581,279836,140480,66420,317709,160947,73882,318796,235268,109052,299888,217930,103073,287645,259644,122601,267666,349367,162431,221093,272895,126479,196285,244308,112170,197708,270443,125748,220391,253279,116842,274191,990,1,51394,"BIT","ST" 32,18,1,3,2,63,5,"INDIANAPOLIS PWR & LGT CO","E W STOUT",0,"LIGHT OIL",9273,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,990,1,51394,"FO2","IC" 32,18,1,4,2,63,5,"INDIANAPOLIS PWR & LGT CO","E W STOUT",0,"LIGHT OIL",9273,"0M",1294,,,95,1107,4856,0,-42,681,0,-50,0,0,112,628,0,182,504,0,-7,189,0,293,1179,0,349,1894,0,-35,0,0,-43,0,0,-50,26,0,-11,317,0,990,1,51394,"FO2","GT" 32,18,1,4,9,63,5,"INDIANAPOLIS PWR & LGT CO","E W STOUT",0,"NAT GAS",9273,"0M",1294,,,95,1286,11256,0,10,1339,0,-53,1880,0,93,2875,0,1102,18630,0,448,8470,0,4489,66365,0,11695,166046,0,-64,3722,0,-37,1618,0,3205,49273,0,3710,54428,0,990,1,51394,"NG","GT" 32,18,1,2,2,63,15,"INDIANAPOLIS PWR & LGT CO","PERRY K",0,"LIGHT OIL",9273,"0M",1294,,,95,0,0,4682,0,0,4553,0,0,4331,0,0,4301,0,0,4287,0,0,3841,0,0,3636,0,0,5062,0,0,5057,0,0,5051,0,0,5042,0,0,4762,992,1,51394,"FO2","ST" 32,18,1,2,6,63,15,"INDIANAPOLIS PWR & LGT CO","PERRY K",0,"BIT COAL",9273,"0M",1294,,,95,0,0,79574,-1610,0,80083,0,0,75101,0,0,73147,0,0,75348,0,0,76456,766,826,73924,340,352,74885,1152,1362,75776,0,0,74934,0,0,77090,0,0,71176,992,1,51394,"BIT","ST" 32,18,1,2,9,63,15,"INDIANAPOLIS PWR & LGT CO","PERRY K",0,"NAT GAS",9273,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,17,437,0,7,193,0,32,957,0,0,0,0,0,0,0,0,0,0,992,1,51394,"NG","ST" 32,18,1,5,9,63,15,"INDIANAPOLIS PWR & LGT CO","PERRY K",0,"WASTE HT",9273,"0M",1294,,,95,-782,0,0,0,0,0,1330,0,0,1056,0,0,2878,0,0,887,0,0,1971,0,0,1192,0,0,1301,0,0,1055,0,0,-372,0,0,-854,0,0,992,1,51394,"WT","CC" 32,18,1,2,2,63,20,"INDIANAPOLIS PWR & LGT CO","PERRY W",0,"LIGHT OIL",9273,"0M",1294,,,95,-49,0,697,-71,0,697,-71,0,697,-67,0,697,-59,0,697,-46,0,697,-51,0,697,-47,0,697,-42,0,697,-44,0,697,-59,0,697,-65,0,697,993,1,51394,"FO2","ST" 32,18,1,2,9,63,20,"INDIANAPOLIS PWR & LGT CO","PERRY W",0,"NAT GAS",9273,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,993,1,51394,"NG","ST" 32,18,1,5,9,63,20,"INDIANAPOLIS PWR & LGT CO","PERRY W",0,"WASTE HT",9273,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,993,1,51394,"WH","CC" 32,18,1,2,2,63,23,"INDIANAPOLIS PWR & LGT CO","PETERSBURG",0,"LIGHT OIL",9273,"0M",1294,,,95,610,1111,6386,445,819,5517,317,533,4940,401,748,8963,2218,4082,4553,637,1151,5787,377,687,4945,1822,3221,6367,801,1483,4763,545,999,3635,1447,2637,5880,1975,3581,4564,994,1,51394,"FO2","ST" 32,18,1,2,6,63,23,"INDIANAPOLIS PWR & LGT CO","PETERSBURG",0,"BIT COAL",9273,"0M",1294,,,95,1040025,481608,951198,910590,421941,973809,942914,432679,1023657,783657,368727,1096578,667135,315158,1184238,973163,448245,1179213,992610,460767,1051137,936517,439379,945966,722162,339012,925268,812107,376653,886087,794558,370468,820716,931266,431118,719090,994,1,51394,"BIT","ST" 32,18,1,3,2,63,23,"INDIANAPOLIS PWR & LGT CO","PETERSBURG",0,"LIGHT OIL",9273,"0M",1294,,,95,2,5,0,0,0,0,25,44,0,102,178,0,189,328,0,45,76,0,52,90,0,74,131,0,46,80,0,67,116,0,39,43,0,31,78,0,994,1,51394,"FO2","IC" 32,18,1,2,2,63,25,"INDIANAPOLIS PWR & LGT CO","H T PRTCHRD",0,"LIGHT OIL",9273,"0M",1294,,,95,318,680,5661,350,656,4975,104,195,4685,436,902,7879,417,829,7014,283,586,6386,443,914,5445,1802,3787,7417,307,627,7108,203,431,6547,316,654,5835,499,993,4785,991,1,51394,"FO2","ST" 32,18,1,2,6,63,25,"INDIANAPOLIS PWR & LGT CO","H T PRTCHRD",0,"BIT COAL",9273,"0M",1294,,,95,39918,21829,172846,38399,18739,164110,25730,13890,166007,31554,16614,192907,62657,32105,189004,38978,20477,189810,89346,46785,168301,129720,68988,123731,61410,31642,119624,29705,15920,161259,67519,35572,171574,68221,34547,157787,991,1,51394,"BIT","ST" 32,18,1,3,2,63,25,"INDIANAPOLIS PWR & LGT CO","H T PRTCHRD",0,"LIGHT OIL",9273,"0M",1294,,,95,10,18,0,10,18,0,11,19,0,10,19,0,10,19,0,10,18,0,9,18,0,10,18,0,9,18,0,3,5,0,10,11,0,10,16,0,991,1,51394,"FO2","IC" 32,18,1,1,,97,25,"NORTHERN IND PUB SERV CO","NORWAY",0,,13756,"0M",1294,,,95,2951,0,0,1754,0,0,3112,0,0,3813,0,0,3505,0,0,2903,0,0,2206,0,0,1230,0,0,509,0,0,-5,0,0,935,0,0,741,0,0,998,1,52101,"WAT","HY" 32,18,1,1,,97,30,"NORTHERN IND PUB SERV CO","OAKDALE",0,,13756,"0M",1294,,,95,4302,0,0,2658,0,0,4495,0,0,5358,0,0,4552,0,0,4225,0,0,3387,0,0,1840,0,0,1214,0,0,492,0,0,1566,0,0,1435,0,0,999,1,52101,"WAT","HY" 32,18,1,2,5,97,35,"NORTHERN IND PUB SERV CO","BAILLY",0,"COKE",13756,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,995,1,52101,"PC","ST" 32,18,1,2,6,97,35,"NORTHERN IND PUB SERV CO","BAILLY",0,"BIT COAL",13756,"0M",1294,,,95,255092,122559,79738,278804,133215,33213,188964,93227,81145,300874,140721,83750,249838,120767,64124,246937,117749,44162,235477,114020,45186,281196,134308,37119,206770,100042,54350,171878,84048,49037,248313,118863,34340,215434,105042,32995,995,1,52101,"BIT","ST" 32,18,1,2,9,97,35,"NORTHERN IND PUB SERV CO","BAILLY",0,"NAT GAS",13756,"0M",1294,,,95,2509,26046,0,1617,16709,0,6960,74244,0,364,3631,0,132,1380,0,473,4895,0,3976,41921,0,11155,116087,0,295,3099,0,9000,94567,0,731,7651,0,10008,106430,0,995,1,52101,"NG","ST" 32,18,1,4,2,97,35,"NORTHERN IND PUB SERV CO","BAILLY",0,"LIGHT OIL",13756,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,995,1,52101,"FO2","GT" 32,18,1,4,9,97,35,"NORTHERN IND PUB SERV CO","BAILLY",0,"NAT GAS",13756,"0M",1294,,,95,260,4325,0,239,4585,0,197,4652,0,73,729,0,0,0,0,128,2648,0,1309,27718,0,1556,27641,0,86,2797,0,94,990,0,0,0,0,0,0,0,995,1,52101,"NG","GT" 32,18,1,2,6,97,50,"NORTHERN IND PUB SERV CO","MICH CITY",0,"BIT COAL",13756,"0M",1294,,,95,236420,123317,103301,234123,120234,148075,251278,135807,162546,205743,116541,177892,112253,67389,170049,124057,76284,129959,232893,135633,114125,231506,135299,93596,234187,129907,86183,254454,138881,100596,227408,129965,87044,241351,131616,87326,997,1,52101,"BIT","ST" 32,18,1,2,9,97,50,"NORTHERN IND PUB SERV CO","MICH CITY",0,"NAT GAS",13756,"0M",1294,,,95,22888,245981,0,12315,127428,0,7313,77250,0,2223,23885,0,17374,195664,0,14491,167133,0,33790,372448,0,46983,516773,0,57,601,0,277,2894,0,14761,158089,0,7779,81844,0,997,1,52101,"NG","ST" 32,18,1,2,6,97,54,"NORTHERN IND PUB SERV CO","D MITCHELL",0,"BIT COAL",13756,"0M",1294,,,95,145857,82802,116751,116897,65893,113729,119863,69185,152487,141199,84936,154502,149654,87531,159194,148998,85732,121077,153374,92272,109798,153611,89672,90907,105137,61906,133520,134131,77926,126283,118138,72811,149593,119904,77033,120350,996,1,52101,"BIT","ST" 32,18,1,2,9,97,54,"NORTHERN IND PUB SERV CO","D MITCHELL",0,"NAT GAS",13756,"0M",1294,,,95,9050,99836,0,19988,219179,0,4693,51173,0,2044,22775,0,681,7679,0,15253,169699,0,31855,357533,0,49912,561059,0,1836,21192,0,688,7733,0,17585,198980,0,12007,137527,0,996,1,52101,"NG","ST" 32,18,1,4,2,97,54,"NORTHERN IND PUB SERV CO","D MITCHELL",0,"LIGHT OIL",13756,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,996,1,52101,"FO2","GT" 32,18,1,4,9,97,54,"NORTHERN IND PUB SERV CO","D MITCHELL",0,"NAT GAS",13756,"0M",1294,,,95,0,0,0,62,1005,0,19,314,0,61,972,0,59,947,0,23,381,0,1109,18451,0,787,13562,0,0,0,0,17,200,0,19,316,0,40,614,0,996,1,52101,"NG","GT" 32,18,1,2,2,97,60,"NORTHERN IND PUB SERV CO","SCHAHFER",0,"LIGHT OIL",13756,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6085,1,52101,"FO2","ST" 32,18,1,2,5,97,60,"NORTHERN IND PUB SERV CO","SCHAHFER",0,"COKE",13756,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5680,2361,3668,16726,6787,383,17831,7291,7,6085,1,52101,"PC","ST" 32,18,1,2,6,97,60,"NORTHERN IND PUB SERV CO","SCHAHFER",0,"BIT COAL",13756,"0M",1294,,,95,535261,312105,335057,389163,229937,440028,546548,302317,415959,448635,246990,395514,597050,350998,454670,756850,452731,337454,682007,398333,335076,754511,435319,290970,649742,383628,258615,683709,390480,291948,637992,357548,247219,681946,380639,238033,6085,1,52101,"BIT","ST" 32,18,1,2,9,97,60,"NORTHERN IND PUB SERV CO","SCHAHFER",0,"NAT GAS",13756,"0M",1294,,,95,3899,42407,0,6373,71396,0,4950,53485,0,5022,55321,0,9160,101163,0,8473,94946,0,11416,127138,0,11318,127241,0,6765,76948,0,5330,59832,0,10465,114654,0,16610,183389,0,6085,1,52101,"NG","ST" 32,18,1,4,2,97,60,"NORTHERN IND PUB SERV CO","SCHAHFER",0,"LIGHT OIL",13756,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6085,1,52101,"FO2","GT" 32,18,1,4,9,97,60,"NORTHERN IND PUB SERV CO","SCHAHFER",0,"NAT GAS",13756,"0M",1294,,,95,723,10302,0,782,11325,0,1650,23018,0,308,4700,0,805,15657,0,1994,32783,0,15126,225451,0,13726,215839,0,142,2242,0,733,10618,0,280,4262,0,601,10905,0,6085,1,52101,"NG","GT" 32,18,1,1,,115,10,"PSI ENERGY, INC","MARKLAND",0,,15470,"0M",1294,,,95,25874,0,0,30535,0,0,30427,0,0,34190,0,0,21420,0,0,33483,0,0,37429,0,0,31238,0,0,21329,0,0,31723,0,0,32028,0,0,33480,0,0,1005,1,52410,"WAT","HY" 32,18,1,2,2,115,20,"PSI ENERGY, INC","CAYUGA",0,"LIGHT OIL",15470,"0M",1294,,,95,132,235,5513,571,1037,4367,530,968,3231,360,648,6046,1268,2286,3656,1673,3058,5188,191,340,4690,456,897,3714,450,808,2757,116,203,4365,648,1159,3695,1043,1890,4595,1001,1,52410,"FO2","ST" 32,18,1,2,6,115,20,"PSI ENERGY, INC","CAYUGA",0,"BIT COAL",15470,"0M",1294,,,95,560086,260374,595374,436002,205588,619769,507290,241920,579748,458167,216960,558238,273942,132145,579528,461324,222630,594519,529339,250671,586438,553167,264792,531310,481498,229472,498542,556861,260068,435186,538773,254635,379746,560196,264529,360124,1001,1,52410,"BIT","ST" 32,18,1,3,2,115,20,"PSI ENERGY, INC","CAYUGA",0,"LIGHT OIL",15470,"0M",1294,,,95,52,94,835,80,146,689,46,85,604,32,59,546,48,87,793,40,74,719,187,332,719,345,632,893,44,79,814,57,100,714,46,83,810,52,95,715,1001,1,52410,"FO2","IC" 32,18,1,4,2,115,20,"PSI ENERGY, INC","CAYUGA",0,"LIGHT OIL",15470,"0M",1294,,,95,94,169,5321,0,0,5313,0,0,5287,0,0,5295,9,17,5278,0,0,5274,0,0,5261,0,0,5256,0,0,5278,0,0,5291,0,0,5304,0,0,5321,1001,1,52410,"FO2","GT" 32,18,1,4,9,115,20,"PSI ENERGY, INC","CAYUGA",0,"NAT GAS",15470,"0M",1294,,,95,2346,23310,0,1913,19353,0,1506,15557,0,1635,16714,0,1240,12674,0,4044,41468,0,15842,159433,0,18202,212550,0,0,0,0,0,0,0,2097,21202,0,3527,35908,0,1001,1,52410,"NG","GT" 32,18,1,2,2,115,30,"PSI ENERGY, INC","EDWARDSPORT",0,"LIGHT OIL",15470,"0M",1294,,,95,209,496,4820,64,150,4672,155,373,4297,0,0,4295,0,0,4292,97,238,4052,689,1571,2481,2502,5818,2869,342,868,2002,0,0,2002,0,0,1997,147,370,1625,1004,1,52410,"FO2","ST" 32,18,1,2,6,115,30,"PSI ENERGY, INC","EDWARDSPORT",0,"BIT COAL",15470,"0M",1294,,,95,17730,11048,72080,19934,11948,70647,12688,8051,74559,-527,0,75232,-535,0,75232,15454,10259,64973,35050,21901,43072,52741,33340,15650,4173,2912,38766,-602,0,62015,-609,0,63195,16335,10947,52274,1004,1,52410,"BIT","ST" 32,18,1,2,2,115,32,"PSI ENERGY, INC","R GALLAGHER",0,"LIGHT OIL",15470,"0M",1294,,,95,2035,3891,1605,1454,2810,1394,1851,3297,1699,1757,3179,1643,2068,3708,1567,1765,3297,1717,1740,3339,1643,1698,3478,1699,628,1171,1662,1918,3473,1772,1054,1957,1432,2452,4557,1662,1008,1,52410,"FO2","ST" 32,18,1,2,6,115,32,"PSI ENERGY, INC","R GALLAGHER",0,"BIT COAL",15470,"0M",1294,,,95,228795,101724,280677,208492,94433,264483,157312,68908,321856,177541,78622,327010,219815,95103,325222,282888,123689,301473,287606,128632,273012,307948,143686,219622,142108,60394,233330,173570,72509,241738,224846,92953,254240,214410,90070,255848,1008,1,52410,"BIT","ST" 32,18,1,2,2,115,35,"PSI ENERGY, INC","NOBLESVILLE",0,"LIGHT OIL",15470,"0M",1294,,,95,51,112,562,83,160,505,48,112,674,66,152,531,0,0,490,110,229,643,81,169,664,55,117,548,22,64,674,58,167,474,0,43,548,34,71,476,1007,1,52410,"FO2","ST" 32,18,1,2,6,115,35,"PSI ENERGY, INC","NOBLESVILLE",0,"BIT COAL",15470,"0M",1294,,,95,11044,6031,55495,9455,4868,50627,3897,2460,49399,4036,2484,49078,-19,344,48734,11688,6456,42278,26318,14879,27399,34289,19561,18825,965,758,32438,3085,2324,49315,-104,155,61612,12274,6417,55744,1007,1,52410,"BIT","ST" 32,18,1,2,2,115,38,"PSI ENERGY, INC","WABASH RIVR",0,"LIGHT OIL",15470,"0M",1294,,,95,2430,4476,2106,1459,2739,2128,1389,2692,1967,1849,3579,2218,1434,2758,1631,681,1290,2176,1683,3263,2148,2465,4797,2269,945,1807,2338,1000,1900,2380,729,1435,2430,2010,3862,1720,1010,1,52410,"FO2","ST" 32,18,1,2,6,115,38,"PSI ENERGY, INC","WABASH RIVR",0,"BIT COAL",15470,"0M",1294,,,95,269453,126688,229629,237554,115161,230254,111825,56100,288778,84991,42415,325474,75621,37146,348471,305101,147377,290801,239625,122121,244288,280979,141633,160506,165651,82144,169356,117517,58071,210036,143505,72409,218547,185588,91761,206945,1010,1,52410,"BIT","ST" 32,18,1,3,2,115,38,"PSI ENERGY, INC","WABASH RIVR",0,"LIGHT OIL",15470,"0M",1294,,,95,22,41,295,6,12,283,29,57,226,36,71,155,22,43,283,17,33,250,46,91,336,25,50,286,1,2,283,16,31,37,14,29,343,5,10,333,1010,1,52410,"FO2","IC" 32,18,1,3,2,115,40,"PSI ENERGY, INC","MIAMI WBASH",0,"LIGHT OIL",15470,"0M",1294,,,95,-10,953,9190,166,743,8447,-197,894,7552,-39,60,7493,16,281,7212,81,612,6600,891,3627,5277,1034,3669,3913,-3,92,3821,-25,12,3809,-92,165,3644,-114,427,3217,1006,1,52410,"FO2","IC" 