Sample records for owner sempra lng

  1. Sempra LNG Marketing, LLC- FE Dkt. No. 14-177-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed October 24, 2014 by Sempra LNG Marketing, LLC (Sempra LNG Marketing), requesting blanket authorization to export...

  2. Application for Presidential Permit OE Docket No. PP-235 Sempra...

    Office of Environmental Management (EM)

    35 Sempra Energy Resources. Application for Presidential Permit OE Docket No. PP-235 Sempra Energy Resources. Application from Sempra Energy Resources to construct, operate and...

  3. EA-1796: Sempra Mesquite Solar Energy Facility near Gillespie...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: Sempra Mesquite Solar Energy Facility near Gillespie, AZ EA-1796: Sempra Mesquite Solar Energy Facility near Gillespie, AZ February 1, 2011 EA-1796: Final Environmental...

  4. QER- Comment of Sempra Energy 3

    Broader source: Energy.gov [DOE]

    Sempra Energy, on behalf of its subsidiaries, San Diego Gas and Electric Company (SDG&E), Southern California Gas Company, (SoCalGas) and Sempra U.S. Gas & Power1, respectfully submit the attached comments to the Department of Energy. The attached document provides Sempra Energy’s comments regarding the U.S. Department of Energy’s Quadrennial Energy review meeting on natural gas and electricity interdependence.

  5. QER- Comment of Sempra Energy 2

    Broader source: Energy.gov [DOE]

    Sempra Energy, on behalf of its subsidiaries, San Diego Gas and Electric Company (SDG&E), Southern California Gas Company, (SoCalGas) and Sempra U.S. Gas & Power1, respectfully submit the attached comments to the Department of Energy. The attached document provides Sempra Energy’s comments regarding the U.S. Department of Energy’s Quadrennial Energy review meeting on natural gas transmission, storage and distribution.

  6. QER- Comment of Sempra Energy 1

    Broader source: Energy.gov [DOE]

    Sempra Energy, on behalf of its subsidiaries, San Diego Gas and Electric Company (SDG&E), Southern California Gas Company, (SoCalGas) and Sempra U.S. Gas & Power, respectfully submit the attached comments to the Department of Energy. The attached document provides Sempra Energy’s comments regarding the U.S. Department of Energy’s Quadrennial Energy review meeting on electricity transportation, distribution and storage in the west.

  7. Sempra

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergy SmallImplementingSecuritySemiannual Report toDepartmentOFFICE OF|

  8. Introduction to LNG vehicle safety. Topical report

    SciTech Connect (OSTI)

    Bratvold, D.; Friedman, D.; Chernoff, H.; Farkhondehpay, D.; Comay, C.

    1994-03-01T23:59:59.000Z

    Basic information on the characteristics of liquefied natural gas (LNG) is assembled in this report to provide an overview of safety issues and practices for the use of LNG vehicles. This document is intended for those planning or considering the use of LNG vehicles, including vehicle fleet owners and operators, public transit officials and boards, local fire and safety officials, manufacturers and distributors, and gas industry officials. Safety issues and mitigation measures that should be considered for candidate LNG vehicle projects are addressed.

  9. Mesquite Solar 1, LLC (Sempra Mesquite) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Mesquite Solar 1, LLC (Sempra Mesquite) Location: Maricopa County, AZ Eligibility: 1705 Snapshot In September 2011, the Department of Energy issued Mesquite Solar 1, LLC a 337...

  10. Sempra Energy Trading Corp | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AG Jump638324°,Schnell ZTools andSegenSemanticSemiSempra

  11. Application for presidential permit OE Docket No. PP-235-1 Sempra...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    presidential permit OE Docket No. PP-235-1 Sempra Energy Resources and Termoelectrica U.S LLC Application for presidential permit OE Docket No. PP-235-1 Sempra Energy Resources and...

  12. EA-191-B Sempra Energy Trading Corporation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy |Final Site-Wide ConstellationORder Sempra EnergyB Sempra

  13. EA-191-C Sempra Energy Trading Corporation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy |Final Site-Wide ConstellationORder Sempra EnergyB SempraC

  14. EA-191-D Sempra Energy Trading Corporation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy |Final Site-Wide ConstellationORder Sempra EnergyB SempraCD

  15. EA-284-A Sempra Energy Solutions | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJulySavannah River Site for Use by the State ofDOE OakEES toSempra

  16. EA-191-C Sempra Energy Trading Corporation | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy5-FEB. 15,5: Mitigation ActionDraftEA-191-C Sempra Energy

  17. EA-176 Sempra Energy Trading Corporation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy |Final Site-Wide Constellation Power Source,and Sempra

  18. EA-176-A Sempra Energy Trading Corporation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy |Final Site-Wide Constellation Power Source,and Sempra-A

  19. EA-191 Sempra Energy Trading Corporation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy |Final Site-Wide ConstellationORder Sempra Energy Trading

  20. EA-191-A Sempra Energy Trading Corporation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy |Final Site-Wide ConstellationORder Sempra Energy

  1. Application to Export Electric Energy OE Docket No. EA-406 Sempra...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Electricity Delivery and Energy Reliability (OE): EA-406 Sempra Generation, LLC Application to Export Electric Energy OE Docket No. EA-387 Energia Renovable S.C, LLC...

  2. Environmental assessment for presidential permit applications for Baja California Power Inc and Sempra Energy Resources PP-234 and PP-235

    Broader source: Energy.gov [DOE]

    Environmental assessment for presidential permit applications for Baja California Power Inc and Sempra Energy Resources. December 2001 PP-234 and PP-235

  3. Bear Head LNG Corporation and Bear Head LNG (USA), LLC - FE Dkt...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bear Head LNG Corporation and Bear Head LNG (USA), LLC - FE Dkt. No. - 15-33-LNG Bear Head LNG Corporation and Bear Head LNG (USA), LLC - FE Dkt. No. - 15-33-LNG The Office of...

  4. Caribbean LNG project marks progress; LNG tanker launched

    SciTech Connect (OSTI)

    NONE

    1997-10-20T23:59:59.000Z

    World LNG trade continues to expand as construction of a major LNG project in the Caribbean hits full stride this fall and another LNG carrier was launched earlier this year. Engineering is nearly complete and construction is nearing midway on Trinidad`s Atlantic LNG. In Japan, NKK Corp. launched another LNG tanker that employs the membrane-storage system. The 50-mile pipeline to move natural gas to the Atlantic LNG facility is also on track for completion by October 1998.

  5. New LNG process scheme

    SciTech Connect (OSTI)

    Foglietta, J.H.

    1999-07-01T23:59:59.000Z

    A new LNG cycle has been developed for base load liquefaction facilities. This new design offers a different technical and economical solution comparing in efficiency with the classical technologies. The new LNG scheme could offer attractive business opportunities to oil and gas companies that are trying to find paths to monetize gas sources more effectively; particularly for remote or offshore locations where smaller scale LNG facilities might be applicable. This design offers also an alternative route to classic LNG projects, as well as alternative fuel sources. Conceived to offer simplicity and access to industry standard equipment, This design is a hybrid result of combining a standard refrigeration system and turboexpander technology.

  6. The application of expansion foam on liquefied natural gas (LNG) to suppress LNG vapor and LNG pool fire thermal radiation

    E-Print Network [OSTI]

    Suardin, Jaffee Arizon

    2009-05-15T23:59:59.000Z

    Liquefied Natural Gas (LNG) hazards include LNG flammable vapor dispersion and LNG pool fire thermal radiation. A large LNG pool fire emits high thermal radiation thus preventing fire fighters from approaching and extinguishing the fire. One...

  7. U.S. LNG Imports from Canada

    Gasoline and Diesel Fuel Update (EIA)

    LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG...

  8. U.S. LNG Imports from Canada

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG...

  9. DOWNEAST LNG, INC.

    Broader source: Energy.gov (indexed) [DOE]

    DOWNEAST LNG, INC. 748 U.S. Route 1 Robbinston, Maine 04671 October 15, 2014 Mr. John Anderson Office of Fuels Programs, Fossil Energy U.S. Department of Energy Docket Room 3F-056,...

  10. Port Arthur LNG

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Port Arthur LNG March 20, 2015 Submitted electronically to fersas(a)hq.doe.eov Ms. Larine A. Moore Docket Room Manager FE-34 U.S. Department of Energy P.O. Box 44375 Washington, DC...

  11. American LNG Marketing LLC - FE Dkt. No. 14-209-LNG | Department...

    Office of Environmental Management (EM)

    American LNG Marketing LLC - FE Dkt. No. 14-209-LNG American LNG Marketing LLC - FE Dkt. No. 14-209-LNG The Office of Fossil Energy gives notice of receipt of an application filed...

  12. Order 3331-A: Dominion Cove Point LNG, LP - Dk. No. 11-128-LNG...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Order 3331-A: Dominion Cove Point LNG, LP - Dk. No. 11-128-LNG Order 3331-A: Dominion Cove Point LNG, LP - Dk. No. 11-128-LNG FINAL ORDER AND OPINION GRANTING LONG-TERM...

  13. SEMI-ANNUAL REPORTS FOR CAMERON LNG LLC - DKT. NO. 11-162-LNG...

    Office of Environmental Management (EM)

    CAMERON LNG LLC - DKT. NO. 11-162-LNG - ORDER 3391-A SEMI-ANNUAL REPORTS FOR CAMERON LNG LLC - DKT. NO. 11-162-LNG - ORDER 3391-A October 2014 April 2015 More Documents &...

  14. LNG Monthly Report - August 2014 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Monthly Report - August 2014 LNG Monthly Report - August 2014 LNG Monthly Report - August 2014 Aug14LNG.pdf More Documents & Publications LNG Annual Report - 2013 LNG Annual Report...

  15. Renewable LNG: Update on the World's Largest Landfill Gas to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LNG: Update on the World's Largest Landfill Gas to LNG Plant Renewable LNG: Update on the World's Largest Landfill Gas to LNG Plant Success story about LNG from landfill gas....

  16. LNG infrastructure and equipment

    SciTech Connect (OSTI)

    Forgash, D.J.

    1995-12-31T23:59:59.000Z

    Sound engineering principals have been used by every company involved in the development of the LNG infrastructure, but there is very little that is new. The same cryogenic technology that is used in the manufacture and sale of nitrogen, argon, and oxygen infrastructure is used in LNG infrastructure. The key component of the refueling infrastructure is the LNG tank which should have a capacity of at least 15,000 gallons. These stainless steel tanks are actually a tank within a tank separated by an annular space that is void of air creating a vacuum between the inner and outer tank where superinsulation is applied. Dispensing can be accomplished by pressure or pump. Either works well and has been demonstrated in the field. Until work is complete on NFPA 57 or The Texas Railroad Commission Rules for LNG are complete, the industry is setting the standards for the safe installation of refueling infrastructure. As a new industry, the safety record to date has been outstanding.

  17. Alaska LNG Comments

    Energy Savers [EERE]

    A venue, S W Washington, D .C. 2 0585 Re: A laska L NG P roject, D ocket N o. 1 4---96---LNG Dear M r. A nderson: The R esource D evelopment C ouncil ( RDC) i s w riting i n s...

  18. LNG annotated bibliography

    SciTech Connect (OSTI)

    Bomelburg, H.J.; Counts, C.A.; Cowan, C.E.; Davis, W.E.; DeSteese, J.G.; Pelto, P.J.

    1982-09-01T23:59:59.000Z

    This document updates the bibliography published in Liquefied Gaseous Fuels Safety and Environmental Control Assessment Program: third status report (PNL-4172) and is a complete listing of literature reviewed and reported under the LNG Technical Surveillance Task. The bibliography is organized alphabetically by author.

  19. LNG to the year 2000

    SciTech Connect (OSTI)

    Davenport, S.T.

    1984-04-01T23:59:59.000Z

    By 2000, about 190 MM metric-tpy of LNG will be moving in world trade, with Asia-Pacific as the dominant producer By the year 2000, approximately 190 million metric tons per year of LNG will be moving in worldwide trade. Production of LNG will be spread throughout most of the world, with Asia-Pacific as the dominant producer. LNG will be delivered only to the heavily industrialized areas of North America, Europe and Asia-Pacific. The success of any LNG project will be dependent on its individual economics, market needs, financial planning, and governmental permit processes. We hope industry will be able to put together the LNG projects required to meet the quanitities of production forecast here for the year 2000.

