Sample records for owns electric generating

  1. Financial statistics of major US publicly owned electric utilities 1993

    SciTech Connect (OSTI)

    Not Available

    1995-02-01T23:59:59.000Z

    The 1993 edition of the Financial Statistics of Major U.S. Publicly Owned Electric Utilities publication presents five years (1989 to 1993) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decision making purposes related to publicly owned electric utility issues. Generator and nongenerator summaries are presented in this publication. The primary source of publicly owned financial data is the Form EIA-412, the Annual Report of Public Electric Utilities, filed on a fiscal basis.

  2. Financial statistics of major US publicly owned electric utilities 1994

    SciTech Connect (OSTI)

    NONE

    1995-12-15T23:59:59.000Z

    This publication presents 5 years (1990--94) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. Generator and nongenerator summaries are presented. Composite tables present: Aggregates of income statement and balance sheet data, financial indicators, electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data.

  3. Financial statistics of major US publicly owned electric utilities 1992

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    The 1992 edition of the Financial Statistics of Major US Publicly Owned Electric Utilities publication presents 4 years (1989 through 1992) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to publicly owned electric utility issues. Generator and nongenerator summaries are presented in this publication. Four years of summary financial data are provided. Summaries of generators for fiscal years ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data. The primary source of publicly owned financial data is the Form EIA-412, {open_quotes}Annual Report of Public Electric Utilities.{close_quotes} Public electric utilities file this survey on a fiscal year, rather than a calendar year basis, in conformance with their recordkeeping practices. In previous editions of this publication, data were aggregated by the two most commonly reported fiscal years, June 30 and December 31. This omitted approximately 20 percent of the respondents who operate on fiscal years ending in other months. Accordingly, the EIA undertook a review of the Form EIA-412 submissions to determine if alternative classifications of publicly owned electric utilities would permit the inclusion of all respondents.

  4. Financial statistics major US publicly owned electric utilities 1996

    SciTech Connect (OSTI)

    NONE

    1998-03-01T23:59:59.000Z

    The 1996 edition of The Financial Statistics of Major US Publicly Owned Electric Utilities publication presents 5 years (1992 through 1996) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decision making purposes related to publicly owned electric utility issues. Generator and nongenerator summaries are presented in this publication. Five years of summary financial data are provided. Summaries of generators for fiscal years ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data. 2 figs., 32 tabs.

  5. Financial statistics of major U.S. investor-owned electric utilities 1996

    SciTech Connect (OSTI)

    NONE

    1997-12-01T23:59:59.000Z

    The Financial Statistics of Major US Investor-Owned Electric Utilities publication presents summary and detailed financial accounting data on the investor-owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for making policy and decisions relating to investor-owned electric utility issues. The US electric power industry is a combination of electric utilities (investor-owned, publicly owned, Federal, and cooperatives) and nonutility power producers. Investor-owned electric utilities account for over three-fourths of electric sales and revenue. Historically, the investor-owned electric utilities have served the large consolidated markets. There is substantial diversity among the investor-owned electric utilities in terms of services, size, fuel usage, and prices charged. Most investor-owned electric utilities generate, transmit, and distribute electric power. Investor-owned electric utilities operate in all States except Nebraska; Hawaii is the only State in which all electricity is supplied by investor-owned electric utilities. 5 figs., 57 tabs.

  6. Financial statistics of major publicly owned electric utilities, 1991

    SciTech Connect (OSTI)

    Not Available

    1993-03-31T23:59:59.000Z

    The Financial Statistics of Major Publicly Owned Electric Utilities publication presents summary and detailed financial accounting data on the publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with data that can be used for policymaking and decisionmaking purposes relating to publicly owned electric utility issues.

  7. Financial statistics of selected investor-owned electric utilities, 1989

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    The Financial Statistics of Selected Investor-Owned Electric Utilities publication presents summary and detailed financial accounting data on the investor-owned electric utilities. The objective of the publication is to provide the Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to investor-owned electric utility issues.

  8. Financial statistics of major U.S. publicly owned electric utilities 1997

    SciTech Connect (OSTI)

    NONE

    1998-12-01T23:59:59.000Z

    The 1997 edition of the ``Financial Statistics of Major U.S. Publicly Owned Electric Utilities`` publication presents 5 years (1993 through 1997) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to publicly owned electric utility issues. Generator (Tables 3 through 11) and nongenerator (Tables 12 through 20) summaries are presented in this publication. Five years of summary financial data are provided (Tables 5 through 11 and 14 through 20). Summaries of generators for fiscal years ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided in Appendix C. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, operating revenue, and electric energy account data. The primary source of publicly owned financial data is the Form EIA-412, ``Annual Report of Public Electric Utilities.`` Public electric utilities file this survey on a fiscal year basis, in conformance with their recordkeeping practices. The EIA undertook a review of the Form EIA-412 submissions to determine if alternative classifications of publicly owned electric utilities would permit the inclusion of all respondents. The review indicated that financial indicators differ most according to whether or not a publicly owned electric utility generates electricity. Therefore, the main body of the report provides summary information in generator/nongenerator classifications. 2 figs., 101 tabs.

  9. Electricity privatization : should South Korea privatize its state-owned electric utility?

    E-Print Network [OSTI]

    Lim, Sungmin

    2011-01-01T23:59:59.000Z

    The state-owned electric utility, Korea Electricity Power Cooperation (KEPCO), privatization has been a key word in South Korea since 1997, when the government received $55 billion from the International Monetary Fund in ...

  10. Thermoacoustic magnetohydrodynamic electrical generator

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-11-16T23:59:59.000Z

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  11. Thermoacoustic magnetohydrodynamic electrical generator

    DOE Patents [OSTI]

    Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

    1986-01-01T23:59:59.000Z

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1,000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  12. Financial statistics of major U.S. publicly owned electric utilities 1995

    SciTech Connect (OSTI)

    NONE

    1997-07-01T23:59:59.000Z

    The 1995 Edition of the Financial Statistics of Major U.S. Publicly Owned Electric Utilities publication presents 5 years (1991 through 1995) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to publicly owned electric utility issues. Generator (Tables 3 through 11) and nongenerator (Tables 12 through 20) summaries are presented in this publication. Five years of summary financial data are provided (Tables 5 through 11 and 14 through 20). Summaries of generators for fiscal years ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided in Appendix C. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data. 9 figs., 87 tabs.

  13. Generating electricity from viruses

    ScienceCinema (OSTI)

    Lee, Seung-Wuk

    2014-06-23T23:59:59.000Z

    Berkeley Lab's Seung-Wuk Lee discusses "Generating electricity from viruses" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas.

  14. Generating electricity from viruses

    SciTech Connect (OSTI)

    Lee, Seung-Wuk

    2013-10-31T23:59:59.000Z

    Berkeley Lab's Seung-Wuk Lee discusses "Generating electricity from viruses" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas.

  15. Integration of decentralized generators with the electric power grid

    E-Print Network [OSTI]

    Finger, Susan

    1981-01-01T23:59:59.000Z

    This report develops a new methodology for studying the economic interaction of customer-owned electrical generators with the central electric power grid. The purpose of the report is to study the reciprocal effects of the ...

  16. Financial statistics of selected publicly owned electric utilities 1989. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1991-02-06T23:59:59.000Z

    The Financial Statistics of Selected Publicly Owned Electric Utilities publication presents summary and detailed financial accounting data on the publicly owned electric utilities. The objective of the publication is to provide the Federal and State governments, industry, and the general public with data that can be used for policymaking and decision making purposes relating to publicly owned electric utility issues. 21 tabs.

  17. Electricity Generation by Rhodopseudomonas palustris

    E-Print Network [OSTI]

    ,6). Shewanella oneidensis MR-1 and Geobacter sulfurreducens PCA are two DMRB capable of electricity generationElectricity Generation by Rhodopseudomonas palustris DX-1 D E F E N G X I N G , , Y I Z U O manuscript received March 20, 2008. Accepted March 25, 2008. Bacteria able to generate electricity

  18. Financial statistics of major U.S. investor-owned electric utilities 1993

    SciTech Connect (OSTI)

    Not Available

    1995-01-01T23:59:59.000Z

    The Financial Statistics of Major US Investor-Owned Electric Utilities publication presents summary and detailed financial accounting data on the investor-owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to investor-owned electric utility issues.

  19. Financial statistics of major US investor-owned electric utilities 1994

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    The Financial Statistics of Major U.S. Investor-Owned Electric Utilities publication presents summary and detailed financial accounting data on the investor-owned electric utilities. The objective of the publication is to provide Federal and State Governments, industry, and the general public with current and historical data that can be used for making policy and decisions relating to investor-owned electric utility issues.

  20. Financial impacts of nonutility power purchases on investor-owned electric utilities

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    To assist in its these responsibilities in the area of electric power, EIA has prepared this report, Financial Impacts of Nonutility Power Purchases on Investor-Owned Electric Utilities. The primary purpose of this report is to provide an overview of the issues surrounding the financial impacts of nonutility generation contracts (since the passage of the Public Utility Regulatory Policies Act of 1978) on investor-owned utilities. The existing concern in this area is manifest in the provisions of Section 712 of the Energy Policy Act of 1992, which required State regulatory commissions to evaluate various aspects of long-term power purchase contracts, including their impact on investor-owned utilities` cost of capital and rates charged to customers. The EIA does not take positions on policy questions. The EIA`s responsibility is to provide timely, high quality information and to perform objective, credible analyses in support of the deliberations by both public and private decision-makers. Accordingly, this report does not purport to represent the policy positions of the US Department of Energy or the Administration.

  1. Renewable Electricity Generation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01T23:59:59.000Z

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

  2. Registration of Electric Generators (Connecticut)

    Broader source: Energy.gov [DOE]

    All electric generating facilities operating in the state, with the exception of hydroelectric and nuclear facilities, must obtain a certificate of registration from the Department of Public...

  3. Method for protecting an electric generator

    DOE Patents [OSTI]

    Kuehnle, Barry W. (Ammon, ID); Roberts, Jeffrey B. (Ammon, ID); Folkers, Ralph W. (Ammon, ID)

    2008-11-18T23:59:59.000Z

    A method for protecting an electrical generator which includes providing an electrical generator which is normally synchronously operated with an electrical power grid; providing a synchronizing signal from the electrical generator; establishing a reference signal; and electrically isolating the electrical generator from the electrical power grid if the synchronizing signal is not in phase with the reference signal.

  4. Liquid soap film generates electricity

    E-Print Network [OSTI]

    Ahmad Amjadi; Sadegh Feiz; Reza Montazeri Namin

    2014-04-24T23:59:59.000Z

    We have observed that a rotating liquid soap film generates electricity when placed between two non-contact electrodes with a sufficiently large potential difference. In our experiments suspended liquid film (water + soap film) is formed on the surface of a circular frame, which is forced to rotate in the $x-y$ horizontal plane by a motor. This system is located at the center of two capacitor-like vertical plates to apply an external electric voltage difference in the $x-$direction. The produced electric current is collected from the liquid film using two conducting electrodes that are separated in the $y-$direction. We previously reported that a liquid film in an external electric field rotates when an electric current passes through it, naming it the liquid film motor (LFM). In this paper we report a novel technique, in which a similar device can be used as an electric generator, converting the rotating mechanical energy to electrical energy. The liquid film electric generator (LFEG) is in stark contrast to the LFM, both of which could be designed similarly in very small scales like micro scales with different applications. Although the device is comparable to commercial electric motors or electric generators, there is a significant difference in their working principles. Usually in an electric motor or generator the magnetic field causes the driving force, while in a LFM or LFEG the Coulomb force is the driving force. This fact is also interesting from the Bio-science point of view and brings a similarity to bio motors. Here we have investigated the electrical characteristics of such a generator for the first time experimentally and modelled the phenomenon with electroconvection governing equations. A numerical simulation is performed using the local approximation for the charge-potential relation and results are in qualitative agreement with experiments.

  5. Electrical Generation for More-Electric Aircraft using Solid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DE-AC05-76RL01830 Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel Cells GA Whyatt LA Chick April 2012 PNNL-XXXXX Electrical Generation for More- Electric...

  6. Financial statistics of major US investor-owned electric utilities 1992

    SciTech Connect (OSTI)

    Not Available

    1993-12-28T23:59:59.000Z

    The Financial Statistics of Major US Investor-Owned Electric Utilities publication presents summary and detailed financial accounting data on the investor-owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to investor-owned electric utility issues. The Financial Statistics of Major US Investor-Owned Electric Utilities publication provides information about the financial results of operations of investor-owned electric utilities for use by government, industry, electric utilities, financial organizations and educational institutions in energy planning. In the private sector, the readers of this publication are researchers and analysts associated with the financial markets, the policymaking and decisionmaking members of electric utility companies, and economic development organizations. Other organizations that may be interested in the data presented in this publication include manufacturers of electric power equipment and marketing organizations. In the public sector, the readers of this publication include analysts, researchers, statisticians, and other professionals engaged in regulatory, policy, and program areas. These individuals are generally associated with the Congress, other legislative bodies, State public utility commissions, universities, and national strategic planning organizations.

  7. Clean Electric Power Generation (Canada)

    Broader source: Energy.gov [DOE]

    Fossil fuels in Canada account for 27 percent of the electricity generated. The combustion of these fuels is a major source of emissions which affect air quality and climate change. The Government...

  8. The electric double layer has a life of its own Celine Merlet1,2,3

    E-Print Network [OSTI]

    Boyer, Edmond

    , CA-94720, USA (Dated: April 1, 2014) Using molecular dynamics simulations with recently developedThe electric double layer has a life of its own C´eline Merlet1,2,3 , David Limmer4 , Mathieu-layer capacitor ex- hibits an anomalous dependence on the applied electrical potential. Such behavior

  9. The Electric Double Layer Has a Life of Its Own Celine Merlet1,2,3

    E-Print Network [OSTI]

    Boyer, Edmond

    molecular dynamics simulations with recently developed importance sampling methods, we showThe Electric Double Layer Has a Life of Its Own C´eline Merlet1,2,3 , David Limmer4 , Mathieu on the applied electrical potential. Such behavior is qualitatively incompatible with standard mean

  10. Email To Friend Steam Electricity Generator

    E-Print Network [OSTI]

    . keymanengravables.com Steam Turbine Generator Info, Pictures And Deals For Steam turbine generator ediscountshoppingBack One Email To Friend Steam Electricity Generator Need Steam Electricity Generator? See Steam Electricity Generator. greenshieldsindustrial.com Steam Generators Deals on Steam Generators Find what you

  11. Sandia National Laboratories: Electric Power Generation and Water...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    InterconnectsElectric Power Generation and Water Use Data Electric Power Generation and Water Use Data Electric Power Generation and Water Use Data Electric Power Generation and...

  12. Apparatuses and methods for generating electric fields

    DOE Patents [OSTI]

    Scott, Jill R; McJunkin, Timothy R; Tremblay, Paul L

    2013-08-06T23:59:59.000Z

    Apparatuses and methods relating to generating an electric field are disclosed. An electric field generator may include a semiconductive material configured in a physical shape substantially different from a shape of an electric field to be generated thereby. The electric field is generated when a voltage drop exists across the semiconductive material. A method for generating an electric field may include applying a voltage to a shaped semiconductive material to generate a complex, substantially nonlinear electric field. The shape of the complex, substantially nonlinear electric field may be configured for directing charged particles to a desired location. Other apparatuses and methods are disclosed.

  13. Statistics of publicly owned electric utilities in the United States: 1979, energy data report

    SciTech Connect (OSTI)

    McEwan, P.; Ryan, S.

    1980-12-01T23:59:59.000Z

    Financial and operating information about publicly owned utilities in the United States are presented. This publication contains the annual reports for 162 Municipalities and 74 Federal projects whose annual operating revenues equal or exceed $5,000,000 or $1,000,000, respectively. Data from 11 municipalities which reported in 1978 and 6 federal projects (5 of which reported in 1978) were not received in time for inclusion in this year's publication. The US Department of Interior markets all the electric energy produced at projects of the US Department of the Army Corps of Engineers. The 1979 edition is constructed to include an index listing of names for each reporting publicly owned utility by State, or States, in which it operates. Federal projects are listed by the particular department operating that project. A summary for all utilities in total may be found at the begining of each section. These summaries include the balance sheet, and statements for income accounts, electric operating revenues, electric utility plants, electric operation and maintenance expenses, energy accounts, and physical quantities. The Year in Review is composed of statements from both Publicly Owned Municipal Electric Utilities and Federal Projects. It includes both financial and operational information.

  14. Electricity Generation and Emissions Reduction Decisions

    E-Print Network [OSTI]

    Electricity Generation and Emissions Reduction Decisions under Policy Uncertainty: A General analysis, and public education in global environmental change. It seeks to provide leadership;1 Electricity Generation and Emissions Reduction Decisions under Policy Uncertainty: A General Equilibrium

  15. GENERATION OF ELECTRIC Hesham E. Shaalan

    E-Print Network [OSTI]

    Powell, Warren B.

    exhaust gases are delivered to a heat-recovery steam generator to produce steam that is used to drive.1 Optimum Electric-Power Generating Unit . . . . . . . . . . . . . . . . . . . . . . 8.7 Annual Capacity.21 Hydropower Generating Stations . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.23 Largest Units

  16. Exemption from Electric Generation Tax (Connecticut)

    Broader source: Energy.gov [DOE]

    In 2011, Connecticut created a new tax requiring electric power plants in the state that generate and upload electricity to the regional bulk power grid to pay $2.50 per megawatt hour. Renewable...

  17. The Economics of Steam Electric Generation

    E-Print Network [OSTI]

    Ophaug, R. A.; Birget, C. D.

    1980-01-01T23:59:59.000Z

    The economics of combining steam and electric generation for companies requiring both steam and electric services develop a challenge which few engineers and economists can realize. This paper outlines the general approach to this challenge...

  18. Electrical Generation Tax Reform Act (Montana)

    Broader source: Energy.gov [DOE]

    This Act reforms taxes paid by electricity generators to reduce tax rates and imposes replacement taxes in response to the 1997 restructuring of the Montana electric utility industry that allows...

  19. Policymakers' Guidebook for Geothermal Electricity Generation (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01T23:59:59.000Z

    This document provides an overview of the NREL Geothermal Policymakers' Guidebook for Electricity Generation with information directing people to the Web site for more in-depth information.

  20. Sandia National Laboratories: Ivanpah Solar Electric Generating...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Generating System Sandia Report Presents Analysis of Glare Impacts of Ivanpah Solar Power Site On August 7, 2014, in Concentrating Solar Power, Energy, News, News &...

  1. Fact #844: October 27, 2014 Electricity Generated from Coal has...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4: October 27, 2014 Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown Fact 844: October 27, 2014 Electricity Generated from Coal has...

  2. Electric Power Generation and Transmission (Iowa)

    Broader source: Energy.gov [DOE]

    Electric power generating facilities with a combined capacity greater than 25 MW, as well as associated transmission lines, may not be constructed or begin operation prior to the issuance of a...

  3. Renewable Electricity Generation in the United States

    E-Print Network [OSTI]

    Schmalensee, Richard

    This paper provides an overview of the use of renewable energy sources to generate electricity in the United States and a critical analysis of the federal and state policies that have supported the deployment of renewable ...

  4. Entanglement Generation by Electric Field Background

    E-Print Network [OSTI]

    Zahra Ebadi; Behrouz Mirza

    2014-10-12T23:59:59.000Z

    The quantum vacuum is unstable under the influence of an external electric field and decays into pairs of charged particles, a process which is known as the Schwinger pair production. We propose and demonstrate that this electric field can generate entanglement. Using the Schwinger pair production for constant and pulsed electric fields, we study entanglement for scalar particles with zero spins and Dirac fermions. One can observe the variation of the entanglement produced for bosonic and fermionic modes with respect to different parameters.

  5. Bioaugmentation for Electricity Generation from Corn Stover

    E-Print Network [OSTI]

    that it is possible to directly generate electricity from waste corn stover in MFCs through bioaugmentation using of an MFC, bacteria break down organic matter and release electrons to the electrode. Most MFC tests used by Zuo et al., 501 ( 20 mW/m2 was generated from a paper recycling wastewater containing cellulose

  6. Renewable Power Options for Electricity Generation on Kaua'i...

    Office of Environmental Management (EM)

    Renewable Power Options for Electricity Generation on Kaua'i: Economics and Performance Modeling Renewable Power Options for Electricity Generation on Kaua'i: Economics and...

  7. Chena Hot Springs Resort - Electric Power Generation Using Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells Chena Hot Springs Resort - Electric Power Generation Using Geothermal...

  8. Renewable Generation and Interconnection to the Electrical Grid...

    Broader source: Energy.gov (indexed) [DOE]

    Generation and Interconnection to the Electrical Grid in Southern California Renewable Generation and Interconnection to the Electrical Grid in Southern California Presentation...

  9. Renewable Electricity Generation (Fact Sheet), Office of Energy...

    Energy Savers [EERE]

    Renewable Electricity Generation (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) Renewable Electricity Generation (Fact Sheet),...

  10. Proton Exchange Membrane Fuel Cells for Electrical Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board...

  11. Renewable Electricity Generation and Delivery at the Sacramento...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Generation and Delivery at the Sacramento Municipal Utility District Renewable Electricity Generation and Delivery at the Sacramento Municipal Utility District Dairy...

  12. Supplementary Information Potential for Electricity Generation from Renewable Resources and Levelized Cost of Electricity (LCOE)

    E-Print Network [OSTI]

    Suo, Zhigang

    Supplementary Information Potential for Electricity Generation from Renewable Resources and Levelized Cost of Electricity (LCOE) Electrical energy can be generated from renewable resources the annual potential and actual annual production of electrical energy from renewable energy resources. Only

  13. Distributed Generation Dispatch Optimization under Various Electricity Tariffs

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2007-01-01T23:59:59.000Z

    time of use United States Postal Service v Distributed Generation Dispatch Optimization Under Various Electricity Tariffs

  14. Own Your Power! A Consumer Guide to Solar Electricity for the Home (Brochure)

    Office of Energy Efficiency and Renewable Energy (EERE)

    A consumer guide about solar electricity for the home. Includes information about types of solar electric systems, how to choose a system, financing, and costs.

  15. Own Your Power! A Consumer Guide to Solar Electricity for the Home (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-01-01T23:59:59.000Z

    A consumer guide about solar electricity for the home. Includes information about types of solar electric systems, how to choose a system, financing, and costs.

  16. Distributed Generation Dispatch Optimization under Various Electricity Tariffs

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2007-01-01T23:59:59.000Z

    purchase abs. cooling offset electric supply (kW) hourTariffs electric supply (kW) abs. cooling offset purchasecooling offset Distributed Generation Dispatch Optimization Under Various Electricity Tariffs electric supply (

  17. Simultaneous wastewater treatment and biological electricity generation

    E-Print Network [OSTI]

    Simultaneous wastewater treatment and biological electricity generation B.E. Logan Department accomplishing wastewater treatment in processes based on microbial fuel cell technologies. When bacteria oxidize.4 Ł 106 L of wastewater, a wastewater treatment plant has the potential to become a 2.3 MW power plant

  18. Implementation of optimum solar electricity generating system

    SciTech Connect (OSTI)

    Singh, Balbir Singh Mahinder, E-mail: balbir@petronas.com.my; Karim, Samsul Ariffin A., E-mail: samsul-ariffin@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia); Sivapalan, Subarna, E-mail: subarna-sivapalan@petronas.com.my [Department of Management and Humanities, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia); Najib, Nurul Syafiqah Mohd; Menon, Pradeep [Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia)

    2014-10-24T23:59:59.000Z

    Under the 10{sup th} Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  19. Electric current generation in distorted graphene

    E-Print Network [OSTI]

    Ana Julia Mizher; Alfredo Raya; Cristian Villavicencio

    2014-09-23T23:59:59.000Z

    Graphene-like materials can be effectively described by quantum electrodynamics in 2+1 dimensions. In a pure state these systems exhibit a symmetry between the non-equivalent Dirac points in the honeycomb lattice. The effect of some types of doping or the contact with asymmetric external lattices (for instance a boron nitride layer) break this symmetry via a mechanism of effective mass generation that works differently for each Dirac point. In this work we show that the incorporation of an in-plane external magnetic field on this pseudochiral asymmetric configuration generates a non-dissipative electric current aligned with the magnetic field. This mass structure is associated to a Chern-Simons type of effective action. Together with the presence of a magnetic field generating an electric current, this scenario resembles the chiral magnetic effect in Quantum Chromodynamics.

  20. The Economics and Feasibility of Electricity Generation using

    E-Print Network [OSTI]

    Laughlin, Robert B.

    benefits of using biogas to generate electricity instead of coal are positive, implying that an otherwiseThe Economics and Feasibility of Electricity Generation using Manure Digesters on Small and Mid of electricity generation using methane from manure digesters on dairy farms under different electricity rate

  1. Third Generation Flywheels for electric storage

    SciTech Connect (OSTI)

    Ricci, Michael, R.; Fiske, O. James

    2008-02-29T23:59:59.000Z

    Electricity is critical to our economy, but growth in demand has saturated the power grid causing instability and blackouts. The economic penalty due to lost productivity in the US exceeds $100 billion per year. Opposition to new transmission lines and power plants, environmental restrictions, and an expected $100 billion grid upgrade cost have slowed system improvements. Flywheel electricity storage could provide a more economical, environmentally benign alternative and slash economic losses if units could be scaled up in a cost effective manner to much larger power and capacity than the present maximum of a few hundred kW and a few kWh per flywheel. The goal of this project is to design, construct, and demonstrate a small-scale third generation electricity storage flywheel using a revolutionary architecture scalable to megawatt-hours per unit. First generation flywheels are built from bulk materials such as steel and provide inertia to smooth the motion of mechanical devices such as engines. They can be scaled up to tens of tons or more, but have relatively low energy storage density. Second generation flywheels use similar designs but are fabricated with composite materials such as carbon fiber and epoxy. They are capable of much higher energy storage density but cannot economically be built larger than a few kWh of storage capacity due to structural and stability limitations. LaunchPoint is developing a third generation flywheel — the "Power Ring" — with energy densities as high or higher than second generation flywheels and a totally new architecture scalable to enormous sizes. Electricity storage capacities exceeding 5 megawatt-hours per unit appear both technically feasible and economically attractive. Our design uses a new class of magnetic bearing – a radial gap “shear-force levitator” – that we discovered and patented, and a thin-walled composite hoop rotated at high speed to store kinetic energy. One immediate application is power grid frequency regulation, where Power Rings could cut costs, reduce fuel consumption, eliminate emissions, and reduce the need for new power plants. Other applications include hybrid diesel-electric locomotives, grid power quality, support for renewable energy, spinning reserve, energy management, and facility deferral. Decreased need for new generation and transmission alone could save the nation $2.5 billion per year. Improved grid reliability could cut economic losses due to poor power quality by tens of billions of dollars per year. A large export market for this technology could also develop. Power Ring technology will directly support the EERE mission, and the goals of the Distributed Energy Technologies Subprogram in particular, by helping to reduce blackouts, brownouts, electricity costs, and emissions, by relieving transmission bottlenecks, and by greatly improving grid power quality.

  2. Restructuring, Ownership and Efficiency: The Case of Labor in Electricity Generation

    E-Print Network [OSTI]

    Shanefelter, Jennifer Kaiser

    2007-01-01T23:59:59.000Z

    inputs to electricity generation: fuel, capital, materialsand labor. Electricity generation is a fuel-intensive

  3. World Net Nuclear Electric Power Generation, 1980-2007 - Datasets...

    Open Energy Info (EERE)

    U.S. Energy Information ... World Net Nuclear Electric ... Dataset Activity Stream World Net Nuclear Electric Power Generation, 1980-2007 International data showing world net...

  4. Why do Particle Clouds Generate Electric Charges?

    E-Print Network [OSTI]

    T. Pähtz; H. J. Herrmann; T. Shinbrot

    2015-03-16T23:59:59.000Z

    Grains in desert sandstorms spontaneously generate strong electrical charges; likewise volcanic dust plumes produce spectacular lightning displays. Charged particle clouds also cause devastating explosions in food, drug and coal processing industries. Despite the wide-ranging importance of granular charging in both nature and industry, even the simplest aspects of its causes remain elusive, because it is difficult to understand how inert grains in contact with little more than other inert grains can generate the large charges observed. Here, we present a simple yet predictive explanation for the charging of granular materials in collisional flows. We argue from very basic considerations that charge transfer can be expected in collisions of identical dielectric grains in the presence of an electric field, and we confirm the model's predictions using discrete-element simulations and a tabletop granular experiment.

  5. Coal based electric generation comparative technologies report

    SciTech Connect (OSTI)

    Not Available

    1989-10-26T23:59:59.000Z

    Ohio Clean Fuels, Inc., (OCF) has licensed technology that involves Co-Processing (Co-Pro) poor grade (high sulfur) coal and residual oil feedstocks to produce clean liquid fuels on a commercial scale. Stone Webster is requested to perform a comparative technologies report for grassroot plants utilizing coal as a base fuel. In the case of Co-Processing technology the plant considered is the nth plant in a series of applications. This report presents the results of an economic comparison of this technology with other power generation technologies that use coal. Technologies evaluated were:Co-Processing integrated with simple cycle combustion turbine generators, (CSC); Co-Processing integrated with combined cycle combustion turbine generators, (CCC); pulverized coal-fired boiler with flue gas desulfurization and steam turbine generator, (PC) and Circulating fluidized bed boiler and steam turbine generator, (CFB). Conceptual designs were developed. Designs were based on approximately equivalent net electrical output for each technology. A base case of 310 MWe net for each technology was established. Sensitivity analyses at other net electrical output sizes varying from 220 MWe's to 1770 MWe's were also performed. 4 figs., 9 tabs.

  6. System average rates of U.S. investor-owned electric utilities : a statistical benchmark study

    E-Print Network [OSTI]

    Berndt, Ernst R.

    1995-01-01T23:59:59.000Z

    Using multiple regression methods, we have undertaken a statistical "benchmark" study comparing system average electricity rates charged by three California utilities with 96 other US utilities over the 1984-93 time period. ...

  7. Ownership Change, Incentives and Plant Efficiency: The Divestiture of U.S. Electric Generation Plants

    E-Print Network [OSTI]

    Bushnell, James B.; Wolfram, Catherine

    2005-01-01T23:59:59.000Z

    ciency of Electric Generating Plants: A Stochastic Frontierthe existing stock of electricity generating plants. Betweenover 300 electric generating plants in the US, accounting

  8. Has Restructuring Improved Operating Efficiency at U.S. Electricity Generating Plants?

    E-Print Network [OSTI]

    Fabrizio, Kira; Rose, Nancy; Wolfram, Catherine

    2004-01-01T23:59:59.000Z

    Cost Efficiency of Electric Generating Plants: A Stochasticat US Electricity Generating Plants? Kira Markiewicz, Nancyat US Electricity Generating Plants? Kira Markiewicz UC

  9. Insuring Electric Power for Critical Services After Disasters with Building-Sited Electric Generating Technologies

    E-Print Network [OSTI]

    Jackson, J.

    2006-01-01T23:59:59.000Z

    Insuring Electric Power for Critical Services After Disasters with Building-Sited Electric Generating Technologies Jerry Jackson, Associate Professor, Texas A&M University, College Station, TX Abstract Electric power failures... available with new building-sited combined heat and power (CHP) electric generation technologies. This paper evaluates the physical requirements and costs of preemptively installing these new building- sited electric generation technologies to insure...

  10. TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING CAPACITY IN

    E-Print Network [OSTI]

    California at Berkeley. University of

    PWP-085 TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING CAPACITY IN CALIFORNIA, California 94720-5180 www.ucei.org #12;TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING** Abstract This study analyzes state and regional electricity supply and demand trends for the eleven states

  11. Stochastic Co-optimization for Hydro-Electric Power Generation

    E-Print Network [OSTI]

    1 Stochastic Co-optimization for Hydro-Electric Power Generation Shi-Jie Deng, Senior Member, IEEE the optimal scheduling problem faced by a hydro-electric power producer that simultaneously participates in multiple markets. Specifically, the hydro-generator participates in both the electricity spot market

  12. Exotic Electricity Options and the Valuation of Electricity Generation and Transmission

    E-Print Network [OSTI]

    Exotic Electricity Options and the Valuation of Electricity Generation and Transmission Assets a methodology for valuing electricity deriva- tives by constructing replicating portfolios from electricity-storable nature of electricity, which rules out the traditional spot mar- ket, storage-based method of valuing

  13. Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies

    E-Print Network [OSTI]

    Joskow, Paul L.

    Economic evaluations of alternative electric generating technologies typically rely on comparisons between their expected life-cycle production costs per unit of electricity supplied. The standard life-cycle cost metric ...

  14. EIS-0416: Ivanpah Solar Electric Generating System in San Bernardino...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Available for Download October 22, 2010 EIS-0416: EPA Notice of Availability of the Final Environmental Impact Statement Ivanpah Solar Electric Generating System (07-AFC-5)...

  15. Adapting On-site Electrical Generation Platforms for Producer Gas

    Broader source: Energy.gov [DOE]

    Internal combustion reciprocating engine generators (gensets) are regularly deployed at distribution centers, small municipal utilities, and public institutions to provide on-site electricity...

  16. Establishing Thermo-Electric Generator (TEG) Design Targets for...

    Broader source: Energy.gov (indexed) [DOE]

    for Hybrid Vehicles Establishing Thermo-Electric Generator (TEG) Design Targets for Hybrid Vehicles 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program...

  17. Establishing Thermo-Electric Generator (TEG) Design Targets for...

    Broader source: Energy.gov (indexed) [DOE]

    Establishing Thermo-Electric Generator (TEG) Design Targets for Hybrid Vehicles 2013 DOE Hydrogen Program and Vehicle Technologies Annual Merit Review May 15th, 2013 R.Vijayagopal,...

  18. Renewable Energy for Electricity Generation in Latin America...

    Open Energy Info (EERE)

    and Outlook (Webinar) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy for Electricity Generation in Latin America: Market, Technologies, and...

  19. Proton Exchange Membrane Fuel Cells for Electrical Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SANDIA REPORT SAND2011-3119 Unlimited Release Printed May 2011 Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes Joseph W. Pratt,...

  20. Minimizing electricity costs with an auxiliary generator using stochastic programming

    E-Print Network [OSTI]

    Rafiuly, Paul, 1976-

    2000-01-01T23:59:59.000Z

    This thesis addresses the problem of minimizing a facility's electricity costs by generating optimal responses using an auxiliary generator as the parameter of the control systems. The-goal of the thesis is to find an ...

  1. Electrical Generation for More-Electric Aircraft using Solid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by Pacific Northwest National Laboratory, examines approaches to providing electrical power on board commercial aircraft using solid oxide fuel (SOFC) technology. The focus of...

  2. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01T23:59:59.000Z

    power  flow  relations  for  electric  transmission  lines  (electric power  costs  are  cheap:  if  a  large  power  consumer  is  close  to  the  generator,  the  excess  power  needs associated with transmission line electric grid consists of a network of transmission lines.  Power 

  3. Atmospheric Mercury Deposition Impacts of Future Electric Power Generation

    E-Print Network [OSTI]

    , a number of scenarios for future emissions from coal-fired electricity generation plants in the UnitedAtmospheric Mercury Deposition Impacts of Future Electric Power Generation Mark D. Cohen Physical on 2000 data submitted to Environment Canada's National Pollutant Release Inventory (NPRI). Finally

  4. Electricity generation with looped transmission networks: Bidding to an ISO

    E-Print Network [OSTI]

    Ferris, Michael C.

    on a transmission network from net generation nodes to net consumption nodes is governed by the Kirchoff Laws [45Electricity generation with looped transmission networks: Bidding to an ISO Xinmin Hu Daniel Ralph to model markets for delivery of electrical power on looped transmission networks. It analyzes

  5. Axial Current Generation from Electric Field: Chiral Electric Separation Effect

    E-Print Network [OSTI]

    Xu-Guang Huang; Jinfeng Liao

    2013-06-07T23:59:59.000Z

    We study a relativistic plasma containing charged chiral fermions in an external electric field. We show that with the presence of both vector and axial charge densities, the electric field can induce an axial current along its direction and thus cause chirality separation. We call it the Chiral Electric Separation Effect (CESE). On very general basis, we argue that the strength of CESE is proportional to $\\mu_V\\mu_A$ with $\\mu_V$ and $\\mu_A$ the chemical potentials for vector charge and axial charge. We then explicitly calculate this CESE conductivity coefficient in thermal QED at leading-log order. The CESE can manifest a new gapless wave mode propagating along the electric field. Potential observable of CESE in heavy-ion collisions is also discussed.