32,18,1,4,2,115,43,"PSI ENERGY, INC","CONNERSVILE",0,"LIGHT OIL",15470,"0M",1294,,,95,598,1430,6151,267,338,5812,185,528,5284,-1,88,5196,74,91,5105,363,946,4160,1734,3950,0,1728,5143,7132,123,299,6833,35,74,6797,36,197,6601,68,309,6291,1002,1,52410,"FO2","GT" 32,18,1,2,2,115,47,"PSI ENERGY, INC","GIBSON STA",0,"LIGHT OIL",15470,"0M",1294,,,95,3573,6225,8026,3627,6211,8525,2908,4962,6089,2299,3933,7385,2638,4537,9046,4608,8201,6236,1193,2069,8692,1020,1752,9495,2262,3909,8491,2394,4067,6679,1306,2237,7725,1788,3105,5067,6113,1,52410,"FO2","ST" 32,18,1,2,6,115,47,"PSI ENERGY, INC","GIBSON STA",0,"BIT COAL",15470,"0M",1294,,,95,1411040,662768,2861774,1615449,737476,2742578,1641475,746285,2737505,1326993,600387,2789580,1389674,630387,2844473,1353290,632853,2819275,1781130,810634,2543921,1880261,844888,2374175,1610199,724136,2280260,1401722,620957,2297336,1703790,761235,2101523,1647889,748548,1888232,6113,1,52410,"BIT","ST" 32,18,1,4,2,127,1,"SOUTHERN INDIANA G & E CO","BROADWAY",0,"LIGHT OIL",17633,"0M",1294,,,95,0,0,801,0,0,801,0,0,801,0,0,801,0,0,801,0,0,801,0,0,801,0,0,801,0,0,801,0,0,801,0,0,801,0,0,801,1011,1,52727,"FO2","GT" 32,18,1,4,9,127,1,"SOUTHERN INDIANA G & E CO","BROADWAY",0,"NAT GAS",17633,"0M",1294,,,95,108,1488,0,31,496,0,72,936,0,66,992,0,675,9932,0,358,9922,0,3822,54621,0,11701,173627,0,131,4946,0,181,9912,0,586,4959,0,0,0,0,1011,1,52727,"NG","GT" 32,18,1,2,2,127,3,"SOUTHERN INDIANA G & E CO","CULLEY",0,"LIGHT OIL",17633,"0M",1294,,,95,0,0,350,0,0,350,0,0,350,0,0,350,0,0,350,0,0,250,0,0,250,0,0,250,0,0,250,0,0,250,0,0,250,0,0,250,1012,1,52727,"FO2","ST" 32,18,1,2,6,127,3,"SOUTHERN INDIANA G & E CO","CULLEY",0,"BIT COAL",17633,"0M",1294,,,95,122067,60600,138140,167988,82419,159735,169634,79436,181228,114459,53639,191704,165848,81055,168418,184693,87570,154235,207611,100070,138520,218589,105190,134359,160446,77417,139667,174664,86907,135057,217251,106316,124021,205575,102713,115674,1012,1,52727,"BIT","ST" 32,18,1,2,9,127,3,"SOUTHERN INDIANA G & E CO","CULLEY",0,"NAT GAS",17633,"0M",1294,,,95,285,3090,0,126,1344,0,136,1410,0,300,3116,0,121,1311,0,107,1123,0,101,1082,0,285,3040,0,412,4406,0,312,3443,0,180,1935,0,153,1681,0,1012,1,52727,"NG","ST" 32,18,1,4,9,127,9,"SOUTHERN INDIANA G & E CO","NORTHEAST",0,"NAT GAS",17633,"0M",1294,,,95,24,992,0,48,5399,0,0,0,0,0,0,0,0,0,0,22,2492,0,0,0,0,562,10295,0,0,0,0,0,0,0,23,3023,0,26,4467,0,1013,1,52727,"NG","GT" 32,18,1,2,6,127,20,"SOUTHERN INDIANA G & E CO","WARRICK",0,"BIT COAL",17633,"0M",1294,,,95,95617,41510,100212,86572,39259,87257,96250,42312,89684,93020,40228,97629,96270,44344,83127,82739,38242,69870,89329,39892,44260,100497,44406,41656,97103,42826,35874,28941,12332,66823,92060,41077,55982,99718,45727,57793,6705,1,52727,"BIT","ST" 32,18,1,2,9,127,20,"SOUTHERN INDIANA G & E CO","WARRICK",0,"NAT GAS",17633,"0M",1294,,,95,27,261,0,112,1120,0,11,112,0,29,276,0,5,50,0,0,0,0,136,1318,0,83,796,0,0,0,0,295,2822,0,57,575,0,62,639,0,6705,1,52727,"NG","ST" 32,18,1,2,2,127,25,"SOUTHERN INDIANA G & E CO","BROWN",0,"LIGHT OIL",17633,"0M",1294,,,95,0,0,1712,0,0,1437,0,0,2186,0,0,2151,0,0,1998,0,0,1988,0,0,2336,0,0,2336,0,0,2336,0,0,2336,0,0,2175,0,0,2175,6137,1,52727,"FO2","ST" 32,18,1,2,6,127,25,"SOUTHERN INDIANA G & E CO","BROWN",0,"BIT COAL",17633,"0M",1294,,,95,217766,95613,450544,147685,72927,476200,218223,106171,479883,196964,85661,485255,182235,86959,499237,216954,101195,498135,247301,113099,429991,275892,131703,360852,177911,84026,286413,238026,112468,229493,139223,67172,246596,170321,82481,189492,6137,1,52727,"BIT","ST" 32,18,1,2,9,127,25,"SOUTHERN INDIANA G & E CO","BROWN",0,"NAT GAS",17633,"0M",1294,,,95,728,7231,0,709,7962,0,465,5154,0,1271,12486,0,681,7404,0,869,9196,0,829,8558,0,910,9792,0,91,976,0,1005,9912,0,462,4959,0,1013,10609,0,6137,1,52727,"NG","ST" 32,18,1,4,2,127,25,"SOUTHERN INDIANA G & E CO","BROWN",0,"LIGHT OIL",17633,"0M",1294,,,95,0,0,0,139,275,0,10,21,0,20,35,0,75,144,0,155,289,0,4,9,0,0,0,0,0,0,0,0,0,0,84,161,0,0,0,0,6137,1,52727,"FO2","GT" 32,18,1,4,9,127,25,"SOUTHERN INDIANA G & E CO","BROWN",0,"NAT GAS",17633,"0M",1294,,,95,371,3684,0,237,2668,0,72,799,0,244,2399,0,872,9478,0,725,7671,0,3499,36107,0,8313,89423,0,835,8917,0,0,0,0,0,0,0,115,1208,0,6137,1,52727,"NG","GT" 32,18,5,3,2,529,15,"BLUFFTON (CITY OF)","BLUFFTON",0,"LIGHT OIL",1896,"0A",1294,,,95,1,60,1391,2,67,1322,61,54,1600,8,70,1533,12,90,1444,17,90,1361,5,46,0,16,58,1746,9,46,1693,5,45,1674,1,9,1658,1,20,1637,1023,1,54077,"FO2","IC" 32,18,5,3,9,529,15,"BLUFFTON (CITY OF)","BLUFFTON",0,"NAT GAS",1896,"0A",1294,,,95,252,951,0,283,1047,0,187,936,0,252,888,0,327,1129,0,322,1124,0,21,749,0,165,1201,0,79,956,0,14,141,0,8,282,0,62,1131,0,1023,1,54077,"NG","IC" 32,18,5,2,6,552,1,"CRAWFORDSVILLE (CITY OF)","CRAWFRDVIL",0,"BIT COAL",4508,"M",1294,,,95,2633,2217,2514,2446,2032,2094,1890,1637,1012,0,12,1693,0,9,2211,497,408,1961,0,0,1961,1383,1034,1775,0,0,2801,0,0,2783,0,0,2783,2446,2070,2457,1024,1,50698,"BIT","ST" 32,18,5,2,9,552,1,"CTAWFORDSVILLE (CITY OF)","CRAWFRDVIL",0,"NAT GAS",4508,"M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,198,0,0,9,0,25,397,0,0,0,0,0,0,0,0,0,0,0,0,0,1024,1,50698,"NG","ST" 32,18,5,3,2,552,1,"CRAWFORDSVILLE (CITY OF)","CRAWFRDVIL",0,"LIGHT OIL",4508,"M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1024,1,50698,"FO2","IC" 32,18,5,2,6,601,1,"JASPER (CITY OF)","JASPER",0,"BIT COAL",9667,"0A",1294,,,95,5717,4616,631,5399,3895,631,5890,4398,631,2952,2186,631,3065,2373,631,5988,4375,631,5621,4191,631,2798,2138,631,0,0,1075,5001,3514,1051,5782,4146,1096,5466,4050,1096,6225,1,51443,"BIT","ST" 32,18,5,2,9,601,1,"JASPER (CITY OF)","JASPER",0,"NAT GAS",9667,"0A",1294,,,95,20,339,0,0,0,0,0,0,0,0,0,0,16,267,0,0,0,0,0,0,0,0,0,0,0,0,0,14,206,0,0,0,0,0,0,0,6225,1,51443,"NG","ST" 32,18,5,2,6,622,1,"LOGANSPORT (CITY OF)","LOGANSPORT",0,"BIT COAL",11142,"0M",1294,,,95,16294,10401,3093,15182,9658,2825,130,68,5257,0,0,7057,2842,2773,7049,15721,9566,3565,18496,9015,1600,18517,10895,1421,17032,9835,4095,8771,5557,5126,12606,7370,5733,23315,13078,934,1032,1,51681,"BIT","ST" 32,18,5,4,2,622,1,"LOGANSPORT (CITY OF)","LOGANSPORT",0,"LIGHT OIL",11142,"0M",1294,,,95,0,0,1887,0,0,1887,0,0,1887,0,0,1887,0,0,1887,0,0,1887,0,0,1887,0,0,1887,0,0,1887,0,0,1887,0,0,1887,0,0,1887,1032,1,51681,"FO2","GT" 32,18,5,4,9,622,1,"LOGANSPORT (CITY OF)","LOGANSPORT",0,"NAT GAS",11142,"0M",1294,,,95,127,2771,0,0,0,0,0,0,0,0,0,0,0,0,0,75,2842,0,0,0,0,217,5351,0,0,0,0,0,0,0,0,0,0,0,0,0,1032,1,51681,"NG","GT" 32,18,5,2,2,658,1,"PERU UTILITIES","PERU",0,"LIGHT OIL",14839,"0M",1294,,,95,2,7,60,0,0,40,0,0,29,0,0,45,0,0,42,0,0,89,0,0,89,28,62,123,2,6,104,0,0,104,0,0,64,0,0,58,1037,1,52298,"FO2","ST" 32,18,5,2,6,658,1,"PERU UTILITIES","PERU",0,"BIT COAL",14839,"0M",1294,,,95,597,409,462,0,0,462,0,0,462,0,0,462,0,0,462,0,0,664,0,0,664,4138,2475,1193,1602,1122,71,0,0,71,0,0,71,0,0,71,1037,1,52298,"BIT","ST" 32,18,5,3,2,666,1,"RENSSELAER (CITY OF)","RENSSELAER",0,"LIGHT OIL",15860,"0A",1294,,,95,0,5,507,0,4,492,0,0,385,0,0,376,42,89,635,0,0,624,11,22,610,10,24,577,13,25,557,13,33,523,18,34,485,12,25,448,1038,1,52461,"FO2","IC" 32,18,5,3,9,666,1,"RENSSELAER (CITY OF)","RENSSELAER",0,"NAT GAS",15860,"0A",1294,,,95,12,2242,0,5,609,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1038,1,52461,"NG","IC" 32,18,5,2,2,669,10,"RICHMOND (CITY OF)","WHITEWATER",0,"LIGHT OIL",15989,"0M",1294,,,95,66,135,651,4,9,642,11,23,618,36,75,544,43,89,455,36,75,380,33,65,315,24,51,800,38,79,721,40,84,637,125,241,754,33,67,866,1040,1,52479,"FO2","ST" 32,18,5,2,6,669,10,"RICHMOND (CITY OF)","WHITEWATER",0,"BIT COAL",15989,"0M",1294,,,95,52567,26931,66546,54464,27521,59857,50869,26046,61570,37981,19323,61813,34761,18221,70185,50812,25880,63189,54367,27836,58351,55464,28592,56536,47367,24058,57432,31433,16236,61431,49216,24827,57518,55122,27935,65411,1040,1,52479,"BIT","ST" 32,18,8,2,2,849,5,"HOOSIER ENERGY RURAL","RATTS",0,"LIGHT OIL",9267,"0M",1294,,,95,36,63,331,24,42,427,57,99,328,82,143,185,157,271,264,220,383,175,69,123,225,64,116,273,67,119,314,72,130,300,169,298,360,213,374,345,1043,1,51339,"FO2","ST" 32,18,8,2,6,849,5,"HOOSIER ENERGY RURAL","RATTS",0,"BIT COAL",9267,"0M",1294,,,95,152672,68804,12521,138850,61631,20613,120820,54271,33350,149240,67046,34059,138601,62960,37387,104185,47642,37604,152193,70371,29049,149047,69157,33970,133611,61143,30823,84154,38731,32856,131727,59094,30160,146986,66592,32432,1043,1,51339,"BIT","ST" 32,18,8,2,2,849,10,"HOOSIER ENERGY RURAL","MEROM",0,"LIGHT OIL",9267,"0M",1294,,,95,195,354,6014,19,38,10415,677,1227,9188,41,76,9112,1799,3447,5664,1764,3378,7059,771,1387,5672,508,946,4725,1207,2219,7281,584,1062,6218,468,838,10208,592,1063,9145,6213,1,51339,"FO2","ST" 32,18,8,2,6,849,10,"HOOSIER ENERGY RURAL","MEROM",0,"BIT COAL",9267,"0M",1294,,,95,462676,222254,448322,417644,215416,460946,384780,184640,471566,246060,116767,519358,230592,116155,570294,429927,213604,544280,462605,221660,492415,499492,244053,429843,353022,171326,433018,376476,178855,429945,480027,227666,396833,503880,236844,364841,6213,1,51339,"BIT","ST" 32,18,9,4,2,900,5,"INDIANA MUN POWER AGENCY","ANDERSON",0,"LIGHT OIL",9234,"0M",1294,,,95,19,44,5010,33,68,4942,40,82,4860,14,24,4835,7,12,4824,25,62,4762,0,1,4761,1,4,4757,0,0,4757,14,27,4730,3,9,4721,10,13,4708,7336,1,19234,"FO2","GT" 32,18,9,4,9,900,5,"INDIANA MUN POWER AGENCY","ANDERSON",0,"NAT GAS",9234,"0M",1294,,,95,53,772,0,54,717,0,199,2578,0,66,914,0,31,416,0,481,7593,0,2482,36348,0,6354,89340,0,94,1557,0,64,1343,0,36,450,0,47,750,0,7336,1,19234,"NG","GT" 33,17,1,2,2,29,5,"CENTRAL ILLINOIS LIGHT CO","E D EDWARDS",0,"LIGHT OIL",3252,"0M",1294,,,95,580,979,551,369,645,642,581,1050,511,539,979,621,777,1362,571,696,1201,688,793,1392,574,425,792,507,571,980,634,610,991,501,329,558,506,455,759,491,856,4,50485,"FO2","ST" 33,17,1,2,6,29,5,"CENTRAL ILLINOIS LIGHT CO","E D EDWARDS",0,"BIT COAL",3252,"0M",1294,,,95,278723,111505,170727,240983,94522,156151,283715,115017,142278,219332,90164,180893,314512,130292,145461,303524,124741,120263,294912,127410,143742,416665,181855,115286,215994,93604,136103,343831,139588,97044,284797,118784,138306,257830,101322,144327,856,4,50485,"BIT","ST" 33,17,1,4,9,29,12,"CENTRAL ILLINOIS LIGHT CO","STERLING AV",0,"NAT GAS",3252,"0M",1294,,,95,91,1361,0,30,486,0,29,443,0,29,495,0,28,483,0,114,1973,0,236,4614,0,495,8477,0,62,1057,0,60,926,0,32,555,0,79,1259,0,860,4,50485,"NG","GT" 33,17,1,2,2,29,20,"CENTRAL ILLINOIS LIGHT CO","DUCK CREEK",0,"LIGHT OIL",3252,"0M",1294,,,95,464,794,607,155,264,573,38,67,506,39,69,437,368,658,640,47,83,557,76,135,598,252,429,597,203,353,523,461,865,374,191,334,581,221,383,548,6016,4,50485,"FO2","ST" 33,17,1,2,6,29,20,"CENTRAL ILLINOIS LIGHT CO","DUCK CREEK",0,"BIT COAL",3252,"0M",1294,,,95,186107,88236,146013,184996,85972,174445,212342,99989,207941,178133,85191,199728,101736,49494,191824,209741,99840,163763,218825,104416,121412,182815,87426,161492,205874,98086,126656,49432,25199,182072,221479,104789,147984,208001,98018,120664,6016,4,50485,"BIT","ST" 33,17,1,2,9,29,25,"CENTRAL ILLINOIS LIGHT CO","MIDWEST GRN",0,"NAT GAS",3252,"0M",694,"A",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1987,12379,0,4809,36302,0,4873,33446,0,2693,19047,0,0,0,0,3046,22292,0,4051,25863,0,7384,4,50485,"NG","ST" 33,17,1,2,2,32,2,"CENTRAL ILL PUBLIC SER CO","COFFEEN",0,"LIGHT OIL",3253,"0M",1294,,,95,281,528,4129,159,291,4010,394,749,4105,523,1002,3949,771,1637,3876,506,903,4329,271,491,4241,39,71,3944,249,436,4034,521,930,3986,417,729,4572,962,1745,3927,861,4,50486,"FO2","ST" 33,17,1,2,6,32,2,"CENTRAL ILL PUBLIC SER CO","COFFEEN",0,"BIT COAL",3253,"0M",1294,,,95,365821,196265,250663,291393,151752,268915,248792,134522,254062,79012,43562,287270,49602,29698,377234,331239,171527,392358,397070,207104,345747,370867,195382,346249,139189,69530,387149,251535,126615,387760,291764,143554,406398,266300,137380,362886,861,4,50486,"BIT","ST" 33,17,1,2,2,32,5,"CENTRAL ILL PUBLIC SER CO","GRAND TOWER",0,"LIGHT OIL",3253,"0M",1294,,,95,146,294,559,222,423,494,139,267,578,60,171,742,-59,75,667,310,600,753,324,626,481,405,753,769,154,287,834,78,162,672,389,761,607,217,428,533,862,4,50486,"FO2","ST" 33,17,1,2,6,32,5,"CENTRAL ILL PUBLIC SER CO","GRAND TOWER",0,"BIT COAL",3253,"0M",1294,,,95,19817,10029,48685,18173,8634,59296,12650,6089,70908,3933,2772,73473,-503,161,78207,17238,8399,74696,44644,21400,58784,77238,35607,26412,11609,5363,31994,11150,5893,34133,57466,27803,19044,47800,23991,32368,862,4,50486,"BIT","ST" 33,17,1,2,2,32,10,"CENTRAL ILL PUBLIC SER CO","HUTSONVILLE",0,"LIGHT OIL",3253,"0M",1294,,,95,72,148,1592,254,501,1092,252,532,1126,117,284,1556,421,883,1560,398,781,1662,440,832,1760,236,429,1331,196,323,1008,158,382,1338,346,655,1437,140,264,1173,863,4,50486,"FO2","ST" 33,17,1,2,6,32,10,"CENTRAL ILL PUBLIC SER CO","HUTSONVILLE",0,"BIT