Powered by Deep Web Technologies
Note: This page contains sample records for the topic "owner terra-gen power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Terra-Gen Powers Coso Geothermal Facility Obtains Critical Federal...  

Open Energy Info (EERE)

Obtains Critical Federal Permit to Increase Its Renewable Energy Generation Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Terra-Gen Powers Coso...

2

Terra-Gen Power | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump Jump to: navigation, search Name: Terra Caliente(Redirected

3

Owners of nuclear power plants  

SciTech Connect (OSTI)

Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of July 1996. The report is divided into sections representing different aspects of nuclear plant ownership.

Hudson, C.R.; White, V.S.

1996-11-01T23:59:59.000Z

4

Terra-Gen Power LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark Jump to: navigation,TelluricTODO:Tennessee 2REDD Jump

5

Terra-Gen Power LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump Jump to: navigation, search Name: Terra Caliente

6

Governmental-Owner Power Imbalance and Privatization  

E-Print Network [OSTI]

fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Laszlo Tihanyi Committee Members, Michael Hitt Lorraine Eden Allan (Haipeng) Chen Head of Department, Murray Barrick August 2010... Major Subject: Management iii ABSTRACT Governmental-Owner Power Imbalance and Privatization. (August 2010) Kehan Xu, B.S., China Criminal Police College; M.B.A., University of Miami Chair of Advisory Committee: Dr. Laszlo Tihanyi...

Xu, Kehan

2011-10-21T23:59:59.000Z

7

Guide to Combined Heat and Power Systems for Boiler Owners and...  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat and Power Systems for Boiler Owners and Operators Guide to Combined Heat and Power Systems for Boiler Owners and Operators This guide presents useful information for...

8

Guide to Combined Heat and Power Systems for Boiler Owners and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Guide to Combined Heat and Power Systems for Boiler Owners and Operators, July 2004 Guide to Combined Heat and Power Systems for Boiler Owners and Operators, July 2004 Many owners...

9

Terra-Gen Power and TAS Celebrate Innovative Binary Geothermal Technology |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark Jump to: navigation,TelluricTODO:Tennessee 2REDD JumpOpen

10

Terra-Gen Power closes US$286m lease financing for Dixie Valley | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark Jump to: navigation,TelluricTODO:Tennessee 2REDD

11

Terra-Gen Powers Coso Geothermal Facility Obtains Critical Federal Permit  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark Jump to: navigation,TelluricTODO:Tennessee 2REDDto Increase

12

Tour of Entergy's Nuclear Power Plant in River Bend Owner: Entergy Gulf States Inc.  

E-Print Network [OSTI]

Tour of Entergy's Nuclear Power Plant in River Bend Owner: Entergy Gulf States Inc. Reactor Type a nuclear power plant. Plant was Entergy, a Boiling Water Reactor (BWR) type. Built in the 80's, it has of the veteran plant workers. The presentation gave the nuclear plant engineering basics and built

Ervin, Elizabeth K.

13

Guide to Combined Heat and Power Systems for Boiler Owners and Operators  

SciTech Connect (OSTI)

Combined heat and power (CHP) or cogeneration is the sequential production of two forms of useful energy from a single fuel source. In most CHP applications, chemical energy in fuel is converted to both mechanical and thermal energy. The mechanical energy is generally used to generate electricity, while the thermal energy or heat is used to produce steam, hot water, or hot air. Depending on the application, CHP is referred to by various names including Building Cooling, Heating, and Power (BCHP); Cooling, Heating, and Power for Buildings (CHPB); Combined Cooling, Heating, and Power (CCHP); Integrated Energy Systems (IES), or Distributed Energy Resources (DER). The principal technical advantage of a CHP system is its ability to extract more useful energy from fuel compared to traditional energy systems such as conventional power plants that only generate electricity and industrial boiler systems that only produce steam or hot water for process applications. By using fuel energy for both power and heat production, CHP systems can be very energy efficient and have the potential to produce electricity below the price charged by the local power provider. Another important incentive for applying cogeneration technology is to reduce or eliminate dependency on the electrical grid. For some industrial processes, the consequences of losing power for even a short period of time are unacceptable. The primary objective of the guide is to present information needed to evaluate the viability of cogeneration for new or existing industrial, commercial, and institutional (ICI) boiler installations and to make informed CHP equipment selection decisions. Information presented is meant to help boiler owners and operators understand the potential benefits derived from implementing a CHP project and recognize opportunities for successful application of cogeneration technology. Topics covered in the guide follow: (1) an overview of cogeneration technology with discussions about benefits of applying cogeneration technology and barriers to implementing cogeneration technology; (2) applicable federal regulations and permitting issues; (3) descriptions of prime movers commonly used in CHP applications, including discussions about design characteristics, heat-recovery options and equipment, fuels and emissions, efficiency, maintenance, availability, and capital cost; (4) electrical generators and electrical interconnection equipment; (5) cooling and dehumidification equipment; (6) thermodynamic cycle options and configurations; (7) steps for evaluating the technical and economic feasibility of applying cogeneration technology; and (8) information sources.

Oland, CB

2004-08-19T23:59:59.000Z

14

Business Owners: Prepare for Utility Disruptions | Department...  

Broader source: Energy.gov (indexed) [DOE]

Utility Disruptions Business Owners: Prepare for Utility Disruptions Business Owners: Prepare for Utility Disruptions Have a plan in place in case a natural disaster or other...

15

OWNER'S MANUAL IPS LED MONITOR  

E-Print Network [OSTI]

www.lg.com OWNER'S MANUAL IPS LED MONITOR (LED LCD MONITOR) 27EA83 27EA83R Please read the safety different licenses. Visit www.lg.com for more information on the license. VESA, VESA logo, Display Port of the Video Electronics Standards Association. The terms HDMI and HDMI High-Definition Multimedia Interface

Ott, Albrecht

16

Wind Power: How Much, How Soon, and At What Cost?  

E-Print Network [OSTI]

wind power owners standardized and known payment streams (Mendonca 2007). In other markets in Europe,

Wiser, Ryan H

2010-01-01T23:59:59.000Z

17

Corporate Law's Current-Owner Bias  

E-Print Network [OSTI]

Owner Bias in Corporate Governance Jesse Fried * Boalt Hallmy conclusion that corporate governance arrangements choseninterventions in corporate governance through the securities

Fried, Jesse M.

2005-01-01T23:59:59.000Z

18

Corporate Law's Current-Owner Bias  

E-Print Network [OSTI]

Owner Bias in Corporate Governance Jesse Fried * Boalt Hallmy conclusion that corporate governance arrangements choseninterventions in corporate governance through the securities

Fried, Jesse M.

2006-01-01T23:59:59.000Z

19

SAFETY MANUAL Fishermen, Captains, and Owners  

E-Print Network [OSTI]

I~o SAFETY MANUAL for Fishermen, Captains, and Owners of New England Fishing Vessels #12;UNITED--now and in the future. #12;SAFETY MANUAL for Fishermen, Captains, and Owners of New England Fishing Vessels Adapted for the fishing industry by John J. Murray Regional Safety Officer Bureau of Commercial Fisheries U.S. Fish

20

Business Owners: Respond to an Energy Emergency | Department...  

Broader source: Energy.gov (indexed) [DOE]

Respond to an Energy Emergency Business Owners: Respond to an Energy Emergency Business Owners: Respond to an Energy Emergency Ensure your building is safe to occupy-Initially...

Note: This page contains sample records for the topic "owner terra-gen power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Dixie Valley Bottoming Binary Plant: Terra-Gen was funded by...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Northwest National Laboratory Developing a new type of biphasic working fluid for subcritical geothermal systems that utilizes microporous metal-organic solids as the primary...

22

Dixie Valley Bottoming Binary Plant: Terra-Gen was funded by the American Recove  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1 Guidance for Agency-SpecificMarch 2015 <8Dixie

23

Tips For Residential Heating Oil Tank Owners  

E-Print Network [OSTI]

· · · · · · · · · · · · · · · · · · · · · · Tips For Residential Heating Oil Tank Owners Source: DEP Fact Sheet Residential heating oil tanks are used to store fuel for furnaces or boilers to heat homes. The tanks can either be aboveground tanks, normally located in basements or utility rooms

Maroncelli, Mark

24

The B & W Owners` Group Generic License Renewal Program  

SciTech Connect (OSTI)

Since the late 1970s, the Babcock & Wilcox (B & W) Owners Group (BWOG) has sponsored significant activities that address technical, economic, and licensing issues to ensure that the B & W nuclear steam supply system (NSSS) power plants operate until the end of their current plant licensed life and to preserve the license renewal option. It should be no surprise that the BWOG decided in late 1992 to aggressively pursue a license renewal effort. This effort, the Generic License Renewal Program (GLRP), has over the past 18 months contributed significantly to the industry`s license renewal initiative. The GLRP was established as a project with a full-time management organization within the BWOG structure. Its primary objective was the development and demonstration of an integrated plant assessment (IPA) process that would meet the requirements of the License Renewal Rule, published by the US Nuclear Regulatory Commission (NRC) in December 1991. The BWOG consists of five utilities with plants of very similar design, operation, and age. The owners, along with technical support from B & W Nuclear Technologies, created a highly capable and effective team to address the elements of the license renewal rule. This paper presents the BWOG strategy from the beginning of the program, the accomplishments to date, and the current role of the BWOG GLRP.

Gill, R.L. Jr.

1994-12-31T23:59:59.000Z

25

Property:Owner | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerType Jump to: navigation, searchRelatedTo Jump to:Owner

26

Visiting With Santa Fe Small Business Owners | Department of...  

Broader source: Energy.gov (indexed) [DOE]

you are a large or small business owner, learning the ins and outs of government contracting takes dedication, perseverance, and taking advantage of opportunities to meet...

27

CYBERSECURITY FUNDAMENTALS FOR SMALL BUSINESS OWNERS Shirley Radack, Editor  

E-Print Network [OSTI]

CYBERSECURITY FUNDAMENTALS FOR SMALL BUSINESS OWNERS Shirley Radack, Editor Computer Security and Technology (NIST) recently issued a new guide that tailors basic information on cybersecurity to the specific

28

Rights and Duties of Mines and Mine Owners, General (Missouri)  

Broader source: Energy.gov [DOE]

This legislation addresses general operational guidelines for mine owners regarding public notices, fees, land and mineral ownership, requirements for mining in certain municipalities, and mining...

29

"Table HC3.7 Air-Conditioning Usage Indicators by Owner-Occupied...  

U.S. Energy Information Administration (EIA) Indexed Site

7 Air-Conditioning Usage Indicators by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing...

30

Owner/contractor work structure process with integrated alignment framework  

E-Print Network [OSTI]

capital program expenditures , and to improve operational efficiency. For their capital projects, owners want the highest quality project, as fast as possible, at the lowest possible cost, with no harm to workers or the environment. To accomplish this...

Sullivan, George Ray

1996-01-01T23:59:59.000Z

31

MAINE MULTIFAMILY BUILDING OWNERS TRUST IN EFFICIENCY | Department...  

Broader source: Energy.gov (indexed) [DOE]

MAINE MULTIFAMILY BUILDING OWNERS TRUST IN EFFICIENCY Nearly 70% of households in Maine rely on fuel oil as their primary energy source for home heating, more than any other state....

32

Owner's Guide to Understanding Methods and Terms of Performance Contracting  

E-Print Network [OSTI]

for Proposal (RFP); Negotiation. The method of selection can greatly effect the success of the project. Owners seeking to improve their facilities through Performance Contracting should carefully consider the impact of the contracting method they select as well...

McDaniel, W.; Weaver, K.; Lacy, P.

1998-01-01T23:59:59.000Z

33

Solar PV Project Financing: Regulatory and Legislative Challenges for Third-Party PPA System Owners  

SciTech Connect (OSTI)

Residential and commercial end users of electricity who want to generate electricity using on-site solar photovoltaic (PV) systems face challenging initial and O&M costs. The third-party ownership power purchase agreement (PPA) finance model addresses these and other challenges. It allows developers to build and own PV systems on customers? properties and sell power back to customers. However, third-party electricity sales commonly face five regulatory challenges. The first three challenges involve legislative or regulatory definitions of electric utilities, power generation equipment, and providers of electric services. These definitions may compel third-party owners of solar PV systems to comply with regulations that may be cost prohibitive. Third-party owners face an additional challenge if they may not net meter, a practice that provides significant financial incentive to owning solar PV systems. Finally, municipalities and cooperatives worry about the regulatory implications of allowing an entity to sell electricity within their service territories. This paper summarizes these challenges, when they occur, and how they have been addressed in five states. This paper also presents alternative to the third-party ownership PPA finance model, including solar leases, contractual intermediaries, standardized contract language, federal investment tax credits, clean renewable energy bonds, and waived monopoly powers.

Kollins, K.; Speer, B.; Cory, K.

2009-11-01T23:59:59.000Z

34

Massachusetts Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

(percent)","Owner" "Pilgrim Nuclear Power Station Unit 1",685,"5,918",100.0,"Entergy Nuclear Generation Co" "1 Plant 1 Reactor",685,"5,918",100.0 "Note: Totals may not equal...

35

Economic Assessment and Impacts Assessment of Plug-In Hybrid Vehicles on Electric Utilities And Regional U.S. Power Grids  

SciTech Connect (OSTI)

Part 2 provides an economic assessment of the impacts of PHEV adoption on vehicle owners and on electric utilities. The paper finds favorable impacts on LCC to vehicle owners, and average costs of power for both types of utilities.

Scott, Michael J.; Kintner-Meyer, Michael CW; Elliott, Douglas B.; Warwick, William M.

2007-01-31T23:59:59.000Z

36

Economic Assessment And Impacts Assessment Of Plug-In Hybrid Vehicles On Electric Utilities And Regional U.S. Power Grids  

SciTech Connect (OSTI)

Part 2 provides an economic assessment of the impacts of PHEV adoption on vehicle owners and on electric utilities. The paper finds favorable impacts on LCC to vehicle owners, and average costs of power for both types of utilities.

Scott, Michael J.; Kintner-Meyer, Michael CW; Elliott, Douglas B.; Warwick, William M.

2007-01-22T23:59:59.000Z

37

Safety Evaluation Report related to Hydrogen Control Owners Group assessment of Mark 3 containments  

SciTech Connect (OSTI)

Title 10 of the Code of Federal Regulations (10 CFR), Section 50.44 Standards for Combustible Gas Control System in Light-Water-Cooled Power Reactors,'' requires that systems be provided to control hydrogen concentration in the containment atmosphere following an accident to ensure that containment integrity is maintained. The purpose of this report is to provide regulatory guidance to licensees with Mark III containments with regard to demonstrating compliance with 10 CFR 50.44, Section (c)(3)(vi) and (c)(3)(vii). In this report, the staff provides its evaluation of the generic methodology proposed by the Hydrogen Control Owners Group. This generic methodology is documented in Topical Report HGN-112-NP, Generic Hydrogen Control Information for BWR/6 Mark III Containments.'' In addition, the staff has recommended that the vulnerability to interruption of power to the hydrogen igniters be evaluated further on a plant-specific basis as part of the individual plant examination of the plants with Mark III containments. 10 figs., 1 tab.

Li, C.Y.; Kudrick, J.A.

1990-10-01T23:59:59.000Z

38

MEMORANDUM OWNER(S)  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$ EGcG ENERGYELIkNATIONHEALXH:LTS- ,.__.-.I TO:

39

OWNER(S)  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCT 28 1% - :NEW; c3 Alexander941@*2,l .

40

OWNER(S)  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCT 28 1% - :NEW; c3 Alexander941@*2,l

Note: This page contains sample records for the topic "owner terra-gen power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

OWNER(S)  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCT 28 1% - :NEW; c3

42

OWNER(S) Past:  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCT 28 1% - :NEW; c3--------------__

43

SUBJECT: OWNER(S)  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCT 28 1%AU62SIhBCL:HEHORANDUH ;;&;

44

Title: Ontario Wind Power Allocation Ontario Ministry of Natural Resources  

E-Print Network [OSTI]

Title: Ontario Wind Power Allocation Data Creator / Copyright Owner: Ontario Ministry of Natural/A Updates: N/A Abstract: This data consists of a polygon shapefile, Wind Power Allocation Block. A Wind Power Allocation Block is an area that could be allocated for the exploration of wind power generation

45

DOE NSTB Researchers Demonstrate R&D Successes to Asset Owners at EnergySec Conference  

Broader source: Energy.gov [DOE]

More than 150 energy sector leadersincluding nearly 100 asset owners and operatorsgathered at the 2009 EnergySec Annual Summit in Seattle, WA, on Sept. 23-24, where researchers from the...

46

An Internet survey of private pond owners and managers in Texas  

E-Print Network [OSTI]

pond owners got the information they used to deal with pond management problems. A secondary emphasis of the project was to examine the potential presented by the Internet for use in this type of information gathering and distribution for Texas...

Schonrock, April Elizabeth

2005-11-01T23:59:59.000Z

47

Connecting Distributed Energy Resources to the Grid: Their Benefits to the DER Owner etc.  

SciTech Connect (OSTI)

The vision of the Distributed Energy Research Program (DER) program of the U.S. Department of Energy (DOE) is that the United States will have the cleanest and most efficient and reliable energy system in the world by maximizing the use of affordable distributed energy resources. Electricity consumers will be able to choose from a diverse number of efficient, cost-effective, and environmentally friendly distributed energy options and easily connect them into the nation's energy infrastructure while providing benefits to their owners and other stakeholders. The long-term goal of this vision is that DER will achieve a 20% share of new electric capacity additions in the United States by 2010, thereby helping to make the nation's electric power generation and delivery system more efficient, reliable, secure, clean, economical, and diverse in terms of fuel use (oil, natural gas, solar, hydroelectric, etc.) and prime mover resource (solar, wind, gas turbines, etc.). Near- and mid-term goals are to develop new technologies for implementing and operating DER and address barriers associated with DER usage and then to reduce costs and emissions and improve the efficiency and reliability of DER. Numerous strategies for meeting these goals have been developed into a research, development, and demonstration (RD&D) program that supports generation and delivery systems architecture, including modeling and simulation tools. The benefits associated with DER installations are often significant and numerous. They almost always provide tangible economic benefits, such as energy savings or transmission and distribution upgrade deferrals, as well as intangible benefits, such as power quality improvements that lengthen maintenance or repair intervals for power equipment. Also, the benefits routinely are dispersed among end users, utilities, and the public. For instance, an end user may use the DER to reduce their peak demand and save money due to lower demand charges. Reduced end user peak demand, in turn, may lower a distribution system peak load such that upgrades are deferred or avoided. This could benefit other consumers by providing them with higher reliability and power quality as well as avoiding their cost share of a distribution system upgrade. In this example, the costs of the DER may be born by the end user, but that user reaps only a share of the benefits. This report, the first product of a study to quantify the value of DER, documents initial project efforts to develop an assessment methodology. The focus of currently available site-specific DER assessment techniques are typically limited to two parties, the owner/user and the local utility. Rarely are the impacts on other stakeholders, including interconnected distribution utilities, transmission system operators, generating system operators, other local utility customers, local and regional industry and business, various levels of government, and the environment considered. The goal of this assessment is to quantify benefits and cost savings that accrue broadly across a region, recognizing that DER installations may have local, regional, or national benefits.

Poore, WP

2003-07-09T23:59:59.000Z

48

A comparison of noxious facilities` impacts for home owners versus renters  

SciTech Connect (OSTI)

The siting of noxious facilities, such as hazardous waste facilities, is often vigorously opposed by local residents, and thus it is now common for local residents to be compensated for the presence of the facility. One technique that has been employed to implicitly value noxious facilities is the intercity hedonic approach, which examines the wage and land rent premia between cities that result from the presence of the facility. However, most of the focus has been on the behavior of home owners as opposed to renters. Since these two groups of residents vary on numerous dimensions such as marital status, age, sex, and personal mobility, it would not be surprising to find different marginal valuations of local site characteristics. The authors use 1980 Census data to derive separate estimates for owners and renters of the implicit value placed on eight different types of noxious facilities. They find that renters and owners differ in their response to noxious facilities, although the differences are not systematic. Furthermore, the differences between owners and renters are not primarily due to differential mobility or socio-demographic factors. Controlling those factors decreases the differences between renters` and owners` implicit valuations of noxious facilities by less than 10%. Unmeasured differences between the two groups, such as tastes, risk aversion, or commitment to the community, must account for the remaining difference in valuations. These findings suggest that policymakers should separately consider the responses of owners and renters when estimating noxious facility impacts.

Clark, D.E. [Marquette Univ., Milwaukee, WI (United States). Dept. of Economics]|[Argonne National Lab., IL (United States); Nieves, L.A. [Argonne National Lab., IL (United States)

1995-01-01T23:59:59.000Z

49

Guide to Combined Heat and Power Systems for Boiler Owners and Operators |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCostAnalysisTweet us!Procedures for Reporting

50

Guide to Combined Heat and Power Systems for Boiler Owners and Operators  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Source Heat2 December 2006 DOEthe Public15/2014

51

Guide to Combined Heat and Power Systems for Boiler Owners and Operators,  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Source Heat2 December 2006 DOEthe

52

REVIEW OF TRANSAMERICA DELAVAL INC. DIESEL GENERATOR OWNERS' GROUP ENGINE REQUALIFICATION PROGRAM  

SciTech Connect (OSTI)

In December 1983, 13 nuclear utilities that own TDI diesel generators formally established an Owners Group to address concerns regarding the reliability and operability of these engines. The Owners' Group program for engine requalification consisted of four major elements: 1) resolution of known problems with potentially generic implications, 2) a design review and quality revalidation (DR/QR) effort aimed at identifying and correcting potential problems with the important engine components, 3) expanded engine testing and inspection, and 4) enhanced engine maintenance and surveillance (M/S) to maintain the qualification of the diesel engines for the lifetime of the nuclear plants that they service. In providing technical support to NRC, the PNL project staff, assisted by a number of diesel engine consultants, focused on the four major elements of the Owners' Group engine requalification program, addressing both generic and plant-specific areas.

Berlinger, C. H.

1985-12-01T23:59:59.000Z

53

A comparison of noxious facilities` impacts for home owners versus renters  

SciTech Connect (OSTI)

The siting of noxious facilities, such as hazardous waste facilities, is often vigorously opposed by local residents. As a result, one would expect people`s residential and employment choices to reflect a desire to avoid proximity to such facilities. Ibis behavior would in turn affect labor and housing prices. One technique that has been employed to implicitly value impacts of noxious facilities is the intercity hedonic approach, which examines the wage and land rent differentials among cities that result from environmental amenities and disamenities. However, most of the research focus has been on the behavioral response of home owners as opposed to renters. Since these two groups of residents vary on numerous dimensions such as marital status, age, sex, and personal mobility, it would not be surprising to find different marginal valuations of local site characteristics. We use 1980 Census data to derive separate estimates for owners and renters of the implicit value placed on eight different types of noxious facilities. Although the magnitude of the responses of renters and owners to noxious facilities and other environmental characteristics varies, the signs are generally consistent. The differences in values between owners and renters are not primarily due to differential mobility or sociodemographic factors. Controlling those factors decreases the differences between renters` and owners` implicit valuations by less than 10%. Unmeasured differences in characteristics between the two groups, such as tastes, risk aversion, or commitment to the community, must account for the remaining difference in valuations. These findings suggest that policymakers should separately consider the responses of owners and renters when estimating noxious facility impacts.

Clark, D.E. [Marquette Univ., Milwaukee, WI (United States). Dept. of Economics]|[Argonne National Lab., IL (United States); Nieves, L.A. [Argonne National Lab., IL (United States)

1996-09-01T23:59:59.000Z

54

Secretary Chu Speaks with Minority Small Business Owners | Department of  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September2-SCORECARD-01-24-13DiscoversGE Solar Facility Secretary

55

Business Owners: Prepare a Business Recovery Plan | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of4 Federal6Clean Energyof Energy BulkScreeningDepartmenta

56

Business Owners: Prepare for Fuel Shortages | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of4 Federal6Clean Energyof Energy

57

Business Owners: Prepare for Utility Disruptions | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of4 Federal6Clean Energyof EnergyUtility Disruptions

58

Business Owners: Respond to an Energy Emergency | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of4 Federal6Clean Energyof EnergyUtility

59

WORKING PAPER N 2013 11 The Grey Paradox: How Oil Owners Can Benefit  

E-Print Network [OSTI]

, Fossil Fuels, GlobalWarming, Non-renewable Resources, OPEC PARIS-JOURDAN SCIENCES ECONOMIQUES 48, BD, Fossil Fuels, Global Warming, Non-renewable Resources, OPEC. JEL Classication: H21, H23, Q31, Q38, Q41, Q of fossil-fuel owners de- pends on the characteristics of their fossil fuels (recoverable reserves

Paris-Sud XI, Université de

60

The Role of the Owners Rep for Energy Performance and Control  

E-Print Network [OSTI]

Many energy performance projects are unsuccessful due to a variety of confounding issues but most of them stem from the owner's lack of developing a solid team, a strong set of criteria for success, and a mechanism to ensure implementation success...

Bernstein, R.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "owner terra-gen power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

A unique program for horse business owners Tuesdays, February 5 -March 19 (seven weeks)  

E-Print Network [OSTI]

A unique program for horse business owners Tuesdays, February 5 - March 19 (seven weeks) 6:00pm ­ 9 budgeting plan by the end of the seven-week course. The course is offered by Dr. Carey Williams, Equine@njaes.rutgers.edu, 848-932-3229 $70.00 per person Dinner and Companion workbook included. Equine Business Planning Course

Goodman, Robert M.