  6. Axial Current Generation from Electric Field: Chiral Electric Separation Effect

    E-Print Network [OSTI]

    Huang, Xu-Guang

    2013-01-01T23:59:59.000Z

    We study a relativistic plasma containing charged chiral fermions in an external electric field. We show that with the presence of both vector and axial charge densities, the electric field can induce an axial current along its direction and thus cause chirality separation. We call it the Chiral Electric Separation Effect (CESE). On very general basis, we argue that the strength of CESE is proportional to $\\mu_V\\mu_A$ with $\\mu_V$ and $\\mu_A$ the chemical potentials for vector charge and axial charge. We then explicitly calculate this CESE conductivity coefficient in thermal QED at leading-log order. The CESE can manifest a new gapless wave mode propagating along the electric field. Potential observable of CESE in heavy-ion collisions is also discussed.

  7. Computational Needs for the Next Generation Electric Grid Proceedings

    SciTech Connect (OSTI)

    Birman, Kenneth; Ganesh, Lakshmi; Renessee, Robbert van; Ferris, Michael; Hofmann, Andreas; Williams, Brian; Sztipanovits, Janos; Hemingway, Graham; University, Vanderbilt; Bose, Anjan; Stivastava, Anurag; Grijalva, Santiago; Grijalva, Santiago; Ryan, Sarah M.; McCalley, James D.; Woodruff, David L.; Xiong, Jinjun; Acar, Emrah; Agrawal, Bhavna; Conn, Andrew R.; Ditlow, Gary; Feldmann, Peter; Finkler, Ulrich; Gaucher, Brian; Gupta, Anshul; Heng, Fook-Luen; Kalagnanam, Jayant R; Koc, Ali; Kung, David; Phan, Dung; Singhee, Amith; Smith, Basil

    2011-10-05T23:59:59.000Z

    The April 2011 DOE workshop, 'Computational Needs for the Next Generation Electric Grid', was the culmination of a year-long process to bring together some of the Nation's leading researchers and experts to identify computational challenges associated with the operation and planning of the electric power system. The attached papers provide a journey into these experts' insights, highlighting a class of mathematical and computational problems relevant for potential power systems research. While each paper defines a specific problem area, there were several recurrent themes. First, the breadth and depth of power system data has expanded tremendously over the past decade. This provides the potential for new control approaches and operator tools that can enhance system efficiencies and improve reliability. However, the large volume of data poses its own challenges, and could benefit from application of advances in computer networking and architecture, as well as data base structures. Second, the computational complexity of the underlying system problems is growing. Transmitting electricity from clean, domestic energy resources in remote regions to urban consumers, for example, requires broader, regional planning over multi-decade time horizons. Yet, it may also mean operational focus on local solutions and shorter timescales, as reactive power and system dynamics (including fast switching and controls) play an increasingly critical role in achieving stability and ultimately reliability. The expected growth in reliance on variable renewable sources of electricity generation places an exclamation point on both of these observations, and highlights the need for new focus in areas such as stochastic optimization to accommodate the increased uncertainty that is occurring in both planning and operations. Application of research advances in algorithms (especially related to optimization techniques and uncertainty quantification) could accelerate power system software tool performance, i.e. speed to solution, and enhance applicability for new and existing real-time operation and control approaches, as well as large-scale planning analysis. Finally, models are becoming increasingly essential for improved decision-making across the electric system, from resource forecasting to adaptive real-time controls to online dynamics analysis. The importance of data is thus reinforced by their inescapable role in validating, high-fidelity models that lead to deeper system understanding. Traditional boundaries (reflecting geographic, institutional, and market differences) are becoming blurred, and thus, it is increasingly important to address these seams in model formulation and utilization to ensure accuracy in the results and achieve predictability necessary for reliable operations. Each paper also embodies the philosophy that our energy challenges require interdisciplinary solutions - drawing on the latest developments in fields such as mathematics, computation, economics, as well as power systems. In this vein, the workshop should be viewed not as the end product, but the beginning of what DOE seeks to establish as a vibrant, on-going dialogue among these various communities. Bridging communication gaps among these communities will yield opportunities for innovation and advancement. The papers and workshop discussion provide the opportunity to learn from experts on the current state-of-the-art on computational approaches for electric power systems, and where one may focus to accelerate progress. It has been extremely valuable to me as I better understand this space, and consider future programmatic activities. I am confident that you too will enjoy the discussion, and certainly learn from the many experts. I would like to thank the authors of the papers for sharing their perspectives, as well as the paper discussants, session recorders, and participants. The meeting would not have been as successful without your commitment and engagement. I also would like to thank Joe Eto and Bob Thomas for their vision and leadership in bringing together su

  8. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01T23:59:59.000Z

    of about 80 GW of coal-based generation technologyand reduces coal-based electricity generation by 18%.to offset coal- and natural gas-based electricity generation

  9. A MICROFLUIDIC-ELECTRIC PACKAGE FOR POWER MEMS GENERATORS

    E-Print Network [OSTI]

    induction turbine-generator, and demonstrated a maximum output power of 192µW under driven excitation [1]. Holmes et al. have integrated a 7.5mm diameter permanent-magnet generator, an axial-flow polymer turbineA MICROFLUIDIC-ELECTRIC PACKAGE FOR POWER MEMS GENERATORS Florian Herrault, Chang-Hyeon Ji, Seong

  10. Fact #844: October 27, 2014 Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown – Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #844: Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown

  11. Maine: Energy Efficiency Program Helps Generate Town's Electricity

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Efficiency program helps municipalities with their energy bills. Thomaston, Maine, was able to install solar panels to generate 13% of the electricity used by the wastewater treatment facility.

  12. Applications for Certificates for Electric Generation Facilities (Ohio)

    Broader source: Energy.gov [DOE]

    An applicant for a certificate to site an electric power generating facility shall provide a project summary and overview of the proposed project. In general, the summary should be suitable as a...

  13. Evaluating Policies to Increase Electricity Generation from Renewable Energy

    E-Print Network [OSTI]

    Schmalensee, Richard

    Building on a review of experience in the United States and the European Union, this article advances four main propositions concerning policies aimed at increasing electricity generation from renewable energy. First, who ...

  14. Competitive electricity markets and investment in new generating capacity

    E-Print Network [OSTI]

    Joskow, Paul L.

    2006-01-01T23:59:59.000Z

    Evidence from the U.S. and some other countries indicates that organized wholesale markets for electrical energy and operating reserves do not provide adequate incentives to stimulate the proper quantity or mix of generating ...

  15. Sales and Use Tax Exemption for Electrical Generating Facilities

    Broader source: Energy.gov [DOE]

    Electrical generating facilities are exempt from sales and use taxes in North Dakota. The exemption is granted for the purchase of building materials, production equipment, and any other tangible...

  16. Alternative electric generation impact simulator : final summary report

    E-Print Network [OSTI]

    Gruhl, Jim

    1981-01-01T23:59:59.000Z

    This report is a short summary of three related research tasks that were conducted during the project "Alternative Electric Generation Impact Simulator." The first of these tasks combines several different types of ...

  17. Managing Wind-based Electricity Generation and Storage

    E-Print Network [OSTI]

    Sadeh, Norman M.

    not exacerbate the global warming problem. However, renewable energy is inherently intermittent and variableManaging Wind-based Electricity Generation and Storage by Yangfang Zhou Submitted to the Tepper, and to meet increasing electricity demand without harming the environment. Two of the most promising solutions

  18. Managing Wind-based Electricity Generation and Storage

    E-Print Network [OSTI]

    and solar energy--is free, abundant, and most importantly, does not exacerbate the global warming problemManaging Wind-based Electricity Generation and Storage by Yangfang Zhou Submitted to the Tepper.S. strive to reduce reliance on the import of fossil fuels, and to meet increasing electricity demand

  19. Low-cost distributed solar-thermal-electric power generation

    E-Print Network [OSTI]

    Sanders, Seth

    Low-cost distributed solar-thermal-electric power generation A. Der Minassians, K. H. Aschenbach discuss the technical and economic feasibility of a low-cost distributed solar-thermal-electric power technologies should be judged by output power per dollar rather than by efficiency or other technical merits

  20. Renewable Electricity Generation Success Stories | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Read more water success stories Wind February 18, 2015 Mapping the Frontier of New Wind Power Potential June 17, 2014 Enhanced Efficiency of Wind-Diesel Power Generation in...

  1. Role of Energy Storage with Renewable Electricity Generation

    SciTech Connect (OSTI)

    Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

    2010-01-01T23:59:59.000Z

    Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as intermittent) output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

  2. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01T23:59:59.000Z

    Contribution to U.S. Electricity Supply. National Renewable20% of the nation's electricity from wind technology byTERMS wind-generated electricity; wind energy; 20% wind

  3. Flying Electric Generators | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs Valley Area(Sasada, 1988) |Fluor CorpElectric

  4. Electrical faults modeling of the photovoltaic generator Wail Rezgui1

    E-Print Network [OSTI]

    Boyer, Edmond

    energy by the photovoltaic phenomena. So, the degradation of these two factors means the presenceElectrical faults modeling of the photovoltaic generator Wail Rezgui1 , Leďla-Hayet Mouss1 , Kinza presented a new methodology for the mathematical modeling of the photovoltaic generator's characteristics

  5. Modeling of a detonation driven, linear electric generator facility

    E-Print Network [OSTI]

    Texas at Arlington, University of

    the heat and the force produced from the detonation wave. In previous experimental work, a single that involve coupling a PDE with different systems to drive a generator and produce electricity [2, 3]. One. For instance, it may be possible to design a generator that uses the force created by the pressure rise from

  6. Competitive Bidding Process for Electric Distribution Companies’ Procurement of Default and Back-up Electric Generation Services (Connecticut)

    Broader source: Energy.gov [DOE]

    Electric distribution companies shall utilize a competitive bidding process for electric generation services. The Department of Public Utility Control will be responsible for setting the criteria...

  7. 162 Electrical and Computer Engineering 163 Courses and projects that actively involve them in their own education and

    E-Print Network [OSTI]

    Richards-Kortum, Rebecca

    162 Electrical and Computer Engineering 163 · Courses and projects that actively involve them · A broad education outside of engineering and science that emphasizes the role of electrical and computer of technology Graduate and undergraduate programs in electrical and computer engineering offer concentrations

  8. HAS222d Intro to Energy and Environement: 40% off energy use in US goes into generating electricity

    E-Print Network [OSTI]

    goes into generating electricity generation efficiency: 33% electric power loss: plant to consumer 7) http://en.wikipedia.org/wiki/Electric_power_transmission#Losses http fuel power generation plants that dominate our electricity production. Remember that electricity

  9. The role of hydroelectric generation in electric power systems with large scale wind generation

    E-Print Network [OSTI]

    Hagerty, John Michael

    2012-01-01T23:59:59.000Z

    An increasing awareness of the operational challenges created by intermittent generation of electricity from policy-mandated renewable resources, such as wind and solar, has led to increased scrutiny of the public policies ...

  10. Methodology The electricity generation and distribution network in the Western United States is

    E-Print Network [OSTI]

    Hall, Sharon J.

    Methodology The electricity generation and distribution network in the Western United States is comprised of power plants, electric utilities, electrical transformers, transmission and distribution infrastructure, etc. We conceptualize the system as a transportation network with resources (electricity

  11. ADVANCED INTERNAL COMBUSTION ELECTRICAL GENERATOR Peter Van Blarigan

    E-Print Network [OSTI]

    Livermore, CA 94550 Abstract In this paper, research on hydrogen internal combustion engines is discussed with industrial partners. The electrical generator is based on developed internal combustion reciprocating engine. In light of these factors, the capabilities of internal combustion engines have been reviewed. In regards

  12. Distributed Generation Dispatch Optimization under VariousElectricity Tariffs

    SciTech Connect (OSTI)

    Firestone, Ryan; Marnay, Chris

    2007-05-01T23:59:59.000Z

    The on-site generation of electricity can offer buildingowners and occupiers financial benefits as well as social benefits suchas reduced grid congestion, improved energy efficiency, and reducedgreenhouse gas emissions. Combined heat and power (CHP), or cogeneration,systems make use of the waste heat from the generator for site heatingneeds. Real-time optimal dispatch of CHP systems is difficult todetermine because of complicated electricity tariffs and uncertainty inCHP equipment availability, energy prices, and system loads. Typically,CHP systems use simple heuristic control strategies. This paper describesa method of determining optimal control in real-time and applies it to alight industrial site in San Diego, California, to examine: 1) the addedbenefit of optimal over heuristic controls, 2) the price elasticity ofthe system, and 3) the site-attributable greenhouse gas emissions, allunder three different tariff structures. Results suggest that heuristiccontrols are adequate under the current tariff structure and relativelyhigh electricity prices, capturing 97 percent of the value of thedistributed generation system. Even more value could be captured bysimply not running the CHP system during times of unusually high naturalgas prices. Under hypothetical real-time pricing of electricity,heuristic controls would capture only 70 percent of the value ofdistributed generation.

  13. ENVIRONMENTAL BIOTECHNOLOGY Electricity generation from model organic wastewater

    E-Print Network [OSTI]

    ENVIRONMENTAL BIOTECHNOLOGY Electricity generation from model organic wastewater in a cassette-008-1516-0 T. Shimoyama :S. Komukai :K. Watanabe Laboratory of Applied Microbiology, Marine Biotechnology, Tobitakyu, Chofu, Tokyo 182-0036, Japan B. E. Logan Department of Civil and Environmental Engineering

  14. ENVIRONMENTAL BIOTECHNOLOGY Electricity generation and treatment of paper recycling

    E-Print Network [OSTI]

    ENVIRONMENTAL BIOTECHNOLOGY Electricity generation and treatment of paper recycling wastewater) 80:349­355 DOI 10.1007/s00253-008-1546-7 L. Huang School of Environmental and Biological Science of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA e

  15. Life Cycle Greenhouse Gas Emissions from Electricity Generation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-01-01T23:59:59.000Z

    Analysts at NREL have developed and applied a systematic approach to review the LCA literature, identify primary sources of variability and, where possible, reduce variability in GHG emissions estimates through a procedure called 'harmonization.' Harmonization of the literature provides increased precision and helps clarify the impacts of specific electricity generation choices, producing more robust results.

  16. EIS-0476: Vogtle Electric Generating Plant, Units 3 and 4

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of construction and startup of the proposed Units 3 and 4 at the Vogtle Electric Generating Plant in Burke County, Georgia. DOE adopted two Nuclear Regulatory Commission EISs associated with this project (i.e., NUREG-1872, issued 8/2008, and NUREG-1947, issued 3/2011).

  17. Transmission and Generation Investment In a Competitive Electric Power Industry

    E-Print Network [OSTI]

    California at Berkeley. University of

    .3 Transmission Property Rights and Congestion Contracts . . . . . . . . . . . . . . . . . 7 2.4 How TransmissionPWP-030 Transmission and Generation Investment In a Competitive Electric Power Industry James of California Energy Institute 2539 Channing Way Berkeley, California 94720-5180 www.ucei.berkeley.edu/ucei #12

  18. Clean coal technologies in electric power generation: a brief overview

    SciTech Connect (OSTI)

    Janos Beer; Karen Obenshain [Massachusetts Institute of Technology (MIT), MA (United States)

    2006-07-15T23:59:59.000Z

    The paper talks about the future clean coal technologies in electric power generation, including pulverized coal (e.g., advanced supercritical and ultra-supercritical cycles and fluidized-bed combustion), integrated gasification combined cycle (IGCC), and CO{sub 2} capture technologies. 6 refs., 2 tabs.

  19. Has Restructuring Improved Operating Efficiency at U.S. Electricity Generating Plants?

    E-Print Network [OSTI]

    Fabrizio, Kira; Rose, Nancy; Wolfram, Catherine

    2004-01-01T23:59:59.000Z

    in electricity generation, relative to IOU plants in stateselectricity generation sector restructuring in the United States on plant-plant over the year, measured by annual net megawatt-hours of electricity generation,

  20. Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies

    SciTech Connect (OSTI)

    Augustine, C.; Bain, R.; Chapman, J.; Denholm, P.; Drury, E.; Hall, D.G.; Lantz, E.; Margolis, R.; Thresher, R.; Sandor, D.; Bishop, N.A.; Brown, S.R.; Cada, G.F.; Felker, F.

    2012-06-01T23:59:59.000Z

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  1. Evaluation and Ranking of Geothermal Resources for Electrical Generation or Electrical Offset in Idaho, Montana, Oregon and Washington. Volume II.

    SciTech Connect (OSTI)

    Bloomquist, R. Gordon

    1985-06-01T23:59:59.000Z

    This volume contains appendices on: (1) resource assessment - electrical generation computer results; (2) resource assessment summary - direct use computer results; (3) electrical generation (high temperature) resource assessment computer program listing; (4) direct utilization (low temperature) resource assessment computer program listing; (5) electrical generation computer program CENTPLANT and related documentation; (6) electrical generation computer program WELLHEAD and related documentation; (7) direct utilization computer program HEATPLAN and related documentation; (8) electrical generation ranking computer program GEORANK and related documentation; (9) direct utilization ranking computer program GEORANK and related documentation; and (10) life cycle cost analysis computer program and related documentation. (ACR)

  2. Identification and definition of unbundled electric generation and transmission services

    SciTech Connect (OSTI)

    Kirby, B.; Hirst, E.; Vancoevering, J.

    1995-03-01T23:59:59.000Z

    State and federal regulators, private and public utilities, large and small customers, power brokers and marketers, and others are engaged in major debates about the future structure of the electric industry. Although the outcomes are far from certain, it seems clear that customers will have much greater choices about the electric services they purchase and from whom they buy these services. This report examines the ``ancillary`` services that are today buried within the typical vertically integrated utility. These ancillary services support and make possible the provision of the basic services of generating capacity, energy supply, and power delivery. These ancillary services include: Management of generating units; reserve generating capacity to follow variations in customer loads, to provide capacity and energy when generating units or transmission lines suddenly fall, to maintain electric-system stability, and to provide local-area security; transmission-system monitoring and control; replacement of real power and energy losses; reactive-power management and voltage regulation; transmission reserves; repair and maintenance of the transmission network; metering, billing, and communications; and assurance of appropriate levels of power quality. Our focus in this report, the first output from a larger Oak Ridge National Laboratory project, is on identification and definition of these services. Later work in this project will examine more closely the costs and pricing options for each service.

  3. Electricity generation and environmental externalities: Case studies, September 1995

    SciTech Connect (OSTI)

    NONE

    1995-09-28T23:59:59.000Z

    Electricity constitutes a critical input in sustaining the Nation`s economic growth and development and the well-being of its inhabitants. However, there are byproducts of electricity production that have an undesirable effect on the environment. Most of these are emissions introduced by the combustion of fossil fuels, which accounts for nearly 70 percent of the total electricity generated in the United States. The environmental impacts (or damages) caused by these emissions are labeled environmental ``externalities.`` Included in the generic term ``externality`` are benefits or costs resulting as an unintended byproduct of an economic activity that accrue to someone other than the parties involved in the activity. This report provides an overview of the economic foundation of externalities, the Federal and State regulatory approaches, and case studies of the impacts of the externality policies adopted by three States.

  4. Enzymatic Hydrolysis of Cellulose Coupled With Electricity Generation in a Microbial Fuel Cell

    E-Print Network [OSTI]

    and the exoelectrogen Geobacter sulfurreducens generated electricity, and the power generated using soluble celluloseARTICLE Enzymatic Hydrolysis of Cellulose Coupled With Electricity Generation in a Microbial Fuel.interscience.wiley.com). DOI 10.1002/bit.22015 ABSTRACT: Electricity can be directly generated by bacteria in microbial fuel

  5. Microgrids in the Evolving Electricity Generation and DeliveryInfrastructure

    SciTech Connect (OSTI)

    Marnay, Chris; Venkataramanan, Giri

    2006-02-01T23:59:59.000Z

    The legacy paradigm for electricity service in most of the electrified world today is based on the centralized generation-transmission-distribution infrastructure that evolved under a regulated environment. More recently, a quest for effective economic investments, responsive markets, and sensitivity to the availability of resources, has led to various degrees of deregulation and unbundling of services. In this context, a new paradigm is emerging wherein electricity generation is intimately embedded with the load in microgrids. Development and decay of the familiar macrogrid is discussed. Three salient features of microgrids are examined to suggest that cohabitation of micro and macro grids is desirable, and that overall energy efficiency can be increased, while power is delivered to loads at appropriate levels of quality.

  6. Distributed Generation Dispatch Optimization under Various Electricity Tariffs

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2007-01-01T23:59:59.000Z

    Optimization Under Various Electricity Tariffs Firestone,Optimization Under Various Electricity Tariffs Table of3 2.1 Electricity Tariff

  7. TEC as electric generator in an automobile catalytic converter

    SciTech Connect (OSTI)

    Svensson, R. [Chalmers Univ. of Technology, Goeteborg (Sweden); Holmlid, L. [Univ. of Goeteborg (Sweden). Dept. of Physical Chemistry

    1996-12-31T23:59:59.000Z

    Modern cars use more and more electric power due to more on-board electric systems, e.g., ABS brakes, active suspension systems, electric windows, chair adjustment systems and electronic engine control systems. One possible energy source for electricity generation is to use the waste heat from the car`s engine, which generally is as much as 80% of the total energy from the combustion of the gasoline. Maybe the best location to tap the excess heat is the Catalytic Converter (Cat) in the exhaust system or perhaps at the exhaust pipes close to the engine. The Cat must be kept within a certain temperature interval. Large amounts of heat are dissipated through the wall of the Cat. A Thermionic Energy Converter (TEC) in coaxial form could conveniently be located around the ceramic cartridge of the Cat. Since the TEC is a rather good heat insulator before it reaches its working temperature the Cat will reach working temperature faster, and the final temperature of it can be controlled better when encapsulated in a concentric TEC arrangement. It is also possible to regulate the temperature of the Cat and the TEC by controlling the electrical load of the TEC. The possible working temperatures of present and future Cats appear very suitable for the new low work function collector TEC, which has been demonstrated to work down to 470 K.

  8. Microgrids in the Evolving Electricity Generation and Delivery Infrastructure

    E-Print Network [OSTI]

    Marnay, Chris; Venkataramanan, Giri

    2006-01-01T23:59:59.000Z

    on the electrical system, but unscheduled outages arelevels of electrical service [7]. Outages may be scheduled

  9. Risk implications of the deployment of renewables for investments in electricity generation

    E-Print Network [OSTI]

    Sisternes, Fernando J. de (Fernando José de Sisternes Jiménez)

    2014-01-01T23:59:59.000Z

    This thesis explores the potential risk implications that a large penetration of intermittent renewable electricity generation -such as wind and solar power- may have on the future electricity generation technology mix, ...

  10. Electric Power Generation from Co-Produced and Other Oil Field...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Power Generation from Co-Produced and Other Oil Field Fluids Electric Power Generation from Co-Produced and Other Oil Field Fluids Co-produced and low-temperature...

  11. Development and Deployment of Generation 3 Plug-In Hybrid Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generation 3 Plug-In Hybrid Electric School Buses Development and Deployment of Generation 3 Plug-In Hybrid Electric School Buses 2011 DOE Hydrogen and Fuel Cells Program, and...

  12. Draft Fourth Northwest Conservation and Electric Power Plan, Appendix A PACIFIC NORTHWEST GENERATING RESOURCES

    E-Print Network [OSTI]

    and generating capacity of power plants located in the Northwest is shown in Figure A-1 Capacity and primary NORTHWEST GENERATING RESOURCES This Appendix describes the electric power generating resources describing individual projects. GENERATING CAPACITY Over 460 electricity generating projects are located

  13. Distributed Load Demand Scheduling in Smart Grid to Minimize Electricity Generation Cost

    E-Print Network [OSTI]

    Pedram, Massoud

    is to perform demand side management (DSM) [1], which aims at matching the consum- ers' electricity demand between electricity consumption and generation. On the consumption side, electric demand ramps upDistributed Load Demand Scheduling in Smart Grid to Minimize Electricity Generation Cost Siyu Yue

  14. Co-generation: a new energy system to generate both steam and electricity

    SciTech Connect (OSTI)

    Carraway, P.M.; Kloth, T.L.; Bull, A.D.

    1981-01-01T23:59:59.000Z

    A discussion is presented of the installation and operation of a co-generation system at Tenneco's Fee ''C'' Lease, whereby hot combustion gas from a turbine fueled by gas or lease crude will be used to generate steam for enhanced recovery, with the same turbine providing the power to generate electricity for sale to a utility. A summary is also given of the history of the project, some of the contractual requirements, the physical layout of the system, component descriptions, environmental considerations, and the composition of the final system.

  15. Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies

    SciTech Connect (OSTI)

    Macknick, J.; Newmark, R.; Heath, G.; Hallett, K. C.

    2011-03-01T23:59:59.000Z

    Various studies have attempted to consolidate published estimates of water use impacts of electricity generating technologies, resulting in a wide range of technologies and values based on different primary sources of literature. The goal of this work is to consolidate the various primary literature estimates of water use during the generation of electricity by conventional and renewable electricity generating technologies in the United States to more completely convey the variability and uncertainty associated with water use in electricity generating technologies.

  16. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01T23:59:59.000Z

    the  modeling  and  analysis  of  electric  power  systems modeling  and  simulation  technologies  both in electric power systems modeling granularity sufficient to identify electric  system 

  17. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01T23:59:59.000Z

    2nd  edition  of  Electrical  Power  System  Applications elements of an electrical power system for the purpose of estimates.   In  electrical  power  system  applications, 

  18. Distributed Generation Dispatch Optimization under Various Electricity Tariffs

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2007-01-01T23:59:59.000Z

    Under Various Electricity Tariffs Firestone, R. , Creighton,Under Various Electricity Tariffs Table of Contents Table of3 2.1 Electricity Tariff

  19. Electrical motor/generator drive apparatus and method

    DOE Patents [OSTI]

    Su, Gui Jia

    2013-02-12T23:59:59.000Z

    The present disclosure includes electrical motor/generator drive systems and methods that significantly reduce inverter direct-current (DC) bus ripple currents and thus the volume and cost of a capacitor. The drive methodology is based on a segmented drive system that does not add switches or passive components but involves reconfiguring inverter switches and motor stator winding connections in a way that allows the formation of multiple, independent drive units and the use of simple alternated switching and optimized Pulse Width Modulation (PWM) schemes to eliminate or significantly reduce the capacitor ripple current.

  20. Submerged electricity generation plane with marine current-driven motors

    DOE Patents [OSTI]

    Dehlsen, James G.P.; Dehlsen, James B.; Fleming, Alexander

    2014-07-01T23:59:59.000Z

    An underwater apparatus for generating electric power from ocean currents and deep water tides. A submersible platform including two or more power pods, each having a rotor with fixed-pitch blades, with drivetrains housed in pressure vessels that are connected by a transverse structure providing buoyancy, which can be a wing depressor, hydrofoil, truss, or faired tube. The platform is connected to anchors on the seafloor by forward mooring lines and a vertical mooring line that restricts the depth of the device in the water column. The platform operates using passive, rather than active, depth control. The wing depressor, along with rotor drag loads, ensures the platform seeks the desired operational current velocity. The rotors are directly coupled to a hydraulic pump that drives at least one constant-speed hydraulic-motor generator set and enables hydraulic braking. A fluidic bearing decouples non-torque rotor loads to the main shaft driving the hydraulic pumps.

  1. Utility/Industry Partnerships Involving Distributed Generation Technologies in Evolving Electricity Markets

    E-Print Network [OSTI]

    Rastler, D. M.

    Wires Manage Wires defer capital Optimize Energy Services Not Utility Business Not Utility Business New Business Opportunities DISTRIBUTED GENERATION Distributed generation includes small gas turbines, micro-turbines, fuel cells, storage...UTILITYIINDUSTRY PARTNERSHIPS INVOLVING DISTRIBUTED GENERATION TECHNOLOGIES IN EVOLVING ELECTRICITY MARKETS Daniel M. Rastler Manager, Fuel Cells and Distributed Generation Electric Power Research Institute Palo Alto, California ABSTRACT...

  2. Decision-making in Electricity Generation Based on Global Warming Potential and Life-cycle Assessment for Climate Change

    E-Print Network [OSTI]

    Horvath, Arpad

    2005-01-01T23:59:59.000Z

    the global warming effect associated with electricityin Electricity Generation Based on Global Warming Potentialin Electricity Generation Based on Global Warming Potential

  3. Unbundling generation and transmission services for competitive electricity markets

    SciTech Connect (OSTI)

    Hirst, E.; Kirby, B.

    1998-01-01T23:59:59.000Z

    Ancillary services are those functions performed by the equipment and people that generate, control, and transmit electricity in support of the basic services of generating capacity, energy supply, and power delivery. The Federal Energy Regulatory Commission (FERC) defined such services as those `necessary to support the transmission of electric power from seller to purchaser given the obligations of control areas and transmitting utilities within those control areas to maintain reliable operations of the interconnected transmission system.` The nationwide cost of ancillary services is about $12 billion a year, roughly 10% of the cost of the energy commodity. More important than the cost, however, is the necessity of these services for bulk-power reliability and for the support of commercial transactions. FERC`s landmark Order 888 included a pro forma tariff with provision for six key ancillary services. The Interconnected Operations Services Working Group identified another six services that it felt were essential to the operation of bulk-power systems. Several groups throughput the United States have created or are forming independent system operators, which will be responsible for reliability and commerce. To date, the electricity industry (including traditional vertically integrated utilities, distribution utilities, power markets and brokers, customers, and state and federal regulators) has paid insufficient attention to these services. Although the industry had made substantial progress in identifying and defining the key services, much remains to be doe to specify methods to measure the production, delivery, and consumption of these services; to identify the costs and cost-allocation factors for these services; and to develop market and operating rules for their provision and pricing. Developing metrics, determining costs, and setting pricing rules are important because most of these ancillary services are produced by the same pieces of equipment that produce the basic electricity commodity. Thus, the production of energy and ancillary services is highly interactive, sometimes complementary and sometimes competing. In contrast to today`s typical time-invariant, embedded-cost prices, competitive prices for ancillary services would vary with system loads and spot prices for energy.

  4. Modeling Generator Power Plant Portfolios and Pollution Taxes Electric Power Supply Chain Networks

    E-Print Network [OSTI]

    Nagurney, Anna

    than a third arises from generating electricity. With the accumulating evidence of global warming, any affect the equilibrium electric power supply chain network production outputs, the transactions betweenModeling Generator Power Plant Portfolios and Pollution Taxes in Electric Power Supply Chain

  5. A stochastic framework for uncertainty analysis in electric power transmission systems with wind generation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of generating units, the transfer of electric power over networks of transmission lines and, finally1 A stochastic framework for uncertainty analysis in electric power transmission systems with wind an electric transmission network with wind power generation and their impact on its reliability. A stochastic

  6. November 21, 2000 PV Lesson Plan 3 PV Array Generating Electricity

    E-Print Network [OSTI]

    Oregon, University of

    November 21, 2000 PV Lesson Plan 3 ­ PV Array Generating Electricity Prepared for the Oregon in Arrays: Solar Cells Generating Electricity Lesson Plan Content: In this lesson, students will learn about electricity. Objectives: Students will learn to use a tool called PV WATTS to calculate the output of PV

  7. Science Blog -Bacterium cleans up uranium, generates electricity Create an account

    E-Print Network [OSTI]

    Lovley, Derek

    Science Blog - Bacterium cleans up uranium, generates electricity Create an account :: Home electricity Department of Energy-funded researchers have decoded and analyzed the genome of a bacterium with the potential to bioremediate radioactive metals and generate electricity. In an article published

  8. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01T23:59:59.000Z

    electric power grid constitutes the fundamental infrastructure infrastructure:  Toward  smart  self?healing  electric  power infrastructure  that  is  national  in  scope  has  been  recently  proposed  (American  Electric  Power, 

  9. Cost and Performance Assumptions for Modeling Electricity Generation Technologies

    SciTech Connect (OSTI)

    Tidball, R.; Bluestein, J.; Rodriguez, N.; Knoke, S.

    2010-11-01T23:59:59.000Z

    The goal of this project was to compare and contrast utility scale power plant characteristics used in data sets that support energy market models. Characteristics include both technology cost and technology performance projections to the year 2050. Cost parameters include installed capital costs and operation and maintenance (O&M) costs. Performance parameters include plant size, heat rate, capacity factor or availability factor, and plant lifetime. Conventional, renewable, and emerging electricity generating technologies were considered. Six data sets, each associated with a different model, were selected. Two of the data sets represent modeled results, not direct model inputs. These two data sets include cost and performance improvements that result from increased deployment as well as resulting capacity factors estimated from particular model runs; other data sets represent model input data. For the technologies contained in each data set, the levelized cost of energy (LCOE) was also evaluated, according to published cost, performance, and fuel assumptions.

  10. Fast Reactor Subassembly Design Modifications for Increasing Electricity Generation Efficiency

    SciTech Connect (OSTI)

    R. Wigeland; K. Hamman

    2009-09-01T23:59:59.000Z

    Suggested for Track 7: Advances in Reactor Core Design and In-Core Management _____________________________________________________________________________________ Fast Reactor Subassembly Design Modifications for Increasing Electricity Generation Efficiency R. Wigeland and K. Hamman Idaho National Laboratory Given the ability of fast reactors to effectively transmute the transuranic elements as are present in spent nuclear fuel, fast reactors are being considered as one element of future nuclear power systems to enable continued use and growth of nuclear power by limiting high-level waste generation. However, a key issue for fast reactors is higher electricity cost relative to other forms of nuclear energy generation. The economics of the fast reactor are affected by the amount of electric power that can be produced from a reactor, i.e., the thermal efficiency for electricity generation. The present study is examining the potential for fast reactor subassembly design changes to improve the thermal efficiency by increasing the average coolant outlet temperature without increasing peak temperatures within the subassembly, i.e., to make better use of current technology. Sodium-cooled fast reactors operate at temperatures far below the coolant boiling point, so that the maximum coolant outlet temperature is limited by the acceptable peak temperatures for the reactor fuel and cladding. Fast reactor fuel subassemblies have historically been constructed using a large number of small diameter fuel pins contained within a tube of hexagonal cross-section, or hexcan. Due to this design, there is a larger coolant flow area next to the hexcan wall as compared to flow area in the interior of the subassembly. This results in a higher flow rate near the hexcan wall, overcooling the fuel pins next to the wall, and a non-uniform coolant temperature distribution. It has been recognized for many years that this difference in sodium coolant temperature was detrimental to achieving greater thermal efficiency, since it causes the fuel pins in the center of the subassembly to operate at higher temperatures than those near the hexcan walls, and it is the temperature limit(s) for those fuel pins that limits the average coolant outlet temperature. Fuel subassembly design changes are being investigated using computational fluid dynamics (CFD) to quantify the effect that the design changes have on reducing the intra-subassembly coolant flow and temperature distribution. Simulations have been performed for a 19-pin test subassembly geometry using typical fuel pin diameters and wire wrap spacers. The results have shown that it may be possible to increase the average coolant outlet temperature by 20 C or more without changing the peak temperatures within the subassembly. These design changes should also be effective for reactor designs using subassemblies with larger numbers of fuel pins. R. Wigeland, Idaho National Laboratory, P.O. Box 1625, Mail Stop 3860, Idaho Falls, ID, U.S.A., 83415-3860 email – roald.wigeland@inl.gov fax (U.S.) – 208-526-2930

  11. Electrical Generation for More-Electric Aircraft Using Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Whyatt, Greg A.; Chick, Lawrence A.

    2012-04-01T23:59:59.000Z

    This report examines the potential for Solid-Oxide Fuel Cells (SOFC) to provide electrical generation on-board commercial aircraft. Unlike a turbine-based auxiliary power unit (APU) a solid oxide fuel cell power unit (SOFCPU) would be more efficient than using the main engine generators to generate electricity and would operate continuously during flight. The focus of this study is on more-electric aircraft which minimize bleed air extraction from the engines and instead use electrical power obtained from generators driven by the main engines to satisfy all major loads. The increased electrical generation increases the potential fuel savings obtainable through more efficient electrical generation using a SOFCPU. However, the weight added to the aircraft by the SOFCPU impacts the main engine fuel consumption which reduces the potential fuel savings. To investigate these relationships the Boeing 787­8 was used as a case study. The potential performance of the SOFCPU was determined by coupling flowsheet modeling using ChemCAD software with a stack performance algorithm. For a given stack operating condition (cell voltage, anode utilization, stack pressure, target cell exit temperature), ChemCAD software was used to determine the cathode air rate to provide stack thermal balance, the heat exchanger duties, the gross power output for a given fuel rate, the parasitic power for the anode recycle blower and net power obtained from (or required by) the compressor/expander. The SOFC is based on the Gen4 Delphi planar SOFC with assumed modifications to tailor it to this application. The size of the stack needed to satisfy the specified condition was assessed using an empirically-based algorithm. The algorithm predicts stack power density based on the pressure, inlet temperature, cell voltage and anode and cathode inlet flows and compositions. The algorithm was developed by enhancing a model for a well-established material set operating at atmospheric pressure to reflect the effect of elevated pressure and to represent the expected enhancement obtained using a promising cell material set which has been tested in button cells but not yet used to produce full-scale stacks. The predictions for the effect of pressure on stack performance were based on literature. As part of this study, additional data were obtained on button cells at elevated pressure to confirm the validity of the predictions. The impact of adding weight to the 787-8 fuel consumption was determined as a function of flight distance using a PianoX model. A conceptual design for a SOFC power system for the Boeing 787 is developed and the weight estimated. The results indicate that the power density of the stacks must increase by at least a factor of 2 to begin saving fuel on the 787 aircraft. However, the conceptual design of the power system may still be useful for other applications which are less weight sensitive.