  20. Annova LNG, LLC- 14-004-CIC

    Broader source: Energy.gov [DOE]

    Application of Annova LNG, LLC to Transfer Control of Long-term Authorization to Export LNG to Free Trade Agreement Nations and Request for Expedited Treatment.

  1. Bound Improvement for LNG Inventory Routing

    E-Print Network [OSTI]

    2013-10-29T23:59:59.000Z

    Liquefied Natural Gas (LNG) is steadily becoming a common mode for ... The LNG supply chain includes one or multiple production terminals where natural gas ...

  2. Large Neighborhood Search for LNG Inventory Routing

    E-Print Network [OSTI]

    2011-12-15T23:59:59.000Z

    Liquefied Natural Gas (LNG) is steadily becoming a common mode for commer- ... chains, we address an LNG inventory routing problem where optimized ship ...

  3. DOE Environmental Assessment EA-1391 for Presidential Permit Applications for Baja California Power Inc and Sempra Energy Resources PP-234 and PP-235: Finding of No Significant Impact

    Broader source: Energy.gov [DOE]

    The Department of Energy has determined in its Environmental Assessment EA-1391 for Presidential Permit Applications for Baja California Power Inc and Sempra Energy Resources PP-234 and PP-235 a...

  4. SEMI-ANNUAL REPORTING REQUIREMENTS (LNG EXPORTERS) | Department...

    Broader source: Energy.gov (indexed) [DOE]

    SEMI-ANNUAL REPORTING REQUIREMENTS (LNG EXPORTERS) SEMI-ANNUAL REPORTING REQUIREMENTS (LNG EXPORTERS) Companies with authorizations to export LNG are required to file, on a...

  5. LNG Observer: Second Qatargas train goes onstream

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    The January-February, 1997 issue of the LNG Observer is presented. The following topics are discussed: second Qatargas train goes onstream; financing for the eighth Indonesian liquefaction train; Koreans take stakes in Oman LNG; US imports and exports of LNG in 1996; A 60% increase in proved reserves on the North West Shelf; proposals for Indian LNG terminal CEDIGAZ forecasts world LNG trade by 2010; growth for North African gas production and exports; and new forecast sees strong growth for Asian gas.

  6. International LNG report/Developments proceed slowly in world LNG industry

    SciTech Connect (OSTI)

    Hale, D.

    1980-03-01T23:59:59.000Z

    A discussion of developments in the world LNG industry covers U.S. developments, including the Pipeline Safety Act of 1979, the National Fire Protection Association's 1979 edition of Standard 59A for the production, storage, and handling of LNG, and progress in the permitting of major LNG import projects changes in U.S. rules on LNG pricing; LNG accidents, including the grounding of the LNG carrier Vertical BarEl Paso Paul Kaise.

  7. LNG -- Technology on the edge

    SciTech Connect (OSTI)

    Alexander, C.B.

    1995-10-01T23:59:59.000Z

    With immense promise and many supporters, LNG as a vehicular fuel is still, a nascent industry. In about two years, an array of LNG engines should be commercially available, and infrastructure greatly expanded. These developments should reduce the present premium of LNG equipment, greatly improving industry economics. The most propitious sign for LNG-market developed lies in the natural gas industry`s recently refined strategy for natural gas vehicles. The new strategy targets the right competitor--diesel, not gasoline. It also targets the right market for an emerging fuel--high-fuel-usage fleets made up of medium- and heavy-duty vehicles, often driven long distances. But problems persist in critical areas of development. These problems are related to the materials handling of LNG and the refueling of vehicles. The paper discusses the studies on LNG handling procedures, its performance benefits to high-fuel use vehicles, economic incentives for its use, tax disadvantages that are being fought, and LNG competition with ``clean`` diesel fuels.

  8. Renewable, Green LNG: Update on the World's Largest Landill Gass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable, Green LNG: Update on the World's Largest Landill Gass to LNG Plant Renewable, Green LNG: Update on the World's Largest Landill Gass to LNG Plant Presentation at the...

  9. 3 , LNG (Liquefied Natural Gas) -165oC

    E-Print Network [OSTI]

    Hong, Deog Ki

    , , . . . , . , LNG (Liquefied Natural Gas) -165oC , . (Piped Natural Gas, PNG) , , . PNG, LNG ( 2-3 ), . (Natural Gas Hydrate, NGH) / . -20oC / . LNG > Natural Gas Hydrate (NGH) Liquefied Natural Gas (LNG) Modes of Transport and Storage

  10. A NOVEL PROCESS TO USE SALT CAVERNS TO RECEIVE SHIP BORNE LNG

    SciTech Connect (OSTI)

    Michael M. McCall; William M. Bishop; Marcus Krekel; James F. Davis; D. Braxton Scherz

    2005-05-31T23:59:59.000Z

    This cooperative research project validates use of man made salt caverns to receive and store the cargoes of LNG ships in lieu of large liquid LNG tanks. Salt caverns will not tolerate direct injection of LNG because it is a cryogenic liquid, too cold for contact with salt. This research confirmed the technical processes and the economic benefits of pressuring the LNG up to dense phase, warming it to salt compatible temperatures and then directly injecting the dense phase gas into salt caverns for storage. The use of salt caverns to store natural gas sourced from LNG imports, particularly when located offshore, provides a highly secure, large scale and lower cost import facility as an alternative to tank based LNG import terminals. This design can unload a ship in the same time as unloading at a tank based terminal. The Strategic Petroleum Reserve uses man made salt caverns to securely store large quantities of crude oil. Similarly, this project describes a novel application of salt cavern gas storage technologies used for the first time in conjunction with LNG receiving. The energy industry uses man made salt caverns to store an array of gases and liquids but has never used man made salt caverns directly in the importation of LNG. This project has adapted and expanded the field of salt cavern storage technology and combined it with novel equipment and processes to accommodate LNG importation. The salt cavern based LNG receiving terminal described in the project can be located onshore or offshore, but the focus of the design and cost estimates has been on an offshore location, away from congested channels and ports. The salt cavern based terminal can provide large volumes of gas storage, high deliverability from storage, and is simplified in operation compared to tank based LNG terminals. Phase I of this project included mathematical modeling that proved a salt cavern based receiving terminal could be built at lower capital cost, and would have significantly higher delivery capacity, shorter construction time, and be much more secure than a conventional liquid tank based terminal. Operating costs of a salt cavern terminal are lower than tank based terminals because ''boil off'' is eliminated and maintenance costs of caverns are lower than LNG tanks. Phase II included the development of offshore mooring designs, wave tank tests, high pressure LNG pump field tests, heat exchanger field tests, and development of a model offshore LNG facility and cavern design. Engineers designed a model facility, prepared equipment lists, and confirmed capital and operating costs. In addition, vendors quoted fabrication and installation costs, confirming that an offshore salt cavern based LNG terminal would have lower capital and operating costs than a similarly sized offshore tank based terminal. Salt cavern storage is infinitely more secure than surface storage tanks, far less susceptible to accidents or purposeful damage, and much more acceptable to the community. More than thirty industry participants provided cost sharing, technical expertise, and guidance in the conduct and evaluation of the field tests, facility design and operating and cost estimates. Their close participation has accelerated the industry's acceptance of the conclusions of this research. The industry participants also developed and submitted several alternative designs for offshore mooring and for high pressure LNG heat exchangers in addition to those that were field tested in this project. HNG Storage, a developer, owner, and operator of natural gas storage facilities, and a participant in the DOE research has announced they will lead the development of the first offshore salt cavern based LNG import facility. Which will be called the Freedom LNG Terminal. It will be located offshore Louisiana, and is expected to be jointly developed with other members of the research group yet to be named. An offshore port license application is scheduled to be filed by fourth quarter 2005 and the terminal could be operational by 2009. This terminal allows the large volume importa

  11. SCT&E LNG, LLC- 14-98-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed July 24, 2014, by SCT&E LNG, LLC (SCT&E), seeking a long-term multi-contract authorization to export domestically...

  12. Cameron LNG, LLC- FE Dkt. No. 15-67-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed on April 3, 2015, by Cameron LNG, LLC seeking long-term, multi-contract authorization to export domestically produced...

  13. Texas LNG Brownsville LLC- FE Dkt. 15-62-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed April 15, 2015, by Texas Brownsville LNG LLC (TBLNG), seeking a long-term multi-contract authorization to export...

  14. Downeast LNG, Inc.- FE Dkt. No. 14-172-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed October 15, 2014, by Downeast LNG, Inc. (Downeast), seeking a long-term multi-contract authorization to export...

  15. Alaska LNG Project LLC- 14-96-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an application filed on July 18, 2014, by, Alaska LNG Project LLC submits this application requesting long-term authorization to export 20...

  16. Cameron LNG, LLC- FE Dkt. No. 15-90-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed May 28, 2015, by Cameron LNG, LLC (Cameron), seeking a long-term multi-contract authorization to export domestically...

  17. LNG plants in the US and abroad

    SciTech Connect (OSTI)

    Blazek, C.F.; Biederman, R.T.

    1992-12-31T23:59:59.000Z

    The Institute of Gas Technology recently conducted a comprehensive survey of LNG production and storage facilities in North America. This survey was performed as part of IGT`s LNG Observer newsletter which covers both domestic and international LNG news, reports on LNG related economics and statistics, and routinely conducts interviews with key industry leaders. In addition to providing consulting services to the LNG industry, IGT has cosponsored the International Conference on Liquefied Natural Gas for the part 20 years. The objective of this paper is to present a summary of our recent survey results as well as provide an overview of world LNG trade. This information is important in assessing the potential near term availability of LNG for transportation applications. The IGT LNG Survey appraised the capacity and current market activity of LNG peak shaving, satellite storage, and import receiving facilities in the United States and Canada. Information was requested from facilities on three main topics: liquefaction, storage, and regasification. Additional questions were posed regarding the year of operation, designer/contractor for liquefaction cycle and storage, source of LNG (for storage-only facilities), plans for expansion, and level of interest in providing LNG as a vehicle fuel. The IGT LNG Survey has to date received information on 56 LNG peak shaving facilities, 28 satellite storage facilities, and 4 LNG import receiving terminals.

  18. North American LNG Project Sourcebook

    SciTech Connect (OSTI)

    NONE

    2007-06-15T23:59:59.000Z

    The report provides a status of the development of LNG Import Terminal projects in North America, and includes 1-2 page profiles of 63 LNG projects in North America which are either in operation, under construction, or under development. For each project, the sourcebook provides information on the following elements: project description, project ownership, project status, projected operation date, storage capacity, sendout capacity, and pipeline interconnection.

  19. SCT&E LNG, LLC - FE Dkt. No. 14-98-LNG | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    FE Dkt. No. 14-98-LNG SCT&E LNG, LLC - FE Dkt. No. 14-98-LNG The Office of Fossil Energy gives notice of receipt of an Application filed July 24, 2014, by SCT&E LNG, LLC (SCT&E),...

  20. SCT&E LNG, LLC - FE DKT. NO. 14-98-LNG NFTA | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DKT. NO. 14-98-LNG NFTA SCT&E LNG, LLC - FE DKT. NO. 14-98-LNG NFTA The Office of Fossil Energy gives notice of receipt of an Application filed July 24, 2014, by SCT&E LNG, LLC...

  1. SCT&E LNG, LLC - FE Dkt. No. 14-72-LNG | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    72-LNG SCT&E LNG, LLC - FE Dkt. No. 14-72-LNG The Office of Fossil Energy gives notice of receipt of an Application filed May 23, 2014, by SCT&E LNG, LLC (SCT&E), seeking a...

  2. SCT&E LNG, LLC - FE Dkt. No. 14-89-LNG | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    89-LNG SCT&E LNG, LLC - FE Dkt. No. 14-89-LNG The Office of Fossil Energy gives notice of receipt of an Application filed July 9, 2014, by SCT&E LNG, LLC (SCT&E), seeking a...

  3. U.S. LNG Imports from Oman

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from...

  4. U.S. LNG Imports from Egypt

    Gasoline and Diesel Fuel Update (EIA)

    Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from...

  5. U.S. LNG Imports from Malaysia

    Gasoline and Diesel Fuel Update (EIA)

    Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from...

  6. U.S. LNG Imports from Indonesia

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from...