COAL",3253,"0M",1294,,,95,17493,9580,55605,13103,6803,61393,11330,6319,65444,3457,2220,70186,6929,4012,73260,18641,9997,71065,43752,22295,48771,75386,37255,19363,5801,2524,33120,7107,4480,39773,44924,22754,26665,48938,24435,23714,863,4,50486,"BIT","ST" 33,17,1,3,2,32,10,"CENTRAL ILL PUBLIC SER CO","HUTSONVILLE",0,"LIGHT OIL",3253,"0M",1294,,,95,5,10,124,0,0,126,0,0,130,5,9,121,5,9,106,0,0,106,15,30,72,10,21,233,0,0,229,0,0,228,5,9,225,0,0,227,863,4,50486,"FO2","IC" 33,17,1,2,2,32,15,"CENTRAL ILL PUBLIC SER CO","MEREDOSIA",0,"LIGHT OIL",3253,"0M",1294,,,95,276,524,1245,240,455,1295,109,257,1541,576,1050,1518,264,464,1396,272,471,1722,478,864,1170,665,1188,1390,137,250,1672,104,202,1469,-609,0,1671,636,1140,1388,864,4,50486,"FO2","ST" 33,17,1,2,3,32,15,"CENTRAL ILL PUBLIC SER CO","MEREDOSIA",0,"HEAVY OIL",3253,"0M",1294,,,95,-878,0,41246,-869,0,41246,-953,0,41246,-789,0,41246,-6,0,41246,1105,5986,35342,1753,6017,29342,6547,17169,22153,-808,333,23977,-646,0,42084,996,1890,42084,-711,0,42084,864,4,50486,"FO6","ST" 33,17,1,2,6,32,15,"CENTRAL ILL PUBLIC SER CO","MEREDOSIA",0,"BIT COAL",3253,"0M",1294,,,95,66774,32586,105182,41839,21008,131939,15303,9402,148998,70146,32222,148546,91295,40883,144840,111244,50699,134953,137571,64325,109649,184516,85228,55561,77698,37291,62196,86881,43240,73623,78143,41045,82454,97009,48373,93368,864,4,50486,"BIT","ST" 33,17,1,2,2,32,20,"CENTRAL ILL PUBLIC SER CO","NEWTON",0,"LIGHT OIL",3253,"0M",1294,,,95,844,1577,4500,512,956,5160,1182,2043,4716,553,984,5869,379,679,5723,681,1231,5199,190,328,5578,942,1748,4784,746,1331,5217,282,508,5420,60,105,5315,649,3661,4337,6017,4,50486,"FO2","ST" 33,17,1,2,6,32,20,"CENTRAL ILL PUBLIC SER CO","NEWTON",0,"BIT COAL",3253,"0M",1294,,,95,556271,262272,366063,518547,246265,373901,546762,245831,417351,503402,237591,446819,516641,244361,536330,468640,219703,623301,560024,252360,476964,466441,225593,612105,491641,228921,632582,454181,204761,666122,359030,160358,746315,378431,180592,722338,6017,4,50486,"BIT","ST" 33,17,1,1,,41,1,"COMMONWEALTH EDISON CO","DIXON",0,,4110,"0M",1294,,100,95,1217,0,0,1001,0,0,1400,0,0,1473,0,0,1443,0,0,1109,0,0,1264,0,0,1341,0,0,1211,0,0,1365,0,0,1603,0,0,1067,0,0,868,4,50643,"WAT","HY" 33,17,1,2,1,41,1,"COMMONWEALTH EDISON CO","QUAD CITIES",0,"NUCLEAR",4110,"0M",1294,,100,95,265985,0,0,516483,0,0,563772,0,0,556271,0,0,570166,0,0,541658,0,0,537742,0,0,552522,0,0,533277,0,0,383182,0,0,293985,0,0,571167,0,0,880,4,50643,"UR","ST" 33,17,1,2,1,41,1,"COMMONWEALTH EDISON CO","BRAIDWOOD",0,"NUCLEAR",4110,"0M",1294,,100,95,845089,0,0,487988,0,0,443133,0,0,527594,0,0,838888,0,0,802928,0,0,825056,0,0,825520,0,0,701927,0,0,-9715,0,0,-10027,0,0,307159,0,0,6022,4,50643,"UR","ST" 33,17,1,2,1,41,1,"COMMONWEALTH EDISON CO","BYRON",0,"NUCLEAR",4110,"0M",1294,,100,95,766116,0,0,735235,0,0,817602,0,0,779568,0,0,804172,0,0,742334,0,0,790248,0,0,800198,0,0,786058,0,0,542611,0,0,-9310,0,0,142399,0,0,6023,4,50643,"UR","ST" 33,17,1,2,1,41,1,"COMMONWEALTH EDISON CO","LASALLE CTY",0,"NUCLEAR",4110,"0M",1294,,100,95,813809,0,0,531418,0,0,813835,0,0,788528,0,0,782478,0,0,561931,0,0,750639,0,0,609485,0,0,617973,0,0,773354,0,0,684375,0,0,641459,0,0,6026,4,50643,"UR","ST" 33,17,1,2,1,41,1,"COMMONWEALTH EDISON CO","ZION",0,"NUCLEAR",4110,"0M",1294,,100,95,777628,0,0,706122,0,0,778794,0,0,744367,0,0,679639,0,0,751346,0,0,778214,0,0,771971,0,0,190946,0,0,-8633,0,0,-8349,0,0,290089,0,0,885,4,50643,"UR","ST" 33,17,1,2,1,41,2,"COMMONWEALTH EDISON CO","ZION",0,"NUCLEAR",4110,"0M",1294,,100,95,62829,0,0,-7517,0,0,-8823,0,0,214602,0,0,763695,0,0,707962,0,0,768388,0,0,745403,0,0,742149,0,0,737928,0,0,708434,0,0,471011,0,0,885,4,50643,"UR","ST" 33,17,1,2,1,41,2,"COMMONWEALTH EDISON CO","LASALLE CTY",0,"NUCLEAR",4110,"0M",1294,,100,95,805795,0,0,433271,0,0,-8184,0,0,-8016,0,0,-8927,0,0,375943,0,0,773928,0,0,744199,0,0,446327,0,0,816638,0,0,792434,0,0,804502,0,0,6026,4,50643,"UR","ST" 33,17,1,2,1,41,2,"COMMONWEALTH EDISON CO","BYRON",0,"NUCLEAR",4110,"0M",1294,,100,95,753651,0,0,166639,0,0,50362,0,0,767250,0,0,824285,0,0,786866,0,0,797334,0,0,811901,0,0,764206,0,0,832898,0,0,804540,0,0,823838,0,0,6023,4,50643,"UR","ST" 33,17,1,2,1,41,2,"COMMONWEALTH EDISON CO","BRAIDWOOD",0,"NUCLEAR",4110,"0M",1294,,100,95,839335,0,0,759006,0,0,840028,0,0,777131,0,0,635751,0,0,794146,0,0,802182,0,0,795885,0,0,801537,0,0,846700,0,0,810185,0,0,831152,0,0,6022,4,50643,"UR","ST" 33,17,1,2,1,41,2,"COMMONWEALTH EDISON CO","QUAD CITIES",0,"NUCLEAR",4110,"0M",1294,,100,95,501116,0,0,453211,0,0,58157,0,0,-5752,0,0,-5952,0,0,-5994,0,0,-6618,0,0,93771,0,0,422180,0,0,318808,0,0,77988,0,0,571746,0,0,880,4,50643,"UR","ST" 33,17,1,2,1,41,2,"COMMONWEALTH EDISON CO","DRESDEN",0,"NUCLEAR",4110,"0M",1294,,100,95,535595,0,0,493244,0,0,81638,0,0,302574,0,0,449851,0,0,27639,0,0,-3615,0,0,-4287,0,0,-5566,0,0,-5704,0,0,-5672,0,0,-5963,0,0,869,4,50643,"UR","ST" 33,17,1,2,1,41,3,"COMMONWEALTH EDISON CO","DRESDEN",0,"NUCLEAR",4110,"0M",1294,,100,95,420814,0,0,506779,0,0,533907,0,0,467390,0,0,432429,0,0,-5060,0,0,-3401,0,0,-3807,0,0,41448,0,0,138092,0,0,358426,0,0,577978,0,0,869,4,50643,"UR","ST" 33,17,1,4,2,41,4,"COMMONWEALTH EDISON CO","BLOOM",0,"LIGHT OIL",4110,"0M",1294,,100,95,0,0,15589,0,0,15589,69,87,15502,0,0,15495,0,0,15495,0,0,15475,146,497,14951,792,2784,12167,0,0,15755,0,0,15755,0,0,15755,1,3,15739,865,4,50643,"FO2","GT" 33,17,1,4,2,41,6,"COMMONWEALTH EDISON CO","CALUMET",0,"LIGHT OIL",4110,"0M",1294,,100,95,0,0,16437,0,0,16437,0,0,16437,145,127,16310,0,0,16310,0,0,16310,593,2028,14281,508,1365,12917,0,0,15298,0,0,15298,0,0,15298,0,0,15298,866,4,50643,"FO2","GT" 33,17,1,4,9,41,6,"COMMONWEALTH EDISON CO","CALUMET",0,"NAT GAS",4110,"0M",1294,,100,95,0,0,0,68,1045,0,0,8,0,0,0,0,62,540,0,0,0,0,2902,56071,0,3743,56299,0,1,46,0,106,1474,0,29,760,0,0,0,0,866,4,50643,"NG","GT" 33,17,1,2,6,41,10,"COMMONWEALTH EDISON CO","CRAWFORD",0,"BIT COAL",4110,"0M",1294,,100,95,79127,52566,254284,56492,34236,247898,154770,96060,204338,157819,95401,178999,77964,50034,154295,195593,125311,78949,167051,106642,75986,220876,140947,52693,111791,74002,178401,100936,63677,173394,171688,108863,144620,107184,68961,169485,867,4,50643,"BIT","ST" 33,17,1,2,9,41,10,"COMMONWEALTH EDISON CO","CRAWFORD",0,"NAT GAS",4110,"0M",1294,,100,95,4191,46278,0,3822,41541,0,6151,66002,0,6881,74296,0,3205,34575,0,3676,39819,0,4307,47007,0,11765,128609,0,2943,33297,0,3202,34374,0,2534,27690,0,3684,42386,0,867,4,50643,"NG","ST" 33,17,1,4,2,41,10,"COMMONWEALTH EDISON CO","CRAWFORD",0,"LIGHT OIL",4110,"0M",1294,,100,95,39,239,11718,31,208,15427,7,85,15342,60,196,15146,0,0,15146,145,654,14492,207,1709,12783,90,287,12496,0,0,12495,0,0,12495,5,41,12453,0,0,12451,867,4,50643,"FO2","GT" 33,17,1,4,9,41,10,"COMMONWEALTH EDISON CO","CRAWFORD",0,"NAT GAS",4110,"0M",1294,,100,95,99,3367,0,462,10721,0,90,6128,0,496,8920,0,41,832,0,2338,60078,0,1956,92769,0,6353,117178,0,232,23469,0,130,22477,0,606,26280,0,716,38106,0,867,4,50643,"NG","GT" 33,17,1,2,2,41,16,"COMMONWEALTH EDISON CO","JOLIET",0,"LIGHT OIL",4110,"0M",1294,,100,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,874,4,50643,"FO2","ST" 33,17,1,2,6,41,16,"COMMONWEALTH EDISON CO","JOLIET",0,"BIT COAL",4110,"0M",1294,,100,95,122495,69041,120326,93234,54624,109729,118689,69742,107396,119799,68307,78398,7077,4459,86216,111744,65001,89393,128830,75618,81101,97034,56642,114450,105402,58755,119892,105052,56846,73967,38927,23143,87158,80786,46625,136310,874,4,50643,"BIT","ST" 33,17,1,2,9,41,16,"COMMONWEALTH EDISON CO","JOLIET",0,"NAT GAS",4110,"0M",1294,,100,95,2191,22095,0,1467,15220,0,2310,24340,0,2244,23500,0,166,1970,0,2208,24000,0,2239,22730,0,1106,11930,0,1732,18230,0,1439,14430,0,1402,15430,0,1598,17620,0,874,4,50643,"NG","ST" 33,17,1,3,2,41,16,"COMMONWEALTH EDISON CO","JOLIET",0,"LIGHT OIL",4110,"0M",1294,,100,95,28,24,0,19,36,0,26,24,0,38,121,0,42,65,0,45,88,0,191,342,0,177,323,0,43,60,8,25,36,0,50,114,0,33,48,0,874,4,50643,"FO2","IC" 33,17,1,4,2,41,16,"COMMONWEALTH EDISON CO","JOLIET",0,"LIGHT OIL",4110,"0M",1294,,100,95,0,0,12982,0,0,12946,0,0,13461,0,0,13339,0,0,11260,0,0,11071,56,101,11058,0,0,11182,0,0,11123,0,0,11087,0,0,11349,0,0,11301,874,4,50643,"FO2","GT" 33,17,1,4,9,41,16,"COMMONWEALTH EDISON CO","JOLIET",0,"NAT GAS",4110,"0M",1294,,100,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1395,27871,0,8945,90787,0,8183,223338,0,866,13196,0,229,3746,0,131,5138,0,234,3377,0,874,4,50643,"NG","GT" 33,17,1,2,2,41,17,"COMMONWEALTH EDISON CO","JOLIET 7&8",0,"LIGHT OIL",4110,"0M",1294,,100,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,384,4,50643,"FO2","ST" 33,17,1,2,6,41,17,"COMMONWEALTH EDISON CO","JOLIET 7&8",0,"BIT COAL",4110,"0M",1294,,100,95,520241,284540,251012,441016,243169,314690,475210,271066,278538,286729,169187,274394,417122,253105,368822,380291,234398,349806,434794,265270,338716,502962,304953,251022,375036,226403,245187,274949,166801,229512,204177,119561,295972,195022,118007,392005,384,4,50643,"BIT","ST" 33,17,1,2,9,41,17,"COMMONWEALTH EDISON CO","JOLIET 7&8",0,"NAT GAS",4110,"0M",1294,,100,95,11103,108953,0,8750,87209,0,12754,127880,0,12398,126498,0,15389,159604,0,14468,153070,0,34003,358096,0,38820,399592,0,12449,130392,0,5845,61103,0,9664,99401,0,15109,163833,0,384,4,50643,"NG","ST" 33,17,1,2,2,41,18,"COMMONWEALTH EDISON CO","KINCAID",0,"LIGHT OIL",4110,"0M",1294,,100,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,876,4,50643,"FO2","ST" 33,17,1,2,6,41,18,"COMMONWEALTH EDISON CO","KINCAID",0,"BIT COAL",4110,"0M",1294,,100,95,55770,32758,306574,225554,110119,355485,177700,87847,323621,111716,54633,362527,59730,40786,398523,326434,167542,321546,302831,139901,261736,370353,171207,168914,152028,76179,217203,146493,75067,252142,105685,62572,325669,303394,153078,287687,876,4,50643,"BIT","ST" 33,17,1,2,9,41,18,"COMMONWEALTH EDISON CO","KINCAID",0,"NAT GAS",4110,"0M",1294,,100,95,1202,16174,0,747,8607,0,913,10721,0,996,11458,0,1078,14934,0,450,5024,0,586,6470,0,981,10590,0,742,8548,0,1541,18276,0,2200,30312,0,917,10402,0,876,4,50643,"NG","ST" 33,17,1,4,2,41,19,"COMMONWEALTH EDISON CO","LOMBARD",0,"LIGHT OIL",4110,"0M",1294,,100,95,0,0,16204,0,0,16203,0,2,15828,0,0,15828,0,0,15471,0,0,15471,0,0,15471,0,0,15471,0,0,15471,0,0,15471,0,0,15471,0,0,15471,877,4,50643,"FO2","GT" 33,17,1,4,9,41,19,"COMMONWEALTH EDISON CO","LOMBARD",0,"NAT GAS",4110,"0M",1294,,100,95,0,0,0,0,0,0,216,9440,0,28,3677,0,45,1042,0,1545,52076,0,2695,90228,0,4011,66015,0,277,4570,0,110,2620,0,70,1556,0,6,1352,0,877,4,50643,"NG","GT" 33,17,1,4,2,41,22,"COMMONWEALTH EDISON CO","EL JUNCTION",0,"LIGHT OIL",4110,"0M",1294,,100,95,0,0,16029,0,0,16029,0,0,16029,0,0,16029,0,0,16029,0,0,16029,0,0,16029,0,0,16029,0,0,16029,0,0,16029,0,0,16029,0,0,16029,870,4,50643,"FO2","GT" 33,17,1,4,9,41,22,"COMMONWEALTH EDISON CO","EL JUNCTION",0,"NAT GAS",4110,"0M",1294,,100,95,45,1465,0,255,9385,0,433,17490,0,266,17646,0,201,1306,0,3974,165292,0,3141,117346,0,6577,120875,0,317,6236,0,0,0,0,0,0,0,0,0,0,870,4,50643,"NG","GT" 33,17,1,2,2,41,25,"COMMONWEALTH EDISON CO","POWERTON",0,"LIGHT OIL",4110,"0M",1294,,100,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,879,4,50643,"FO2","ST" 33,17,1,2,6,41,25,"COMMONWEALTH EDISON CO","POWERTON",0,"BIT COAL",4110,"0M",1294,,100,95,295687,209649,423935,447158,294017,440451,348046,239570,435308,212232,137447,636432,150582,105273,808681,358461,251527,710182,600064,381559,542202,449473,321219,483261,473891,314575,379942,711307,426764,426047,347462,223314,654319,369211,237119,790527,879,4,50643,"BIT","ST" 33,17,1,2,9,41,25,"COMMONWEALTH EDISON CO","POWERTON",0,"NAT GAS",4110,"0M",1294,,100,95,2163,27135,0,934,10806,0,1060,12568,0,352,4015,0,411,4960,0,1912,23178,0,1304,14277,0,344,4172,0,2982,34612,0,1175,12623,0,1089,12285,0,860,10186,0,879,4,50643,"NG","ST" 33,17,1,4,2,41,34,"COMMONWEALTH EDISON CO","SABROOKE",0,"LIGHT OIL",4110,"0M",1294,,100,95,0,0,10453,0,0,10453,0,0,10453,0,0,10453,0,0,10453,1060,4114,11113,2120,6610,10937,3819,12030,8749,0,0,10491,0,0,10491,92,332,10159,19,57,10102,882,4,50643,"FO2","GT" 33,17,1,2,6,41,35,"COMMONWEALTH EDISON CO","FISK ST",0,"BIT COAL",4110,"0M",1294,,100,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1258,2813,0,64730,37523,0,49452,31868,0,82828,51049,0,0,0,0,0,0,0,886,4,50643,"BIT","ST" 33,17,1,2,9,41,35,"COMMONWEALTH EDISON CO","FISK ST",0,"NAT GAS",4110,"0M",1294,,100,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,950,35700,0,6315,65190,0,4278,50522,0,3262,35967,0,0,0,0,0,0,0,886,4,50643,"NG","ST" 33,17,1,3,2,41,35,"COMMONWEALTH EDISON CO","FISK ST",0,"LIGHT OIL",4110,"0M",1294,,100,95,45,155,416,0,0,416,77,84,332,39,37,295,68,30,266,66,86,180,134,219,491,125,84,407,40,16,391,17,100,291,19,95,196,0,0,174,886,4,50643,"FO2","IC" 33,17,1,4,2,41,35,"COMMONWEALTH EDISON CO","FISK ST",0,"LIGHT OIL",4110,"0M",1294,,100,95,1,5,23532,47,93,23145,99,257,23261,297,889,22373,31,91,22630,3411,9368,21922,4887,12963,23223,4869,20375,20364,0,0,20364,0,0,20364,335,1236,19127,365,1339,17788,886,4,50643,"FO2","GT" 