62

AIM: A Home-Owner Usable Energy Calculator for Existing Residential Homes  

E-Print Network [OSTI]

An energy efficiency metric for residential homes was developed to provide home-owners, realtors and builders a method to rate the energy efficiency of an existing house. To accomplish this, a web-based calculator was developed, which is based...

Marshall, K.; Moss, M.; Malhotra, M.; Liu, B.; Culp, C.; Haberl, J.; Herbert, C.

63

Abstract--This paper discusses using the battery energy storage system (BESS) to mitigate wind power intermittency, so  

E-Print Network [OSTI]

power intermittency, so that wind power can be dispatchable on an hourly basis like fossil fuel power to compensate for wind power forecast errors and minimize operation costs to the wind farm owner. A ramp rate penalty on wind power scheduling is included in the optimization to make the optimal control trajectory

Peng, Huei

64

g:\\fpdc\\contracts unit\\consultant selection and agreement forms\\consultant agreements\\owner consultant agreement final pdc.doc Page 1 of 24  

E-Print Network [OSTI]

\\owner consultant agreement final pdc.doc Page 1 of 24 MONTANA STATE UNIVERSITY PLANNING, DESIGN & CONSTRUCTION 6TH forms\\consultant agreements\\owner consultant agreement final pdc.doc Page 2 of 24 TABLE OF CONTENTS PART\\consultant selection and agreement forms\\consultant agreements\\owner consultant agreement final pdc.doc Page 3 of 24 1

Dyer, Bill

65

Capture-Ready Power Plants -Options, Technologies and Economics Mark C. Bohm  

E-Print Network [OSTI]

1 Capture-Ready Power Plants - Options, Technologies and Economics by Mark C. Bohm Bachelor and Policy Program #12;2 #12;3 Capture-ready Power Plants Options, Technologies and Costs by Mark C. Bohm of a plant. Power plant owners and policymakers are interested in capture-ready plants because they may offer

66

Community Resilience: Workshops on Private Sector and Property Owner Requirements for Recovery and Restoration from a Diasaster  

SciTech Connect (OSTI)

This report summarizes the results of a proejct sponsored by DTRA to 1) Assess the readiness of private-sector businesses, building owners, and service providers to restore property and recover operations in the aftermath of a wide-area dispersal of anthrax; and 2) Understand what private property owners and businesses "want and need" from federal, state, and local government to support recovery and restoration from such an incident.

Judd, Kathleen S.; Stein, Steven L.; Lesperance, Ann M.

2008-12-22T23:59:59.000Z

67

The economic effects of elevated and depressed freeways on adjacent property owners  

E-Print Network [OSTI]

ABSTRACT The Economic EfFects of Elevated and Depressed Freeways on The Adjacent Property Owners. (May 1995) Floyd David Sentry, B. S. , Texas AkM University Chair of Advisory Committee: Dr. Daniel B. Fambro An econonuc assessment of a comnunity... 322, 095 283, 680 283, 680 260, 040 3, 327, 330 $5, 005, 770 Net Effect of Highway on Property Values $4, 275 139, 635 185, 310 262, 145 254, 800 271, 680 257, 840 3, 327, 330 $4, 703, 095 23 The resale of homes at all levels showed...

Scurry, Floyd David

1995-01-01T23:59:59.000Z

68

Newport News Business Owner Earns Award From Jefferson Lab | Jefferson Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNationalNewport News Business Owner Earns Award From Jefferson

69

Fast Photovoltaic Array Reconfiguration for Partial Solar Powered Vehicles  

E-Print Network [OSTI]

Fast Photovoltaic Array Reconfiguration for Partial Solar Powered Vehicles Jaemin Kim1 , Yanzhi during cruising using innovative fast photovoltaic array (PV) reconfiguration. Use of all the vehicle sur and partial PV array mounting by the car owner's driving pattern, which results in more than 20% PV cell cost

Pedram, Massoud

70

Hot Works Procedures and Protocols Last Updated: 2/14/2014 Owner: Safety and Risk Management Director Page 1 of 6  

E-Print Network [OSTI]

Hot Works Procedures and Protocols Last Updated: 2/14/2014 Owner: Safety and Risk Management will log in #12;Hot Works Procedures and Protocols Last Updated: 2/14/2014 Owner: Safety and Risk Director Page 1 of 6 INTRODUCTION The Office of Safety and Risk Management (SRM) has developed, implemented

Dyer, Bill

71

Multifaceted Value Profiles of Forest Owner Categories in South Sweden: The River Helge a Catchment as a Case Study  

E-Print Network [OSTI]

-industrial forest land owners and municipalities included all value categories, the forest companies focused on wood including non-timber forest products as well as ecological, social, and cultural dimensions at multiple goods (e.g., timber and fish) can readily be converted into market goods. In contrast, many

Vermont, University of

72

2009-2010 Special Projects Boellstorff: A Southern Region Well Owner Network to Safeguard Private Well and Aquifer Integrity  

E-Print Network [OSTI]

, improper well construction techniques, abandoned wells, improperly sited and functioning on-site wastewater treatment systems, and changes in land use. The aim of the proposed Southern Region Well Owner Network integrity. The SRWON will improve rural and rural-urban interface environmental management by providing

73

Group Member Names: ________________________________________________ Scenario: You are the owner of a potato plant in Idaho. You have recently won a contract  

E-Print Network [OSTI]

: ________________________________________________ ________________________________________________ ________________________________________________ Scenario: You are the owner of a potato plant in Idaho. You have recently won a contract to supply McDonald's with potatoes. McDonald's requires their suppliers to precut and freeze the potatoes before shipping to their distributing center. Your potato plant does not currently have a process for precutting and freezing potatoes

Provancher, William

74

Pet owners have the responsibility to care for the well being of their animals. Your ability to  

E-Print Network [OSTI]

Pet owners have the responsibility to care for the well being of their animals. Your ability to care for an animal can help determine what kind of animal you select as a pet. Out-of-Town Emergency Pamphlet, "Emergency Preparedness for Your Pets," 2003. Veterinarians in Your County or City Name

75

Empowering the Application Owner As the IT landscape evolves, two distinct roles are emerging in the enterprise: the provider  

E-Print Network [OSTI]

in the enterprise: the provider of IT services (usually the datacenter administrator) and the consumer of IT services (the application owner). Datacenter administrators build the infrastructure for their business on datacenter administrators are increasing, yet they must continue to meet their organization's commitment

Chaudhuri, Surajit

76

Utility & Regulatory Factors Affecting Cogeneration & Independent Power Plant Design & Operation  

E-Print Network [OSTI]

UTILITY & REGULATORY FACTORS AFFECTiNG COGENERATION & INDEPENDENT POWER PLANT DESIGN & OPERATION Richard P. Felak General Electric Company Schenectady, New York ABSTRACT In specifying a cogeneration or independent power plant, the owner... should be especially aware of the influences which electric utilities and regulatory bodies will have on key parameters such as size, efficiency, design. reliability/ availabilitY, operating capabilities and modes, etc. This paper will note examples...

Felak, R. P.

77

Investment Timing and Capacity Choice for Small-Scale Wind PowerUnder Uncertainty  

SciTech Connect (OSTI)

This paper presents a method for evaluation of investments in small-scale wind power under uncertainty. It is assumed that the price of electricity is uncertain and that an owner of a property with wind resources has a deferrable opportunity to invest in one wind power turbine within a capacity range. The model evaluates investment in a set of projects with different capacity. It is assumed that the owner substitutes own electricity load with electricity from the wind mill and sells excess electricity back to the grid on an hourly basis. The problem for the owner is to find the price levels at which it is optimal to invest, and in which capacity to invest. The results suggests it is optimal to wait for significantly higher prices than the net present value break-even. Optimal scale and timing depend on the expected price growth rate and the uncertainty in the future prices.

Fleten, Stein-Erik; Maribu, Karl Magnus

2004-11-28T23:59:59.000Z

78

Light Water Reactor Sustainability Program Power Uprate Research and Development Strategy  

SciTech Connect (OSTI)

The economic incentives for low-cost electricity generation will continue to drive more plant owners to identify safe and reliable methods to increase the electrical power output of the current nuclear power plant fleet. A power uprate enables a nuclear power plant to increase its electrical output with low cost. However, power uprates brought new challenges to plant owners and operators. These include equipment damage or degraded performance, and unanticipated responses to plant conditions, etc. These problems have arisen mainly from using dated design and safety analysis tools and insufficient understanding of the full implications of the proposed power uprate or from insufficient attention to detail during the design and implementation phase. It is essential to demonstrate that all required safety margins have been properly retained and the existing safety level has been maintained or even increased, with consideration of all the conditions and parameters that have an influence on plant safety. The impact of the power uprate on plant life management for long term operation is also an important issue. Significant capital investments are required to extend the lifetime of an aging nuclear power plant. Power uprates can help the plant owner to recover the investment costs. However, plant aging issues may be aggravated by the power uprate due to plant conditions. More rigorous analyses, inspections and monitoring systems are required.

Hongbin Zhang

2011-09-01T23:59:59.000Z

79

br Owner br Facility br Type br Capacity br MW br Commercial...  

Open Energy Info (EERE)

Magmatic Mendeleevskaya Geothermal Power Plant Ministry of Natural Resources of Russia Single Flash MW Mendeleevskaya Geothermal Area Kuril Kamchatka Arc Mindanao GEPP...

80

Text-Alternative Version: The L Prize-Winning LED A19 ReplacementWhat Commercial Building Owners/Operators Can Expect in 2012  

Broader source: Energy.gov [DOE]

Below is the text-alternative version of the "The L Prize-Winning LED A19 ReplacementWhat Commercial Building Owners/Operators Can Expect in 2012" webcast, held January 18, 2012.

Note: This page contains sample records for the topic "owner terra-gen power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

This journal is c the Owner Societies 2012 Phys. Chem. Chem. Phys., 2012, 14, 675680 675 Cite this: Phys. Chem. Chem. Phys., 2012, 14, 675680  

E-Print Network [OSTI]

This journal is c the Owner Societies 2012 Phys. Chem. Chem. Phys., 2012, 14, 675­680 675 Cite this: Phys. Chem. Chem. Phys., 2012, 14, 675­680 Photodissociation of isobutene at 193 nm Gabriel M. P. Just

Neumark, Daniel M.

82

Power Plant Power Plant  

E-Print Network [OSTI]

Basin Center for Geothermal Energy at University of Nevada, Reno (UNR) 2 Nevada Geodetic LaboratoryStillwater Power Plant Wabuska Power Plant Casa Diablo Power Plant Glass Mountain Geothermal Area Lassen Geothermal Area Coso Hot Springs Power Plants Lake City Geothermal Area Thermo Geothermal Area

Tingley, Joseph V.

83

Power Factor Reactive Power  

E-Print Network [OSTI]

power: 130 watts Induction motor PSERC Incandescent lights 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0 power: 150 watts #12;Page 4 PSERC Incandescent Lights PSERC Induction motor with no load #12;Page 5 Incandescent Lights #12;Page 7 PSERC Incandescent lights power: Power = 118 V x 1.3 A = 153 W = 0.15 kW = power

84

Energy and Capacity Valuation of Photovoltaic Power Generation in New York  

E-Print Network [OSTI]

Perez & Thomas E. Hoff, Clean Power Research for the Solar Alliance and the N r Energy Industry between peak demand and solar resource availability both downstate and upstate, the generation energy: What is the Value of PV? System Owners Utility Constituents Equipment cost Incentives benefit cost

Perez, Richard R.

85

Are owners' reports of their dogs guilty look influenced by the dogs action and evidence of the misdeed?  

E-Print Network [OSTI]

dogs greeting behaviours were not a Thus, our findings do not support th concurrent negative reaction by their 2015 The Authors. Published bylocate /behavproc uenced by the dogs nija 4, 51000 Rijeka Croatia eeting behaviour after having performed a... dogs that have eaten the r whom the food was not replaced by the experimenter lude that their dog had performed the misdeed. ls and methods s ix owners and their dogs were tested in Croatia from 011 to January 2012 and from June to October 2013 (see...

Ostoji?, Ljerka; Tkal?i?, Mladenka; Clayton, Nicola S.

2015-01-03T23:59:59.000Z

86

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandia Involves Wind-Farm Owners inConcentrating Solar Power

87

Sandia National Laboratories: Concentrating Solar Power (CSP)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandia Involves Wind-Farm Owners Concentrating Solar Power

88

Uninterruptible power supply (UPS) systems  

SciTech Connect (OSTI)

Use of this purchase specification is not mandatory. User should review the document and determine if it meets the user`s purpose. This document contains a fill-in-the-blanks guide specification for the procurement of uninterruptible power supply (UPS) systems greater than 10 kVA, organized as follows: Parts 1 through 7--technical requirements; Appendix A--technical requirements to be included in the proposal; Appendix B--UPS system data sheets to be completed by each bidder (Seller) and submitted with the proposal; Appendix C--general guidelines giving the specifier parameters for selecting a UPS system; it should be read before preparing an actual specification, and is not attached to the specification; Attachment 1--sketches prepared by the purchaser (Owner); Attachment 2--sample title page.

NONE

1997-04-01T23:59:59.000Z

89

PP-82-3 The Joint Owners of the Highgate Interconnection Facilities |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15, 2010Energy6 Frontera Generation Limited15 Trico39

90

BPA, Transmission, I-5 Corridor Reinforcement Project, August 2010 update to new property owners  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience Program CumulusA tC:\Documents 12 BONNEVILLE POWER57BAugust

91

The Guaranteed Maximum Price proposal is developed at the phase specified in the Agreement Between Owner and Construction Manager, usually at 50% Construction Documents.  

E-Print Network [OSTI]

Owner and Construction Manager, usually at 50% Construction Documents. The GMP proposal should be bound general summary of scope of work, alternates, etc.) Tab 2 List of documents (project manual(s), drawings summary of the work, the construction manager's fee (as identified in Paragraph 7.2 of the Agreement) must

Sura, Philip

92

PRESOLICITATION Category: A. Owner: Department of Energy, Oak Ridge National Laboratory -UT Battelle LLC (DOE Contractor), Oak Ridge National Laboratory, Bethel  

E-Print Network [OSTI]

PRESOLICITATION Category: A. Owner: Department of Energy, Oak Ridge National Laboratory - UT Battelle LLC (DOE Contractor), Oak Ridge National Laboratory, Bethel Valley Road P.O. Box 2008, Oak Ridge-Battelle), the management and operating contractor for the United States Department of Energy's Oak Ridge National

Hively, Lee M.

93

KUALI TIPS FOR CAPITAL ASSETS NEW OBJECT CODES: These are based upon the Funding Source Code. Owner Field shows Title now.  

E-Print Network [OSTI]

KUALI TIPS FOR CAPITAL ASSETS NEW OBJECT CODES: These are based upon the Funding Source Code. Owner Field shows Title now. Decal # Historical Sub Code New Object Code Description Comments OBJECT CODES: To determine which Object Code you should use, you will need to look up the Account Fund

94

KUALI TIPS FOR CAPITAL ASSETS NEW OBJECT CODES: These are based upon Funding Source vs. Title. Owner Field shows Title now.  

E-Print Network [OSTI]

KUALI TIPS FOR CAPITAL ASSETS NEW OBJECT CODES: These are based upon Funding Source vs. Title. Owner Field shows Title now. Decal # Historical Sub Code New Object Code Description 3 8210 8210 CSU) and 8247 (Federal Loaned) are Property Use Only. HOW TO USE THE NEW OBJECT CODES: To determine which Object

95

2654 Phys. Chem. Chem. Phys., 2013, 15, 2654--2659 This journal is c the Owner Societies 2013 Cite this: Phys.Chem.Chem.Phys.,2013,  

E-Print Network [OSTI]

this: Phys.Chem.Chem.Phys.,2013, 15, 2654 Influence of catalyst choices on transport behaviors of In2654 Phys. Chem. Chem. Phys., 2013, 15, 2654--2659 This journal is c the Owner Societies 2013 Cite and controllable NW physical properties. The NW growths, including vapor­ liquid­solid (VLS) or vapor

Javey, Ali

96

Essential Power Systems Workshop - OEM Perspective  

SciTech Connect (OSTI)

In California, idling is largely done for climate control. This suggests that climate control devices alone could be used to reduce idling. Line-haul truck drivers surveyed require an average of 4-6 kW of power for a stereo, CB radio, light, refrigerator, and climate control found in the average truck. More power may likely be necessary for peak power demands. The amount of time line-haul trucks reported to have stopped is between 25 and 30 hours per week. It was not possible to accurately determine from the pilot survey the location, purpose, and duration of idling. Consulting driver logs or electronically monitoring trucks could yield more accurate data, including seasonal and geographic differences. Truck drivers were receptive to idling alternatives. Two-thirds of truck drivers surveyed support a program to reduce idling. Two-thirds of drivers reported they would purchase idling reduction technologies if the technology yielded a payback period of two years or less. Willingness to purchase auxiliary power units appears to be higher for owner-operators than for company drivers. With a 2-year payback period, 82% of owner- operators would be willing to buy an idle- reducing device, while 63% of company drivers thought their company would do the same. Contact with companies is necessary to discern whether this difference between owner- operators and companies is true or simply due to the perception of the company drivers. Truck stops appear to be a much more attractive option for electrification than rest areas by a 48% to 21% margin. Much of this discrepancy may be due to perceived safety problems with rest areas. This survey did not properly differentiate between using these areas for breaks or overnight. The next, full survey will quantify where the truck drivers are staying overnight, where they go for breaks, and the duration of time they spend at each place. The nationwide survey, which is in progress, will indicate how applicable the results are to the US in general. In addition to the survey, we believe data loggers and focus groups will be necessary to collect the idling duration and location data necessary to compare auxiliary power units to truck stop electrification. Focus groups are recommended to better understand the driver response to APUs and electrification. The appearance and perception of the new systems will need further clarification, which could be accomplished with a demonstration for truck drivers.

Bill Gouse

2001-12-12T23:59:59.000Z

97

Washington Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Columbia Generating Station Unit...

98

Iowa Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Duane Arnold Energy Center Unit...

99

Wireless Power Transfer  

SciTech Connect (OSTI)

Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forget to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the demand for EV rises. For vehicles that operate over a fixed route such as busses and shuttle vehicles, Wireless Power Transfer (WPT) means that a smaller battery pack can be used. In the traditional system, the battery pack is designed to accommodate the needs of the entire route or shift. With WPT the battery can be downsized because it can be charged when the vehicle stops on its route (a rental car shuttle bus, for example, can charge when it waits in the terminal and again when it waits at the rental car place. Thus the battery only needs enough charge to get to the next stop. This decrease in battery size means significant cost savings to electrify the vehicle. This technology enables efficient "opportunity charging stations" for predefined routes and planned stops reducing down time. Charging can occur in minutes. This improvement also eliminates the harmful emissions that occur in garages while buses are at idle during charging. In larger cities, dynamic charging offers an even greater impact utilizing existing infrastructure. As vehicles travel along busy freeways and interstate systems, wireless charging can occur while the vehicle is in motion. With this technology a vehicle essentially has unlimited electric range while using a relatively small battery pack. In-motion charging stations use vehicle sensors to alert the driver. Traveling at normal speeds, sensors establish in-motion charging. WPT transmit pads sequentially energize to the negotiated power level based on vehicle speed and its requested charging energy. Lower power when vehicle speed is slow and much higher power for faster moving vehicles. Vehicle to Infrastructure communications (V2I) coordinates WPT charging level according to on-board battery pack state-of-charge. V2I activates the roadway transmit pads placing them in standby mode and negotiates charging fee based on prevailing grid rate and vehicle energy demand. Dynamic charging would allow electricity to supply a very large fraction of the energy for the transportation sector and reduce greatly petroleum consump

None

2013-07-22T23:59:59.000Z

100

Wireless Power Transfer  

ScienceCinema (OSTI)

Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forget to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the demand for EV rises. For vehicles that operate over a fixed route such as busses and shuttle vehicles, Wireless Power Transfer (WPT) means that a smaller battery pack can be used. In the traditional system, the battery pack is designed to accommodate the needs of the entire route or shift. With WPT the battery can be downsized because it can be charged when the vehicle stops on its route (a rental car shuttle bus, for example, can charge when it waits in the terminal and again when it waits at the rental car place. Thus the battery only needs enough charge to get to the next stop. This decrease in battery size means significant cost savings to electrify the vehicle. This technology enables efficient "opportunity charging stations" for predefined routes and planned stops reducing down time. Charging can occur in minutes. This improvement also eliminates the harmful emissions that occur in garages while buses are at idle during charging. In larger cities, dynamic charging offers an even greater impact utilizing existing infrastructure. As vehicles travel along busy freeways and interstate systems, wireless charging can occur while the vehicle is in motion. With this technology a vehicle essentially has unlimited electric range while using a relatively small battery pack. In-motion charging stations use vehicle sensors to alert the driver. Traveling at normal speeds, sensors establish in-motion charging. WPT transmit pads sequentially energize to the negotiated power level based on vehicle speed and its requested charging energy. Lower power when vehicle speed is slow and much higher power for faster moving vehicles. Vehicle to Infrastructure communications (V2I) coordinates WPT charging level according to on-board battery pack state-of-charge. V2I activates the roadway transmit pads placing them in standby mode and negotiates charging fee based on prevailing grid rate and vehicle energy demand. Dynamic charging would allow electricity to supply a very large fraction of the energy for the transportation sector and reduce greatly petroleum consump

None

2013-11-19T23:59:59.000Z

Note: This page contains sample records for the topic "owner terra-gen power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Absentee herd owners and part-time pastoralists: the political economy of resource use in northern Kenya  

SciTech Connect (OSTI)

The prevalence of absentee herd ownership in Africa's pastoral areas is increasing. Its presence has important implications both for local resource management systems and for research programs that address pastoral ecology and related topics. This paper examines patterns of absentee herd ownership in the Baringo District of northern Kenya. This region has been the source of much debate regarding herder ''mismanagement'' of range lands. Three categories of absentee herd owners are discussed in the paper: (1) ranchers, (2) livestock traders, and (3) townsmen. It is suggested that the blame for some of the apparent resource mismanagement in the region may lie more with actors in these categories than with the pastoralists themselves. Data collected during an 18-month period in 1980-1981 on pastoral ecology, grazing patterns, and tenure institutions are presented in support of the argument. The paper concludes with a comparative analysis of contemporary resource management strategies in pastoral Africa, emphasizing that: (1) the Baringo case is not an isolated anomaly, and (2) a new orientation toward pastoral studies is warranted.

Little, P.D.

1985-06-01T23:59:59.000Z

102

Wind Power Project Repowering: Financial Feasibility, Decision Drivers, and Supply Chain Effects  

SciTech Connect (OSTI)

As wind power facilities age, project owners are faced with plant end of life decisions. This report is intended to inform policymakers and the business community regarding the history, opportunities, and challenges associated with plant end of life actions, in particular repowering. Specifically, the report details the history of repowering, examines the plant age at which repowering becomes financially attractive, and estimates the incremental market investment and supply chain demand that might result from future U.S. repowering activities.

Lantz, E.; Leventhal, M.; Baring-Gould, I.

2013-12-01T23:59:59.000Z

103

The aftermath of primary power and its implications for independent transmission in PJM  

SciTech Connect (OSTI)

The recent decision by the Federal Energy Regulatory Commission in ''Primary Power'' will have fundamental ramifications for transmission investment in the far-reaching PJM footprint. This decision, which is pending on rehearing and will likely be appealed, will determine whether transmission projects that are entitled to regulated rate recovery under the PJM tariff can only be built by incumbent transmission owners and whether new independent transmission entities are limited to building transmission projects on a ''merchant'' basis. (author)

Farrah, Elias G.; Elstein, S. Shamai

2010-08-15T23:59:59.000Z

104

Legislating the rights of private property owners: a review and analysis of actions in the 103rd and 104th Congresses  

E-Print Network [OSTI]

Member Committee Member August 1995 Record of Study LEGISLATING THE RIGHTS OF PRIVATE PROPERTY OWNERS: A REVIEW AND ANALYSIS OF ACTIONS IN THE 103RD AND 104TH CONGRESSES A PROFESSIONAL PAPER by Hannah Elizabeth Kerby Submitted to the College... of Agriculture and Life Sciences of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF AGRICULTURE August 1995 Department of Agricultural Education Agricultural Development ABSTRACT Private property rights...

Kerby, Hannah Elizabeth

1995-01-01T23:59:59.000Z

105

Regulatory practices in India for establishing nuclear power stations  

SciTech Connect (OSTI)

The Atomic Energy Regulatory Board (AERB) of India was established as an independent regulatory authority charged with regulating radiation protection and nuclear safety. This article reviews the current state of India`s nuclear power reactor program and discusses the makeup of functions of the AERB, including the preparation of issuance of safety codes, guides, and other standards, with special recent emphasis on pressurized-heavy-water reactors (PHWRs). The AERB`s relationship to nuclear plant owners is discussed, as are the inspection and control functions the AERB performs, both for the construction and operation of nuclear plants and the licensing of operating personnel. 8 refs., 2 figs.