  12. RESEARCH ARTICLE The proteome survey of an electricity-generating organ

    E-Print Network [OSTI]

    Vertes, Akos

    RESEARCH ARTICLE The proteome survey of an electricity-generating organ (Torpedo californica electric organ) Javad Nazarian1 , Yetrib Hathout1 , Akos Vertes2 and Eric P. Hoffman1 1 Research Center Chondrichthyes. Electric rays have evolved the electric organ, which is similar to the mammalian neuromuscular

  13. Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units

    SciTech Connect (OSTI)

    Cai, H.; Wang, M.; Elgowainy, A.; Han, J. (Energy Systems)

    2012-07-06T23:59:59.000Z

    Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors in the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life-cycle modeling with GREET.

  14. Parallel electric field generation by Alfven wave turbulence

    E-Print Network [OSTI]

    Bian, N H; Brown, J C

    2010-01-01T23:59:59.000Z

    {This work aims to investigate the spectral structure of the parallel electric field generated by strong anisotropic and balanced Alfvenic turbulence in relation with the problem of electron acceleration from the thermal population in solar flare plasma conditions.} {We consider anisotropic Alfvenic fluctuations in the presence of a strong background magnetic field. Exploiting this anisotropy, a set of reduced equations governing non-linear, two-fluid plasma dynamics is derived. The low-$\\beta$ limit of this model is used to follow the turbulent cascade of the energy resulting from the non-linear interaction between kinetic Alfven waves, from the large magnetohydrodynamics (MHD) scales with $k_{\\perp}\\rho_{s}\\ll 1$ down to the small "kinetic" scales with $k_{\\perp}\\rho_{s} \\gg 1$, $\\rho_{s}$ being the ion sound gyroradius.} {Scaling relations are obtained for the magnitude of the turbulent electromagnetic fluctuations, as a function of $k_{\\perp}$ and $k_{\\parallel}$, showing that the electric field develops ...

  15. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01T23:59:59.000Z

    Carrying  renewable electricity across the u.s.a.   http://electricity  supply  industry  (for  ten  years),  and various universities in Australia and the USA.  

  16. Generating Electricity with your Steam System: Keys to Long Term Savings

    E-Print Network [OSTI]

    Bullock, B.; Downing, A.

    2010-01-01T23:59:59.000Z

    The application of combined heat and power principals to existing plant steam systems can help produce electricity at more than twice efficiency of grid generated electricity. In this way, steam plant managers can realize substantial savings...

  17. The economic impact of state ordered avoided cost rates for photovoltaic generated electricity

    E-Print Network [OSTI]

    Bottaro, Drew

    1981-01-01T23:59:59.000Z

    The Public Utility Regulatory Policies Act (PURPA) of 1978 requires that electric utilities purchase electricity generated by small power producers (QFs) such as photovoltaic systems at rates that will encourage the ...

  18. Comparison of costs for solar electric sources with diesel generators in remote locations

    E-Print Network [OSTI]

    Boyer, Edmond

    369 Comparison of costs for solar electric sources with diesel generators in remote locations F. K alternative sources for generating power in remote regions of the world. These include diesel electric-10 years are gasoline or diesel generators [1]. This merely touches the surface of the worldwide interest

  19. Performance of solar electric generating systems on the utility grid

    SciTech Connect (OSTI)

    Roland, J.R.

    1986-01-01T23:59:59.000Z

    The first year of performance of the Solar Electric Generating System I (SEGS I), which has been operating on the Southern California Edison (SCE) grid since December 1984 is discussed. The solar field, comprised of 71,680 m/sup 2/ of Luz parabolic trough line-focus solar collectors, supplies thermal energy at approx. 585/sup 0/F to the thermal storage tank. This energy is then used to generate saturated steam at 550 psia and 477/sup 0/F which passes through an independent natural gas-fired superheater and is brought to 780/sup 0/F superheat. The solar collector assembly (SCA) is the primary building block of this modular system. A single SCA consists of a row of eight parabolic trough collectors, a single drive motor, and a local microprocessor control unit. The basic components of the parabolic trough collector are a mirrored glass reflector, a unique and highly efficient heat collection element, and a tracking/positioning system. The heat collector element contains a stainless steel absorber tube coated with black chrome selective surface and is contained within an evacuated cylindrical glass envelope. The plant has reached the design capacity of 14.7 MW and, on a continuous basis, provides approx. 13.8 MW of net power during the utility's on-peak periods (nominally 12:00 noon to 6:00 p.m. during the summer weekdays and 5:00 p.m. to 10:00 p.m. during the winter weekdays).

  20. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01T23:59:59.000Z

    reliability  theory  and  control,  with  special  emphasis  on  applications  to  electric  power  systems  and  power  electronics.  

  1. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01T23:59:59.000Z

    Scale  Integration  of  Wind  Generation Including Network Scale  Integration  of  Wind  Generation Including Network with Large  Penetration of Wind Generation: Wind energy is 

  2. Distributed Generation Dispatch Optimization under Various Electricity Tariffs

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2007-01-01T23:59:59.000Z

    LBNL-54447. Distributed Generation Dispatch OptimizationA Business Case for On-Site Generation: The BD Biosciencesrelated work. Distributed Generation Dispatch Optimization

  3. Electric Power Generation from Co-Produced Fluids from Oil and...

    Open Energy Info (EERE)

    Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Electric Power Generation from Co-Produced Fluids from Oil and Gas Wells Project Type ...

  4. Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation

    E-Print Network [OSTI]

    Bailey, Owen; Worrell, Ernst

    2005-01-01T23:59:59.000Z

    biogas digester systems can generate electricity and thermal energy to serve heatingbiogas (mostly methane) can be captured and used to provide energy services either by direct heating

  5. Solar Electric Generating System II finite element analysis

    SciTech Connect (OSTI)

    Dohner, J.L.; Anderson, J.R.

    1994-04-01T23:59:59.000Z

    On June 2, 1992, Landers` earthquake struck the Solar Electric Generating System II, located in Daggett, California. The 30 megawatt power station, operated by the Daggett Leasing Corporation (DLC), suffered substantial damage due to structural failures in the solar farm. These failures consisted of the separation of sliding joints supporting a distribution of parabolic glass mirrors. At separation, the mirrors fell to the ground and broke. It was the desire of the DLC and the Solar Thermal Design Assistance Center (STDAC) of Sandia National Laboratories (SNL) and to redesign these joints so that, in the event of future quakes, costly breakage will be avoided. To accomplish this task, drawings of collector components were developed by the STDAC, from which a detailed finite element computer model of a solar collector was produced. This nonlinear dynamic model, which consisted of over 8,560 degrees of freedom, underwent model reduction to form a low order nonlinear dynamic model containing only 40 degrees of freedom. This model was then used as a design tool to estimate joint dynamics. Using this design tool, joint configurations were modified, and an acceptable joint redesign determined. The results of this analysis showed that the implementation of metal stops welded to support shafts for the purpose of preventing joint separation is a suitable joint redesign. Moreover, it was found that, for quakes of Landers` magnitude, mirror breakage due to enhanced vibration in the trough assembly is unlikely.

  6. AVESTAR Center for Operational Excellence of Electricity Generation Plants

    SciTech Connect (OSTI)

    Zitney, Stephen

    2012-08-29T23:59:59.000Z

    To address industry challenges in attaining operational excellence for electricity generation plants, the U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTARTM). This presentation will highlight the AVESTARTM Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of high-efficiency, near-zero-emission electricity generation plants. The AVESTAR Center brings together state-of-the-art, real-time, high-fidelity dynamic simulators with full-scope operator training systems (OTSs) and 3D virtual immersive training systems (ITSs) into an integrated energy plant and control room environment. AVESTAR’s initial offering combines--for the first time--a “gasification with CO2 capture” process simulator with a “combined-cycle” power simulator together in a single OTS/ITS solution for an integrated gasification combined cycle (IGCC) power plant with carbon dioxide (CO2) capture. IGCC systems are an attractive technology option for power generation, especially when capturing and storing CO2 is necessary to satisfy emission targets. The AVESTAR training program offers a variety of courses that merge classroom learning, simulator-based OTS learning in a control-room operations environment, and immersive learning in the interactive 3D virtual plant environment or ITS. All of the courses introduce trainees to base-load plant operation, control, startups, and shutdowns. Advanced courses require participants to become familiar with coordinated control, fuel switching, power-demand load shedding, and load following, as well as to problem solve equipment and process malfunctions. Designed to ensure work force development, training is offered for control room and plant field operators, as well as engineers and managers. Such comprehensive simulator-based instruction allows for realistic training without compromising worker, equipment, and environmental safety. It also better prepares operators and engineers to manage the plant closer to economic constraints while minimizing or avoiding the impact of any potentially harmful, wasteful, or inefficient events. The AVESTAR Center is also used to augment graduate and undergraduate engineering education in the areas of process simulation, dynamics, control, and safety. Students and researchers gain hands-on simulator-based training experience and learn how the commercial-scale power plants respond dynamically to changes in manipulated inputs, such as coal feed flow rate and power demand. Students also analyze how the regulatory control system impacts power plant performance and stability. In addition, students practice start-up, shutdown, and malfunction scenarios. The 3D virtual ITSs are used for plant familiarization, walk-through, equipment animations, and safety scenarios. To further leverage the AVESTAR facilities and simulators, NETL and its university partners are pursuing an innovative and collaborative R&D program. In the area of process control, AVESTAR researchers are developing enhanced strategies for regulatory control and coordinated plant-wide control, including gasifier and gas turbine lead, as well as advanced process control using model predictive control (MPC) techniques. Other AVESTAR R&D focus areas include high-fidelity equipment modeling using partial differential equations, dynamic reduced order modeling, optimal sensor placement, 3D virtual plant simulation, and modern grid. NETL and its partners plan to continue building the AVESTAR portfolio of dynamic simulators, immersive training systems, and advanced research capabilities to satisfy industry’s growing need for training and experience with the operation and control of clean energy plants. Future dynamic simulators under development include natural gas combined cycle (NGCC) and supercritical pulverized coal (SCPC) plants with post-combustion CO2 capture. These dynamic simulators are targeted for us

  7. Stirling Engines for Low-Temperature Solar-Thermal-Electric Power Generation

    E-Print Network [OSTI]

    Sanders, Seth

    Stirling Engines for Low-Temperature Solar-Thermal- Electric Power Generation Artin Der Minassians Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB - Electrical Engineering and Computer Sciences in the GRADUATE DIVISION of the UNIVERSITY OF CALIFORNIA

  8. General equilibrium, electricity generation technologies and the cost of carbon abatement: A structural sensitivity analysis

    E-Print Network [OSTI]

    : C61 C68 D58 Q43 Keywords: Carbon policy Energy modeling Electric power sector Bottom-up Top of generation technologies and the overall electricity system. By construction, these models are partial equilib of an integrated representation of economic and electricity systems makes simplifying assumptions appealing

  9. A System Dynamics Study of Carbon Cycling and Electricity Generation from Energy Crops

    E-Print Network [OSTI]

    Ford, Andrew

    Pullman, WA 99164-4430 USA Abstract The Climate Stewardship Act, a global warming mitigation policy1 A System Dynamics Study of Carbon Cycling and Electricity Generation from Energy Crops Hilary of these rotations. Our results show that using energy crops to displace coal in electricity generation will have

  10. Water Research 39 (2005) 942952 Electricity generation from cysteine in a microbial fuel cell

    E-Print Network [OSTI]

    2005-01-01T23:59:59.000Z

    Water Research 39 (2005) 942­952 Electricity generation from cysteine in a microbial fuel cell Abstract In a microbial fuel cell (MFC), power can be generated from the oxidation of organic matter. Keywords: Bacteria; Biofuel cell; Microbial fuel cell; Electricity; Power output; Shewanella; Fuel cell 1

  11. Water Research 39 (2005) 16751686 Electricity generation using membrane and salt bridge

    E-Print Network [OSTI]

    Water Research 39 (2005) 1675­1686 Electricity generation using membrane and salt bridge microbial Microbial fuel cells (MFCs) can be used to directly generate electricity from the oxidation of dissolved (Geobacter metallireducens) or a mixed culture (wastewater inoculum). Power output with either inoculum

  12. Reliability Evaluation of Electric Power Generation Systems with Solar Power 

    E-Print Network [OSTI]

    Samadi, Saeed

    2013-11-08T23:59:59.000Z

    reliability evaluation of generation systems including Photovoltaic (PV) and Concentrated Solar Power (CSP) plants. Unit models of PV and CSP are developed first, and then generation system model is constructed to evaluate the reliability of generation systems...

  13. Reliability Evaluation of Electric Power Generation Systems with Solar Power

    E-Print Network [OSTI]

    Samadi, Saeed

    2013-11-08T23:59:59.000Z

    Conventional power generators are fueled by natural gas, steam, or water flow. These generators can respond to fluctuating load by varying the fuel input that is done by a valve control. Renewable power generators such as wind or solar, however...

  14. Distributed Generation Dispatch Optimization under Various Electricity Tariffs

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2007-01-01T23:59:59.000Z

    utility experience with RTP tariffs is described in 3. Distributed GenerationUtilities Commission, Division of Ratepayer Advocates have also provided support on related work. Distributed Generation

  15. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01T23:59:59.000Z

    component  (such  as  a  line  transmission,  generator,  or  transformer)  is  out  of  service,  the  power 

  16. The 1992 Pacific Northwest Residential Energy Survey : Phase 1 (PNWRES92-I) : Book 6 : Selected Crosstabulations for Publicly-Owned Generating Utilities.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration. End-Use Research Section; Applied Management & Planning Group (Firm)

    1993-06-01T23:59:59.000Z

    This book constitutes a portion of the primary documentation for the 1992 Pacific Northwest Residential Energy Survey, Phase I. The complete 33-volume set of primary documentation provides information needed by energy analysts and interpreters with respect to planning, execution, data collection, and data management of the PNWRES92-I process. Thirty of these volumes are devoted to different ``views`` of the data themselves, with each view having a special purpose or interest as its focus. Analyses and interpretations of these data will be the subjects of forthcoming publications. Conducted during the late summer and fall months of 1992, PNWRES92-I had the over-arching goal of satisfying basic requirements for a variety of information about the stock of residential units in Bonneville`s service region. Surveys with a similar goal were conducted in 1979 and 1983. This volume is comprised of selected crosstabulations for publicly-owned generating utilities in Eastern Washington, Western Washington, and Western Oregon. ``Selected crosstabulations`` refers to a set of nine survey items of wide interest (Dwelling Type, Ownership Type, Year-of-Construction, Dwelling Size, Primary Space-Heating Fuel, Primary Water-Heating Fuel, Household Income for 1991, Utility Type, and Space-Heating Fuels: Systems and Equipment) that were crosstabulated among themselves.

  17. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01T23:59:59.000Z

    the  computing  needs for building this smart grid,  and using the cloud for building the smart grid.   4.1 The requirements  for  building  successful  smart  electric 

  18. Electrical ship demand modeling for future generation warships

    E-Print Network [OSTI]

    Sievenpiper, Bartholomew J. (Bartholomew Jay)

    2013-01-01T23:59:59.000Z

    The design of future warships will require increased reliance on accurate prediction of electrical demand as the shipboard consumption continues to rise. Current US Navy policy, codified in design standards, dictates methods ...

  19. Sales and Use Tax Exemption for Electrical Generating Equipment

    Broader source: Energy.gov [DOE]

    Indiana does not have a specific sales and use tax exemption for equipment used in the production of renewable electricity. Therefore, such equipment is presumed to be subject to sales and use tax....

  20. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01T23:59:59.000Z

    et al.  On?line power system security analysis.  power grid is going through transformational reform to be efficient,  reliable and secure smart electric grid in line with the national energy security 

  1. Electric Generating and Transmission Facilities – Emissions Management (Iowa)

    Broader source: Energy.gov [DOE]

    This section details responsibilities of the Iowa Utility Board, including the policies for electricity rate-making for the state of Iowa, certification of natural gas providers, and other policies...

  2. Electric power generating plant having direct coupled steam and compressed air cycles

    DOE Patents [OSTI]

    Drost, Monte K. (Richland, WA)

    1982-01-01T23:59:59.000Z

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  3. Electric power generating plant having direct-coupled steam and compressed-air cycles

    DOE Patents [OSTI]

    Drost, M.K.

    1981-01-07T23:59:59.000Z

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  4. A Microfabricated Inductively-Coupled Plasma Generator Department of Electrical and Computer Engineering,

    E-Print Network [OSTI]

    of the supplied power. This mechanism of RF plasma generation is referred to as capacitive coupling. Electrodeless generation7 . The inductively-coupled plasma (ICP) is one type of electrodeless discharge that is now widelyA Microfabricated Inductively-Coupled Plasma Generator J. Hopwood Department of Electrical

  5. Major Long Haul Truck Idling Generators in Key States ELECTRIC POWER RESEARCH INSTITUTE

    E-Print Network [OSTI]

    Major Long Haul Truck Idling Generators in Key States 1013776 #12;#12;ELECTRIC POWER RESEARCH-0813 USA 800.313.3774 650.855.2121 askepri@epri.com www.epri.com Major Long Haul Truck Idling Generators Haul Truck Idling Generators in Key States. EPRI, Palo Alto, CA: 2008. 1013776. #12;#12;v PRODUCT

  6. Edison Electric Institute State Generation and Transmission Siting...

    Open Energy Info (EERE)

    Institute State Generation and Transmission Siting Directory Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook:...

  7. Adapting On-Site Electrical Generation Platforms for Producer...

    Office of Environmental Management (EM)

    of Minnesota, Morris, in collaboration with the University of Minnesota Center for Diesel Research, Cummins Power Generation Inc., ALL Power Labs, and Hammel, Green &...

  8. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01T23:59:59.000Z

    data  integration  for  Smart  Grid”,  B 2010  3rd  IEEE simulation  integration,  the  next generation smart grid the Smart Grid vision requires the efficient integration of 

  9. Electric Power Generation Systems | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWater Use Goal 4: EfficientMultiferroicElectricElectric

  10. Scope for Future CO2 Emission Reductions from Electricity Generation through the Deployment of Carbon Capture and Storage Technologies

    E-Print Network [OSTI]

    Haszeldine, Stuart

    Scope for Future CO2 Emission Reductions from Electricity Generation through the Deployment, it is therefore possible that large (~45%) reductions in CO2 emissions from UK electricity generation couldC/year. If required, however, a reduction in CO2 emissions of 15 MtC/year in the electricity generation sector by 2020

  11. An integrated assessment of global and regional water demands for electricity generation to 2095

    SciTech Connect (OSTI)

    Davies, Evan; Kyle, G. Page; Edmonds, James A.

    2013-02-01T23:59:59.000Z

    Electric power plants currently account for approximately one-half of the global industrial water withdrawal. While continued expansion of the electric sector seems likely into the future, the consequent water demands are quite uncertain, and will depend on highly variable water intensities by electricity technologies, at present and in the future. Using GCAM, an integrated assessment model of energy, agriculture, and climate change, we first establish lower-bound, median, and upper-bound estimates for present-day electric sector water withdrawals and consumption by individual electric generation technologies in each of 14 geopolitical regions, and compare them with available estimates of regional industrial or electric sector water use. We then explore the evolution of global and regional electric sector water use over the next century, focusing on uncertainties related to withdrawal and consumption intensities for a variety of electric generation technologies, rates of change of power plant cooling system types, and rates of adoption of a suite of water-saving technologies. Results reveal that the water withdrawal intensity of electricity generation is likely to decrease in the near term with capital stock turnover, as wet towers replace once-through flow cooling systems and advanced electricity generation technologies replace conventional ones. An increase in consumptive use accompanies the decrease in water withdrawal rates; however, a suite of water conservation technologies currently under development could compensate for this increase in consumption. Finally, at a regional scale, water use characteristics vary significantly based on characteristics of the existing capital stock and the selection of electricity generation technologies into the future.

  12. Dynamic modelling of generation capacity investment in electricity markets with high wind penetration 

    E-Print Network [OSTI]

    Eager, Daniel

    2012-06-25T23:59:59.000Z

    The ability of liberalised electricity markets to trigger investment in the generation capacity required to maintain an acceptable level of security of supply risk has been - and will continue to be - a topic of much ...

  13. Renewable Generation and Interconnection to the Electrical Grid in Southern California

    Broader source: Energy.gov [DOE]

    Presentation covers the topic of "Renewable Generation and Interconnection to the Electrical Grid in Southern California," given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

  14. General Equilibrium, Electricity Generation Technologies and the Cost of Carbon Abatement

    E-Print Network [OSTI]

    Lanz, Bruno, 1980-

    Electricity generation is a major contributor to carbon dioxide emissions, and a key determinant of abatement costs. Ex-ante assessments of carbon policies mainly rely on either of two modeling paradigms: (i) partial ...

  15. Heat exchanger design for thermoelectric electricity generation from low temperature flue gas streams

    E-Print Network [OSTI]

    Latcham, Jacob G. (Jacob Greco)

    2009-01-01T23:59:59.000Z

    An air-to-oil heat exchanger was modeled and optimized for use in a system utilizing a thermoelectric generator to convert low grade waste heat in flue gas streams to electricity. The NTU-effectiveness method, exergy, and ...

  16. Did English generators play cournot? : capacity withholding in the electricity pool

    E-Print Network [OSTI]

    Green, Richard

    2004-01-01T23:59:59.000Z

    Electricity generators can raise the price of power by withholding their plant from the market. We discuss two ways in which this could have affected prices in the England and Wales Pool. Withholding low-cost capacity which ...

  17. A two-phase spherical electric machine for generating rotating uniform magnetic fields

    E-Print Network [OSTI]

    Lawler, Clinton T. (Clinton Thomas)

    2007-01-01T23:59:59.000Z

    This thesis describes the design and construction of a novel two-phase spherical electric machine that generates rotating uniform magnetic fields, known as a fluxball machine. Alternative methods for producing uniform ...

  18. If I generate 20 percent of my national electricity from wind...

    Open Energy Info (EERE)

    generate 20 percent of my national electricity from wind and solar - what does it do to my GDP and Trade Balance ? Home I think that the economics of fossil fuesl are well...

  19. Application Filing Requirements for Wind-Powered Electric Generation Facilities (Ohio)

    Broader source: Energy.gov [DOE]

    Chapter 4906-17 of the Ohio Administrative Code states the Application Filing Requirements for wind-powered electric generating facilities in Ohio. The information requested in this rule shall be...

  20. Development of a Segregated Municipal Solid Waste Gasification System for Electrical Power Generation

    E-Print Network [OSTI]

    Maglinao, Amado Latayan

    2013-04-11T23:59:59.000Z

    ) gasification for electrical power generation was conducted in a fluidized bed gasifier and the feasibility of using a control system was evaluated to facilitate its management and operation. The performance of an engine using the gas produced was evaluated. A...

  1. Systematic Review and Harmonization of Life Cycle GHG Emission Estimates for Electricity Generation Technologies (Presentation)

    SciTech Connect (OSTI)

    Heath, G.

    2012-06-01T23:59:59.000Z

    This powerpoint presentation to be presented at the World Renewable Energy Forum on May 14, 2012, in Denver, CO, discusses systematic review and harmonization of life cycle GHG emission estimates for electricity generation technologies.

  2. Floating offshore wind farms : demand planning & logistical challenges of electricity generation

    E-Print Network [OSTI]

    Nnadili, Christopher Dozie, 1978-

    2009-01-01T23:59:59.000Z

    Floating offshore wind farms are likely to become the next paradigm in electricity generation from wind energy mainly because of the near constant high wind speeds in an offshore environment as opposed to the erratic wind ...

  3. GREENHOUSE GAS EMISSION CONTROL OPTIONS: ASSESSING TRANSPORTATION AND ELECTRICITY GENERATION TECHNOLOGIES AND

    E-Print Network [OSTI]

    Kockelman, Kara M.

    power generation, energy policy, fuel economy ABSTRACT Prioritizing the numerous technology and policy Publications for book titled "Energy Consumption: Impacts of Human Activity, Current and Future Challenges, Environmental and Ecological Effects," August 2013. KEY WORDS: Greenhouse gases, transportation energy, electric

  4. Modeling Water Withdrawal and Consumption for Electricity Generation in the United States

    E-Print Network [OSTI]

    Strzepek, Kenneth M.

    2012-06-15T23:59:59.000Z

    Water withdrawals for thermoelectric cooling account for a significant portion of total water use in the United States. Any change in electrical energy generation policy and technologies has the potential to have a major ...

  5. Gas production response to price signals: Implications for electric power generators

    SciTech Connect (OSTI)

    Ferrell, M.L.

    1995-12-31T23:59:59.000Z

    Natural gas production response to price signals is outlined. The following topics are discussed: Structural changes in the U.S. gas exploration and production industry, industry outlook, industry response to price signals, and implications for electric power generators.

  6. Quantifying the system balancing cost when wind energy is incorporated into electricity generation system 

    E-Print Network [OSTI]

    Issaeva, Natalia

    2009-01-01T23:59:59.000Z

    Incorporation of wind energy into the electricity generation system requires a detailed analysis of wind speed in order to minimize system balancing cost and avoid a significant mismatch between supply and demand. Power ...

  7. Use of Geothermal Energy for Electric Power Generation

    SciTech Connect (OSTI)

    Mashaw, John M.; Prichett, III, Wilson (eds.)

    1980-10-23T23:59:59.000Z

    The National Rural Electric Cooperative Association and its 1,000 member systems are involved in the research, development and utilization of many different types of supplemental and alternative energy resources. We share a strong commitment to the wise and efficient use of this country's energy resources as the ultimate answer to our national prosperity and economic growth. WRECA is indebted to the United States Department of Energy for funding the NRECA/DOE Geothermal Workshop which was held in San Diego, California in October, 1980. We would also like to express our gratitude to each of the workshop speakers who gave of their time, talent and experience so that rural electric systems in the Western U. S. might gain a clearer understanding of the geothermal potential in their individual service areas. The participants were also presented with practical, expert opinion regarding the financial and technical considerations of using geothermal energy for electric power production. The organizers of this conference and all of those involved in planning this forum are hopeful that it will serve as an impetus toward the full utilization of geothermal energy as an important ingredient in a more energy self-sufficient nation. The ultimate consumer of the rural electric system, the member-owner, expects the kind of leadership that solves the energy problems of tomorrow by fully utilizing the resources at our disposal today.

  8. A Supply Chain Network Perspective for Electric Power Generation, Supply, Transmission, and Consumption

    E-Print Network [OSTI]

    Nagurney, Anna

    A Supply Chain Network Perspective for Electric Power Generation, Supply, Transmission, and Consumption Anna Nagurney and Dmytro Matsypura Department of Finance and Operations Management Isenberg School, Berlin, Germany, pp. 3-27. Abstract: A supply chain network perspective for electric power production

  9. Stresa, Italy, 26-28 April 2006 OPTIMIZATION OF PIEZOELECTRIC ELECTRICAL GENERATORS

    E-Print Network [OSTI]

    Boyer, Edmond

    Stresa, Italy, 26-28 April 2006 OPTIMIZATION OF PIEZOELECTRIC ELECTRICAL GENERATORS POWERED the PEG output power [2,3]. Although the power electronic interface used for optimization induces Villeurbanne Cedex, France ABSTRACT This paper compares the performances of a vibration- powered electrical

  10. The impact of the European Union Emission Trading Scheme on electricity generation sectors

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    The impact of the European Union Emission Trading Scheme on electricity generation sectors Djamel the Kyoto Protocol, France and Germany par- ticipate to the European Union Emission Trading Scheme (EU ETS, the European market for emission allowances has increased the market power of the historical French electricity

  11. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01T23:59:59.000Z

    Price Reduction Offsetting demand for natural gas in the electricity sector by increasing wind energy’price reductions, and water savings. Index Terms—power system modeling, wind energywind energy to offset coal- and natural gas-based electricity generation analyzed here include decreased natural gas prices,

  12. Electrical detection of spin pumping: dc voltage generated by ferromagnetic resonance at ferromagnet/nonmagnet contact

    E-Print Network [OSTI]

    van der Wal, Caspar H.

    Electrical detection of spin pumping: dc voltage generated by ferromagnetic resonance We describe electrical detection of spin pumping in metallic nanostructures. In the spin pumping effect, a precessing ferromagnet attached to a normal metal acts as a pump of spin-polarized current

  13. Understanding the use of natural gas storage for generators of electricity

    SciTech Connect (OSTI)

    Beckman, K.L. [International Gas Consulting, Inc., Houston, TX (United States)

    1995-12-31T23:59:59.000Z

    Underground natural gas storage is aggressively used by a handful of utility electric generators in the United States. While storage facilities are often utilized by the natural gas pipeline industry and the local distribution companies (LDCs), regional electric generators have taken advantgage of abundant storage and pipeline capacity to develop very cost efficient gas fired electric generating capacity, especially for peaking demand. Most types of natural gas storage facilities are located underground, with a few based above-ground. These facilities have served two basic types of natural gas storage service requirements: seasonal baseload and needle peakshaving. Baseload services are typically developed in depleted oil and gas reservoirs and aquifers while mined caverns and LNG facilities (also Propane-air facilities) typically provide needle peakshaving services. Reengineering of the natural gas infrastructure will alter the historical use patterns, and will provide the electric industry with new gas supply management tools. Electric generators, as consumers of natural gas, were among the first open access shippers and, as a result of FERC Order 636, are now attempting to reposition themselves in the {open_quotes}new{close_quotes} gas industry. Stated in terms of historical consumption, the five largest gas burning utilities consume 40% of all the gas burned for electric generation, and the top twenty accounted for approximately 70%. Slightly more than 100 utilities, including municipals, have any gas fired generating capacity, a rather limited number. These five are all active consumers of storage services.

  14. Attend a Webinar on AMO's Next Generation Electric Machines Funding...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    will fund four to six projects that develop a new generation of energy efficient, high power density, high speed, integrated medium voltage drive systems for a wide variety of...

  15. AMO FOA Targets Advanced Components for Next-Generation Electric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to 20 million is now available to develop a new generation of energy efficient, high power density, high speed integrated MV drive systems for a wide variety of critical energy...

  16. Quantifying the Air Pollution Exposure Consequences of Distributed Electricity Generation

    E-Print Network [OSTI]

    Heath, Garvin A.; Granvold, Patrick W.; Hoats, Abigail S.; Nazaroff, William W

    2005-01-01T23:59:59.000Z

    2: L A City, DWP Valley Generating 1: Hunters Point 2: PG &E Co, Hunters Point Power 1: SDG & E Co/Kearny Mesa GT 2:Angeles ST(4) BF(2) Hunters Point San Francisco NG, Diesel

  17. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01T23:59:59.000Z

    play this role.   i. The smart home.   In this vision, the Aware Appliances in a Smart Home  According to the most challenges  Varies  Smart  home  Next  generation  SCADA 

  18. Simplest AB-Thermonuclear Space Propulsion and Electric Generator

    E-Print Network [OSTI]

    Alexander Bolonkin

    2007-01-19T23:59:59.000Z

    The author applies, develops and researches mini-sized Micro- AB Thermonuclear Reactors for space propulsion and space power systems. These small engines directly convert the high speed charged particles produced in the thermonuclear reactor into vehicle thrust or vehicle electricity with maximum efficiency. The simplest AB-thermonuclear propulsion offered allows spaceships to reach speeds of 20,000 50,000 km/s (1/6 of light speed) for fuel ratio 0.1 and produces a huge amount of useful electric energy. Offered propulsion system permits flight to any planet of our Solar system in short time and to the nearest non-Sun stars by E-being or intellectual robots during a single human life period. Key words: AB-propulsion, thermonuclear propulsion, space propulsion, thermonuclear power system.

  19. Market Power and Technological Bias: The Case of Electricity Generation

    E-Print Network [OSTI]

    Twomey, Paul; Neuhoff, Karsten

    2006-03-14T23:59:59.000Z

    , the intermittent nature of output from wind turbines and solar panels is frequently discussed as a potential obstacle to larger scale application of these tech- nologies. Contributions of 10-20% of electrical energy from individual intermittent technologies create... fixed, exogenously set, strike price. The results are not sensitive to the strike price - but further research is required to assess the impact of multiple types of option contracts with different strike prices. The outline of this paper is as follows...

  20. Algorithm for calculation of characterisitcs of thermionic electricity-generating assemblies

    SciTech Connect (OSTI)

    Babushkin, Yu.V.; Mendel'baum, M.A.; Savinov, A.P.; Sinyavskii, V.V.

    1981-01-01T23:59:59.000Z

    A numerical algorithm has been developed for calculating the kinetic characteristics of electricity-generating coaxial cells and assemblies; it is based on separate solution of the equations describing the thermal and electrical processes with their subsequent coordination by way of the volt-ampere characteristics of an elementary thermionic converter by means of piecewise-linear approximation of the nonlinear characteristics at the operating points. The possibilities and advantages of the proposed calculation algorithm for investigation of the transients occurring in the course of operation of the electricity generating assemblies (EGA) are indicated. Results are reported for sample calculations of several EGA static and kinetic characteristics. 10 refs.

  1. Electrical generation plant design practice intern experience at Power Systems Engineering, Inc.: an internship report

    E-Print Network [OSTI]

    Lee, Ting-Zern Joe, 1950-

    2013-03-13T23:59:59.000Z

    .2 Steady-State Performance of Electrical Conductors 22 2.3- Transient Performance of Electrical Conductors and Supports 27 2.4 Applications of Instrument Transformers 43 2.5 The R-X Diagram 47 CHAPTER 3 GENERATOR PROTECTION 52 3.1 Philosophy... Basis Devices 21 Figure 2.3 Shape Correction Factors for Strap Buses 35 Figure 2.4 Ice and Wind Loading on Electrical Conductors 37 Figure 2.5 System Conditions on the R-X Diagram 50 Figure 3.1 Differential Protection for a Wye-Connected Generator...

  2. Role of Energy Storage with Renewable Electricity Generation (Report Summary) (Presentation)

    SciTech Connect (OSTI)

    Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

    2010-03-01T23:59:59.000Z

    Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as "intermittent") output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

  3. Table 11.3 Electricity: Components of Onsite Generation, 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia" "TechnologyVermont" "Technology by1 Electricity: Components3

  4. Table 11.3 Electricity: Components of Onsite Generation, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia" "TechnologyVermont" "Technology by1 Electricity: Components33

  5. Table 11.4 Electricity: Components of Onsite Generation, 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia" "TechnologyVermont" "Technology by1 Electricity: Components334

  6. Table 11.4 Electricity: Components of Onsite Generation, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia" "TechnologyVermont" "Technology by1 Electricity:

  7. Sandia Energy - Electric Power Generation and Water Use Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage Silicon CarbideAgency:UNM:Education andElectric

  8. MHK Technologies/Electric Generating Wave Pipe | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK Projects JumpPlaneElectric Buoy.jpg Technology

  9. Proceedings of the Computational Needs for the Next Generation Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+ Report Presentation:in the U.S. by 2030, May 2009 |Electric GridGrid

  10. Do Generation Firms in Restructured Electricity Markets Have Incentives to Support Socially-Efficient Transmission Investments? *

    E-Print Network [OSTI]

    transmission rights (FTRs) by generation firms. We investigate the way in which the allocation of FTRs may-Efficient Transmission Investments? * Enzo E. Sauma a, ** , Shmuel S. Oren b a Industrial and Systems Engineering that generation firms have in restructured electricity markets for supporting long-term transmission investments

  11. Native American Technical Assistance and Training for Renewable Energy Resource Development and Electrical Generation Facilities Management

    SciTech Connect (OSTI)

    A. David Lester

    2008-10-17T23:59:59.000Z

    The Council of Energy Resource Tribes (CERT) will facilitate technical expertise and training of Native Americans in renewable energy resource development for electrical generation facilities, and distributed generation options contributing to feasibility studies, strategic planning and visioning. CERT will also provide information to Tribes on energy efficiency and energy management techniques.This project will provide facilitation and coordination of expertise from government agencies and private industries to interact with Native Americans in ways that will result in renewable energy resource development, energy efficiency program development, and electrical generation facilities management by Tribal entities. The intent of this cooperative agreement is to help build capacity within the Tribes to manage these important resources.

  12. Onsite Backup Generation and Interruption Insurance for Electricity Distribution Author(s): Joseph A. Doucet and Shmuel S. Oren

    E-Print Network [OSTI]

    Oren, Shmuel S.