  7. U.S. LNG Imports from Brunei

    Gasoline and Diesel Fuel Update (EIA)

    Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from...

  8. U.S. LNG Imports from Peru

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from...

  9. U.S. LNG Imports from Yemen

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from...

  10. U.S. LNG Imports from Norway

    Gasoline and Diesel Fuel Update (EIA)

    Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from...

  11. U.S. LNG Imports from Qatar

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from...

  12. U.S. LNG Imports from Algeria

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from...

  13. U.S. LNG Imports from Nigeria

    Gasoline and Diesel Fuel Update (EIA)

    Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from...

  14. U.S. LNG Imports from Australia

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from...

  15. Method for processing LNG for rankine cycle

    SciTech Connect (OSTI)

    Aoki, I.; Matsumoto, O.

    1983-06-14T23:59:59.000Z

    A method is disclosed for processing lng using a mixed heat medium for performing a rankine cycle to gasify the lng. The medium is prepared by batch distillation using only lng. The method comprises the steps of condensing an upflow vapor in a single distillation column employing part of the lng in an lng batch distillation cycle, venting one fraction having low boiling point components mainly containing methane, and accumulating the other fractions containing ethane and components heavier than ethane. The supply of lng to be distilled in the column is halted. A total condensing operation is performed in which the other fractions are sequentially condensed by part of the lng at the condenser to sequentially recover and mix each component with the other fractions. Lng is added as the methane component to the recovered mixture of components to prepare a mixed heat medium consisting of components selected from hydrocarbons having 1-6 carbon atoms, or hydrocarbons having 1-6 carbon atoms and nitrogen. The mixed heat medium is stored. A mixed heat medium vapor generated by heat input to the stored mixed heat medium is condensed by lng and returned to the mixed heat medium; collection and complete gasification of the low boiling point components mainly containing methane and the lng is gasified by condensation to provide an lng vapor gas. Lng is gasified by performing the rankine cycle with the mixed heat medium.

  16. LNG to CNG refueling stations

    SciTech Connect (OSTI)

    Branson, J.D. [ECOGAS Corp., Austin, TX (United States)

    1995-12-31T23:59:59.000Z

    While the fleet operator is concerned about the environment, he or she is going to make the choice based primarily on economics. Which fuel provides the lowest total operating cost? The calculation of this costing must include the price-per-gallon of the fuel delivered, as well as the tangible and intangible components of fuel delivery, such as downtime for vehicles during the refueling process, idle time for drivers during refueling, emissions costings resulting from compressor oil blow-by, inclusion of non-combustible constituents in the CNG, and energy consumption during the refueling process. Also, the upfront capital requirement of similar delivery capabilities must be compared. The use of LNG as the base resource for the delivered CNG, in conjunction with the utilization of a fully temperature-compressed LNG/CNG refueling system, eliminates many of the perceived shortfalls of CNG. An LNG/CNG refueling center designed to match the capabilities of the compressor-based station will have approximately the same initial capital requirement. However, because it derives its CNG sales product from the {minus}260 F LNG base product, thus availing itself of the natural physical properties of the cryogenic product, all other economic elements of the system favor the LNG/CNG product.

  17. Recommended research on LNG safety

    SciTech Connect (OSTI)

    Carpenter, H.J.; Gilmore, F.R.

    1981-03-01T23:59:59.000Z

    The US Department of Energy (DOE) is conducting research on the safety and other environmental aspects of liquefied energy gases including liquefied natural gas (LNG). The effort reported here was conducted as part of the planning for further research into the safety aspects of transporting and storing LNG, with primary emphasis on public safety. Although the modern LNG industry has enjoyed excellent success in providing for safe operations, significant questions remain on the part of many, the expressions of which were intensified with the addition of marine-based LNG import terminals. Public safety with regard to large-scale importation of this fuel has received widespread attention in the US Congress, state legislatures, county and city governments, and from various individuals and public groups, with coverage in all the news media, including books published on the subject. The safety concerns have centered around the consequences to the public of a large spill of the cryogenic liquid from an ocean tanker or a larger storage tank, either of which might hold as much as 125,000 m/sup 3/ of LNG.

  18. LNG plants in the US and abroad. [Liquefied Natural Gas (LNG)

    SciTech Connect (OSTI)

    Blazek, C.F.; Biederman, R.T.

    1992-01-01T23:59:59.000Z

    The Institute of Gas Technology recently conducted a comprehensive survey of LNG production and storage facilities in North America. This survey was performed as part of IGT's LNG Observer newsletter which covers both domestic and international LNG news, reports on LNG related economics and statistics, and routinely conducts interviews with key industry leaders. In addition to providing consulting services to the LNG industry, IGT has cosponsored the International Conference on Liquefied Natural Gas for the part 20 years. The objective of this paper is to present a summary of our recent survey results as well as provide an overview of world LNG trade. This information is important in assessing the potential near term availability of LNG for transportation applications. The IGT LNG Survey appraised the capacity and current market activity of LNG peak shaving, satellite storage, and import receiving facilities in the United States and Canada. Information was requested from facilities on three main topics: liquefaction, storage, and regasification. Additional questions were posed regarding the year of operation, designer/contractor for liquefaction cycle and storage, source of LNG (for storage-only facilities), plans for expansion, and level of interest in providing LNG as a vehicle fuel. The IGT LNG Survey has to date received information on 56 LNG peak shaving facilities, 28 satellite storage facilities, and 4 LNG import receiving terminals.

  19. SIGNIFICANT EVENTS IN THE HISTORY OF LNG 1914 First (U.S.) patent awarded for LNG handling/shipping.

    E-Print Network [OSTI]

    SIGNIFICANT EVENTS IN THE HISTORY OF LNG 1914 First (U.S.) patent awarded for LNG handling/shipping. 1917 First commercial natural gas liquefaction plant built in West Virginia. 1944 At an LNG peak-shaving plant in Cleveland, an LNG storage tank with a low nickel- steel content (only 3.5%) fails. LNG spills

  20. Potential for long-term LNG supplies to the United States

    SciTech Connect (OSTI)

    Lihn, M.L.

    1992-02-01T23:59:59.000Z

    Topics discussed here include: (1) terminal capacity; (2) potential sources for US LNG (liquefied natural gas) imports; (3) LNG liquefaction and transportation capacity; (4) historical US LNG imports; (5) LNG supply costs; (6)delivered cost of future LNG imports.

  1. Simulation and integration of liquefied natural gas (lng) processes

    E-Print Network [OSTI]

    Al-Sobhi, Saad Ali

    2009-05-15T23:59:59.000Z

    gas (LNG). When there is a considerable distance involved in transporting natural gas, LNG is becoming the preferred method of supply because of technical, economic, and political reasons. Thus, LNG is expected to play a major role in meeting...

  2. Floating LNG terminal and LNG carrier interaction analysis for side-by-side offloading operation

    E-Print Network [OSTI]

    Kuriakose, Vinu P.

    2005-11-01T23:59:59.000Z

    Floating LNG terminals are a relatively new concept with the first such terminal in the world installed this year. The hydrodynamic interaction effects between the terminal and a LNG carrier in a side-by-side offloading arrangement is investigated...

  3. American LNG Marketing LLC- FE Dkt. No. 15-19-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an application filed on February 3, 2015, by American LNG Marketing LLC (American LNG) requests long-term, multi-contract authorization to...

  4. Environmental and Economical Evaluation of Integrating NGL Extraction and LNG Liquefaction Technology in Iran LNG Project

    E-Print Network [OSTI]

    Manesh, M. H. K.; Mazhari, V.

    The combination of changing global markets for natural gas liquids (NGL) with the simultaneous increase in global demand for liquefied natural gas (LNG) has stimulated an interest in the integration of NGL recovery technology with LNG liquefaction...

  5. Port Arthur LNG, (LLC)- FE Dkt.No. 15-96-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed March 20, 2015, by Port Arthur LNG, (LLC) (Port Arthur LNG), seeking a long-term multi-contract authorization to export...

  6. Environmental and Economical Evaluation of Integrating NGL Extraction and LNG Liquefaction Technology in Iran LNG Project 

    E-Print Network [OSTI]

    Manesh, M. H. K.; Mazhari, V.

    2009-01-01T23:59:59.000Z

    LNG and NGL for comparable compression schemes as compared to stand-alone LNG liquefaction and NGL extraction facilities. In addition, there are potential enhancements to the overall facility availability and project economics and environmental impacts...

  7. The effects of LNG-sloshing on the global responses of LNG-carriers

    E-Print Network [OSTI]

    Lee, Seung Jae

    2008-10-10T23:59:59.000Z

    THE EFFECTS OF LNG-SLOSHING ON THE GLOBAL RESPONSES OF LNG-CARRIERS A Dissertation by SEUNG JAE LEE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of DOCTOR OF PHILOSOPHY May 2008 Major Subject: Ocean Engineering THE EFFECTS OF LNG-SLOSHING ON THE GLOBAL RESPONSES OF LNG-CARRIERS A Dissertation by SEUNG JAE LEE Submitted to the Office of Graduate Studies...

  8. Bear Head LNG Corporation and Bear Head LNG (USA), LLC FE Docket No. 15-14-NG

    Broader source: Energy.gov [DOE]

    On January 23, 2015, Bear Head LNG Corporation and Bear Head LNG (USA), LLC (together, “Bear Head LNG”), filed an application for long-term, multi-contract authorization to engage in imports from,...

  9. Bear Head LNG Corporation and Bear Head LNG (USA), LLC- FE Dkt No. 15-14-NG

    Broader source: Energy.gov [DOE]

    On January 23, 2015, Bear Head LNG Corporation and Bear Head LNG (USA), LLC (together, “Bear Head LNG”), filed an application for long-term, multi-contract authorization to engage in imports from,...

  10. Energy Department Conditionally Authorizes Oregon LNG to Export...

    Broader source: Energy.gov (indexed) [DOE]

    WASHINGTON - The Energy Department announced today that it has conditionally authorized LNG Development Co., LLC (Oregon LNG) to export domestically produced liquefied natural gas...

  11. Robust management and pricing of LNG contracts with cancellation ...

    E-Print Network [OSTI]

    2012-12-18T23:59:59.000Z

    For large gas companies, Liquefied Natural Gas (LNG) appears as a ... the possibility to ship LNG loads at pre-specified dates, with a cancellation option. In.

  12. Energy Department Conditionally Authorizes Cameron LNG to Export...

    Office of Environmental Management (EM)

    Conditionally Authorizes Cameron LNG to Export Liquefied Natural Gas Energy Department Conditionally Authorizes Cameron LNG to Export Liquefied Natural Gas February 11, 2014 -...

  13. EIS-0487: Freeport LNG Liquefaction Project, Brazoria County...

    Broader source: Energy.gov (indexed) [DOE]

    impacts of a proposal to construct and operate the Freeport Liquefied Natural Gas (LNG) Liquefaction Project, which would expand an existing LNG import terminal and...

  14. Parallel Large-Neighborhood Search Techniques for LNG Inventory ...

    E-Print Network [OSTI]

    2014-04-17T23:59:59.000Z

    Liquefied natural gas (LNG) is estimated to account for a growing portion of the ... For profitable operation of a capital intensive LNG project, it is necessary to ...

  15. Constraint Programming for LNG Ship Scheduling and Inventory ...

    E-Print Network [OSTI]

    2013-10-29T23:59:59.000Z

    The focus of this work is on a central operational issue in the LNG indus- try: designing schedules for the ships to deliver LNG from the production. (

  16. Optimizing PT Arun LNG main heat exchanger

    SciTech Connect (OSTI)

    Irawan, B. [PT Arun NGL Co., Sumatra (Indonesia)

    1995-12-01T23:59:59.000Z

    The capacity of a LNG liquefaction unit has been increased by upgrading the refrigeration system, without making changes to the main heat exchanger (MHE). It is interesting, that after all modifications were completed, a higher refrigerant circulation alone could not increase LNG production. However, by optimizing the refrigerant component ratio, the UA of the MHE increased and LNG production improved. This technical evaluation will provide recommendations and show how the evaluation of the internal temperature profile helped optimize the MHE operating conditions.

  17. Large Neighborhood Search for LNG Inventory Routing

    E-Print Network [OSTI]

    Vikas Goel

    2012-02-03T23:59:59.000Z

    Feb 3, 2012 ... Abstract: Liquefied Natural Gas (LNG) is steadily becoming a common mode for commercializing natural gas. Due to the capital intensive ...