33,17,1,2,2,41,40,"COMMONWEALTH EDISON CO","WAUKEGAN",0,"LIGHT OIL",4110,"0M",1294,,100,95,895,1547,2815,3612,6129,2742,4931,8714,2873,777,1407,3668,959,1672,3660,3946,7104,2494,3955,7041,2217,5282,9737,2829,3119,5998,3784,2859,5228,2552,3518,6749,3529,1606,3513,2435,883,4,50643,"FO2","ST" 33,17,1,2,6,41,40,"COMMONWEALTH EDISON CO","WAUKEGAN",0,"BIT COAL",4110,"0M",1294,,100,95,297287,177180,273721,300831,175220,239888,317665,191650,286982,225455,141450,324935,256271,154756,392524,243529,150801,389581,310909,188184,335255,296518,187813,197729,119579,79260,209183,165704,104633,209690,128110,85584,284788,41660,30532,414595,883,4,50643,"BIT","ST" 33,17,1,2,9,41,40,"COMMONWEALTH EDISON CO","WAUKEGAN",0,"NAT GAS",4110,"0M",1294,,100,95,1435,14340,0,1745,16984,0,6345,64552,0,12306,127984,0,2631,26534,0,2700,27935,0,4475,45751,0,8173,86616,0,1604,17712,0,0,0,0,0,0,0,1606,20058,0,883,4,50643,"NG","ST" 33,17,1,4,2,41,40,"COMMONWEALTH EDISON CO","WAUKEGAN",0,"LIGHT OIL",4110,"0M",1294,,100,95,311,627,9084,81,252,8832,0,0,8832,62,220,8612,0,0,8612,2971,8993,7575,4093,8993,10099,3465,12846,8690,217,650,9693,15,46,9832,388,721,9111,455,101,8825,883,4,50643,"FO2","GT" 33,17,1,2,2,41,45,"COMMONWEALTH EDISON CO","WILL COUNTY",0,"LIGHT OIL",4110,"0M",1294,,100,95,1062,18762,3939,7295,13109,3758,10624,18496,3941,8221,14895,3199,9084,16531,4090,8920,16134,4050,10413,17507,4073,8717,15307,3888,6246,11354,3823,8028,14057,4581,13300,23039,4265,11454,20638,3742,884,4,50643,"FO2","ST" 33,17,1,2,6,41,45,"COMMONWEALTH EDISON CO","WILL COUNTY",0,"BIT COAL",4110,"0M",1294,,100,95,339333,214481,728644,276729,163281,493423,436182,242324,418178,363653,209416,394195,307990,182353,450891,397251,238256,419768,378522,212664,447725,475303,276214,354866,276771,166573,326404,319122,188012,314278,367545,210217,297641,236545,145482,315427,884,4,50643,"BIT","ST" 33,17,1,2,2,41,60,"COMMONWEALTH EDISON CO","COLLINS",0,"LIGHT OIL",4110,"0M",1294,,100,95,44,168,8953,149,398,8555,143,315,8240,46,189,8051,8,33,9226,37,94,9132,118,236,8896,161,333,8562,33,186,8376,121,346,8030,407,870,7160,418,907,6253,6025,4,50643,"FO2","ST" 33,17,1,2,3,41,60,"COMMONWEALTH EDISON CO","COLLINS",0,"HEAVY OIL",4110,"0M",1294,,100,95,10708,14958,858168,17136,41575,816594,22453,44431,829903,5094,19291,887973,1621,6324,924611,37801,79457,874073,46886,87834,814064,170809,316836,497228,8876,46988,565732,30191,78409,602644,60143,118667,704727,63549,126751,840744,6025,4,50643,"FO6","ST" 33,17,1,2,9,41,60,"COMMONWEALTH EDISON CO","COLLINS",0,"NAT GAS",4110,"0M",1294,,100,95,39831,890044,0,143526,2177150,0,287955,3565711,0,53575,1269470,0,42336,1034381,0,242662,3192054,0,342245,4012183,0,559661,6496563,0,22424,742913,0,72437,1176239,0,234867,2894481,0,189527,2361026,0,6025,4,50643,"NG","ST" 33,17,1,2,2,59,5,"ELECTRIC ENERGY INC","JOPPA STEAM",0,"LIGHT OIL",5748,"0M",1294,,,95,200,374,1123,39,70,1273,99,185,1072,621,1113,2510,355,632,917,223,421,1063,108,203,1046,324,609,1093,203,369,937,141,253,1041,23,42,874,163,297,1013,887,4,50877,"FO2","ST" 33,17,1,2,6,59,5,"ELECTRIC ENERGY INC","JOPPA STEAM",0,"BIT COAL",5748,"0M",1294,,,95,714619,413405,218343,620332,359921,257338,581511,352021,367649,615267,357331,494389,555217,326921,554836,664604,410139,566371,692201,431949,348896,616065,383985,389108,610216,368490,418929,705090,420489,495502,724030,433000,497231,719491,431637,526478,887,4,50877,"BIT","ST" 33,17,1,2,9,59,5,"ELECTRIC ENERGY INC","JOPPA STEAM",0,"NAT GAS",5748,"0M",1294,,,95,3,39,0,3,32,0,2,31,0,4,42,0,2,29,0,3,39,0,2,28,0,2,25,0,2,30,0,3,33,0,4,43,0,2,27,0,887,4,50877,"NG","ST" 33,17,1,2,1,72,1,"ILLINOIS POWER CO","CLINTON",0,"NUCLEAR",9208,"0M",1294,,,95,606581,0,0,556463,0,0,137066,0,0,-6903,0,0,405888,0,0,658164,0,0,673318,0,0,670862,0,0,558375,0,0,682367,0,0,659454,0,0,500645,0,0,204,4,51385,"UR","ST" 33,17,1,2,"C",72,20,"ILLINOIS POWER CO","BALDWIN",0,"TIRES",9208,"0M",294,"A",,95,0,0,0,1818,0,0,3181,0,0,7099,0,0,6807,0,0,5350,0,0,7244,0,0,3493,0,0,6277,0,0,7534,0,0,10681,0,0,7569,0,0,889,4,51385,"TIR","ST" 33,17,1,2,2,72,20,"ILLINOIS POWER CO","BALDWIN",0,"LIGHT OIL",9208,"0M",1294,,,95,1081,1918,2086,605,1061,2802,687,1177,4303,886,1546,2758,788,1102,2909,1035,1849,3333,1018,1819,2723,194,347,3603,519,926,3761,917,1661,2395,449,802,2830,719,1288,2830,889,4,51385,"FO2","ST" 33,17,1,2,6,72,20,"ILLINOIS POWER CO","BALDWIN",0,"BIT COAL",9208,"0M",1294,,,95,660540,312984,326606,560194,261218,347154,721218,332734,317839,1001149,461485,170294,940043,347817,194365,784737,373003,199111,952571,453263,98640,1114689,528001,10906,767993,364295,81430,684089,329233,150289,880194,419001,132828,809209,388865,132828,889,4,51385,"BIT","ST" 33,17,1,2,2,72,35,"ILLINOIS POWER CO","HAVANA",0,"LIGHT OIL",9208,"0M",1294,,,95,910,1948,1153,666,1365,840,307,580,1330,461,889,1682,716,1472,1237,733,1517,1451,606,1199,1513,905,1843,2122,693,1487,1847,988,1998,879,1035,1991,1192,678,1527,1192,891,4,51385,"FO2","ST" 33,17,1,2,3,72,35,"ILLINOIS POWER CO","HAVANA",0,"HEAVY OIL",9208,"0M",1294,,,95,0,0,11893,0,0,11893,0,0,11893,0,0,11893,0,0,11893,0,0,11893,0,0,11893,0,0,11893,0,0,11893,0,0,11893,0,0,362,0,0,362,891,4,51385,"FO6","ST" 33,17,1,2,6,72,35,"ILLINOIS POWER CO","HAVANA",0,"BIT COAL",9208,"0M",1294,,,95,98112,49256,30789,118979,58411,50159,224224,102634,40379,160060,74936,66818,118264,58880,70245,116146,58574,89918,115561,56674,118529,151230,75783,90549,71688,37378,112421,88892,44663,121996,115087,53793,99387,131730,71564,99387,891,4,51385,"BIT","ST" 33,17,1,2,9,72,35,"ILLINOIS POWER CO","HAVANA",0,"NAT GAS",9208,"0M",1294,,,95,1067,12979,0,440,5089,0,63,677,0,179,1951,0,351,4046,0,300,3543,0,463,5170,0,355,4086,0,402,4873,0,559,6392,0,891,9670,0,763,9698,0,891,4,51385,"NG","ST" 33,17,1,2,2,72,37,"ILLINOIS POWER CO","HENNEPIN",0,"LIGHT OIL",9208,"0M",1294,,,95,0,0,139,0,0,118,0,0,98,0,0,73,0,0,226,0,0,198,0,0,171,0,0,143,0,0,124,0,0,81,0,0,206,0,0,206,892,4,51385,"FO2","ST" 33,17,1,2,6,72,37,"ILLINOIS POWER CO","HENNEPIN",0,"BIT COAL",9208,"0M",1294,,,95,87360,41868,110995,113939,53993,91245,148496,70812,66931,128982,61958,52605,126965,61905,34055,114742,56218,13963,122662,60852,24745,143091,72106,29954,79631,39909,56695,59580,30905,81408,39508,20500,71977,116352,56957,71977,892,4,51385,"BIT","ST" 33,17,1,2,9,72,37,"ILLINOIS POWER CO","HENNEPIN",0,"NAT GAS",9208,"0M",1294,,,95,32318,326516,0,1234,12249,0,1222,12243,0,808,8187,0,416,4252,0,2050,20916,0,733,7579,0,551,5765,0,776,8044,0,87,951,0,169,1816,0,493,5034,0,892,4,51385,"NG","ST" 33,17,1,4,2,72,39,"ILLINOIS POWER CO","OGLESBY",0,"LIGHT OIL",9208,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,8629,0,0,8629,0,0,8629,0,0,8629,0,0,8629,0,0,8629,0,0,8629,0,0,8805,0,0,8805,894,4,51385,"FO2","GT" 33,17,1,4,9,72,39,"ILLINOIS POWER CO","OGLESBY",0,"NAT GAS",9208,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2951,33996,0,2725,56764,0,0,0,0,110,1650,0,0,0,0,519,7497,0,894,4,51385,"NG","GT" 33,17,1,4,2,72,40,"ILLINOIS POWER CO","STALLINGS",0,"LIGHT OIL",9208,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,895,4,51385,"FO2","GT" 33,17,1,4,9,72,40,"ILLINOIS POWER CO","STALLINGS",0,"NAT GAS",9208,"0M",1294,,,95,-5,0,0,0,0,0,-188,0,0,-57,0,0,-40,0,0,-31,0,0,556,11621,0,1460,27572,0,-38,0,0,-159,0,0,0,0,0,40,1636,0,895,4,51385,"NG","GT" 33,17,1,2,2,72,45,"ILLINOIS POWER CO","VERMILION",0,"LIGHT OIL",9208,"0M",1294,,,95,115,249,624,91,198,602,191,417,364,236,549,361,18,38,279,0,0,257,0,0,333,0,0,327,0,0,327,0,0,284,0,0,284,0,0,284,897,4,51385,"FO2","ST" 33,17,1,2,6,72,45,"ILLINOIS POWER CO","VERMILION",0,"BIT COAL",9208,"0M",1294,,,95,30154,17048,27000,17324,9743,30113,23022,12947,17166,26005,15643,2483,5797,3221,2966,977,640,2326,0,0,2326,0,0,2326,0,0,2326,0,0,2326,-194,0,2326,0,0,2326,897,4,51385,"BIT","ST" 33,17,1,2,9,72,45,"ILLINOIS POWER CO","VERMILION",0,"NAT GAS",9208,"0M",794,"A",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,35157,523154,0,35815,280703,0,5530,63136,0,-181,425,0,0,0,0,0,0,0,897,4,51385,"NG","ST" 33,17,1,4,2,72,45,"ILLINOIS POWER CO","VERMILION",0,"LIGHT OIL",9208,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-967,0,0,13,1679,0,0,0,0,0,0,0,897,4,51385,"FO2","GT" 33,17,1,2,"B",72,50,"ILLINOIS POWER CO","WOOD RIVER",0,"WOOD",9208,"0M",294,"A",,95,0,0,0,16,0,0,178,0,0,229,0,0,90,0,0,216,0,0,58,0,0,48,0,0,0,0,0,0,0,0,0,0,0,18,0,0,898,4,51385,"WD","ST" 33,17,1,2,2,72,50,"ILLINOIS POWER CO","WOOD RIVER",0,"LIGHT OIL",9208,"0M",1294,,,95,44,79,5600,23,43,5507,47,83,5347,40,74,5395,21,44,5332,24,48,5204,12,23,5294,49,90,5144,25,46,5028,38,67,5235,0,0,4820,0,0,4820,898,4,51385,"FO2","ST" 33,17,1,2,6,72,50,"ILLINOIS POWER CO","WOOD RIVER",0,"BIT COAL",9208,"0M",1294,,,95,179203,74998,45031,134748,57471,69498,189897,79401,76252,58215,25205,85871,13578,6765,84103,56995,25313,99570,176787,75799,113318,203949,86831,93346,141728,61520,85883,170165,70959,78358,166564,67877,95046,152328,67698,95046,898,4,51385,"BIT","ST" 33,17,1,2,9,72,50,"ILLINOIS POWER CO","WOOD RIVER",0,"NAT GAS",9208,"0M",1294,,,95,2917,29530,0,3161,32758,0,2112,21194,0,620,6474,0,455,5401,0,3940,43447,0,1042,11274,0,7813,79539,0,841,8463,0,2100,20806,0,1416,13732,0,3310,34114,0,898,4,51385,"NG","ST" 33,17,1,1,,76,5,"MIDAMERICAN ENERGY","MOLINE",0,,9438,"0M",1294,,50,95,867,0,0,502,0,0,693,0,0,501,0,0,751,0,0,1306,0,0,1909,0,0,1606,0,0,1628,0,0,1499,0,0,1295,0,0,824,0,0,899,5,51406,"WAT","HY" 33,17,1,4,2,76,5,"MIDAMERICAN ENERGY","MOLINE",0,"LIGHT OIL",9438,"0M",1294,,50,95,-104,1,1972,-89,0,1972,-80,0,1972,0,0,1972,0,0,1972,0,0,1972,0,0,1972,0,0,1972,-1,0,1972,-33,0,1972,-32,0,1972,-41,0,1972,899,5,51406,"FO2","GT" 33,17,1,4,9,76,5,"MIDAMERICAN ENERGY","MOLINE",0,"NAT GAS",9438,"0M",1294,,50,95,0,0,0,0,0,0,0,0,0,0,0,0,-61,2,0,1064,18944,0,1548,27660,0,1838,32171,0,-50,33,0,-34,0,0,-33,0,0,-42,0,0,899,5,51406,"NG","GT" 33,17,1,1,,107,1,"NATIONAL HYDRO","DAYTON",0,,9366,"0A",1294,,,95,1202,0,0,1122,0,0,1638,0,0,1567,0,0,992,0,0,1383,0,0,911,0,0,403,0,0,0,0,0,0,0,0,1259,0,0,1438,0,0,901,4,52081,"WAT","HY" 33,17,1,1,,134,1,"SO BELOIT WTR GAS & ELEC","ROCKTON",0,,17535,"0A",1294,,521,95,467,0,0,390,0,0,678,0,0,788,0,0,728,0,0,505,0,0,154,0,0,655,0,0,616,0,0,694,0,0,698,0,0,536,0,0,903,4,54026,"WAT","HY" 33,17,1,2,2,151,15,"UNION ELECTRIC CO","VENICE",0,"LIGHT OIL",19436,"0M",1294,,150,95,-14,55,40501,-148,624,39877,0,0,39877,0,0,39877,1716,6693,33184,1509,6175,27009,165,558,26451,1421,5295,29829,0,0,33009,0,0,33009,63,822,32186,-598,1970,30216,913,4,52997,"FO2","ST" 33,17,1,2,9,151,15,"UNION ELECTRIC CO","VENICE",0,"NAT GAS",19436,"0M",1294,,150,95,-1037,23078,0,-714,17082,0,745,29759,0,2615,70964,0,3881,85875,0,3694,85747,0,12175,233282,0,18970,400955,0,1254,9297,0,1125,26918,0,146,10894,0,-478,8990,0,913,4,52997,"NG","ST" 33,17,1,4,2,151,15,"UNION ELECTRIC CO","VENICE",0,"LIGHT OIL",19436,"0M",1294,,150,95,-67,27,1614,-28,163,2000,-35,94,1906,-28,27,1879,-20,89,1790,-20,0,1790,170,758,2114,425,1509,1672,-19,2,1670,-26,4,1666,-54,3,1664,-53,1,1663,913,4,52997,"FO2","GT" 33,17,5,2,2,528,1,"BREESE (CITY OF)","BREESE",0,"LIGHT OIL",2188,"0A",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,934,4,50322,"FO2","ST" 33,17,5,3,2,528,1,"BREESE (CITY OF)","BREESE",0,"LIGHT OIL",2188,"0A",1294,,,95,0,54,940,18,32,905,18,33,866,22,40,817,30,30,781,17,32,740,176,328,755,261,482,780,19,35,911,19,35,872,19,34,835,13,22,811,934,4,50322,"FO2","IC" 33,17,5,3,9,528,1,"BREESE (CITY OF)","BREESE",0,"NAT GAS",2188,"0A",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,934,4,50322,"NG","IC" 33,17,5,3,2,530,1,"BUSHNELL (CITY OF)","BUSHNELL",0,"LIGHT OIL",2634,"0A",1294,,,95,0,1,838,7,14,824,0,0,824,0,0,824,0,0,824,0,0,824,29,58,766,0,0,766,0,0,766,0,0,766,0,0,766,0,0,766,935,4,50383,"FO2","IC" 33,17,5,3,9,530,1,"BUSHNELL (CITY OF)","BUSHNELL",0,"NAT GAS",2634,"0A",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,935,4,50383,"NG","IC" 33,17,5,3,2,534,1,"CARLYLE (CITY OF)","CARLYLE",0,"LIGHT OIL",3037,"0A",1294,,,95,12,16,176,0,13,163,9,11,151,9,13,138,12,10,121,51,53,404,141,155,248,144,203,381,11,12,368,10,17,351,11,18,333,0,0,333,936,4,50438,"FO2","IC" 33,17,5,3,9,534,1,"CARLYLE (CITY OF)","CARLYLE",0,"NAT GAS",3037,"0A",1294,,,95,0,3,0,0,2,0,0,2,0,0,3,0,0,3,0,1,11,0,10,64,0,4,38,0,0,6,0,0,6,0,0,0,0,0,0,0,936,4,50438,"NG","IC" 33,17,5,3,2,537,1,"CARMI (CITY OF)","CARMI",0,"LIGHT OIL",3040,"0A",1294,,,95,16,38,765,95,45,720,10,19,700,7,19,681,5,21,660,5,32,627,5,12,616,9,15,600,18,53,722,9,20,702,10,22,702,61,90,590,937,4,50440,"FO2","IC" 33,17,5,3,9,537,1,"CARMI (CITY OF)","CARMI",0,"NAT GAS",3040,"0A",1294,,,95,70,720,0,25,1014,0,15,177,0,17,350,0,16,125,0,26,162,0,15,157,0,11,87,0,40,313,0,11,92,0,8,100,0,83,985,0,937,4,50440,"NG","IC" 33,17,5,2,6,559,1,"FAIRFIELD (CITY OF)","FAIRFIELD",0,"BIT COAL",6141,"0A",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,940,4,50941,"BIT","ST" 33,17,5,3,2,559,1,"FAIRFIELD (CITY OF)","FAIRFIELD",0,"LIGHT