    Onsite Backup Generation and Interruption Insurance for Electricity Distribution Author(s): Joseph customerownedonsitebackupdecisionswillpre-emptthe utility'splan to mitigatecompensationpaymentsbyprovidingonsitebackup generation access to The Energy Journal. http://www.jstor.org #12;Onsite Backup Generation and Interruption

  13. Rotating electrical machines - Part 22: AC generators for reciprocating internal combustion (RIC) engine driven generating sets

    E-Print Network [OSTI]

    International Electrotechnical Commission. Geneva

    1996-01-01T23:59:59.000Z

    Establishes the principal characteristics of a.c. generators under the control of their voltage regulators when used for reciprocating internal combustion engine driven generating sets. Supplements the requirements given in IEC 60034-1.

  14. Feasibility Study of Biomass Electrical Generation on Tribal Lands

    SciTech Connect (OSTI)

    Tom Roche; Richard Hartmann; Joohn Luton; Warren Hudelson; Roger Blomguist; Jan Hacker; Colene Frye

    2005-03-29T23:59:59.000Z

    The goals of the St. Croix Tribe are to develop economically viable energy production facilities using readily available renewable biomass fuel sources at an acceptable cost per kilowatt hour ($/kWh), to provide new and meaningful permanent employment, retain and expand existing employment (logging) and provide revenues for both producers and sellers of the finished product. This is a feasibility study including an assessment of available biomass fuel, technology assessment, site selection, economics viability given the foreseeable fuel and generation costs, as well as an assessment of the potential markets for renewable energy.

  15. Zhenkang County Jineng Electricity Generation Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind Generating Engineering

  16. Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device

    DOE Patents [OSTI]

    Haaland, Carsten M. (Dadeville, AL); Deeds, W. Edward (Knoxville, TN)

    1999-01-01T23:59:59.000Z

    A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output.

  17. Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device

    DOE Patents [OSTI]

    Haaland, C.M.; Deeds, W.E.

    1999-07-13T23:59:59.000Z

    A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output. 5 figs.

  18. Variable Renewable Generation can Provide Balancing Control to the Electric Power System (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-09-01T23:59:59.000Z

    As wind and solar plants become more common in the electric power system, they may be called on to provide grid support services to help maintain system reliability. For example, through the use of inertial response, primary frequency response, and automatic generation control (also called secondary frequency response), wind power can provide assistance in balancing the generation and load on the system. These active power (i.e., real power) control services have the potential to assist the electric power system in times of disturbances and during normal conditions while also potentially providing economic value to consumers and variable renewable generation owners. This one-page, two-sided fact sheet discusses the grid-friendly support and benefits renewables can provide to the electric power system.

  19. Assessment of the possibilities of electricity and heat co-generation from biomass in Romania's case

    SciTech Connect (OSTI)

    Matei, M.

    1998-07-01T23:59:59.000Z

    This paper examines the use of biomass for electricity (and heat) production. The objectives of the works developed by RENEL--GSCI were to determine the Romanian potential biomass resources available in economic conditions for electricity production from biomass, to review the routes and the available equipment for power generation from biomass, to carry out a techno-economic assessment of different systems for electricity production from biomass, to identify the most suitable system for electricity and heat cogeneration from biomass, to carry out a detailed techno-economic assessment of the selected system, to perform an environmental impact assessment of the selected system and to propose a demonstration project. RENEL--GSCI (former ICEMENERG) has carried out an assessment concerning Romania's biomass potential taking into account the forestry and wood processing wastes (in the near term) and agricultural wastes (in mid term) as well as managing plantations (in the long term). Comparative techno-economical evaluation of biomass based systems for decentralized power generation was made. The cost analysis of electricity produced from biomass has indicated that the system based on boiler and steam turbine of 2,000 kW running on wood-wastes is the most economical. A location for a demonstration project with low cost financing possibilities and maximum benefits was searched. To mitigate the electricity cost it was necessary to find a location in which the fuel price is quite low, so that the low yield of small installation can be balanced. In order to demonstrate the performances of a system which uses biomass for electricity and heat generation, a pulp and paper mill which needed electricity and heat, and, had large amount of wood wastes from industrial process was found as the most suitable location. A technical and economical analysis for 8 systems for electricity production from bark and wood waste was performed.

  20. Generated using version 3.1.2 of the official AMS LATEX template Electric Field Reversal in Sprite Electric Field Signature1

    E-Print Network [OSTI]

    Hager, William

    Electric Field Signature1 Richard G. Sonnenfeld Langmuir Laboratory and Physics Department, New Mexico trigonometry), resulting in a net positive39 electric field at the observer. The intermediate point between P1Generated using version 3.1.2 of the official AMS LATEX template Electric Field Reversal in Sprite

  1. Developing a tool to estimate water withdrawal and consumption in electricity generation in the United States.

    SciTech Connect (OSTI)

    Wu, M.; Peng, J. (Energy Systems); ( NE)

    2011-02-24T23:59:59.000Z

    Freshwater consumption for electricity generation is projected to increase dramatically in the next couple of decades in the United States. The increased demand is likely to further strain freshwater resources in regions where water has already become scarce. Meanwhile, the automotive industry has stepped up its research, development, and deployment efforts on electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs). Large-scale, escalated production of EVs and PHEVs nationwide would require increased electricity production, and so meeting the water demand becomes an even greater challenge. The goal of this study is to provide a baseline assessment of freshwater use in electricity generation in the United States and at the state level. Freshwater withdrawal and consumption requirements for power generated from fossil, nonfossil, and renewable sources via various technologies and by use of different cooling systems are examined. A data inventory has been developed that compiles data from government statistics, reports, and literature issued by major research institutes. A spreadsheet-based model has been developed to conduct the estimates by means of a transparent and interactive process. The model further allows us to project future water withdrawal and consumption in electricity production under the forecasted increases in demand. This tool is intended to provide decision makers with the means to make a quick comparison among various fuel, technology, and cooling system options. The model output can be used to address water resource sustainability when considering new projects or expansion of existing plants.

  2. Planning for future uncertainties in electric power generation : an analysis of transitional strategies for reduction of carbon and sulfur emissions

    E-Print Network [OSTI]

    Tabors, Richard D.

    1991-01-01T23:59:59.000Z

    The object of this paper is to identify strategies for the U.S. electric utility industry for reduction of both acid rain producing and global warming gases. The research used the EPRI Electric Generation Expansion Analysis ...

  3. Production Tax Credit for Renewable Electricity Generation (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01T23:59:59.000Z

    In the late 1970s and early 1980s, environmental and energy security concerns were addressed at the federal level by several key pieces of energy legislation. Among them, the Public Utility Regulatory Policies Act of 1978 (PURPA), P.L. 95-617, required regulated power utilities to purchase alternative electricity generation from qualified generating facilities, including small-scale renewable generators; and the Investment Tax Credit (ITC), P.L. 95-618, part of the Energy Tax Act of 1978, provided a 10% federal tax credit on new investment in capital-intensive wind and solar generation technologies.

  4. Treatment of Solar Generation in Electric Utility Resource Planning

    SciTech Connect (OSTI)

    Sterling, J.; McLaren, J.; Taylor, M.; Cory, K.

    2013-10-01T23:59:59.000Z

    Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. State and federal support policies, solar photovoltaic (PV) price declines, and the introduction of new business models for solar PV 'ownership' are leading to increasing interest in solar technologies (especially PV); however, solar introduces myriad new variables into the utility resource planning decision. Most, but not all, utility planners have less experience analyzing solar than conventional generation as part of capacity planning, portfolio evaluation, and resource procurement decisions. To begin to build this knowledge, utility staff expressed interest in one effort: utility exchanges regarding data, methods, challenges, and solutions for incorporating solar in the planning process. Through interviews and a questionnaire, this report aims to begin this exchange of information and capture utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

  5. Generating Revenue for Generating Green Electricity: Evidence from Laboratory Experiments on

    E-Print Network [OSTI]

    Edwards, Paul N.

    commonly employed in green electricity programs: the voluntary contribution mechanism, the green tariff mechanism, and the all-or- nothing green tariff mechanism. [These mechanisms will be described momentarily the voluntary contribution mechanism (VCM), the green tariff mechanism (GTM), and the all-or-nothing green

  6. Carbon-free generation Carbon-free central generation of electricity, either through fossil

    E-Print Network [OSTI]

    Ohta, Shigemi

    of superconducting materials, which are key to integrating renewables on the grid. The 32-megawatt Long Island Solar will serve as a focal point for research and industrial involvement in tackling systems performance and grid, reducing the amount of precious metals needed to manufacture fuel cells for electric cars,

  7. Evolution of Wholesale Electricity Market Design with Increasing Levels of Renewable Generation

    SciTech Connect (OSTI)

    Ela, E.; Milligan, M.; Bloom, A.; Botterud, A.; Townsend, A.; Levin, T.

    2014-09-01T23:59:59.000Z

    Variable generation such as wind and photovoltaic solar power has increased substantially in recent years. Variable generation has unique characteristics compared to the traditional technologies that supply energy in the wholesale electricity markets. These characteristics create unique challenges in planning and operating the power system, and they can also influence the performance and outcomes from electricity markets. This report focuses on two particular issues related to market design: revenue sufficiency for long-term reliability and incentivizing flexibility in short-term operations. The report provides an overview of current design and some designs that have been proposed by industry or researchers.

  8. RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01T23:59:59.000Z

    IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA Energy and Environment

  9. Analyzing the Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest

    E-Print Network [OSTI]

    Fripp, Matthias; Wiser, Ryan

    2006-01-01T23:59:59.000Z

    the Value of Wind-Generated Electricity References TrueWindValuing the Time-Varying Electricity Production of Solarthe Value of Wind-Generated Electricity References Gipe, P.

  10. Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory BoardNucleate Boiling EfficientState Electric VehicleDepartment

  11. Analysis of geothermal electric-power generation at Big Creek Hot Springs, Lemhi County, Idaho

    SciTech Connect (OSTI)

    Struhsacker, D.W. (ed.)

    1981-01-01T23:59:59.000Z

    Big Creek Hot Springs was evaluated as a source of electrical power for the Blackbird Cobalt Mine, approximately 13 miles south of the hot spring. An evaluaton of the geothermal potential of Big Creek Hot Springs, a suggested exploration program and budget, an engineering feasibility study of power generation at Big Creek Hot Springs, an economic analysis of the modeled power generating system, and an appraisal of the institutional factors influencing development at Big Creek Hot Springs are included.

  12. Role of Electricity Markets and Market Design in Integrating Solar Generation: Solar Integration Series. 2 of 3 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2001-05-01T23:59:59.000Z

    The second out of a series of three fact sheets describing the role of electricity markets and market design in integrating solar generation.

  13. ENVIRONMENTAL BIOTECHNOLOGY Electricity generation at high ionic strength in microbial fuel

    E-Print Network [OSTI]

    Sun, Baolin

    ENVIRONMENTAL BIOTECHNOLOGY Electricity generation at high ionic strength in microbial fuel cell-Verlag 2009 Abstract Increasing the ionic strength of the electrolyte in a microbial fuel cell (MFC) can in some MFC applications. Keywords Microbial fuel cell . Shewanella marisflavi . Ionic strength . Internal

  14. Evaluating Policies to Increase the Generation of Electricity from Renewable Energy

    E-Print Network [OSTI]

    Schmalensee, Richard

    Focusing on the U.S. and the E.U., this essay seeks to advance four main propositions. First, the incidence of the short-run costs of programs to subsidize the generation of electricity from renewable sources varies with ...

  15. Present coal potential of Turkey and coal usage in electricity generation

    SciTech Connect (OSTI)

    Yilmaz, A.O. [Karadeniz Technical University, Trabzon (Turkey). Mining Engineering Department

    2009-07-01T23:59:59.000Z

    Total coal reserve (hard coal + lignite) in the world is 984 billion tons. While hard coal constitutes 52% of the total reserve, lignite constitutes 48% of it. Turkey has only 0.1% of world hard coal reserve and 1.5% of world lignite reserves. Turkey has 9th order in lignite reserve, 8th order in lignite production, and 12th order in total coal (hard coal and lignite) consumption. While hard coal production meets only 13% of its consumption, lignite production meets lignite consumption in Turkey. Sixty-five percent of produced hard coal and 78% of produced lignite are used for electricity generation. Lignites are generally used for electricity generation due to their low quality. As of 2003, total installed capacity of Turkey was 35,587 MW, 19% (6,774 MW) of which is produced from coal-based thermal power plants. Recently, use of natural gas in electricity generation has increased. While the share of coal in electricity generation was about 50% for 1986, it is replaced by natural gas today.

  16. "The Dynamics of Market Power with Deregulated Electricity Generation Richard E. Schuler,

    E-Print Network [OSTI]

    "The Dynamics of Market Power with Deregulated Electricity Generation Supplies" Richard E. Schuler previously developed models of dynamic oligopoly pricing, estimates are provided of how rapidly and how far of competition in long distance telephone service the United States, where they "predict" AT&T dynamic price

  17. Electricity-producing heating apparatus utilizing a turbine generator in a semi-closed brayton cycle

    DOE Patents [OSTI]

    Labinov, Solomon D.; Christian, Jeffrey E.

    2003-10-07T23:59:59.000Z

    The present invention provides apparatus and methods for producing both heat and electrical energy by burning fuels in a stove or boiler using a novel arrangement of a surface heat exchanger and microturbine-powered generator and novel surface heat exchanger. The equipment is particularly suited for use in rural and relatively undeveloped areas, especially in cold regions and highlands.

  18. Use of Linear Predictive Control for a Solar Electric Generating System

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    behavior can be used to design and operate plants. The solar power plant is characterized by significant1 Use of Linear Predictive Control for a Solar Electric Generating System Thorsten Stuetzle, Nathan Blair, William A. Beckman, John W. Mitchell Solar Energy Laboratory University of Wisconsin-Madison 1500

  19. Method and apparatus for steam mixing a nuclear fueled electricity generation system

    DOE Patents [OSTI]

    Tsiklauri, Georgi V. (Richland, WA); Durst, Bruce M. (Kennewick, WA)

    1996-01-01T23:59:59.000Z

    A method and apparatus for improving the efficiency and performance of a nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a micro-jet high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs. Another benefit of the instant invention is the extension of plant life and the reduction of downtime due to refueling.

  20. Method and apparatus for improving the performance of a nuclear power electrical generation system

    DOE Patents [OSTI]

    Tsiklauri, Georgi V. (Richland, WA); Durst, Bruce M. (Kennewick, WA)

    1995-01-01T23:59:59.000Z

    A method and apparatus for improving the efficiency and performance a of nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs.

  1. EIS-0416: Ivanpah Solar Electric Generating System, San Bernardino County, California

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to support a proposal from Solar Partners I, II, IV, and VIII, limited liability corporations formed by BrightSource Energy (BrightSource), to construct and operate a solar thermal electric generating facility in San Bernardino County, California on BLM Land.

  2. Effect of real-time electricity pricing on renewable generators and system emissions

    E-Print Network [OSTI]

    Connolly, Jeremiah P. (Jeremiah Peter)

    2008-01-01T23:59:59.000Z

    Real-time retail pricing (RTP) of electricity, in which the retail price is allowed to vary with very little time delay in response to changes in the marginal cost of generation, offers expected short-run and long-run ...

  3. How Does Electricity Generated from Woody Biomass Fit into California's Energy Future?

    E-Print Network [OSTI]

    Iglesia, Enrique

    & Steam Turbine/ Generator Electricity Reforming/CO2 Separation** Boiler Ash (slag) Gaseous emissions required) Efficiency 17-25% 38-41% Emissions & byproducts SOx, NOx, PM, CO, CO2 SOx, NOx, PM, CO, CO2 Char CO2 emission · 3-8% methane leaks during well operation · 20x worse than CO2 as a greenhouse gas

  4. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    SciTech Connect (OSTI)

    Bolinger, Mark A; Hand, Maureen; Blair, Nate; Bolinger, Mark; Wiser, Ryan; Hern, Tracy; Miller, Bart; O'Connell, R.

    2008-06-09T23:59:59.000Z

    The Wind Energy Deployment System model was used to estimate the costs and benefits associated with producing 20% of the nation's electricity from wind technology by 2030. This generation capacity expansion model selects from electricity generation technologies that include pulverized coal plants, combined cycle natural gas plants, combustion turbine natural gas plants, nuclear plants, and wind technology to meet projected demand in future years. Technology cost and performance projections, as well as transmission operation and expansion costs, are assumed. This study demonstrates that producing 20% of the nation's projected electricity demand in 2030 from wind technology is technically feasible, not cost-prohibitive, and provides benefits in the forms of carbon emission reductions, natural gas price reductions, and water savings.

  5. Using Electric Vehicles to Mitigate Imbalance Requirements Associated with an Increased Penetration of Wind Generation

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Kintner-Meyer, Michael CW

    2011-10-10T23:59:59.000Z

    The integration of variable renewable generation sources continues to be a significant area of focus for power system planning. Renewable portfolio standards and initiatives to reduce the dependency on foreign energy sources drive much of the deployment. Unfortunately, renewable energy generation sources like wind and solar tend to be highly variable in nature. To counter the energy imbalance caused by this variability, wind generation often requires additional balancing resources to compensate for the variability in the electricity production. With the expected electrification of transportation, electric vehicles may offer a new load resource for meeting all, or part, of the imbalance created by the renewable generation. This paper investigates a regulation-services-based battery charging method on a population of plug-in hybrid electric vehicles to meet the power imbalance requirements associated with the introduction of 11 GW of additional wind generation into the Northwest Power Pool. It quantifies the number of vehicles required to meet the imbalance requirements under various charging assumptions.

  6. Environmental review of Southern Maryland Electric Cooperative's proposed combustion-turbine generating facility at Chalk Point

    SciTech Connect (OSTI)

    Peters, N.; Tomko, J.; Keating, R.; Corio, L.; Stern, M.

    1989-12-01T23:59:59.000Z

    The report provides an environmental assessment of a 70-100 MW gas turbine generating facility which the Southern Maryland Electric Cooperative, Inc. (SMECO) has proposed to construct on the site of Potomac Electric Power Company's (PEPCO) Chalk Point Generating Station. The facility, to be used as a peaking plant, will be SMECO's first generating station. Construction of the facility is expected to begin in March 1990, with completion scheduled for December 1990. Commercial operation is expected to begin prior to January 1, 1991. On the basis of the information available, no deficiencies have been identified which warrant finding the Chalk Point site unsuitable for construction of the proposed SMECO facility. Potential impacts from air emissions, ground water withdrawal, release of contaminants to ground water, noise emissions, discharge of effluent, and disturbance of the site were specifically examined. Recommendations for evaluations following construction are also provided.

  7. An Electricity-focused Economic Input-output Model: Life-cycle Assessment and Policy Implications of Future Electricity Generation Scenarios

    E-Print Network [OSTI]

    , and the different means of generating power. We build a flexible framework for creating new industry sectors, supply of Future Electricity Generation Scenarios Joe Marriott Submitted in Partial Fulfillment of the Requirements in the input- output model of the U.S. economy, the power generation sector is an excellent candidate

  8. Impact of Generator Flexibility on Electric System Costs and Integration of Renewable Energy

    SciTech Connect (OSTI)

    Palchak, D.; Denholm, P.

    2014-07-01T23:59:59.000Z

    Flexibility of traditional generators plays an important role in accommodating the increased variability and uncertainty of wind and solar on the electric power system. Increased flexibility can be achieved with changes to operational practices or upgrades to existing generation. One challenge is in understanding the value of increasing flexibility, and how this value may change given higher levels of variable generation. This study uses a commercial production cost model to measure the impact of generator flexibility on the integration of wind and solar generators. We use a system that is based on two balancing areas in the Western United States with a range of wind and solar penetrations between 15% and 60%, where instantaneous penetration of wind and solar is limited to 80%.

  9. Transient stability enhancement of electric power generating systems by 120-degree phase rotation

    DOE Patents [OSTI]

    Cresap, Richard L. (Portland, OR); Taylor, Carson W. (Portland, OR); Kreipe, Michael J. (Portland, OR)

    1982-01-01T23:59:59.000Z

    A method and system for enhancing the transient stability of an intertied three-phase electric power generating system. A set of power exporting generators (10) is connected to a set of power importing generators (20). When a transient cannot be controlled by conventional stability controls, and imminent loss of synchronism is detected (such as when the equivalent rotor angle difference between the two generator sets exceeds a predetermined value, such as 150 degrees), the intertie is disconnected by circuit breakers. Then a switch (30) having a 120-degree phase rotation, or a circuit breaker having a 120-degree phase rotation is placed in the intertie. The intertie is then reconnected. This results in a 120-degree reduction in the equivalent rotor angle difference between the two generator sets, making the system more stable and allowing more time for the conventional controls to stabilize the transient.

  10. Scientists decipher genome of bacterium that remediates uranium contamination, generates electricity Public release date: 11-Dec-2003

    E-Print Network [OSTI]

    Lovley, Derek

    that remediates uranium contamination, generates electricity Analysis of Geobacter sulfurreducens genes reveals easily removed. Small charges of electricity are also created through the reduction process. Geobacter electricity Public release date: 11-Dec-2003 [ Print This Article | Close This Window ] Contact: Robert Koenig

  11. Do Markets Reduce Costs? Assessing the Impact of Regulatory Restructuring on U.S. Electric Generation Efficiency

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Do Markets Reduce Costs? Assessing the Impact of Regulatory Restructuring on U.S. Electric-of-service regulation to market-oriented environments for many U.S. electric generating plants. Our estimates of input their wholesale electricity markets improved the most. The results suggest modest medium-term efficiency benefits

  12. Influence of Climate Change Mitigation Technology on Global Demands of Water for Electricity Generation

    SciTech Connect (OSTI)

    Kyle, G. Page; Davies, Evan; Dooley, James J.; Smith, Steven J.; Clarke, Leon E.; Edmonds, James A.; Hejazi, Mohamad I.

    2013-01-17T23:59:59.000Z

    Globally, electricity generation accounts for a large and potentially growing water demand, and as such is an important component to assessments of global and regional water scarcity. However, the current suite—as well as potential future suites—of thermoelectric generation technologies has a very wide range of water demand intensities, spanning two orders of magnitude. As such, the evolution of the generation mix is important for the future water demands of the sector. This study uses GCAM, an integrated assessment model, to analyze the global electric sector’s water demands in three futures of climate change mitigation policy and two technology strategies. We find that despite five- to seven-fold expansion of the electric sector as a whole from 2005 to 2095, global electric sector water withdrawals remain relatively stable, due to the retirement of existing power plants with water-intensive once-through flow cooling systems. In the scenarios examined here, climate policies lead to the large-scale deployment of advanced, low-emissions technologies such as carbon dioxide capture and storage (CCS), concentrating solar power, and engineered geothermal systems. In particular, we find that the large-scale deployment of CCS technologies does not increase long-term water consumption from hydrocarbon-fueled power generation as compared with a no-policy scenario without CCS. Moreover, in sensitivity scenarios where low-emissions electricity technologies are required to use dry cooling systems, we find that the consequent additional costs and efficiency reductions do not limit the utility of these technologies in achieving cost-effective whole-system emissions mitigation.

  13. Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect (OSTI)

    Galowitz, Stephen

    2013-06-30T23:59:59.000Z

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). 3) The Project will annually produce 365,292 MWh?s of clean energy. 4) By destroying the methane in the landfill gas, the Project will generate CO{sub 2} equivalent reductions of 164,938 tons annually. The completed facility produces 28.3 MWnet and operates 24 hours a day, seven days a week.

  14. What explains the increased utilization of Powder River Basin coal in electric power generation?

    SciTech Connect (OSTI)

    Gerking, S.; Hamilton, S.F. [University of Central Florida, Orlando, FL (United States)

    2008-11-15T23:59:59.000Z

    This article examines possible explanations for increased utilization of Powder River Basin (PRB) coal in electric power generation that occurred over the last two decades. Did more stringent environmental policy motivate electric power plants to switch to less polluting fuels? Or, did greater use of PRB coal occur because relative price changes altered input markets in favor of this fuel. A key finding is that factors other than environmental policy such as the decline in railroad freight rates together with elastic demand by power plants were major contributors to the increased utilization of this fuel.

  15. Potential growth of nuclear and coal electricity generation in the US

    SciTech Connect (OSTI)

    Bloomster, C.H.; Merrill, E.T.

    1989-08-01T23:59:59.000Z

    Electricity demand should continue to grow at about the same rate as GNP, creating a need for large amounts of new generating capacity over the next fifty years. Only coal and nuclear at this time have the abundant domestic resources and assured technology to meet this need. However, large increase in both coal and nuclear usage will require solutions to many of the problems that now deter their increased usage. For coal, the problems center around the safety and environmental impacts of increased coal mining and coal combustion. For nuclear, the problems center around reactor safety, radioactive waste disposal, financial risk, and nuclear materials safeguards. This report assesses the impacts associated with a range of projected growth rates in electricity demand over the next 50 years. The resource requirements and waste generation resulting from pursuing the coal and nuclear fuel options to meet the projected growth rates are estimated. The fuel requirements and waste generation for coal plants are orders of magnitude greater than for nuclear. Improvements in technology and waste management practices must be pursued to mitigate environmental and safety concerns about electricity generation from both options. 34 refs., 18 figs., 14 tabs.

  16. A systems model and potential leverage points for base load electric generating options

    SciTech Connect (OSTI)

    Brownson, D.A.; Hanson, D.J.; Price, L.G.; Sebo, D.E.

    1993-09-01T23:59:59.000Z

    The mission and structure of electric utilities may change significantly to meet the challenges on the next several decades. In addition, providing electrical energy in an environmentally responsible manner will continue to be a major challenge. The methods of supplying electrical power may change dramatically in the future as utilities search for ways to improve the availability and reliability of electrical power systems. The role of large, base load generating capacity to supply the bulk of a utility`s electrical power is evolving, but it will continue to be important for many years to come. The objective of this study is to examine the systems structure of five base load capacity options available to a utility and identify areas where technological improvements could produce significant changes in their systems. These improvements would enhance the likelihood that these options would be selected for providing future electrical capacity. Technology improvements are identified and discussed, but it was beyond the scope of this work to develop strategies for specific Idaho National Engineering Laboratory involvement.

  17. Electricity prices in a competitive environment: Marginal cost pricing of generation services and financial status of electric utilities. A preliminary analysis through 2015

    SciTech Connect (OSTI)

    NONE

    1997-08-01T23:59:59.000Z

    The emergence of competitive markets for electricity generation services is changing the way that electricity is and will be priced in the United States. This report presents the results of an analysis that focuses on two questions: (1) How are prices for competitive generation services likely to differ from regulated prices if competitive prices are based on marginal costs rather than regulated {open_quotes}cost-of-service{close_quotes} pricing? (2) What impacts will the competitive pricing of generation services (based on marginal costs) have on electricity consumption patterns, production costs, and the financial integrity patterns, production costs, and the financial integrity of electricity suppliers? This study is not intended to be a cost-benefit analysis of wholesale or retail competition, nor does this report include an analysis of the macroeconomic impacts of competitive electricity prices.

  18. Process for generating electricity in a pressurized fluidized-bed combustor system

    DOE Patents [OSTI]

    Kasper, Stanley (Pittsburgh, PA)

    1991-01-01T23:59:59.000Z

    A process and apparatus for generating electricity using a gas turbine as part of a pressurized fluidized-bed combustor system wherein coal is fed as a fuel in a slurry in which other constituents, including a sulfur sorbent such as limestone, are added. The coal is combusted with air in a pressurized combustion chamber wherein most of the residual sulfur in the coal is captured by the sulfur sorbent. After particulates are removed from the flue gas, the gas expands in a turbine, thereby generating electric power. The spent flue gas is cooled by heat exchange with system combustion air and/or system liquid streams, and the condensate is returned to the feed slurry.

  19. Puget Sound Area Electric Reliability Plan. Appendix B : Local Generation Evaluation : Draft Environmental Impact Statement.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1991-09-01T23:59:59.000Z

    The information and data contained in this Appendix was extracted from numerous sources. The principle sources used for technical data were Bonneville Power Administration's 1990 Resource Program along with its technical appendix, and Chapter 8 of the Draft 1991 Northwest Conservation and Electric Power Plan. All cost data is reported 1988 dollars unless otherwise noted. This information was supplemented by other data developed by Puget Sound utilities who participated on the Local Generation Team. Identifying generating resources available to the Puget Sound area involved a five step process: (1) listing all possible resources that might contribute power to the Puget Sound area, (2) characterizing the technology/resource status, cost and operating characteristics of these resources, (3) identifying exclusion criteria based on the needs of the overall Puget Sound Electric Reliability Plan study, (4) applying these criteria to the list of resources, and (5) summarizing of the costs and characteristics of the final list of resources. 15 refs., 20 tabs.

  20. Design of a low-cost thermoacoustic electricity generator and its experimental verification

    SciTech Connect (OSTI)

    Backhaus, Scott N [Los Alamos National Laboratory; Yu, Z [UNIV OF MANCHESTER; Jaworski, A J [UNIV OF MANCHESTER

    2010-01-01T23:59:59.000Z

    This paper describes the design and testing of a low cost thermoacoustic generator. A travelling-wave thermoacoustic engine with a configuration of a looped-tube resonator is designed and constructed to convert heat to acoustic power. A commercially available, low-cost loudspeaker is adopted as the alternator to convert the engine's acoustic power to electricity. The whole system is designed using linear thermoacoustic theory. The optimization of different parts of the thermoacoustic generator, as well as the matching between the thermoacoustic engine and the alternator are discussed in detail. A detailed comparison between the preliminary test results and linear thermoacoustic predictions is provided.

  1. Potential Impacts of Plug-in Hybrid Electric Vehicles (PHEVs) on Regional Power Generation

    SciTech Connect (OSTI)

    Hadley, Stanton W [ORNL; Tsvetkova, Alexandra A [ORNL

    2009-01-01T23:59:59.000Z

    PHEVs are expected to penetrate market soon. If recharging occurs during off-peak hours, the grid will not be significantly affected. However, peak-time recharging may lead to capacity shortfalls. This paper analyzes the potential impact of PHEVs on electricity demand, supply, generation structure, prices, and emissions levels in 2020 and 2030 in 13 U.S. regions under 7 recharging scenarios. The simulations predict that the PHEV introduction could impact demand peaks, reduce reserve margins, and increase prices. The type of power generation used to recharge the PHEVs and associated emissions will depend upon the region and the timing of the recharge.

  2. COMPLEAT (Community-Oriented Model for Planning Least-Cost Energy Alternatives and Technologies): A planning tool for publicly owned electric utilities. [Community-Oriented Model for Planning Least-Cost Energy Alternatives and Technologies (Compleat)

    SciTech Connect (OSTI)

    Not Available

    1990-09-01T23:59:59.000Z

    COMPLEAT takes its name, as an acronym, from Community-Oriented Model for Planning Least-Cost Energy Alternatives and Technologies. It is an electric utility planning model designed for use principally by publicly owned electric utilities and agencies serving such utilities. As a model, COMPLEAT is significantly more full-featured and complex than called out in APPA's original plan and proposal to DOE. The additional complexity grew out of a series of discussions early in the development schedule, in which it became clear to APPA staff and advisors that the simplicity characterizing the original plan, while highly desirable in terms of utility applications, was not achievable if practical utility problems were to be addressed. The project teams settled on Energy 20/20, an existing model developed by Dr. George Backus of Policy Assessment Associates, as the best candidate for the kinds of modifications and extensions that would be required. The remainder of the project effort was devoted to designing specific input data files, output files, and user screens and to writing and testing the compute programs that would properly implement the desired features around Energy 20/20 as a core program. This report presents in outline form, the features and user interface of COMPLEAT.

  3. Analysis of viscoelastic soft dielectric elastomer generators operating in an electrical circuit

    E-Print Network [OSTI]

    Eliana Bortot; Ralf Denzer; Andreas Menzel; Massimiliano Gei

    2014-11-13T23:59:59.000Z

    A predicting model for soft Dielectric Elastomer Generators (DEGs) must consider a realistic model of the electromechanical behaviour of the elastomer filling, the variable capacitor and of the electrical circuit connecting all elements of the device. In this paper such an objective is achieved by proposing a complete framework for reliable simulations of soft energy harvesters. In particular, a simple electrical circuit is realised by connecting the capacitor, stretched periodically by a source of mechanical work, in parallel with a battery through a diode and with an electrical load consuming the energy produced. The electrical model comprises resistances simulating the effect of the electrodes and of the conductivity current invariably present through the dielectric film. As these devices undergo a high number of electro-mechanical loading cycles at large deformation, the time-dependent response of the material must be taken into account as it strongly affects the generator outcome. To this end, the viscoelastic behaviour of the polymer and the possible change of permittivity with strains are analysed carefully by means of a proposed coupled electro-viscoelastic constitutive model, calibrated on experimental data available in the literature for an incompressible polyacrilate elastomer (3M VHB4910). Numerical results showing the importance of time-dependent behaviour on the evaluation of performance of DEGs for different loading conditions, namely equi-biaxial and uniaxial, are reported in the final section.

  4. IMPACT OF FUEL CELL BASED HYBRID DISTRIBUTED GENERATION IN AN ELECTRICAL DISTRIBUTION

    E-Print Network [OSTI]

    unknown authors

    Recent developments in distributed generation technologies have enabled new options for supplying electrical energy in remote and off-grid areas. The importance of fuel cells has increased during the past decade due to the extensive use of fossil fuels for electrical power has resulted in many negative consequences. Fuel cells are now closer to commercialization than past and they have the ability to fulfill all of the global power needs while meeting the economic and environmental expectations..The objective of this paper is to study the economic performance and operation of a fuel cell distributed generation and to provide an assessment of the economic issues associated in electrical network. In this study, with HOMER (Hybrid Optimization Model for Electric Renewables) software, NREL’s micro power optimization model performed a range of equipment options over varying constraints and sensitivities to optimize small power distribution systems. Its flexibility makes it useful in the evaluation of design issues in the planning and early decision-making phase of rural electrification projects. This study concludes that fuel cell systems appear competitive today if is connected with proposed hybrid DG in an AC distribution grid. The overall energy management strategy for coordinating the power flows among the different energy sources is presented with cost-effective approach.

  5. ReEDS Modeling of the President's 2020 U.S. Renewable Electricity Generation Goal (Presentation)

    SciTech Connect (OSTI)

    Zinaman, O.; Mai, T.; Lantz, E.; Gelman, R.; Porro, G.

    2014-05-01T23:59:59.000Z

    President Obama announced in 2012 an Administration Goal for the United States to double aggregate renewable electricity generation from wind, solar, and geothermal sources by 2020. This analysis, using the Regional Energy Deployment System (ReEDS) model, explores a full range of future renewable deployment scenarios out to 2020 to assess progress and outlook toward this goal. Under all modeled conditions, consisting of 21 scenarios, the Administration Goal is met before 2020, and as early as 2015.

  6. District heating from electric-generating plants and municipal incinerators: local planner's assessment guide

    SciTech Connect (OSTI)

    Pferdehirt, W.; Kron, N. Jr.

    1980-11-01T23:59:59.000Z

    This guide is designed to aid local government planners in the preliminary evaluation of the feasibility of district heating using heat recovered from electric generating plants and municipal incinerators. System feasibility is indicated by: (1) the existence of an adequate supply of nearby waste heat, (2) the presence of a sufficiently dense and large thermal load, and (3) a favorable cost comparison with conventional heating methods. 34 references.

  7. The marginal costs and pricing of gas system upgrades to accommodate new electric generators

    SciTech Connect (OSTI)

    Ambrose, B.

    1995-12-31T23:59:59.000Z

    In the coming years, competitive forces and restructuring in the electric industry can be expected to increase substantially the demand for gas delivery service to new electric generating units by local distribution companies (LDCs) and pipeline companies across the United States. In meeting this demand, it is important that the prices paid by electric generators for gas delivery service properly reflect the costs of the resources utilized in providing service to them in order that their decisions regarding what to build and where as well as the manner in which their units are dispatched are as efficient as possible from a societal standpoint. This will assure that society`s resources will be neither squandered nor underutilized in providing service to these generators and aid in assuring that, once built, the units are run in an efficient manner. While the most efficient solution to this problem is a secondary market in tradeable pipeline capacity rights, we do not have such a system in place at this time. Further, tradeable rights for LDC capacity may be difficult to establish. An interim solution that will work in the confines of the present system and not create problems for the transition to tradeable rights is required. This purpose of this paper is to set out the important first principals involved in applying marginal costing to the provision of gas delivery service to new electric generating units rather than to present empirical data on the marginal costs of such service. Experience has shown that marginal costs are usually unique to the particular situation being costed.

  8. Interim Project Results: United Parcel Service's Second-Generation Hybrid-Electric Delivery Vans (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01T23:59:59.000Z

    This fact sheet describes the performance evaluation of United Parcel Service's second-generation hybrid-electric delivery vans. The Fleet Test and Evaluation Team at the National Renewable Energy Laboratory (NREL) is evaluating the 18-month, in-service performance of 11 of these vans along with 11 comparable conventional diesel vans operating in Minneapolis, Minnesota. As a complement to the field study, the team recently completed fuel economy and emissions testing at NREL's Renewable Fuels and Lubricants (ReFUEL) laboratory.