  18. The application of expansion foam on liquefied natural gas (LNG) to suppress LNG vapor and LNG pool fire thermal radiation 

    E-Print Network [OSTI]

    Suardin, Jaffee Arizon

    2009-05-15T23:59:59.000Z

    ......................................................................... 66 4.5.4 Portable Gas Detector ...................................................................... 68 4.5.5 High Speed Camera ......................................................................... 68 4.5.6 Hydrocarbon Imaging Camera(s...? ? Page 5.2.6 Experiment on the 45 m 2 Pit ............................................................ 87 5.2.7 LNG Pool Fire Characteristics on Different Types of LNG Spill Containment Pit...

  19. Waste Management's LNG Truck Fleet: Final Results

    SciTech Connect (OSTI)

    Chandler, K. [Battelle (US); Norton, P. [National Renewable Energy Laboratory (US); Clark, N. [West Virginia University (US)

    2001-01-25T23:59:59.000Z

    Waste Management, Inc., began operating a fleet of heavy-duty LNG refuse trucks at its Washington, Pennsylvania, facility. The objective of the project was to provide transportation professionals with quantitative, unbiased information on the cost, maintenance, operational, and emissions characteristics of LNG as one alternative to conventional diesel for heavy-duty trucking applications.

  20. Strategic evaluation central to LNG project formation

    SciTech Connect (OSTI)

    Nissen, D. [Poten and Partners Inc., New York, NY (United States); DiNapoli, R.N. [Merlin Associates, Atlanta, GA (United States); Yost, C.C. [Merlin Associates, Houston, TX (United States)

    1995-07-03T23:59:59.000Z

    An efficient-scale, grassroots LNG facility of about 6 million metric tons/year capacity requires a prestart-up outlay of $5 billion or more for the supply facilities--production, feedgas pipeline, liquefaction, and shipping. The demand side of the LNG chain requires a similar outlay, counting the import-regasification terminal and a combination of 5 gigawatts or more of electric power generation or the equivalent in city gas and industrial gas-using facilities. There exist no well-developed commodity markets for free-on-board (fob) or delivered LNG. A new LNG supply project is dedicated to its buyers. Indeed, the buyers` revenue commitment is the project`s only bankable asset. For the buyer to make this commitment, the supply venture`s capability and commitment must be credible: to complete the project and to deliver the LNG reliably over the 20+ years required to recover capital committed on both sides. This requirement has technical, economic, and business dimensions. In this article the authors describe a LNG project evaluation system and show its application to typical tasks: project cost of service and participant shares; LNG project competition; alternative project structures; and market competition for LNG-supplied electric power generation.

  1. LNG links remote supplies and markets

    SciTech Connect (OSTI)

    Avidan, A.A.; Gardner, R.E.; Nelson, D.; Borrelli, E.N. [Mobil LNG Inc., Houston, TX (United States); Rethore, T.J. [Arthur D. Little Inc., Houston, TX (United States)

    1997-06-02T23:59:59.000Z

    Liquefied natural gas (LNG) has established a niche for itself by matching remote gas supplies to markets that both lacked indigenous gas reserves and felt threatened in the aftermath of the energy crises of the 1970s and 1980s. It has provided a cost-effective energy source for these markets, while also offering an environmentally friendly fuel long before that was fashionable. The introduction of natural-gas use via LNG in the early years (mostly into France and Japan) has also allowed LNG to play a major role in developing gas infrastructure. Today, natural gas, often supplied as LNG, is particularly well-suited for use in the combined cycle technology used in independent power generation projects (IPPs). Today, LNG players cannot simply focus on monetizing gas resources. Instead, they must adapt their projects to meet the needs of changing markets. The impact of these changes on the LNG industry has been felt throughout the value chain from finding and producing gas, gas treatment, liquefaction, transport as a liquid, receiving terminals and regasification, and finally, to consumption by power producers, industrial users, and households. These factors have influenced the evolution of the LNG industry and have implications for the future of LNG, particularly in the context of worldwide natural gas.

  2. Optimal operation of a mixed fluid cascade LNG process

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Optimal operation of a mixed fluid cascade LNG process Jørgen Bauck Jensen & Sigurd Skogestad distances is to first produce liquefied natural gas (LNG) and then transport the LNG by ships. At atmospheric pressure LNG has approximately 600 times the density of gaseous NG and a temperature of ap

  3. Reserves hike to buoy Bontang LNG

    SciTech Connect (OSTI)

    Not Available

    1992-07-27T23:59:59.000Z

    This paper reports that a redetermination of reserves in an Indonesian production sharing contract (PSC) will boost liquefied natural gas sales for an Indonesian joint venture (IJV) of Lasmo plc, Union Texas (South East Asia) Inc., Chinese Petroleum Corp. (CPC), and Japex Rantau Ltd. The Indonesian reserves increase involves the Sanga PSC operated by Virginia Indonesia Co., a 50-50 joint venture of Lasmo and Union Texas. Union Texas holds a 38% interest in the IJV and Lasmo 37.8%, with remaining interests held by CPC and Japex. meantime, in US LNG news: Shell LNG Co. has shelved plans to buy an added interest in the LNG business of Columbia Gas System Inc. Panhandle Eastern Corp. units Trunkline Gas Co., Trunkline LNG Co., and Panhandle Eastern Pipe Line Co. (PEPL) filed settlement agreements with the Federal Energy Regulatory Commission to recover from customers $243 million in costs associated with Panhandle's Trunkline LNG operation at Lake Charles, Louisiana.

  4. LNG Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas » MethaneJohnsonKristina PflanzLM News ArchiveLNG Reports

  5. LNG fire and vapor control system technologies

    SciTech Connect (OSTI)

    Konzek, G.J.; Yasutake, K.M.; Franklin, A.L.

    1982-06-01T23:59:59.000Z

    This report provides a review of fire and vapor control practices used in the liquefied natural gas (LNG) industry. Specific objectives of this effort were to summarize the state-of-the-art of LNG fire and vapor control; define representative LNG facilities and their associated fire and vapor control systems; and develop an approach for a quantitative effectiveness evaluation of LNG fire and vapor control systems. In this report a brief summary of LNG physical properties is given. This is followed by a discussion of basic fire and vapor control design philosophy and detailed reviews of fire and vapor control practices. The operating characteristics and typical applications and application limitations of leak detectors, fire detectors, dikes, coatings, closed circuit television, communication systems, dry chemicals, water, high expansion foam, carbon dioxide and halogenated hydrocarbons are described. Summary descriptions of a representative LNG peakshaving facility and import terminal are included in this report together with typical fire and vapor control systems and their locations in these types of facilities. This state-of-the-art review identifies large differences in the application of fire and vapor control systems throughout the LNG industry.

  6. LNG -- A paradox of propulsion potential

    SciTech Connect (OSTI)

    McKay, D.J.

    1995-12-31T23:59:59.000Z

    Liquefied natural gas (LNG) has been demonstrating its viability as a clean-burning alternative fuel for buses and medium- and heavy-duty trucks for the past 30 years. The first known LNG vehicle project began in San Diego in 1965, When San Diego Gas and Electric converted 22 utility trucks and three passenger vehicles to dedicated LNG. A surge in LNG vehicle project activity over the past five years has led to a fairly robust variety of vehicles testing the fuel, from Class 8 tractors, refuse haulers and transit buses to railroad locomotives and ferry boats. Recent technology improvements in engine design, cryogenic tanks, fuel nozzles and other related equipment have made LNG more practical to use than in the 1960s. LNG delivers more than twice the driving range from the same-sized fuel tank as a vehicle powered by compressed natural gas (CNG). Although technical and economic hurdles must be overcome before this fuel can achieve widespread use, various ongoing demonstration projects are showing LNG`s practicality, while serving the vital role of pinpointing those areas of performance that are the prime candidates for improvement.

  7. Cost reduction ideas for LNG terminals

    SciTech Connect (OSTI)

    Habibullah, A.; Weldin, F.

    1999-07-01T23:59:59.000Z

    LNG projects are highly capital intensive and this has long been regarded as being inevitable. However, recent developments are forcing the LNG industry to aggressively seek cost reductions. For example, the gas-to-liquids (GTL) process is increasingly seen as a potential rival technology and is often being touted as an economically superior alternative fuel source. Another strong driving force behind needed cost reductions is the low crude oil price which seems to have settled in the $10--13/bb. range. LNG is well positioned as the fuel of choice for environmentally friendly new power projects. As a result of the projected demand for power especially in the Pacific Rim countries several LNG terminal projects are under consideration. Such projects will require a new generation of LNG terminal designs emphasizing low cost, small scale and safe and fully integrated designs from LNG supply to power generation. The integration of the LNG terminal with the combined cycle gas turbine (CCGT) power plant offers substantial cost savings opportunities for both plants. Various cost reduction strategies and their impact on the terminal design are discussed including cost reduction due to integration.

  8. Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE Dkt. No. 11-161-LNG Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE Dkt. No. 11-161-LNG On November 15,...

  9. SEMI-ANNUAL REPORTS FOR TRUNKLINE LNG EXPORT, LLC - DK. NO. 13...

    Office of Environmental Management (EM)

    TRUNKLINE LNG EXPORT, LLC - DK. NO. 13-04-LNG - ORDER 3252 SEMI-ANNUAL REPORTS FOR TRUNKLINE LNG EXPORT, LLC - DK. NO. 13-04-LNG - ORDER 3252 April 2013 October 2013 April 2014...

  10. Bayesian-lopa methodology for risk assessment of an LNG importation terminal

    E-Print Network [OSTI]

    Yun, Geun-Woong

    2009-05-15T23:59:59.000Z

    LNG (Liquefied Natural Gas) is one of the fastest growing energy sources in the U.S. to fulfill the increasing energy demands. In order to meet the LNG demand, many LNG facilities including LNG importation terminals are operating currently...

  11. SEMI-ANNUAL REPORTS FOR ALASKA LNG PROJECT, LLC - FE DKT NO....

    Office of Environmental Management (EM)

    ALASKA LNG PROJECT, LLC - FE DKT NO. 14-96-LNG - ORDER 3643 (NFTA) SEMI-ANNUAL REPORTS FOR ALASKA LNG PROJECT, LLC - FE DKT NO. 14-96-LNG - ORDER 3643 (NFTA) No reports submitted....

  12. Study of gelled LNG. Final technical report

    SciTech Connect (OSTI)

    Rudnicki, M I; Cabeal, J A; Hoffman, L C; Newton, R A; Schaplowsky, R K; Vander Wall, E M

    1980-01-01T23:59:59.000Z

    Research involved the characterization of gelled LNG (GELNG) with respect to process, flow, and use properties and an examination of the degree of safety enhancement attainable by gelation. The investigation included (1) an experimental examination of gel properties and gel safety characteristics as well as (2) an analytical study involving the economics and preliminary design of an industrial scale gelation system. The safety-related criterion for successful application of gelled LNG is the substantial reduction of the Maximum Distance to the Lower Flammability Limit, MDLFL. This will be achieved by first, gel-inhibition of the hydrodynamic pooling and spreading of the spill, and second, the suppressed thermal transport properties of the GELNG relative to those of LNG. The industrial scale gelation study evaluated a design capable of producing 11,000 gallons (LNG tank truck) of gel in two hours. The increased cost of gelation using this equipment was estimated at $0.23/10/sup 6/ Btu for plants with liquefaction facilities. The technical results of this study are supportive of the conclusion that gelation of LNG will reduce, relative to ungelled LNG, the hazard associated with a given size spill. Parameters of interest to the LNG facility operator (such as pumpability) are not significantly affected by gelation, and the impact on LNG delivery cost appears to be small, about 5%. Thus, the initial assumption that gelation would provide a practical means to enhance safety is supported by the results of this study. Larger scale, comparative spill tests of LNG and GELNG are now required to confirm the safety aspects of use of the gelled material.

  13. Raley's LNG Truck Site Final Data Report

    SciTech Connect (OSTI)

    Battelle

    1999-07-01T23:59:59.000Z

    Raley's is a 120-store grocery chain with headquarters in Sacramento, California, that has been operating eight heavy-duty LNG trucks (Kenworth T800 trucks with Cummins L10-300G engines) and two LNG yard tractors (Ottawa trucks with Cummins B5.9G engines) since April 1997. This report describes the results of data collection and evaluation of the eight heavy-duty LNG trucks compared to similar heavy-duty diesel trucks operating at Raley's. The data collection and evaluation are a part of the U.S. Department of Energy (DOE)/National Renewable Energy Laboratory (NREL) Alternative Fuel Truck Evaluation Project.