De, A.K. [Atomic Energy Regulatory Board, Calcutta (India); Singh, S.P. [Atomic Energy Regulatory Board, Bombay (India)

1991-07-01T23:59:59.000Z

106

Reliability Standards Owner  

Broader source: Energy.gov [DOE]

This position is located in the Internal Operations and Asset Management group of Planning and Asset Management (TP). A successful candidate in this position will serve as the Reliability Standards...

107

Power supply  

DOE Patents [OSTI]

A modular, low weight impedance dropping power supply with battery backup is disclosed that can be connected to a high voltage AC source and provide electrical power at a lower voltage. The design can be scaled over a wide range of input voltages and over a wide range of output voltages and delivered power.

Yakymyshyn, Christopher Paul (Seminole, FL); Hamilton, Pamela Jane (Seminole, FL); Brubaker, Michael Allen (Loveland, CO)

2007-12-04T23:59:59.000Z

108

Variable Renewable Generation can Provide Balancing Control to the Electric Power System (Fact Sheet)  

SciTech Connect (OSTI)

As wind and solar plants become more common in the electric power system, they may be called on to provide grid support services to help maintain system reliability. For example, through the use of inertial response, primary frequency response, and automatic generation control (also called secondary frequency response), wind power can provide assistance in balancing the generation and load on the system. These active power (i.e., real power) control services have the potential to assist the electric power system in times of disturbances and during normal conditions while also potentially providing economic value to consumers and variable renewable generation owners. This one-page, two-sided fact sheet discusses the grid-friendly support and benefits renewables can provide to the electric power system.

Not Available

2013-09-01T23:59:59.000Z

109

Transportation and Stationary Power  

E-Print Network [OSTI]

and gas companies, retail gasoline station owners) will not be likely to assume the financial risk of building hydrogen fueling stations without an assured consumer demand for the hydrogen. On the other hand significant quantity in the absence of convenient, publicly accessible hydrogen refueling stations. To address

110

Power LCAT  

ScienceCinema (OSTI)

POWER LCAT is a software tool used to compare elements of efficiency, cost, and environmental effects between different sources of energy.

Drennen, Thomas

2014-06-27T23:59:59.000Z

111

Power LCAT  

SciTech Connect (OSTI)

POWER LCAT is a software tool used to compare elements of efficiency, cost, and environmental effects between different sources of energy.

Drennen, Thomas

2012-08-15T23:59:59.000Z

112

Missouri Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Callaway Unit 1","1,190","8,996",100.0,"Union...

113

Mississippi Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Grand Gulf Unit 1","1,251","9,643",100.0,"Syste...

114

Kansas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear net generation (percent)","Owner" "Wolf Creek Generating Station Unit 1","1,160","9,556",100.0,"Wolf Creek Nuclear Optg Corp" "1 Plant 1 Reactor","1,160","9,556",100.0...

115

Vermont Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

mwh)","Share of State nuclear net generation (percent)","Owner" "Vermont Yankee Unit 1",620,"4,782",100.0,"Entergy Nuclear Vermont Yankee" "1 Plant 1 Reactor",620,"4,782",100.0...

116

Below regulatory concern owners group: Individual and population impacts from BRC (below regulatory concern) waste treatment and disposal  

SciTech Connect (OSTI)

Using the IMPACTS-BRC and PRESTO-EPA-POP codes, researchers calculated potential individual and population doses for routine and unexpected radiation exposures resulting from the transportation and disposal of BRC nuclear power plant wastes. These calculations provided a basis for establishing annual curie and radionuclide concentration limits for BRC treatment and disposal. EPRI has initiated a program to develop a petition for rulemaking to NRC that would allow management of certain very low activity nuclear power plant waste types as below regulatory concern (BRC), thus exempting these wastes from requirements for burial at licensed low-level radioactive waste disposal facilities. The technical information required to support the BRC petition includes an assessment of radiologic impacts resulting from the proposed exemption, based on estimated individual and population doses that might result from BRC treatment and disposal of nuclear power plant wastes. 13 figs., 31 tabs.

Murphy, E.S.; Rogers, V.C.

1989-08-01T23:59:59.000Z

117

Power Recovery  

E-Print Network [OSTI]

.POWER RECOVERY Fletcher Mlirray Monsanto Chemical Company AB5'-:::0 p.p., will ??vi.w 'h. '.ohnnln,y nf 'h.::v,n. T:X:~~T ~ methods for estimating the power recovery potential from fluid streams. The ideal gas law formula for expanding gases.... Gas Law Estimation Power recovery estimates from a vapor stream can be made using the formula: which is derived from the Ideal Gas Law. At first glance the. formula seems imposing and perhaps difficult to occasionally use. If however; the formula...

Murray, F.

118

Power combiner  

DOE Patents [OSTI]

A power combiner for the combining of symmetric and asymmetric traveling wave energy comprises a feed waveguide having an input port and a launching port, a reflector for reflecting launched wave energy, and a final waveguide for the collection and transport of launched wave energy. The power combiner has a launching port for symmetrical waves which comprises a cylindrical section coaxial to the feed waveguide, and a launching port for asymmetric waves which comprises a sawtooth rotated about a central axis.

Arnold, Mobius; Ives, Robert Lawrence

2006-09-05T23:59:59.000Z

119

Cleco Power- Power Miser New Home Program  

Broader source: Energy.gov [DOE]

Louisiana's Cleco Power offers energy efficiency incentives to eligible customers. Cleco Power offers a rate discount for residential customers building homes that meet the Power Miser Program...

120

Power inverters  

DOE Patents [OSTI]

Power inverters include a frame and a power module. The frame has a sidewall including an opening and defining a fluid passageway. The power module is coupled to the frame over the opening and includes a substrate, die, and an encasement. The substrate includes a first side, a second side, a center, an outer periphery, and an outer edge, and the first side of the substrate comprises a first outer layer including a metal material. The die are positioned in the substrate center and are coupled to the substrate first side. The encasement is molded over the outer periphery on the substrate first side, the substrate second side, and the substrate outer edge and around the die. The encasement, coupled to the substrate, forms a seal with the metal material. The second side of the substrate is positioned to directly contact a fluid flowing through the fluid passageway.

Miller, David H. (Redondo Beach, CA); Korich, Mark D. (Chino Hills, CA); Smith, Gregory S. (Woodland Hills, CA)

2011-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "owner terra-gen power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Power Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,ReactorAbout Power > FinancialPower

122

AMERICAN ELECTRIC POWER'S CONESVILLE POWER PLANT UNIT NO.5 CO2 CAPTURE RETROFIT STUDY  

SciTech Connect (OSTI)

ALSTOM Power Inc.'s Power Plant Laboratories (ALSTOM) has teamed with American Electric Power (AEP), ABB Lummus Global Inc. (ABB), the US Department of Energy National Energy Technology Laboratory (DOE NETL), and the Ohio Coal Development Office (OCDO) to conduct a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture and sequestration technologies applied to an existing US coal-fired electric generation power plant. The motivation for this study was to provide input to potential US electric utility actions concerning GHG emissions reduction. If the US decides to reduce CO{sub 2} emissions, action would need to be taken to address existing power plants. Although fuel switching from coal to natural gas may be one scenario, it will not necessarily be a sufficient measure and some form of CO{sub 2} capture for use or disposal may also be required. The output of this CO{sub 2} capture study will enhance the public's understanding of control options and influence decisions and actions by government, regulators, and power plant owners in considering the costs of reducing greenhouse gas CO{sub 2} emissions. The total work breakdown structure is encompassed within three major reports, namely: (1) Literature Survey, (2) AEP's Conesville Unit No.5 Retrofit Study, and (3) Bench-Scale Testing and CFD Evaluation. The report on the literature survey results was issued earlier by Bozzuto, et al. (2000). Reports entitled ''AEP's Conesville Unit No.5 Retrofit Study'' and ''Bench-Scale Testing and CFD Evaluation'' are provided as companion volumes, denoted Volumes I and II, respectively, of the final report. The work performed, results obtained, and conclusions and recommendations derived therefrom are summarized.

Carl R. Bozzuto; Nsakala ya Nsakala; Gregory N. Liljedahl; Mark Palkes; John L. Marion

2001-06-30T23:59:59.000Z

123

Power Factor Compensation (PFC) Power Factor Compensation  

E-Print Network [OSTI]

Power Factor Compensation (PFC) Power Factor Compensation The power factor (PF) is defined as the ratio between the active power and the apparent power of a system. If the current and voltage are periodic with period , and [ ), then the active power is defined by ( ) ( ) (their inner product

Knobloch,Jürgen

124

Star Power  

SciTech Connect (OSTI)

The U.S. Department of Energy's Princeton Plasma Physics Laboratory has released ''Star Power,'' a new informational video that uses dramatic and beautiful images and thought-provoking interviews to highlight the importance of the Laboratory's research into magnetic fusion.

None

2014-10-17T23:59:59.000Z

125

Star Power  

ScienceCinema (OSTI)

The U.S. Department of Energy's Princeton Plasma Physics Laboratory has released ''Star Power,'' a new informational video that uses dramatic and beautiful images and thought-provoking interviews to highlight the importance of the Laboratory's research into magnetic fusion.

None

2014-11-18T23:59:59.000Z

126

BOWLING GREEN STATE UNIVERSITY is the owner of all rights, title and interest in and to the following Indicia, which includes trademarks, service marks, trade names, designs, logos, seals and symbols.  

E-Print Network [OSTI]

APPENDIX B BOWLING GREEN STATE UNIVERSITY is the owner of all rights, title and interest 1126 BLACK WHITE RA TBD RA 2273 BLACK WHITE NOTE: The marks of Bowling Green State University University ® Bowling Green ® Bowling Green Falcons ® Bowling Green State University Falcons ® BGSU ® BGSU

Moore, Paul A.

127

WEST VIRGINIA UNIVERSITY is the owner of all rights, title and interest in and to the following Indicia, which includes trademarks, service marks, trade names, designs, logos, seals and symbols.  

E-Print Network [OSTI]

APPENDIX B WEST VIRGINIA UNIVERSITY is the owner of all rights, title and interest: The marks of West Virginia University of are controlled under a licensing program administered Licensing Company. Yes No Restrictions WEST VIRGINIA UNIVERSITY® MOUNTAINEERS® · University seal permitted

Mohaghegh, Shahab

128

Power superconducting power transmission cable  

DOE Patents [OSTI]

The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

Ashworth, Stephen P. (Cambridge, GB)

2003-01-01T23:59:59.000Z

129

Estimating the Effects of Climate Change on Federal Hydropower and Power Marketing  

SciTech Connect (OSTI)

The U.S. Department of Energy is currently preparing an assessment of the effects of climate change on federal hydropower, as directed by Congress in Section 9505 of the Secure Water Act of 2009 (P.L. 111-11). This paper describes the assessment approach being used in a Report to Congress currently being prepared by Oak Ridge National Laboratory. The 9505 assessment will examine climate change effects on water available for hydropower operations and the future power supplies marketed from federal hydropower projects. It will also include recommendations from the Power Marketing Administrations (PMAs) on potential changes in operation or contracting practices that could address these effects and risks of climate change. Potential adaption and mitigation strategies will also be identified. Federal hydropower comprises approximately half of the U.S. hydropower portfolio. The results from the 9505 assessment will promote better understanding among federal dam owners/operators of the sensitivity of their facilities to water availability, and it will provide a basis for planning future actions that will enable adaptation to climate variability and change. The end-users of information are Congressional members, their staff, the PMAs and their customers, federal dam owners/operators, and the DOE Water Power Program.

Sale, Michael J [ORNL; Kao, Shih-Chieh [ORNL; Uria Martinez, Rocio [ORNL; Wei, Yaxing [ORNL

2011-01-01T23:59:59.000Z

130

Power Right. Power Smart. Efficient Computer Power Supplies and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AC power that you get from your electric company into the DC power consumed by most electronics, including your computer. We expect our power supplies to be safe, reliable, and...

131

Silicon Valley Power and Oklahoma Municipal Power Authority Win...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public Power Wind Awards Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public Power Wind...

132

Permit compliance monitoring for the power generation industry  

SciTech Connect (OSTI)

The Clean Air Act Amendments (CAAA) of 1990 authorized EPA to develop regulations requiring facilities to monitor the adequacy of emission control equipment and plant operations. Furthermore, under the CAAA, EPA is required to issue regulations to require owners and operators of large industrial facilities to enhance air pollution monitoring and certify compliance with air pollution regulations. The fossil-fueled power generation industry has been targeted with the promulgation of the Acid Rain Program regulations of 40 CFR 72, and the Continuous Emissions Monitoring requirements of 40 CFR 75. The Part 75 regulations, with a few exceptions, establish requirements for monitoring, recordkeeping, and reporting of sulfur dioxide, nitrogen oxides, and carbon dioxide emissions, volumetric flow, and opacity data from affected units under the Acid Rain Program. Depending upon the type of unit and location, other applicable emission limitations may apply for particulate emissions (both total and PM-10), carbon monoxide, volatile organic compounds and sulfuric acid mist.

Macak, J.J. III [Mostardi-Platt Associates, Inc., Elmhurst, IL (United States); Platt, T.B. [Commonwealth Edison Company, Waukegan, IL (United States); Miller, S.B. [Commonwealth Edison Company, Chicago, IL (United States)

1996-12-31T23:59:59.000Z

133

Wind power and Wind power and  

E-Print Network [OSTI]

Wind power and the CDM #12; Wind power and the CDM Emerging practices in developing wind power 2005 Jyoti P. Painuly, Niels-Erik Clausen, Jørgen Fenhann, Sami Kamel and Romeo Pacudan #12; WIND POWER AND THE CDM Emerging practices in developing wind power projects for the Clean Development Mechanism Energy

134

Wind Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISPWind Industry Soars to New1Wind Power

135

Optimal design and control strategies for novel combined heat and power (CHP) fuel cell systems. Part I of II, datum design conditions and approach.  

SciTech Connect (OSTI)

Energy network optimization (ENO) models identify new strategies for designing, installing, and controlling stationary combined heat and power (CHP) fuel cell systems (FCSs) with the goals of (1) minimizing electricity and heating costs for building owners and (2) reducing emissions of the primary greenhouse gas (GHG) - carbon dioxide (CO{sub 2}). A goal of this work is to employ relatively inexpensive simulation studies to discover more financially and environmentally effective approaches for installing CHP FCSs. ENO models quantify the impact of different choices made by power generation operators, FCS manufacturers, building owners, and governments with respect to two primary goals - energy cost savings for building owners and CO{sub 2} emission reductions. These types of models are crucial for identifying cost and CO{sub 2} optima for particular installations. Optimal strategies change with varying economic and environmental conditions, FCS performance, the characteristics of building demand for electricity and heat, and many other factors. ENO models evaluate both 'business-as-usual' and novel FCS operating strategies. For the scenarios examined here, relative to a base case of no FCSs installed, model results indicate that novel strategies could reduce building energy costs by 25% and CO{sub 2} emissions by 80%. Part I of II articles discusses model assumptions and methodology. Part II of II articles illustrates model results for a university campus town and generalizes these results for diverse communities.

Colella, Whitney G.

2010-06-01T23:59:59.000Z

136

FUTURE POWER GRID INITIATIVE Future Power Grid  

E-Print Network [OSTI]

FUTURE POWER GRID INITIATIVE Future Power Grid Control Paradigm OBJECTIVE This project integration & exploit the potential of distributed smart grid assets Significantly reduce the risk of advanced mathematical models, next- generation simulation and analytics capabilities for the power grid

137

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Courses Instructors NERC Continuing Education Power Operations Training Center You'll find the "Power" of learning at Southwestern's Power Operations Training Center (POTC). POTC's...

138

ELECTROCHEMICAL POWER FOR TRANSPORTATION  

E-Print Network [OSTI]

and Battery-Electric Powered Special Purpose Vehicles, SAELead-Acid Powered Electric Vehicles, Fifth Internationalmeantime, battery-powered electric vehicles can be expected

Cairns, Elton J.

2012-01-01T23:59:59.000Z

139

Solar powered desalination system  

E-Print Network [OSTI]

2008, uses concentrated solar power to split water. Figurethe main reason the potential for solar power is boundless.a clean energy source, solar power is inexhaustible, fairly

Mateo, Tiffany Alisa

2011-01-01T23:59:59.000Z

140

Power management system  

DOE Patents [OSTI]

A method of managing power resources for an electrical system of a vehicle may include identifying enabled power sources from among a plurality of power sources in electrical communication with the electrical system and calculating a threshold power value for the enabled power sources. A total power load placed on the electrical system by one or more power consumers may be measured. If the total power load exceeds the threshold power value, then a determination may be made as to whether one or more additional power sources is available from among the plurality of power sources. At least one of the one or more additional power sources may be enabled, if available.

Algrain, Marcelo C. (Peoria, IL); Johnson, Kris W. (Washington, IL); Akasam, Sivaprasad (Peoria, IL); Hoff, Brian D. (East Peoria, IL)

2007-10-02T23:59:59.000Z

Note: This page contains sample records for the topic "owner terra-gen power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Power oscillator  

DOE Patents [OSTI]

An oscillator includes an amplifier having an input and an output, and an impedance transformation network connected between the input of the amplifier and the output of the amplifier, wherein the impedance transformation network is configured to provide suitable positive feedback from the output of the amplifier to the input of the amplifier to initiate and sustain an oscillating condition, and wherein the impedance transformation network is configured to protect the input of the amplifier from a destructive feedback signal. One example of the oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.

Gitsevich, Aleksandr (Montgomery Village, MD)

2001-01-01T23:59:59.000Z

142

Solar powered desalination system  

E-Print Network [OSTI]

1.18: Largest PV Power Plants32 TableTable 1.18: Largest PV Power Plants 19 Power (MW) LocationWorld Canada, Sarnia PV power plant Sarnia (Ontario) Italy,

Mateo, Tiffany Alisa

2011-01-01T23:59:59.000Z

143

A Preliminary Analysis of the Economics of Using Distributed Energy as a Source of Reactive Power Supply  

SciTech Connect (OSTI)

A major blackout affecting 50 million people in the Northeast United States, where insufficient reactive power supply was an issue, and an increased number of filings made to the Federal Energy Regulatory Commission by generators for reactive power has led to a closer look at reactive power supply and compensation. The Northeastern Massachusetts region is one such area where there is an insufficiency in reactive power compensation. Distributed energy due to its close proximity to loads seems to be a viable option for solving any present or future reactive power shortage problems. Industry experts believe that supplying reactive power from synchronized distributed energy sources can be 2 to 3 times more effective than providing reactive support in bulk from longer distances at the transmission or generation level. Several technology options are available to supply reactive power from distributed energy sources such as small generators, synchronous condensers, fuel cells or microturbines. In addition, simple payback analysis indicates that investments in DG to provide reactive power can be recouped in less than 5 years when capacity payments for providing reactive power are larger than $5,000/kVAR and the DG capital and installation costs are lower than $30/kVAR. However, the current institutional arrangements for reactive power compensation present a significant barrier to wider adoption of distributed energy as a source of reactive power. Furthermore, there is a significant difference between how generators and transmission owners/providers are compensated for reactive power supplied. The situation for distributed energy sources is even more difficult, as there are no arrangements to compensate independent DE owners interested in supplying reactive power to the grid other than those for very large IPPs. There are comparable functionality barriers as well, as these smaller devices do not have the control and communications requirements necessary for automatic operation in response to local or system operators. There are no known distributed energy asset owners currently receiving compensation for reactive power supply or capability. However, there are some cases where small generators on the generation and transmission side of electricity supply have been tested and have installed the capability to be dispatched for reactive power support. Several concerns need to be met for distributed energy to become widely integrated as a reactive power resource. The overall costs of retrofitting distributed energy devices to absorb or produce reactive power need to be reduced. There needs to be a mechanism in place for ISOs/RTOs to procure reactive power from the customer side of the meter where distributed energy resides. Novel compensation methods should be introduced to encourage the dispatch of dynamic resources close to areas with critical voltage issues. The next phase of this research will investigate in detail how different options of reactive power producing DE can compare both economically and functionally with shunt capacitor banks. Shunt capacitor banks, which are typically used for compensating reactive power consumption of loads on distribution systems, are very commonly used because they are very cost effective in terms of capital costs. However, capacitor banks can require extensive maintenance especially due to their exposure to lightning at the top of utility poles. Also, it can be problematic to find failed capacitor banks and their maintenance can be expensive, requiring crews and bucket trucks which often requires total replacement. Another shortcoming of capacitor banks is the fact that they usually have one size at a location (typically sized as 300, 600, 900 or 1200kVAr) and thus don't have variable range as do reactive power producing DE, and cannot respond to dynamic reactive power needs. Additional future work is to find a detailed methodology to identify the hidden benefit of DE for providing reactive power and the best way to allocate the benefit among customers, utilities, transmission companies or RTOs.

Li, Fangxing [ORNL; Kueck, John D [ORNL; Rizy, D Tom [ORNL; King, Thomas F [ORNL

2006-04-01T23:59:59.000Z

144

New Hampshire Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

total reactors","Summer capacity (nw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Seabrook Unit 1","1,247","10,910",100.0,"NextEr...

145

Identification of Owners Project Value Interests  

E-Print Network [OSTI]

, schedule and engineering specifications that must be met; but there are other attributes of a project that are not always immediately evident; yet, when implemented, can add significant value. A delivered project that meets cost, schedule, engineering... ........................................................................ 27 Table 4 Description of Case Study Project ............................................................ 36 Table 5 Sensitivity of Meet the Cost Objective ..................................................... 37 Table 6 Sensitivity of Meet...

Gunby, Molly Gaynell

2011-02-22T23:59:59.000Z

146

TO: FILE MEMORANDUM SUBJECT: ALTERNATE OWNER(S)  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCTTO: FILE FROM: I .-FR0t-k 5: 'SUBJECT:

147

Dispute Resolution Process Utility Owner  

E-Print Network [OSTI]

State One Call (GSOC) for "Design Call" Provide "as-builts", marked plans or field locates MnDOT Utility? Underground Utility? Contact Minnesota Office of Pipeline Safety Minnesota Office of Pipeline Safety Step 1 - Utility Identification for Construction Investigate and take appropriate action up to and including

Minnesota, University of

148

Institutional owners and competitive rivalry  

E-Print Network [OSTI]

factors that make firms increasingly aware of competitive behavior (e.g., TMT heterogeneity and This dissertation follows the style of the Academy of Management Journal. 2 multimarket competition) and increasingly capable of initiating...

Connelly, Brian Lawrence

2008-10-10T23:59:59.000Z

149

Owner Valuation of Rabies Vaccination  

E-Print Network [OSTI]

similar protocols. Each campaign covered the same 3 city quarters, which had high- density dog populations an estimated 55,000 hu- man deaths each year; 23,750 (43%) of which occur in Africa (1). To eliminate rabies virus in dog populations, and thus reduce the risk for human rabies, the World Health Organization (WHO

Richner, Heinz

150

This journal is c the Owner Societies 2013 Phys. Chem. Chem. Phys., 2013, 15, 10841--10848 10841 Cite this: Phys.Chem.Chem.Phys.,2013,  

E-Print Network [OSTI]

inter- mittent energy sources, such as solar and wind power, the need for electrical energy storage (EES of the system scalability of all redox flow batteries associated with the separation of energy storage tanks and power packs, it offers additional advantages including the ability to fully charge and discharge without

Zhao, Tianshou

151

LIFE Power Plant Fusion Power Associates  

E-Print Network [OSTI]

LIFE Power Plant Fusion Power Associates December 14, 2011 Mike Dunne LLNL #12;NIf-1111-23714.ppt LIFE power plant 2 #12;LIFE delivery timescale NIf-1111-23714.ppt 3 #12;Timely delivery is enabled dpa) Removes ion threat and mitigates x-ray threat allows simple steel piping No need

152

Solar powered desalination system  

E-Print Network [OSTI]

of the electrical power output to the solar power input), aSolar Energy Calculator using Google Maps 23 Table 1.24: PV System Power Production Average Daily Irradiance (kWh/m2) Instillation Efficiency Labeled Efficiency Output

Mateo, Tiffany Alisa

2011-01-01T23:59:59.000Z

153

Concentrated Solar Thermoelectric Power  

Broader source: Energy.gov (indexed) [DOE]

CONCENTRATING SOLAR POWER PROGRAM REVIEW 2013 Concentrated Solar Thermoelectric Power Principal Investigator: Prof. Gang Chen Massachusetts Institute of Technology Cambridge, MA...

154

Power System Dispatcher  

Broader source: Energy.gov [DOE]

(See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Power System Operations, (J4800) Transmission Scheduling and...

155

Electrolytes for power sources  

DOE Patents [OSTI]

Electrolytes are disclosed for power sources, particularly alkaline and acidic power sources, comprising benzene polysulfonic acids and benzene polyphosphonic acids or salts of such acids. 7 figures.

Doddapaneni, N.; Ingersoll, D.

1995-01-03T23:59:59.000Z

156

TVA- Green Power Providers  

Broader source: Energy.gov [DOE]

Tennessee Valley Authority (TVA) and participating power distributors of TVA power offer a performance-based incentive program to homeowners and businesses for the installation of renewable...

157

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

POTC Home Courses Instructors NERC Continuing Education 2014 Power Operations Training Center Courses The 2014 Power Operations Training Center course schedule is currently being...

158

HOUSEHOLD SOLAR POWER SYSTEM.  

E-Print Network [OSTI]

?? Photovoltaic power has become one of the most popular research area in new energy field. In this report, the case of household solar power (more)

Jiang, He

2014-01-01T23:59:59.000Z

159

Concentrated Solar Power Generation.  