  9. Reliability evaluation of electric power generation systems including unconventional energy sources

    E-Print Network [OSTI]

    Lago-Gonzalez, Alex

    1984-01-01T23:59:59.000Z

    through photovoltaic cells, and wind power generation, proto- types have been built and tested. Commercial operation of these two is expected to start in the late 1980's or early 1990's. For the rest of the alternatives the expected date of operation... appropiate for these units because they may have several derated states. However, due to the short operating experience with these units, there is not enough data available to develop more accurate models. 3. 1 Description of PEPS Photovoltaic electric...

  10. Electric Power Market Simulations Using Individuals

    E-Print Network [OSTI]

    Kemner, Ken

    in the EMCAS model #12;3 Argonne Staff Act Out the Roles of Individual Agents in a Virtual Electric PowerElectric Power Market Simulations Using Individuals as Agents Guenter Conzelmann Argonne National Generation agents ­ Own and operate virtual power plants ­ Submit power bids to the independent system

  11. Project Overview: United Parcel Service's Second-Generation Hybrid-Electric Delivery Vans (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-11-01T23:59:59.000Z

    This fact sheet describes UPS second generation hybrid-electric delivery vehicles as compared to conventional delivery vehicles. Medium-duty commercial vehicles such as moving trucks, beverage-delivery trucks, and package-delivery vans consume almost 2,000 gal of fuel per year on average. United Parcel Service (UPS) operates hybrid-electric package-delivery vans to reduce the fuel use and emissions of its fleet. In 2008, the National Renewable Energy Laboratory's (NREL's) Fleet Test and Evaluation Team evaluated the first generation of UPS' hybrid delivery vans. These hybrid vans demonstrated 29%-37% higher fuel economy than comparable conventional diesel vans, which contributed to UPS' decision to add second-generation hybrid vans to its fleet. The Fleet Test and Evaluation Team is now evaluating the 18-month, in-service performance of 11 second-generation hybrid vans and 11 comparable conventional diesel vans operated by UPS in Minneapolis, Minnesota. The evaluation also includes testing fuel economy and emissions at NREL's Renewable Fuels and Lubricants (ReFUEL) Laboratory and comparing diesel particulate filter (DPF) regeneration. In addition, a followup evaluation of UPS' first-generation hybrid vans will show how those vehicles performed over three years of operation. One goal of this project is to provide a consistent comparison of fuel economy and operating costs between the second-generation hybrid vans and comparable conventional vans. Additional goals include quantifying the effects of hybridization on DPF regeneration and helping UPS select delivery routes for its hybrid vans that maximize the benefits of hybrid technology. This document introduces the UPS second-generation hybrid evaluation project. Final results will be available in mid-2012.

  12. The Effects of Electricity Tariff Structure on Distributed Generation Adoption in New York State

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2005-01-01T23:59:59.000Z

    59 Microturbinefor volumetric electricity rate variation and microturbinefor volumetric electricity rate variation and microturbine

  13. Potential Impacts of Plug-in Hybrid Electric Vehicles on Regional Power Generation

    SciTech Connect (OSTI)

    Hadley, Stanton W [ORNL; Tsvetkova, Alexandra A [ORNL

    2008-01-01T23:59:59.000Z

    Plug-in hybrid electric vehicles (PHEVs) are being developed around the world, with much work aiming to optimize engine and battery for efficient operation, both during discharge and when grid electricity is available for recharging. However, the general expectation has been that the grid will not be greatly affected by the use of PHEVs because the recharging will occur during off-peak hours, or the number of vehicles will grow slowly enough so that capacity planning will respond adequately. This expectation does not consider that drivers will control the timing of recharging, and their inclination will be to plug in when convenient, rather than when utilities would prefer. It is important to understand the ramifications of adding load from PHEVs onto the grid. Depending on when and where the vehicles are plugged in, they could cause local or regional constraints on the grid. They could require the addition of new electric capacity and increase the utilization of existing capacity. Usage patterns of local distribution grids will change, and some lines or substations may become overloaded sooner than expected. Furthermore, the type of generation used to meet the demand for recharging PHEVs will depend on the region of the country and the timing of recharging. This paper analyzes the potential impacts of PHEVs on electricity demand, supply, generation structure, prices, and associated emission levels in 2020 and 2030 in 13 regions specified by the North American Electric Reliability Corporation (NERC) and the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), and on which the data and analysis in EIA's Annual Energy Outlook 2007 are based (Figure ES-1). The estimates of power plant supplies and regional hourly electricity demand come from publicly available sources from EIA and the Federal Energy Regulatory Commission. Electricity requirements for PHEVs are based on analysis from the Electric Power Research Institute, with an optimistic projection of 25% market penetration by 2020, involving a mixture of sedans and sport utility vehicles. The calculations were done using the Oak Ridge Competitive Electricity Dispatch (ORCED) model, a model developed over the past 12 years to evaluate a wide variety of critical electricity sector issues. Seven scenarios were run for each region for 2020 and 2030, for a total of 182 scenarios. In addition to a base scenario of no PHEVs, the authors modeled scenarios assuming that vehicles were either plugged in starting at 5:00 p.m. (evening) or at 10:00 p.m.(night) and left until fully charged. Three charging rates were examined: 120V/15A (1.4 kW), 120V/20A (2 kW), and 220V/30A (6 kW). Most regions will need to build additional capacity or utilize demand response to meet the added demand from PHEVs in the evening charging scenarios, especially by 2030 when PHEVs have a larger share of the installed vehicle base and make a larger demand on the system. The added demands of evening charging, especially at high power levels, can impact the overall demand peaks and reduce the reserve margins for a region's system. Night recharging has little potential to influence peak loads, but will still influence the amount and type of generation.

  14. GENERATION OF ELECTRIC CURRENTS IN THE CHROMOSPHERE VIA NEUTRAL-ION DRAG

    SciTech Connect (OSTI)

    Krasnoselskikh, V. [LPC2E, CNRS-University of Orleans, 3A Avenue de la Recherche Scientifique, 45071 Orleans Cedex 2 (France); Vekstein, G. [School of Physics and Astronomy, University of Manchester, Alan Turing Building, Manchester M13 9PL (United Kingdom); Hudson, H. S.; Bale, S. D.; Abbett, W. P. [Space Sciences Laboratory, University of California at Berkeley, CA 94720 (United States)

    2010-12-01T23:59:59.000Z

    We consider the generation of electric currents in the solar chromosphere where the ionization level is typically low. We show that ambient electrons become magnetized even for weak magnetic fields (30 G); that is, their gyrofrequency becomes larger than the collision frequency while ion motions continue to be dominated by ion-neutral collisions. Under such conditions, ions are dragged by neutrals, and the magnetic field acts as if it is frozen-in to the dynamics of the neutral gas. However, magnetized electrons drift under the action of the electric and magnetic fields induced in the reference frame of ions moving with the neutral gas. We find that this relative motion of electrons and ions results in the generation of quite intense electric currents. The dissipation of these currents leads to resistive electron heating and efficient gas ionization. Ionization by electron-neutral impact does not alter the dynamics of the heavy particles; thus, the gas turbulent motions continue even when the plasma becomes fully ionized, and resistive dissipation continues to heat electrons and ions. This heating process is so efficient that it can result in typical temperature increases with altitude as large as 0.1-0.3 eV km{sup -1}. We conclude that this process can play a major role in the heating of the chromosphere and corona.

  15. An Assessment of the Economics of Future Electric Power Generation Options and the Implications for Fusion

    SciTech Connect (OSTI)

    Delene, J.G.; Hadley, S.; Reid, R.L.; Sheffield, J.; Williams, K.A.

    1999-09-01T23:59:59.000Z

    This study examines the potential range of electric power costs for some major alternatives to fusion electric power generation when it is ultimately deployed in the middle of the 21st century and, thus, offers a perspective on the cost levels that fusion must achieve to be competitive. The alternative technologies include coal burning, coal gasification, natural gas, nuclear fission, and renewable energy. The cost of electricity (COE) from the alternatives to fusion should remain in the 30-50 mils/kWh (1999 dollars) range of today in carbon sequestration is not needed, 30-60 mils/kWh if sequestration is required, or as high as 75 mils/kWh for the worst-case scenario for cost uncertainty. The reference COE range for fusion was estimated at 70-100 nmils/kWh for 1- to 1.3-GW(e) scale power plants. Fusion costs will have to be reduced and/or alternative concepts derived before fusion will be competitive with the alternatives for the future production of electricity. Fortunately, there are routes to achieve this goal.

  16. High-order harmonic generation in the presence of a static electric field

    SciTech Connect (OSTI)

    Odzak, S. [Faculty of Science, University of Sarajevo, Zmaja od Bosne 35, 71000 Sarajevo (Bosnia and Herzegowina); Milosevic, D.B. [Faculty of Science, University of Sarajevo, Zmaja od Bosne 35, 71000 Sarajevo (Bosnia and Herzegowina); Max-Born-Institut, Max-Born-Strasse 2a, 12489 Berlin (Germany)

    2005-09-15T23:59:59.000Z

    We consider high-order harmonic generation by a linearly polarized laser field and a parallel static electric field. We first develop a modified saddle-point method which enables a quantitative analysis of the harmonic spectra even in the presence of Coulomb singularities. We introduce a classification of the saddle-point solutions and show that, in the presence of a static electric field which breaks the inversion symmetry, an additional classification number has to be introduced and that the usual saddle-point approximation and the uniform approximation in the case of the coalescing saddle points have to be modified. The theory developed offers a simple and accurate explanation of the static-field-induced multiplateau structure of the harmonic spectra. The longer quantum orbits are responsible for a long extension of the harmonic plateau, while the larger initial electron velocities are the reason of lower harmonic emission rates.

  17. High-Efficiency Solar Cells for Large-Scale Electricity Generation & Design Considerations for the Related Optics (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.; Olson, J.; Geisz, J.; Friedman, D.; McMahon, W.; Ptak, A.; Wanlass, M.k; Kibbler, A.; Kramer, C.; Ward, S.; Duda, A.; Young, M.; Carapella, J.

    2007-09-17T23:59:59.000Z

    The photovoltaic industry has been growing exponentially at an average rate of about 35%/year since 1979. Recently, multijunction concentrator cell efficiencies have surpassed 40%. Combined with concentrating optics, these can be used for electricity generation.

  18. The effect of falling market concentration on prices, generator behaviour and productive efficiency in the England and Wales electricity market

    E-Print Network [OSTI]

    Sweeting, Andrew

    2001-01-01T23:59:59.000Z

    A universal prediction of the various oligopoly models used to predict and explain behaviour in the England and Wales (E&W) electricity wholesale market is that divestiture of plants by the two large incumbent generators ...

  19. Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect (OSTI)

    Galowitz, Stephen

    2012-12-31T23:59:59.000Z

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: • Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas • Utilizing proven and reliable technology and equipment • Maximizing electrical efficiency • Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill • Maximizing equipment uptime • Minimizing water consumption • Minimizing post-combustion emissions • The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWh’s of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

  20. Improving the lifetime performance of ceramic fuel cells Fuel cells generate electricity from fuels more efficiently and with

    E-Print Network [OSTI]

    Rollins, Andrew M.

    2014 Improving the lifetime performance of ceramic fuel cells Fuel cells generate electricity from to produce electricity from fuels. To speed the search for why fuel cell performance decreases over time fuels more efficiently and with fewer emissions per watt than burning fossil fuels. But as fuel cells

  1. Short run effects of a price on carbon dioxide emissions from U.S. electric generators

    SciTech Connect (OSTI)

    Adam Newcomer; Seth A. Blumsack; Jay Apt; Lester B. Lave; M. Granger Morgan [Carnegie Mellon University, Pittsburgh, PA (United States). Carnegie Mellon Electricity Industry Center

    2008-05-01T23:59:59.000Z

    The price of delivered electricity will rise if generators have to pay for carbon dioxide emissions through an implicit or explicit mechanism. There are two main effects that a substantial price on CO{sub 2} emissions would have in the short run (before the generation fleet changes significantly). First, consumers would react to increased price by buying less, described by their price elasticity of demand. Second, a price on CO{sub 2} emissions would change the order in which existing generators are economically dispatched, depending on their carbon dioxide emissions and marginal fuel prices. Both the price increase and dispatch changes depend on the mix of generation technologies and fuels in the region available for dispatch, although the consumer response to higher prices is the dominant effect. We estimate that the instantaneous imposition of a price of $35 per metric ton on CO{sub 2} emissions would lead to a 10% reduction in CO{sub 2} emissions in PJM and MISO at a price elasticity of -0.1. Reductions in ERCOT would be about one-third as large. Thus, a price on CO{sub 2} emissions that has been shown in earlier work to stimulate investment in new generation technology also provides significant CO{sub 2} reductions before new technology is deployed at large scale. 39 refs., 4 figs., 2 tabs.

  2. Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation

    SciTech Connect (OSTI)

    Bailey, Owen; Worrell, Ernst

    2005-08-03T23:59:59.000Z

    The nation's power system is facing a diverse and broad set of challenges. These range from restructuring and increased competitiveness in power production to the need for additional production and distribution capacity to meet demand growth, and demands for increased quality and reliability of power and power supply. In addition, there are growing concerns about emissions from fossil fuel powered generation units and generators are seeking methods to reduce the CO{sub 2} emission intensity of power generation. Although these challenges may create uncertainty within the financial and electricity supply markets, they also offer the potential to explore new opportunities to support the accelerated deployment of cleaner and cost-effective technologies to meet such challenges. The federal government and various state governments, for example, support the development of a sustainable electricity infrastructure. As part of this policy, there are a variety of programs to support the development of ''cleaner'' technologies such as combined heat and power (CHP, or cogeneration) and renewable energy technologies. Energy from renewable energy sources, such as solar, wind, hydro, and biomass, are considered carbon-neutral energy technologies. The production of renewable energy creates no incremental increase in fossil fuel consumption and CO{sub 2} emissions. Electricity and thermal energy production from all renewable resources, except biomass, produces no incremental increase in air pollutants such as nitrogen oxides, sulfur oxides, particulate matter, and carbon monoxide. There are many more opportunities for the development of cleaner electricity and thermal energy technologies called ''recycled'' energy. A process using fossil fuels to produce an energy service may have residual energy waste streams that may be recycled into useful energy services. Recycled energy methods would capture energy from sources that would otherwise be unused and convert it to electricity or useful thermal energy. Recycled energy produces no or little increase in fossil fuel consumption and pollutant emissions. Examples of energy recycling methods include industrial gasification technologies to increase energy recovery, as well as less traditional CHP technologies, and the use of energy that is typically discarded from pressure release vents or from the burning and flaring of waste streams. These energy recovery technologies have the ability to reduce costs for power generation. This report is a preliminary study of the potential contribution of this ''new'' generation of clean recycled energy supply technologies to the power supply of the United States. For each of the technologies this report provides a short technical description, as well as an estimate of the potential for application in the U.S., estimated investment and operation costs, as well as impact on air pollutant emission reductions. The report summarizes the potential magnitude of the benefits of these new technologies. The report does not yet provide a robust cost-benefit analysis. It is stressed that the report provides a preliminary assessment to help focus future efforts by the federal government to further investigate the opportunities offered by new clean power generation technologies, as well as initiate policies to support further development and uptake of clean power generation technologies.

  3. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01T23:59:59.000Z

    and corresponding direct electricity sector costs, includingand avoids electricity-sector water consumption. At the sameNew Wind Fig. 5. Electricity sector capacity by technology

  4. Preconstruction schedules, costs, and permit requirements for electric power generating resources in the Pacific Northwest

    SciTech Connect (OSTI)

    Hendrickson, P.L.; Smith, S.A.; Thurman, A.G.; Watts, R.L.; Weakley, S.A.

    1990-07-01T23:59:59.000Z

    This report was prepared for the Generation Programs Branch, Office of Energy Resources, Bonneville Power Administration (BPA). The principal objective of the report is to assemble in one document preconstruction cost, schedule, and permit information for twelve specific generating resources. The report is one of many documents that provide background information for BPA's Resource Program, which is designed to identify the type and amount of new resources that BPA may have to add over the next twenty years to maintain an adequate and reliable electric power supply in the Pacific Northwest. A predecessor to this report is a 1982 report prepared by the Pacific Northwest Laboratory (PNL) for the Northwest Power Planning Council (the Council''). The 1982 report had a similar, but not identical, content and format. 306 refs., 14 figs., 22 tabs.

  5. Magnesium and Manganese Silicides For Efficient And Low Cost Thermo-Electric Power Generation

    SciTech Connect (OSTI)

    Trivedi, Sudhir B. [Brimrose Technology Corporation; Kutcher, Susan W. [Brimrose Technology Corporation; Rosemeier, Cory A. [Brimrose Technology Corporation; Mayers, David [Brimrose Technology Corporation; Singh, Jogender [Pennsylvania State University

    2013-12-02T23:59:59.000Z

    Thermoelectric Power Generation (TEPG) is the most efficient and commercially deployable power generation technology for harvesting wasted heat from such things as automobile exhausts, industrial furnaces, and incinerators, and converting it into usable electrical power. We investigated the materials magnesium silicide (Mg2Si) and manganese silicide (MnSi) for TEG. MgSi2 and MnSi are environmentally friendly, have constituent elements that are abundant in the earth's crust, non-toxic, lighter and cheaper. In Phase I, we successfully produced Mg2Si and MnSi material with good TE properties. We developed a novel technique to synthesize Mg2Si with good crystalline quality, which is normally very difficult due to high Mg vapor pressure and its corrosive nature. We produced n-type Mg2Si and p-type MnSi nanocomposite pellets using FAST. Measurements of resistivity and voltage under a temperature gradient indicated a Seebeck coefficient of roughly 120 V/K on average per leg, which is quite respectable. Results indicated however, that issues related to bonding resulted in high resistivity contacts. Determining a bonding process and bonding material that can provide ohmic contact from room temperature to the operating temperature is an essential part of successful device fabrication. Work continues in the development of a process for reproducibly obtaining low resistance electrical contacts.

  6. Program Plan for Renewable Energy generation of electricity. Response to Section 2111 of the Energy Policy Act of 1992

    SciTech Connect (OSTI)

    NONE

    1994-12-01T23:59:59.000Z

    A 5-Year Program Plan for providing cost-effective options for generating electricity from renewable energy sources is presented by the US Department of Energy Office of Energy Efficiency and Renewable Energy. The document covers the Utility-Sector situation, scope of the program, specific generating technologies, and implementation of the program plan.

  7. Terahertz radiation and second-harmonic generation from InAs: Bulk versus surface electric-field-induced contributions

    E-Print Network [OSTI]

    Reid, Matthew

    time due to a growing number of applications such as imaging,1­3 illicit-drug detection,4Terahertz radiation and second-harmonic generation from InAs: Bulk versus surface electric July 2005 Polarized second-harmonic generation and terahertz radiation in reflection from 100 , 110

  8. Life Cycle analysis data and results for geothermal and other electricity generation technologies

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS – a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

  9. Life Cycle analysis data and results for geothermal and other electricity generation technologies

    SciTech Connect (OSTI)

    Sullivan, John

    2013-06-04T23:59:59.000Z

    Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS – a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

  10. Life Cycle Greenhouse Gas Emissions of Coal-Fired Electricity Generation: Systematic Review and Harmonization

    SciTech Connect (OSTI)

    Whitaker, M.; Heath, G. A.; O'Donoughue, P.; Vorum, M.

    2012-04-01T23:59:59.000Z

    This systematic review and harmonization of life cycle assessments (LCAs) of utility-scale coal-fired electricity generation systems focuses on reducing variability and clarifying central tendencies in estimates of life cycle greenhouse gas (GHG) emissions. Screening 270 references for quality LCA methods, transparency, and completeness yielded 53 that reported 164 estimates of life cycle GHG emissions. These estimates for subcritical pulverized, integrated gasification combined cycle, fluidized bed, and supercritical pulverized coal combustion technologies vary from 675 to 1,689 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh) (interquartile range [IQR]= 890-1,130 g CO{sub 2}-eq/kWh; median = 1,001) leading to confusion over reasonable estimates of life cycle GHG emissions from coal-fired electricity generation. By adjusting published estimates to common gross system boundaries and consistent values for key operational input parameters (most importantly, combustion carbon dioxide emission factor [CEF]), the meta-analytical process called harmonization clarifies the existing literature in ways useful for decision makers and analysts by significantly reducing the variability of estimates ({approx}53% in IQR magnitude) while maintaining a nearly constant central tendency ({approx}2.2% in median). Life cycle GHG emissions of a specific power plant depend on many factors and can differ from the generic estimates generated by the harmonization approach, but the tightness of distribution of harmonized estimates across several key coal combustion technologies implies, for some purposes, first-order estimates of life cycle GHG emissions could be based on knowledge of the technology type, coal mine emissions, thermal efficiency, and CEF alone without requiring full LCAs. Areas where new research is necessary to ensure accuracy are also discussed.

  11. The Restructuring and Privatisation of the Peruvian Electricity Distribution Market

    E-Print Network [OSTI]

    Anaya, K L

    (Bonifaz, 2001). Electrolima, the main electricity distribution company, was responsible for 57 per cent of the national electricity consumption and had its own generation installation for electricity production (Araoz, et al., 2001). The nationwide... www.eprg.group.cam.ac.uk E P R G W O R K IN G P A P E R Abstract The Restructuring and Privatisation of the Peruvian Electricity Distribution Market EPRG Working Paper 1009 Cambridge Working Paper in Economics 1017 Karim L. Anaya...

  12. Southeast Regional Assessment Study: an assessment of the opportunities of solar electric power generation in the Southeastern United States

    SciTech Connect (OSTI)

    None

    1980-07-01T23:59:59.000Z

    The objective of this study was to identify and assess opportunities for demonstration and large scale deployment of solar electric facilities in the southeast region and to define the technical, economic, and institutional factors that can contribute to an accelerated use of solar energy for electric power generation. Graphs and tables are presented indicating the solar resource potential, siting opportunities, energy generation and use, and socioeconomic factors of the region by state. Solar electric technologies considered include both central station and dispersed solar electric generating facilities. Central stations studied include solar thermal electric, wind, photovoltaic, ocean thermal gradient, and biomass; dispersed facilities include solar thermal total energy systems, wind, and photovoltaic. The value of solar electric facilities is determined in terms of the value of conventional facilities and the use of conventional fuels which the solar facilities can replace. Suitable cost and risk sharing mechanisms to accelerate the commercialization of solar electric technologies in the Southeast are identified. The major regulatory and legal factors which could impact on the commercialization of solar facilities are reviewed. The most important factors which affect market penetration are reviewed, ways to accelerate the implementation of these technologies are identified, and market entry paths are identified. Conclusions and recommendations are presented. (WHK)

  13. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    DOE Patents [OSTI]

    Lasche, G.P.

    1983-09-29T23:59:59.000Z

    The invention is a laser or particle-beam-driven fusion reactor system which takes maximum advantage of both the very short pulsed nature of the energy release of inertial confinement fusion (ICF) and the very small volumes within which the thermonuclear burn takes place. The pulsed nature of ICF permits dynamic direct energy conversion schemes such as magnetohydrodynamic (MHD) generation and magnetic flux compression; the small volumes permit very compact blanket geometries. By fully exploiting these characteristics of ICF, it is possible to design a fusion reactor with exceptionally high power density, high net electric efficiency, and low neutron-induced radioactivity. The invention includes a compact blanket design and method and apparatus for obtaining energy utilizing the compact blanket.

  14. Technical efficiency in electricity generation - the impact of smallness and isolation of island economies

    E-Print Network [OSTI]

    Domah, Preetum

    2004-06-16T23:59:59.000Z

    : Generation Capacity Utilisation Year 7654321 O u tp ut pe r I n st al le d Ca pa ci ty 7 6 5 4 3 2 1 0 Legend Islands Non-Islands 5.2: Results from Stochastic Frontier Analyses In this section SFA results of the translog equation (1) is estimated... . ln(Yi) = ?0 + ?1ln(Li) + ?2ln(Ki) + ?3ln(Fi) + ?4ln(Li)2 + ?5ln(Ki)2 + ?6ln(Fi)2 + ?7ln(Li)ln(Ki) + ?8ln(Li)ln(Fi) + ?9ln(Ki)ln(Fi) + ?10ln(L)(t) + ?11ln(K)(t) + ?12ln(F)(t) + ?13(t) + ?14(t)2 + vi – ui, i = 1,2,…,N. (1) where Yi = electricity...

  15. Statistical analysis of electric power production costs JORGE VALENZUELA and MAINAK MAZUMDAR*

    E-Print Network [OSTI]

    Mazumdar, Mainak

    whether the utility's own generators should be used to produce power or purchase from outside indeStatistical analysis of electric power production costs JORGE VALENZUELA and MAINAK MAZUMDAR be sucient production at all times to meet the demand for electric power. If a low-cost generating unit fails

  16. Electric-field-induced spin wave generation using multiferroic magnetoelectric cells

    SciTech Connect (OSTI)

    Cherepov, Sergiy; Khalili Amiri, Pedram; Alzate, Juan G.; Wong, Kin; Lewis, Mark; Upadhyaya, Pramey; Nath, Jayshankar; Bao, Mingqiang; Wang, Kang L. [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); Bur, Alexandre; Wu, Tao; Carman, Gregory P. [Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095 (United States); Khitun, Alexander [Department of Electrical Engineering, University of California, Riverside, California 92521 (United States)

    2014-02-24T23:59:59.000Z

    In this work, we report on the demonstration of voltage-driven spin wave excitation, where spin waves are generated by multiferroic magnetoelectric (ME) cell transducers driven by an alternating voltage, rather than an electric current. A multiferroic element consisting of a magnetostrictive Ni film and a piezoelectric [Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}]{sub (1?x)}–[PbTiO{sub 3}]{sub x} substrate was used for this purpose. By applying an AC voltage to the piezoelectric, an oscillating electric field is created within the piezoelectric material, which results in an alternating strain-induced magnetic anisotropy in the magnetostrictive Ni layer. The resulting anisotropy-driven magnetization oscillations propagate in the form of spin waves along a 5??m wide Ni/NiFe waveguide. Control experiments confirm the strain-mediated origin of the spin wave excitation. The voltage-driven spin wave excitation, demonstrated in this work, can potentially be used for low-dissipation spin wave-based logic and memory elements.

  17. Multi-attribute criteria applied to electric generation energy system analysis LDRD.

    SciTech Connect (OSTI)

    Kuswa, Glenn W.; Tsao, Jeffrey Yeenien; Drennen, Thomas E.; Zuffranieri, Jason V.; Paananen, Orman Henrie; Jones, Scott A.; Ortner, Juergen G. (DLR, German Aerospace, Cologne); Brewer, Jeffrey D.; Valdez, Maximo M.

    2005-10-01T23:59:59.000Z

    This report began with a Laboratory-Directed Research and Development (LDRD) project to improve Sandia National Laboratories multidisciplinary capabilities in energy systems analysis. The aim is to understand how various electricity generating options can best serve needs in the United States. The initial product is documented in a series of white papers that span a broad range of topics, including the successes and failures of past modeling studies, sustainability, oil dependence, energy security, and nuclear power. Summaries of these projects are included here. These projects have provided a background and discussion framework for the Energy Systems Analysis LDRD team to carry out an inter-comparison of many of the commonly available electric power sources in present use, comparisons of those options, and efforts needed to realize progress towards those options. A computer aid has been developed to compare various options based on cost and other attributes such as technological, social, and policy constraints. The Energy Systems Analysis team has developed a multi-criteria framework that will allow comparison of energy options with a set of metrics that can be used across all technologies. This report discusses several evaluation techniques and introduces the set of criteria developed for this LDRD.

  18. Peculiarity of convergence of shock wave generated by underwater electrical explosion of ring-shaped wire

    SciTech Connect (OSTI)

    Shafer, D.; Toker, G. R.; Gurovich, V. Tz.; Gleizer, S.; Krasik, Ya. E. [Physics Department, Technion, Haifa 32000 (Israel)] [Physics Department, Technion, Haifa 32000 (Israel)

    2013-05-15T23:59:59.000Z

    Nanosecond timescale underwater electrical wire explosions of ring-shaped Cu wires were investigated using a pulsed generator with a current amplitude up to 50 kA. It was shown that this type of wire explosion results in the generation of a toroidal shock wave (SW). Time- and space-resolved optical diagnostics were used to determine azimuthal uniformity of the shock wave front and its velocity. It was found that the shock wave preserves its circular front shape in the range of radii 50?m

  19. Recommended practice for fire protection for electric generating plants and high voltage direct current converter stations. 2005 ed.

    SciTech Connect (OSTI)

    NONE

    2005-07-01T23:59:59.000Z

    The standard outlines fire safety recommendations for gas, oil, coal, and alternative fuel electric generating plants including high voltage direct current converter stations and combustion turbine units greater than 7500 hp used for electric generation. Provisions apply to both new and existing plants. The document provides fire prevention and fire protection recommendations for the: safety of construction and operating personnel; physical integrity of plant components; and continuity of plant operations. The 2005 edition includes revisions and new art that clarify existing provisions. 5 annexes.

  20. Revisiting the 'Buy versus Build' Decision for Publicly Owned Utilities in California Considering Wind and Geothermal Resources

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2001-12-11T23:59:59.000Z

    The last two decades have seen a dramatic increase in the market share of independent, nonutility generators (NUGs) relative to traditional, utility-owned generation assets. Accordingly, the ''buy versus build'' decision facing utilities--i.e., whether a utility should sign a power purchase agreement (PPA) with a NUG, or develop and own the generation capacity itself--has gained prominence in the industry. Very little of this debate, however, has focused specifically on publicly owned electric utilities, and with few exceptions, renewable sources of supply have received similarly scant attention. Contrary to historical treatment, however, the buy versus build debate is quite relevant to publicly owned utilities and renewables because publicly owned utilities are able to take advantage of some renewable energy incentives only in a ''buy'' situation, while others accrue only in a ''build'' situation. In particular, possible economic advantages of public utility ownership include: (1) the tax-free status of publicly owned utilities and the availability of low-cost debt, and (2) the renewable energy production incentive (REPI) available only to publicly owned utilities. Possible economic advantages to entering into a PPA with a NUG include: (1) the availability of federal tax credits and accelerated depreciation schedules for certain forms of NUG-owned renewable energy, and (2) the California state production incentives available to NUGs but not utilities. This article looks at a publicly owned utility's decision to buy or build new renewable energy capacity--specifically wind and geothermal power--in California. To examine the economic aspects of this decision, we used a 20-year financial cash-flow model to assess the levelized cost of electricity under four supply options: (1) public utility ownership of new geothermal capacity, (2) public utility ownership of new wind capacity, (3) a PPA for new geothermal capacity, and (4) a PPA for new wind capacity. We focus on wind and geothermal because both resources are abundant and, in some cases, potentially economic in California. Our analysis is not intended to provide precise estimates of the levelized cost of electricity from wind projects and geothermal plants; nor is our intent to compare the levelized costs of wind and geothermal power to one another. Instead, our intent is simply to compare the costs of buying wind or geothermal power to the costs of building and operating wind or geothermal capacity under various scenarios. Of course, the ultimate decision to buy or build cannot and should not rest solely on a comparison of the levelized cost of electricity. Thus, in addition to quantitative analysis, we also include a qualitative discussion of several important features of the ''buy versus build'' decision not reflected in the economic analysis.

  1. CARBON MANAGEMENT STRATEGIES FOR U.S. ELECTRICITY GENERATION CAPACITY: A VINTAGE-BASED APPROACH

    SciTech Connect (OSTI)

    Dahowski, Robert T.; Dooley, James J.

    2004-06-01T23:59:59.000Z

    This paper examines the stock of fossil-fired power generation capacity in the United States within the context of climate change. At present, there are over 1,337 fossil-fired power generating units of at least 100 MW in capacity, that began operating between the early 1940s and today. Together these units provide some 453 GW of electric power. Launching a national program to accelerate the early retirement of this stock or tearing them down and undertaking near-term brownfield redevelopment with advanced power cycle technologies as a means of addressing their greenhouse gas emissions will not be a sensible option for all of these units. Considering a conservative 40-year operating life, there are over 667 existing fossil-fired power plants, representing a capacity of over 291 GW, that have at least a decades worth of productive life remaining. This paper draws upon specialized tools developed by Battelle to analyze the characteristics of this subset of U.S. power generation assets and explore the relationships between plant type, location, emissions, and vintage. It examines the use of retrofit carbon capture technologies, considering criteria such as the proximity of these power plants to geologic reservoirs, to assess the potential that geologic sequestration of CO2 offers these plants for managing their emissions. The average costs for retrofitting these plants and sequestering their CO2 into nearby geologic reservoirs are presented. A discussion of a set of planned U.S. fossil-fired power projects within this context is also included.

  2. RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Yen, W.W.S.

    2010-01-01T23:59:59.000Z

    IMPACTS OF NUCLEAR. GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA Energy and Environment

  3. CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, jA.V.

    2010-01-01T23:59:59.000Z

    IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA Energy and Environment

  4. A REVIEW OF LIGHT-WATER REACTOR SAFETY STUDIES. VOLUME 3 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01T23:59:59.000Z

    IMPACTS OF FOSSIL-FUEL NUCLEAR, GEOTHERMAL, AND ELECTRIC GENERATION IN CALIFORNIA Energy and Environment

  5. POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01T23:59:59.000Z

    IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA Energy and Environment

  6. A REVIEW OF AIR QUALITY MODELING TECHNIQUES. VOLUME 8 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Rosen, L.C.

    2010-01-01T23:59:59.000Z

    IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA Energy and Environment

  7. Economic Evaluation of Electrical Power Generation Using Laser Inertial Fusion Energy (LIFE)

    E-Print Network [OSTI]

    Tm Anklam; Wayne Meier; Al Erl; Robin Miles; Aaron Simon

    2009-01-01T23:59:59.000Z

    With the completion of the National Ignition Facility (NIF) and upcoming ignition experiments, there is renewed interest in laser fusion-fission hybrids and pure fusion systems for base load power generation. An advantage of a laser fusion based system is that it would produce copious neutrons ( ~ 1.8x10 20 /s for a 500 MW fusion source). This opens the door to hybrid systems with once through, high burn-up, closed fuel cycles. With abundant fusion neutrons, only modest fission gain (5 to 10) is needed for power production. Depleted uranium can be used as the fission fuel, effectively eliminating the need for uranium mining and enrichment. With high burn up, a hybrid would generate only 5 % to 10% the volume of high-level nuclear waste per kilowatt hour that a once through light water reactor (LWR) does. Reprocessing is no longer needed to close the fuel cycle as the spent fuel can, after interim cooling, go directly to geologic disposal. While the depleted uranium fuel cycle offers advantages of simplicity and proliferation avoidance, it has the most challenging fuel lifetime requirements. Fissile fuel such as plutonium, or plutonium and minor actinides separated from spent nuclear fuel, would have roughly twice the fission gain and incur only about 25 % of the radiation damage to reach the same burn up level as depleted uranium. These missions are interesting in their own right and also provide an opportunity for early market entry of laser fusion based energy sources. A third fuel cycle option is to burn spent fuel directly, without prior separation of the plutonium and minor actinides. The neutronic and economic performance of this fuel cycle is very similar to the depleted uranium system. The primary difference is the need to fabricate new LIFE fuel from spent LWR fuel. The advantage of this fuel cycle is that it would burn the residual actinides in spent nuclear fuel, greatly reducing long term radio-toxicity and heat load, while avoiding the need to chemically separate spent LWR fuel.

  8. Boston.com / News / Local / New fuel cell uses germs to generate electricity Page 1 THIS STORY HAS BEEN FORMATTED FOR EASY PRINTING

    E-Print Network [OSTI]

    Lovley, Derek

    Boston.com / News / Local / New fuel cell uses germs to generate electricity Page 1 THIS STORY HAS BEEN FORMATTED FOR EASY PRINTING New fuel cell uses germs to generate electricity By Gareth Cook, Globe://www.boston.com/news/local/articles/2003/09/08/new_fuel_cell_uses_germs_to_generate_electricity?mode=9:15:28 AM 9/8/2003 #12;Boston

  9. Development of a quiet Stirling cycle multi-fuel engine for electric power generation. Final report Feb-Aug 82

    SciTech Connect (OSTI)

    Mercer, J.E.; Emigh, S.G.; Riggle, P.; Tremoulet, O.L.; White, M.A.

    1982-08-01T23:59:59.000Z

    The work described in this report summarizes a six-month study to develop a lightweight, tactical electric power plant with a low level of aural, I. R., and visual detectability, based on a Stirling engine. The conceptual design presented was analyzed and predicted to have power output qualities exceeding those specified by the Army for tactical generators. The unit promises to have maintenance and overhaul requirement characteristics superior to any generator system in current use.