OIL",6141,"0A",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,940,4,50941,"FO2","IC" 33,17,5,3,9,559,1,"FAIRFIELD (CITY OF)","FAIRFIELD",0,"NAT GAS",6141,"0A",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,940,4,50941,"NG","IC" 33,17,5,3,2,562,1,"FARMER (CITY OF)","FARMER CITY",0,"LIGHT OIL",6192,"0A",1294,,,95,1,3,227,0,0,227,0,0,227,0,0,227,1,2,230,10,20,208,7,23,186,38,71,283,4,4,279,0,0,279,0,0,274,0,0,274,941,4,50955,"FO2","IC" 33,17,5,3,9,562,1,"FARMER (CITY OF)","FARMER CITY",0,"NAT GAS",6192,"0A",1294,,,95,3,26,0,0,0,0,0,0,0,0,0,0,6,58,0,46,504,0,0,0,0,163,1723,0,0,0,0,0,0,0,0,0,0,0,0,0,941,4,50955,"NG","IC" 33,17,5,3,2,571,1,"FREEBURG (CITY OF)","FREEBURG",0,"LIGHT OIL",6764,"0A",1294,,,95,1,2,129,17,33,214,173,298,93,12,23,70,12,23,47,13,26,197,81,158,39,110,201,200,13,177,0,8,16,161,8,10,151,8,21,130,943,4,51056,"FO2","IC" 33,17,5,3,9,571,1,"FREEBURG (CITY OF)","FREEBURG",0,"NAT GAS",6764,"0A",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,943,4,51056,"NG","IC" 33,17,5,3,2,574,1,"GENESEO (CITY OF)","GENESEO",0,"LIGHT OIL",7095,"0A",1294,,,95,2,16,314,4,11,301,0,13,290,5,13,281,0,0,294,15,26,446,65,111,339,78,133,383,0,0,389,0,0,388,0,0,389,2,4,385,944,4,51093,"FO2","IC" 33,17,5,3,9,574,1,"GENESEO (CITY OF)","GENESEO",0,"NAT GAS",7095,"0A",1294,,,95,7,250,0,2,57,0,7,527,0,2,52,0,0,0,0,93,1716,0,562,6490,0,735,8338,0,0,0,0,0,0,0,0,0,0,0,1,0,944,4,51093,"NG","IC" 33,17,5,3,2,589,1,"HIGHLAND (CITY OF)","HIGHLAND",0,"LIGHT OIL",8573,"0A",1294,,,95,21,37,490,4,5,486,0,0,486,4,9,823,0,0,825,47,78,792,28,140,634,472,536,371,24,46,371,0,0,322,11,21,755,8,15,754,946,4,51298,"FO2","IC" 33,17,5,3,9,589,1,"HIGHLAND (CITY OF)","HIGHLAND",0,"NAT GAS",8573,"0A",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,946,4,51298,"NG","IC" 33,17,5,3,2,606,15,"MCLEANSBORO (CITY OF)","MCLEANSBORO",0,"LIGHT OIL",12167,"0A",1294,,,95,19,48,201,15,25,176,12,30,322,14,21,301,14,29,272,11,29,243,22,38,205,14,48,336,43,88,246,25,45,201,27,51,325,20,34,291,948,4,51812,"FO2","IC" 33,17,5,3,2,612,10,"MASCOUTAH (CITY OF)","MASCOUTAH",0,"LIGHT OIL",11790,"0A",1294,,,95,0,0,815,0,0,815,0,0,814,1,12,803,24,59,563,0,0,563,4,56,859,30,64,967,0,0,967,0,0,967,0,0,965,0,0,966,950,4,51789,"FO2","IC" 33,17,5,3,9,612,10,"MASCOUTAH (CITY OF)","MASCOUTAH",0,"NAT GAS",11790,"0A",1294,,,95,0,0,0,0,0,0,0,0,0,10,410,0,0,0,0,0,0,0,74,4890,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,950,4,51789,"NG","IC" 33,17,5,2,9,646,1,"PERU (CITY OF)","PERU",0,"NAT GAS",14840,"0M",1294,,,95,-15,0,0,-11,0,0,4,0,0,-13,0,0,-7,0,0,77,680,0,-9,0,0,-62,0,0,0,0,0,8,0,0,0,0,0,0,0,0,955,4,52299,"NG","ST" 33,17,5,3,2,646,1,"PERU (CITY OF)","PERU",0,"LIGHT OIL",14840,"0M",1294,,,95,-30,12,619,-13,24,595,-13,23,572,-6,24,548,-2,23,525,63,146,560,189,366,550,299,560,533,-14,0,533,-1,23,510,-22,12,498,-33,0,498,955,4,52299,"FO2","IC" 33,17,5,4,2,646,1,"PERU (CITY OF)","PERU",0,"LIGHT OIL",14840,"0M",1294,,,95,-17,5,621,-6,30,547,-28,31,516,-11,19,497,2,45,621,32,120,501,-5,0,501,78,277,563,-5,0,563,2,31,532,-6,34,498,-8,0,498,955,4,52299,"FO2","GT" 33,17,5,3,2,649,15,"PRINCETON (CITY OF)","PRINCETON",0,"LIGHT OIL",15388,"0M",1294,,,95,6,12,977,0,0,976,3,7,975,2,4,971,3,7,975,23,40,932,56,97,838,536,913,802,20,35,768,17,32,720,0,3,712,14,25,688,957,4,52397,"FO2","IC" 33,17,5,3,9,649,15,"PRINCETON (CITY OF)","PRINCETON",0,"NAT GAS",15388,"0M",1294,,,95,21,220,0,0,0,0,27,268,0,15,153,0,24,231,0,137,1308,0,636,6226,0,1790,17269,0,131,1265,0,82,827,0,0,106,0,75,752,0,957,4,52397,"NG","IC" 33,17,5,3,2,652,15,"RANTOUL (CITY OF)","RANTOUL",0,"LIGHT OIL",15686,"0A",1294,,,95,18,21,236,2,5,232,6,12,220,11,25,195,23,32,203,55,112,186,16,31,295,0,0,299,0,0,299,8,15,284,0,0,284,0,0,284,958,4,52436,"FO2","IC" 33,17,5,3,2,655,1,"RED BUD (CITY OF)","RED BUD",0,"LIGHT OIL",15772,"0A",1294,,,95,28,56,1047,2,5,1040,2,3,1034,0,1,1030,4,7,1021,15,26,993,6,9,981,14,25,956,0,0,956,0,0,953,0,0,949,0,0,948,959,4,52447,"FO2","IC" 33,17,5,3,9,655,1,"RED BUD (CITY OF)","RED BUD",0,"NAT GAS",15772,"0A",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,959,4,52447,"NG","IC" 33,17,5,3,2,661,5,"ROCHELLE (CITY OF)","N NINTH ST",0,"LIGHT OIL",16179,"0A",1294,,,95,0,0,0,5,15,779,0,0,0,3,0,771,0,0,764,12,23,741,59,110,631,112,214,527,0,0,416,0,0,415,0,24,711,0,25,686,960,4,52498,"FO2","IC" 33,17,5,3,9,661,5,"ROCHELLE (CITY OF)","N NINTH ST",0,"NAT GAS",16179,"0A",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,98,0,490,5142,0,1012,10917,0,0,0,0,0,0,0,0,1171,0,0,705,0,960,4,52498,"NG","IC" 33,17,5,2,6,661,10,"ROCHELLE (CITY OF)","S MAIN ST",0,"BIT COAL",16179,"0A",1294,,,95,182,283,317,0,0,1359,692,1123,1498,0,0,1498,0,0,1498,0,0,1498,0,0,1498,0,0,1498,0,0,1218,0,0,0,256,380,38,0,38,0,961,4,52498,"BIT","ST" 33,17,5,2,9,661,10,"ROCHELLE (CITY OF)","S MAIN ST",0,"NAT GAS",16179,"0A",1294,,,95,2606,84363,0,2941,19198,0,1831,61444,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,927,28450,0,0,0,0,961,4,52498,"NG","ST" 33,17,5,3,2,661,10,"ROCHELLE (CITY OF)","S MAIN ST",0,"LIGHT OIL",16179,"0A",1294,,,95,0,0,0,0,0,261,0,0,259,7,8,258,0,0,258,0,0,1498,0,0,1498,0,2,252,0,0,251,0,0,252,0,1,249,0,0,216,961,4,52498,"FO2","IC" 33,17,5,3,9,661,10,"ROCHELLE (CITY OF)","S MAIN ST",0,"NAT GAS",16179,"0A",1294,,,95,0,0,0,0,0,0,14,486,0,2,19,0,0,0,0,0,0,0,0,0,0,83,2186,0,0,0,0,0,0,0,10,323,0,0,0,0,961,4,52498,"NG","IC" 33,17,5,2,2,676,1,"SPRINGFIELD (CITY OF)","LAKESIDE",0,"LIGHT OIL",17828,"0M",1294,,,95,18,56,3309,-376,0,3847,35,123,3773,38,88,3309,8,21,2805,159,387,2233,123,292,1856,53,125,1641,42,111,1830,11,54,1641,16,39,2126,38,94,1910,964,4,52766,"FO2","ST" 33,17,5,2,6,676,1,"SPRINGFIELD (CITY OF)","LAKESIDE",0,"BIT COAL",17828,"0M",1294,,,95,1426,1194,2186,0,0,2186,1719,1619,3329,28971,18281,2724,3680,2612,1929,9405,6305,1526,17496,11431,1377,28851,18625,1401,2662,1934,379,394,523,1151,16922,10895,1211,7009,4720,1069,964,4,52766,"BIT","ST" 33,17,5,2,2,676,5,"SPRINGFIELD (CITY OF)","DALLMAN",0,"LIGHT OIL",17828,"0M",1294,,,95,300,585,0,76,148,0,85,123,0,184,376,0,278,544,0,98,185,0,43,85,0,46,90,0,194,381,0,69,134,0,98,191,0,62,121,0,963,4,52766,"FO2","ST" 33,17,5,2,6,676,5,"SPRINGFIELD (CITY OF)","DALLMAN",0,"BIT COAL",17828,"0M",1294,,,95,147822,79578,86892,139935,74982,79739,149373,60539,83519,84927,48213,88238,138529,75670,76947,148142,77066,75576,175826,96140,69655,181595,98487,70624,145723,79465,62150,147146,79567,66752,143295,77415,69089,189782,102492,71677,963,4,52766,"BIT","ST" 33,17,5,4,2,676,10,"SPRINGFIELD (CITY OF)","REYNOLDS",0,"LIGHT OIL",17828,"0M",1294,,,95,2,21,1499,1,19,1480,0,0,1480,22,120,1360,0,0,1360,12,77,1283,189,560,1401,222,713,1224,45,147,1077,0,0,1792,0,0,1792,21,66,1726,965,4,52766,"FO2","GT" 33,17,5,4,2,676,12,"SPRINGFIELD (CITY OF)","FACTORY",0,"LIGHT OIL",17828,"0M",1294,,,95,0,0,3559,57,277,3282,0,56,3226,0,0,3226,0,0,3226,0,15,3212,234,612,3502,337,1007,2674,0,0,0,1,40,2634,0,0,2634,6,18,2615,8016,4,52766,"FO2","GT" 33,17,5,3,2,685,1,"SULLIVAN (CITY OF)","SULLIVAN",0,"LIGHT OIL",18277,"0A",1294,,,95,64,126,1258,39,77,1181,15,30,1151,13,25,1301,205,430,1242,250,497,1265,287,569,1218,337,669,1235,211,418,1150,109,216,1446,94,187,1607,131,261,1346,969,4,52842,"FO2","IC" 33,17,5,3,9,685,1,"SULLIVAN (CITY OF)","SULLIVAN",0,"NAT GAS",18277,"0A",1294,,,95,417,4732,0,354,3991,0,175,2187,0,90,1200,0,2497,25139,0,3160,40149,0,3856,39252,0,4473,45978,0,2693,27195,0,1163,12837,0,1195,13294,0,1409,15384,0,969,4,52842,"NG","IC" 33,17,5,3,2,688,1,"WATERLOO (CITY OF)","WATERLOO",0,"LIGHT OIL",20180,"0A",1294,,,95,0,0,663,0,0,655,5,10,638,0,0,632,2,10,596,2,5,575,67,109,621,73,155,621,8,14,601,0,0,593,0,0,587,3,6,574,971,4,53196,"FO2","IC" 33,17,5,3,9,688,1,"WATERLOO (CITY OF)","WATERLOO",0,"NAT GAS",20180,"0A",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,2,17,0,3,26,0,77,912,0,83,788,0,0,0,0,0,0,0,0,0,0,0,0,0,971,4,53196,"NG","IC" 33,17,5,2,6,697,1,"WINNETKA (VILLAGE OF)","WINNEKA",0,"BIT COAL",20824,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,972,4,53319,"BIT","ST" 33,17,5,2,9,697,1,"WINNETKA (VILLAGE OF)","WINNEKA",0,"NAT GAS",20824,"0M",1294,,,95,76,1403,0,83,1602,0,0,0,0,61,1226,0,0,0,0,429,7918,0,1790,29451,0,3027,46315,0,83,1711,0,38,687,0,36,627,0,82,1282,0,972,4,53319,"NG","ST" 33,17,5,3,2,697,1,"WINNETKA (VILLAGE OF)","WINNEKA",0,"LIGHT OIL",20824,"0M",1294,,,95,9,15,1600,16,24,1576,15,27,2011,8,11,2038,15,27,2008,53,94,1879,81,146,1771,87,156,1614,39,65,1549,14,24,1525,21,36,1489,27,48,1441,972,4,53319,"FO2","IC" 33,17,8,3,2,835,5,"SOYLAND POWER COOP INC","PITTSFIELD",0,"LIGHT OIL",40307,"0M",1294,,,95,-86,19,362,-83,0,362,-84,0,362,-71,0,362,-22,0,362,-10,10,352,-13,0,352,-12,5,346,-10,0,346,-17,0,346,-27,0,346,-86,0,346,6237,4,53264,"FO2","IC" 33,17,8,3,2,835,10,"SOYLAND POWER COOP INC","WINCHESTER",0,"LIGHT OIL",40307,"0M",1294,"R",,95,-5,0,0,-4,0,0,-2,0,0,-4,0,0,-4,0,0,-3,0,0,-4,0,0,-4,0,0,-4,0,0,-3,0,0,-4,0,0,0,0,0,6236,4,53264,"FO2","IC" 33,17,8,2,2,835,20,"SOYLAND POWER COOP INC","PEARL",0,"LIGHT OIL",40307,"0M",1294,,,95,394,885,0,148,333,0,151,333,0,44,96,0,62,137,0,71,157,0,49,109,0,81,183,0,82,176,0,53,118,0,43,98,0,0,293,0,6238,4,53264,"FO2","ST" 33,17,8,2,6,835,20,"SOYLAND POWER COOP INC","PEARL",0,"BIT COAL",40307,"0M",1294,,,95,7480,4550,11696,6009,3668,13434,10811,6523,12395,9951,5859,11765,8686,5203,12183,10526,6310,12845,13881,8405,11170,12227,7501,11236,14144,8259,10522,14726,8807,6860,7789,4727,5629,-128,0,6213,6238,4,53264,"BIT","ST" 33,17,8,4,2,835,20,"SOYLAND POWER COOP INC","PEARL",0,"LIGHT OIL",40307,"0M",1294,,,95,0,0,3174,0,0,2841,0,0,2508,0,0,3312,0,0,3174,0,0,3018,198,439,4233,153,346,3704,0,0,3527,0,0,3410,0,0,3316,27,99,2920,6238,4,53264,"FO2","GT" 33,17,8,2,2,865,5,"SOUTHERN ILL PWR COOP","MARION",0,"LIGHT OIL",17632,"0M",1294,,,95,103,235,1930,398,937,1432,119,273,2109,54,114,1931,53,121,2200,40,89,1995,197,433,1909,516,982,1299,123,278,1355,138,291,1409,148,311,1983,116,228,2304,976,4,52726,"FO2","ST" 33,17,8,2,5,865,5,"SOUTHERN ILL PWR COOP","MARION",0,"COKE",17632,"0M",494,,,95,0,0,0,0,0,0,0,0,0,7100,5033,63,10577,7498,1080,12093,8573,883,18130,8251,340,24637,9801,5288,14975,6746,15187,18417,7751,15005,28435,11888,20057,29187,11536,36572,976,4,52726,"PC","ST" 33,17,8,2,6,865,5,"SOUTHERN ILL PWR COOP","MARION",0,"BIT COAL",17632,"0M",1294,,,95,99578,58899,343511,88921,53220,322269,67012,39679,313811,55683,32048,304374,67117,37520,306395,69155,37199,286872,84620,48755,270682,92636,56774,253743,47041,28911,281123,49349,30941,306445,68451,42435,291995,75427,45356,318016,976,4,52726,"BIT","ST" 34,26,1,2,1,21,1,"CONSUMERS POWER CO","BIG ROCK",0,"NUCLEAR",4254,"0M",1294,,95,95,49904,0,0,36125,0,0,47852,0,0,36194,0,0,51600,0,0,49866,0,0,50938,0,0,42590,0,0,45863,0,0,42825,0,0,30166,0,0,31731,0,0,1697,1,50658,"UR","ST" 34,26,1,2,1,21,1,"CONSUMERS POWER CO","PALISADES",0,"NUCLEAR",4254,"0M",1294,,95,95,583852,0,0,515599,0,0,577496,0,0,558296,0,0,349591,0,0,-2326,0,0,-2452,0,0,108144,0,0,474684,0,0,571773,0,0,561439,0,0,541156,0,0,1715,1,50658,"UR","ST" 34,26,1,1,,21,8,"CONSUMERS POWER CO","ALCONA",0,,4254,"0M",1294,,95,95,2490,0,0,1993,0,0,2704,0,0,2797,0,0,2622,0,0,1880,0,0,1902,0,0,2070,0,0,1760,0,0,2007,0,0,2376,0,0,2188,0,0,1693,1,50658,"WAT","HY" 34,26,1,1,,21,10,"CONSUMERS POWER CO","ALLEGAN",0,,4254,"0M",1294,,95,95,1357,0,0,1013,0,0,1394,0,0,1356,0,0,1410,0,0,981,0,0,946,0,0,1011,0,0,703,0,0,731,0,0,1154,0,0,994,0,0,1694,1,50658,"WAT","HY" 34,26,1,1,,21,19,"CONSUMERS POWER CO","C W TIPPY",0,,4254,"0M",1294,,95,95,5282,0,0,4150,0,0,6293,0,0,5440,0,0,5008,0,0,4326,0,0,4371,0,0,5203,0,0,4190,0,0,4573,0,0,5014,0,0,4570,0,0,1698,1,50658,"WAT","HY" 34,26,1,1,,21,25,"CONSUMERS POWER CO","COOKE",0,,4254,"0M",1294,,95,95,2367,0,0,1873,0,0,2687,0,0,2739,0,0,2539,0,0,1904,0,0,1946,0,0,2050,0,0,1790,0,0,2028,0,0,2329,0,0,2102,0,0,1700,1,50658,"WAT","HY" 34,26,1,1,,21,26,"CONSUMERS POWER CO","CROTON",0,,4254,"0M",1294,,95,95,4641,0,0,3300,0,0,4505,0,0,3399,0,0,3856,0,0,2193,0,0,2270,0,0,3054,0,0,2166,0,0,2146,0,0,3632,0,0,3031,0,0,1701,1,50658,"WAT","HY" 34,26,1,1,,21,28,"CONSUMERS POWER CO","FIVE CHANLS",0,,4254,"0M",1294,,95,95,2230,0,0,1812,0,0,2478,0,0,2479,0,0,2347,0,0,1784,0,0,1756,0,0,1920,0,0,1683,0,0,1895,0,0,2059,0,0,1961,0,0,1704,1,50658,"WAT","HY" 34,26,1,1,,21,29,"CONSUMERS POWER CO","FOOTE",0,,4254,"0M",1294,,95,95,2783,0,0,2213,0,0,3183,0,0,3182,0,0,2865,0,0,2239,0,0,2243,0,0,2387,0,0,2148,0,0,2381,0,0,2653,0,0,2564,0,0,1705,1,50658,"WAT","HY" 34,26,1,1,,21,32,"CONSUMERS POWER CO","HARDY",0,,4254,"0M",1294,,95,95,10721,0,0,6926,0,0,9337,0,0,6936,0,0,8622,0,0,4585,0,0,5199,0,0,7002,0,0,5021,0,0,5910,0,0,8935,0,0,6928,0,0,1707,1,50658,"WAT","HY" 34,26,1,1,,21,34,"CONSUMERS POWER CO","HODENPYL",0,,4254,"0M",1294,,95,95,3684,0,0,2846,0,0,4474,0,0,3916,0,0,3467,0,0,2500,0,0,2611,0,0,3740,0,0,2787,0,0,3279,0,0,4048,0,0,3474,0,0,1708,1,50658,"WAT","HY" 34,26,1,1,,21,38,"CONSUMERS POWER