E-Print Network [OSTI]

??Solar power generation is the most promising technology to transfer energy consumption reliance from fossil fuel to renewable sources. Concentrated solar power generation is a (more)

Jin, Zhilei

2013-01-01T23:59:59.000Z

160

Solar powered desalination system  

E-Print Network [OSTI]

As a clean energy source, solar power is inexhaustible,renewables for energy sources, including solar power. Also,Requirements Energy Source Natural Gas Nuclear Solar Wind

Mateo, Tiffany Alisa

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "owner terra-gen power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

City of Klamath Falls, Oregon Geothermal Power Plant Feasibility Study  

SciTech Connect (OSTI)

The purpose of the Klamath Falls project is to demonstrate the effectiveness of a combined thermal distribution system and power generation facility. The city of Klamath Falls operates a geothermal district heating system which would appear to be an attractive opportunity to install a power generation system. Since the two wells have operated reliably and consistently over many years, no new sources or resource exploration would be necessary. It appears that it will cost more to construct, operate, maintain and amortize a proposed geothermal facility than the long?term value of the power it would produce. The success of a future project will be determined by whether utility power production costs will remain low and whether costs of construction, operations, or financing may be reduced. There are areas that it would be possible to reduce construction cost. More detailed design could enable the city to obtain more precise quotes for components and construction, resulting in reduction in contingency projections. The current level of the contingency for uncertainty of costs is between $200,000 and $300,000. Another key issue with this project appears to be operation cost. While it is expected that only minimal routine monitoring and operating expenses will occur, the cost of water supply and waste water disposal represents nearly one quarter of the value of the power. If the cost of water alone could be reduced, the project could become viable. In addition, the projected cost of insurance may be lower than estimated under a city?wide policy. No provisions have been made for utilization of federal tax incentives. If a transaction with a third-party owner/taxpayer were to be negotiated, perhaps the net cost of ownership could be reduced. It is recommended that these options be investigated to determine if the costs and benefits could be brought together. The project has good potential, but like many alternative energy projects today, they only work economically if the federal tax incentives come into play.

Brian Brown, PE; Stephen Anderson, PE, Bety Riley

2011-07-31T23:59:59.000Z

162

Assessment of Combined Heat and Power Premium Power Applications...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Assessment of Combined Heat and Power Premium Power Applications in California, September 2008 Assessment of Combined Heat and Power Premium Power Applications in California,...

163

Wind Powering America Webinar: Wind Power Economics: Past, Present...  

Broader source: Energy.gov (indexed) [DOE]

Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends November...

164

Power network analysis and optimization  

E-Print Network [OSTI]

hierarchical power distribution design with a power tree [T. Roy, Power distribution system design methodology andChen, 3D Power Distribution Network Co-design for Nanascale

Zhang, Wanping

2009-01-01T23:59:59.000Z

165

Evaluation of the Geothermal Public Power Utility Workshops in California  

SciTech Connect (OSTI)

The federal government devotes significant resources to educating consumers and businesses about geothermal energy. Yet little evidence exists for defining the kinds of information needed by the various audiences with specialized needs. This paper presents the results of an evaluation of the Geothermal Municipal Utility Workshops that presented information on geothermal energy to utility resource planners at customer-owned utilities in California. The workshops were sponsored by the Western Area Power Administration and the U.S. Department of Energy's GeoPowering the West Program and were intended to qualitatively assess the information needs of municipal utilities relative to geothermal energy and get feedback for future workshops. The utility workshop participants found the geothermal workshops to be useful and effective for their purposes. An important insight from the workshops is that utilities need considerable lead-time to plan a geothermal project. They need to know whether it is better to own a project or to purchase geothermal electricity from another nonutility owner. California customer-owned utilities say they do not need to generate more electricity to meet demand, but they do need to provide more electricity from renewable resources to meet the requirements of the state's Renewable Portfolio Standard.

Farhar, B. C.

2004-10-01T23:59:59.000Z

166

Power Series Introduction  

E-Print Network [OSTI]

Power Series 16.4 Introduction In this section we consider power series. These are examples of infinite series where each term contains a variable, x, raised to a positive integer power. We use the ratio test to obtain the radius of convergence R, of the power series and state the important result

Vickers, James

167

Dispersed power and renewables  

SciTech Connect (OSTI)

Distributed power generation and renewable energy sources are discussed: The following topics are discussed: distributed resources, distributed generation, commercialization requirements, biomass power, location of existing biomass feedstocks, biomass business plan components, North Carolina BGCC partnership, New York biomass co-firing project, alfalfa for power and feed, Hawaii Pioneer Mill LOI project, next steps for biomass, wind power activity, photovoltaic modules and arrays, lead-acid batteries, superconducting magnetic energy storage, fuel cells, and electric power industry trends.

O`Sullivan, J.B.

1995-12-31T23:59:59.000Z

168

Geothermal energy in the western United States and Hawaii: Resources and projected electricity generation supplies. [Contains glossary and address list of geothermal project developers and owners  

SciTech Connect (OSTI)

Geothermal energy comes from the internal heat of the Earth, and has been continuously exploited for the production of electricity in the United States since 1960. Currently, geothermal power is one of the ready-to-use baseload electricity generating technologies that is competing in the western United States with fossil fuel, nuclear and hydroelectric generation technologies to provide utilities and their customers with a reliable and economic source of electric power. Furthermore, the development of domestic geothermal resources, as an alternative to fossil fuel combustion technologies, has a number of associated environmental benefits. This report serves two functions. First, it provides a description of geothermal technology and a progress report on the commercial status of geothermal electric power generation. Second, it addresses the question of how much electricity might be competitively produced from the geothermal resource base. 19 figs., 15 tabs.

Not Available

1991-09-01T23:59:59.000Z

169

Environmental Assessment for Authorizing the Puerto Rico Electric Power Authority (PREPA) to allow Public Access to the Boiling Nuclear Superheat (BONUS) Reactor Building, Rincon, Puerto Rico  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) proposes to consent to a proposal by the Puerto Rico Electric Power Authority (PREPA) to allow public access to the Boiling Nuclear Superheat (BONUS) reactor building located near Rincon, Puerto Rico for use as a museum. PREPA, the owner of the BONUS facility, has determined that the historical significance of this facility, as one of only two reactors of this design ever constructed in the world, warrants preservation in a museum, and that this museum would provide economic benefits to the local community through increased tourism. Therefore, PREPA is proposing development of the BONUS facility as a museum.

N /A

2003-02-24T23:59:59.000Z

170

Active Power Control from Wind Power (Presentation)  

SciTech Connect (OSTI)

In order to keep the electricity grid stable and the lights on, the power system relies on certain responses from its generating fleet. This presentation evaluates the potential for wind turbines and wind power plants to provide these services and assist the grid during critical times.

Ela, E.; Brooks, D.

2011-04-01T23:59:59.000Z

171

High power fast ramping power supplies  

SciTech Connect (OSTI)

Hundred megawatt level fast ramping power converters to drive proton and heavy ion machines are under research and development at accelerator facilities in the world. This is a leading edge technology. There are several topologies to achieve this power level. Their advantages and related issues will be discussed.

Marneris,I.; Bajon, E.; Bonati, R.; Sandberg, J.; Roser, T.; Tsoupas, N.

2009-05-04T23:59:59.000Z

172

Incentive regulation of investor-owned nuclear power plants by public utility regulators. Revision 1  

SciTech Connect (OSTI)

The US Nuclear Regulatory Commission (NRC) periodically surveys the Federal Energy Regulatory Commission (FERC) and state regulatory commissions that regulate utility owners of nuclear power plants. The NRC is interested in identifying states that have established economic or performance incentive programs applicable to nuclear power plants, how the programs are being implemented, and in determining the financial impact of the programs on the utilities. The NRC interest stems from the fact that such programs have the potential to adversely affect the safety of nuclear power plants. The current report is an update of NUREG/CR-5975, Incentive Regulation of Investor-Owned Nuclear Power Plants by Public Utility Regulators, published in January 1993. The information in this report was obtained from interviews conducted with each state regulatory agency that administers an incentive program and each utility that owns at least 10% of an affected nuclear power plant. The agreements, orders, and settlements that form the basis for each incentive program were reviewed as required. The interviews and supporting documentation form the basis for the individual state reports describing the structure and financial impact of each incentive program.

McKinney, M.D.; Seely, H.E.; Merritt, C.R.; Baker, D.C. [Pacific Northwest Lab., Richland, WA (United States)

1995-04-01T23:59:59.000Z

173

Wind power forecasting : state-of-the-art 2009.  

SciTech Connect (OSTI)

Many countries and regions are introducing policies aimed at reducing the environmental footprint from the energy sector and increasing the use of renewable energy. In the United States, a number of initiatives have been taken at the state level, from renewable portfolio standards (RPSs) and renewable energy certificates (RECs), to regional greenhouse gas emission control schemes. Within the U.S. Federal government, new energy and environmental policies and goals are also being crafted, and these are likely to increase the use of renewable energy substantially. The European Union is pursuing implementation of its ambitious 20/20/20 targets, which aim (by 2020) to reduce greenhouse gas emissions by 20% (as compared to 1990), increase the amount of renewable energy to 20% of the energy supply, and reduce the overall energy consumption by 20% through energy efficiency. With the current focus on energy and the environment, efficient integration of renewable energy into the electric power system is becoming increasingly important. In a recent report, the U.S. Department of Energy (DOE) describes a model-based scenario, in which wind energy provides 20% of the U.S. electricity demand in 2030. The report discusses a set of technical and economic challenges that have to be overcome for this scenario to unfold. In Europe, several countries already have a high penetration of wind power (i.e., in the range of 7 to 20% of electricity consumption in countries such as Germany, Spain, Portugal, and Denmark). The rapid growth in installed wind power capacity is expected to continue in the United States as well as in Europe. A large-scale introduction of wind power causes a number of challenges for electricity market and power system operators who will have to deal with the variability and uncertainty in wind power generation when making their scheduling and dispatch decisions. Wind power forecasting (WPF) is frequently identified as an important tool to address the variability and uncertainty in wind power and to more efficiently operate power systems with large wind power penetrations. Moreover, in a market environment, the wind power contribution to the generation portofolio becomes important in determining the daily and hourly prices, as variations in the estimated wind power will influence the clearing prices for both energy and operating reserves. With the increasing penetration of wind power, WPF is quickly becoming an important topic for the electric power industry. System operators (SOs), generating companies (GENCOs), and regulators all support efforts to develop better, more reliable and accurate forecasting models. Wind farm owners and operators also benefit from better wind power prediction to support competitive participation in electricity markets against more stable and dispatchable energy sources. In general, WPF can be used for a number of purposes, such as: generation and transmission maintenance planning, determination of operating reserve requirements, unit commitment, economic dispatch, energy storage optimization (e.g., pumped hydro storage), and energy trading. The objective of this report is to review and analyze state-of-the-art WPF models and their application to power systems operations. We first give a detailed description of the methodologies underlying state-of-the-art WPF models. We then look at how WPF can be integrated into power system operations, with specific focus on the unit commitment problem.

Monteiro, C.; Bessa, R.; Miranda, V.; Botterud, A.; Wang, J.; Conzelmann, G.; Decision and Information Sciences; INESC Porto

2009-11-20T23:59:59.000Z

174

1632 | Phys. Chem. Chem. Phys., 2014, 16, 1632--1638 This journal is the Owner Societies 2014 Cite this: Phys.Chem.Chem.Phys.,  

E-Print Network [OSTI]

Cite this: Phys.Chem.Chem.Phys., 2014, 16, 1632 Comparison of hydrogen production and electrical power may present unique opportunities for energy production using RED are oxygen reduction, and hydro- gen intentionally used or optimized as a method for renewable hydrogen gas production. The potential for energy

175

2652 Phys. Chem. Chem. Phys., 2011, 13, 26522655 This journal is c the Owner Societies 2011 Cite this: Phys. Chem. Chem. Phys., 2011, 13, 26522655  

E-Print Network [OSTI]

of mesoporous carbon capsules as electrode materials in electrochemical double layer capacitors (EDLCs). Electrochemical double layer capacitors (EDLCs) are high power density energy storage devices that operate through surface area and pore structure are believed to play important roles in the ultimate performance of EDLCs

176

ELECTROCHEMICAL POWER FOR TRANSPORTATION  

E-Print Network [OSTI]

that is powered by an electric motor which is driven byPower module Reactor Electric motor Toyota EVlH electricdesign package including an electric motor and associated

Cairns, Elton J.

2012-01-01T23:59:59.000Z

177

Power Factor Improvement  

E-Print Network [OSTI]

Power factor control is a necessary ingredient in any successful Energy Management Program. Many companies are operating with power factors of 70% or less and are being penalized through the electrical utility bill. This paper starts by describing...

Viljoen, T. A.

1979-01-01T23:59:59.000Z

178

Residential Wind Power  

E-Print Network [OSTI]

This research study will explore the use of residential wind power and associated engineering and environmental issues. There is various wind power generating devices available to the consumer. The study will discuss the dependencies of human...

Willis, Gary

2011-12-16T23:59:59.000Z

179

Space Solar Power Program  

SciTech Connect (OSTI)

Information pertaining to the Space Solar Power Program is presented on energy analysis; markets; overall development plan; organizational plan; environmental and safety issues; power systems; space transportation; space manufacturing, construction, operations; design examples; and finance.

Arif, H.; Barbosa, H.; Bardet, C.; Baroud, M.; Behar, A.; Berrier, K.; Berthe, P.; Bertrand, R.; Bibyk, I.; Bisson, J.; Bloch, L.; Bobadilla, G.; Bourque, D.; Bush, L.; Carandang, R.; Chiku, T.; Crosby, N.; De Seixas, M.; De Vries, J.; Doll, S.; Dufour, F.; Eckart, P.; Fahey, M.; Fenot, F.; Foeckersperger, S.; Fontaine, J.E.; Fowler, R.; Frey, H.; Fujio, H.; Gasa, J.M.; Gleave, J.; Godoe, J.; Green, I.; Haeberli, R.; Hanada, T.; Ha

1992-08-01T23:59:59.000Z

180

Idaho Power- Net Metering  

Broader source: Energy.gov [DOE]

Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has developed a net...

Note: This page contains sample records for the topic "owner terra-gen power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Power production and ADS  

SciTech Connect (OSTI)

We describe the power production process in Accelerator Driven Sub-critical systems employing Thorium-232 and Uranium-238 as fuel and examine the demands on the power of the accelerator required.

Raja, Rajendran; /Fermilab

2010-03-01T23:59:59.000Z

182

Body powered thermoelectric systems  

E-Print Network [OSTI]

Great interest exists for and progress has be made in the effective utilization of the human body as a possible power supply in hopes of powering such applications as sensors and continuously monitoring medical devices ...

Settaluri, Krishna Tej

2012-01-01T23:59:59.000Z

183

Method for evaluating the technical state of boilers and piping in thermal power plants  

SciTech Connect (OSTI)

An approach for evaluating the current technical state of thermal equipment in thermal power plants is discussed. A system of parameters and corresponding criteria are developed for the technical state of groups of essential components of boilers and piping. Ascale for evaluation of safety factors is proposed in terms of the relationship between state parameters and the corresponding criteria. Analytic expressions are given for an approximate evaluation of the maximum lifetime limit for operation of an object in terms of an integral safety factor and an evaluation of this type is illustrated for the case of the live steam pipeline in a 300-MW unit. An algorithm is set up for actions to be taken by equipment owners in organizing monitoring of the technical state of the equipment.

Grin', E. A. [JSC 'All-Russian Thermal Engineering Institute' (JSC 'VTI') (Russian Federation); Stepanov, V. V.; Sarkisyan, V. A.; Babkina, R. I. [JSC 'All-Russian Thermal Engineering Institute' (JSC 'VTI') (Russian Federation)

2012-01-15T23:59:59.000Z

184

Legal obstacles and incentives to the development of small scale hydroelectric power in Ohio  

SciTech Connect (OSTI)

The legal and institutional obstacles to the development of small-scale hydroelectric energy at the state level is described. The Federal government also exercises extensive regulatory authority in the area. The introductory section examines the regulatory system from the standpoint of the appropriate legal doctrine, the law of pre-emption, application of the law to the case of hydroelectric development, and concludes with an inquiry into the practical use of the doctrine by the FERC. A developer must obtain title or interest to a streambed from the proper riparian owners. Ohio provides assistance to an electric company in this undertaking by providing it with the power of eminent domain in the event it is unable to reach a purchase agreement with the riparian proprietors. The Ohio Water Law is discussed in detail, followed by discussions: Licensing, Permitting, and Review Procedures; Indirect Considerations; Ohio Public Utilities Commission; Ohio Department of Energy; Incidental Provision; and Financial Considerations.

None,

1980-05-01T23:59:59.000Z

185

Soldier power. Battery charging.  

E-Print Network [OSTI]

hours runtime at full load 50 W #12; (%) (kW) 300 1-5 Siemens-Power 30 (hr) 10,000 Siemens 300 Acumentrics 80 (mW/cm2) 600 400 Siemens-Power 85 (hr) 70,000 3,000 Siemens-Power 15 () 500 25 Siemens-Power 60 >2013 - , Bloom, MHI, Rolls Royce 6 #12; SOFCSOFC * (LSCF ) ( Ag

Hong, Deog Ki

186

ELECTROCHEMICAL POWER FOR TRANSPORTATION  

E-Print Network [OSTI]

resistant material for contact with s Low-cost seals Low-cost electrolyte Specific power is low Thermal

Cairns, Elton J.

2012-01-01T23:59:59.000Z

187

Concentrating Solar Power  

SciTech Connect (OSTI)

Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

Not Available

2008-09-01T23:59:59.000Z

188

This journal is c the Owner Societies 2013 Phys. Chem. Chem. Phys., 2013, 15, 489--496 489 Cite this: Phys. Chem. Chem. Phys.,  

E-Print Network [OSTI]

FeyO3?d: a first principles study Hepeng Ding,a Anil V. Virkar,a Meilin Liub and Feng Liu*a Based. 1. Introduction Solid oxide fuel cells (SOFCs) have the potential to be a clean and efficient power and engineering challenges.1 To lower the cost of SOFC technology (e.g., B$150 kW?1 by 20152 ) and improve cell

Liu, Feng

189

Green Power Inverter Prvningsrapport  

E-Print Network [OSTI]

Green Power Inverter Prøvningsrapport SolenergiCentret Søren Poulsen Ivan Katic Oktober 2004 #12;Green Power Inverter målerapport.doc SolenergiCentret - 04-03-2005 2 Forord Nærværende rapport indeholder Teknologisk Instituts bidrag til målinger i forbindelse med PSO projektet "Green Power Inverter

190

Power Plant Cycling Costs  

SciTech Connect (OSTI)

This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

2012-07-01T23:59:59.000Z

191

Power/Privilege Definitions  

E-Print Network [OSTI]

Major; People's Institute for Survival and Beyond, New Orleans 2. Power is the ability to define reality and to convince other people that it is their definition. ~ Dr. Wade Nobles 3. Power is the capacity to act. 4 different cultures. [JL] RACISM Racism is race prejudice plus power [See Racist]. People's Institute calls

Sheridan, Jennifer

192

Power Dancers Audition Packet  

E-Print Network [OSTI]

Power Dancers Dance Team Audition Packet September 8-10, 2014 #12;Power Dancers Dance Team Dear service to their school with the support of the faculty, administration, and other groups on campus, but they also provide a source of great school spirit to UT Dallas. Power Dancers provides a real opportunity

O'Toole, Alice J.

193

Power Dancers Audition Packet  

E-Print Network [OSTI]

Power Dancers Dance Team Audition Packet September 9-11, 2013 #12;Power Dancers Dance Team Dear service to their school with the support of the faculty, administration, and other groups on campus, but they also provide a source of great school spirit to UT Dallas. Power Dancers provides a real opportunity

O'Toole, Alice J.

194

Power Dancers Audition Packet  

E-Print Network [OSTI]

Power Dancers Dance Team Audition Packet September 10 & 12, 2012 #12;Power Dancers Dance Team Dear service to their school with the support of the faculty, administration, and other groups on campus, but they also provide a source of great school spirit to UT Dallas. Power Dancers provides a real opportunity

O'Toole, Alice J.

195

How Power is Lost: Illusions of Alliance Among the Powerful  

E-Print Network [OSTI]

while most accounts of power loss focus on ethical breachesPower Loss .1. Proposed Model of Power Loss Figure 2. Social Monitoring

Brion, Sebastien

2010-01-01T23:59:59.000Z

196

Energy Storage & Power Electronics 2008 Peer Review - Power Electronic...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Power Electronics (PE) Systems Presentations Energy Storage & Power Electronics 2008 Peer Review - Power Electronics (PE) Systems Presentations The 2008 Peer Review Meeting for the...

197

Karnataka Power Corporation Limited and National Thermal Power...  

Open Energy Info (EERE)

Limited and National Thermal Power Corporation JV Jump to: navigation, search Name: Karnataka Power Corporation Limited and National Thermal Power Corporation JV Place: India...

198

Multimode power processor  

DOE Patents [OSTI]

In one embodiment, a power processor which operates in three modes: an inverter mode wherein power is delivered from a battery to an AC power grid or load; a battery charger mode wherein the battery is charged by a generator; and a parallel mode wherein the generator supplies power to the AC power grid or load in parallel with the battery. In the parallel mode, the system adapts to arbitrary non-linear loads. The power processor may operate on a per-phase basis wherein the load may be synthetically transferred from one phase to another by way of a bumpless transfer which causes no interruption of power to the load when transferring energy sources. Voltage transients and frequency transients delivered to the load when switching between the generator and battery sources are minimized, thereby providing an uninterruptible power supply. The power processor may be used as part of a hybrid electrical power source system which may contain, in one embodiment, a photovoltaic array, diesel engine, and battery power sources.

O'Sullivan, George A. (Pottersville, NJ); O'Sullivan, Joseph A. (St. Louis, MO)

1999-01-01T23:59:59.000Z

199

Multimode power processor  

DOE Patents [OSTI]

In one embodiment, a power processor which operates in three modes: an inverter mode wherein power is delivered from a battery to an AC power grid or load; a battery charger mode wherein the battery is charged by a generator; and a parallel mode wherein the generator supplies power to the AC power grid or load in parallel with the battery. In the parallel mode, the system adapts to arbitrary non-linear loads. The power processor may operate on a per-phase basis wherein the load may be synthetically transferred from one phase to another by way of a bumpless transfer which causes no interruption of power to the load when transferring energy sources. Voltage transients and frequency transients delivered to the load when switching between the generator and battery sources are minimized, thereby providing an uninterruptible power supply. The power processor may be used as part of a hybrid electrical power source system which may contain, in one embodiment, a photovoltaic array, diesel engine, and battery power sources. 31 figs.

O'Sullivan, G.A.; O'Sullivan, J.A.

1999-07-27T23:59:59.000Z

200

EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility...  

Broader source: Energy.gov (indexed) [DOE]

6: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI May 3, 2010 EA-1726: Final...

Note: This page contains sample records for the topic "owner terra-gen power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Dynamic Reactive Power Control of Isolated Power Systems  

E-Print Network [OSTI]

This dissertation presents dynamic reactive power control of isolated power systems. Isolated systems include MicroGrids in islanded mode, shipboard power systems operating offshore, or any other power system operating in islanded mode intentionally...

Falahi, Milad

2012-10-03T23:59:59.000Z

202

Power Quality Aspects in a Wind Power Plant: Preprint  

SciTech Connect (OSTI)

Although many operational aspects affect wind power plant operation, this paper focuses on power quality. Because a wind power plant is connected to the grid, it is very important to understand the sources of disturbances that affect the power quality.

Muljadi, E.; Butterfield, C. P.; Chacon, J.; Romanowitz, H.

2006-01-01T23:59:59.000Z

203

License Stewardship Approach to Commercial Nuclear Power Plant Decommissioning  

SciTech Connect (OSTI)

The paper explores both the conceptual approach to decommissioning commercial nuclear facilities using a license stewardship approach as well as the first commercial application of this approach. The license stewardship approach involves a decommissioning company taking control of a site and the 10 CFR 50 License in order to complete the work utilizing the established trust fund. In conclusion: The license stewardship approach is a novel way to approach the decommissioning of a retired nuclear power plant that offers several key advantages to all parties. For the owner and regulators, it provides assurance that the station will be decommissioned in a safe, timely manner. Ratepayers are assured that the work will be completed for the price they already have paid, with the decommissioning contractor assuming the financial risk of decommissioning. The contractor gains control of the assets and liabilities, the license, and the decommissioning fund. This enables the decommissioning contractor to control their work and eliminates redundant layers of management, while bringing more focus on achieving the desired end state - a restored site. (authors)

Daly, P.T.; Hlopak, W.J. [Commercial Services Group, EnergySolutions 1009 Commerce Park, Oak Ridge, TN (United States)

2008-07-01T23:59:59.000Z

204

Southeastern Power Administration | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Southeastern Power Administration Southeastern Power Administration Southeastern Power Administration View All Maps Addthis...