  10. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01T23:59:59.000Z

    transmission to deliver wind generation to load centers. Toof integrating variable wind generation into the electricityfrom wind. Annual wind energy generation was specified in

  11. Analyzing the Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest

    E-Print Network [OSTI]

    Fripp, Matthias; Wiser, Ryan

    2006-01-01T23:59:59.000Z

    Energy Facilities. ” American Wind Energy Association (AWEA)Analyzing the Effects of Temporal Wind Patterns onthe Value of Wind-Generated Electricity References TrueWind

  12. Proposal for the award of a contract for the supply and maintenance of six 380 V 50 Hz diesel generators for the LEP electrical distribution system

    E-Print Network [OSTI]

    1986-01-01T23:59:59.000Z

    Proposal for the award of a contract for the supply and maintenance of six 380 V 50 Hz diesel generators for the LEP electrical distribution system

  13. POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01T23:59:59.000Z

    of electric generating plants usefully begins with anmatters, a plant's position within the generating networkthe plant may be divided into a steam generating system and

  14. Direct optoelectronic generation and detection of sub-ps-electrical pulses on sub-mm-coaxial transmission lines

    E-Print Network [OSTI]

    -mm-coaxial transmission lines Tae-In Jeona) and D. Grischkowskyb) School of Electrical and Computer Engineering, Oklahoma efficient direct optoelectronic generation of sub-ps-THz pulses on 50 coaxial transmission lines with a 330 larger bandwidths with 1/10 the loss of lithographically defined co- planar transmission lines.3 Although

  15. Radial electric field generated by resonant trapped electron pinch with radio frequency injection in a tokamak plasma

    E-Print Network [OSTI]

    Radial electric field generated by resonant trapped electron pinch with radio frequency injection of Modern Physics, University of Science and Technology of China, Hefei 230026, China (Received 10 May 2011 by charge accumulation due to a resonant trapped electron pinch effect. The radial field can then drive

  16. Retrospective modeling of the merit-order effect on wholesale electricity prices from distributed photovoltaic generation in the

    E-Print Network [OSTI]

    Sandiford, Mike

    Retrospective modeling of the merit-order effect on wholesale electricity prices from distributed, the depression in wholesale prices has significant value. c 5 GW of solar generation would have saved $1.8 billion in the market over two years. c The depression of wholesale prices offsets the cost of support

  17. Investment in nuclear generation in a restricted electricity market : an analysis of risks and financing options

    E-Print Network [OSTI]

    Berger, Raphael

    2006-01-01T23:59:59.000Z

    Since the late 1970s, the US electric power industry has been undergoing major changes. The electric utility industry had mainly consisted of highly regulated, vertically integrated, local monopolies, providing customers ...

  18. Diversity and Security in UK Electricity Generation: The Influence of Low Carbon Objectives

    E-Print Network [OSTI]

    Grubb, Michael; Butler, Lucy; Sinden, Graham

    2006-03-14T23:59:59.000Z

    We explore the relationship between low carbon objectives and the strategic security of electricity in the context of the UK Electricity System. We consider diversity of fuel source mix to represent one dimension of security - robustness against...

  19. Production and maintenance planning for electricity generators: modeling and application to Indian power systems

    E-Print Network [OSTI]

    Dragoti-Ă?ela, Eranda

    power systems Debabrata Chattopadhyay Department of Management, University of Canterbury, Private Bag of NREB planning engineers in several important ways. Keywords: electric power system planning, linear system planning An electrical power system comprises a number of subsystems, with some activities

  20. Next-generation building energy management systems and implications for electricity markets.

    SciTech Connect (OSTI)

    Zavala, V. M.; Thomas, C.; Zimmerman, M.; Ott, A. (Mathematics and Computer Science); (Citizens Utility Board); (BuildingIQ Pty Ltd, Australia); (PJM Interconnection LLC)

    2011-08-11T23:59:59.000Z

    The U.S. national electric grid is facing significant changes due to aggressive federal and state targets to decrease emissions while improving grid efficiency and reliability. Additional challenges include supply/demand imbalances, transmission constraints, and aging infrastructure. A significant number of technologies are emerging under this environment including renewable generation, distributed storage, and energy management systems. In this paper, we claim that predictive energy management systems can play a significant role in achieving federal and state targets. These systems can merge sensor data and predictive statistical models, thereby allowing for a more proactive modulation of building energy usage as external weather and market signals change. A key observation is that these predictive capabilities, coupled with the fast responsiveness of air handling units and storage devices, can enable participation in several markets such as the day-ahead and real-time pricing markets, demand and reserves markets, and ancillary services markets. Participation in these markets has implications for both market prices and reliability and can help balance the integration of intermittent renewable resources. In addition, these emerging predictive energy management systems are inexpensive and easy to deploy, allowing for broad building participation in utility centric programs.

  1. Use of High Temperature Electrochemical Cells for Co-Generation of Chemicals and Electricity

    SciTech Connect (OSTI)

    Scott Barnett

    2007-09-30T23:59:59.000Z

    In this project, two key issues were addressed to show the feasibility of electrochemical partial oxidation (EPOx) in a SOFC. First, it was demonstrated that SOFCs can reliably operate directly with natural gas. These results are relevant to both direct-natural-gas SOFCs, where the aim is solely electrical power generation, and to EPOx. Second, it must be shown that SOFCs can work effectively as partial oxidation reactors, i.e, that they can provide high conversion efficiency of natural gas to syngas. The results of this study in both these areas look extremely promising. The main results are summarized briefly: (1) Stability and coke-free direct-methane SOFC operation is promoted by the addition of a thin porous inert barrier layer to the anode and the addition of small amounts of CO{sub 2} or air to the fuel stream; (2) Modeling results readily explained these improvements by a change in the gas composition at the Ni-YSZ anode to a non-coking condition; (3) The operation range for coke-free operation is greatly increased by using a cell geometry with a thin Ni-YSZ anode active layer on an inert porous ceramic support, i.e., (Sr,La)TiO{sub 3} or partially-stabilized zirconia (in segmented-in-series arrays); (4) Ethane and propane components in natural gas greatly increase coking both on the SOFC anode and on gas-feed tubes, but this can be mitigated by preferentially oxidizing these components prior to introduction into the fuel cell, the addition of a small amount of air to the fuel, and/or the use of ceramic-supported SOFC; (5) While a minimum SOFC current density was generally required to prevent coking, current interruptions of up to 8 minutes yielded only slight anode coking that caused no permanent damage and was completely reversible when the cell current was resumed; (6) Stable direct-methane SOFC operation was demonstrated under EPOx conditions in a 350 h test; (7) EPOx operation was demonstrated at 750 C that yielded 0.9 W/cm{sup 2} and a syngas production rate of 30 sccm/cm{sup 2}, and the reaction product composition was close to the equilibrium prediction during the early stages of cell testing; (8) The methane conversion to syngas continuously decreased during the first 100 h of cell testing, even though the cell electrical characteristics did not change, due to a steady decrease in the reforming activity of Ni-YSZ anodes; (9) The stability of methane conversion was substantially improved via the addition of a more stable reforming catalyst to the SOFC anode; (10) Modeling results indicated that a SOFC with anode barrier provides similar non-coking performance as an internal reforming SOFC, and provides a simpler approach with no need for a high-temperature exhaust-gas recycle pump; (11) Since there is little or no heat produced in the EPOx reaction, overall efficiency of the SOFC operated in this mode can, in theory, approach 100%; and (12) The combined value of the electricity and syngas produced allows the EPOx generator to be economically viable at a >2x higher cost/kW than a conventional SOFC.

  2. Green Energy Options for Consumer-Owned Business

    SciTech Connect (OSTI)

    Co-opPlus of Western Massachusetts

    2006-05-01T23:59:59.000Z

    The goal of this project was to define, test, and prototype a replicable business model for consumer-owned cooperatives. The result is a replicable consumer-owned cooperative business model for the generation, interconnection, and distribution of renewable energy that incorporates energy conservation and efficiency improvements.

  3. ELECTRIC

    Office of Legacy Management (LM)

    you nay give us will be greatly uppreckted. VPry truly your23, 9. IX. Sin0j3, Mtinager lclectronics and Nuclear Physics Dept. omh , WESTINGHOUSE-THE NAT KING IN ELECTRICITY...

  4. Estimates of health risks associated with radionuclide emissions from fossil-fueled steam-electric generating plants. Final report

    SciTech Connect (OSTI)

    Nelson, C.

    1995-08-01T23:59:59.000Z

    Under the Title III, Section 112 of the 1990 Clean Air Act Amendment, Congress directed the U.S. Environmental Protection Agency (EPA) to perform a study of the hazards to public resulting from pollutants emitted by electric utility system generating units. Radionuclides are among the groups of pollutants listed in the amendment. This report updates previously published data and estimates with more recently available information regarding the radionuclide contents of fossil fuels, associated emissions by steam-electric power plants, and potential health effects to exposed population groups.

  5. Bulk Electricity Generating Technologies This appendix describes the technical characteristics and cost and performance

    E-Print Network [OSTI]

    income tax rate n/a 35% 35% Federal investment tax credit n/a 0% 0% Tax recovery period n/a 20 years 20-FIRED STEAM-ELECTRIC PLANTS Coal-fired steam-electric power plants are a mature technology, in use for over a century. Coal is the largest source of electric power in the United States as a whole, and the second

  6. Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation: Systematic Review and Harmonization

    SciTech Connect (OSTI)

    Warner, E. S.; Heath, G. A.

    2012-04-01T23:59:59.000Z

    A systematic review and harmonization of life cycle assessment (LCA) literature of nuclear electricity generation technologies was performed to determine causes of and, where possible, reduce variability in estimates of life cycle greenhouse gas (GHG) emissions to clarify the state of knowledge and inform decision making. LCA literature indicates that life cycle GHG emissions from nuclear power are a fraction of traditional fossil sources, but the conditions and assumptions under which nuclear power are deployed can have a significant impact on the magnitude of life cycle GHG emissions relative to renewable technologies. Screening 274 references yielded 27 that reported 99 independent estimates of life cycle GHG emissions from light water reactors (LWRs). The published median, interquartile range (IQR), and range for the pool of LWR life cycle GHG emission estimates were 13, 23, and 220 grams of carbon dioxide equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh), respectively. After harmonizing methods to use consistent gross system boundaries and values for several important system parameters, the same statistics were 12, 17, and 110 g CO{sub 2}-eq/kWh, respectively. Harmonization (especially of performance characteristics) clarifies the estimation of central tendency and variability. To explain the remaining variability, several additional, highly influential consequential factors were examined using other methods. These factors included the primary source energy mix, uranium ore grade, and the selected LCA method. For example, a scenario analysis of future global nuclear development examined the effects of a decreasing global uranium market-average ore grade on life cycle GHG emissions. Depending on conditions, median life cycle GHG emissions could be 9 to 110 g CO{sub 2}-eq/kWh by 2050.

  7. San Diego Solar Panels Generate Clean Electricity Along with Clean Water

    Broader source: Energy.gov [DOE]

    Thanks to San Diego's ambitious solar energy program, the Otay Water Treatment Plant may soon be able to do that with net zero electricity consumption.

  8. The Effects of Electricity Tariff Structure on Distributed Generation Adoption in New York State

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2005-01-01T23:59:59.000Z

    sources under various tariffs no inv. inv. standby no inv.The Effects of Electricity Tariff Structure on Distributedthe greatest. Standby tariffs tend to encourage installing

  9. Small Generator Aggregation (Maine)

    Broader source: Energy.gov [DOE]

    This section establishes requirements for electricity providers to purchase electricity from small generators, with the goal of ensuring that small electricity generators (those with a nameplate...

  10. Southeastern Electric- Electric Equipment Loan Program

    Broader source: Energy.gov [DOE]

    Southeastern Electric Cooperative is a member-owned electric cooperative that serves customers in the southeastern part of South Dakota. Southeastern offers a loan program for customers who want...

  11. Meeting the challenges of the new energy industry: The driving forces facing electric power generators and the natural gas industry

    SciTech Connect (OSTI)

    NONE

    1995-12-31T23:59:59.000Z

    The proceedings of the IGT national conference on meeting the challenges of the New Energy Industry: The driving forces facing Electric Power Generators and the Natural Gas Industry are presented. The conference was held June 19-21, 1995 at the Ambassador West Hotel in Downtown Chicago, Illinois. A separate abstract and indexing for each of the 18 papers presented for inclusion in the Energy Science and Technology Database.

  12. Revisiting the 'Buy versus Build' decision for publicly owned utilities in California considering wind and geothermal resources

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2001-10-01T23:59:59.000Z

    The last two decades have seen a dramatic increase in the market share of independent, non-utility generators (NUGs) relative to traditional, utility-owned generation assets. Accordingly, the ''buy versus build'' decision facing utilities--i.e., whether a utility should sign a power purchase agreement (PPA) with a NUG, or develop and own the generation capacity itself--has gained prominence in the industry. Specific debates have revolved around the relative advantages of, the types of risk created by, and the regulatory incentives favoring each approach. Very little of this discussion has focused specifically on publicly owned electric utilities, however, perhaps due to the belief that public power's tax-free financing status leaves little space in which NUGs can compete. With few exceptions (Wiser and Kahn 1996), renewable sources of supply have received similarly scant attention in the buy versus build debate. In this report, we revive the ''buy versus build'' debate and apply it to the two sectors of the industry traditionally underrepresented in the discussion: publicly owned utilities and renewable energy. Contrary to historical treatment, this debate is quite relevant to public utilities and renewables because publicly owned utilities are able to take advantage of some renewable energy incentives only in a ''buy'' situation, while others accrue only in a ''build'' situation. In particular, possible economic advantages of public utility ownership include: (1) the tax-free status of publicly owned utilities and the availability of low-cost debt, and (2) the renewable energy production incentive (REPI) available only to publicly owned utilities. Possible economic advantages to entering into a PPA with a NUG include: (1) the availability of federal tax credits and accelerated depreciation schedules for certain forms of NUG-owned renewable energy, and (2) the California state production incentives available to NUGs but not utilities. This report looks at a publicly owned utility's decision to buy or build new renewable energy capacity--specifically wind or geothermal power--in California. To examine the economic aspects of this decision, we modified and updated a 20-year financial cash-flow model to assess the levelized cost of electricity under four supply options: (1) public utility ownership of new geothermal capacity, (2) public utility ownership of new wind capacity, (3) a PPA for new geothermal capacity, and (4) a PPA for new wind capacity.

  13. Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants

    SciTech Connect (OSTI)

    P. Alan Mays; Bert R. Bock; Gregory A. Brodie; L. Suzanne Fisher; J. Devereux Joslin; Donald L. Kachelman; Jimmy J. Maddox; N. S. Nicholas; Larry E. Shelton; Nick Taylor; Mark H. Wolfe; Dennis H. Yankee; John Goodrich-Mahoney

    2005-08-30T23:59:59.000Z

    The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. The CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by 2025. Other potential benefits of the demonstration include developing a passive technology for water treatment for trace metal and nutrient release reductions, using power plant by-products to improve coal mine land reclamation and carbon sequestration, developing wildlife habitat and green-space around production facilities, generating Total Maximum Daily Load (TMDL) credits for the use of process water, and producing wood products for use by the lumber and pulp and paper industry. Project activities conducted during the five year project period include: Assessing tree cultivation and other techniques used to sequester carbon; Project site assessment; Greenhouse studies to determine optimum plant species and by-product application; Designing, constructing, operating, monitoring, and evaluating the CCWESTRS system; and Reporting (ongoing). The ability of the system to sequester carbon will be the primary measure of effectiveness, measured by accessing survival and growth response of plants within the CCWESTRS. In addition, costs associated with design, construction, and monitoring will be evaluated and compared to projected benefits of other carbon sequestration technologies. The test plan involves the application of three levels each of two types of power plant by-products--three levels of FGD gypsum mulch, and three levels of ash pond irrigation water. This design produces nine treatment levels which are being tested with two species of hardwood trees (sweet gum and sycamore). The project is examining the effectiveness of applications of 0, 8-cm, and 15-cm thick gypsum mulch layers and 0, 13 cm, and 25 cm of coal fly ash water for irrigation. Each treatment combination is being replicated three times, resulting in a total of 54 treatment plots (3 FGD gypsum levels X 3 irrigation water levels x 2 tree species x 3 replicates). Survival and growth response of plant species in terms of sequestering carbon in plant material and soil will be the primary measure of effectiveness of each treatment. Additionally, the ability of the site soils and unsaturated zone subsurface m

  14. Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation

    SciTech Connect (OSTI)

    Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews [Carnegie Mellon University, Pittsburgh, PA (United States). Civil and Environmental Engineering Department

    2007-09-15T23:59:59.000Z

    The U.S. Department of Energy (DOE) estimates that in the coming decades the United States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could come domestically from the production of synthetic natural gas (SNG) via coal gasification-methanation. The objective of this study is to compare greenhouse gas (GHG), SOx, and NOx life-cycle emissions of electricity generated with NG/LNG/SNG and coal. This life-cycle comparison of air emissions from different fuels can help us better understand the advantages and disadvantages of using coal versus globally sourced NG for electricity generation. Our estimates suggest that with the current fleet of power plants, a mix of domestic NG, LNG, and SNG would have lower GHG emissions than coal. If advanced technologies with carbon capture and sequestration (CCS) are used, however, coal and a mix of domestic NG, LNG, and SNG would have very similar life-cycle GHG emissions. For SOx and NOx we find there are significant emissions in the upstream stages of the NG/LNG life-cycles, which contribute to a larger range in SOx and NOx emissions for NG/LNG than for coal and SNG. 38 refs., 3 figs., 2 tabs.

  15. National Account Energy Alliance Final Report for the Basin Electric Project at Northern Border Pipeline Company's Compressor Station #7, North Dakota

    SciTech Connect (OSTI)

    Sweetzer, Richard [Exergy Partners Corp.; Leslie, Neil [Gas Technology Institute

    2008-02-01T23:59:59.000Z

    A field research test and verification project was conducted at the recovered energy generation plant at Northern Border Pipeline Company Compressor Station #7 (CS#7) near St. Anthony. Recovered energy generation plant equipment was supplied and installed by ORMAT Technologies, Inc. Basin Electric is purchasing the electricity under a purchase power agreement with an ORMAT subsidiary, which owns and operates the plant.

  16. NREL Webinar: Treatment of Solar Generation in Electric Utility Resource Planning

    Office of Energy Efficiency and Renewable Energy (EERE)

    In this free webinar, you will hear how utilities are incorporating solar generation into their resource planning processes.

  17. Electricity generation and emissions reduction decisions under uncertainty : a general equilibrium analysis

    E-Print Network [OSTI]

    Morris, Jennifer F. (Jennifer Faye)

    2013-01-01T23:59:59.000Z

    The electric power sector, which accounts for approximately 40% of U.S. carbon dioxide emissions, will be a critical component of any policy the U.S. government pursues to confront climate change. In the context of uncertainty ...

  18. Electricity Generation and Emissions Reduction Decisions under Policy Uncertainty: A General Equilibrium Analysis

    E-Print Network [OSTI]

    Morris, J.

    The electric power sector, which accounts for approximately 40% of U.S. carbon dioxide emissions, will be a critical component of any policy the U.S. government pursues to confront climate change. In the context of uncertainty ...

  19. The Effects of Electricity Tariff Structure on Distributed Generation Adoption in New York State

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2005-01-01T23:59:59.000Z

    volumetric price, TOU – time of use tariff: volumetric priceService, Time of Use Rates parent tariff Jan 03 Customertime of use United States Environmental Protection Agency xv The Effects of Electricity Tariff

  20. A study of alternative drive control interfaces for next-generation electric vehicles

    E-Print Network [OSTI]

    Post, C. Christopher (Charles Christopher)

    2011-01-01T23:59:59.000Z

    The drive control interface in automobiles has not significantly changed for almost a century. Recent advances in electric vehicles and drive-by-wire technology allow for new alternative interfaces that enable novel vehicle ...

  1. Incorporating operational flexibility into electric generation planning : impacts and methods for system design and policy analysis

    E-Print Network [OSTI]

    Palmintier, Bryan S. (Bryan Stephen)

    2013-01-01T23:59:59.000Z

    This dissertation demonstrates how flexibility in hourly electricity operations can impact long-term planning and analysis for future power systems, particularly those with substantial variable renewables (e.g., wind) or ...

  2. A Development of Design and Control Methodology for Next Generation Parallel Hybrid Electric Vehicle 

    E-Print Network [OSTI]

    Lai, Lin

    2013-01-28T23:59:59.000Z

    Commercially available Hybrid Electric Vehicles (HEVs) have been around for more than ten years. However, their market share remains small. Focusing only on the improvement of fuel economy, the design tends to reduce the size of the internal...

  3. A State Regulatory Perspective; New Building, Old Motors, and Marginal Electricity Generation

    E-Print Network [OSTI]

    Treadway, N.

    1987-01-01T23:59:59.000Z

    Electricity consumption in Texas is expected to grow at 3.2 percent annually for the next ten years. Utility demand management activities, if effective, may reduce that expected rate of growth. Residential cooling, commercial lighting and cooling...

  4. Power System Modeling of 20% Wind-Generated Electricity by 2030: Preprint

    SciTech Connect (OSTI)

    Hand, M.; Blair, N.; Bolinger, M.; Wiser, R.; O'Connell, R.; Hern, T.; Miller, B.

    2008-06-01T23:59:59.000Z

    This paper shows the results of the Wind Energy Deployment System model used to estimate the costs and benefits associated with producing 20% of the nation's electricity from wind technology by 2030.

  5. A Development of Design and Control Methodology for Next Generation Parallel Hybrid Electric Vehicle

    E-Print Network [OSTI]

    Lai, Lin

    2013-01-28T23:59:59.000Z

    Commercially available Hybrid Electric Vehicles (HEVs) have been around for more than ten years. However, their market share remains small. Focusing only on the improvement of fuel economy, the design tends to reduce the size of the internal...

  6. Elimination of Competition and Duplication of Electricity Generation and Transmission Facilities (Nebraska)

    Broader source: Energy.gov [DOE]

    This statute establishes as state policy the goal to furnish electricity as efficiently and cheaply as possible, and therefore to, “avoid and eliminate conflict and competition between public power...

  7. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01T23:59:59.000Z

    generation by 18%. Natural gas combustion turbine capacitycombined cycle natural gas plants, combustion turbinenuclear plants, combustion turbine natural gas plants, and

  8. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01T23:59:59.000Z

    generation by 18%. Natural gas combustion turbine capacitycycle natural gas plants, combustion turbine natural gasnuclear plants, combustion turbine natural gas plants, and

  9. First Generation 50 MW OTEC Plantship for the Production of Electricity and Desalinated Water

    E-Print Network [OSTI]

    acknowledgment of OTC copyright. Abstract Preliminary designs for first generation Ocean Thermal Energy Conversion (OTEC) plants utilizing either closed cycle (CC) or open cycle (OC) concepts are presented

  10. On the frequency of oscillations in the pair plasma generated by a strong electric field

    E-Print Network [OSTI]

    A. Benedetti; W. -B. Han; R. Ruffini; G. V. Vereshchagin

    2011-02-21T23:59:59.000Z

    We study the frequency of the plasma oscillations of electron-positron pairs created by the vacuum polarization in an uniform electric field with strength E in the range 0.2 Ec plasma oscillation equation when E -> 0. Thereby, we focus our attention on its evolution in time studying how this oscillation frequency approaches the plasma frequency. The time-scale needed to approach to the plasma frequency and the power spectrum of these oscillations are computed. The characteristic frequency of the power spectrum is determined uniquely from the initial value of the electric field strength. The effects of plasma degeneracy and pair annihilation are discussed.

  11. Renewable Power Options for Electrical Generation on Kaua'i: Economics and Performance Modeling

    SciTech Connect (OSTI)

    Burman, K.; Keller, J.; Kroposki, B.; Lilienthal, P.; Slaughter, R.; Glassmire, J.

    2011-11-01T23:59:59.000Z

    The Hawaii Clean Energy Initiative (HCEI) is working with a team led by the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to assess the economic and technical feasibility of increasing the contribution of renewable energy in Hawaii. This part of the HCEI project focuses on working with Kaua'i Island Utility Cooperative (KIUC) to understand how to integrate higher levels of renewable energy into the electric power system of the island of Kaua'i. NREL partnered with KIUC to perform an economic and technical analysis and discussed how to model PV inverters in the electrical grid.

  12. Geothermal energy in the western United States and Hawaii: Resources and projected electricity generation supplies. [Contains glossary and address list of geothermal project developers and owners

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    Geothermal energy comes from the internal heat of the Earth, and has been continuously exploited for the production of electricity in the United States since 1960. Currently, geothermal power is one of the ready-to-use baseload electricity generating technologies that is competing in the western United States with fossil fuel, nuclear and hydroelectric generation technologies to provide utilities and their customers with a reliable and economic source of electric power. Furthermore, the development of domestic geothermal resources, as an alternative to fossil fuel combustion technologies, has a number of associated environmental benefits. This report serves two functions. First, it provides a description of geothermal technology and a progress report on the commercial status of geothermal electric power generation. Second, it addresses the question of how much electricity might be competitively produced from the geothermal resource base. 19 figs., 15 tabs.

  13. A Millimeter-Scale Electric Generator Matthew K. Senesky and Seth R. Sanders

    E-Print Network [OSTI]

    Sanders, Seth

    as the generator rotor. The design allows for thermal insulation between the stator and combustion chamber, simple- or mi- croscale poses considerable challenges in thermal and fluid management, combustion processes stator to the silicon engine housing, and utilizing the engine rotor as the generator roto

  14. Superconductivity for Electric Systems Program Review LANL Contributions to GE HTS Generator

    E-Print Network [OSTI]

    generator · LANL entered into a CRADA with GE to provide assistance in several technology areas · Technology system ­ Engineering support · AC loss characterization · 2nd Generation wire impact · CRADA ended was completed in FY05 · Measurements scheduled to follow were not performed due to premature end of CRADA Single

  15. WRI 50: Strategies for Cooling Electric Generating Facilities Utilizing Mine Water

    SciTech Connect (OSTI)

    Joseph J. Donovan; Brenden Duffy; Bruce R. Leavitt; James Stiles; Tamara Vandivort; Paul Ziemkiewicz

    2004-11-01T23:59:59.000Z

    Power generation and water consumption are inextricably linked. Because of this relationship DOE/NETL has funded a competitive research and development initiative to address this relationship. This report is part of that initiative and is in response to DOE/NETL solicitation DE-PS26-03NT41719-0. Thermal electric power generation requires large volumes of water to cool spent steam at the end of the turbine cycle. The required volumes are such that new plant siting is increasingly dependent on the availability of cooling circuit water. Even in the eastern U.S., large rivers such as the Monongahela may no longer be able to support additional, large power stations due to subscription of flow to existing plants, industrial, municipal and navigational requirements. Earlier studies conducted by West Virginia University (WV 132, WV 173 phase I, WV 173 Phase II, WV 173 Phase III, and WV 173 Phase IV in review) have identified that a large potential water resource resides in flooded, abandoned coal mines in the Pittsburgh Coal Basin, and likely elsewhere in the region and nation. This study evaluates the technical and economic potential of the Pittsburgh Coal Basin water source to supply new power plants with cooling water. Two approaches for supplying new power plants were evaluated. Type A employs mine water in conventional, evaporative cooling towers. Type B utilizes earth-coupled cooling with flooded underground mines as the principal heat sink for the power plant reject heat load. Existing mine discharges in the Pittsburgh Coal Basin were evaluated for flow and water quality. Based on this analysis, eight sites were identified where mine water could supply cooling water to a power plant. Three of these sites were employed for pre-engineering design and cost analysis of a Type A water supply system, including mine water collection, treatment, and delivery. This method was also applied to a ''base case'' river-source power plant, for comparison. Mine-water system cost estimates were then compared to the base-case river source estimate. We found that the use of net-alkaline mine water would under current economic conditions be competitive with a river-source in a comparable-size water cooling system. On the other hand, utilization of net acidic water would be higher in operating cost than the river system by 12 percent. This does not account for any environmental benefits that would accrue due to the treatment of acid mine drainage, in many locations an existing public liability. We also found it likely that widespread adoption of mine-water utilization for power plant cooling will require resolution of potential liability and mine-water ownership issues. In summary, Type A mine-water utilization for power plant cooling is considered a strong option for meeting water needs of new plant in selected areas. Analysis of the thermal and water handling requirements for a 600 megawatt power plant indicated that Type B earth coupled cooling would not be feasible for a power plant of this size. It was determined that Type B cooling would be possible, under the right conditions, for power plants of 200 megawatts or less. Based on this finding the feasibility of a 200 megawatt facility was evaluated. A series of mines were identified where a Type B earth-coupled 200 megawatt power plant cooling system might be feasible. Two water handling scenarios were designed to distribute heated power-plant water throughout the mines. Costs were developed for two different pumping scenarios employing a once-through power-plant cooling circuit. Thermal and groundwater flow simulation models were used to simulate the effect of hot water injection into the mine under both pumping strategies and to calculate the return-water temperature over the design life of a plant. Based on these models, staged increases in required mine-water pumping rates are projected to be part of the design, due to gradual heating and loss of heat-sink efficiency of the rock sequence above the mines. Utilizing pumping strategy No.1 (two mines) capital costs were 25 percent lower a

  16. Wednesday, July 19, 2006 Researchers use corn waste to generate electricity

    E-Print Network [OSTI]

    's process uses a microbial fuel cell to convert organic material into electricity. Previous work has shown compounds in the corn waste and these compounds can be fed to microbial fuel cells. The microbial fuel cells atoms that combine with the electrons and oxygen to form water. The microbial fuel cells were inoculated

  17. Microbes Turn Electricity Directly To Methane Without Hydrogen Generation March 30, 2009

    E-Print Network [OSTI]

    catalysts and at a lower energy level than converting carbon dioxide to methane using conventional, non Park, Pa. -- A tiny microbe can take electricity and directly convert carbon dioxide and water to methane, producing a portable energy source with a potentially neutral carbon footprint, according

  18. A novel technique that creates electricity using the sun and generation technology

    E-Print Network [OSTI]

    Bristol, University of

    solar heat to produce electricity in devices called thermionic energy converters (TECs) for which to improve the electrode's key operating boundaries. Solar energy is used to heat the negative electrode, will use parabolic dishes to concentrate the sun's rays to provide heat energy for the cathode. The UK

  19. Bacteria that generate significant amounts of electricity could be used in microbial fuel cells to provide power in remote environments or to convert

    E-Print Network [OSTI]

    Lovley, Derek

    Bacteria that generate significant amounts of electricity could be used in microbial fuel cells to provide power in remote environments or to convert waste to electricity. Professor Derek Lovley from at Heriot-Watt University, Edinburgh. The researchers isolated a strain of Geobacter sulfurreducens which

  20. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    E-Print Network [OSTI]

    Wiser, Ryan H

    2008-01-01T23:59:59.000Z

    value of re- newable electricity; and customer surveys ofCalifornia or Northwestern electricity demand. This may bebetween wind speed and electricity demand," Solar Energy,

  1. Electricity from wood powder report on a TPV generator in progress

    SciTech Connect (OSTI)

    Broman, L.; Jarefors, K. [Solar Energy Research Center (SERC), University College of Falun Borlange (UCFB), Box 10044, S-781 10 Borlange (Sweden); Marks, J. [Department of Operational Efficiency, Swedish University of Agricultural Sciences (SLU), Herrgardsv 122, S-776 98 Garpenberg (Sweden); Wanlass, M. [National Renewable Energy Laboratory (NREL), 1617 Cole Blvd., Golden, Colorado 80401-3393, United States of America

    1996-02-01T23:59:59.000Z

    A joint project between NREL, SLU, and UCFB aims at building a wood powder fueled TPV generator. The progress of the project is presented. {copyright} {ital 1996 American Institute of Physics.}

  2. Storing unsteady energy, like photovoltaically generated electric energy, as potential energy

    E-Print Network [OSTI]

    Nadja Kutz

    2012-02-13T23:59:59.000Z

    A proposal to store unsteady energy in potential energy via lifting masses with a rough quantitative overview. Some applications and methods to harvest the potential energy are also given. A focus is put on photovoltaically generated energy.

  3. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01T23:59:59.000Z

    flat through Coal plant capital cost ($2120/kW in 2005)costs and performance for other generation technologies such as pulverized coal plants,Coal plant performance improves by about 5% between 2005 and 2030 Nuclear plant capital cost (

  4. Strategic investment in power generation under uncertainty : Electric Reliability Council of Texas

    E-Print Network [OSTI]

    Chiyangwa, Diana Kudakwashe

    2010-01-01T23:59:59.000Z

    The purpose of this study is to develop a strategy for investment in power generation technologies in the future given the uncertainties in climate policy and fuel prices. First, such studies are commonly conducted using ...

  5. Ownership Change, Incentives and Plant Efficiency: The Divestiture of U.S. Electric Generation Plants

    E-Print Network [OSTI]

    Bushnell, James B.; Wolfram, Catherine

    2005-01-01T23:59:59.000Z

    that were subject to incentive regulation also saw fuel e?a strong form of incentive regulation. This suggests thata speci?c focus on incentive regulation. from the generation

  6. Title 20, California Code of Regulations Article 5. Electricity Generation Source Disclosure

    E-Print Network [OSTI]

    fossil fuel may not be included: (1) Biomass and waste. For purposes of these regulations, "biomass type attribute" means the fuel or technology type used to generate a quantity of kilowatt hours

  7. Electric generating or transmission facility: determination of rate-making principles and treatment: procedure (Kansas)

    Broader source: Energy.gov [DOE]

    This legislation permits the KCC to determine rate-making principles that will apply to a utility’s investment in generation or transmission before constructing a facility or entering into a...

  8. Generation of longitudinal electric current by the transversal electromagnetic field in collisional plasma

    E-Print Network [OSTI]

    Latyshev, A V

    2015-01-01T23:59:59.000Z

    From kinetic Vlasov equation for collisional plasmas distribution function is received in square-law approximation on size of electromagnetic field. The formula for calculation electric current is deduced at any temperature (any degree of degeneration electronic gas). This formula contains one-dimension quadrature. It is shown, that the nonlinearity account leads to occurrence the longitudinal electric current directed along a wave vector. This longitudinal current is perpendicular to the known transversal classical current, received at the linear analysis. When frequency of collisions tends to zero, all received results for collisional plasma pass in known corresponding formulas for collisionless plasma. The case of small values of wave number is considered. It is shown, that the received quantity of longitudinal current at tendency of frequency of collisions to zero also passes in known corresponding expression of current for collisionless plasmas. Graphic comparison of dimensionless size of current is spen...

  9. VUV generation by adiabatically expanded and excited by a DC electrical discharge Argon gas

    SciTech Connect (OSTI)

    Pipergias, K.; Yasemidis, D.; Reppa, E.; Pentaris, D.; Efthimiopoulos, T. [Laser, Non linear and Quantum Optics Labs, Physics Department University of Patras, Patras, Greece 26500 (Greece); Merlemis, N. [Laser, Non linear and Quantum Optics Labs, Physics Department University of Patras, Patras, Greece 26500 (Greece); TEI of Athens, Phys. Chem. and Mater. Tech. Department, Athens, Greece, 12 210 (Greece); Giannetas, V. [Physics Department, University of Patras, Patras, Greece 26500 (Greece)

    2010-11-10T23:59:59.000Z

    We investigate the emission of Argon (Ar) gas which is adiabatically expanded through a nozzle and excited using a DC electrical discharge. Because of the expansion and the electronic excitation, Ar dimers and clusters are formed, which give radiation in the second (2nd) and in the third (3rd) continua of Ar, centered at about 126 and 254 nm respectively. We particularly focus our study on the 2nd continuum, in order to develop a laser at this wavelength.

  10. *Tri-Generation is a novel technology that was conceived by the National Fuel Cell Research Center in 2001 to simultaneously generate electricity, hydrogen, and heat. It was developed into the first prototype in collaboration with FuelCell Energy, Inc., a

    E-Print Network [OSTI]

    Mease, Kenneth D.

    and fuel cell electric vehicles), there are still emissions associated with the upstream processes Electric Vehicles Fuel Cell Electric Vehicles #12;*Tri-Generation is a novel technology that was conceived by the National Fuel Cell Research Center

  11. Methods for Analyzing the Benefits and Costs of Distributed Photovoltaic Generation to the U.S. Electric Utility System

    SciTech Connect (OSTI)

    Denholm, P.; Margolis, R.; Palmintier, B.; Barrows, C.; Ibanez, E.; Bird, L.; Zuboy, J.

    2014-09-01T23:59:59.000Z

    This report outlines the methods, data, and tools that could be used at different levels of sophistication and effort to estimate the benefits and costs of DGPV. In so doing, we identify the gaps in current benefit-cost-analysis methods, which we hope will inform the ongoing research agenda in this area. The focus of this report is primarily on benefits and costs from the utility or electricity generation system perspective. It is intended to provide useful background information to utility and regulatory decision makers and their staff, who are often being asked to use or evaluate estimates of the benefits and cost of DGPV in regulatory proceedings. Understanding the technical rigor of the range of methods and how they might need to evolve as DGPV becomes a more significant contributor of energy to the electricity system will help them be better consumers of this type of information. This report is also intended to provide information to utilities, policy makers, PV technology developers, and other stakeholders, which might help them maximize the benefits and minimize the costs of integrating DGPV into a changing electricity system.