CO","LOUD",0,,4254,"0M",1294,,95,95,1690,0,0,1352,0,0,1882,0,0,1972,0,0,1822,0,0,1365,0,0,1424,0,0,1486,0,0,1265,0,0,1447,0,0,1654,0,0,1528,0,0,1712,1,50658,"WAT","HY" 34,26,1,1,,21,40,"CONSUMERS POWER CO","LD PUMP ST",0,"P-PUMPSTG",4254,"0M",1294,,95,95,-64589,233719,0,-57356,190758,0,-53950,195482,0,-71987,218971,0,-31897,115524,0,-60407,243003,0,-67008,223779,0,-77060,289960,0,-65130,213393,0,-70748,250623,0,-58089,197571,0,-53599,186916,0,1713,1,50658,"WAT","HY" 34,26,1,1,,21,42,"CONSUMERS POWER CO","MIO",0,,4254,"0M",1294,,95,95,1408,0,0,1113,0,0,1515,0,0,1563,0,0,1475,0,0,1064,0,0,1017,0,0,1161,0,0,991,0,0,1142,0,0,1213,0,0,1283,0,0,1714,1,50658,"WAT","HY" 34,26,1,1,,21,49,"CONSUMERS POWER CO","ROGERS",0,,4254,"0M",1294,,95,95,2752,0,0,1858,0,0,2142,0,0,2190,0,0,2657,0,0,1513,0,0,1706,0,0,2352,0,0,1808,0,0,1968,0,0,2874,0,0,2363,0,0,1716,1,50658,"WAT","HY" 34,26,1,1,,21,58,"CONSUMERS POWER CO","WEBBER",0,,4254,"0M",1294,,95,95,1914,0,0,1295,0,0,2105,0,0,2059,0,0,1759,0,0,836,0,0,748,0,0,1150,0,0,321,0,0,398,0,0,1321,0,0,928,0,0,1722,1,50658,"WAT","HY" 34,26,1,2,2,21,65,"CONSUMERS POWER CO","JH CAMPBELL",0,"LIGHT OIL",4254,"0M",1294,,95,95,376,598,4499,283,447,4052,1907,3068,3484,2100,3394,4019,519,835,7113,985,1571,5531,311,508,5023,954,1563,3460,1220,1999,3604,1817,2975,4007,1351,2181,3968,1278,2102,3566,1710,1,50658,"FO2","ST" 34,26,1,2,6,21,65,"CONSUMERS POWER CO","JH CAMPBELL",0,"BIT COAL",4254,"0M",1294,,95,95,688173,266958,245746,629424,250579,214312,554183,223280,253129,421848,167012,399301,597082,246292,477288,640613,258293,443746,603954,255371,374582,621938,269381,277933,502655,214049,299355,646510,274214,290900,687374,281291,323449,707593,291775,344669,1710,1,50658,"BIT","ST" 34,26,1,4,2,21,65,"CONSUMERS POWER CO","JH CAMPBELL",0,"LIGHT OIL",4254,"0M",1294,,95,95,3,18,3579,26,68,3511,5,2,3510,3,8,3501,14,105,3396,1,1,3395,89,352,3043,300,894,2816,0,0,2816,0,0,2780,12,29,2750,0,0,2750,1710,1,50658,"FO2","GT" 34,26,1,2,2,21,70,"CONSUMERS POWER CO","B C COBB",0,"LIGHT OIL",4254,"0M",1294,,95,95,119,201,0,106,183,0,15,25,0,151,260,0,15,25,0,11,20,0,1038,1787,0,616,1065,0,337,575,0,124,210,0,609,1027,0,116,197,0,1695,1,50658,"FO2","ST" 34,26,1,2,6,21,70,"CONSUMERS POWER CO","B C COBB",0,"BIT COAL",4254,"0M",1294,,95,95,171685,81705,303296,112559,55863,247433,173477,86683,160750,176230,89153,134091,171229,86036,137454,177787,81941,81399,152875,79003,128717,175209,87546,157003,143997,70790,171410,172337,82837,192966,174578,86518,170355,171682,85592,358752,1695,1,50658,"BIT","ST" 34,26,1,2,9,21,70,"CONSUMERS POWER CO","B C COBB",0,"NAT GAS",4254,"0M",1294,,95,95,921,9110,0,661,6660,0,735,7267,0,667,6715,0,387,3867,0,701,6993,0,490,4921,0,732,7388,0,377,3745,0,625,6179,0,826,8120,0,729,7244,0,1695,1,50658,"NG","ST" 34,26,1,4,9,21,71,"CONSUMERS POWER CO","B E MORROW",0,"NAT GAS",4254,"0M",1294,,95,95,21,1252,0,61,797,0,23,390,0,0,0,0,0,0,0,401,8324,0,371,9296,0,1149,25420,0,33,769,0,0,0,0,0,0,0,0,0,0,1696,1,50658,"NG","GT" 34,26,1,2,2,21,73,"CONSUMERS POWER CO","D E KARN",0,"LIGHT OIL",4254,"0M",1294,,95,95,95,155,4465,729,1211,3870,49,79,4192,1413,2315,3502,1471,2465,4192,323,528,4944,367,607,3918,3048,4972,4484,1078,1808,6755,441,718,5263,482,776,5343,208,340,5633,1702,1,50658,"FO2","ST" 34,26,1,2,3,21,73,"CONSUMERS POWER CO","D E KARN",0,"HEAVY OIL",4254,"0M",1294,,95,95,17263,41101,178646,32230,70799,144631,3259,14882,162100,3710,14639,204722,1348,4618,245418,27469,68422,203997,56064,119639,141693,95085,202123,111624,29250,66633,127707,-2403,604,148925,24960,66400,139076,24013,58612,178738,1702,1,50658,"FO6","ST" 34,26,1,2,6,21,73,"CONSUMERS POWER CO","D E KARN",0,"BIT COAL",4254,"0M",1294,,95,95,201703,83102,130505,120289,51141,110637,178823,75624,145086,292219,122156,106091,232390,98356,133690,313475,134010,126635,299344,128910,118120,335951,141190,65110,201053,86888,158744,293910,123720,122461,305821,124517,171638,315326,164076,152202,1702,1,50658,"BIT","ST" 34,26,1,2,9,21,73,"CONSUMERS POWER CO","D E KARN",0,"NAT GAS",4254,"0M",1294,,95,95,0,0,0,0,0,0,126,3486,0,7447,169068,0,10439,207703,0,12622,193255,0,50264,657734,0,101002,1316168,0,18325,257600,0,0,0,0,11460,187792,0,10071,152074,0,1702,1,50658,"NG","ST" 34,26,1,4,9,21,74,"CONSUMERS POWER CO","GAYLORD",0,"NAT GAS",4254,"0M",1294,,95,95,16,288,0,102,1836,0,15,332,0,0,0,0,0,0,0,515,9959,0,346,16592,0,3203,53480,0,4,2469,0,2,482,0,49,1700,0,0,0,0,1706,1,50658,"NG","GT" 34,26,1,4,9,21,79,"CONSUMERS POWER CO","STRAITS",0,"NAT GAS",4254,"0M",1294,,95,95,0,0,0,20,371,0,33,801,0,0,0,0,0,427,0,0,0,0,0,0,0,201,2828,0,203,2283,0,10,340,0,0,0,0,0,0,0,1718,1,50658,"NG","GT" 34,26,1,4,9,21,80,"CONSUMERS POWER CO","THETFORD",0,"NAT GAS",4254,"0M",1294,,95,95,-73,0,0,51,3065,0,-47,1801,0,-81,0,0,-11,1761,0,1724,48143,0,3577,74211,0,8176,149686,0,359,8949,0,103,2718,0,99,1204,0,-193,371,0,1719,1,50658,"NG","GT" 34,26,1,2,2,21,81,"CONSUMERS POWER CO","WEADOCK",0,"LIGHT OIL",4254,"0M",1294,,95,95,0,0,0,43,71,0,206,349,0,0,0,0,0,0,0,32,55,0,418,680,0,532,903,0,187,305,0,128,198,0,422,716,0,0,0,0,1720,1,50658,"FO2","ST" 34,26,1,2,6,21,81,"CONSUMERS POWER CO","WEADOCK",0,"BIT COAL",4254,"0M",1294,,95,95,192310,85708,45814,188975,83651,56497,190706,85006,57355,187037,83678,61516,177334,80278,58828,184095,83971,65159,155632,70970,60725,137329,63894,42030,160634,72475,36751,171924,77864,49121,139453,63086,78970,91065,41232,72440,1720,1,50658,"BIT","ST" 34,26,1,4,9,21,81,"CONSUMERS POWER CO","WEADOCK",0,"NAT GAS",4254,"0M",1294,,95,95,1,12,0,16,289,0,3,117,0,0,0,0,0,0,0,7,73,0,6,58,0,5,49,0,44,404,0,8,72,0,0,0,0,0,0,0,1720,1,50658,"NG","GT" 34,26,1,2,2,21,84,"CONSUMERS POWER CO","WHITING",0,"LIGHT OIL",4254,"0M",1294,,95,95,67,114,0,17,29,0,23,38,0,43,74,0,40,69,0,63,110,0,122,217,0,60,107,0,40,69,0,81,138,0,152,260,0,71,122,0,1723,1,50658,"FO2","ST" 34,26,1,2,6,21,84,"CONSUMERS POWER CO","WHITING",0,"BIT COAL",4254,"0M",1294,,95,95,187062,77616,89934,185094,74786,71016,195982,81145,69534,189147,74635,99630,151777,65376,105918,176546,69938,98910,159910,67506,87345,170468,72736,86560,153306,62762,86674,136600,57354,115439,140799,58953,146166,157205,64361,118168,1723,1,50658,"BIT","ST" 34,26,1,4,2,21,84,"CONSUMERS POWER CO","WHITING",0,"LIGHT OIL",4254,"0M",1294,,95,95,0,0,3383,0,0,3383,0,0,3383,0,0,3383,0,0,3383,13,41,3341,40,165,3176,586,1651,1525,5,60,3025,0,0,3037,0,0,3037,13,28,3009,1723,1,50658,"FO2","GT" 34,26,1,2,1,30,2,"DETROIT EDISON CO (THE)","FERMI 2",0,"NUCLEAR",5109,"0M",1294,,,95,57145,0,0,-2291,0,0,191112,0,0,332959,0,0,429952,0,0,318206,0,0,641286,0,0,646514,0,0,632787,0,0,629384,0,0,621966,0,0,597155,0,0,1729,1,50782,"UR","ST" 34,26,1,2,2,30,5,"DETROIT EDISON CO (THE)","HARBOR BECH",0,"LIGHT OIL",5109,"0M",1294,,,95,438,1013,575,399,920,291,337,838,431,226,616,443,208,409,330,272,533,404,256,504,456,402,782,347,137,284,368,256,520,468,392,891,512,324,728,420,1731,1,50782,"FO2","ST" 34,26,1,2,6,30,5,"DETROIT EDISON CO (THE)","HARBOR BECH",0,"BIT COAL",5109,"0M",1294,,,95,19026,9916,30527,16932,9323,21204,13176,7346,13858,2917,1770,26559,11229,4899,21660,24213,10667,10993,14172,6321,18792,27860,12241,19588,7804,3632,16168,5468,2542,33328,18662,9888,37691,11914,6187,42217,1731,1,50782,"BIT","ST" 34,26,1,3,2,30,5,"DETROIT EDISON CO (THE)","HARBOR BECH",0,"LIGHT OIL",5109,"0M",1294,,,95,0,0,0,-6,7,0,1,2,0,-9,2,0,-7,8,0,-8,5,0,10,38,0,215,410,0,-7,4,0,-10,0,0,-9,2,0,-4,5,0,1731,1,50782,"FO2","IC" 34,26,1,2,2,30,10,"DETROIT EDISON CO (THE)","BEACON",0,"LIGHT OIL",5109,"0M",1294,,,95,0,0,5557,0,0,6175,0,0,6175,0,0,6175,0,0,6175,0,0,6175,0,0,6175,0,0,6175,0,0,6175,0,0,6175,0,0,6175,0,0,6175,1724,1,50782,"FO2","ST" 34,26,1,2,6,30,10,"DETROIT EDISON CO (THE)","BEACON",0,"BIT COAL",5109,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1724,1,50782,"BIT","ST" 34,26,1,2,9,30,10,"DETROIT EDISON CO (THE)","BEACON",0,"NAT GAS",5109,"0M",1294,,,95,7417,215941,0,6530,166317,0,7378,568420,0,6367,460210,0,159,197560,0,-948,134770,0,-213,186220,0,133,234260,0,-472,176150,0,2357,308180,0,7138,508130,0,9005,660050,0,1724,1,50782,"NG","ST" 34,26,1,2,2,30,30,"DETROIT EDISON CO (THE)","CONNERS CRK",0,"LIGHT OIL",5109,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1726,1,50782,"FO2","ST" 34,26,1,2,6,30,30,"DETROIT EDISON CO (THE)","CONNERS CRK",0,"BIT COAL",5109,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1726,1,50782,"BIT","ST" 34,26,1,2,9,30,30,"DETROIT EDISON CO (THE)","CONNERS CRK",0,"NAT GAS",5109,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1726,1,50782,"NG","ST" 34,26,1,3,2,30,30,"DETROIT EDISON CO (THE)","CONNERS CRK",0,"LIGHT OIL",5109,"0M",1294,,,95,-19,10,403,-10,35,368,-17,0,368,-7,30,339,-12,1,338,-11,0,338,3,19,320,272,571,293,4,24,270,-18,0,270,-7,17,327,-18,1,327,1726,1,50782,"FO2","IC" 34,26,1,4,2,30,36,"DETROIT EDISON CO (THE)","HANCOCK",0,"LIGHT OIL",5109,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1730,1,50782,"FO2","GT" 34,26,1,4,9,30,36,"DETROIT EDISON CO (THE)","HANCOCK",0,"NAT GAS",5109,"0M",1294,,,95,75,1708,0,88,2028,0,-39,0,0,75,1898,0,83,2205,0,1939,35032,0,831,16862,0,4390,52333,0,-32,0,0,63,13854,0,113,1716,0,13,727,0,1730,1,50782,"NG","GT" 34,26,1,4,2,30,37,"DETROIT EDISON CO (THE)","ENRCO FERMI",0,"LIGHT OIL",5109,"0M",1294,,,95,-23,67,9592,56,437,9156,-6,95,9061,3,40,9021,46,201,8820,22,73,8747,153,611,8157,2354,5359,6937,191,530,6407,25,406,6813,-7,117,6696,7,155,6541,1729,1,50782,"FO2","GT" 34,26,1,2,6,30,40,"DETROIT EDISON CO (THE)","MARYSVILLE",0,"BIT COAL",5109,"0M",1294,,,95,3451,2200,43168,1939,1836,41332,409,1040,40292,674,1100,39192,84,409,38783,2426,2025,36758,3997,2730,34028,24162,13503,20607,-821,0,20689,1187,1161,28911,77,1281,27712,1498,1298,26498,1732,1,50782,"BIT","ST" 34,26,1,2,9,30,40,"DETROIT EDISON CO (THE)","MARYSVILLE",0,"NAT GAS",5109,"0M",1294,,,95,758,11483,0,601,14357,0,109,6809,0,104,4289,0,18,2144,0,313,6731,0,407,7237,0,958,13528,0,-821,0,0,0,12,0,16,6473,0,766,16219,0,1732,1,50782,"NG","ST" 34,26,1,2,3,30,41,"DETROIT EDISON CO (THE)","RIVER ROUGE",0,"HEAVY OIL",5109,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1740,1,50782,"FO6","ST" 34,26,1,2,6,30,41,"DETROIT EDISON CO (THE)","RIVER ROUGE",0,"BIT COAL",5109,"0M",1294,,,95,219134,93352,55641,159139,73272,70516,175906,83846,66525,288407,131567,61779,267048,129044,38352,279504,129178,23957,147366,70111,56314,275336,132806,20939,244758,114254,49404,262473,127544,3398,311969,149413,952,289268,136099,23606,1740,1,50782,"BIT","ST" 34,26,1,2,9,30,41,"DETROIT EDISON CO (THE)","RIVER ROUGE",0,"N&BF GAS",5109,"0M",1294,,,95,13490,1142053,0,14328,1002326,0,27337,1536596,0,24705,1839986,0,27750,1701771,0,26423,2082983,0,18771,1535930,0,35058,2287285,0,27144,2100264,0,28968,1856118,0,25198,1941541,0,33781,2350884,0,1740,1,50782,"NG","ST" 34,26,1,3,2,30,41,"DETROIT EDISON CO (THE)","RIVER ROUGE",0,"LIGHT OIL",5109,"0M",1294,,,95,-64,0,605,-7,10,595,-39,17,579,-34,0,579,-17,26,552,-25,14,538,19,67,471,444,902,433,1,70,648,-12,14,633,-30,19,614,-47,0,614,1740,1,50782,"FO2","IC" 34,26,1,2,2,30,42,"DETROIT EDISON CO (THE)","ST CLAIR",0,"LIGHT OIL",5109,"0M",1294,,,95,708,1282,34227,1068,2121,32093,3247,6007,21655,5314,10052,11849,6361,11768,6584,7708,14388,5004,650,1226,3459,1539,2748,8759,0,0,36637,1336,2409,49346,2815,5029,26266,1015,1855,17641,1743,1,50782,"FO2","ST" 34,26,1,2,3,30,42,"DETROIT EDISON CO (THE)","ST CLAIR",0,"HEAVY OIL",5109,"0M",1294,,,95,67,115,41140,472,857,40929,201,356,40849,2072,3718,37736,1534,2609,35989,1725,3066,36174,1324,2443,34132,3965,6895,28662,605,1053,29986,0,0,30968,0,0,26726,0,0,26726,1743,1,50782,"FO6","ST" 34,26,1,2,6,30,42,"DETROIT EDISON CO (THE)","ST CLAIR",0,"BIT COAL",5109,"0M",1294,,,95,527154,296526,1904789,579915,330143,1298971,632525,361281,910345,483802,281107,948523,421431,243485,1140644,540448,305320,1495864,747171,415802,1708026,687564,368710,1805574,643125,334613,2160088,580105,305454,2328721,615025,322461,2497621,727329,387191,2536457,1743,1,50782,"BIT","ST" 34,26,1,2,9,30,42,"DETROIT EDISON CO (THE)","ST CLAIR",0,"NAT GAS",5109,"0M",1294,,,95,300,3042,0,495,5533,0,1182,12305,0,2642,28255,0,933,9784,0,595,6301,0,407,4362,0,801,8135,0,440,4467,0,1095,11359,0,723,7386,0,821,8584,0,1743,1,50782,"NG","ST" 34,26,1,3,2,30,42,"DETROIT EDISON CO (THE)","ST CLAIR",0,"LIGHT OIL",5109,"0M",1294,,,95,-21,0,0,6,12,0,-10,0,0,-6,8,0,0,0,0,-7,0,0,16,41,0,267,476,0,-7,0,0,-6,5,0,-10,0,0,-10,0,0,1743,1,50782,"FO2","IC" 34,26,1,4,2,30,42,"DETROIT EDISON CO (THE)","ST CLAIR",0,"LIGHT OIL",5109,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,-20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1743,1,50782,"FO2","GT" 34,26,1,4,9,30,42,"DETROIT EDISON CO (THE)","ST CLAIR",0,"NAT GAS",5109,"0M",1294,,,95,-15,0,0,19,222,0,0,0,0,-42,25,0,16,175,0,-11,0,0,18,346,0,-7,0,0,14,423,0,-10,0,0,-1,11,0,-3,54,0,1743,1,50782,"NG","GT" 34,26,1,2,2,30,45,"DETROIT EDISON CO (THE)","TRENTON CNL",0,"LIGHT