205

Alternative Energy Technologies Solar Power  

E-Print Network [OSTI]

#12;Alternative Energy Technologies Solar Power Photovoltaics Concentrating Solar Power (CSP) Power;Concentrating Solar Power (CSP) Reflector material is Aluminum or Silver Tube material ..... Several possible ............... Mexico, Canada, Peru Alumina ............Guinea, Brazil, Australia, Jamaica Manganese ....... S. Africa

Scott, Christopher

206

Peak power ratio generator  

DOE Patents [OSTI]

A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

Moyer, Robert D. (Albuquerque, NM)

1985-01-01T23:59:59.000Z

207

Entangling Power of Permutations  

E-Print Network [OSTI]

The notion of entangling power of unitary matrices was introduced by Zanardi, Zalka and Faoro [PRA, 62, 030301]. We study the entangling power of permutations, given in terms of a combinatorial formula. We show that the permutation matrices with zero entangling power are, up to local unitaries, the identity and the swap. We construct the permutations with the minimum nonzero entangling power for every dimension. With the use of orthogonal latin squares, we construct the permutations with the maximum entangling power for every dimension. Moreover, we show that the value obtained is maximum over all unitaries of the same dimension, with possible exception for 36. Our result enables us to construct generic examples of 4-qudits maximally entangled states for all dimensions except for 2 and 6. We numerically classify, according to their entangling power, the permutation matrices of dimension 4 and 9, and we give some estimates for higher dimensions.

Lieven Clarisse; Sibasish Ghosh; Simone Severini; Anthony Sudbery

2005-04-11T23:59:59.000Z

208

Power transaction issues in deregulated power systems  

E-Print Network [OSTI]

numbers Slack Bus IVI, 0 P;, Q; Gen. Bus Q 0 2, 3, 4, . . . , l+NPV Load Bus Pu Qi 2+NPV, 3+NPV, . . . , N Using the Kirchhoff's current law at a given node, the real and reactive power balance equations are written at each bus of the system: n P... ~ 822 821 827 9!, '7 Fig. 4. IEEE 30 bus system. 11 Figure 5 shows the bus dialog box for bus 13, where a 10MW increase in real power generation is entered. 1 IOIOOO 1QOtKMCO QOQINIO QOXCOO O'I OOXI -0 DDDOCO tg. . us ata. Step 1. Let us...

Roycourt, Henrik

2000-01-01T23:59:59.000Z

209

Electric power annual 1993  

SciTech Connect (OSTI)

This report presents a summary of electric power industry statistics at national, regional, and state levels: generating capability and additions, net generation, fossil-fuel statistics, retail sales and revenue, finanical statistics, environmental statistics, power transactions, demand side management, nonutility power producers. Purpose is to provide industry decisionmakers, government policymakers, analysts, and the public with historical data that may be used in understanding US electricity markets.

Not Available

1994-12-08T23:59:59.000Z

210

Interleaved power converter  

DOE Patents [OSTI]

A power converter architecture interleaves full bridge converters to alleviate thermal management problems in high current applications, and may, for example, double the output power capability while reducing parts count and costs. For example, one phase of a three phase inverter is shared between two transformers, which provide power to a rectifier such as a current doubler rectifier to provide two full bridge DC/DC converters with three rather than four high voltage inverter legs.

Zhu, Lizhi (Canton, MI)

2007-11-13T23:59:59.000Z

211

Trumping and Power Majorization  

E-Print Network [OSTI]

Majorization is a basic concept in matrix theory that has found applications in numerous settings over the past century. Power majorization is a more specialized notion that has been studied in the theory of inequalities. On the other hand, the trumping relation has recently been considered in quantum information, specifically in entanglement theory. We explore the connections between trumping and power majorization. We prove an analogue of Rado's theorem for power majorization and consider a number of examples.

David W. Kribs; Rajesh Pereira; Sarah Plosker

2012-10-24T23:59:59.000Z

212

Nuclear power browning out  

SciTech Connect (OSTI)

When the sad history of nuclear power is written, April 26, 1986, will be recorded as the day the dream died. The explosion at the Chernobyl plant was a terrible human tragedy- and it delivered a stark verdict on the hope that nuclear power will one day replace fossil fuel-based energy systems. Nuclear advocates may soldier on, but a decade after Chernobyl it is clear that nuclear power is no longer a viable energy option for the twenty-first century.

Flavin, C.; Lenssen, N.

1996-05-01T23:59:59.000Z

213

Power Right. Power Smart. Efficient Computer Power Supplies and Monitors. |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy from Elizabeth C. PPortland DataBoard -Energy SolutionsPower

214

Balancing of Wind Power.  

E-Print Network [OSTI]

?? In the future, renewable energy share, especially wind power share, in electricity generation is expected to increase. Due to nature of the wind, wind (more)

lker, Muhammed Akif

2011-01-01T23:59:59.000Z

215

Solar Power Purchase Agreements  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Power Purchase Agreements Brian Millberg | Energy Manager, City of Minneapolis Direct Ownership * Financial: Even at 3kW installed cost, simple payback is 18 years (initial...

216

Concentrated Solar Thermoelectric Power  

Broader source: Energy.gov [DOE]

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 2325, 2013 near Phoenix, Arizona.

217

Critical pulse power components  

SciTech Connect (OSTI)

Critical components for pulsed power conditioning systems will be reviewed. Particular emphasis will be placed on those components requiring significant development efforts. Capacitors, for example, are one of the weakest elements in high-power pulsed systems, especially when operation at high-repetition frequencies for extended periods of time are necessary. Switches are by far the weakest active components of pulse power systems. In particular, opening switches are essentially nonexistent for most applications. Insulaton in all systems and components requires development and improvement. Efforts under way in technology base development of pulse power components will be discussed.

Sarjeant, W.J.; Rohwein, G.J.

1981-01-01T23:59:59.000Z

218

Municipal Electric Power (Minnesota)  

Broader source: Energy.gov [DOE]

This section describes energy procurement for local utilities operating in Minnesota and provides a means for Minnesota cities to construct and operate hydroelectric power plants. The statute gives...

219

Power Supply Negotiations  

Office of Environmental Management (EM)

Southeastern Federal Power Alliance Incremental Decay in Energy March 11, 2014 2 Incremental Decay in Energy Hydropower customers observations from our review of the Buford...

220

Alabama Power- UESC Activities  

Broader source: Energy.gov [DOE]

Presentationgiven at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meetingdiscusses Alabama Power and its utility energy service contract (UESC) projects and activities.

Note: This page contains sample records for the topic "owner terra-gen power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Energy 101: Hydroelectric Power  

Office of Energy Efficiency and Renewable Energy (EERE)

Learn how hydroelectric power, or hydropower, captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses.

222

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Characterization (SciChar) Workshop Characterization Capabilities Battery Questions Neutron Advantages * Scattering Power unrelated to Z - Many low Z elements have high cross...

223

PowerPoint Presentation  

Broader source: Energy.gov (indexed) [DOE]

DOE Energy Storage & Power Electronics Research Programs September 29 - 30, 2008 Marcelo Schupbach, Ph.D. Chief Technical Officer APEI, Inc. 535 Research Center Blvd. Fayetteville,...

224

PowerPoint Presentation  

Broader source: Energy.gov (indexed) [DOE]

Systems Program 1 DOE Energy Storage & Power Electronics Research Programs October 8, 2009 Marcelo Schupbach, Ph.D. Chief Technology Officer APEI, Inc. 535 Research Center Blvd....

225

European Space Power Conference  

SciTech Connect (OSTI)

To support the Space Exploration Initiative (SEI), a study was performed to investigate power system alternatives for the rover vehicles and servicers that were subsequently generated for each of these rovers and servicers, candidate power sources incorporating various power generation and energy storage technologies were identified. The technologies were those believed most appropriate to the SEI missions, and included solar, electrochemical, and isotope systems. The candidates were characterized with respect to system mass, deployed area, and volume. For each of the missions a preliminary selection was made. Results of this study depict the available power sources in light of mission requirements as they are currently defined.

Bents, D.J.; Kohout, L.L.; Mckissock, B.I.; Rodriguez, C.D.; Withrow, C.A.; Colozza, A.; Hanlon, J.C.; Schmitz, P.C.

1991-01-01T23:59:59.000Z

226

Wide Bandgap Power Electronics  

Broader source: Energy.gov (indexed) [DOE]

- Acquiring new prototype devices. - Building new gate drivers and test set- ups for power switches with fast switching times * Total project funding - DOE 100% * FY08 - 432K *...

227

Application Power Signature Analysis  

SciTech Connect (OSTI)

The high-performance computing (HPC) community has been greatly concerned about energy efficiency. To address this concern, it is essential to understand and characterize the electrical loads of HPC applications. In this work, we study whether HPC applications can be distinguished by their power-consumption patterns using quantitative measures in an automatic manner. Using a collection of 88 power traces from 4 different systems, we find that basic statistical measures do a surprisingly good job of summarizing applications' distinctive power behavior. Moreover, this study opens up a new area of research in power-aware HPC that has a multitude of potential applications.

Hsu, Chung-Hsing [ORNL] [ORNL; Combs, Jacob [Sonoma State University] [Sonoma State University; Nazor, Jolie [Sonoma State University] [Sonoma State University; Santiago, Fabian [Sonoma State University] [Sonoma State University; Thysell, Rachelle [Sonoma State University] [Sonoma State University; Rivoire, Suzanne [Sonoma State University] [Sonoma State University; Poole, Stephen W [ORNL] [ORNL

2014-01-01T23:59:59.000Z

228

Contemporary Trends power point  

E-Print Network [OSTI]

Power point slides guiding presentation on closing the gap between political acceptability and administrative sustainability as a prerequisite for effective governance. Leadership challenges are described

Nalbandian, John

2013-02-01T23:59:59.000Z

229

Solar power satellites.  

E-Print Network [OSTI]

??During energy crisis at the end of the Sixties, a new idea to exploit solar energy arose: Solar Power Satellites. These satellites need a huge (more)

Palmas, Alessandro

2013-01-01T23:59:59.000Z

230

CIBO's Energy Efficiency Handbook for Steam Power Systems  

E-Print Network [OSTI]

The Council of Industrial Boiler Owners (CIBO) has developed a handbook to help boiler operators get the best performance from their industrial steam systems. This energy efficiency handbook takes a comprehensive look at the boiler and steam system...

Bessette, R. D.

231

Power, Media & Montesquieu. New forms of public power and the balance of power  

E-Print Network [OSTI]

SUMMARY Power, Media & Montesquieu. New forms of public power and the balance of power are organized it is crucial to restrain the power that the state exerts on its citizens. The state has three functions, commonly known as powers: the legislative, executive and judicial powers. This three

van den Brink, Jeroen

232

NUCLEAR POWER in CALIFORNIA  

E-Print Network [OSTI]

NUCLEAR POWER in CALIFORNIA: 2007 STATUS REPORT CALIFORNIA ENERGY COMMISSION October 2007 CEC-100, California Contract No. 700-05-002 Prepared For: California Energy Commission Barbara Byron, Senior Nuclear public workshops on nuclear power. The Integrated Energy Policy Report Committee, led by Commissioners

233

The Icelandic Power Situation  

E-Print Network [OSTI]

energy attracts power intensive industry to Iceland Households use only 5% 90% of district heating ensured · Feasible to sell excess energy · Takes advantage of the flexiblity of hydropower · Energy with low cost geothermal energy 80% 5% 15% Households Other users Power intensive industries #12;Future

Karlsson, Brynjar

234

Purchasing Renewable Power  

Broader source: Energy.gov [DOE]

Federal agencies can purchase renewable power or renewable energy certificates (RECs) from a utility or other organization to meet Federal renewable energy requirements. Renewable power and RECs are good choices for facilities where on-site projects may be difficult or capital budgets are limited.

235

Power module assembly  

DOE Patents [OSTI]

A power module assembly of the type suitable for deployment in a vehicular power inverter, wherein the power inverter has a grounded chassis, is provided. The power module assembly comprises a conductive base layer electrically coupled to the chassis, an insulating layer disposed on the conductive base layer, a first conductive node disposed on the insulating layer, a second conductive node disposed on the insulating layer, wherein the first and second conductive nodes are electrically isolated from each other. The power module assembly also comprises a first capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the first conductive node, and further comprises a second capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the second conductive node.

Campbell, Jeremy B. (Torrance, CA); Newson, Steve (Redondo Beach, CA)

2011-11-15T23:59:59.000Z

236

Tutorial of Wind Turbine Control for Supporting Grid Frequency through Active Power Control: Preprint  

SciTech Connect (OSTI)

As wind energy becomes a larger portion of the world's energy portfolio and wind turbines become larger and more expensive, wind turbine control systems play an ever more prominent role in the design and deployment of wind turbines. The goals of traditional wind turbine control systems are maximizing energy production while protecting the wind turbine components. As more wind generation is installed there is an increasing interest in wind turbines actively controlling their power output in order to meet power setpoints and to participate in frequency regulation for the utility grid. This capability will be beneficial for grid operators, as it seems possible that wind turbines can be more effective at providing some of these services than traditional power plants. Furthermore, establishing an ancillary market for such regulation can be beneficial for wind plant owner/operators and manufacturers that provide such services. In this tutorial paper we provide an overview of basic wind turbine control systems and highlight recent industry trends and research in wind turbine control systems for grid integration and frequency stability.

Aho, J.; Buckspan, A.; Laks, J.; Fleming, P.; Jeong, Y.; Dunne, F.; Churchfield, M.; Pao, L.; Johnson, K.

2012-03-01T23:59:59.000Z

237

FUTURE POWER GRID INITIATIVE GridOPTICSTM Power Networking,  

E-Print Network [OSTI]

FUTURE POWER GRID INITIATIVE GridOPTICSTM Power Networking, Equipment, and Technology (powerNET) Testbed OBJECTIVE A lot of interest in research, improvements, and testing surrounds the power grid to these activities. Specifically, » power system equipment is expensive and has a high knowledge barrier

238

Northwest Power and Conservation Council Fifth Northwest Power Plan  

E-Print Network [OSTI]

Northwest Power and Conservation Council Fifth Northwest Power Plan Statement of Basis and Purpose for the Fifth Power Plan and Response to Comments on the Draft Fifth Power Plan February 2005 #12;I. Background.........................................................................................................................................3 B. Developing the Fifth Power Plan

239

The Power of Non-Uniform Wireless Power  

E-Print Network [OSTI]

The Power of Non-Uniform Wireless Power ETH Zurich ­ Distributed Computing Group Magnus M-To-Interference-Plus-Noise Ratio (SINR) Formula Minimum signal- to-interference ratio Power level of sender u Path-loss exponent Noise Distance between two nodes Received signal power from sender Received signal power from all other

240

TEP Power Partners Project [Tucson Electric Power  

SciTech Connect (OSTI)

The Arizona Governors Office of Energy Policy, in partnership with Tucson Electric Power (TEP), Tendril, and Next Phase Energy (NPE), formed the TEP Power Partners pilot project to demonstrate how residential customers could access their energy usage data and third party applications using data obtained from an Automatic Meter Reading (AMR) network. The project applied for and was awarded a Smart Grid Data Access grant through the U.S. Department of Energy. The project participants goal for Phase I is to actively engage 1,700 residential customers to demonstrate sustained participation, reduction in energy usage (kWh) and cost ($), and measure related aspects of customer satisfaction. This Demonstration report presents a summary of the findings, effectiveness, and customer satisfaction with the 15-month TEP Power Partners pilot project. The objective of the program is to provide residential customers with energy consumption data from AMR metering and empower these participants to better manage their electricity use. The pilot recruitment goals included migrating 700 existing customers from the completed Power Partners Demand Response Load Control Project (DRLC), and enrolling 1,000 new participants. Upon conclusion of the project on November 19, 2013: ? 1,390 Home Area Networks (HANs) were registered. ? 797 new participants installed a HAN. ? Survey respondents are satisfied with the program and found value with a variety of specific program components. ? Survey respondents report feeling greater control over their energy usage and report taking energy savings actions in their homes after participating in the program. ? On average, 43 % of the participants returned to the web portal monthly and 15% returned weekly. ? An impact evaluation was completed by Opinion Dynamics and found average participant savings for the treatment period1 to be 2.3% of their household use during this period.2 In total, the program saved 163 MWh in the treatment period of 2013.

None

2013-11-19T23:59:59.000Z

Note: This page contains sample records for the topic "owner terra-gen power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Wind power generating system  

SciTech Connect (OSTI)

Normally feathered propeller blades of a wind power generating system unfeather in response to the actuation of a power cylinder that responds to actuating signals. Once operational, the propellers generate power over a large range of wind velocities. A maximum power generation design point signals a feather response of the propellers so that once the design point is reached no increase in power results, but the system still generates power. At wind speeds below this maximum point, propeller speed and power output optimize to preset values. The propellers drive a positive displacement pump that in turn drives a positive displacement motor of the swash plate type. The displacement of the motor varies depending on the load on the system, with increasing displacement resulting in increasing propeller speeds, and the converse. In the event of dangerous but not clandestine problems developing in the system, a control circuit dumps hydraulic pressure from the unfeathering cylinder resulting in a predetermined, lower operating pressure produced by the pump. In the event that a problem of potentially cladestine consequence arises, the propeller unfeathering cylinder immediately unloads. Upon startup, a bypass around the motor is blocked, applying a pressure across the motor. The motor drives the generator until the generator reaches a predetermined speed whereupon the generator is placed in circuit with a utility grid and permitted to motor up to synchronous speed.

Schachle, Ch.; Schachle, E. C.; Schachle, J. R.; Schachle, P. J.

1985-03-12T23:59:59.000Z

242

Electric power annual 1992  

SciTech Connect (OSTI)

The Electric Power Annual presents a summary of electric utility statistics at national, regional and State levels. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts and the general public with historical data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. ``The US Electric Power Industry at a Glance`` section presents a profile of the electric power industry ownership and performance, and a review of key statistics for the year. Subsequent sections present data on generating capability, including proposed capability additions; net generation; fossil-fuel statistics; retail sales; revenue; financial statistics; environmental statistics; electric power transactions; demand-side management; and nonutility power producers. In addition, the appendices provide supplemental data on major disturbances and unusual occurrences in US electricity power systems. Each section contains related text and tables and refers the reader to the appropriate publication that contains more detailed data on the subject matter. Monetary values in this publication are expressed in nominal terms.

Not Available

1994-01-06T23:59:59.000Z

243

Foucault's Ethics of Power  

E-Print Network [OSTI]

cally remarks , there is no 'headquarters that presides over the rationality" of power (HSl 125). Rather, strategies of power are nonsubjective insofar as they arc anonymous and operate indepen dent ly of the part icular people who wil l ingly or unwi...Foucault's Ethics of Power Kirk Wolf Delia College 1. I n t r o d u c t i o n Since Foucaull 's death in 19K4, his interpreters have generally located his importance in his genealogical critiques and in his phi losophy ofpower. On the one hand...

Wolf, Kirk

244

Computational power of correlations  

E-Print Network [OSTI]

We study the intrinsic computational power of correlations exploited in measurement-based quantum computation. By defining a general framework the meaning of the computational power of correlations is made precise. This leads to a notion of resource states for measurement-based \\textit{classical} computation. Surprisingly, the Greenberger-Horne-Zeilinger and Clauser-Horne-Shimony-Holt problems emerge as optimal examples. Our work exposes an intriguing relationship between the violation of local realistic models and the computational power of entangled resource states.

Janet Anders; Dan E. Browne

2009-02-05T23:59:59.000Z

245

Power control system and method  

DOE Patents [OSTI]

A power system includes an energy harvesting device, a battery coupled to the energy harvesting device, and a circuit coupled to the energy harvesting device and the battery. The circuit is adapted to deliver power to a load by providing power generated by the energy harvesting device to the load without delivering excess power to the battery and to supplement the power generated by the energy harvesting device with power from the battery if the power generated by the energy harvesting device is insufficient to fully power the load. A method of operating the power system is also provided.

Steigerwald, Robert Louis (Burnt Hills, NY) [Burnt Hills, NY; Anderson, Todd Alan (Niskayuna, NY) [Niskayuna, NY

2008-02-19T23:59:59.000Z

246

Power control system and method  

DOE Patents [OSTI]

A power system includes an energy harvesting device, a battery coupled to the energy harvesting device, and a circuit coupled to the energy harvesting device and the battery. The circuit is adapted to deliver power to a load by providing power generated by the energy harvesting device to the load without delivering excess power to the battery and to supplement the power generated by the energy harvesting device with power from the battery if the power generated by the energy harvesting device is insufficient to fully power the load. A method of operating the power system is also provided.

Steigerwald, Robert Louis; Anderson, Todd Alan

2006-11-07T23:59:59.000Z

247

POWER CENTRALIZED SEMIGROUPS PRIMOZ MORAVEC  

E-Print Network [OSTI]

POWER CENTRALIZED SEMIGROUPS PRIMOZ MORAVEC Abstract. A semigroup is said to be power centralized if for every pair of elements x and y there exists a power of x commuting with y. The structure of power centralized groups and semigroups is investigated. In particular, we characterize 0-simple power centralized

248

High Power, Linear CMOS Power Amplifier for WLAN Applications /  

E-Print Network [OSTI]

Tracking OFDM Power Amplier, IEEE Journal of Solid-StateGSM/GPRS CMOS Power Ampli?er, IEEE Journal of Solid-StateEnded Switching Power Ampli?es, IEEE Journal of Solid-State

Afsahi, Ali

2013-01-01T23:59:59.000Z

249

Wind Power in Alaska  

Broader source: Energy.gov [DOE]

In the past few years wind power has become more and more prevalent across Alaska, with big turbines sprouting up in all parts of the state. Sponsored by the Renewable Energy Alaska Project, event...

250

Pig Poop Power  

E-Print Network [OSTI]

Broadcast Transcript: What could be more fitting in the Year of the Pig than to turn to the pig for power? And that's what is happening here in South Korea. In an effort to develop environmentally friendly, renewable energy ...

Hacker, Randi; Tsutsui, William

2007-04-11T23:59:59.000Z

251

Mesofluidic magnetohydrodynamic power generation  

E-Print Network [OSTI]

Much of the previous research into magnetohydrodynamics has involved large-scale systems. This thesis explores the miniaturization and use of devices to convert the power dissipated within an expanding gas flow into ...

Fucetola, Jay J

2012-01-01T23:59:59.000Z

252

Glucose-powered neuroelectronics  

E-Print Network [OSTI]

A holy grail of bioelectronics is to engineer biologically implantable systems that can be embedded without disturbing their local environments, while harvesting from their surroundings all of the power they require. As ...

Rapoport, Benjamin Isaac

2011-01-01T23:59:59.000Z

253

Renewable Power Procurement Policy  

Broader source: Energy.gov [DOE]

New York Governor George Pataki signed Executive Order No. 111 to promote "Green and Clean" State Buildings and Vehicles on June 10, 2001. The renewable-power procurement component of this order...

254

Bonneville Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

http:www.bpa.gov PR 02 14 BONNEVILLE POWER ADMINISTRATION FOR IMMEDIATE RELEASE Thursday, Jan. 23, 2014 CONTACT: Kevin Wingert, 503-230-4140971-207-8390 or 503-230-5131 BPA...

255

The power tool  

SciTech Connect (OSTI)

POWER Tool--Planning, Optimization, Waste Estimating and Resourcing tool, a hand-held field estimating unit and relational database software tool for optimizing disassembly and final waste form of contaminated systems and equipment.

HAYFIELD, J.P.

1999-02-01T23:59:59.000Z

256

Bonneville Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

In reply refer to: PGP Ms. Renata Kurshner Manager, Generation Resource Management, BC Hydro and Power Authority 6911 Southpoint Drive, Tower 15 Burnaby, BC V3N 4X8 Dear Ms....

257

Bonneville Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

In reply refer to: PGPO Renata Kurschner Director, Generation Resource Management BC Hydro and Power Authority 691 1 Southpoint Drive, El5 Burnaby, B.C., Canada V3N 4 x 8 Dear...

258

Structural power flow measurement  

SciTech Connect (OSTI)

Previous investigations of structural power flow through beam-like structures resulted in some unexplained anomalies in the calculated data. In order to develop structural power flow measurement as a viable technique for machine tool design, the causes of these anomalies needed to be found. Once found, techniques for eliminating the errors could be developed. Error sources were found in the experimental apparatus itself as well as in the instrumentation. Although flexural waves are the carriers of power in the experimental apparatus, at some frequencies longitudinal waves were excited which were picked up by the accelerometers and altered power measurements. Errors were found in the phase and gain response of the sensors and amplifiers used for measurement. A transfer function correction technique was employed to compensate for these instrumentation errors.

Falter, K.J.; Keltie, R.F.

1988-12-01T23:59:59.000Z

259

Wind Power Today  

SciTech Connect (OSTI)

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

Not Available

2006-05-01T23:59:59.000Z

260

Wind Power Today  

SciTech Connect (OSTI)

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

Not Available

2007-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "owner terra-gen power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Power Quality Implications  

E-Print Network [OSTI]

Electric utilities in the United States spend in excess of one billion dollars annually to maintain or improve the quality of electric power supplied to their customers. Yet, an increasing and alarming number of complaints are being voiced...

Hilson, D.

262

PowerPoint Presentation  

Broader source: Energy.gov (indexed) [DOE]

Island Bus NaS Battery Energy Storage Project U.S. DOE Peer Review Seattle, WA October 8, 2009 Steve Eckroad Electric Power Research Institute Seckroad@epri.com (704) 595-2717 2 ...

263

Crowd-powered systems  

E-Print Network [OSTI]

Crowd-powered systems combine computation with human intelligence, drawn from large groups of people connecting and coordinating online. These hybrid systems enable applications and experiences that neither crowds nor ...