  14. World economic growth pushing LNG use

    SciTech Connect (OSTI)

    Brown, R.L. [Mobil Oil Corp., Fairfax, VA (United States); Clary, R. [Mobil Technology Co., Dallas, TX (United States)

    1997-06-02T23:59:59.000Z

    Natural gas, especially liquefied (LNG), is in position to participate in the energy growth now being triggered by strong worldwide economic growth, increasingly open markets, and expanding international trade. Natural gas is abundant, burns cleanly, and is highly efficient in combined-cycle, gas-turbine power plants. Moreover, the comparative remoteness of much of the resource base to established and emerging markets can make LNG a compelling processing and transportation alternative. Discussed here are the resource distribution and emerging market opportunities that can make LNG attractive for monetizing natural-gas reserves.

  15. Freeport LNG Development, L.P. (Freeport LNG)- Blanket Authorization to Export Previously Imported LNG- FE Dkt. No. 15-103-NG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed June 25, 2015 by Freeport LNG Development, L.P. (Freeport LNG), requesting blanket authorization to export liquefied...

  16. Bear Head LNG Corporation and Bear Head LNG (USA), LLC- FE Dkt. No.- 15-33-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an application filed on February 25, 2015, by Bear Head LNG, requesting long-term multi-contract authority as further described in their...

  17. SEMI-ANNUAL REPORTING REQUIREMENTS (LNG EXPORTERS)

    Broader source: Energy.gov [DOE]

    Companies with authorizations to export LNG are required to file, on a semi-annual basis, written reports describing the progress of the planned liquefaction facility project that is part of the...

  18. Modeling of LNG Pool Spreading and Vaporization

    E-Print Network [OSTI]

    Basha, Omar 1988-

    2012-11-20T23:59:59.000Z

    In this work, a source term model for estimating the rate of spreading and vaporization of LNG on land and sea is introduced. The model takes into account the composition changes of the boiling mixture, the varying thermodynamic properties due...

  19. Gas treating alternatives for LNG plants

    SciTech Connect (OSTI)

    Clarke, D.S.; Sibal, P.W. [Mobil Technology Co., Dallas, TX (United States)

    1998-12-31T23:59:59.000Z

    This paper covers the various gas treating processes available for treating sour natural gas to specifications required for LNG production. The LNG product specification requires that the total sulfur level be less than 30--40 ppmv, the CO{sub 2} level be less than 50 ppmv and the water level be less than 100 ppmv to prevent freezing problems in the LNG cryogenic column. A wide variety of natural gas compositions are encountered in the various fields and the gas treating process selection is dependent on the type of impurities present in the gas, namely, levels of H{sub 2}S, CO{sub 2}, mercaptans and other organic sulfur compounds. This paper discusses the implications various components in the feed to the LNG plant can have on process selection, and the various treating processes that are available to condition the gas. Process selection criteria, design and operating philosophies are discussed. An economic comparison for two treating schemes is provided.

  20. Norcal Prototype LNG Truck Fleet: Final Results

    SciTech Connect (OSTI)

    Not Available

    2004-07-01T23:59:59.000Z

    U.S. DOE and National Renewable Energy Laboratory evaluated Norcal Waste Systems liquefied natural gas (LNG) waste transfer trucks. Trucks had prototype Cummins Westport ISXG engines. Report gives final evaluation results.

  1. LNG production for peak shaving operations

    SciTech Connect (OSTI)

    Price, B.C.

    1999-07-01T23:59:59.000Z

    LNG production facilities are being developed as an alternative or in addition to underground storage throughout the US to provide gas supply during peak gas demand periods. These facilities typically involved a small liquefaction unit with a large LNG storage tank and gas sendout facilities capable of responding to peak loads during the winter. Black and Veatch is active in the development of LNG peak shaving projects for clients using a patented mixed refrigerant technology for efficient production of LNG at a low installed cost. The mixed refrigerant technology has been applied in a range of project sizes both with gas turbine and electric motor driven compression systems. This paper will cover peak shaving concepts as well as specific designs and projects which have been completed to meet this market need.

  2. LNG ventures raise economic, technical, partnership issues

    SciTech Connect (OSTI)

    Acord, H.K. [Mobil Oil Corp., Fairfax, VA (United States)

    1995-07-03T23:59:59.000Z

    The author feels that natural gas will remain a competitive energy alternative and the preferred fuel for many residential and industrial customers around the globe. The article attempts to explain where liquefied natural gas will fit into the global picture. The paper discusses the growth in the Asia-Pacific region; the complex interactions in a LNG project involving buyers, sellers, governments, financial institutions, and shipping companies; the cost of development of such projects; and the elements of a LNG venture.

  3. 2014 - LNG Export, Compressed Natural Gas (CNG), Re-Exports ...

    Broader source: Energy.gov (indexed) [DOE]

    4 - LNG Export, Compressed Natural Gas (CNG), Re-Exports & Long Term Natural Gas Applications 2014 - LNG Export, Compressed Natural Gas (CNG), Re-Exports & Long Term Natural Gas...

  4. Energy Department Authorizes Dominion Cove Point LNG to Export...

    Energy Savers [EERE]

    Dominion Cove Point LNG to Export Liquefied Natural Gas Energy Department Authorizes Dominion Cove Point LNG to Export Liquefied Natural Gas May 7, 2015 - 1:00pm Addthis News Media...

  5. U.S. LNG Imports from Equatorial Guinea

    Gasoline and Diesel Fuel Update (EIA)

    Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from...

  6. U.S. LNG Imports from United Arab Emirates

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from...

  7. Energy Department Authorizes Cameron LNG and Carib Energy to...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cameron LNG and Carib Energy to Export Liquefied Natural Gas Energy Department Authorizes Cameron LNG and Carib Energy to Export Liquefied Natural Gas September 10, 2014 - 2:00pm...

  8. U.S. LNG Imports from Other Countries

    Gasoline and Diesel Fuel Update (EIA)

    Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from...

  9. U.S. LNG Imports from Trinidad/Tobago

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from...

  10. Energy Department Authorizes Alaska LNG Project, LLC to Export...

    Energy Savers [EERE]

    Authorizes Alaska LNG Project, LLC to Export Liquefied Natural Gas Energy Department Authorizes Alaska LNG Project, LLC to Export Liquefied Natural Gas May 28, 2015 - 1:55pm...

  11. OFFICE OF FOSSIL ENERGY, DEPARTMENT OF ENERGY Alaska LNG Project...

    Energy Savers [EERE]

    OFFICE OF FOSSIL ENERGY, DEPARTMENT OF ENERGY Alaska LNG Project LLC ) Docket No. 14-96-LNG JOINT MOTION TO INTERVENE AND COMMENTS OF THE STATE OF ALASKA AND THE ALASKA GASLINE...

  12. SEMI-ANNUAL REPORTS FOR PANGEA LNG (NORTH AMERICA) HOLDINGS,...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications QER - Comment of America's Natural Gas Alliance 2 Pangea LNG (North America) Holdings, LLC - 14-002-CIC (FE Dkt. No. 12-184-LNG New Company Name:...

  13. Tempe Transportation Division: LNG Turbine Hybrid Electric Buses

    SciTech Connect (OSTI)

    Not Available

    2002-02-01T23:59:59.000Z

    Fact sheet describes the performance of liquefied natural gas (LNG) turbine hybrid electric buses used in Tempe's Transportation Division.

  14. Annotated bibliography: LNG safety and environmental control research

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    This bibliography provides brief summaries of literature related to LNG safety and environmental control, organized alphabetically by author.

  15. Environmental Assessment and Finding of No Significant Impact: Presidential Permit Applications for Baja California Power, Inc. and Sempra Energy Resources

    SciTech Connect (OSTI)

    N /A

    2001-12-05T23:59:59.000Z

    In separate actions, Sempra Energy Resources (SER) and Baja California Power, Inc. (BCP) have applied to the US Department of Energy (DOE) for Presidential permits pursuant to Executive Order (EO) No. 10485, as amended by EO 12038, and 10 CFR Section 205.320 et seq. (2000), to construct, operate, maintain, and connect electric power transmission facilities crossing the international border between the Us and Mexico. SER and BCP each propose constructing separate new double-circuit, 230,000 volt (230 kV) transmission lines extending about six miles south from the Imperial Valley Substation (IV Substation), owned and operated by San Diego Gas and Electric Company (SDG and E), to the US/Mexico international border. In each case, the objective is to connect the proposed transmission lines to natural gas fueled electric generating plants being constructed in Mexico for the purpose of importing electrical power into the US onto the southern California electrical grid. The proposed transmission lines would traverse about six miles of federal land administered by the US Department of the Interior's Bureau of Land Management (BLM).

  16. analysis based lng: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    analysis based lng First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Floating LNG terminal and LNG...

  17. LNG FEM: Graded Meshes on Domains of Polygonal Structures

    E-Print Network [OSTI]

    Nistor, Victor

    LNG FEM: Graded Meshes on Domains of Polygonal Structures Hengguang Li and Victor Nistor Abstract. We develop LNG FEM, a software package for graded mesh generation and for solving elliptic equations. LNG FEM gen- erates user-specified graded meshes on arbitrary 2D domains with straight edges

  18. Visual Simulation of Offshore Liquefied Natural Gas (LNG) Terminals

    E-Print Network [OSTI]

    Standiford, Richard B.

    Visual Simulation of Offshore Liquefied Natural Gas (LNG) Terminals in a Decision-Making Context1 potential offshore Liquified Natural Gas (LNG) sites and the types of terminals that might occupy those sites. The study had to evaluate the engineering feasibility of siting an LNG receiving terminal

  19. LNG, Public Opinion and Decision-making: Conflict in Oregon

    E-Print Network [OSTI]

    Scott, Christopher

    LNG, Public Opinion and Decision-making: Conflict in Oregon Lisa MB Harrington Kansas State University #12;2 LNG · Liquified Natural Gas · Natural gas condensed into a liquid by cooling to about -163º;· LNG is considered cleaner than coal and petroleum- based fuels, but development also poses issues

  20. International Trade in Natural Gas: Golden Age of LNG?

    E-Print Network [OSTI]

    Gabrieli, John

    International Trade in Natural Gas: Golden Age of LNG? Yichen Du and Sergey Paltsev Report No. 271;1 International Trade in Natural Gas: Golden Age of LNG? Yichen Du* and Sergey Paltsev* Abstract The introduction of liquefied natural gas (LNG) as an option for international trade has created a market for natural gas where

  1. LNG shipments in 1994 set records

    SciTech Connect (OSTI)

    NONE

    1996-01-15T23:59:59.000Z

    Worldwide LNG shipments by ocean-going vessels in 1994 increased to 1,619 voyages, according to an LNG shipping industry statistical annual. LNG Log 20 published the recently compiled 1994 data in the last quarter of 1995. The publication is from the Society of International Gas Tanker and Terminal Operators Ltd., London. The year`s total was 8.8% more than for 1993 and the most in 35 years of records. The trips were made and the vessels loaded and discharged without report of serious safety or environmental incident, says the publication. Of the voyages completed during the year, 596 were to European receiving terminals (up 2.8% over 1993), and 1,003 went to the Far East (an increase of 10.7%); shipments to the US, however, dropped to 20, from 32 in 1993. This paper shows that the 1,619 voyages represent 3.6 million nautical miles logged by 78 vessels active during the year. These ships pumped ashore record annual volumes of approximately 144.3 million cu m of LNG, 110.1 million cu m (76.3%) of which went to Far Eastern customers. The paper also summarizes containment systems in use in 1994 and since LNG began to be shipped in 1959.