OIL",5109,"0M",1294,,,95,2117,5567,8586,1135,2059,8309,1543,2836,11784,1101,1955,9830,427,776,11295,1378,2621,9024,1071,2007,11104,2983,5339,10903,715,1328,11816,1060,1978,12599,597,1093,11507,590,1046,12738,1745,1,50782,"FO2","ST" 34,26,1,2,6,30,45,"DETROIT EDISON CO (THE)","TRENTON CNL",0,"BIT COAL",5109,"0M",1294,,,95,73007,53010,125588,323088,144439,89756,284495,135448,125363,339095,164391,64193,278956,138759,81062,334708,166852,92923,344600,175834,77241,387486,184117,48162,328365,176710,67462,355401,186425,60433,331742,165511,87568,334941,167769,110839,1745,1,50782,"BIT","ST" 34,26,1,4,2,30,47,"DETROIT EDISON CO (THE)","NORTHEAST",0,"LIGHT OIL",5109,"0M",1294,,,95,-29,0,2051,-9,47,2004,-31,0,2004,9,63,1940,10,85,1855,610,1799,2214,83,729,2195,1190,3965,1920,-117,0,1920,-17,238,2156,14,127,2030,-35,0,2029,1734,1,50782,"FO2","GT" 34,26,1,4,9,30,47,"DETROIT EDISON CO (THE)","NORTHEAST",0,"NAT GAS",5109,"0M",1294,,,95,-49,274,0,3,1924,0,-15,871,0,5,475,0,-70,0,0,236,15908,0,291,28798,0,1942,30986,0,-58,0,0,1,1017,0,-88,44,0,53,1442,0,1734,1,50782,"NG","GT" 34,26,1,2,2,30,48,"DETROIT EDISON CO (THE)","MONROE",0,"LIGHT OIL",5109,"0M",1294,,,95,2386,3835,8777,2169,3558,10202,1658,2697,9630,1424,2341,9860,7134,12079,8987,1592,2699,8841,1898,3281,9073,5386,9424,7517,3930,5748,10052,1222,2050,9934,11813,19875,7429,12821,21265,9414,1733,1,50782,"FO2","ST" 34,26,1,2,6,30,48,"DETROIT EDISON CO (THE)","MONROE",0,"BIT COAL",5109,"0M",1294,,,95,2055700,868846,1154764,1856029,799581,917721,1821777,792041,931826,1409911,611222,1269078,1619971,729115,1538754,2012769,908040,1475012,1970161,908523,1280247,1479379,696258,1214669,1343155,523545,1406013,1481424,671457,1583586,1150121,520559,1842184,1706233,735862,1745134,1733,1,50782,"BIT","ST" 34,26,1,3,2,30,48,"DETROIT EDISON CO (THE)","MONROE",0,"LIGHT OIL",5109,"0M",1294,,,95,-5,0,0,-47,52,0,-40,0,0,-48,0,0,-40,0,0,-37,0,0,22,100,0,569,1187,0,-19,27,0,-45,0,0,0,0,0,-38,48,0,1733,1,50782,"FO2","IC" 34,26,1,4,2,30,49,"DETROIT EDISON CO (THE)","SUPERIOR",0,"LIGHT OIL",5109,"0M",1294,,,95,25,276,2009,5,207,2055,-10,125,1930,-44,25,2211,-7,77,2138,483,1399,2329,184,1197,2055,1386,4813,2182,-36,0,2182,-43,0,2182,-60,47,2135,26,287,2099,1744,1,50782,"FO2","GT" 34,26,1,3,2,30,57,"DETROIT EDISON CO (THE)","COLFAX",0,"LIGHT OIL",5109,"0M",1294,,,95,-45,0,676,-31,29,648,-44,4,643,-30,10,633,-35,0,633,168,401,519,174,333,421,293,427,405,-24,19,883,-23,118,865,-35,29,571,-40,7,564,1725,1,50782,"FO2","IC" 34,26,1,3,2,30,60,"DETROIT EDISON CO (THE)","DAYTON",0,"LIGHT OIL",5109,"0M",1294,,,95,-74,0,323,-18,33,290,-38,83,206,-45,0,206,-41,0,206,-36,0,206,5,36,290,470,915,178,-7,64,114,-40,0,232,-39,24,250,-55,0,250,1727,1,50782,"FO2","IC" 34,26,1,3,2,30,67,"DETROIT EDISON CO (THE)","OLIVER",0,"LIGHT OIL",5109,"0M",1294,,,95,-46,33,617,-34,17,600,-48,0,600,-40,0,600,-21,10,590,-28,0,590,39,98,493,571,868,617,-20,22,842,-36,0,842,-35,17,569,-54,0,569,1735,1,50782,"FO2","IC" 34,26,1,3,2,30,69,"DETROIT EDISON CO (THE)","PLACID",0,"LIGHT OIL",5109,"0M",1294,,,95,-3,0,461,-72,32,429,-45,0,429,-37,0,429,-23,18,411,-30,0,661,26,341,571,598,894,540,-20,22,814,-23,0,814,-42,14,511,-53,0,511,1737,1,50782,"FO2","IC" 34,26,1,3,2,30,71,"DETROIT EDISON CO (THE)","PUTNAM",0,"LIGHT OIL",5109,"0M",1294,,,95,-40,0,424,-28,30,636,-41,0,636,-34,0,636,-24,7,629,-26,0,629,5,48,581,482,947,574,8,71,750,-32,0,750,-31,17,502,-46,0,502,1739,1,50782,"FO2","IC" 34,26,1,3,2,30,75,"DETROIT EDISON CO (THE)","SLOCUM",0,"LIGHT OIL",5109,"0M",1294,,,95,-55,0,640,-28,26,614,-41,0,614,-37,0,614,-18,14,600,-24,7,593,68,117,476,605,1403,429,-34,238,667,-23,38,629,-34,0,629,-50,19,610,1741,1,50782,"FO2","IC" 34,26,1,3,2,30,80,"DETROIT EDISON CO (THE)","WILMOT",0,"LIGHT OIL",5109,"0M",1294,,,95,-44,0,570,-33,27,543,-45,0,543,-27,10,533,-34,0,533,-27,0,533,26,133,633,600,1086,381,-31,23,855,-24,0,855,-43,0,576,-51,0,576,1746,1,50782,"FO2","IC" 34,26,1,2,2,30,90,"DETROIT EDISON CO (THE)","GREENWOOD",0,"LIGHT OIL",5109,"0M",1294,,,95,4,28,3428,6,13,4092,26,53,4039,0,0,4039,0,0,4039,23,55,3901,68,1158,3743,128,266,3477,21,48,3429,-1197,0,3910,22,49,3861,7,58,3803,6035,1,50782,"FO2","ST" 34,26,1,2,3,30,90,"DETROIT EDISON CO (THE)","GREENWOOD",0,"HEAVY OIL",5109,"0M",1294,,,95,510,3034,359269,3284,6867,352402,1894,3715,348687,0,0,348688,0,0,348687,2494,5699,342305,1189,2612,339692,9531,18685,321008,265,585,320423,0,0,320266,2252,4634,315632,450,3744,311888,6035,1,50782,"FO6","ST" 34,26,1,2,9,30,90,"DETROIT EDISON CO (THE)","GREENWOOD",0,"NAT GAS",5109,"0M",1294,,,95,1316,47283,0,28610,362616,0,31504,369892,0,-1411,0,0,-1129,0,0,13400,184849,0,17287,229421,0,111245,1316925,0,10246,136231,0,0,0,0,24239,301018,0,988,49739,0,6035,1,50782,"NG","ST" 34,26,1,2,2,30,95,"DETROIT EDISON CO (THE)","BELLE RIVER",0,"LIGHT OIL",5109,"0M",1294,,,95,2577,4561,7297,158,278,8186,1554,2756,11765,504,881,11639,1160,2811,8828,908,1609,12548,1655,2968,10908,397,713,11379,1199,2120,11764,1806,3221,11213,1755,3110,10505,779,1390,10598,6034,1,50782,"FO2","ST" 34,26,1,2,6,30,95,"DETROIT EDISON CO (THE)","BELLE RIVER",0,"BIT COAL",5109,"0M",1294,,,95,757664,423548,0,538262,298137,0,548728,305605,0,813223,442905,0,804010,430468,0,820871,441566,0,794951,433415,0,874470,484029,0,783432,434518,0,753582,413798,0,703662,384115,0,770716,420877,0,6034,1,50782,"BIT","ST" 34,26,1,3,2,30,95,"DETROIT EDISON CO (THE)","BELLE RIVER",0,"LIGHT OIL",5109,"0M",1294,,,95,-37,0,628,-22,20,608,-35,0,608,-15,17,591,-25,0,591,-20,0,591,92,114,477,628,1371,395,-9,22,539,-26,121,660,-18,0,660,-51,0,660,6034,1,50782,"FO2","IC" 34,26,1,2,6,30,100,"DETROIT EDISON CO (THE)","CEN STORAGE",0,"BIT COAL",5109,"0M",1294,,,95,0,0,1269012,0,0,2228865,0,0,2946474,0,0,3197363,0,0,2993113,0,0,2587784,0,0,1484314,0,0,2112586,0,0,1678082,0,0,1488877,0,0,1413995,0,0,930358,8807,1,50782,"BIT","ST" 34,26,1,1,,33,5,"EDISON SAULT ELECTRIC CO","EDSON HYDRO",0,,5659,"0M",1294,,,95,19592,0,0,15547,0,0,15883,0,0,17286,0,0,18650,0,0,15539,0,0,15236,0,0,18725,0,0,15823,0,0,19459,0,0,20771,0,0,18274,0,0,1751,1,50862,"WAT","HY" 34,26,1,3,2,33,18,"EDISON SAULT ELECTRIC CO","MANISTIQUE",0,"LIGHT OIL",5659,"0M",1294,,,95,-17,0,356,39,93,264,8,48,216,14,59,333,10,29,304,-1,115,289,-2,15,274,14,45,228,1,25,203,-1,15,366,0,38,328,18,80,249,1750,1,50862,"FO2","IC" 34,26,1,2,1,54,1,"INDIANA MICHIGAN POWER CO","D C COOK",0,"NUCLEAR",9324,"0M",1294,,363,95,741655,0,0,690658,0,0,762188,0,0,736714,0,0,759369,0,0,571230,0,0,215173,0,0,0,0,0,0,0,0,5231,0,0,400663,0,0,513907,0,0,6000,1,57745,"UR","ST" 34,26,1,2,1,54,2,"INDIANA MICHIGAN POWER CO","D C COOK",0,"NUCLEAR",9324,"0M",1294,,363,95,807133,0,0,590722,0,0,774579,0,0,673765,0,0,783849,0,0,754340,0,0,759411,0,0,636809,0,0,461988,0,0,791419,0,0,775854,0,0,792659,0,0,6000,1,57745,"UR","ST" 34,26,1,1,,54,5,"INDIANA MICHIGAN POWER CO","BERRIEN SPS",0,,9324,"0M",1294,,363,95,2739,0,0,1862,0,0,2963,0,0,1589,0,0,0,0,0,507,0,0,48,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1753,1,57745,"WAT","HY" 34,26,1,1,,54,10,"INDIANA MICHIGAN POWER CO","BUCHANAN",0,,9324,"0M",1294,,363,95,1636,0,0,1617,0,0,1789,0,0,1926,0,0,2010,0,0,1668,0,0,1549,0,0,1775,0,0,1157,0,0,1044,0,0,1601,0,0,1633,0,0,1754,1,57745,"WAT","HY" 34,26,1,1,,54,15,"INDIANA MICHIGAN POWER CO","CONSTANTINE",0,,9324,"0M",1294,,363,95,609,0,0,520,0,0,626,0,0,584,0,0,568,0,0,380,0,0,291,0,0,327,0,0,221,0,0,160,0,0,483,0,0,395,0,0,1760,1,57745,"WAT","HY" 34,26,1,1,,54,20,"INDIANA MICHIGAN POWER CO","MOTTVILLE",0,,9324,"0M",1294,,363,95,786,0,0,612,0,0,875,0,0,831,0,0,783,0,0,502,0,0,393,0,0,637,0,0,342,0,0,301,0,0,693,0,0,525,0,0,1761,1,57745,"WAT","HY" 34,26,1,1,,95,5,"NORTHERN STATES POWER CO","SAXON",0,,13781,"0M",1294,,410,95,1021,0,0,771,0,0,1042,0,0,1101,0,0,1129,0,0,1082,0,0,1037,0,0,608,0,0,432,0,0,885,0,0,908,0,0,929,0,0,1756,5,52107,"WAT","HY" 34,26,1,1,,95,10,"NORTHERN STATES POWER CO","SUPERIOR FL",0,,13781,"0M",1294,,410,95,1176,0,0,822,0,0,1188,0,0,1329,0,0,1373,0,0,1228,0,0,1183,0,0,630,0,0,388,0,0,981,0,0,999,0,0,964,0,0,1757,5,52107,"WAT","HY" 34,26,1,1,,132,5,"UPPER PENINSULA POWER CO","PRICKETT",0,,19578,"0A",1294,,,95,433,0,0,359,0,0,1134,0,0,1258,0,0,1592,0,0,751,0,0,12,0,0,234,0,0,153,0,0,988,0,0,1037,0,0,629,0,0,1773,4,53019,"WAT","HY" 34,26,1,1,,132,10,"UPPER PENINSULA POWER CO","VICTORIA",0,,19578,"0A",1294,,,95,6415,0,0,4766,0,0,6679,0,0,7840,0,0,7756,0,0,6632,0,0,4837,0,0,3660,0,0,2419,0,0,8104,0,0,7815,0,0,5955,0,0,1774,4,53019,"WAT","HY" 34,26,1,2,6,132,12,"UPPER PENINSULA POWER CO","ESCANABA",0,"BIT COAL",19578,"0A",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1771,4,53019,"BIT","ST" 34,26,1,2,6,132,20,"UPPER PENINSULA POWER CO","J H WARDEN",0,"BIT COAL",19578,"0A",1294,,,95,0,0,3383,0,0,3383,0,0,3383,0,0,3383,-24,0,3383,0,0,3383,0,0,3393,0,0,3383,0,0,3383,0,0,3383,0,0,3383,0,0,3383,1772,4,53019,"BIT","ST" 34,26,1,2,9,132,20,"UPPER PENINSULA POWER CO","J H WARDEN",0,"NAT GAS",19578,"0A",1294,,,95,-25,0,0,-23,0,0,-25,0,0,-21,0,0,0,0,0,-20,0,0,-21,0,0,-20,0,0,-20,0,0,80,3408,0,-27,0,0,-27,0,0,1772,4,53019,"NG","ST" 34,26,1,4,2,132,35,"UPPER PENINSULA POWER CO","PORTAGE GEN",0,"LIGHT OIL",19578,"0A",1294,,,95,-11,0,3901,-14,0,3901,-14,0,1903,-11,0,1903,-11,0,1903,151,439,1464,102,300,1681,79,230,2155,-10,0,2155,172,513,1642,34,149,1844,-24,0,2197,8019,4,53019,"FO2","GT" 34,26,1,4,2,132,40,"UPPER PENINSULA POWER CO","GLADSTONE",0,"LIGHT OIL",19578,"0A",1294,,,95,39,186,1874,1091,3093,2342,3,107,2234,158,549,2195,-13,0,2195,131,417,1777,453,1272,2023,467,1289,2106,4,45,2061,16,81,1980,-14,64,1916,267,713,2254,7119,4,53019,"FO2","GT" 34,26,1,1,,132,45,"UPPER PENINSULA POWER CO","HOIST",0,,19578,"0A",1294,,,95,823,0,0,736,0,0,1195,0,0,1182,0,0,1571,0,0,1383,0,0,512,0,0,944,0,0,318,0,0,771,0,0,1341,0,0,1221,0,0,7115,4,53019,"WAT","HY" 34,26,1,1,,132,50,"UPPER PENINSULA POWER CO","MC CLURE",0,,19578,"0A",1294,,,95,3015,0,0,2243,0,0,3757,0,0,3690,0,0,4724,0,0,4167,0,0,1726,0,0,3051,0,0,1241,0,0,2590,0,0,4100,0,0,3765,0,0,7116,4,53019,"WAT","HY" 34,26,1,1,,132,55,"UPPER PENINSULA POWER CO","AU TRAIN",0,,19578,"0A",1294,,,95,358,0,0,279,0,0,467,0,0,669,0,0,547,0,0,270,0,0,200,0,0,401,0,0,268,0,0,356,0,0,720,0,0,453,0,0,7117,4,53019,"WAT","HY" 34,26,1,1,,132,60,"UPPER PENINSULA POWER CO","CATARACT",0,,19578,"0A",1294,,,95,114,0,0,109,0,0,330,0,0,476,0,0,741,0,0,317,0,0,260,0,0,169,0,0,108,0,0,306,0,0,369,0,0,186,0,0,7118,4,53019,"WAT","HY" 34,26,1,2,2,138,1,"WISCONSIN ELECTRIC PWR CO","PRESQUE ISL",0,"LIGHT OIL",20847,"0M",1294,,420,95,535,1000,6812,232,834,6835,689,1327,6693,692,1352,8568,415,781,7783,361,679,7103,412,792,7330,406,717,7975,377,695,8818,272,527,8451,562,1166,7285,420,886,6193,1769,4,53330,"FO2","ST" 34,26,1,2,6,138,1,"WISCONSIN ELECTRIC PWR CO","PRESQUE ISL",0,"BIT COAL",20847,"0M",1294,,420,95,231930,126925,496711,237560,131901,364810,283673,151879,279578,239639,126224,352615,258927,142002,435062,269127,145335,472611,301030,163158,552179,311814,164925,544289,243274,130002,629392,254376,137316,711140,251229,133756,680307,254656,140214,767255,1769,4,53330,"BIT","ST" 34,26,1,1,,138,5,"WISCONSIN ELECTRIC PWR CO","BRULE ISL",0,,20847,"0M",1294,,420,95,657,0,0,568,0,0,1109,0,0,1120,0,0,1882,0,0,866,0,0,1002,0,0,983,0,0,749,0,0,1436,0,0,1086,0,0,834,0,0,1775,4,53330,"WAT","HY" 34,26,1,1,,138,10,"WISCONSIN ELECTRIC PWR CO","CHALK HILL",0,,20847,"0M",1294,,420,95,1666,0,0,1615,0,0,3202,0,0,3313,0,0,4280,0,0,2897,0,0,2179,0,0,2586,0,0,2459,0,0,4025,0,0,3554,0,0,2802,0,0,1776,4,53330,"WAT","HY" 34,26,1,1,,138,11,"WISCONSIN ELECTRIC PWR CO","HEMLOCK FLS",0,,20847,"0M",1294,,420,95,833,0,0,808,0,0,54,0,0,102,0,0,1562,0,0,1146,0,0,623,0,0,742,0,0,841,0,0,331,0,0,1053,0,0,1121,0,0,1777,4,53330,"WAT","HY" 34,26,1,1,,138,12,"WISCONSIN ELECTRIC PWR CO","KINGSFORD",0,,20847,"0M",1294,,420,95,1728,0,0,1541,0,0,2609,0,0,2225,0,0,3657,0,0,2531,0,0,2158,0,0,2333,0,0,2083,0,0,3143,0,0,2965,0,0,2529,0,0,1778,4,53330,"WAT","HY" 34,26,1,1,,138,13,"WISCONSIN ELECTRIC PWR CO","LOWER PAINT",0,,20847,"0M",1294,,420,95,69,0,0,61,0,0,61,0,0,60,0,0,59,0,0,62,0,0,61,0,0,66,0,0,65,0,0,55,0,0,66,0,0,72,0,0,1779,4,53330,"WAT","HY" 34,26,1,1,,138,14,"WISCONSIN ELECTRIC PWR CO","MICHIGAMME",0,,20847,"0M",1294,,420,95,2246,0,0,2048,0,0,3284,0,0,2523,0,0,5198,0,0,2813,0,0,2524,0,0,2643,0,0,2625,0,0,3867,0,0,3955,0,0,3556,0,0,1780,4,53330,"WAT","HY" 34,26,1,1,,138,15,"WISCONSIN ELECTRIC PWR CO","PEAVY FALLS",0,,20847,"0M",1294,,420,95,3904,0,0,3574,0,0,5278,0,0,4099,0,0,9284,0,0,5927,0,0,4387,0,0,4429,0,0,4361,0,0,6380,0,0,6566,0,0,5926,0,0,1781,4,53330,"WAT","HY" 34,26,1,1,,138,20,"WISCONSIN ELECTRIC PWR CO","QUINESEC 92",0,,20847,"0M",1294,,420,95,5998,0,0,5315,0,0,8981,0,0,9111,0,0,13780,0,0,9441,0,0,7850,0,0,8822,0,0,7687,0,0,11780,0,0,10693,0,0,9471,0,0,7820,4,53330,"WAT","HY" 34,26,1,1,,138,22,"WISCONSIN ELECTRIC PWR CO","QUINESEC 61",0,,20847,"0M",1294,,420,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7821,4,53330,"WAT","HY" 34,26,1,1,,138,25,"WISCONSIN ELECTRIC PWR CO","STURGEON