Bernstein, Michael Scott

2012-01-01T23:59:59.000Z

264

Power Plant Dams (Kansas)  

Broader source: Energy.gov [DOE]

This act states the provisions for erection and maintenance of dams. When any person, corporation or city may be desirous of erecting and maintaining a milldam or dam for generating power across...

265

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

* No cold or centrifugation steps * Power draw is minimal RNA Prep Module: Digital Microfluidics (DMF) with Macro-to-Micro Fluidic Interface Jebrail MJ et al., Anal Chem 86:3856...

266

Reactive power compensator  

DOE Patents [OSTI]

A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation.

El-Sharkawi, Mohamed A. (Renton, WA); Venkata, Subrahmanyam S. (Woodinville, WA); Chen, Mingliang (Kirkland, WA); Andexler, George (Everett, WA); Huang, Tony (Seattle, WA)

1992-01-01T23:59:59.000Z

267

Reactive Power Compensator.  

DOE Patents [OSTI]

A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation. 26 figs.

El-Sharkawi, M.A.; Venkata, S.S.; Chen, M.; Andexler, G.; Huang, T.

1992-07-28T23:59:59.000Z

268

NSTX Electrical Power Systems  

SciTech Connect (OSTI)

The National Spherical Torus Experiment (NSTX) has been designed and installed in the existing facilities at Princeton Plasma Physic Laboratory (PPPL). Most of the hardware, plant facilities, auxiliary sub-systems, and power systems originally used for the Tokamak Fusion Test Reactor (TFTR) have been used with suitable modifications to reflect NSTX needs. The design of the NSTX electrical power system was tailored to suit the available infrastructure and electrical equipment on site. Components were analyzed to verify their suitability for use in NSTX. The total number of circuits and the location of the NSTX device drove the major changes in the Power system hardware. The NSTX has eleven (11) circuits to be fed as compared to the basic three power loops for TFTR. This required changes in cabling to insure that each cable tray system has the positive and negative leg of cables in the same tray. Also additional power cabling had to be installed to the new location. The hardware had to b e modified to address the need for eleven power loops. Power converters had to be reconnected and controlled in anti-parallel mode for the Ohmic heating and two of the Poloidal Field circuits. The circuit for the Coaxial Helicity Injection (CHI) System had to be carefully developed to meet this special application. Additional Protection devices were designed and installed for the magnet coils and the CHI. The thrust was to making the changes in the most cost-effective manner without compromising technical requirements. This paper describes the changes and addition to the Electrical Power System components for the NSTX magnet systems.

A. Ilic; E. Baker; R. Hatcher; S. Ramakrishnan; et al

1999-12-16T23:59:59.000Z

269

Integration of wind power in deregulated power systems.  

E-Print Network [OSTI]

??This thesis investigates the impact of integrating wind power into deregulated power systems. It includes a discussion of the history of deregulation and the development (more)

Scorah, Hugh

2010-01-01T23:59:59.000Z

270

Microsoft PowerPoint - Vicksburg District Federal Power Projects...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Federal Power Projects Vicksburg District Federal Power Projects Blakely Mountain Hydro DeGray Hydro DeGray Hydro Narrows Hydro Blakely Mountain Rewind Unit 1 ll Rotor...

271

An evaluation of the B&W Owners Group BAW-10182 topical report: Justification for increasing the engineered safety features actuation system on-line test intervals. Technical evaluation report  

SciTech Connect (OSTI)

This Technical Evaluation Report provides an evaluation of the Babcock and Wilcox Owners Group (B&WOG) Technical Specifications Committee Topical Report BAW-10182, entitled, ``Justification for Increasing Engineered Safety Features Actuation System (ESFAS) On-Line Test Intervals.`` This evaluation was performed by the Idaho National Engineering Laboratory in support of the Nuclear Regulatory Commission. The BAW-10182 report presents justification for the extension of on-line test intervals from the existing one-month interval to a three-month interval for the ESFAS system. In the BAW-10182 report, the B&WOG stated that ``{hor_ellipsis}the B&WOG proposes to increase the ESFAS test interval from one to three months and concludes that the effect on plant risk is insignificant.`` The proposed extension was based upon risk-based [i.e., probabilistic risk assessment (PRA)] methods such as reliability block diagrams, uncertainty analyses, and time-dependent system availability analyses. This use of PRA methods requires a detailed evaluation to determine whether the chosen methods and their application are valid in the context of the proposed test interval extension. The results of the evaluation agreed that the effect on plant risk is small if the ESFAS test interval is extended to three months for the ESFAS designs that were evaluated.

Smith, C.L.; Hansen, J.L.

1993-09-01T23:59:59.000Z

272

Nuclear Power Generating Facilities (Maine)  

Broader source: Energy.gov [DOE]

The first subchapter of the statute concerning Nuclear Power Generating Facilities provides for direct citizen participation in the decision to construct any nuclear power generating facility in...

273

SiC Power Module  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy from renewable sources (i.e., solar arrays or wind generators), and provide power for a wide variety of electronics and electronic systems (DC power supplies and...

274

Power network analysis and optimization  

E-Print Network [OSTI]

chip power supply network optimization using multigrid-basedchip decoupling capacitor optimization for high- performanceSapatnekar, Analysis and optimization of structured power/

Zhang, Wanping

2009-01-01T23:59:59.000Z

275

High power connection system  

DOE Patents [OSTI]

A high power connection system adapted for automotive environments which provides environmental and EMI shielding includes a female connector, a male connector, and a panel mount. The female connector includes a female connector base and a snap fitted female connector cover. The male connector includes a male connector base and a snap fitted male connector cover. The female connector base has at least one female power terminal cavity for seatably receiving a respective female power terminal. The male connector base has at least one male power terminal cavity for seatably receiving a respective male power terminal. The female connector is covered by a cover seal and a conductive shroud. A pair of lock arms protrude outward from the front end of the male connector base, pass through the panel mount and interface with a lever of a lever rotatably connected to the shroud to thereby mechanically assist mating of the male and female connectors. Safety terminals in the male and female connectors provide a last-to-connect-first-to-break connection with an HVIL circuit.

Schaefer, Christopher E. (Warren, OH); Beer, Robert C. (Noblesville, IN); McCall, Mark D. (Youngstown, OH)

2000-01-01T23:59:59.000Z

276

Photonic-powered cable assembly  

DOE Patents [OSTI]

A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

Sanderson, Stephen N.; Appel, Titus James; Wrye, IV, Walter C.

2013-01-22T23:59:59.000Z

277

Photonic-powered cable assembly  

DOE Patents [OSTI]

A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

Sanderson, Stephen N; Appel, Titus James; Wrye, IV, Walter C

2014-06-24T23:59:59.000Z

278

Institutional impediments to using alternative water sources in thermoelectric power plants.  

SciTech Connect (OSTI)

This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the Existing Plants Research Program's overall research effort by evaluating water issues that could impact power plants. Obtaining adequate water supplies for cooling and other operations at a reasonable cost is a key factor in siting new and maintaining existing thermoelectric power plant operations. One way to reduce freshwater consumption is to use alternative water sources such as reclaimed (or recycled) water, mine pool water, and other nontraditional sources. The use of these alternative sources can pose institutional challenges that can cause schedule delays, increase costs, or even require plants to abandon their plans to use alternative sources. This report identifies and describes a variety of institutional challenges experienced by power plant owners and operators across the country, and for many of these challenges it identifies potential mitigating approaches. The information comes from publically available sources and from conversations with power plant owners/operators familiar with using alternative sources. Institutional challenges identified in this investigation include, but are not limited to, the following: (1) Institutional actions and decisions that are beyond the control of the power plant. Such actions can include changes in local administrative policies that can affect the use of reclaimed water, inaccurate growth projections regarding the amount of water that will be available when needed, and agency workloads and other priorities that can cause delays in the permitting and approval processes. (2) Developing, cultivating, and maintaining institutional relationships with the purveyor(s) of the alternative water source, typically a municipal wastewater treatment plant (WWTP), and with the local political organizations that can influence decisions regarding the use of the alternative source. Often a plan to use reclaimed water will work only if local politics and power plant goals converge. Even then, lengthy negotiations are often needed for the plans to come to fruition. (3) Regulatory requirements for planning and developing associated infrastructure such as pipelines, storage facilities, and back-up supplies that can require numerous approvals, permits, and public participation, all of which can create delays and increased costs. (4) Permitting requirements that may be difficult to meet, such as load-based discharge limits for wastewater or air emissions limitations for particulate matter (which will be in the mist of cooling towers that use reclaimed water high in dissolved solids). (5) Finding discharge options for cooling tower blowdown of reclaimed water that are acceptable to permitting authorities. Constituents in this wastewater can limit options for discharge. For example, discharge to rivers requires National Pollutant Discharge Elimination System (NPDES) permits whose limits may be difficult to meet, and underground injection can be limited because many potential injection sites have already been claimed for disposal of produced waters from oil and gas wells or waters associated with gas shale extraction. (6) Potential liabilities associated with using alternative sources. A power plant can be liable for damages associated with leaks from reclaimed water conveyance systems or storage areas, or with mine water that has been contaminated by unscrupulous drillers that is subsequently discharged by the power plant. (7) Community concerns that include, but are not limited to, increased saltwater drift on farmers fields; the possibility that the reclaimed water will contaminate local drinking water aquifers; determining the 'best' use of WWTP effluent; and potential health concerns associated with emissions from the cooling towers that use recycled water. (8) Interveners that raise public concerns about the potential for emissions of emergi

Elcock, D. (Environmental Science Division)

2011-08-03T23:59:59.000Z

279

Final Report: Assessment of Combined Heat and Power Premium Power Applications in California  

E-Print Network [OSTI]

ASSESSMENT OF COMBINED HEAT AND POWER SYSTEM PREMIUM POWERAssessment of Combined Heat and Power Premium Power1 The Pacific Region Combined Heat and Power Application

Norwood, Zack

2010-01-01T23:59:59.000Z

280

Reducing Power Load Fluctuations on Ships Using Power Redistribution Control  

E-Print Network [OSTI]

controller is demonstrated through simulation studies on a supply vessel power plant, using the SIMULINK plant with electric propulsion, the power generation will con- sist of multiple engines, whereReducing Power Load Fluctuations on Ships Using Power Redistribution Control Damir Radan,1 Asgeir J

Johansen, Tor Arne

Note: This page contains sample records for the topic "owner terra-gen power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Sixth Power Plan northwest Power and Conservation Council  

E-Print Network [OSTI]

-Fired Generating Resources #12;Sixth Power Plan AssessMenT reporT Resource Adequacy 40Sixth Power Plan northwest Power and Conservation Council March 13, 2013 Mid-term assessment report #12;PaGe 2 > Mid-TerM AssessMenT reporT > Sixth Power Plan Contents 04 Executive Summary 06 Situation

282

Running Head: TESTOSTERONE AND POWER Testosterone and power  

E-Print Network [OSTI]

Running Head: TESTOSTERONE AND POWER Testosterone and power Steven J. Stanton and Oliver C. Schultheiss University of Michigan, Ann Arbor, MI, USA To appear in: K. Dowding (Ed.), Encyclopedia of power-647-9440, email: stantons@umich.edu #12;Testosterone and power 2 Across many studies in humans, two functional

Schultheiss, Oliver C.

283

Distributed Power Delivery for Energy Efficient and Low Power Systems  

E-Print Network [OSTI]

Distributed Power Delivery for Energy Efficient and Low Power Systems Selc¸uk K¨ose Department are needed to determine the location of these on-chip power supplies and decoupling capacitors. In this paper, the optimal location of the power supplies and decoupling capacitors is determined for different size

Friedman, Eby G.

284

Hawaii hydrogen power park Hawaii Hydrogen Power Park  

E-Print Network [OSTI]

. (Barrier R ­ Cost) Generate public interest & support. (Barrier S­Siting) #12;Hawaii hydrogen power park H Electrolyzer ValveManifold Water High Pressure H2 Storage Fuel Cell AC Power H2 Compressor Hydrogen Supply O2Hawaii hydrogen power park H Hawaii Hydrogen Power Park 2003 Hydrogen & Fuel Cells Merit Review

285

Qualification for PowerInsight accuracy of power measurements.  

SciTech Connect (OSTI)

Accuracy of component based power measuring devices forms a necessary basis for research in the area of power-e cient and power-aware computing. The accuracy of these devices must be quanti ed within a reasonable tolerance. This study focuses on PowerInsight, an out- of-band embedded measuring device which takes readings of power rails on compute nodes within a HPC system in realtime. We quantify how well the device performs in comparison to a digital oscilloscope as well as PowerMon2. We show that the accuracy is within a 6% deviation on measurements under reasonable load.

DeBonis, David; Laros, James H.,; Pedretti, Kevin Thomas Tauke

2013-11-01T23:59:59.000Z

286

Interested Parties - Xtreme Power | Department of Energy  

Energy Savers [EERE]

Xtreme Power Interested Parties - Xtreme Power 09-14-10XtremePower.pdf More Documents & Publications Interested Parties - XtremePower Interested Parties - Myriant Interested...

287

Power line detection system  

DOE Patents [OSTI]

A short-range, radio frequency (RF) transmitting-receiving system that provides both visual and audio warnings to the pilot of a helicopter or light aircraft of an up-coming power transmission line complex. Small, milliwatt-level narrowband transmitters, powered by the transmission line itself, are installed on top of selected transmission line support towers or within existing warning balls, and provide a continuous RF signal to approaching aircraft. The on-board receiver can be either a separate unit or a portion of the existing avionics, and can also share an existing antenna with another airborne system. Upon receipt of a warning signal, the receiver will trigger a visual and an audio alarm to alert the pilot to the potential power line hazard.

Latorre, Victor R. (Tracy, CA); Watwood, Donald B. (Tracy, CA)

1994-01-01T23:59:59.000Z

288

Power converter connection configuration  

DOE Patents [OSTI]

EMI shielding is provided for power electronics circuits and the like via a direct-mount reference plane support and shielding structure. The thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support forms a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

Beihoff, Bruce C. (Wauwatosa, WI); Kehl, Dennis L. (Milwaukee, WI); Gettelfinger, Lee A. (Brown Deer, WI); Kaishian, Steven C. (Milwaukee, WI); Phillips, Mark G. (Brookfield, WI); Radosevich, Lawrence D. (Muskego, WI)

2008-11-11T23:59:59.000Z

289

Power line detection system  

DOE Patents [OSTI]

A short-range, radio frequency (RF) transmitting-receiving system that provides both visual and audio warnings to the pilot of a helicopter or light aircraft of an up-coming power transmission line complex. Small, milliwatt-level narrowband transmitters, powered by the transmission line itself, are installed on top of selected transmission line support towers or within existing warning balls, and provide a continuous RF signal to approaching aircraft. The on-board receiver can be either a separate unit or a portion of the existing avionics, and can also share an existing antenna with another airborne system. Upon receipt of a warning signal, the receiver will trigger a visual and an audio alarm to alert the pilot to the potential power line hazard. 4 figs.

Latorre, V.R.; Watwood, D.B.

1994-09-27T23:59:59.000Z

290

Power Systems Control Architecture  

SciTech Connect (OSTI)

A diagram provided in the report depicts the complexity of the power systems control architecture used by the national power structure. It shows the structural hierarchy and the relationship of the each system to those other systems interconnected to it. Each of these levels provides a different focus for vulnerability testing and has its own weaknesses. In evaluating each level, of prime concern is what vulnerabilities exist that provide a path into the system, either to cause the system to malfunction or to take control of a field device. An additional vulnerability to consider is can the system be compromised in such a manner that the attacker can obtain critical information about the system and the portion of the national power structure that it controls.

James Davidson

2005-01-01T23:59:59.000Z

291

Powered protrusion cutter  

DOE Patents [OSTI]

An apparatus for clipping a protrusion of material is provided. The protrusion may, for example, be a bolt head, a nut, a rivet, a weld bead, or a temporary assembly alignment tab protruding from a substrate surface of assembled components. The apparatus typically includes a cleaver having a cleaving edge and a cutting blade having a cutting edge. Generally, a mounting structure configured to confine the cleaver and the cutting blade and permit a range of relative movement between the cleaving edge and the cutting edge is provided. Also typically included is a power device coupled to the cutting blade. The power device is configured to move the cutting edge toward the cleaving edge. In some embodiments the power device is activated by a momentary switch. A retraction device is also generally provided, where the retraction device is configured to move the cutting edge away from the cleaving edge.

Bzorgi, Fariborz M. (Knoxville, TN)

2010-03-09T23:59:59.000Z

292

Power Systems Development Facility  

SciTech Connect (OSTI)

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, has routinely demonstrated gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This final report summarizes the results of the technology development work conducted at the PSDF through January 31, 2009. Twenty-one major gasification test campaigns were completed, for a total of more than 11,000 hours of gasification operation. This operational experience has led to significant advancements in gasification technologies.

Southern Company Services

2009-01-31T23:59:59.000Z

293

Power Generation and Power Use Decisions in an Industrial Process  

E-Print Network [OSTI]

of power generation and power use economics, most people want to under stand power generation. The primary questions usually relate to increasing the amount of power available, starting with a high pressure steam turbine or a gas turbine. They are "How... pressure Tsink OF temperature corresponding to outlet pressure Qsource = steam flow in Btu per hour Wideal Ideal power produced in Btu per hour 460 Conversion to absolute tempera ture "R From here, knowing the efficiency of the turbine...

Gilbert, J. S.; Niess, R. C.

294

Power electronics cooling apparatus  

DOE Patents [OSTI]

A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

Sanger, Philip Albert (Monroeville, PA); Lindberg, Frank A. (Baltimore, MD); Garcen, Walter (Glen Burnie, MD)

2000-01-01T23:59:59.000Z

295

Power electronics cooling apparatus  

SciTech Connect (OSTI)

A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

Sanger, P.A.; Lindberg, F.A.; Garcen, W.

2000-01-18T23:59:59.000Z

296

Power Systems Engineering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to theNews & BlogPostdocs, Power Systems Power

297

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to theNews & BlogPostdocs, Power Systems PowerSITE

298

PowerPoint Presentation  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems Engineering Research and Development (PSE R&D) Power Systems EngineeringNATIONAL

299

PowerPoint Presentation  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems Engineering Research and Development (PSE R&D) Power Systems

300

PowerPoint Presentation  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems Engineering Research and Development (PSE R&D) Power Systems5 Budget Overview

Note: This page contains sample records for the topic "owner terra-gen power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

PowerPoint Presentation  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems Engineering Research and Development (PSE R&D) Power Systems5 Budget Overviewand

302

PowerPoint Presentation  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems Engineering Research and Development (PSE R&D) Power Systems5 Budget

303

PowerPoint Presentation  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems Engineering Research and Development (PSE R&D) Power Systems5

304

Powering | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point ofPowerSaver Loan ProgramPowering Whether

305

RF power generation  

E-Print Network [OSTI]

This paper reviews the main types of r.f. power amplifiers which are, or may be, used for particle accelerators. It covers solid-state devices, tetrodes, inductive output tubes, klystrons, magnetrons, and gyrotrons with power outputs greater than 10 kW c.w. or 100 kW pulsed at frequencies from 50 MHz to 30 GHz. Factors affecting the satisfactory operation of amplifiers include cooling, matching and protection circuits are discussed. The paper concludes with a summary of the state of the art for the different technologies.

Carter, R G

2011-01-01T23:59:59.000Z

306

The solar electric power outlook  

SciTech Connect (OSTI)

The outlook for solar electric power plants is discussed. The following topics are discussed: Amoco/Envon solar vision, multi-megawatt solar power projects, global carbon dioxide emission estimates, pollution and electric power generation, social costs of pollution economies of scale, thin-film power module, rooftop market strategy, regulatory issues regarding rooftop systems, and where do we go from here?

Kemp, J.W.

1995-12-31T23:59:59.000Z

307

Power marketing and renewable energy  

SciTech Connect (OSTI)

Power marketing refers to wholesale and retail transactions of electric power made by companies other than public power entities and the regulated utilities that own the generation and distribution lines. The growth in power marketing has been a major development in the electric power industry during the last few years, and power marketers are expected to realize even more market opportunities as electric industry deregulation proceeds from wholesale competition to retail competition. This Topical Issues Brief examines the nature of the power marketing business and its relationship with renewable power. The information presented is based on interviews conducted with nine power marketing companies, which accounted for almost 54% of total power sales by power marketers in 1995. These interviews provided information on various viewpoints of power marketers, their experience with renewables, and their respective outlooks for including renewables in their resource portfolios. Some basic differences exist between wholesale and retail competition that should be recognized when discussing power marketing and renewable power. At the wholesale level, the majority of power marketers stress the commodity nature of electricity. The primary criteria for developing resource portfolios are the same as those of their wholesale customers: the cost and reliability of power supplies. At the retail level, electricity may be viewed as a product that includes value-added characteristics or services determined by customer preferences.

Fang, J.M.

1997-09-01T23:59:59.000Z

308

Supercomputing Power to the People  

E-Print Network [OSTI]

Supercomputing Power to the People Arun Chauhan Indiana University #12;Supercomputing power. Sadayappan #12;Supercomputing power to the people Indiana University, March 22, 2006 Programming Languages: A Buddhist View #12;Supercomputing power to the people Indiana University, March 22, 2006 Programming

Chauhan, Arun

309

Power Maps in Algebra and  

E-Print Network [OSTI]

Power Maps in Algebra and Topology Kathryn Hess Preface The case of commutative algebras The Hochschild complex of a twisting cochain Power maps on the Hochschild complex Topological relevance Power Compostela, 17 September 2008 #12;Power Maps in Algebra and Topology Kathryn Hess Preface The case

Thévenaz, Jacques

310

Reactive Power Compensating System.  

DOE Patents [OSTI]

The circuit was designed for the specific application of wind-driven induction generators. It has great potential for application in any situation where a varying reactive power load is present, such as with induction motors or generators, or for transmission network compensation.

Williams, Timothy J.; El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.

1985-01-04T23:59:59.000Z

311

ENERGY EFFICIENCY RESEARCH POWERS  

E-Print Network [OSTI]

1 ENERGY EFFICIENCY RESEARCH POWERS THE FUTUREPIER CONTRIBUTES TO JOB GROWTH AND PRIVATE INVESTMENT.Partofthecreditforthese achievementsgoestoCalifornia'suniquePublicInterest EnergyResearch(PIER)Program. Overthepast40years,Californiansincreasedthesizeof their homes and added scores of new energy-using de- vices,fromlargerefrigerators,dishwashers,audioequip- ment

312

High Power Cryogenic Targets  

SciTech Connect (OSTI)

The development of high power cryogenic targets for use in parity violating electron scattering has been a crucial ingredient in the success of those experiments. As we chase the precision frontier, the demands and requirements for these targets have grown accordingly. We discuss the state of the art, and describe recent developments and strategies in the design of the next generation of these targets.

Gregory Smith

2011-08-01T23:59:59.000Z

313

Clean Power at Home  

E-Print Network [OSTI]

this report is to describe and analyze net metering as a mechanism to support the deployment of small-scale, distributed electricity technologies in British Columbia based on renewable energy sources. These are referred to as "distributed renewables" throughout the report. The deployment of distributed renewables offers several environmental, economic, and social benefits that are described in this paper. Net metering enables individual utility customers to connect on-site generation to the utility grid, feeding excess power back to the grid when it is not needed, and utilizing grid power when consumption exceeds local renewable energy supply. In most programs, a single meter measures the customer's net consumption of grid power in a billing period, and they are charged for that consumption under regular retail rates. If production exceeds consumption, the customer's bill is essentially zero. In some instances, utilities may refund customers for excess production in a billing period based on wholesale market prices or avoided production costs. Net metering programs can make self-generation more attractive for customers by eliminating the need to size systems to meet customers' exact power needs or install on-site storage and power conditioning devices. Utilities may, depending upon the type of systems installed, benefit from improvements in local area load factors, and receive credit for various social or environmental benefits of such resources (e.g., greenhouse gas reductions). However, utilities have raised concerns about worker safety (e.g., the possibility that net metering sites may continue to feed electricity into the local distribution grid when the rest of the network is down, putting line workers at risk) and possible financial cross-subsidies from other rate...

May Author Andrew; Andrew E. Pape

314

Index Terms --Smart grid; power engineering education; power engineering curriculum; power engineering re-  

E-Print Network [OSTI]

1 Index Terms -- Smart grid; power engineering education; power engineering curriculum; power the United States power system has led to an engineering initiative va- riously known as `smart grid the smart grid will be educated, how they should be trained, and to what levels of comprehension

315

The Power Spectrum of Matter  

E-Print Network [OSTI]

We calculate the mean power spectrum of galaxies using published power spectra of galaxies and clusters of galaxies. The mean power spectrum has a relatively sharp maximum on scale 120 Mpc (for Hubble constant h=1), followed by an almost exact power-law spectrum of index n = -1.9 toward smaller scales. The power spectrum found from APM 2-D galaxy distribution and from LCRS and IRAS 1.2 Jy surveys is flatter around the maximum. Power spectra of galaxies and matter are similar in shape, we find the bias parameter of galaxies relative to matter 1.3 + - 0.1. We compare the empirical power spectrum of matter with analytical power spectra and show that the primordial power spectrum has a break in amplitude and a spike.