  12. Method and apparatus for electrokinetic co-generation of hydrogen and electric power from liquid water microjets

    DOE Patents [OSTI]

    Saykally, Richard J; Duffin, Andrew M; Wilson, Kevin R; Rude, Bruce S

    2013-02-12T23:59:59.000Z

    A method and apparatus for producing both a gas and electrical power from a flowing liquid, the method comprising: a) providing a source liquid containing ions that when neutralized form a gas; b) providing a velocity to the source liquid relative to a solid material to form a charged liquid microjet, which subsequently breaks up into a droplet spay, the solid material forming a liquid-solid interface; and c) supplying electrons to the charged liquid by contacting a spray stream of the charged liquid with an electron source. In one embodiment, where the liquid is water, hydrogen gas is formed and a streaming current is generated. The apparatus comprises a source of pressurized liquid, a microjet nozzle, a conduit for delivering said liquid to said microjet nozzle, and a conductive metal target sufficiently spaced from said nozzle such that the jet stream produced by said microjet is discontinuous at said target. In one arrangement, with the metal nozzle and target electrically connected to ground, both hydrogen gas and a streaming current are generated at the target as it is impinged by the streaming, liquid spray microjet.

  13. Who Owns Renewable Energy Certificates? An Exploration of Policy Options and Practice

    E-Print Network [OSTI]

    Holt, Edward A.; Wiser, Ryan; Bolinger, Mark

    2006-01-01T23:59:59.000Z

    and distributed generation tariffs by Michigan utilities.to the utilities from distributed generation and emissionsan Electric Utility and a Distributed Generation Customer

  14. Utility/Industry Partnerships Involving Distributed Generation Technologies in Evolving Electricity Markets 

    E-Print Network [OSTI]

    Rastler, D. M.

    1997-01-01T23:59:59.000Z

    Wires Manage Wires defer capital Optimize Energy Services Not Utility Business Not Utility Business New Business Opportunities DISTRIBUTED GENERATION Distributed generation includes small gas turbines, micro-turbines, fuel cells, storage... Residential Single Family Multi Family 1-10 kW 15- 50 kW Ultra micro-turbines Stirling Engines Fuel Cells PEMFC SOFC PV BatterylUPS Remote Loads 5 kW - 1,000 kW IC engines Off Grid Diesel Engine Micro turbine Stirling Engines Distribution...

  15. Utilizing Electric Vehicles to Assist Integration of Large Penetrations of Distributed Photovoltaic Generation Capacity

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Chassin, Forrest S.; Kintner-Meyer, Michael CW; Gowri, Krishnan

    2012-11-30T23:59:59.000Z

    Executive Summary Introduction and Motivation This analysis provides the first insights into the leveraging potential of distributed photovoltaic (PV) technologies on rooftop and electric vehicle (EV) charging. Either of the two technologies by themselves - at some high penetrations – may cause some voltage control challenges or overloading problems, respectively. But when combined, there – at least intuitively – could be synergistic effects, whereby one technology mitigates the negative impacts of the other. High penetration of EV charging may overload existing distribution system components, most prominently the secondary transformer. If PV technology is installed at residential premises or anywhere downstream of the secondary transformer, it will provide another electricity source thus, relieving the loading on the transformers. Another synergetic or mitigating effect could be envisioned when high PV penetration reverts the power flow upward in the distribution system (from the homes upstream into the distribution system). Protection schemes may then no longer work and voltage violation (exceeding the voltage upper limited of the ANSI voltage range) may occur. In this particular situation, EV charging could absorb the electricity from the PV, such that the reversal of power flow can be reduced or alleviated. Given these potential mutual synergistic behaviors of PV and EV technologies, this project attempted to quantify the benefits of combining the two technologies. Furthermore, of interest was how advanced EV control strategies may influence the outcome of the synergy between EV charging and distributed PV installations. Particularly, Californian utility companies with high penetration of the distributed PV technology, who have experienced voltage control problems, are interested how intelligent EV charging could support or affect the voltage control

  16. Guide to purchasing green power. Renewable electricity, renewable energy certificates and on-site renewable generation

    SciTech Connect (OSTI)

    None,

    2004-09-30T23:59:59.000Z

    The Guide to Purchasing Green Power is intended for organizations that are considering the merits of buying green power as well as those that have decided to buy it and want help doing so. The Guide was written for a broad audience, including businesses, government agencies, universities, and all organizations wanting to diversify their energy supply and to reduce the environmental impact of their electricity use.The Guide provides an overview of green power markets and describes the necessary steps to buying green power. This section summarizes the Guide to help readers find the information they need.

  17. Electric Power Generation from Coproduced Fluids from Oil and Gas Wells |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register / Vol.6:Energy Eighth AnnualELECTRIC MOTORS

  18. Table A31. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWestQuantity of Electricity SoldTotal

  19. Table A34. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWestQuantity of ElectricityPrimaryTotal

  20. Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate -5 20054 Share of635 U.S. Electric67

  1. Electric Power Generation from Coproduced Fluids from Oil and Gas Wells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory BoardNucleate Boiling Efficient CoolingInc.Electric Power

  2. Electric Power Generation from Coproduced Fluids from Oil and Gas Wells |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory BoardNucleate Boiling Efficient CoolingInc.Electric PowerDepartment

  3. Analysis of electrical signatures in synchronous generators characterized by bearing faults

    E-Print Network [OSTI]

    Choi, Jae-Won

    2009-05-15T23:59:59.000Z

    fitted on the shaft. A 12 blade ventilation fan is located in the rear claw pole. This fan cools down the rotor while the energized field coil generates heat. The shaft diameter at the rear end is reduced to 3/8? and a smaller 6200 type bearing fits...

  4. Agricultural Bio-Fueled Generation of Electricity and Development of Durable and Efficent NOx Reduction

    SciTech Connect (OSTI)

    Boyd, Rodney

    2007-08-08T23:59:59.000Z

    The objective of this project was to define the scope and cost of a technology research and development program that will demonstrate the feasibility of using an off-the-shelf, unmodified, large bore diesel powered generator in a grid-connected application, utilizing various blends of BioDiesel as fuel. Furthermore, the objective of project was to develop an emissions control device that uses a catalytic process and BioDiesel (without the presence of Ammonia or Urea)to reduce NOx and other pollutants present in a reciprocating engine exhaust stream with the goal of redefining the highest emission reduction efficiencies possible for a diesel reciprocating generator. Process: Caterpillar Power Generation adapted an off-the-shelf Diesel Generator to run on BioDiesel and various Petroleum Diesel/BioDiesel blends. EmeraChem developed and installed an exhaust gas cleanup system to reduce NOx, SOx, volatile organics, and particulates. The system design and function was optimized for emissions reduction with results in the 90-95% range;

  5. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    fuel electricity demands, and generation from these plantplants .. 47 Additional generation .. 48 Electricityelectricity demand increases generation from NGCC power plants.

  6. Current Legal and Institutional Frameworks for Investing in Lower Carbon Electricity in China

    E-Print Network [OSTI]

    Lang, X; Reiner, David; Neuhoff, Karsten

    ), which is a state-owned and state-controlled enterprise, is the largest electric power planning and engineering corporation in China, having undertaken the survey and design of 60% of power generation and delivery projects in China (CPECC, 2007... 15 generation. To support the plan, policies such as ‘replacing small units by large units’ and ‘regulations on managing renewable power’ have been put forward. In principle, financing lower carbon electricity including higher efficiency coal...

  7. Global Assessment of Hydrogen Technologies – Task 5 Report Use of Fuel Cell Technology in Electric Power Generation

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Ahluwalia, Rajesh K.

    2007-12-01T23:59:59.000Z

    The purpose of this work was to assess the performance of high temperature membranes and observe the impact of different parameters, such as water-to-carbon ratio, carbon formation, hydrogen formation, efficiencies, methane formation, fuel and oxidant utilization, sulfur reduction, and the thermal efficiency/electrical efficiency relationship, on fuel cell performance. A 250 KW PEM fuel cell model was simulated [in conjunction with Argonne National Laboratory (ANL) with the help of the fuel cell computer software model (GCtool)] which would be used to produce power of 250 kW and also produce steam at 120oC that can be used for industrial applications. The performance of the system was examined by estimating the various electrical and thermal efficiencies achievable, and by assessing the effect of supply water temperature, process water temperature, and pressure on thermal performance. It was concluded that increasing the fuel utilization increases the electrical efficiency but decreases the thermal efficiency. The electrical and thermal efficiencies are optimum at ~85% fuel utilization. The low temperature membrane (70oC) is unsuitable for generating high-grade heat suitable for useful cogeneration. The high temperature fuel cells are capable of producing steam through 280oC that can be utilized for industrial applications. Increasing the supply water temperature reduces the efficiency of the radiator. Increasing the supply water temperature beyond the dew point temperature decreases the thermal efficiency with the corresponding decrease in high-grade heat utilization. Increasing the steam pressure decreases the thermal efficiency. The environmental impacts of fuel cell use depend upon the source of the hydrogen rich fuel used. By using pure hydrogen, fuel cells have virtually no emissions except water. Hydrogen is rarely used due to problems with storage and transportation, but in the future, the growth of a “solar hydrogen economy” has been projected. Photovoltaic cells convert sunlight into electricity. This electricity can be used to split water (electrolysis) into hydrogen and oxygen, to store the sun's energy as hydrogen fuel. In this scenario, fuel cell powered vehicles or generating stations have no real emissions of greenhouse or acid gases, or any other pollutants. It is predominantly during the fuel processing stage that atmospheric emissions are released by a fuel cell power plant. When methanol from biomass is used as a fuel, fuel cells have no net emissions of carbon dioxide (CO2, a greenhouse gas) because any carbon released was recently taken from the atmosphere by photosynthetic plants. Any high temperature combustion, such as that which would take place in a spark ignition engine fueled by methanol, produces nitrous oxides (NOx), gases which contribute to acid rain. Fuel cells virtually eliminate NOx emissions because of the lower temperatures of their chemical reactions. Fuel cells, using processed fossil fuels, have emissions of CO2 and sulfur dioxide (SO2) but these emissions are much lower than those from traditional thermal power plants or spark ignition engines due to the higher efficiency of fuel cell power plants. Higher efficiencies result in less fuel being consumed to produce a given amount of electricity or to travel a given distance. This corresponds to lower CO2 and SO2 emissions. Fuel cell power plants also have longer life expectancies and lower maintenance costs than their alternatives.

  8. Thermoelectric energy converter for generation of electricity from low-grade heat

    DOE Patents [OSTI]

    Jayadev, T.S.; Benson, D.K.

    1980-05-27T23:59:59.000Z

    A thermoelectric energy conversion device which includes a plurality of thermoelectric elements is described. A hot liquid is supplied to one side of each element and a cold liquid is supplied to the other side of each element. The thermoelectric generator may be utilized to produce power from low-grade heat sources such as ocean thermal gradients, solar ponds, and low-grade geothermal resources. (WHK)

  9. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    DOE Patents [OSTI]

    Lasche, G.P.

    1987-02-20T23:59:59.000Z

    A high-power-density-laser or charged-particle-beam fusion reactor system maximizes the directed kinetic energy imparted to a large mass of liquid lithium by a centrally located fusion target. A fusion target is embedded in a large mass of lithium, of sufficient radius to act as a tritium breeding blanket, and provided with ports for the access of beam energy to implode the target. The directed kinetic energy is converted directly to electricity with high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the system maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall are several orders of magnitude less than is typical of other fusion reactor systems. 25 figs.

  10. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    DOE Patents [OSTI]

    Lasche, George P. (Arlington, VA)

    1988-01-01T23:59:59.000Z

    A high-power-density laser or charged-particle-beam fusion reactor system maximizes the directed kinetic energy imparted to a large mass of liquid lithium by a centrally located fusion target. A fusion target is embedded in a large mass of lithium, of sufficient radius to act as a tritium breeding blanket, and provided with ports for the access of beam energy to implode the target. The directed kinetic energy is converted directly to electricity with high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the system maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall are several orders of magnitude less than is typical of other fusion reactor systems.

  11. Characterization of solar thermal concepts for electricity generation: Volume 1, Analyses and evaluation

    SciTech Connect (OSTI)

    Williams, T.A.; Dirks, J.A.; Brown, D.R.; Drost, M.K.; Antoniac, Z.A.; Ross, B.A.

    1987-03-01T23:59:59.000Z

    This study is aimed at providing a relative comparison of the thermodynamic and economic performance in electric applications of several concepts that have been studied and developed in the DOE solar thermal program. Since the completion of earlier systems comparison studies in the late 1970's, there have been a number of years of progress in solar thermal technology. This progress has included development of new solar components, improvements in component and system design detail, construction of working systems, and collection of operating data on the systems. This study provides an updating of the expected performance and cost of the major components and the overall system energy cost for the concepts evaluated. The projections in this study are for the late 1990's time frame, based on the capabilities of the technologies that could be expected to be achieved with further technology development.

  12. Proton exchange membrane fuel cells for electrical power generation on-board commercial airplanes.

    SciTech Connect (OSTI)

    Curgus, Dita Brigitte; Munoz-Ramos, Karina (Sandia National Laboratories, Albuquerque, NM); Pratt, Joseph William; Akhil, Abbas Ali (Sandia National Laboratories, Albuquerque, NM); Klebanoff, Leonard E.; Schenkman, Benjamin L. (Sandia National Laboratories, Albuquerque, NM)

    2011-05-01T23:59:59.000Z

    Deployed on a commercial airplane, proton exchange membrane fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they offer a performance advantage for the airplane as a whole. Through hardware analysis and thermodynamic and electrical simulation, we found that while adding a fuel cell system using today's technology for the PEM fuel cell and hydrogen storage is technically feasible, it will not likely give the airplane a performance benefit. However, when we re-did the analysis using DOE-target technology for the PEM fuel cell and hydrogen storage, we found that the fuel cell system would provide a performance benefit to the airplane (i.e., it can save the airplane some fuel), depending on the way it is configured.

  13. Are neutrinos their own antiparticles?

    SciTech Connect (OSTI)

    Kayser, Boris; /Fermilab

    2009-03-01T23:59:59.000Z

    We explain the relationship between Majorana neutrinos, which are their own antiparticles, and Majorana neutrino masses. We point out that Majorana masses would make the neutrinos very distinctive particles, and explain why many theorists strongly suspect that neutrinos do have Majorana masses. The promising approach to confirming this suspicion is to seek neutrinoless double beta decay. We introduce a toy model that illustrates why this decay requires nonzero neutrino masses, even when there are both right-handed and left-handed weak currents.

  14. Statkraft is Europe's largest generator of renewable energy and is the leading power company in Norway. The company owns, produces and develops hydropower, wind power, gas-fired power and

    E-Print Network [OSTI]

    Morik, Katharina

    Statkraft is Europe's largest generator of renewable energy and is the leading power company countries. For our office in Düsseldorf we are currently looking to hire a System Manager Renewable Energy. Share our passion for renewable energy and be a part of tomorrow's energy world. Your department

  15. PURPA Resource Development in the Pacific Northwest : Case Studies of Ten Electricity Generating Powerplants.

    SciTech Connect (OSTI)

    Washington State Energy Office.

    1990-07-01T23:59:59.000Z

    The case studies in this document describe the Public Utilities, Regulatory Policies Act (PURPA) development process for a variety of generating technologies. Developer interactions with regulatory agencies and power purchasers are described in some detail. Equipment, installation, and maintenance costs are identified; power marketing considerations are taken into account; and potential environmental impacts, with corresponding mitigation approaches and practices are summarized. The project development case studies were prepared by the energy agencies of the four Northwest states, under contract to the Bonneville Power Administration.

  16. Impact of Generator Flexibility on Electric System Costs and Integration of Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |HotImpact of Generator Flexibility on

  17. Eighteen-Month Final Evaluation of UPS Second Generation Diesel Hybrid-Electric Delivery Vans

    SciTech Connect (OSTI)

    Lammert, M.; Walkowicz, K.

    2012-09-01T23:59:59.000Z

    A parallel hybrid-electric diesel delivery van propulsion system was evaluated at a UPS facility in Minneapolis using on-vehicle data logging, fueling, and maintenance records. Route and drive cycle analysis showed different duty cycles for hybrid vs. conventional delivery vans; routes were switched between the study groups to provide a valid comparison. The hybrids demonstrated greater advantage on the more urban routes; the initial conventional vans' routes had less dense delivery zones. The fuel economy of the hybrids on the original conventional group?s routes was 10.4 mpg vs. 9.2 mpg for the conventional group on those routes a year earlier. The hybrid group's fuel economy on the original hybrid route assignments was 9.4 mpg vs. 7.9 mpg for the conventional group on those routes a year later. There was no statistically significant difference in total maintenance cost per mile or for the vehicle total cost of operation per mile. Propulsion-related maintenance cost per mile was 77% higher for the hybrids, but only 52% more on a cost-per-delivery-day basis. Laboratory dynamometer testing demonstrated 13%-36% hybrid fuel economy improvement, depending on duty cycle, and up to a 45% improvement in ton-mi/gal. NOx emissions increased 21%-49% for the hybrids in laboratory testing.

  18. Wave-actuated power take-off device for electricity generation

    SciTech Connect (OSTI)

    Chertok, Allan

    2013-01-31T23:59:59.000Z

    Since 2008, Resolute Marine Energy, Inc. (RME) has been engaged in the development of a rigidly moored shallow-water point absorber wave energy converter, the "3D-WEC". RME anticipated that the 3D-WEC configuration with a fully buoyant point absorber buoy coupled to three power take off (PTO) units by a tripod array of tethers would achieve higher power capture than a more conventional 1-D configuration with a single tether and PTO. The investigation conducted under this program and documented herein addressed the following principal research question regarding RME'Â?Â?s power take off (PTO) concept for its 3D-WEC: Is RME's winch-driven generator PTO concept, previously implemented at sub-scale and tested at the Ohmsett wave tank facility, scalable in a cost-effective manner to significant power levels Â?Â?e.g., 10 to 100kW?

  19. A practical design for an integrated HVDC unit - connected hydro-electric generating station

    SciTech Connect (OSTI)

    Ingram, L. (Manitoba HVDC Research Centre, Winnipeg (CA))

    1988-10-01T23:59:59.000Z

    To date, several authors (see reference list) have proclaimed benefits which can be achieved by integrating HVDC converter stations directly with generating units. The cost of a significant amount of plant and facilities found in conventional schemes is thereby eliminated. So far as is known however, no detailed studies have been done to quantify these benefits. This paper outlines the results of a study made recently by the Manitoba HVDC Research Centre to determine the practicality of such a scheme. To give credence to the results an actual hydro station design was used incorporating a HVDC thyristor valve scheme in a hypothetical situation. Financial and other benefits were determined for this example together with conclusions and recommendations for future specific projects and further areas of study.

  20. Evaluation and Design of Utility Co-Owned Cogeneration Systems for Industrial Parks

    E-Print Network [OSTI]

    Hu, D. S.; Tamaro, R. F.; Schiller, S. R.

    1984-01-01T23:59:59.000Z

    The Electric Power Research Institute, EPRI, is currently evaluating the potential of utility co-owned cogeneration facilities in industrial parks. This paper describes part of the work performed by one of EPRI's contractors, Impell Corporation...

  1. GMP- Biomass Electricity Production Incentive

    Broader source: Energy.gov [DOE]

    Green Mountain Power Corporation (GMP), Vermont's largest electric utility, offers a production incentive to farmers who own systems utilizing anaerobic digestion of agricultural products,...

  2. Electrical power obtained from burning landfill gas into a gas turbine generator: Experience after one year of operation

    SciTech Connect (OSTI)

    Fabbri, R.; Mignani, N.

    1998-07-01T23:59:59.000Z

    A typical example of a ``waste to energy'' concept can be found also in the landfill environment. The biogas derived by fermentation process is usually burnt into gas engines. This choice is usually due to the electric efficiency that is normally higher than gas turbine application and to the size that usually, almost in Italian landfill size, does not allow power higher than 1,000 kW. On the other side gas turbine applications, typically based on generator sets greater than 1,000 kW do not require special biogas pre-treatment; require less maintenance and have an extremely higher reliability. The paper describes an application of a gas turbine generator of 4,800 kW outlining the experiences collected after one year of operation. During this period, the system fulfilled the target of a total operating time greater than 8,000 hours. Description is done of the biogas compression system feeding the turbine and also of the subsystem adopted to reach the above mentioned target reliability.

  3. Risk perception & strategic decision making :general insights, a framework, and specific application to electricity generation using nuclear energy.

    SciTech Connect (OSTI)

    Brewer, Jeffrey D.

    2005-11-01T23:59:59.000Z

    The objective of this report is to promote increased understanding of decision making processes and hopefully to enable improved decision making regarding high-consequence, highly sophisticated technological systems. This report brings together insights regarding risk perception and decision making across domains ranging from nuclear power technology safety, cognitive psychology, economics, science education, public policy, and neural science (to name a few). It forms them into a unique, coherent, concise framework, and list of strategies to aid in decision making. It is suggested that all decision makers, whether ordinary citizens, academics, or political leaders, ought to cultivate their abilities to separate the wheat from the chaff in these types of decision making instances. The wheat includes proper data sources and helpful human decision making heuristics; these should be sought. The chaff includes ''unhelpful biases'' that hinder proper interpretation of available data and lead people unwittingly toward inappropriate decision making ''strategies''; obviously, these should be avoided. It is further proposed that successfully accomplishing the wheat vs. chaff separation is very difficult, yet tenable. This report hopes to expose and facilitate navigation away from decision-making traps which often ensnare the unwary. Furthermore, it is emphasized that one's personal decision making biases can be examined, and tools can be provided allowing better means to generate, evaluate, and select among decision options. Many examples in this report are tailored to the energy domain (esp. nuclear power for electricity generation). The decision making framework and approach presented here are applicable to any high-consequence, highly sophisticated technological system.

  4. Study on electrical characteristics of barrier-free atmospheric air diffuse discharge generated by nanosecond pulses and long wire electrodes

    SciTech Connect (OSTI)

    Li, Lee, E-mail: leeli@mail.hust.edu.cn; Liu, Yun-Long; Teng, Yun; Liu, Lun; Pan, Yuan [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electric and Electronic Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074 (China)

    2014-07-15T23:59:59.000Z

    In room-temperature atmospheric air, the large-scale diffuse plasmas can be generated via high-voltage nanosecond pulses with short rise-time and wire electrodes. Diffuse discharge with the wire electrode length up to 110.0?cm and the discharge spacing of several centimeters has been investigated in this paper. Electrical characteristics of diffuse discharge have been analyzed by their optical photographs and measuring of the voltage and current waveforms. Experimental results show the electrode spacing, and the length of wire electrodes can influence the intensity and mode transition of diffuse discharge. The characteristic of current waveforms is that there are several current oscillation peaks at the time of applied pulsed voltage peak, and at the tail of applied pulse, the conduction current component will compensate the displacement one so that the measured current is unidirectional in diffuse discharge mode. The transition from diffuse discharge to arc discharge is always with the increasing of conduction current density. As for nanosecond pulses with long tail, the long wire electrodes are help for generating non-equilibrium diffuse plasmas.

  5. Generated on 04/07/13 by the Office of Institutional Research and Planning. Doctoral Program Profile: Electrical Engineering

    E-Print Network [OSTI]

    Profile: Electrical Engineering This program is part of the Department of Electrical Engineering://www.eecs.ku.edu/prospective_students/graduate Notes: Faculty data include all faculty in the Department of Electrical Engineering and Computer Science. Department Faculty: Electrical Engineering and Computer Science Fall 2012 Total Faculty 34 Tenured and Tenure

  6. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    E-Print Network [OSTI]

    Wiser, Ryan H

    2008-01-01T23:59:59.000Z

    Laboratory, private communi- cation, March 12, 2004. WECC, "WECC 2006 Power Supply Assessment," Western Electricity

  7. Who Owns Renewable Energy Certificates? An Exploration of PolicyOptions and Practice

    SciTech Connect (OSTI)

    Holt, Edward A.; Wiser, Ryan; Bolinger, Mark

    2006-04-05T23:59:59.000Z

    Renewable energy certificates (RECs) represent the bundle of information that describes the characteristics of renewable electricity generation, and may be (and increasingly are) sold separately from the underlying electricity itself. RECs are a relatively new phenomenon, emerging as a tradable commodity in voluntary markets in the late 1990s, and gaining strength as a means of compliance with various state policy requirements affecting renewable generation in the early 2000s (Holt and Bird 2005). Twenty states and Washington, D.C. now have mandatory renewables portfolio standard (RPS) obligations, and most of these may be satisfied by owning and retiring RECs. Many states also have fuel source and emissions disclosure requirements, for which RECs are useful. Even where state policy does not allow unbundled and fully tradable RECs to meet these requirements, RECs may still be used as an accounting and verification tool (REC tracking systems are in place or under development in many regions of the U.S.). These applications, plus REC trading activity in support of voluntary green claims, give rise to potential ''double counting'' to the extent that the purchaser of the RECs and the purchaser of the underlying electricity both make claims to the renewable energy attributes of the facility in question (Hamrin and Wingate 2003). When renewable electricity is sold and purchased, an important question therefore arises: ''Who owns the RECs created by the generation of renewable energy?'' In voluntary transactions, most agree that the question of REC ownership can and should be negotiated between the buyer and the seller privately, and should be clearly established by contract. Claims about purchasing renewable energy should only be made if REC ownership can be documented. In many other cases, however, renewable energy transactions are either mandated or encouraged through state or federal policy. In these cases, the issue of REC ownership must often be answered by legislative or regulatory authorities. Some renewable energy contracts pre-date the existence of RECs, however, and in these cases the disposition of RECs is often unclear. Similarly, because of the recent appearance of RECs, legislation and regulation mandating the purchase of renewable energy has sometimes been silent on the disposition of the RECs associated with that generation. The resulting uncertainty in REC ownership has hindered the development of robust REC markets and has, in some cases, led to contention between buyers and sellers of renewable generation. The purpose of this report is to provide information and insight to state policy-makers, utility regulators, and others about different approaches to clarifying the ownership of RECs. We focus exclusively on three distinct areas in which REC ownership issues have arisen: (1) Qualifying Facilities (QFs) that sell their generation under the Public Utility Regulatory Policies Act (PURPA) of 1978; (2) Customer-owned generation that benefits from state net metering rules; and (3) Generation facilities that receive financial incentives from state or utility funds. This is a survey report. It reviews how both the federal government and states have addressed these issues to date, and highlights the arguments that have been raised for different REC ownership dispositions. Our aim is to describe the arguments on each side, and the context for the debates that are occurring. We do not, in this report, provide a list of policy recommendations for how policymakers should be addressing these issues.

  8. METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01T23:59:59.000Z

    IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA Energy and Environment

  9. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    E-Print Network [OSTI]

    Wiser, Ryan H

    2008-01-01T23:59:59.000Z

    and S. Bretz, "Wind Generation in the Future Competitiveenergy sources, wind power generation I. I NTRODUCTION Windwind alone. Index Terms—energy resources, power generation

  10. Next Generation Metallic Iron Nodule Technology in Electric Arc Steelmaking - Phase II

    SciTech Connect (OSTI)

    Donald R. Fosnacht; Iwao Iwasaki; Richard F. Kiesel; David J. Englund; David W. Hendrickson; Rodney L. Bleifuss

    2010-12-22T23:59:59.000Z

    The current trend in the steel industry is a gradual decline in conventional steelmaking from taconite pellets in blast furnaces, and an increasing number of alternative processes using metallic scrap iron, pig iron and metallized iron ore products. Currently, iron ores from Minnesota and Michigan are pelletized and shipped to the lower Great Lakes ports as blast furnace feed. The existing transportation system and infrastructure is geared to handling these bulk materials. In order to expand the opportunities for the existing iron ore mines beyond their blast furnace customer base, a new material is needed to satisfy the needs of the emerging steel industry while utilizing the existing infrastructure and materials handling. A recent commercial installation employing Kobe Steel’s ITmk3 process, was installed in Northeastern Minnesota. The basic process uses a moving hearth furnace to directly reduce iron oxides to metallic iron from a mixture of iron ore, coals and additives. The resulting products can be shipped using the existing infrastructure for use in various steelmaking processes. The technology reportedly saves energy by 30% over the current integrated steelmaking process and reduces emissions by more than 40%. A similar large-scale pilot plant campaign is also currently in progress using JFE Steel’s Hi-QIP process in Japan. The objective of this proposal is to build upon and improve the technology demonstrated by Kobe Steel and JFE, by further reducing cost, improving quality and creating added incentive for commercial development. This project expands previous research conducted at the University of Minnesota Duluth’s Natural Resources Research Institute and that reported by Kobe and JFE Steel. Three major issues have been identified and are addressed in this project for producing high-quality nodular reduced iron (NRI) at low cost: (1) reduce the processing temperature, (2) control the furnace gas atmosphere over the NRI, and (3) effectively use sub-bituminous coal as a reductant. From over 4000 laboratory tube and box furnace tests, it was established that the correct combination of additives, fluxes, and reductant while controlling the concentration of CO and CO2 in the furnace atmosphere (a) lowers the operating temperature, (b) decreases the use of reductant coal (c) generates less micro nodules of iron, and (d) promotes desulphurization. The laboratory scale work was subsequently verified on 12.2 m (40 ft) long pilot scale furnace. High quality NRI could be produced on a routine basis using the pilot furnace facility with energy provided from oxy-gas or oxy-coal burner technologies. Specific strategies were developed to allow the use of sub-bituminous coals both as a hearth material and as part of the reaction mixture. Computational Fluid Dynamics (CFD) modeling was used to study the overall carbothermic reduction and smelting process. The movement of the furnace gas on a pilot hearth furnace and larger simulated furnaces and various means of controlling the gas atmosphere were evaluated. Various atmosphere control methods were identified and tested during the course of the investigation. Based on the results, the appropriate modifications to the furnace were made and tested at the pilot scale. A series of reduction and smelting tests were conducted to verify the utility of the processing conditions. During this phase, the overall energy use characteristics, raw materials, alternative fuels, and the overall economics predicted for full scale implementation were analyzed. The results indicate that it should be possible to lower reaction temperatures while simultaneously producing low sulfur, high carbon NRI if the right mix chemistry and atmosphere are employed. Recommendations for moving the technology to the next stage of commercialization are presented.

  11. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    in Figure 63. Average electricity costs are noticeably lowerprofile has lower average electricity costs, because fossiland generation, average electricity costs, and GHG emissions

  12. Making more efficient fuel cells 08.09.2009 -Bacteria that generate significant amounts of electricity could be used in microbial fuel cells to provide

    E-Print Network [OSTI]

    Lovley, Derek

    Making more efficient fuel cells 08.09.2009 - Bacteria that generate significant amounts of electricity could be used in microbial fuel cells to provide power in remote environments or to convert waste power in fuel cells than bacteria with a smooth surface. The team's findings were reported

  13. EIS-0105: Conversion to Coal, Baltimore Gas & Electric Company, Brandon Shores Generating Station Units 1 and 2, Anne Arundel County, Maryland

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Economic Regulatory Administration Office of Fuels Program, Coal and Electricity Division prepared this statement to assess the potential environmental and socioeconomic impacts associated with prohibiting the use of petroleum products as a primary energy source for Units 1 and 2 of the Brandon Shores Generating Station, located in Anne Arundel County, Maryland.

  14. Presented at the 21st European Photovoltaic Solar Energy Conference, Dresden,Germany, 4-8 September 2006 ENVIRONMENTAL IMPACTS OF PV ELECTRICITY GENERATION -

    E-Print Network [OSTI]

    Presented at the 21st European Photovoltaic Solar Energy Conference, Dresden,Germany, 4-8 September 2006 ENVIRONMENTAL IMPACTS OF PV ELECTRICITY GENERATION - A CRITICAL COMPARISON OF ENERGY SUPPLY.dewild@ecn.nl, Phone +31 224 564736, Fax +31 224 568214 Energy research Centre of the Netherlands ECN, Unit Solar

  15. Electrohydrodynamic (EHD) Thermal Control Systems (TCS) operate by applying an electric field to a dielectric fluid that, in turn, generates a

    E-Print Network [OSTI]

    Farritor, Shane

    Electrohydrodynamic (EHD) Thermal Control Systems (TCS) operate by applying an electric field to a dielectric fluid that, in turn, generates a force that can be used to pump fluids and separate liquid Electrohydrodynamic (EHD) Based Thermal Control Subsytems at NASAGSFC Jeffrey R. Didion Mathew Showalter NASA Goddard

  16. Higgs Boson -- on Your Own

    E-Print Network [OSTI]

    T. Csorgo

    2013-03-12T23:59:59.000Z

    One of the highlights of 2012 in physics is related to two papers, published by the ATLAS and the CMS Collaborations, that announced the discovery of at least one new particle in pp collisions at CERN LHC. At least one of the properties of this new particle is found to be similar to that of the Higgs boson, the last and most difficult to find building block from the Standard Model of particle physics. Physics teachers are frequently approached by their media-educated students, who inquire about the properties of the Higgs boson, but physics teachers are rarely trained to teach this elusive aspect of particle physics in elementary, middle or junior high schools. In this paper I describe a card-game, that can be considered as a hands-on and easily accessible tool that allows interested teachers, students and also motivated lay-persons to play with the properties of the newly found Higgs-like particle. This new particle was detected through its decays to directly observable, final state particles. Many of these final state particles are represented in a deck of cards, that represent elementary particles, originally invented to popularize the physics of quark matter in the so-called Quark Matter Card Games. The Higgs decay properties can be utilized, playfully, in a Higgs boson search card game. The rules of this game illustrate also the need for some luck, to complement knowledge and memory, useful skills that this game also helps to develop. The paper is organized as a handout or booklet, that directly describes how to play the Higgs boson on Your Own card game.

  17. POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01T23:59:59.000Z

    generate steam to drive a steam turbine, giving rise to theValves and Pi~ing STEAM TURBINE COMPONENT OUTAGE CAUSESbasically of a steam-driven turbine, an electric generator

  18. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    E-Print Network [OSTI]

    Wiser, Ryan H

    2008-01-01T23:59:59.000Z

    solar in the new home construction market; the risk mitigation value of re- newable electricity; and customer

  19. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    E-Print Network [OSTI]

    Wiser, Ryan H

    2008-01-01T23:59:59.000Z

    electrical and control system losses, blade contamination, weather (icing, lightning, etc. ), wake effects, turbulence, and turbine outages [

  20. NW Investor Owned Utility Perspective: Climate Policy and the WCI

    E-Print Network [OSTI]

    /MWh ID OR WA Electricity CO2 Emissions Carbon Emissions by Generation Carbon Emissions by Consumption #12 I -- 126 MW Boardman Carbon Capture Pilot Project Pipe CO2 emission stream into algae tanks DispatchPrice NetRevenue Market Price Sets Price NetRevenue NetRevenue CO2 Price Impacts Electric Market

  1. Financial comparison of time-of-use pricing with technical DSM programs and generating plants as electric-utility resource options

    SciTech Connect (OSTI)

    Hill, L.J.

    1994-04-01T23:59:59.000Z

    Changing electricity prices to more closely reflect production costs has a significant impact on the consumption of electricity. It is known, for example, that most of the efficiency gains in the electric power sectors of the industrialized world since the first international oil price shock in 1973 are attributable to the rising trend of electricity prices. This was due to the rising average price of electricity. Because of the unique characteristics of producing electricity, its marginal cost is higher than its average cost during many hours of the day. This study shows that, for utilities not reflecting these cost differences in their rates, there is ample room to satisfy a portion of their resource needs by exploiting the load-shaping properties of time-of-use (TOU) rates. Satisfying a portion of resource requirements by implementing a TOU-pricing program, however, is not costless. Metering and administering TOU pricing requires a financial commitment by an electric utility. And the commitment has an opportunity cost. That is, the funds could be used to construct generating plants or run DSM programs (other than a TOU-pricing program) and satisfy the same resource needs that TOU pricing does. The question addressed in this study is whether a utility is better-served financially by (i) implementing TOU pricing or (ii) running technical DSM programs and building power plants. The answer is that TOU pricing compares favorably on a financial basis with other resources under a wide set of conditions that real-world utilities confront.

  2. DSM Electricity Savings Potential in the Buildings Sector in APP Countries

    E-Print Network [OSTI]

    McNeil, MIchael

    2011-01-01T23:59:59.000Z

    owned integrated hydro electricity utilities prevail,s Loading Order for Electricity Resources”, Staff Report,International Developments in Electricity Demand Management

  3. EIA - Electricity Generating Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:Deployment ActivitiesAgeDieselDiesel prices up

  4. taking charge : optimizing urban charging infrastructure for shared electric vehicles

    E-Print Network [OSTI]

    Subramani, Praveen

    2012-01-01T23:59:59.000Z

    This thesis analyses the opportunities and constraints of deploying charging infrastructure for shared electric vehicles in urban environments. Existing electric vehicle charging infrastructure for privately owned vehicles ...