  2. Safety implications of a large LNG tanker spill over water.

    SciTech Connect (OSTI)

    Hightower, Marion Michael; Gritzo, Louis Alan; Luketa-Hanlin, Anay Josephine

    2005-04-01T23:59:59.000Z

    The increasing demand for natural gas in the United States could significantly increase the number and frequency of marine LNG (liquefied natural gas) imports. Although many studies have been conducted to assess the consequences and risks of potential LNG spills, the increasing importance of LNG imports suggests that consistent methods and approaches be identified and implemented to help ensure protection of public safety and property from a potential LNG spill. For that reason the U.S. Department of Energy (DOE), Office of Fossil Energy, requested that Sandia National Laboratories (Sandia) develop guidance on a risk-based analysis approach to assess and quantify potential threats to an LNG ship, the potential hazards and consequences of a large spill from an LNG ship, and review prevention and mitigation strategies that could be implemented to reduce both the potential and the risks of an LNG spill over water. Specifically, DOE requested: (1) An in-depth literature search of the experimental and technical studies associated with evaluating the safety and hazards of an LNG spill from an LNG ship; (2) A detailed review of four recent spill modeling studies related to the safety implications of a large-scale LNG spill over water; (3) Evaluation of the potential for breaching an LNG ship cargo tank, both accidentally and intentionally, identification of the potential for such breaches and the potential size of an LNG spill for each breach scenario, and an assessment of the potential range of hazards involved in an LNG spill; (4) Development of guidance on the use of modern, performance-based, risk management approaches to analyze and manage the threats, hazards, and consequences of an LNG spill over water to reduce the overall risks of an LNG spill to levels that are protective of public safety and property.

  3. Asia-Pacific focus of coming LNG trade boom

    SciTech Connect (OSTI)

    Not Available

    1992-11-16T23:59:59.000Z

    This paper reports that the Asia-Pacific region remains the centerpiece of a booming world trade in liquefied natural gas. Biggest growth in LNG demand is expected from some of the region's strongest economies such as Japan, South Korea, and Taiwan, Key LNG exporters such as Brunei, Malaysia, and Indonesia are scrambling to implement projects to meet that expected demand growth. Uncertainties cloud the outlook for Far East LNG trade, Australia, for one, is more cautious in pressing expansion of its LNG export capacity as more competing LNG expansions spring up around the world, notably in the Middle East and Africa.

  4. Raley's LNG Truck Fleet: Final Results

    SciTech Connect (OSTI)

    Chandler, K. (Battelle); Norton, P. (NREL); Clark, N. (West Virginia University)

    2000-05-03T23:59:59.000Z

    Raley's, a large retail grocery company based in Northern California, began operating heavy-duty trucks powered by liquefied natural gas (LNG) in 1997, in cooperation with the Sacramento Metropolitan Air Quality Management District (SMAQMD). The US Department of Energy (DOE) Office of Heavy Vehicle Technologies (OHVT) sponsored a research project to collect and analyze data on the performance and operation costs of eight of Raley's LNG trucks in the field. Their performance was compared with that of three diesel trucks operating in comparable commercial service. The objective of the DOE research project, which was managed by the National Renewable Energy Laboratory (NREL), was to provide transportation professionals with quantitative, unbiased information on the cost, maintenance, operational, and emissions characteristics of LNG as one alternative to conventional diesel fuel for heavy-duty trucking applications.

  5. Nippon Kokan technical report No. 42, December 1984: overseas. LNG technology special issue

    SciTech Connect (OSTI)

    Not Available

    1984-01-01T23:59:59.000Z

    Contents INCLUDE: fracture toughness of 9% Ni steel and safety of LNG storage tank; fatigue strength and safety assessment of membrane components; comparison of LNG carriers of membrane tank system and spherical tank system; diesel-driven LNG carrier with reliquefaction plant; construction of TGZ MK I system LNG carrier model tank and its cryogenic tests; vacuum insulation test using LNG model tank; estimation of impact pressure and hydrodynamic force due to sloshing in LNG carrier; Higashi-Ohgishima LNG receiving facility for the Tokyo Electric Power Co., Inc.; design of LNG receiving facility; receiving and circulation control system of Higashi-Ohgishima LNG terminal; welding procedure of LNG pipelines; the design method of inground LNG storage tank; the design method of aboveground LNG storage tank; various applications of LNG tank roll-over simulation program ROSP.

  6. LNG imports make strong recovery in 1996; exports increase also

    SciTech Connect (OSTI)

    Swain, E.J. [Swain (Edward J.), Houston, TX (United States)

    1998-01-19T23:59:59.000Z

    LNG imports to the US jumped in 1996 as Algerian base-load plants resumed operations following major revamps. Exports from Alaska to Japan grew by nearly 4% over 1995. Total LNG imports to the US in 1996 were 40.27 bcf compared to 17.92 bcf in 1995, an increase of 124.8%. Algeria supplied 35.32 bcf; Abu Dhabi, 4.95 bcf. About 82.3% of the imported LNG was received at Distrigas Corp.`s terminal north of Boston. The remaining LNG was received at the Pan National terminal in Lake Charles, LA. LNG imports during 1995 fell to such a low level not because of depressed US demand but because of limited supply. The paper discusses LNG-receiving terminals, base-load producers, LNG pricing, and exports.

  7. First LNG from North field overcomes feed, start-up problems

    SciTech Connect (OSTI)

    Redha, A.; Rahman, A.; Al-Thani, N.H. [Qatar Liquefied Gas Co., Doha (Qatar); Ishikura, Masayuki; Kikkawa, Yoshitsugi [Chiyoda Corp., Yokohama (Japan)

    1998-08-24T23:59:59.000Z

    Qatar Gas LNG is the first LNG project in the gas-development program of the world`s largest gas reservoir, North field. The LNG plant was completed within the budget and schedule. The paper discusses the LNG plant design, LNG storage and loading, alternative mercaptan removal, layout modification, information and control systems, training, data management systems, start-up, and performance testing.

  8. Venture Global Calcasieu Pass, LLC- (Formerly Venture Global LNG, LLC)- 14-88-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an application filed on May 13, 2014, by Venture Global LNG, LLC (VGP) requesting long-term, multi-contract authority to export (in addition...

  9. G2 LNG LLC- FE Dkt. No. 15-45-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed March 19, 2015, by G2 LNG LLC (G2), seeking a long-term multi-contract authorization to export domestically produced...

  10. G2 LNG LLC- FE Dkt. No. 15-44-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed March 19 2015, by G2 LNG LLC (G2), seeking a long-term, multi-contract authorization to export domestically produced...

  11. Parallax Enterprises (NOLA) LLC (Formerly Louisiana LNG Energy LLC) – FE Dkt. No. 14-29-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an application filed on February 18, 2014, by Louisiana LNG Energy LLC (LLNG) requesting long-term authorization to export two million metric...

  12. Parallax Enterprises (NOLA) LLC- (Formerly Louisiana LNG Energy LLC) – FE Dkt. No. 14-19-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an application filed on February 5, 2014, by Louisiana LNG Energy LLC (LLNG) requesting long-term multi-contract authorization to export...

  13. Business Owners: Prepare for Utility Disruptions | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility Disruptions Business Owners: Prepare for Utility Disruptions Business Owners: Prepare for Utility Disruptions Have a plan in place in case a natural disaster or other...

  14. Tenneco LNG, Inc. plan approved by NEB

    SciTech Connect (OSTI)

    Not Available

    1984-01-01T23:59:59.000Z

    The Canada National Energy Board (NEB) has approved an application by Tenneco LNG Inc. to import about 212 billion cu m of Algerian natural gas to Lorneville, N.B., for pipeline transportation to the U.S. Trans-Canada Pipe Lines (New Brunswick) Ltd. and Lorneterm LNG Ltd. (Tenneco subsidiary) will build a $636 million vaporization plant and terminal plus a 66 mi $68.7 million pipeline to the U.S. border. The NEB approval allows Tenneco LNG to import up to 10.6 billion cu m/yr of LNG from Algeria over a 20 yr period. Initial delivery is expected in 1981. The U.S. Federal Energy Regulatory Commission approved Tenneco Atlantic Pipeline Co.'s 817 km (508 mi) $731.6 million pipeline to carry the gas from Calais, Maine, at the U.S./Canadian border to a point near Milford, Pa., to be completed to Albany, N.Y., by 1981, and to Milford in 1983.

  15. LNG fleet increases in size and capabilities

    SciTech Connect (OSTI)

    Linser, H.J. Jr.; Drudy, M.J.; Endrizzi, F.; Urbanelli, A.A. [Mobil Shipping and Transportation, Fairfax, VA (United States)

    1997-06-02T23:59:59.000Z

    The LNG fleet as of early 1997 consisted of 99 vessels with total cargo capacity of 10.7 million cu m, equivalent to approximately 4.5 million tons. One of the newest additions to the fleet, the 137,000-cu m tanker Al Zubarah, is five times the size of the original commercial vessel Methane Princess. Al Zubarah`s first loading of more than 60,000 tons occurred in December 1996 for deliver to Japanese buyers from the newly commissioned Qatargas LNG plant at Ras Laffan. That size cargo contains enough clean-burning energy to heat 60,000 homes in Japan for 1 month. Measuring nearly 1,000 ft long, the tanker is among the largest in the industry fleet and joined 70 other vessels of more than 100,000 cu m. Most LNG tankers built since 1975 have been larger-capacity vessels. The paper discusses LNG shipping requirements, containment systems, vessel design, propulsion, construction, operations and maintenance, and the future for larger vessels.

  16. Technology advances keeping LNG cost-competitive

    SciTech Connect (OSTI)

    Bellow, E.J. Jr.; Ghazal, F.P.; Silverman, A.J. [Mobil Technology Co., Dallas, TX (United States); Myers, S.D. [Mobil Oil Corp., Fairfax, VA (United States)

    1997-06-02T23:59:59.000Z

    LNG plants, often very expensive in the past, will in the future need to cost less to build and operate and yet maintain high safety and reliability standards, both during construction and operation. Technical advancements, both in the process and in equipment scaling, manufacturing, and metallurgy, will provide much of the impetus for the improved economics. Although world energy demand is predicted to grow on average of about 2% annually over the next decade, LNG is expected to contribute an increasing portion of this growth with annual growth rates averaging about 7%. This steep growth increase will be propelled mainly by the environmentally friendlier burning characteristics of natural gas and the strong industrial growth in Asian and pacific Rim countries. While LNG is emerging as the fuel of choice for developing economies, its delivered cost to consumers will need to stay competitive with alternate energy supplies if it is to remain in front. The paper discusses LNG process development, treating process, equipment developments (man heat exchanger, compressors, drivers, and pressure vessels), and economy of scale.

  17. LNG plant design in the 1990`s

    SciTech Connect (OSTI)

    Coyle, D.A.; Durr, C.A.; Vega, F.F. de la; Hill, D.K. [M.W. Kellogg Co., Houston, TX (United States); Collins, C. [M.W. Kellogg Co., Middlesex (United Kingdom)

    1995-11-01T23:59:59.000Z

    Advances in LNG plant design are needed to improve LNG chain economics. Improving the economics is essential to insure the feasibility of proposed and future projects and will compel new developments. This paper discusses anticipated changes and their significance. Topics include: Technology and Plant Design; Train Capacity; Reliability/Availability. Likely improvements in technology include: new and improved computation and analytical tools; larger and more efficient compressors and mechanical drivers; increased plant life expectancy; improved gas treating for H{sub 2}S, CO{sub 2}, and mercury removal; and the application of recent equipment developments. Train capacities are becoming larger, resulting in improved economics. Discussion on size, bottlenecks, compressor and turbine configurations, economics, and construction techniques are included. Closely related to train capacity and design are the reliability and availability of each LNG train and of the plant common facilities. Methods of analysis and design are presented to attain the desired availability for each train and the entire complex, and to optimize the complete LNG chain (production, liquefaction and storage, shipping, and receiving).

  18. SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION, L.P. & FLNG LIQUEFACTI...

    Broader source: Energy.gov (indexed) [DOE]

    FOR FREEPORT LNG EXPANSION, L.P. & FLNG LIQUEFACTION, LLC - FE DKT. NO. 11-161-LNG - ORDER 3357 SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION, L.P. & FLNG LIQUEFACTION, LLC - FE...

  19. SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTIO...

    Broader source: Energy.gov (indexed) [DOE]

    EXPANSION L.P. & FLNG LIQUEFACTION, LLC - FE DKT. 10-160-LNG - ORDER 2913 SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTION, LLC - FE DKT. 10-160-LNG - ORDER...