J. Einasto

1998-11-27T23:59:59.000Z

316

Distribution Power Flow in IRW Group Meeting  

E-Print Network [OSTI]

in and power out (sum of 3 phases) Power losses Power in & out A, Current in & out A, Power loss A Power in & out B, Current in & out B, Power loss B Power in & out C, Current in & out C, Power loss C Status

Tesfatsion, Leigh

317

A power beaming based infrastructure for space power  

SciTech Connect (OSTI)

At present all space mission power requirements are met by integral, on-board, self-contained power systems. To provide needed flexibility for space exploration and colonization, an additional approach to on-board, self-contained power systems is needed. Power beaming, an alternative approach to providing power, has the potential to provide increased mission flexibility while reducing total mass launched into space. Laser-power beaming technology provides a viable power and communication infrastructure that can be developed sequentially as it is applied to power satellite constellations in Earth orbit and to orbital transport vehicles transferring satellites and cargos to geosynchronous orbit and beyond. Coupled with nuclear electric propulsion systems for cargo transport, the technology can be used to provide global power to the Lunar surface and to Mars' surface and moons. The technology can be developed sequentially as advances in power system and propulsion system technology occur. This paper presents stepwise development of an infrastructure based on power beaming that can support the space development and exploration goals of the Space Exploration Initiative. Power scenarios based on commonality of power systems hardware with cargo transport vehicles are described. Advantages of this infrastructure are described. 12 refs., 4 figs., 1 tab.

Bamberger, J.A.

1991-08-01T23:59:59.000Z

318

Oscillating fluid power generator  

SciTech Connect (OSTI)

A system and method for harvesting the kinetic energy of a fluid flow for power generation with a vertically oriented, aerodynamic wing structure comprising one or more airfoil elements pivotably attached to a mast. When activated by the moving fluid stream, the wing structure oscillates back and forth, generating lift first in one direction then in the opposite direction. This oscillating movement is converted to unidirectional rotational movement in order to provide motive power to an electricity generator. Unlike other oscillating devices, this device is designed to harvest the maximum aerodynamic lift forces available for a given oscillation cycle. Because the system is not subjected to the same intense forces and stresses as turbine systems, it can be constructed less expensively, reducing the cost of electricity generation. The system can be grouped in more compact clusters, be less evident in the landscape, and present reduced risk to avian species.

Morris, David C

2014-02-25T23:59:59.000Z

319

Switching power supply  

DOE Patents [OSTI]

The invention is a repratable capacitor charging, switching power supply. A ferrite transformer steps up a dc input. The transformer primary is in a full bridge configuration utilizing power MOSFETs as the bridge switches. The transformer secondary is fed into a high voltage, full wave rectifier whose output is connected directly to the energy storage capacitor. The transformer is designed to provide adequate leakage inductance to limit capacitor current. The MOSFETs are switched to the variable frequency from 20 to 50 kHz to charge a capacitor from 0.6 kV. The peak current in a transformer primary and secondary is controlled by increasing the pulse width as the capacitor charges. A digital ripple counter counts pulses and after a preselected desired number is reached an up-counter is clocked.

Mihalka, A.M.

1984-06-05T23:59:59.000Z

320

Transmission rights and market power on electric power networks  

E-Print Network [OSTI]

We analyze whether and how the allocation of transmission rights associated with the use of electric power networks affects the behavior of electricity generators and electricity consumers with market power. We consider ...

Joskow, Paul L.

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "owner terra-gen power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Magnetic machines and power electronics for power MEMS applications  

E-Print Network [OSTI]

This thesis presents the modeling, design, and characterization of microfabricated, surface-wound, permanent-magnet (PM) generators, and their power electronics, for use in Watt-level Power MEMS applications such as a ...

Das, Sauparna, 1979-

2005-01-01T23:59:59.000Z

322

Wind Power Today, 2010, Wind and Water Power Program (WWPP)  

SciTech Connect (OSTI)

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Water Power Program.

Not Available

2010-05-01T23:59:59.000Z

323

EIS-0131: Initial Northwest Power Act Power Sales Contracts  

Broader source: Energy.gov [DOE]

The Bonneville Power Administration prepared this EIS to analyze the environmental impact of power sales and residential exchange contracts and to explore if there is a need to seek changes to these contracts.

324

New Technologies Power Wearable Devices through Body Power or...  

Open Energy Info (EERE)

Power Wearable Devices through Body Power or the Environment Home > Groups > No Battery Wearables WikiSysop's picture Submitted by WikiSysop(15) Member 12 August, 2014 - 13:18...

325

Reliability Evaluation of Electric Power Generation Systems with Solar Power  

E-Print Network [OSTI]

Conventional power generators are fueled by natural gas, steam, or water flow. These generators can respond to fluctuating load by varying the fuel input that is done by a valve control. Renewable power generators such as wind or solar, however...

Samadi, Saeed

2013-11-08T23:59:59.000Z

326

Pasadena Water and Power- Solar Power Installation Rebate  

Broader source: Energy.gov [DOE]

Pasadena Water and Power (PWP) offers its electric customers a rebate for photovoltaic (PV) installations, with a goal of helping to fund the installation of 14 megawatts (MW) of solar power by...

327

SaskPower Small Power Producers Program (Saskatchewan, Canada)  

Broader source: Energy.gov [DOE]

The Small Power Producers Program accommodates customers who wish to generate up to 100 kilowatts (kW) of electricity for the purpose of offsetting power that would otherwise be purchased from...

328

High power microwave generator  

DOE Patents [OSTI]

A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

Ekdahl, C.A.

1983-12-29T23:59:59.000Z

329

Hydrogen powered bus  

ScienceCinema (OSTI)

Take a ride on a new type of bus, fueled by hydrogen. These hydrogen taxis are part of a Department of Energy-funded deployment of hydrogen powered vehicles and fueling infrastructure at nine federal facilities across the country to demonstrate this market-ready advanced technology. Produced and leased by Ford Motor Company , they consist of one 12- passenger bus and one nine-passenger bus. More information at: http://go.usa.gov/Tgr

None

2013-11-22T23:59:59.000Z

330

Wind Power Outlook 2004  

SciTech Connect (OSTI)

The brochure, expected to be updated annually, provides the American Wind Energy Association's (AWAE's) up-to-date assessment of the wind industry. It provides a summary of the state of wind power in the U.S., including the challenges and opportunities facing the industry. It provides summary information on the growth of the industry, policy-related factors such as the federal wind energy production tax credit status, comparisons with natural gas, and public views on wind energy.

anon.

2004-01-01T23:59:59.000Z

331

Stirling engine power control  

DOE Patents [OSTI]

A power control method and apparatus for a Stirling engine including a valved duct connected to the junction of the regenerator and the cooler and running to a bypass chamber connected between the heater and the cylinder. An oscillating zone of demarcation between the hot and cold portions of the working gas is established in the bypass chamber, and the engine pistons and cylinders can run cold.

Fraser, James P. (Scotia, NY)

1983-01-01T23:59:59.000Z

332

Combustion powered linear actuator  

DOE Patents [OSTI]

The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.

Fischer, Gary J. (Albuquerque, NM)

2007-09-04T23:59:59.000Z

333

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power Administration

334

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power

335

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power2014

336

Bulk Power Transmission Study  

E-Print Network [OSTI]

BULK POWER TRANSMISSION STUDY TOMMY JOH~ P. E. Manager of Resource Recovery Waste Management of North America, Inc. Houston, Texas Texans now have a choice. We can become more efficient and maintain our standard of living, or we can... continue business as usual and watch our standard of living erode from competition from other regions. In the past, except for improving reliability, there was no need for a strong transmission system. When Texas generation was primarily gas fueled...

John, T.

337

Village Power `97. Proceedings  

SciTech Connect (OSTI)

It is estimated that two billion people live without electricity and its services. In addition, there is a sizable number of rural villages that have limited electrical service, with either part-day operation by diesel gen-sets or partial electrification (local school or community center and several nearby houses). For many villages connected to the grid, power is often sporadically available and of poor quality. The U.S. National Renewable Energy Laboratory (NREL) in Golden, Colorado, has initiated a program to address these potential electricity opportunities in rural villages through the application of renewable energy (RE) technologies. The objective of this program is to develop and implement applications that demonstrate the technical performance, economic competitiveness, operational viability, and environmental benefits of renewable rural electric solutions, compared to the conventional options of line extension and isolated diesel mini-grids. These four attributes foster sustainability; therefore, the program is entitled Renewables for Sustainable Village Power (RSVP). The RSVP program is a multi-disciplinary, multi-technology, multi-application program composed of six key activities, including village application development, computer model development, systems analysis, pilot project development, technical assistance, and an Internet-based village power project database. The current program emphasizes wind, photovoltaics (PV), and their hybrids with diesel gen-sets. NREL`s RSVP team is currently involved in rural electricity projects in thirteen countries, with U.S., foreign, and internationally based agencies and institutions. This document contains reports presented at the Proceedings of Village Power, 1997. Individual projects have been processed separately for the United States Department of Energy databases.

Cardinal, J.; Flowers, L.; Taylor, R.; Weingart, J. [eds.

1997-09-01T23:59:59.000Z

338

Powerful glow discharge excilamp  

DOE Patents [OSTI]

A powerful glow discharge lamp comprising two coaxial tubes, the outer tube being optically transparent, with a cathode and anode placed at opposite ends of the tubes, the space between the tubes being filled with working gas. The electrodes are made as cylindrical tumblers placed in line to one other in such a way that one end of the cathode is inserted into the inner tube, one end of the anode coaxially covers the end of the outer tube, the inner tube penetrating and extending through the anode. The increased electrodes' surface area increases glow discharge electron current and, correspondingly, average radiation power of discharge plasma. The inner tube contains at least one cooling liquid tube placed along the axis of the inner tube along the entire lamp length to provide cathode cooling. The anode has a circumferential heat extracting radiator which removes heat from the anode. The invention is related to lighting engineering and can be applied for realization of photostimulated processes under the action of powerful radiation in required spectral range.

Tarasenko, Victor F. (Tomsk, RU); Panchenko, Aleksey N. (Tomsk, RU); Skakun, Victor S. (Tomsk, RU); Sosnin, Edward A. (Tomsk, RU); Wang, Francis T. (Danville, CA); Myers, Booth R. (Livermore, CA); Adamson, Martyn G. (Danville, CA)

2002-01-01T23:59:59.000Z

339

Commercial nuclear power 1990  

SciTech Connect (OSTI)

This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs.

Not Available

1990-09-28T23:59:59.000Z

340

GEOTHERMAL POWER GENERATION PLANT  

SciTech Connect (OSTI)

Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OITs Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the waste water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the waste water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

Boyd, Tonya

2013-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "owner terra-gen power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Scott Roseman: Owner, New Leaf Community Markets  

E-Print Network [OSTI]

history, first met Roseman while she was an undergraduate student at UCSC doing an internship in alternative energy

Reti, Irene H.

2010-01-01T23:59:59.000Z

342

Energy Performance and Home Owner Behavior  

E-Print Network [OSTI]

to describe occupancy behavior in buildings. Integrate with energy consumption patterns ESL-KT-13-12-04 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 IEA Annex 66 IEA Annex 66 Definition and Simulation...

Dong, B.

2013-01-01T23:59:59.000Z

343

Project: Draper Hall Renovation Owner: Berea College  

E-Print Network [OSTI]

source · Clerestory windows in classrooms for daylighting and passive solar heating · Occupancy sensors Architects, partnering with Steed Hammond Paul, designed and Messer Construction implemented the ecological in Architectural Design. · 52,000 ft.2 / 3 stories with carillon tower · Preservation of original slate roofing

Baltisberger, Jay H.

344

Vision of a Multi Properties Owner  

E-Print Network [OSTI]

Upscale8%Midscale37%Economy55% 4 000 HOTELS450 000 guest rooms DGTHDGTH The General Management of Hotel Technical Services is in charge :?To write the Technical Standards Documents?To manage construction of new properties and main refurbishment... was indicated + / -:-guest not able to select himself the right temperature-many guest complains-therefore modification of the system BMS SMALL STORIESBMS SMALL STORIES Sofitel, energy management in guest rooms :?Room no booked : temperature = set point ? 5?C?Room...

Bouilleaud

2004-01-01T23:59:59.000Z

345

Scott Roseman: Owner, New Leaf Community Markets  

E-Print Network [OSTI]

worked for the Alternative Energy Co-op, an organizationdoing an internship in alternative energy systems. After theat what was called the Alternative Energy Co-op, which was a

Reti, Irene H.

2010-01-01T23:59:59.000Z

346

An Owner's Guide to Smoothed Particle Hydrodynamics  

E-Print Network [OSTI]

We present a practical guide to Smoothed Particle Hydrodynamics (\\SPH) and its application to astrophysical problems. Although remarkably robust, \\SPH\\ must be used with care if the results are to be meaningful since the accuracy of \\SPH\\ is sensitive to the arrangement of the particles and the form of the smoothing kernel. In particular, the initial conditions for any \\SPH\\ simulation must consist of particles in dynamic equilibrium. We describe some of the numerical difficulties that may be encountered when using \\SPH, and how these may be overcome. Through our experience in using \\SPH\\ code to model convective stars, galaxy clusters and large scale structure problems we have developed many diagnostic tests. We give these here as an aid to rapid identification of errors, together with a list of basic prerequisites for the most efficient implementation of \\SPH.

T. J. Martin; F. R. Pearce; P. A. Thomas

1993-10-13T23:59:59.000Z

347

Well Owner's Guide To Water Supply  

E-Print Network [OSTI]

's groundwater and guidelines, including national drinking water standards, to test well water to insure safe drinking water in private wells. National drinking water standards and common methods of home water .....................22 Contaminants in Water........................................23 Drinking Water Guidelines

Fay, Noah

348

Property:Owners | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerType Jump to: navigation, searchRelatedTo Jump

349

Information System Owner | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment ofTheDepartmentEnergy Industry andofSECRETARY

350

DOE Facility Management Contracts Facility Owner Contractor  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof Energy DOE ChallengeThese are the DOE6DEPARTMENT OFUniv. Of

351

DOE Facility Management Contracts Facility Owner Contractor  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof Energy DOE ChallengeThese are the DOE6DEPARTMENT OFUniv.

352

DOE Facility Management Contracts Facility Owner Contractor  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgram |DOE Exercises Option for5 DOE3A DOE5 DOE5DOEDOE

353

Sandia National Laboratories: reduce owner risks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-active perovskite oxide High-Efficiencynitrousoverall

354

High Power, Linear CMOS Power Amplifier for WLAN Applications /  

E-Print Network [OSTI]

components in silicon, achieving a high power enhancement ratio from a single stage LC matching network or single transformer

Afsahi, Ali

2013-01-01T23:59:59.000Z

355

Analysis of Power System Dynamics Subject to Stochastic Power Injections  

E-Print Network [OSTI]

Abstract--We propose a framework to study the impact of stochastic active/reactive power injections. In this framework the active/reactive power injections evolve according to a continuous-time Markov chain (CTMC) model. The DAE model is linearized around a nominal set of active/reactive power injections

Liberzon, Daniel

356

Power load forecasting Organization: Huizhou Electric Power, P. R. China  

E-Print Network [OSTI]

Power load forecasting Organization: Huizhou Electric Power, P. R. China Presenter: Zhifeng Hao can be divided into load forecasting and electrical consumption predicting according to forecasting in generators macroeconomic control, power exchange plan and so on. And the prediction is from one day to seven

357

DYNAMIC MODELLING OF AUTONOMOUS POWER SYSTEMS INCLUDING RENEWABLE POWER SOURCES.  

E-Print Network [OSTI]

(thermal, gas, diesel) and renewable (hydro, wind) power units. The objective is to assess the impact - that have a special dynamic behaviour, and the wind turbines. Detailed models for each one of the power system components are developed. Emphasis is given in the representation of different hydro power plant

Paris-Sud XI, Université de

358

Sixth Power Plan northwest Power and Conservation Council  

E-Print Network [OSTI]

's loads · Bonneville sells wholesale power to over 120 publicly-owned utilities · Variability in hydro generation led to development of the nation's first major spot market for wholesale power · Bonneville built and wholesale power are low · Retirement of coal-fired plants have been announced; will require development

359

Impact of Power Generation Uncertainty on Power System Static Performance  

E-Print Network [OSTI]

in load and generation are modeled as random variables and the output of the power flow computationImpact of Power Generation Uncertainty on Power System Static Performance Yu Christine Chen, Xichen--The rapid growth in renewable energy resources such as wind and solar generation introduces significant

Liberzon, Daniel

360

POWER SYSTEMS STABILITY WITH LARGE-SCALE WIND POWER PENETRATION  

E-Print Network [OSTI]

of offshore wind farms, wind power fluctuations may introduce several challenges to reliable power system behaviour due to natural wind fluctuations. The rapid power fluctuations from the large scale wind farms Generation Control (AGC) system which includes large- scale wind farms for long-term stability simulation

Bak-Jensen, Birgitte

Note: This page contains sample records for the topic "owner terra-gen power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Power options for lunar exploration  

SciTech Connect (OSTI)

This paper presents an overview of the types of power systems available for providing power on the moon. Lunar missions of exploration, in situ resource utilization, and colonization will be constrained by availability of adequate power. The length of the lunar night places severe limitations on solar power system designs, because a large portion of the system mass is devoted to energy storage. The selection of the ideal power source hardware will require compatibility with not only the lunar base power requirements and environment, but also with the conversion, storage, and transmission equipment. In addition, further analysis to determine the optimum operating parameters for a given power system should be conducted so that critical technologies can be identified in the early stages of base development. This paper describes the various concepts proposed for providing power on the lunar surface and compare their ranges of applicability. The importance of a systems approach to the integration of these components will also be discussed.

Bamberger, J.A.; Gaustad, K.L.

1992-01-01T23:59:59.000Z

362

Rocky Mountain Power- Net Metering  

Broader source: Energy.gov [DOE]

Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has a net-metering...

363

Flexible NOx Abatement from Power  

E-Print Network [OSTI]

Flexible NOx Abatement from Power Plants in the Eastern United States* Lin Sun, Mort Webster, Gary: globalchange@mit.edu Website: http://globalchange.mit.edu/ #12;Flexible NOx Abatement from Power Plants

364

Automotive Power Generation and Control  

E-Print Network [OSTI]

This paper describes some new developments in the application of power electronics to automotive power generation and control. A new load-matching technique is introduced that uses a simple switched-mode rectifier to achieve ...

Caliskan, Vahe

365

Recover Power with Hydraulic Motors  

E-Print Network [OSTI]

displacement device, the HPRM torque and speed are almost completely independent - unlike hydraulic power recovery turbines (centrifugal motors). Three screw HPRM's have low moments of inertia, operate at low vibration and noise levels and extract power...

Brennan, J. R.

1982-01-01T23:59:59.000Z

366

Small Power Production Facilities (Montana)  

Broader source: Energy.gov [DOE]

For the purpose of these regulations, a small power production facility is defined as a facility that:...

367

Heat and Power Systems Design  

E-Print Network [OSTI]

HEAT AND POWER SYSTEMS DESIGN H. D. Spriggs and J. V. Shah, Leesburg. VA ABSTRACT The selection of heat and power systems usually does not include a thorough analysis of the process heating. cooling and power requirements. In most cases..., these process requirements are accepted as specifications before heat and power systems are selected and designed. In t~is article we describe how Process Integration using Pinch Technology can be used to understand and achieve the minimum process heating...

Spriggs, H. D.; Shah, J. V.

368

Standards for Power Electronic Components  

E-Print Network [OSTI]

Standards for Power Electronic Components and Systems EPE 14 ECCE Europe Dr Peter R. Wilson #12;Session Outline "Standards for Power Electronic Components and Systems" Peter Wilson, IEEE PELS Electronics where next? Wide Band Gap Devices SiC, GaN etc... Transformers (ETTT) Power Modules

369

Main Injector power distribution system  

SciTech Connect (OSTI)

The paper describes a new power distribution system for Fermilab's Main Injector. The system provides 13.8 kV power to Main Injector accelerator (accelerator and conventional loads) and is capable of providing power to the rest of the laboratory (backfeed system). Design criteria, and features including simulation results are given.

Cezary Jach and Daniel Wolff

2002-06-03T23:59:59.000Z

370

Power Supply Synchronization without Communication  

E-Print Network [OSTI]

1 Power Supply Synchronization without Communication Leonardo A. B. T^orres, Jo~ao P. Hespanha, Jeff Moehlis Abstract--We consider the synchronization of power supplies in an isolated grid with multiple small-to-medium power sources. We show how to achieve a coordinated or synchronized behavior

Moehlis, Jeff

371

Overview paper on nuclear power  

SciTech Connect (OSTI)

This paper was prepared as an input to ORNL's Strategic Planning Activity, ORNL National Energy Perspective (ONEP). It is intended to provide historical background on nuclear power, an analysis of the mission of nuclear power, a discussion of the issues, the technology choices, and the suggestion of a strategy for encouraging further growth of nuclear power.

Spiewak, I.; Cope, D.F.

1980-09-01T23:59:59.000Z

372

International Power Engineering Research Collaborations  

E-Print Network [OSTI]

, Power Systems, International Cooperation, Power Engineering Education, Industry and Government Support of electricity is on the rise as efficient and environmentally sensitive electricity services are key have major impacts on the topics of research projects and the education of the new generation of power

Gross, George

373

Active Power Controls from Wind Power: Bridging the Gaps  

SciTech Connect (OSTI)

This paper details a comprehensive study undertaken by the National Renewable Energy Laboratory, Electric Power Research Institute, and the University of Colorado to understand how the contribution of wind power providing active power control (APC) can benefit the total power system economics, increase revenue streams, improve the reliability and security of the power system, and provide superior and efficient response while reducing any structural and loading impacts that may reduce the life of the wind turbine or its components. The study includes power system simulations, control simulations, and actual field tests using turbines at NREL's National Wind Technology Center (NWTC). The study focuses on synthetic inertial control, primary frequency control, and automatic generation control, and analyzes timeframes ranging from milliseconds to minutes to the lifetime of wind turbines, locational scope ranging from components of turbines to large wind plants to entire synchronous interconnections, and additional topics ranging from economics to power system engineering to control design.

Ela, E.; Gevorgian, V.; Fleming, P.; Zhang, Y. C.; Singh, M.; Muljadi, E.; Scholbrook, A.; Aho, J.; Buckspan, A.; Pao, L.; Singhvi, V.; Tuohy, A.; Pourbeik, P.; Brooks, D.; Bhatt, N.

2014-01-01T23:59:59.000Z

374

The effect of high penetration of wind power on primary frequency control of power systems.  

E-Print Network [OSTI]

??In this work, a power system with wind power units and hydro power units are considered. The hydro power unit and variable speed wind turbine (more)

Motamed, Bardia

2013-01-01T23:59:59.000Z

375

Clean Coal Power Initiative  

SciTech Connect (OSTI)

This report is the fifth quarterly Technical Progress Report submitted by NeuCo, Incorporated, under Award Identification Number, DE-FC26-04NT41768. This award is part of the Clean Coal Power Initiative (''CCPI''), the ten-year, $2B initiative to demonstrate new clean coal technologies in the field. This report is one of the required reports listed in Attachment B Federal Assistance Reporting Checklist, part of the Cooperative Agreement. The report covers the award period January 1, 2006 - March 31, 2006 and NeuCo's efforts within design, development, and deployment of on-line optimization systems during that period.

Doug Bartlett; Rob James; John McDermott; Neel Parikh; Sanjay Patnaik; Camilla Podowski

2006-03-31T23:59:59.000Z

376

CRSP Power Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation Sites Proposed Route BTRICGEGR-N Goods PO6,Act of 1956 An act toPower

377

PowerPoint Presentation  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15, 2010Energy6DepartmentOutages Update: Post-TropicalRecords

378

PowerPoint Presentation  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15, 2010Energy6DepartmentOutages Update:

379

PowerPoint Presentation  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15, 2010Energy6DepartmentOutages Update:Fleet Card Program Review

380

PowerPoint Presentation  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15, 2010Energy6DepartmentOutages Update:Fleet Card Program

Note: This page contains sample records for the topic "owner terra-gen power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Water Power Program: Publications  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012NuclearBradleyBudget Water Power Program BudgetInformation

382

Powering | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to theNews & BlogPostdocs, Power

383

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power Administration One West

384

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power Administration One West

385

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power Administration One

386

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power Administration OneDOE Office

387

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power Administration OneDOE

388

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power Administration OneDOEBusiness

389

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power Administration OneDOEBusiness

390

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power AdministrationDOE Office of

391

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power AdministrationDOE Office

392

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power AdministrationDOE

393

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power AdministrationDOEFOIA/Privacy

394

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power2014 Meeting 2013 Meeting 2012

395

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power2014 Meeting 2013 Meeting

396

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power2014 Meeting 2013

397

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power2014 Meeting 2013News Items

398

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power2014 Meeting 2013News

399

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power2014 Meeting 2013NewsBusiness

400

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power2014 Meeting

Note: This page contains sample records for the topic "owner terra-gen power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power2014 MeetingNews Items Skip

402

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power2014 MeetingNews Items

403

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power2014 MeetingNews

404

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power2014 MeetingNewsDOE Order No.