R",0,,20847,"0M",1294,,420,95,108,0,0,76,0,0,322,0,0,459,0,0,475,0,0,315,0,0,329,0,0,322,0,0,393,0,0,492,0,0,436,0,0,343,0,0,1783,4,53330,"WAT","HY" 34,26,1,1,,138,30,"WISCONSIN ELECTRIC PWR CO","TWIN FALLS",0,,20847,"0M",1294,,420,95,2139,0,0,1937,0,0,3075,0,0,2586,0,0,4016,0,0,2981,0,0,2575,0,0,2636,0,0,2417,0,0,3436,0,0,3383,0,0,3055,0,0,1784,4,53330,"WAT","HY" 34,26,1,1,,138,35,"WISCONSIN ELECTRIC PWR CO","WAY DAM",0,,20847,"0M",1294,,420,95,275,0,0,381,0,0,3,0,0,81,0,0,976,0,0,836,0,0,354,0,0,431,0,0,739,0,0,195,0,0,958,0,0,945,0,0,1785,4,53330,"WAT","HY" 34,26,1,1,,138,40,"WISCONSIN ELECTRIC PWR CO","WHITE RPDS",0,,20847,"0M",1294,,420,95,1867,0,0,1741,0,0,3405,0,0,3355,0,0,4798,0,0,2972,0,0,2472,0,0,2778,0,0,2375,0,0,3154,0,0,2955,0,0,2821,0,0,1786,4,53330,"WAT","HY" 34,26,1,1,,142,5,"WISCONSIN PUB SERV CORP","GRAND RAPID",0,,20860,"0M",1294,,430,95,2210,0,0,1998,0,0,3805,0,0,3987,0,0,5055,0,0,3573,0,0,3031,0,0,3160,0,0,2780,0,0,4224,0,0,3694,0,0,3534,0,0,1787,4,53333,"WAT","HY" 34,26,1,1,,147,5,"WOLVERINE POWER CO","EDENVILLE",0,,20919,"0A",1294,,96,95,1744,0,0,939,0,0,2164,0,0,1952,0,0,1522,0,0,778,0,0,655,0,0,1054,0,0,540,0,0,735,0,0,1651,0,0,1107,0,0,1788,1,53342,"WAT","HY" 34,26,1,1,,147,10,"WOLVERINE POWER CO","SANFORD",0,,20919,"0A",1294,,96,95,1019,0,0,539,0,0,1321,0,0,1132,0,0,866,0,0,390,0,0,351,0,0,585,0,0,268,0,0,389,0,0,944,0,0,626,0,0,1789,1,53342,"WAT","HY" 34,26,1,1,,147,15,"WOLVERINE POWER CO","SECORD",0,,20919,"0A",1294,,96,95,393,0,0,232,0,0,455,0,0,454,0,0,333,0,0,191,0,0,149,0,0,351,0,0,152,0,0,190,0,0,444,0,0,294,0,0,1790,1,53342,"WAT","HY" 34,26,1,1,,147,20,"WOLVERINE POWER CO","SMALLWOOD",0,,20919,"0A",1294,,96,95,343,0,0,177,0,0,422,0,0,385,0,0,270,0,0,135,0,0,104,0,0,241,0,0,91,0,0,133,0,0,359,0,0,231,0,0,1791,1,53342,"WAT","HY" 34,26,5,3,2,547,1,"CLINTON (CITY OF)","CLINTON",0,"LIGHT OIL",3813,"0A",1294,,,95,-11,8,7,-13,5,17,-14,0,17,-9,0,17,-11,2,0,2,3,15,6,4,11,-2,19,12,2,2,24,-12,0,24,-15,0,24,-11,5,19,1818,1,50594,"FO2","IC" 34,26,5,3,9,547,1,"CLINTON (CITY OF)","CLINTON",0,"NATURAL G",3813,"0A",1294,,,95,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,11,0,3,12,0,0,7,0,0,7,0,0,0,0,0,0,0,0,0,0,1818,1,50594,"NG","IC" 34,26,5,2,6,550,10,"COLDWATER (CITY OF)","COLDWATER",0,"BIT COAL",3915,"0A",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1819,1,50613,"BIT","ST" 34,26,5,3,2,550,10,"COLDWATER (CITY OF)","COLDWATER",0,"LIGHT OIL",3915,"0A",1294,,,95,10,25,1534,16,33,1492,26,250,1264,25,203,1051,28,228,848,31,106,745,12,90,654,105,376,912,6,36,869,9,17,848,21,75,767,14,86,702,1819,1,50613,"FO2","IC" 34,26,5,3,9,550,10,"COLDWATER (CITY OF)","COLDWATER",0,"NAT GAS",3915,"0A",1294,,,95,56,524,0,21,188,0,1560,14198,0,1375,12751,0,1376,12946,0,397,3921,0,504,4989,0,1446,14409,0,206,2046,0,30,290,0,258,2395,0,360,3259,0,1819,1,50613,"NG","IC" 34,26,5,1,,562,1,"CRYSTAL FALLS (CITY OF)","CRYSTAL FLS",0,,4604,"0A",1294,,,95,260,0,0,230,0,0,542,0,0,657,0,0,727,0,0,484,0,0,406,0,0,371,0,0,321,0,0,685,0,0,551,0,0,403,0,0,1821,1,50710,"WAT","HY" 34,26,5,2,2,573,1,"DETROIT (CITY OF)","MISTERSKY",0,"LIGHT OIL",5107,"0M",1294,,,95,0,0,0,651,1278,0,450,1032,0,0,0,0,75,136,0,1672,3343,0,0,0,0,0,0,0,0,0,0,717,1556,0,166,346,0,0,0,0,1822,1,50781,"FO2","ST" 34,26,5,2,3,573,1,"DETROIT (CITY OF)","MISTERSKY",0,"HEAVY OIL",5107,"0M",1294,,,95,13181,32416,75571,9229,17656,70341,12523,27641,58052,12586,22230,126464,11666,25823,96024,9772,25823,74975,11694,24522,45679,12422,24453,53321,12383,21734,42732,12369,25747,36935,14615,28768,70603,10871,25234,109934,1822,1,50781,"FO6","ST" 34,26,5,2,9,573,1,"DETROIT (CITY OF)","MISTERSKY",0,"NAT GAS",5107,"0M",1294,,,95,13575,164370,0,11641,129640,0,12681,166490,0,12843,166490,0,15173,166490,0,12685,166490,0,15336,188700,0,15729,205590,0,14416,182840,0,14906,184270,0,11896,140020,0,10556,137255,0,1822,1,50781,"NG","ST" 34,26,5,4,2,573,1,"DETROIT (CITY OF)","MISTERSKY",0,"LIGHT OIL",5107,"0M",1294,,,95,208,1328,18801,1819,3571,13952,1707,3911,9009,-53,0,9009,-25,49,13441,14,35,38749,277,1535,37214,346,1556,35658,-20,0,35658,27,60,34042,57,120,33576,2166,12589,20985,1822,1,50781,"FO2","GT" 34,26,5,3,2,577,1,"DOWAGIAC (CITY OF)","DOWAGIAC",0,"LIGHT OIL",5343,"0A",1294,,,95,371,724,359,306,602,439,241,491,611,191,384,242,160,342,584,159,332,861,142,305,572,301,630,625,105,236,394,156,332,709,438,859,584,44,94,490,1823,1,50809,"FO2","IC" 34,26,5,3,9,577,1,"DOWAGIAC (CITY OF)","DOWAGIAC",0,"NAT GAS",5343,"0A",1294,,,95,0,0,0,1,4,0,0,2,0,0,3,0,0,5,0,0,7,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1823,1,50809,"NG","IC" 34,26,5,2,6,591,8,"GRAND HAVEN (CITY OF)","J B SIMMS",0,"BIT COAL",7483,"0M",1294,,,95,31411,14397,58547,30956,14731,43217,31247,15830,27387,29389,15186,48247,29814,15181,68599,32146,16182,75073,32375,16663,58409,35741,18419,39991,31639,16152,46830,32946,16664,42182,32106,16757,60071,36417,18480,52769,1825,1,51149,"BIT","ST" 34,26,5,3,2,591,15,"GRAND HAVEN (CITY OF)","HARBOR AVE",0,"LIGHT OIL",7483,"0M",1294,,,95,0,0,682,0,12,670,0,0,670,0,0,670,1,0,682,-20,6,676,-11,30,646,127,207,440,0,18,422,0,0,422,0,0,422,0,0,422,1826,1,51149,"FO2","IC" 34,26,5,3,3,591,15,"GRAND HAVEN (CITY OF)","HARBOR AVE",0,"HEAVY OIL",7483,"0M",1294,,,95,5,7,9651,0,0,9527,0,0,9527,-23,0,9527,0,0,9625,0,0,9658,18,26,9631,0,0,9631,-23,46,9586,0,0,9586,0,0,9586,0,0,9586,1826,1,51149,"FO6","IC" 34,26,5,3,9,591,15,"GRAND HAVEN (CITY OF)","HARBOR AVE",0,"NAT GAS",7483,"0M",1294,,,95,2,21,0,0,0,0,2,18,0,0,0,0,1,9,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1826,1,51149,"NG","IC" 34,26,5,1,,607,5,"HART (CITY OF)","HART HYDRO",0,,8205,"0A",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1828,1,51253,"WAT","HY" 34,26,5,3,2,607,10,"HART (CITY OF)","HART",0,"LIGHT OIL",8205,"0A",1294,,,95,22,320,0,0,7,313,0,15,298,0,7,291,0,0,291,0,7,284,0,0,283,0,4,254,0,3,251,0,28,251,0,4,219,0,24,195,1827,1,51253,"FO2","IC" 34,26,5,3,9,607,10,"HART (CITY OF)","HART",0,"NAT GAS",8205,"0A",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1827,1,51253,"NG","IC" 34,26,5,3,2,611,15,"HILLSDALE (CITY OF)","HILLSDALE",0,"LIGHT OIL",8631,"0A",1294,,,95,8,13,683,2,5,1501,96,168,1336,151,254,1767,149,265,1518,66,122,1396,65,121,1275,176,334,1587,34,65,1522,12,23,1467,34,61,1406,46,78,1328,1829,1,51307,"FO2","IC" 34,26,5,3,9,611,15,"HILLSDALE (CITY OF)","HILLSDALE",0,"NAT GAS",8631,"0A",1294,,,95,45,389,0,8,88,0,1211,11947,0,1451,13841,0,1661,16665,0,795,8217,0,695,7251,0,2067,22243,0,385,4109,0,55,574,0,253,2502,0,304,2863,0,1829,1,51307,"NG","IC" 34,26,5,2,2,614,10,"HOLLAND (CITY OF)","J DE YOUNG",0,"LIGHT OIL",8723,"0M",1294,,,95,4,9,348,59,108,217,14,32,168,26,51,81,1,2,262,81,178,83,32,66,82,21,48,182,22,41,140,1,3,124,68,160,198,8,20,163,1830,1,51318,"FO2","ST" 34,26,5,2,6,614,10,"HOLLAND (CITY OF)","J DE YOUNG",0,"BIT COAL",8723,"0M",1294,,,95,19509,9833,51365,25794,12680,38684,11695,7052,31632,14115,7406,52902,17711,8853,55450,8119,4040,96403,23254,14530,85670,34659,17714,96401,22157,11031,99988,22762,10947,103410,19817,10550,92859,17168,9177,83682,1830,1,51318,"BIT","ST" 34,26,5,2,9,614,10,"HOLLAND (CITY OF)","J DE YOUNG",0,"NAT GAS",8723,"0M",1294,,,95,0,0,0,29,300,0,11788,146993,0,61,667,0,110,1124,0,0,0,0,32,503,0,0,1,0,15,156,0,10,131,0,1,22,0,0,0,0,1830,1,51318,"NG","ST" 34,26,5,4,2,614,15,"HOLLAND (CITY OF)","6ST PEAKING",0,"LIGHT OIL",8723,"0M",1294,,,95,0,0,1353,0,0,1353,0,0,1353,0,0,1353,0,0,1353,230,639,714,0,0,597,23,120,477,0,23,454,0,0,454,0,12,442,0,0,443,6356,1,51318,"FO2","GT" 34,26,5,4,2,614,20,"HOLLAND (CITY OF)","48 STREET",0,"LIGHT OIL",8723,"0M",1294,,,95,149,547,4164,0,0,4068,0,0,4022,0,41,3982,0,0,3815,260,2787,4894,1201,1897,5201,3119,5032,5598,264,770,3823,34,228,3595,104,190,3404,0,320,3084,7268,1,51318,"FO2","GT" 34,26,5,4,9,614,20,"HOLLAND (CITY OF)","48 STREET",0,"NAT GAS",8723,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7268,1,51318,"NG","GT" 34,26,5,1,,626,5,"LANSING (CITY OF)","MOORES PARK",0,,10704,"0M",1294,,,95,343,0,0,246,0,0,362,0,0,378,0,0,360,0,0,109,0,0,74,0,0,243,0,0,7,0,0,20,0,0,241,0,0,161,0,0,1833,1,51593,"WAT","HY" 34,26,5,2,2,626,15,"LANSING (CITY OF)","ECKERT STA",0,"LIGHT OIL",10704,"0M",1294,,,95,363,748,438,292,594,302,369,736,548,332,715,215,909,460,564,328,689,267,535,1158,521,415,878,763,314,664,719,317,702,633,175,372,743,162,356,916,1831,1,51593,"FO2","ST" 34,26,5,2,6,626,15,"LANSING (CITY OF)","ECKERT STA",0,"BIT COAL",10704,"0M",1294,,,95,44837,21266,25967,57769,26950,25277,75152,34898,23931,23967,11707,22937,30512,14996,21803,58629,27707,21987,70487,34444,19990,114416,54399,15954,36335,17126,15581,32388,16296,16519,23564,11456,16865,23470,11473,16757,1831,1,51593,"BIT","ST" 34,26,5,2,2,626,17,"LANSING (CITY OF)","ERICKSONSTA",0,"LIGHT OIL",10704,"0M",1294,,,95,46,78,413,44,77,337,43,70,266,106,183,321,48,83,237,47,74,164,35,66,337,42,74,263,42,73,428,123,157,270,56,108,401,68,123,278,1832,1,51593,"FO2","ST" 34,26,5,2,6,626,17,"LANSING (CITY OF)","ERICKSONSTA",0,"BIT COAL",10704,"0M",1294,,,95,91642,35804,94165,85646,33294,92447,91645,35933,88943,79241,30962,129224,83972,32938,144184,89935,35118,140833,88233,34374,130548,93787,36772,111246,82220,32126,114753,83356,32509,118901,86385,33919,104948,86939,33782,107078,1832,1,51593,"BIT","ST" 34,26,5,3,2,630,15,"LOWELL (CITY OF)","LOWELL",0,"LIGHT OIL",11268,"0A",1294,,,95,0,0,55,0,0,55,0,0,55,0,0,55,0,0,55,0,0,55,0,0,55,101,224,50,0,0,50,0,0,50,0,0,83,0,0,83,1837,1,51700,"FO2","IC" 34,26,5,3,9,630,15,"LOWELL (CITY OF)","LOWELL",0,"NAT GAS",11268,"0A",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,130,0,0,0,0,0,0,0,0,0,0,0,0,0,1837,1,51700,"NG","IC" 34,26,5,1,,637,5,"MARQUETTE (CITY OF)","F J RUSSELL",0,,11701,"0M",1294,,,95,205,0,0,154,0,0,347,0,0,378,0,0,422,0,0,336,0,0,126,0,0,219,0,0,63,0,0,215,0,0,352,0,0,318,0,0,1839,4,51778,"WAT","HY" 34,26,5,1,,637,15,"MARQUETTE (CITY OF)","MARQUETTE 2",0,,11701,"0M",1294,,,95,634,0,0,460,0,0,1087,0,0,1216,0,0,1421,0,0,1214,0,0,460,0,0,842,0,0,372,0,0,844,0,0,1204,0,0,1070,0,0,1842,4,51778,"WAT","HY" 34,26,5,2,2,637,17,"MARQUETTE (CITY OF)","SHIRAS",0,"LIGHT OIL",11701,"0M",1294,,,95,58,123,1098,62,136,964,54,143,828,26,69,769,48,128,644,27,72,576,33,75,1470,5,13,1454,2,6,1442,5,12,1418,9,20,1393,8,19,1373,1843,4,51778,"FO2","ST" 34,26,5,2,6,637,17,"MARQUETTE (CITY OF)","SHIRAS",0,"BIT COAL",11701,"0M",1294,,,95,23444,16159,71046,21860,15379,55667,21885,15824,39843,14032,10091,29752,15829,11367,36522,19852,14143,25207,20324,14193,50783,22385,15345,51919,19255,13514,57602,19451,13378,62738,18474,12721,68381,19644,13796,75861,1843,4,51778,"BIT","ST" 34,26,5,4,2,637,20,"MARQUETTE (CITY OF)","MARQUETTE 4",0,"LIGHT OIL",11701,"0M",1294,,,95,0,0,3397,0,49,3344,2,47,3317,0,31,3303,22,133,3182,111,322,2890,114,352,2541,5,35,2508,0,0,2494,0,0,2477,0,0,2464,60,251,2208,1840,1,51778,"FO2","GT" 34,26,5,1,,641,5,"MARSHALL (CITY OF)","MARSHALL",0,,11713,"0A",1294,,,95,141,0,0,102,0,0,152,0,0,139,0,0,119,0,0,84,0,0,84,0,0,83,0,0,38,0,0,49,0,0,114,0,0,79,0,0,1844,1,51780,"WAT","HY" 34,26,5,3,2,641,5,"MARSHALL (CITY OF)","MARSHALL",0,"LIGHT OIL",11713,"0A",1294,,,95,3,23,782,7,13,796,4,12,756,65,120,621,3,119,510,22,43,464,20,28,437,14,28,437,1,3,664,110,208,450,2,6,444,3,19,425,1844,1,51780,"FO2","IC" 34,26,5,3,9,641,5,"MARSHALL (CITY OF)","MARSHALL",0,"NAT GAS",11713,"0A",1294,,,95,82,772,0,35,362,0,13,127,0,651,6950,0,777,7621,0,272,2889,0,238,1982,0,184,1982,0,15,148,0,20,217,0,15,174,0,51,447,0,1844,1,51780,"NG","IC" 34,26,5,3,2,649,1,"NEWBERRY (CITY OF)","NEWBERRY",0,"LIGHT OIL",13525,"0A",1294,,,95,0,0,430,15,32,398,7,13,385,5,10,375,11,25,350,0,0,350,7,13,337,10,19,318,0,0,318,3,6,553,0,0,553,17,31,523,1846,1,52041,"FO2","IC" 34,26,5,1,,652,1,"NILES (CITY OF)","NILES",0,,13604,"0A",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1847,1,52057,"WAT","HY" 34,26,5,1,,656,1,"NORWAY (CITY OF)","NORWAY",0,,13826,"0A",1294,,,95,1485,0,0,1416,0,0,2100,0,0,3083,0,0,3083,0,0,2198,0,0,1901,0,0,2152,0,0,1884,0,0,2885,0,0,2580,0,0,2342,0,0,1848,1,54135,"WAT","HY" 34,26,5,1,,667,5,"PORTLAND (CITY OF)","PORTLAND",0,,15246,"0A",1294,,,95,85,0,0,39,0,0,102,0,0,167,0,0,141,0,0,92,0,0,57,0,0,154,0,0,39,0,0,61,0,0,146,0,0,86,0,0,7804,1,52369,"WAT","HY" 34,26,5,3,2,667,10,"PORTLAND (CITY OF)","F L JENKINS",0,"LIGHT OIL",15246,"0A",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1851,1,52369,"FO2","IC" 34,26,5,1,,675,5,"ST LOUIS (CITY OF)","ST LOUIS",0,,17886,"0A",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1852,1,52787,"WAT","HY" 34,26,5,3,2,675,5,"ST LOUIS (CITY OF)","ST LOUIS",0,"LIGHT OIL",17886,"0A",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1852,1,52787,"FO2","IC" 34,26,5,3,9,675,5,"ST LOUIS (CITY OF)","ST LOUIS",0,"NAT GAS",17886,"0A",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1852,1,52787,"NG","IC" 34,26,5,3,2,678,1,"SEBEWAING (CITY OF)","MAIN ST",0,"LIGHT OIL",16873,"0A",1294,,,95,0,0,169,0,0,169,1,2,149,0,0,149,0,