  20. Application of Computational Fluid Dynamics in the Forced Dispersion Modeling of LNG Vapor Clouds

    E-Print Network [OSTI]

    Kim, Byung-Kyu

    2013-05-31T23:59:59.000Z

    The safety and security of liquefied natural gas (LNG) facilities has prompted the need for continued study of LNG mitigation systems. Water spray systems are widely recognized as an effective measure for dispersing LNG vapor clouds. Currently...

  1. Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE...

    Office of Environmental Management (EM)

    and FLNG Liquefaction, LLC - FE Dkt. No. 10-161-LNG Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE Dkt. No. 10-161-LNG On May 17, 2013, the Office of Fossil Energy...

  2. Pangea LNG (North America) Holdings, LLC - 14-003-CIC | Department...

    Energy Savers [EERE]

    Pangea LNG (North America) Holdings, LLC - 14-003-CIC Pangea LNG (North America) Holdings, LLC - 14-003-CIC Amendment of Application to Export LNG to Non-free Trade Agreement...

  3. SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTIO...

    Office of Environmental Management (EM)

    FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTION, LLC - FE DKT. NO. 12-06-LNG - ORDER 3066 SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTION, LLC - FE DKT. NO....

  4. LNG demand, shipping will expand through 2010

    SciTech Connect (OSTI)

    True, W.R.

    1998-02-09T23:59:59.000Z

    The 1990s, especially the middle years, have witnessed a dramatic turnaround in the growth of liquefied-natural-gas demand which has tracked equally strong natural-gas demand growth. This trend was underscored late last year by several annual studies of world LNG demand and shipping. As 1998 began, however, economic turmoil in Asian financial markets has clouded near-term prospects for LNG in particular and all energy in general. But the extent of damage to energy markets is so far unclear. A study by US-based Institute of Gas Technology, Des Plaines, IL, reveals that LNG imports worldwide have climbed nearly 8%/year since 1980 and account for 25% of all natural gas traded internationally. In the mid-1970s, the share was only 5%. In 1996, the most recent year for which complete data are available, world LNG trade rose 7.7% to a record 92 billion cu m, outpacing the overall consumption for natural gas which increased 4.7% in 1996. By 2015, says the IGT study, natural-gas use would surpass coal as the world`s second most widely used fuel, after petroleum. Much of this growth will occur in the developing countries of Asia where gas use, before the current economic crisis began, was projected to grow 8%/year through 2015. Similar trends are reflected in another study of LNG trade released at year end 1997, this from Ocean Shipping Consultants Ltd., Surrey, U.K. The study was done too early, however, to consider the effects of the financial problems roiling Asia.

  5. Technical efforts focus on cutting LNG plant costs

    SciTech Connect (OSTI)

    Aoki, Ichizo; Kikkawa, Yoshitsugi [Chiyoda Corp., Yokohama (Japan)

    1995-07-03T23:59:59.000Z

    LNG demand is growing due to the nuclear setback and environmental issues spurred by concern about the greenhouse effect and acid rain, especially in the Far East. However, LNG is expensive compared with other energy sources. Efforts continue to minimize capital and operating costs and to increase LNG plant availability and safety. Technical trends in the LNG industry aim at reducing plant costs in pursuit of a competitive LNG price on an energy value basis against the oil price. This article reviews key areas of technical development. Discussed are train size, liquefaction processes, acid gas removal, heavy end removal, nitrogen rejection, refrigeration compressor and drivers, expander application, cooling media selection, LNG storage and loading system, and plant availability.

  6. EIS-0487: Freeport LNG Liquefaction Project, Brazoria County, Texas

    Broader source: Energy.gov [DOE]

    Federal Energy Regulatory Commission (FERC) prepared an EIS to analyze the potential environmental impacts of a proposal to construct and operate the Freeport Liquefied Natural Gas (LNG) Liquefaction Project, which would expand an existing LNG import terminal and associated facilities in Brazoria County, Texas, to enable the terminal to liquefy and export LNG. DOE, Office of Fossil Energy – a cooperating agency in preparing the EIS – has an obligation under Section 3 of the Natural Gas Act to authorize the import and export of natural gas, including LNG, unless it finds that the import or export is not consistent with the public interest.

  7. Optimization Online - Bound Improvement for LNG Inventory Routing

    E-Print Network [OSTI]

    Yufen Shao

    2014-02-14T23:59:59.000Z

    Feb 14, 2014 ... In this paper, we develop methods for improving both lower and upper bounds for a previously stated form of an LNG inventory routing problem.

  8. Sandia Energy - Sandia Study Shows Large LNG Fires Hotter but...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study Shows Large LNG Fires Hotter but Smaller Than Expected Home Infrastructure Security News News & Events Energy Assurance Modeling Modeling & Analysis Analysis Sandia Study...

  9. Parallel Large-Neighborhood Search Techniques for LNG Inventory ...

    E-Print Network [OSTI]

    Badrinarayanan Velamur Asokan

    2014-04-17T23:59:59.000Z

    Apr 17, 2014 ... Abstract: Liquefied natural gas (LNG) is estimated to account for a growing portion of the world natural gas trade. For profitable operation of a ...

  10. LPG-recovery processes for baseload LNG plants examined

    SciTech Connect (OSTI)

    Chiu, C.H. [Bechtel Corp., Houston, TX (United States)

    1997-11-24T23:59:59.000Z

    With demand on the rise, LPG produced from a baseload LNG plant becomes more attractive as a revenue-earning product similar to LNG. Efficient use of gas expanders in baseload LNG plants for LPG production therefore becomes more important. Several process variations for LPG recovery in baseload LNG plants are reviewed here. Exergy analysis (based on the Second Law of Thermodynamics) is applied to three cases to compare energy efficiency resulting from integration with the main liquefaction process. The paper discusses extraction in a baseload plant, extraction requirements, process recovery parameters, extraction process variations, and exergy analysis.

  11. Comments, Protests and Interventions for Alaska LNG Project LLC...

    Broader source: Energy.gov (indexed) [DOE]

    Begich and Congressman Don Young, Alaska Congressional Delegation Letter in Support of LNG Export Application 2. 102414 Pentair Vavles & Controls, Randy Akers, Technical Sales...

  12. Potential for long-term LNG supply. Final report

    SciTech Connect (OSTI)

    Moncrieff, T.I.; Goldman, D.P.; Jeffries, E.F.; Sherff, J.L.; Wood-Collins, J.C.

    1991-08-01T23:59:59.000Z

    Limited foreign liquefaction and U.S. LNG terminal capacity exists before 1993, after which time re-opening of the Cove Point and, later, Elba Island terminals, together with the refurbishment of inefficient Algerian liquefaction plant, permits a major expansion in U.S.-North African LNG trade. Towards 2000 expansion of all four U.S. LNG receiving terminals is technically possible, providing appropriate market, regulatory and environmental signals are received. These expansions will be necessary in order to absorb LNG supply from new sources such as Venezuela and Nigeria.

  13. ,"New York Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2013 ,"Release Date:","227...

  14. ,"New York Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2013 ,"Release Date:","2272015"...

  15. Small Scale LNG Terminals Market Installed Capacity is anticipated...

    Open Energy Info (EERE)

    across the world till date, the emergence of small demand centers for natural gas within small geographies is gradually shifting the focus towards miniaturizing LNG...

  16. High efficiency Brayton cycles using LNG

    DOE Patents [OSTI]

    Morrow, Charles W. (Albuquerque, NM)

    2006-04-18T23:59:59.000Z

    A modified, closed-loop Brayton cycle power conversion system that uses liquefied natural gas as the cold heat sink media. When combined with a helium gas cooled nuclear reactor, achievable efficiency can approach 68 76% (as compared to 35% for conventional steam cycle power cooled by air or water). A superheater heat exchanger can be used to exchange heat from a side-stream of hot helium gas split-off from the primary helium coolant loop to post-heat vaporized natural gas exiting from low and high-pressure coolers. The superheater raises the exit temperature of the natural gas to close to room temperature, which makes the gas more attractive to sell on the open market. An additional benefit is significantly reduced costs of a LNG revaporization plant, since the nuclear reactor provides the heat for vaporization instead of burning a portion of the LNG to provide the heat.

  17. Owners of nuclear power plants

    SciTech Connect (OSTI)

    Hudson, C.R.; White, V.S.

    1996-11-01T23:59:59.000Z

    Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of July 1996. The report is divided into sections representing different aspects of nuclear plant ownership.

  18. Gulf LNG, Mississippi LNG Imports (Price) (Dollars per Thousand Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearper ThousandGulf LNG, Mississippi LNG

  19. Liquified Natural Gas (LNG) for Hawaii: Policy, Economic, and Technical Questions

    E-Print Network [OSTI]

    Liquified Natural Gas (LNG) for Hawaii: Policy, Economic, and Technical Questions This report presents analyses for the potential demand for LNG in Hawai`i, potential benefits and costs of LNG importation, and features of the regulatory structure, policy, and practices for LNG. The report was submitted

  20. Single-cycle mixed-fluid LNG process Part II: Optimal operation

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Single-cycle mixed-fluid LNG process Part II: Optimal operation Jørgen Bauck Jensen and Sigurd of work that goes into the design of LNG processes, there is surprisingly little attention simple LNG process, namely the PRICO process. Keywords: PRICO, LNG, operation 1 Introduction The process

  1. Union Pacific Railroad`s LNG locomotive test program

    SciTech Connect (OSTI)

    Grimaila, B.

    1995-12-31T23:59:59.000Z

    Union Pacific Railroad is testing LNG in six locomotives through 1997 to determine if the liquefied natural gas technology is right for them. Two of the six LNG test locomotives are switch, or yard, locomotives. These 1,350 horsepower locomotives are the industry`s first locomotives totally fueled by natural gas. They`re being tested in the yard in the Los Angeles area. The other four locomotives are long-haul locomotives fueled by two tenders. These units are duel-fueled, operating on a mixture of LNG and diesel and are being tested primarily on the Los Angeles to North Platte, Nebraska corridor. All the information concerning locomotive emissions, locomotive performance, maintenance requirements, the overall LNG system design and the economic feasibility of the project will be analyzed to determine if UPR should expand, or abandon, the LNG technology.

  2. LNG Annual Report - 2004 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLED Lighting5-15Trade | Department of4 LNG

  3. LNG Annual Report - 2005 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLED Lighting5-15Trade | Department of4 LNG5

  4. LNG Annual Report - 2006 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLED Lighting5-15Trade | Department of4 LNG56

  5. LNG Annual Report - 2008 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLED Lighting5-15Trade | Department of48 LNG

  6. LNG Export Study | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas » MethaneJohnsonKristina PflanzLM News Archive LMAnnualLNG

  7. Mini LNG Terminals | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreen Polymers Inc JumpFinancing Mechanisms JumpMini LNG

  8. Project financing knits parts of costly LNG supply chain

    SciTech Connect (OSTI)

    Minyard, R.J.; Strode, M.O. [Mobil Corp., Fairfax, VA (United States)

    1997-06-02T23:59:59.000Z

    The supply and distribution infrastructure of an LNG project requires project sponsors and LNG buyers to make large, interdependent capital investments. For a grassroots project, substantial investments may be necessary for each link in the supply chain: field development; liquefaction plant and storage; ports and utilities; ships; receiving terminal and related facilities; and end-user facilities such as power stations or a gas distribution network. The huge sums required for these projects make their finance ability critical to implementation. Lenders have become increasingly comfortable with LNG as a business and now have achieved a better understanding of the risks associated with it. Raising debt financing for many future LNG projects, however, will present new and increasingly difficult challenges. The challenge of financing these projects will be formidable: political instability, economic uncertainty, and local currency volatility will have to be recognized and mitigated. Described here is the evolution of financing LNG projects, including the Rasgas LNG project financing which broke new ground in this area. The challenges that lie ahead for sponsors seeking to finance future projects selling LNG to emerging markets are also discussed. And the views of leading experts from the field of project finance, specifically solicited for this article, address major issues that must be resolved for successful financing of these projects.

  9. Pangea LNG (North America) Holdings, LLC- 14-002-CIC (FE Dkt. No. 12-184-LNG New Company Name: NextDecade Partnerss, LLC)

    Broader source: Energy.gov [DOE]

    Amendment of Application to Export LNG to Non-free Trade Agreement Countries to Reflect a Change in Ownership of Pangea LNG (North America) Holdings, LLC and a Revision of the Point from which the...