405

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power2014 MeetingNewsDOE Order

406

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power2014 MeetingNewsDOE

407

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power2014 MeetingNewsDOECrime

408

Southwestern Power System Map  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power2014 Evaluate Our Site Please

409

Power Prepayment Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,ReactorAbout Power > Financial

410

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,ReactorAbout Power >TechnicianI

411

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,ReactorAbout Power >TechnicianIe x a s A

412

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,ReactorAbout Power >TechnicianIe x a s

413

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,ReactorAbout Power >TechnicianIe x a

414

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,ReactorAbout Power >TechnicianIe x

415

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,ReactorAbout Power >TechnicianIe x2013

416

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,ReactorAbout Power >TechnicianIe

417

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,ReactorAbout Power >TechnicianIeB:

418

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,ReactorAbout Power >TechnicianIeB:PV

419

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,ReactorAbout Power >TechnicianIeB:PVA:

420

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,ReactorAbout Power >TechnicianIeB:PVA:F:

Note: This page contains sample records for the topic "owner terra-gen power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,ReactorAbout Power

422

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,ReactorAbout PowerIndustry Reliability:

423

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,ReactorAbout PowerIndustry Reliability:May

424

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,ReactorAbout PowerIndustry

425

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,ReactorAbout PowerIndustryAccelerator

426

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,ReactorAbout PowerIndustryAcceleratorRight)

427

POWER SALES AGREEMENT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 TheSteven Ashby Dr. Steven Ashby PhotoAt13PM-I0978 POWER SALES

428

Wind Power Career Chat  

SciTech Connect (OSTI)

This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

Not Available

2011-01-01T23:59:59.000Z

429

Western Area Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun Deng Associate ResearchWestern Area Power

430

Wind Power FAQ  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlenderWhatFellows - PastFarmWind Power

431

Wind Power Link  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlenderWhatFellows - PastFarmWindWind Power

432

Wind Power Outreach Campaign  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlenderWhatFellows - PastFarmWindWind Power Wind

433

Wind Power Software  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlenderWhatFellows - PastFarmWindWind Power

434

2025 Power Marketing Initiative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011 Mon, Next2025 Power Marketing Initiative The

435

Electric Power Monthly  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96Nebraska NuclearDecade Year-0 Year-1Electric Power

436

Fusion Power Associates Awards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor's note:Computing |FuelsFundingSciencesFusion Power

437

Bonneville Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers Apply forBiosurveillance A8 Blythe-Knob1|POWER BUSINESS

438

Bonneville Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers Apply forBiosurveillance A8 Blythe-Knob1|POWER

439

Bonneville Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers Apply forBiosurveillance A8 Blythe-Knob1|POWER"NT

440

in Idaho's Power County  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture andDeepwaterfors67 From:i6 GreenPower News

Note: This page contains sample records for the topic "owner terra-gen power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

PowerPoint ?????????  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home Design PassivePostdoctoral Opportunities ArePower

442

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home Design PassivePostdoctoral Opportunities ArePowerMethods *

443

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home Design PassivePostdoctoral Opportunities ArePowerMethods *Touching

444

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home Design PassivePostdoctoral Opportunities ArePowerMethods

445

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home Design PassivePostdoctoral Opportunities ArePowerMethodsAllinea

446

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home Design PassivePostdoctoral Opportunities ArePowerMethodsAllineaRice

447

Electronic power conditioning for dynamic power conversion in high-power space systems  

E-Print Network [OSTI]

require power levels above 10 kW, . For high energy levels of short duration, Chemical energy sources are effective choices. Utilizing magnetohydrodynamics (MHD), for example, these systems provide pulse power to their respective loads. And lastly, A...

Hansen, James Michael

1991-01-01T23:59:59.000Z

448

Distributed energy resources customer adoption modeling with combined heat and power applications  

SciTech Connect (OSTI)

In this report, an economic model of customer adoption of distributed energy resources (DER) is developed. It covers progress on the DER project for the California Energy Commission (CEC) at Berkeley Lab during the period July 2001 through Dec 2002 in the Consortium for Electric Reliability Technology Solutions (CERTS) Distributed Energy Resources Integration (DERI) project. CERTS has developed a specific paradigm of distributed energy deployment, the CERTS Microgrid (as described in Lasseter et al. 2002). The primary goal of CERTS distributed generation research is to solve the technical problems required to make the CERTS Microgrid a viable technology, and Berkeley Lab's contribution is to direct the technical research proceeding at CERTS partner sites towards the most productive engineering problems. The work reported herein is somewhat more widely applicable, so it will be described within the context of a generic microgrid (mGrid). Current work focuses on the implementation of combined heat and power (CHP) capability. A mGrid as generically defined for this work is a semiautonomous grouping of generating sources and end-use electrical loads and heat sinks that share heat and power. Equipment is clustered and operated for the benefit of its owners. Although it can function independently of the traditional power system, or macrogrid, the mGrid is usually interconnected and exchanges energy and possibly ancillary services with the macrogrid. In contrast to the traditional centralized paradigm, the design, implementation, operation, and expansion of the mGrid is meant to optimize the overall energy system requirements of participating customers rather than the objectives and requirements of the macrogrid.

Siddiqui, Afzal S.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael; Edwards, Jennifer L.; Marnay, Chris

2003-07-01T23:59:59.000Z

449

Power converters for parabolic dishes  

SciTech Connect (OSTI)

The development status of receivers and power conversion units to be used with parabolic dish concentrators is presented. Applications are identified, and the key role played by the power converter element of the collector module is emphasized. The electrical output of the 11-meter-diameter dish modules which are being developed varies up to a maximum of about 25 kilowatts, depending on the thermodynamic cycle of the power converter. Three power conversion units are being developed: an organic Rankine, an air Brayton, and a Stirling. The development program for the receivers and the power conversion units is described in detail.

Truscello, V.C.; Williams, A.N.

1981-01-01T23:59:59.000Z

450

Hybrid power source  

DOE Patents [OSTI]

A hybrid power system is comprised of a high energy density element such as a fuel-cell and high power density elements such as a supercapacitor banks. A DC/DC converter electrically connected to the fuel cell and converting the energy level of the energy supplied by the fuel cell. A first switch is electrically connected to the DC/DC converter. First and second supercapacitors are electrically connected to the first switch and a second switch. A controller is connected to the first switch and the second switch, monitoring charge levels of the supercapacitors and controls the switching in response to the charge levels. A load is electrically connected to the second switch. The first switch connects the DC/DC converter to the first supercapacitor when the second switch connects the second supercapacitor to the load. The first switch connects the DC/DC converter to the second supercapacitor when the second switch connects the first supercapacitor to the load.

Singh, Harmohan N.

2012-06-05T23:59:59.000Z

451

Solar thermal power system  

DOE Patents [OSTI]

A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

Bennett, Charles L.

2010-06-15T23:59:59.000Z

452

Power Systems Development Facility  

SciTech Connect (OSTI)

This report discusses Test Campaign TC12 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (SW) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC12 began on May 16, 2003, with the startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until May 24, 2003, when a scheduled outage occurred to allow maintenance crews to install the fuel cell test unit and modify the gas clean-up system. On June 18, 2003, the test run resumed when operations relit the start-up burner, and testing continued until the scheduled end of the run on July 14, 2003. TC12 had a total of 733 hours using Powder River Basin (PRB) subbituminous coal. Over the course of the entire test run, gasifier temperatures varied between 1,675 and 1,850 F at pressures from 130 to 210 psig.

None

2003-07-01T23:59:59.000Z

453

Power Systems Development Facility  

SciTech Connect (OSTI)

This report discusses Test Campaign TC15 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Power Generation, Inc. (SPG) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC15 began on April 19, 2004, with the startup of the main air compressor and the lighting of the gasifier startup burner. The Transport Gasifier was shutdown on April 29, 2004, accumulating 200 hours of operation using Powder River Basin (PRB) subbituminous coal. About 91 hours of the test run occurred during oxygen-blown operations. Another 6 hours of the test run was in enriched-air mode. The remainder of the test run, approximately 103 hours, took place during air-blown operations. The highest operating temperature in the gasifier mixing zone mostly varied from 1,800 to 1,850 F. The gasifier exit pressure ran between 200 and 230 psig during air-blown operations and between 110 and 150 psig in oxygen-enhanced air operations.

Southern Company Services

2004-04-30T23:59:59.000Z

454

SMART POWER TURBINE  

SciTech Connect (OSTI)

Gas turbines are the choice technology for high-performance power generation and are employed in both simple and combined cycle configurations around the world. The Smart Power Turbine (SPT) program has developed new technologies that are needed to further extend the performance and economic attractiveness of gas turbines for power generation. Today's power generation gas turbines control firing temperatures indirectly, by measuring the exhaust gas temperature and then mathematically calculating the peak combustor temperatures. But temperatures in the turbine hot gas path vary a great deal, making it difficult to control firing temperatures precisely enough to achieve optimal performance. Similarly, there is no current way to assess deterioration of turbine hot-gas-path components without shutting down the turbine. Consequently, maintenance and component replacements are often scheduled according to conservative design practices based on historical fleet-averaged data. Since fuel heating values vary with the prevalent natural gas fuel, the inability to measure heating value directly, with sufficient accuracy and timeliness, can lead to maintenance and operational decisions that are less than optimal. GE Global Research Center, under this Smart Power Turbine program, has developed a suite of novel sensors that would measure combustor flame temperature, online fuel lower heating value (LHV), and hot-gas-path component life directly. The feasibility of using the ratio of the integrated intensities of portions of the OH emission band to determine the specific average temperature of a premixed methane or natural-gas-fueled combustion flame was demonstrated. The temperature determined is the temperature of the plasma included in the field of view of the sensor. Two sensor types were investigated: the first used a low-resolution fiber optic spectrometer; the second was a SiC dual photodiode chip. Both methods worked. Sensitivity to flame temperature changes was remarkably high, that is a 1-2.5% change in ratio for an 11.1 C (20 F) change in temperature at flame temperatures between 1482.2 C (2700 F) and 1760 C (3200 F). Sensor ratio calibration was performed using flame temperatures determined by calculations using the amount of unburned oxygen in the exhaust and by the fuel/air ratio of the combustible gas mixture. The agreement between the results of these two methods was excellent. The sensor methods characterized are simple and viable. Experiments are underway to validate the GE Flame Temperature Sensor as a practical tool for use with multiburner gas turbine combustors. The lower heating value (LHV) Fuel Quality Sensor consists of a catalytic film deposited on the surface of a microhotplate. This micromachined design has low heat capacity and thermal conductivity, making it ideal for heating catalysts placed on its surface. Several methods of catalyst deposition were investigated, including micropen deposition and other proprietary methods, which permit precise and repeatable placement of the materials. The use of catalysts on the LHV sensor expands the limits of flammability (LoF) of combustion fuels as compared with conventional flames; an unoptimized LoF of 1-32% for natural gas (NG) in air was demonstrated with the microcombustor, whereas conventionally 4 to 16% is observed. The primary goal of this work was to measure the LHV of NG fuels. The secondary goal was to determine the relative quantities of the various components of NG mixes. This determination was made successfully by using an array of different catalysts operating at different temperatures. The combustion parameters for methane were shown to be dependent on whether Pt or Pd catalysts were used. In this project, significant effort was expended on making the LHV platform more robust by the addition of high-temperature stable materials, such as tantalum, and the use of passivation overcoats to protect the resistive heater/sensor materials from degradation in the combustion environment. Modeling and simulation were used to predict improved sensor designs.

Nirm V. Nirmalan

2003-11-01T23:59:59.000Z

455

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandia Involves Wind-Farm Owners inConcentrating Solar

456

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandia Involves Wind-Farm Owners inConcentrating SolarPratt

457

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandia Involves Wind-Farm Owners inConcentrating

458

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandia Involves Wind-Farm Owners inConcentratingSandia Wins

459

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandia Involves Wind-Farm Owners inConcentratingSandia

460

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandia Involves Wind-Farm Owners inConcentratingSandiaCSP

Note: This page contains sample records for the topic "owner terra-gen power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandia Involves Wind-Farm Owners

462

Sandia National Laboratories: Concentrating Solar Power Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandia Involves Wind-Farm Owners Concentrating Solar

463

Sandia National Laboratories: Concentrating Solar Power: Efficiently  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandia Involves Wind-Farm Owners Concentrating

464

Sandia National Laboratories: Conventional Water Power: Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandia Involves Wind-Farm OwnersContactsDevelopment

465

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network [OSTI]

Biofuels,LLC UCSDBiomasstoPower EconomicFeasibilityFigure1:WestBiofuelsBiomassGasificationtoPowerrates... 31 UCSDBiomasstoPower?Feasibility

Cattolica, Robert

2009-01-01T23:59:59.000Z

466

Concentrated Thermoelectric Power | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Concentrated Thermoelectric Power This fact sheet describes a concentrated solar hydroelectric power project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D...

467

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network [OSTI]

small irrigation power, municipal solid waste, andinto Municipal Solid Waste Gasification for PowerMunicipalSolidWasteGasificationforPowerGeneration.

Cattolica, Robert

2009-01-01T23:59:59.000Z

468

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network [OSTI]

into Municipal Solid Waste Gasification for PowerAthermalwastegasificationpowergenerationfacilityMunicipalSolidWasteGasificationforPowerGeneration.

Cattolica, Robert

2009-01-01T23:59:59.000Z

469

Solar Power Purchase Agreements | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Power Purchase Agreements Solar Power Purchase Agreements Provides an overview of solar power purchase agreements including how they work, benefits and challenges and...

470

A Tariff for Reactive Power  

SciTech Connect (OSTI)

Two kinds of power are required to operate an electric power system: real power, measured in watts, and reactive power, measured in volt-amperes reactive or VARs. Reactive power supply is one of a class of power system reliability services collectively known as ancillary services, and is essential for the reliable operation of the bulk power system. Reactive power flows when current leads or lags behind voltage. Typically, the current in a distribution system lags behind voltage because of inductive loads such as motors. Reactive power flow wastes energy and capacity and causes voltage droop. To correct lagging power flow, leading reactive power (current leading voltage) is supplied to bring the current into phase with voltage. When the current is in phase with voltage, there is a reduction in system losses, an increase in system capacity, and a rise in voltage. Reactive power can be supplied from either static or dynamic VAR sources. Static sources are typically transmission and distribution equipment, such as capacitors at substations, and their cost has historically been included in the revenue requirement of the transmission operator (TO), and recovered through cost-of-service rates. By contrast, dynamic sources are typically generators capable of producing variable levels of reactive power by automatically controlling the generator to regulate voltage. Transmission system devices such as synchronous condensers can also provide dynamic reactive power. A class of solid state devices (called flexible AC transmission system devices or FACTs) can provide dynamic reactive power. One specific device has the unfortunate name of static VAR compensator (SVC), where 'static' refers to the solid state nature of the device (it does not include rotating equipment) and not to the production of static reactive power. Dynamic sources at the distribution level, while more costly would be very useful in helping to regulate local voltage. Local voltage regulation would reduce system losses, increase circuit capacity, increase reliability, and improve efficiency. Reactive power is theoretically available from any inverter-based equipment such as photovoltaic (PV) systems, fuel cells, microturbines, and adjustable-speed drives. However, the installation is usually only economical if reactive power supply is considered during the design and construction phase. In this report, we find that if the inverters of PV systems or the generators of combined heat and power (CHP) systems were designed with capability to supply dynamic reactive power, they could do this quite economically. In fact, on an annualized basis, these inverters and generators may be able to supply dynamic reactive power for about $5 or $6 per kVAR. The savings from the local supply of dynamic reactive power would be in reduced losses, increased capacity, and decreased transmission congestion. The net savings are estimated to be about $7 per kVAR on an annualized basis for a hypothetical circuit. Thus the distribution company could economically purchase a dynamic reactive power service from customers for perhaps $6/kVAR. This practice would provide for better voltage regulation in the distribution system and would provide an alternate revenue source to help amortize the cost of PV and CHP installations. As distribution and transmission systems are operated under rising levels of stress, the value of local dynamic reactive supply is expected to grow. Also, large power inverters, in the range of 500 kW to 1 MW, are expected to decrease in cost as they become mass produced. This report provides one data point which shows that the local supply of dynamic reactive power is marginally profitable at present for a hypothetical circuit. We expect that the trends of growing power flow on the existing system and mass production of inverters for distributed energy devices will make the dynamic supply of reactive power from customers an integral component of economical and reliable system operation in the future.

Kueck, John D [ORNL; Kirby, Brendan J [ORNL; Li, Fangxing [ORNL; Tufon, Christopher [Pacific Gas and Electric Company; Isemonger, Alan [California Independent System Operator

2008-07-01T23:59:59.000Z

471

Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report  

SciTech Connect (OSTI)

The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodlogy calibration purposes because, in the public domain, it is a highly characterized geothermal systems in the Basin and Range with a considerable amount of geoscience and most importantly, well data. This Baseline Conceptual Model report summarizes the results of the first three project tasks (1) collect and assess the existing public domain geoscience data, (2) design and populate a GIS database, and (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area (Dixie Valley Geothermal Wellfield) to identify EGS drilling targets at a scale of 5km x 5km. It presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region.

Iovenitti, Joe

2013-05-15T23:59:59.000Z

472

Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodlogy calibration purposes because, in the public domain, it is a highly characterized geothermal systems in the Basin and Range with a considerable amount of geoscience and most importantly, well data. This Baseline Conceptual Model report summarizes the results of the first three project tasks (1) collect and assess the existing public domain geoscience data, (2) design and populate a GIS database, and (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area (Dixie Valley Geothermal Wellfield) to identify EGS drilling targets at a scale of 5km x 5km. It presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region.

Iovenitti, Joe

473

Power electronics reliability analysis.  

SciTech Connect (OSTI)

This report provides the DOE and industry with a general process for analyzing power electronics reliability. The analysis can help with understanding the main causes of failures, downtime, and cost and how to reduce them. One approach is to collect field maintenance data and use it directly to calculate reliability metrics related to each cause. Another approach is to model the functional structure of the equipment using a fault tree to derive system reliability from component reliability. Analysis of a fictitious device demonstrates the latter process. Optimization can use the resulting baseline model to decide how to improve reliability and/or lower costs. It is recommended that both electric utilities and equipment manufacturers make provisions to collect and share data in order to lay the groundwork for improving reliability into the future. Reliability analysis helps guide reliability improvements in hardware and software technology including condition monitoring and prognostics and health management.

Smith, Mark A.; Atcitty, Stanley

2009-12-01T23:59:59.000Z

474

Electric power monthly  

SciTech Connect (OSTI)

The Energy Information Administration (EIA) prepares the Electric Power Monthly (EPM) for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. This publication provides monthly statistics for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source, consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead.

NONE

1995-08-01T23:59:59.000Z

475

Electric power monthly  

SciTech Connect (OSTI)

The Electric Power Monthly is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the national, Census division, and State levels for net generation, fuel consumption, fuel stocks, quantity and quality of fuel, cost of fuel, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fuel are also displayed for the North American Electric Reliability Council (NERC) regions. Additionally, statistics by company and plant are published in the EPM on capability of new plants, new generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fuel.

Not Available

1992-05-01T23:59:59.000Z

476

Solar Power for Tanzania  

SciTech Connect (OSTI)

Condensed list of products and activities: 8 educational posters and 1 informational brochure (all original illustrations and text); a business plan with micro-agreements; corporation created called Tanzanian Power, LLC; business feasibility study developed with the University of Albany; Hampshire College collaborated in project development; research conducted seeking similar projects in underdeveloped countries; Citibank proposal submitted (but rejected); cleaned and sent PV panels to Tanzania; community center built in Tanzania; research and list provided to Robinson for educational TV videos and product catalogs; networked with Chase Manhattan Bank for new solar panels; maintained flow of information among many people (stateside and Tanzania); wrote and sent press releases and other outreach information. Several families purchased panels.

Chen, Christine; Gerace, Jay; Mehner, Nicole; Mohamed, Sharif; Reiss, Kelly

1999-12-06T23:59:59.000Z

477

IEEE POWER ENGINEERING SOCIETY ENERGY DEVELOPMENT AND POWER GENERATION COMMITTEE  

E-Print Network [OSTI]

--Price Cap Regulation: Stimulating Efficiency in Electricity Distribution in Latin America. (Luiz Barroso Sponsored by: International Practices for Energy Development and Power Generation Chairs: Luiz Barroso, PSR

Catholic University of Chile (Universidad Católica de Chile)

478

Making Africa's Power Sector Sustainable: An Analysis of Power...  

Open Energy Info (EERE)

Africa sustainable. Furthermore, it proposes options that could enhance the sustainability of the power sector. The study adds value to the limited but growing literature on...

479

Steam Power Partnership: Improving Steam System Efficiency Through Marketplace Partnerships  

E-Print Network [OSTI]

to support the steam efficiency program. Today, the Steam Team includes, the North American Insulation Manufacturers Association (NAIMA), the American Gas Association (AGA), the Council of Industrial Boiler Owners (ClBO), Armstrong International... pinch technology, and high performance steam. ? Armstrong International - Three worldwide factory seminar facilities, 13 North American sales representative facilities, 4 international sales representative facilities, 8 co-sponsored facilities, 2...

Jones, T.

480

FUTURE POWER GRID INITIATIVE An Intelligent Agent Platform  

E-Print Network [OSTI]

Sequencing For Managing Demand/Response IMPACT VOLTTRON fills the need for an independent language agnostic. This will allow customers, building owners, utilities, etc. to realize better energy efficiency and reliability the integrating platform for a DOE funded project combining multiple labs and vendors for building energy

Note: This page contains sample records for the topic "owner terra-gen power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Low inductance power electronics assembly  

DOE Patents [OSTI]

A power electronics assembly is provided. A first support member includes a first plurality of conductors. A first plurality of power switching devices are coupled to the first support member. A first capacitor is coupled to the first support member. A second support member includes a second plurality of conductors. A second plurality of power switching devices are coupled to the second support member. A second capacitor is coupled to the second support member. The first and second pluralities of conductors, the first and second pluralities of power switching devices, and the first and second capacitors are electrically connected such that the first plurality of power switching devices is connected in parallel with the first capacitor and the second capacitor and the second plurality of power switching devices is connected in parallel with the second capacitor and the first capacitor.

Herron, Nicholas Hayden; Mann, Brooks S.; Korich, Mark D.; Chou, Cindy; Tang, David; Carlson, Douglas S.; Barry, Alan L.

2012-10-02T23:59:59.000Z

482

Transportation and Stationary Power Integration: Workshop Proceedings...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Integration: Workshop Proceedings Transportation and Stationary Power Integration: Workshop Proceedings Proceedings for the Transportation and Stationary Power Integration Workshop...

483

The Decline and Death of Nuclear Power  

E-Print Network [OSTI]

funding, causing nuclear power to simply fall off the energyor ambivalent about nuclear power to firmly against it.

Melville, Jonathan

2013-01-01T23:59:59.000Z

484

Independent Oversight Review, Bonneville Power Administration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Bonneville Power Administration Safety Management Program - March 2014 Independent Oversight Review, Bonneville Power Administration Safety Management Program - March 2014 March...

485

Funding Opportunity Announcement: Concentrating Solar Power:...  

Broader source: Energy.gov (indexed) [DOE]

Funding Opportunity Announcement: Concentrating Solar Power: Advanced Projects Offering Low LCOE Opportunities Funding Opportunity Announcement: Concentrating Solar Power: Advanced...

486

Optimal Power Schedule for Distributed MIMO Links  

E-Print Network [OSTI]

an integration of link scheduling and power control for MIMOmedium access control, space-time power scheduling. Fig. 1.

Rong, Yue; Hua, Yingbo

2008-01-01T23:59:59.000Z

487

Electric power annual 1994. Volume 1  

SciTech Connect (OSTI)

The Electric Power Annual presents a summary of electric power industry statistics at national, regional, and State levels.

NONE

1995-07-21T23:59:59.000Z

488

(Nuclear power engineering in space)  

SciTech Connect (OSTI)

The principal purpose of this trip was to participate in the Anniversary Specialist Conference on Nuclear Power Engineering in Space hosted by the USSR Ministry of Atomic Power Engineering and Industry. The conference was held in Obninsk, USSR. A secondary purpose of the trip was to meet with the French Commissariat A L'Energie Atomique in Paris regarding the status of their space power program.

Cooper, R.H. Jr.

1990-06-18T23:59:59.000Z

489

Power Reliability at BASF Corporation  

E-Print Network [OSTI]

Power Reliability at BASF Corporation Thomas R. Theising Energy Systems Manager BASF Corporation ABSTRACT: Quality is defined not as what the supplier puts into the product but what the customer gets out and is willing to pay for. Power... of overcoming these problems. The approach of addressing the reliability of its utility systems is common within BASF. This paper will address one of BASF?s approaches to addressing Power Reliability. PROBLEM RECOGNITION: The first issue to address...

Theising, T. R.

2011-01-01T23:59:59.000Z

490

Power Reliability at BASF Corporation  

E-Print Network [OSTI]

Power Reliability at BASF Corporation Thomas R. Theising Energy Systems Manager BASF Corporation ABSTRACT: Quality is defined not as what the supplier puts into the product but what the customer gets out and is willing to pay for. Power... of overcoming these problems. The approach of addressing the reliability of its utility systems is common within BASF. This paper will address one of BASF?s approaches to addressing Power Reliability. PROBLEM RECOGNITION: The first issue to address...

Theising, T. R.

2012-01-01T23:59:59.000Z

491

Breeze Wind Power In China.  

E-Print Network [OSTI]

?? China is an energy production and consumption country, wind power is one of the greatest development potential energy.The authors use literature research methodology, case (more)

wang, zhong tao

2012-01-01T23:59:59.000Z

492

Virginia Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

493

Ohio Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

494

Arkansas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

495

Michigan Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

496

California Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

California nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

497

Alabama Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

498

Texas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

499

Pennsylvania Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

500

Tennessee Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...