  5. Electrical and Computer Engineering Electrical Engineering

    E-Print Network [OSTI]

    Heller, Barbara

    Electrical and Computer Engineering Electrical Engineering Department Website: www.iit.edu/engineering/ece Electrical engineering is concerned with the generation, transmission, and utilization of electrical energy and with the transmitting and processing of information. Electrical engineers are involved in the analysis, design, and pro

  6. Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems

    SciTech Connect (OSTI)

    Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.

    2013-06-01T23:59:59.000Z

    This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

  7. LSU'S FAMILY-OWNED BUSINESS PROGRAM Achieving Success Across Generations

    E-Print Network [OSTI]

    . COST The fee of $1,000 per family member or key company employee will cover all educational materials/key employees who play a significant role in the future of your business. HOTEL INFORMATION The official hotel ARRIVAL AND DEPARTURE Be sure to keep the conference events in mind when planning your arrival

  8. Pressurized circulating fluidized-bed combustion for power generation

    SciTech Connect (OSTI)

    Weimer, R.F.

    1995-08-01T23:59:59.000Z

    Second-generation Pressurized Circulating Fluidized Bed Combustion (PCFBC) is the culmination of years of effort in the development of a new generation of power plants which can operate on lower-quality fuels with substantially improved efficiencies, meet environmental requirements, and provide a lower cost of electricity. Air Products was selected in the DOE Clean Coal Technology Round V program to build, own, and operate the first commercial power plant using second-generation PCFBC technology, to be located at an Air Products chemicals manufacturing facility in Calvert City, Kentucky. This paper describes the second-generation PCFBC concept and its critical technology components.

  9. Application of Spatial Data Modeling and Geographical Information Systems (GIS) for Identification of Potential Siting Options for Various Electrical Generation Sources

    SciTech Connect (OSTI)

    Mays, Gary T [ORNL; Belles, Randy [ORNL; Blevins, Brandon R [ORNL; Hadley, Stanton W [ORNL; Harrison, Thomas J [ORNL; Jochem, Warren C [ORNL; Neish, Bradley S [ORNL; Omitaomu, Olufemi A [ORNL; Rose, Amy N [ORNL

    2012-05-01T23:59:59.000Z

    Oak Ridge National Laboratory (ORNL) initiated an internal National Electric Generation Siting Study, which is an ongoing multiphase study addressing several key questions related to our national electrical energy supply. This effort has led to the development of a tool, OR-SAGE (Oak Ridge Siting Analysis for power Generation Expansion), to support siting evaluations. The objective in developing OR-SAGE was to use industry-accepted approaches and/or develop appropriate criteria for screening sites and employ an array of Geographic Information Systems (GIS) data sources at ORNL to identify candidate areas for a power generation technology application. The initial phase of the study examined nuclear power generation. These early nuclear phase results were shared with staff from the Electric Power Research Institute (EPRI), which formed the genesis and support for an expansion of the work to several other power generation forms, including advanced coal with carbon capture and storage (CCS), solar, and compressed air energy storage (CAES). Wind generation was not included in this scope of work for EPRI. The OR-SAGE tool is essentially a dynamic visualization database. The results shown in this report represent a single static set of results using a specific set of input parameters. In this case, the GIS input parameters were optimized to support an economic study conducted by EPRI. A single set of individual results should not be construed as an ultimate energy solution, since US energy policy is very complex. However, the strength of the OR-SAGE tool is that numerous alternative scenarios can be quickly generated to provide additional insight into electrical generation or other GIS-based applications. The screening process divides the contiguous United States into 100 x 100 m (1-hectare) squares (cells), applying successive power generation-appropriate site selection and evaluation criteria (SSEC) to each cell. There are just under 700 million cells representing the contiguous United States. If a cell meets the requirements of each criterion, the cell is deemed a candidate area for siting a specific power generation form relative to a reference plant for that power type. Some SSEC parameters preclude siting a power plant because of an environmental, regulatory, or land-use constraint. Other SSEC assist in identifying less favorable areas, such as proximity to hazardous operations. All of the selected SSEC tend to recommend against sites. The focus of the ORNL electrical generation source siting study is on identifying candidate areas from which potential sites might be selected, stopping short of performing any detailed site evaluations or comparisons. This approach is designed to quickly screen for and characterize candidate areas. Critical assumptions supporting this work include the supply of cooling water to thermoelectric power generation; a methodology to provide an adequate siting footprint for typical power plant applications; a methodology to estimate thermoelectric plant capacity while accounting for available cooling water; and a methodology to account for future ({approx}2035) siting limitations as population increases and demands on freshwater sources change. OR-SAGE algorithms were built to account for these critical assumptions. Stream flow is the primary thermoelectric plant cooling source evaluated in this study. All cooling was assumed to be provided by a closed-cycle cooling (CCC) system requiring makeup water to account for evaporation and blowdown. Limited evaluations of shoreline cooling and the use of municipal processed water (gray) cooling were performed. Using a representative set of SSEC as input to the OR-SAGE tool and employing the accompanying critical assumptions, independent results for the various power generation sources studied were calculated.

  10. A compilation of the electricity generated and low-level radioactive wastes shipped for disposal by US nuclear power plants, 1959-1985

    SciTech Connect (OSTI)

    Kibbey, A.H.; DePaoli, S.M.

    1987-12-01T23:59:59.000Z

    The LWRDATA data base contains both volume and radioactivity data on nearly all the low-level radioactive waste (LLW) shipments from commercial boiling-water reactor (BWR) and pressurized-water reactor (PWR) nuclear power plants from 1959 through 1985. The corresponding net electrical output is also included in the data base. This report compares the various physical forms of LLW (i.e., wet; dry, compressible; irradiated, non-fuel core component; and miscellaneous) generated by BWR and PWR plants on the basis of their annual net electricity generation. Further comparisons are made of three specific categories of BWRs based on their size and condensate polishing systems: (1) small deep-bed plants, (2) large deep-bed plants, and (3) filter-demineralizer plants. The various types and volumes of PWR wastes generated per net megawatt (electrical)-year are also compared by nuclear steam supply system manufacturer. Limitations of the available data are discussed. 25 refs., 30 figs., 5 tabs.

  11. The top 100 electric utilities

    SciTech Connect (OSTI)

    Warkentin, D.

    1995-10-01T23:59:59.000Z

    This has been an extremely interesting market during the past year or so due to the Energy Policy Act of 1992 (EPACT) and the US FERC actions since then to make it more competitive. A major move was a 1994 proposal to open up access to the nation`s privately owned transmission grid to make it easier for buyers and sellers of wholesale electricity to do business. Overall, the wholesale market in the US generates about $50 billion in annual revenues. That compares with a retail market about four times that size. The term retail refers to electricity sales to ultimate consumers, while wholesale refers to bulk power transactions among utilities or purchases by utilities from NUGs. The data in this report can be considered a baseline look at the major utility players in the wholesale market. Results of wholesale deregulation have not really been felt yet, so this may be the last look at the regulated market.

  12. Analysis of licensee event reports related to nuclear generating station onsite electrical system malfunctions, 1976-1978

    SciTech Connect (OSTI)

    Bickel, J.H.; Abbott, E.C.

    1981-07-01T23:59:59.000Z

    This report summarizes the evaluation requested by the ACRS of 1177 LERS, submitted over a three year period, which related to onsite electrical system malfunctions. The evaluation was carried out for the purposes of identifying specific failure modes and consequences, evaluating the assumptions used in WASH-1400 on the reliability of electrical equipment, and identifying specific sequences which are significant to plant safety. The analysis performed provides a more specific identification of onsite electrical system failure modes, sequences, and consequences than was established in WASH-1400.

  13. Issues and Options for Restructuring Electricity Supply Industries

    E-Print Network [OSTI]

    Newbery, David

    2004-06-16T23:59:59.000Z

    capacity and storage were frequently inadequate to meet the demand. Californian gas spot prices more than doubled (coming on top of high prices caused by the doubling of crude oil prices), as did the contract prices from many QFs, which were indexed... owned, unbundled and regulated successor companies without the lights going off. The UK actually offered three models of restructuring to compare and contrast. In England and Wales the Central Electricity Generating Board (CEGB) was unbundled...

  14. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01T23:59:59.000Z

    selection of on-site power generation with combined heat andTotal Electricity Generation Figure 13. Small MercantileWeekday Total Electricity Generation (No Storage Adoption

  15. A Hierarchical Control Algorithm for Managing Electrical Energy Storage Systems in Homes Equipped with PV Power Generation

    E-Print Network [OSTI]

    Pedram, Massoud

    use their PV-based generation and controllable storage devices for peak shaving on their power demand controller should possess the ability of forecasting future PV-based power generation and load power consumption profiles for better performance. In this paper we present novel PV power generation and load power

  16. Design of a Real-Time Scanning Electrical Mobility Spectrometer and its Application in Study of Nanoparticle Aerosol Generation

    E-Print Network [OSTI]

    Singh, Gagan

    2012-07-16T23:59:59.000Z

    A real-time, mobile Scanning Electrical Mobility Spectrometer (SEMS) was designed using a Condensation Particle Counter (CPC) and Differential Mobility Analyzer (DMA) to measure the size distribution of nanoparticles. The SEMS was calibrated using...

  17. Do Generation Firms in Restructured Electricity Markets Have Incentives to Support Social-Welfare-Improving Transmission Investments? *

    E-Print Network [OSTI]

    Oren, Shmuel S.

    electricity markets in the US, relies on locational marginal prices for energy to price and manage congestion of the incentive structures proposed in the literature have been broadly adopted. 1 While locational m

  18. SunShot Vision Study: A Comprehensive Analysis of the Potential for U.S. Solar Electricity Generation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-06-01T23:59:59.000Z

    The SunShot Vision Study provides the most comprehensive assessment to date of the potential for solar technologies to meet a significant share of electricity demand in the United States during the next several decades.

  19. Standby Electric Generators for Emergency Farm Use Susan W. Gay, Extension Engineer, Biological Systems Engineering, Virginia Tech

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    -phase system. This publication only discusses single-phase motors. Electric motors for agricultural use require start. Gasoline-, liquid-propane- (LP-) gas-, and diesel-fueled models are available. Engine

  20. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    E-Print Network [OSTI]

    Wiser, Ryan H

    2008-01-01T23:59:59.000Z

    of electric power from potential wind farm locations inergy 1.5 MW wind turbine to calculate the potential powerpotential difference in wholesale market value between better- correlated and poorly correlated wind

  1. Owning Hazard, A Tragedy Barbara Young Welke*

    E-Print Network [OSTI]

    Barrett, Jeffrey A.

    693 Owning Hazard, A Tragedy Barbara Young Welke* In Memory of Frances Young Welke (March 21, 1992 in the ownership of hazard from the individuals who suffered injury, to the enterprises involved in manufacturing

  2. JOURNAL DE PHYSIQUE ColZoque C9, suppZe'ment au nO1l, Tome 41, novembre 1980, page C9-449 A POTENTIAL ATOMIC IODINE LASER PUMPED BY ELECTRICALLY GENERATED 'A OXYGEN

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    -449 A POTENTIAL ATOMIC IODINE LASER PUMPED BY ELECTRICALLY GENERATED 'A OXYGEN G. Fournier, J. Bonnet and D ation. This paper shows that an electron generator of 1~ oxygen [21 . A condition beam controlled discharge could be an for lasing is a concentration ratio ['A] / efficient oxygen generator to lase with C3z

  3. Farmington Electric Utility System- Net Metering

    Broader source: Energy.gov [DOE]

    Net metering rules developed by the New Mexico Public Regulation Commission (PRC) apply to the state's investor-owned utilities and electric cooperatives. Municipal utilities, which are not...

  4. Valley Electric Association- Solar Water Heating Program

    Broader source: Energy.gov [DOE]

    Valley Electric Association (VEA), a nonprofit member owned cooperative, developed the domestic solar water heating program to encourage energy efficiency at the request of the membership. VEA...

  5. Nanosecond pulsed electric fields (nsPEFs) low cost generator design using power MOSFET and Cockcroft-Walton multiplier circuit as high voltage DC source

    SciTech Connect (OSTI)

    Sulaeman, M. Y.; Widita, R. [Department of Physics, Nuclear Physics and Biophysics Research Division, Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Bandung (Indonesia)

    2014-09-30T23:59:59.000Z

    Purpose: Non-ionizing radiation therapy for cancer using pulsed electric field with high intensity field has become an interesting field new research topic. A new method using nanosecond pulsed electric fields (nsPEFs) offers a novel means to treat cancer. Not like the conventional electroporation, nsPEFs able to create nanopores in all membranes of the cell, including membrane in cell organelles, like mitochondria and nucleus. NsPEFs will promote cell death in several cell types, including cancer cell by apoptosis mechanism. NsPEFs will use pulse with intensity of electric field higher than conventional electroporation, between 20–100 kV/cm and with shorter duration of pulse than conventional electroporation. NsPEFs requires a generator to produce high voltage pulse and to achieve high intensity electric field with proper pulse width. However, manufacturing cost for creating generator that generates a high voltage with short duration for nsPEFs purposes is highly expensive. Hence, the aim of this research is to obtain the low cost generator design that is able to produce a high voltage pulse with nanosecond width and will be used for nsPEFs purposes. Method: Cockcroft-Walton multiplier circuit will boost the input of 220 volt AC into high voltage DC around 1500 volt and it will be combined by a series of power MOSFET as a fast switch to obtain a high voltage with nanosecond pulse width. The motivation using Cockcroft-Walton multiplier is to acquire a low-cost high voltage DC generator; it will use capacitors and diodes arranged like a step. Power MOSFET connected in series is used as voltage divider to share the high voltage in order not to damage them. Results: This design is expected to acquire a low-cost generator that can achieve the high voltage pulse in amount of ?1.5 kV with falltime 3 ns and risetime 15 ns into a 50? load that will be used for nsPEFs purposes. Further detailed on the circuit design will be explained at presentation.

  6. 3/5/2014 TinyMicro Wind Turbines Generate Electricity| New Energyand Fuel http://newenergyandfuel.com/http:/newenergyandfuel/com/2014/01/16/tiny-micro-wind-turbines-generate-electricity/ 1/12

    E-Print Network [OSTI]

    Chiao, Jung-Chih

    Off Topic Plans Politics Power Units Fuel Cells Hybrid Electric Piezoelectrics Solar Artificial Photosynthesis Solar Panels Space Based Solar Thermal Solar Wind Power Storage Batteries Super Capacitors Thermal.W. Styles Energy Outlook Green Biz Green Car Congress Maria Energia Marketing Green MIT's Technology Review

  7. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    E-Print Network [OSTI]

    Wiser, Ryan H

    2008-01-01T23:59:59.000Z

    approach to locating wind farms in the UK," RenewableV. G. Rau, "Optimum siting of wind turbine generators," IEEEoptimal planning for wind energy conver- sion systems over

  8. Managing electricity reliability risk through the futures markets

    SciTech Connect (OSTI)

    Siddiqui, Afzal S.

    2000-10-01T23:59:59.000Z

    In competitive electricity markets, the vertically integrated utilities that were responsible for ensuring system reliability in their own service territories, or groups of territories, often cease to exist. Typically, the burden falls to an independent system operator (ISO) to insure that enough ancillary services (AS) are available for safe, stable, and reliable operation of the grid, typically defined, in part, as compliance with officially approved engineering specifications for minimum levels of AS. In order to characterize the behavior of market participants (generators, retailers, and an ISO) in a competitive electricity market with reliability requirements, we model a spot market for electricity and futures markets for both electricity and AS. By assuming that each participant seeks to maximize its expected utility of wealth and that all markets clear, we solve for the optional quantities of electricity and AS traded in each market by all participants, as well as the corresponding market-clearing prices. We show that future prices for both electricity and AS depend on expectations of the spot price, statistical aspects of system demand, and production cost parameters. More important, our model captures the fact that electricity and AS are substitute products for the generators, implying that anticipated changes in the spot market will affect the equilibrium futures positions of both electricity and AS. We apply our model to the California electricity and AS markets to test its viability.

  9. Abstract--This paper presents the consequences and operating limitations of installing distributed generation (DG) to electric

    E-Print Network [OSTI]

    are required for the selection of interruption devices, protective relays, and their coordination. Systems must Terms--Distributed / dispersed generation, power distri- bution, power system protection, fault in siting conventional generation ­ but, for whatever reason, protection engineers as well as transmission

  10. Current collapse imaging of Schottky gate AlGaN/GaN high electron mobility transistors by electric field-induced optical second-harmonic generation measurement

    SciTech Connect (OSTI)

    Katsuno, Takashi, E-mail: e1417@mosk.tytlabs.co.jp; Ishikawa, Tsuyoshi; Ueda, Hiroyuki; Uesugi, Tsutomu [Toyota Central R and D Laboratories Inc., Nagakute, Aichi 480-1192 (Japan); Manaka, Takaaki; Iwamoto, Mitsumasa [Department of Physical Electronics, Tokyo Institute of Technology, Meguro, Tokyo 152-8552 (Japan)

    2014-06-23T23:59:59.000Z

    Two-dimensional current collapse imaging of a Schottky gate AlGaN/GaN high electron mobility transistor device was achieved by optical electric field-induced second-harmonic generation (EFISHG) measurements. EFISHG measurements can detect the electric field produced by carriers trapped in the on-state of the device, which leads to current collapse. Immediately after (e.g., 1, 100, or 800??s) the completion of drain-stress voltage (200?V) in the off-state, the second-harmonic (SH) signals appeared within 2??m from the gate edge on the drain electrode. The SH signal intensity became weak with time, which suggests that the trapped carriers are emitted from the trap sites. The SH signal location supports the well-known virtual gate model for current collapse.

  11. Module 8: Fuel Cell Hybrid Electric Vehicles

    Broader source: Energy.gov [DOE]

    This course covers hybrid electric vehicles, electric motors, auxiliary power units, generators, energy storage systems, regenerative braking, control systems

  12. Proposal for the Award of a Contract for the Supply and Installation of a gas Turbine for Combined Generation of Electricity and Heat in the Heating Plant on the Meyrin Site

    E-Print Network [OSTI]

    1994-01-01T23:59:59.000Z

    Proposal for the Award of a Contract for the Supply and Installation of a gas Turbine for Combined Generation of Electricity and Heat in the Heating Plant on the Meyrin Site

  13. POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01T23:59:59.000Z

    and Related Standards for Fossil-Fuel and Geo- thermal Powerposed Nuclear, Geothermal, and Fossil-Fuel Sites and Facili-NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN

  14. Decision-making in Electricity Generation Based on Global Warming Potential and Life-cycle Assessment for Climate Change

    E-Print Network [OSTI]

    Horvath, Arpad

    2005-01-01T23:59:59.000Z

    by hydroelectric power plants in California is 11.17% [CECCalifornia in 2003. Because the location of coal and natural gas power plantsCalifornia is diversified: 22.35% of the energy is imported, and 9.84% of the electricity is produced in coal fired power plants

  15. A Feasibility Study of Sustainable Distributed Generation Technologies to Improve the electrical System on the Duck Valley Reservation

    SciTech Connect (OSTI)

    Herman Atkins, Shoshone-Paiute; Mark Hannifan, New West Technologies

    2005-06-30T23:59:59.000Z

    A range of sustainable energy options were assessed for feasibility in addressing chronic electric grid reliability problems at Duck Valley IR. Wind power and building energy efficiency were determined to have the most merit, with the Duck Valley Tribes now well positioned to pursue large scale wind power development for on- and off-reservation sales.

  16. Stochastic Acceleration in Turbulent Electric Fields Generated by 3D Reconnection Marco Onofri, Heinz Isliker, and Loukas Vlahos

    E-Print Network [OSTI]

    Isliker, Heinz

    a millisecond) the particles develop a power-law tail. The accel- eration is extremely efficient-dimensional electric and magnetic fields is studied through test particle simulations. The fields are obtained of particle acceleration. DOI: 10.1103/PhysRevLett.96.151102 PACS numbers: 96.60.qe, 52.35.Vd, 52.65.Cc, 96

  17. Effects of anolyte recirculation rates and catholytes on electricity generation in a litre-scale upflow microbial fuel cell

    E-Print Network [OSTI]

    -term test demonstrated improved electricity production at higher recirculation rates. The water produced via required for wastewater treatment processes; therefore, the bioenergy-producing process has advantages over then migrate to the cathode and react with oxygen (an electron acceptor) to produce water. The electron flow

  18. Comparative Life-cycle Air Emissions of Coal, Domestic Natural Gas, LNG, and SNG for Electricity Generation

    E-Print Network [OSTI]

    Jaramillo, Paulina

    1 Comparative Life-cycle Air Emissions of Coal, Domestic Natural Gas, LNG, and SNG for Electricity from the LNG life-cycle. Notice that local distribution of natural gas falls outside our analysis boundary. Figure 1S: Domestic Natural Gas Life-cycle. Figure 2S: LNG Life-cycle. Processing Transmission

  19. Abstract--The deployment of small (< 1-2 MW) clusters of generators, heat and electrical storage, efficiency investments,

    E-Print Network [OSTI]

    Guillas, Serge

    in electricity demand in the developed countries centers on the residential and commercial sectors in which CHP, efficiency investments, and combined heat and power (CHP) applications (particularly involving heat activated, and environmental benefits (including possible emissions credits) of combined heat and power (CHP), plus 2

  20. Power Sales to Electric Utilities

    SciTech Connect (OSTI)

    None

    1989-02-01T23:59:59.000Z

    The Public Utilities Regulatory Policies Act (PURPA) of 1979 requires that electrical utilities interconnect with qualifying facilities and purchase electricity at a rate based upon their full avoided costs (i.e., costs of providing both capacity and energy). Qualifying facilities (QF) include solar or geothermal electric units, hydropower, municipal solid waste or biomass-fired power plants, and cogeneration projects that satisfy maximum size, fuel use, ownership, location, and/or efficiency criteria. In Washington State, neither standard power purchase prices based upon a proxy ''avoided plant'', standard contracts, or a standard offer process have been used. Instead, a variety of power purchase contracts have been negotiated by developers of qualifying facilities with investor-owned utilities, public utility districts, and municipally-owned and operated utilities. With a hydro-based system, benefits associated with resource acquisition are determined in large part by how compatible the resource is with a utility's existing generation mix. Power purchase rates are negotiated and vary according to firm energy production, guarantees, ability to schedule maintenance or downtime, rights of refusal, power plant purchase options, project start date and length of contract; front-loading or levelization provisions; and the ability of the project to provide ''demonstrated'' capacity. Legislation was also enacted which allows PURPA to work effectively. Initial laws established ownership rights and provided irrigation districts, PUDs, and municipalities with expanded enabling powers. Financial processes were streamlined and, in some cases, simplified. Finally, laws were passed which are designed to ensure that development proceeds in an environmentally acceptable manner. In retrospect, PURPA has worked well within Washington. In the state of Washington, 20 small-scale hydroelectric projects with a combined generating capacity of 77 MW, 3 solid waste-to-energy facilities with 55 MW of electrical output, 4 cogeneration projects with 34.5 MW of generating capability, and 4 wastewater treatment facility digester gas-to-energy projects with 5 MW of electrical production have come on-line (or are in the final stages of construction) since the passage of PURPA. These numbers represent only a small portion of Washington's untapped and underutilized cogeneration and renewable resource generating potentials. [DJE-2005

  1. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01T23:59:59.000Z

    electrode surfaces, and electric energy is stored as surfacetemperature end and electric energy is generated, thermalbeing the generated electric energy and the consumed thermal

  2. Development of a Novel Efficient Solid-Oxide Hybrid for Co-generation of Hydrogen and Electricity Using Nearby Resources for Local Application

    SciTech Connect (OSTI)

    Tao, Greg, G.; Virkar, Anil, V.; Bandopadhyay, Sukumar; Thangamani, Nithyanantham; Anderson, Harlan, U.; Brow, Richard, K.

    2009-06-30T23:59:59.000Z

    Developing safe, reliable, cost-effective, and efficient hydrogen-electricity co-generation systems is an important step in the quest for national energy security and minimized reliance on foreign oil. This project aimed to, through materials research, develop a cost-effective advanced technology cogenerating hydrogen and electricity directly from distributed natural gas and/or coal-derived fuels. This advanced technology was built upon a novel hybrid module composed of solid-oxide fuel-assisted electrolysis cells (SOFECs) and solid-oxide fuel cells (SOFCs), both of which were in planar, anode-supported designs. A SOFEC is an electrochemical device, in which an oxidizable fuel and steam are fed to the anode and cathode, respectively. Steam on the cathode is split into oxygen ions that are transported through an oxygen ion-conducting electrolyte (i.e. YSZ) to oxidize the anode fuel. The dissociated hydrogen and residual steam are exhausted from the SOFEC cathode and then separated by condensation of the steam to produce pure hydrogen. The rationale was that in such an approach fuel provides a chemical potential replacing the external power conventionally used to drive electrolysis cells (i.e. solid oxide electrolysis cells). A SOFC is similar to the SOFEC by replacing cathode steam with air for power generation. To fulfill the cogeneration objective, a hybrid module comprising reversible SOFEC stacks and SOFC stacks was designed that planar SOFECs and SOFCs were manifolded in such a way that the anodes of both the SOFCs and the SOFECs were fed the same fuel, (i.e. natural gas or coal-derived fuel). Hydrogen was produced by SOFECs and electricity was generated by SOFCs within the same hybrid system. A stand-alone 5 kW system comprising three SOFEC-SOFC hybrid modules and three dedicated SOFC stacks, balance-of-plant components (including a tailgas-fired steam generator and tailgas-fired process heaters), and electronic controls was designed, though an overall integrated system assembly was not completed because of limited resources. An inexpensive metallic interconnects fabrication process was developed in-house. BOP components were fabricated and evaluated under the forecasted operating conditions. Proof-of-concept demonstration of cogenerating hydrogen and electricity was performed, and demonstrated SOFEC operational stability over 360 hours with no significant degradation. Cost analysis was performed for providing an economic assessment of the cost of hydrogen production using the targeted hybrid technology, and for guiding future research and development.

  3. Self-sustained picosecond pulse generation in a GaAlAs laser at an electrically tunable repetition rate by optoelectronic feedback

    SciTech Connect (OSTI)

    Lau, K.Y.; Yariv, A.

    1984-07-15T23:59:59.000Z

    We demonstrate that applying optoelectronic feedback to a high-speed, self-pulsing semiconductor laser is an effective and practical means of generating picosecond optical pulses (approx.10--20 ps) at a very high repetition rate, between 1 to 5 GHz, which can be electrically tuned. The optical pulses are very stable both on a short term basis with a frequency stability of one part in 10/sup 5/, and on the long term basis as a result of the absence of critical optical alignment. This laser system is potentially very useful in high-speed electro-optic signal processing, optical multiplexing, or laser ranging.

  4. Solar-assisted hydrogen generation by photoelectrocatalysis: electric birefringence and ellipsometric spectroscopy of the semiconductor/electrolyte interface. Annual report 3 Sep 82-31 Aug 83

    SciTech Connect (OSTI)

    Ang, P.G.P.; St. John, M.R.; Sammells, A.F.

    1983-09-01T23:59:59.000Z

    The project goals are to apply and develop electro-optical techniques (electric birefringence and ellipsometric spectroscopy) for in-situ investigation of modified and unmodified photoelectrode/liquid junctions. This information will be used in conjunction with other spectroscopic and photoelectro-chemical techniques to delineate those features, necessary at this interface, for the achievement of high photo-electrolysis efficiencies. The thorough understanding obtained for both the photoelectrode and its liquid junction with aqueous electrolytes will be directed toward the development of high-efficiency photo-electrochemical cells for hydrogen generation.

  5. Assessment of compliance for the Chalk Point steam electric generating station with mixing-zone criteria in COMAR 10. 50. 01. 13E(1). Final report

    SciTech Connect (OSTI)

    Not Available

    1985-01-01T23:59:59.000Z

    PEPCO submitted documents that contained field data and model simulations to support their contention that the Chalk Point steam electric-generating station (SES) at full-power operations was in compliance with the thermal mixing-zone specifications. Those documents were reviewed by four experts on estuarine circulation and waste-heat dispersion. Available data show that the thermal plume at full power contacts 62-96 hectares of bottom. The allowed value, 5% of the ebb tidal excursion, is 33 to 49 hectares, so the plume exceeds the value allowed by the specification.

  6. Your own energy "island"? ORNL microgrid could standardize small...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    system that generates 25kW of power and uses 50kW*hours of energy built from second-use electric vehicle batteries, a 50kW- and a 13.5 kW-solar system and two smart inverters...

  7. Air Pollution Control Regulations: No. 43- General Permits for Smaller-Scale Electric Generation Facilities (Rhode Island)

    Broader source: Energy.gov [DOE]

    This rule applies to any generator that: (a) has a heat input capacity of 350,000 Btus or more per hour or, in the case of internal combustion engines, is 50 HP or larger; and, (b) is not subject...

  8. Project Title: Small Scale Electrical Power Generation from Heat Co-Produced in Geothermal Fluids: Mining Operation

    SciTech Connect (OSTI)

    Clark, Thomas M [Principal Investigator; Erlach, Celeste [Communications Mgr.

    2014-12-30T23:59:59.000Z

    Demonstrate the technical and economic feasibility of small scale power generation from low temperature co-produced fluids. Phase I is to Develop, Design and Test an economically feasible low temperature ORC solution to generate power from lower temperature co-produced geothermal fluids. Phase II &III are to fabricate, test and site a fully operational demonstrator unit on a gold mine working site and operate, remotely monitor and collect data per the DOE recommended data package for one year.

  9. England and Wales -A Competitive Electricity Richard Green

    E-Print Network [OSTI]

    California at Berkeley. University of

    PWP-060 England and Wales - A Competitive Electricity Market? Richard Green September 1998 Electricity Market? Richard Green * Department of Applied Economics, University of Cambridge Department, 1998 The British sometimes exaggerate their own importance. For example, we claim that the electricity

  10. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    SciTech Connect (OSTI)

    Wiser, Ryan H; Wiser, Ryan H; Fripp, Matthias

    2008-05-01T23:59:59.000Z

    Wind power production is variable, but also has diurnal and seasonal patterns. These patterns differ between sites, potentially making electric power from some wind sites more valuable for meeting customer loads or selling in wholesale power markets. This paper investigates whether the timing of wind significantly affects the value of electricity from sites in California and the Northwestern United States. We use both measured and modeled wind data and estimate the time-varying value of wind power with both financial and load-based metrics. We find that the potential difference in wholesale market value between better-correlated and poorly correlated wind sites is modest, on the order of 5-10 percent. A load-based metric, power production during the top 10 percent of peak load hours, varies more strongly between sites, suggesting that the capacity value of different wind projects could vary by as much as 50 percent based on the timing of wind alone.

  11. Dissolved gas supersaturation associated with the thermal effluent of an electric generating station and some effects on fishes

    E-Print Network [OSTI]

    Ciesluk, Alexander Frank

    1974-01-01T23:59:59.000Z

    saturations of total dissolved gas were determined with a Weiss Gas Saturometer and ranged from 100. 5 to 115. 04 in the discharge water. Saturation levels were directly related to the power plant AT and the gas content of the intake water. Percent... hours. Red shiners were more susceptible to gas supersaturation than bluegiils or bass. ACKNOWLEDGMENTS I would like to thank the Texas Utilities System including Dallas Power E Light Company, Texas Electric Service Company, and Texas Power C Light...

  12. Online Monitoring Technical Basis and Analysis Framework for Emergency Diesel Generators - Interim Report for FY 2013

    SciTech Connect (OSTI)

    Binh T. Pham; Nancy J. Lybeck; Vivek Agarwal

    2012-12-01T23:59:59.000Z

    The Light Water Reactor Sustainability program at Idaho National Laboratory is actively conducting research to develop and demonstrate online monitoring capabilities for active components in existing nuclear power plants. Idaho National Laboratory and the Electric Power Research Institute are working jointly to implement a pilot project to apply these capabilities to emergency diesel generators and generator step-up transformers. The Electric Power Research Institute Fleet-Wide Prognostic and Health Management Software Suite will be used to implement monitoring in conjunction with utility partners: Braidwood Generating Station (owned by Exelon Corporation) for emergency diesel generators, and Shearon Harris Nuclear Generating Station (owned by Duke Energy Progress) for generator step-up transformers. This report presents monitoring techniques, fault signatures, and diagnostic and prognostic models for emergency diesel generators. Emergency diesel generators provide backup power to the nuclear power plant, allowing operation of essential equipment such as pumps in the emergency core coolant system during catastrophic events, including loss of offsite power. Technical experts from Braidwood are assisting Idaho National Laboratory and Electric Power Research Institute in identifying critical faults and defining fault signatures associated with each fault. The resulting diagnostic models will be implemented in the Fleet-Wide Prognostic and Health Management Software Suite and tested using data from Braidwood. Parallel research on generator step-up transformers was summarized in an interim report during the fourth quarter of fiscal year 2012.

  13. ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE

    E-Print Network [OSTI]

    Ferrell, G.C.

    2010-01-01T23:59:59.000Z

    Costs References . . Coal-Electric Generation Technologyon coal preparation, coal-electric generation and emissionson coal preparation, coal-electric generation and emissions

  14. Eliminating Electricity Deficit through Energy Efficiency in India: An Evaluation of Aggregate Economic and Carbon Benefits

    E-Print Network [OSTI]

    Sathaye, Jayant

    2010-01-01T23:59:59.000Z

    for Electricity Generation Efficiency of Fuel Requirementof Electricity Generation ..7 Table 3: Fuel2:Variable (Fuel and O&M) Costs of Electricity Generation

  15. REGULATION AND SYSTEM INTERDEPENDENCE: EFFECTS ON THE SITING OF CALIFORNIA ELECTRICAL ENERGY FACILITIES

    E-Print Network [OSTI]

    Kooser, J.C.

    2013-01-01T23:59:59.000Z

    Existing Electrical Generating Plants, 1976 Map 1-2:Existing Electrical Generating Plants . Financial Status ofof small electricity- generating plants. Finally, the three

  16. Public Health Benefits of End-Use Electrical Energy Efficiency in California: An Exploratory Study

    E-Print Network [OSTI]

    McKone, Thomas E.

    2011-01-01T23:59:59.000Z

    j designates the plant generating electricity from apowered electricity generating plants in a) urban and b)from electricity generating plants in California. Exposure

  17. 1979 year-end electric power survey. [Monograph

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    The status of electric power supply, generating facility expansion, and electric power equipment manufacture is presented for 1979 on the basis of an industry survey covering investor-owned systems, public systems, and rural electric cooperatives as well as industrial installations which are interconnected with and supply power to utility systems. A 3.2 increase in generating capacity brought the total to 576.2 million kilowatts, 86 percent of which is thermal and the remainder hydro. Survey data for Hawaii is shown separately. December and summer peak capabilities, peak loads, and capability margins are presented for each of the nine regions. Their relationships to each other, to annual load factor, and to annual kilowatt hour requirements are also shown. Details of the orders placed with manufacturers for heavy power equipment are presented for the years 1975 to 1979. The manufacturing schedules of conventional and nuclear equipment are presented for the years 1979 to 1985. 28 tables. (DCK)

  18. An economic analysis of the production of hydrogen from wind-generated electricity for use in transport

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    in transport applications Paper published in : Energy Policy, vol. 39, n° 5, May 2011, pp. 2957-2965 Authors P in the framework of the HyFrance 3 project concerns hydrogen for transport applications. Different technical-generation biofuels production which present contrasted hydrogen use characteristics. This analysis reveals

  19. Methodology and a preliminary data base for examining the health risks of electricity generation from uranium and coal fuels

    SciTech Connect (OSTI)

    El-Bassioni, A.A.

    1980-08-01T23:59:59.000Z

    An analytical model was developed to assess and examine the health effects associated with the production of electricity from uranium and coal fuels. The model is based on a systematic methodology that is both simple and easy to check, and provides details about the various components of health risk. A preliminary set of data that is needed to calculate the health risks was gathered, normalized to the model facilities, and presented in a concise manner. Additional data will become available as a result of other evaluations of both fuel cycles, and they should be included in the data base. An iterative approach involving only a few steps is recommended for validating the model. After each validation step, the model is improved in the areas where new information or increased interest justifies such upgrading. Sensitivity analysis is proposed as the best method of using the model to its full potential. Detailed quantification of the risks associated with the two fuel cycles is not presented in this report. The evaluation of risks from producing electricity by these two methods can be completed only after several steps that address difficult social and technical questions. Preliminary quantitative assessment showed that several factors not considered in detail in previous studies are potentially important. 255 refs., 21 figs., 179 tabs.

  20. Hydrogen and electricity: Parallels, interactions,and convergence

    E-Print Network [OSTI]

    Yang, Christopher

    2008-01-01T23:59:59.000Z

    the network of electricity generation plants that determinesredundancy in electricity generation plants. The diversionelectricity generation can come from baseload, intermediate or peaking power plants