  10. Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications

    E-Print Network [OSTI]

    Zhao, Hengbing

    2013-01-01T23:59:59.000Z

    Electric Drivetrain Conv. Diesel Diesel Hyb. Conv. LNG-SI LNG-SI Hyb.Conv. LNG-CI LNG-CI Hyb. Battery EV Fuel Cell Short Haul

  11. Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications

    E-Print Network [OSTI]

    Zhao, Hengbing

    2013-01-01T23:59:59.000Z

    Electric Drivetrain Electric Drivetrain Conv. DieselDiesel Hyb. Conv. LNG-SI LNG-SI Hyb. Conv. LNG-CI LNG-CICompression Ignition Carbon Dioxide Diesel Gallon Equivalent

  12. U.S. LNG imports 1996--1997 should recover from low 1995 levels

    SciTech Connect (OSTI)

    Swain, E.J. [Swain (Edward J.), Houston, TX (United States)

    1997-01-27T23:59:59.000Z

    Imports of LNG into the US in 1995 were the lowest since 1988, when 17.5 billion cu ft were imported. Total 1995 LNG imported from Algeria was 17.92 bcf compared to 50.78 in 1994, a decrease of 64.7%. About 72% of imported Algerian LNG was received at the Distrigas Corp. terminal north of Boston. The remaining LNG was received at the Trunkline LNG CO. terminal, Lake Charles, La., which was reopened in December 1989. The dramatic decline in LNG imports over the past 2 years (78%) can largely be attributed to Sonatrach`s multiyear renovation project to restore its LNG plants to their original capacities. This major renovation project has resulted in LNG export curtailments to all of its customers. The paper discusses US terminals, base-load producers, LNG pricing, and exports.

  13. 2015 - LNG Export, Compressed Natural Gas (CNG), Re-Exports ...

    Broader source: Energy.gov (indexed) [DOE]

    No. Date Filed ImportExport Country Applicant Dkt. Index F.R. Notice Order No. 15-13-LNG 1212015 Re-export FTA ENI USA Gas Marketing LLC Dkt. Index 80 FR 13841 Pending...

  14. Conceptual Liquefied Natural Gas (LNG) terminal design for Kuwait

    E-Print Network [OSTI]

    Aljeeran, Fares

    2006-08-16T23:59:59.000Z

    This research study investigated a new conceptual design for a modular structural configuration incorporating storage for Liquefied Natural Gas (LNG) within the base of the platform structure. The structure, referred to as a modified gravity base...

  15. International Trade in Natural Gas: Golden Age of LNG?

    E-Print Network [OSTI]

    Du, Y.

    The introduction of liquefied natural gas (LNG) as an option for international trade has created a market for natural gas where global prices may eventually be differentiated by the transportation costs between world ...

  16. Topsides equipment, operating flexibility key floating LNG design

    SciTech Connect (OSTI)

    Yost, K.; Lopez, R.; Mok, J. [Mobil E and P Technology Co., Dallas, TX (United States)

    1998-03-09T23:59:59.000Z

    Use of a large-scale floating liquefied natural gas (LNG) plant is an economical alternative to an onshore plant for producing from an offshore field. Mobil Technology Co., Dallas, has advanced a design for such a plant that is technically feasible, economical, safe, and reliable. Presented were descriptions of the general design basis, hull modeling and testing, topsides and storage layouts, and LNG offloading. But such a design also presents challenges for designing topsides equipment in an offshore environment and for including flexibility and safety. These are covered in this second article. Mobil`s floating LNG plant design calls for a square concrete barge with a moon-pool in the center. It is designed to produce 6 million tons/year of LNG with up to 55,000 b/d of condensate from 1 bcfd of raw feed gas.

  17. Microsoft Word - Alaska LNG Export License Letter November 14...

    Broader source: Energy.gov (indexed) [DOE]

    Washington, DC 20026-4375 Sent via email to: fergas@hq.doe.gov Re: FE Docket No: 14-96-LNG To Whom It May Concern: Please accept the following comments from the Alaska State...

  18. Norcal Prototype LNG Truck Fleet: Final Data Report

    SciTech Connect (OSTI)

    Chandler, K.; Proc, K.

    2005-02-01T23:59:59.000Z

    U.S. DOE and National Renewable Energy Laboratory evaluated Norcal Waste Systems liquefied natural gas (LNG) waste transfer trucks. Trucks had prototype Cummins Westport ISXG engines. Report gives final data.

  19. Dimethyl ether fuel proposed as an alternative to LNG

    SciTech Connect (OSTI)

    Kikkawa, Yoshitsugi; Aoki, Ichizo [Chiyoda Corp., Yokohama (Japan)

    1998-04-06T23:59:59.000Z

    To cope with the emerging energy demand in Asia, alternative fuels to LNG must be considered. Alternative measures, which convert the natural gas to liquid fuel, include the Fischer-Tropsch conversion, methanol synthesis, and dimethyl ether (DME) synthesis. Comparisons are evaluated based on both transportation cost and feed-gas cost. The analysis will show that DME, one alternative to LNG as transportation fuel, will be more economical for longer distances between the natural-gas source and the consumer. LNG requires a costly tanker and receiving terminal. The break-even distance will be around 5,000--7,000 km and vary depending on the transported volume. There will be risk, however, since there has never been a DME plant the size of an LNG-equivalent plant [6 million metric tons/year (mty)].

  20. California's LNG Terminals: The Promise of New Gas Supplies

    Broader source: Energy.gov [DOE]

    Presentation covers California's LNG terminals and is given at the Federal Utility Partnership Working Group (FUPWG) Fall Meeting, held on November 28-29, 2007 in San Diego, California.

  1. Chevron U.S.A. Inc.- 14-119-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed August 27, 2014 by Chevron U.S.A. Inc. (Chevron), requesting blanket authorization to export liquefied natural gas (LNG)...

  2. Conceptual Liquefied Natural Gas (LNG) terminal design for Kuwait 

    E-Print Network [OSTI]

    Aljeeran, Fares

    2006-08-16T23:59:59.000Z

    This research study investigated a new conceptual design for a modular structural configuration incorporating storage for Liquefied Natural Gas (LNG) within the base of the platform structure. The structure, referred to ...

  3. LNG vehicle markets and infrastructure. Final report, October 1994-October 1995

    SciTech Connect (OSTI)

    Nimocks, R.

    1995-09-01T23:59:59.000Z

    A comprehensive primary research of the LNG-powered vehicle market was conducted, including: the status of the LNG vehicle programs and their critical constraints and development needs; estimation of the U.S. LNG liquefaction and delivery capacity; profiling of LNG vehicle products and services vendors; identification and evaluation of key market drivers for specific transportation sector; description of the critical issues that determine the size of market demand for LNG as a transportation fuel; and forecasting the demand for LNG fuel and equipment.

  4. EIS-0508: Downeast LNG Import-Export Project, Robbinston, Maine

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission (FERC) is preparing an EIS that analyzes the potential environmental impacts of proposed liquefied natural gas (LNG) import and export terminal facilities in Washington County, Maine. DOE is a cooperating agency in preparing the EIS. DOE, Office of Fossil Energy, has an obligation under Section 3 of the Natural Gas Act to authorize the import and export of natural gas, including LNG, unless it finds that the import or export is not consistent with the public interest.

  5. EIS-0509: Mississippi River LNG Project, Plaquemines Parish, Louisiana

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission (FERC) is preparing an EIS that analyzes the potential environmental impacts of proposed liquefied natural gas (LNG) export terminal facilities in Plaquemines Parish, Louisiana. DOE is a cooperating agency in preparing the EIS. DOE, Office of Fossil Energy, has an obligation under Section 3 of the Natural Gas Act to authorize the import and export of natural gas, including LNG, unless it finds that the import or export is not consistent with the public interest.

  6. The Phoenix series large scale LNG pool fire experiments.

    SciTech Connect (OSTI)

    Simpson, Richard B.; Jensen, Richard Pearson; Demosthenous, Byron; Luketa, Anay Josephine; Ricks, Allen Joseph; Hightower, Marion Michael; Blanchat, Thomas K.; Helmick, Paul H.; Tieszen, Sheldon Robert; Deola, Regina Anne; Mercier, Jeffrey Alan; Suo-Anttila, Jill Marie; Miller, Timothy J.

    2010-12-01T23:59:59.000Z

    The increasing demand for natural gas could increase the number and frequency of Liquefied Natural Gas (LNG) tanker deliveries to ports across the United States. Because of the increasing number of shipments and the number of possible new facilities, concerns about the potential safety of the public and property from an accidental, and even more importantly intentional spills, have increased. While improvements have been made over the past decade in assessing hazards from LNG spills, the existing experimental data is much smaller in size and scale than many postulated large accidental and intentional spills. Since the physics and hazards from a fire change with fire size, there are concerns about the adequacy of current hazard prediction techniques for large LNG spills and fires. To address these concerns, Congress funded the Department of Energy (DOE) in 2008 to conduct a series of laboratory and large-scale LNG pool fire experiments at Sandia National Laboratories (Sandia) in Albuquerque, New Mexico. This report presents the test data and results of both sets of fire experiments. A series of five reduced-scale (gas burner) tests (yielding 27 sets of data) were conducted in 2007 and 2008 at Sandia's Thermal Test Complex (TTC) to assess flame height to fire diameter ratios as a function of nondimensional heat release rates for extrapolation to large-scale LNG fires. The large-scale LNG pool fire experiments were conducted in a 120 m diameter pond specially designed and constructed in Sandia's Area III large-scale test complex. Two fire tests of LNG spills of 21 and 81 m in diameter were conducted in 2009 to improve the understanding of flame height, smoke production, and burn rate and therefore the physics and hazards of large LNG spills and fires.

  7. Future world LNG trade looks good - part 2

    SciTech Connect (OSTI)

    Anderson, P.J.

    1982-12-01T23:59:59.000Z

    Projects to deliver gas to Japan will increase Japan's volume of LNG by two-thirds while the share of projects directed toward Europe and the U.S. will decrease proportionately. Tables showing base-load LNG import projects under construction and possible projects are presented (e.g. Australia-Japan; Canada-Japan; Nigeria-Europe/US; Cameroons-Europe; Canadian Arctic-Europe), each of which is briefly discussed.

  8. Aussie LNG players target NE Asia in expansion bid

    SciTech Connect (OSTI)

    Not Available

    1994-02-28T23:59:59.000Z

    Australia's natural gas players, keen to increase their presence in world liquefied natural gas trade, see Asia as their major LNG market in the decades to come. That's despite the fact that two spot cargoes of Australian Northwest Shelf LNG were shipped to Europe during the last 12 months and more are likely in 1994. Opportunities for growth are foreseen within the confines of the existing Northwest Shelf gas project for the rest of the 1990s. But the main focus for potential new grassroots project developers and expansions of the existing LNG plant in Australia is the expected shortfall in contract volumes of LNG to Japan, South Korea, and Taiwan during 2000--2010. Traditionally the price of crude oil has been used as a basis for calculating LNG prices. This means the economics of any new 21st century supply arrangements are delicately poised because of the current low world oil prices, a trend the market believes is likely to continue. In a bid to lessen the effect of high initial capital outlays and still meet projected demand using LNG from new projects and expansion of the existing plant, Australia's gas producers are working toward greater cooperation with prospective Asian buyers.

  9. The Asia Pacific LNG trade: Status and technology development

    SciTech Connect (OSTI)

    Hovdestad, W.R.

    1995-10-01T23:59:59.000Z

    The Asia Pacific Region is experiencing a period of sustained economic expansion. Economic growth has led to an increasing demand for energy that has spurred a rapid expansion of baseload liquefied natural gas (LNG) facilities in this region. This is illustrated by the fact that seven of the ten baseload facilities in existence provide LNG for markets in the Asia Pacific region. With the three exceptions having been initially commissioned in 1972 and earlier, it is fair to observed that most advances in LNG technology have been developed and applied for this market. The paper presents the current status and identified future trends for the Asia Pacific LNG trade. Technology development in terms of application to onstream production, processing and transportation facilities, including LNG tankers, is presented. The potential of future advances to applied technology and operational practices to improve the cost-effectiveness of new and existing facilities is discussed. Current design data and methods as actually used are examined in terms of identifying where fundamental research and basic physical data are insufficient for optimization purposes. These findings are then summarized and presented in terms of the likely evolution of future and existing LNG projects in the Asia Pacific region.

  10. Corporate Law's Current-Owner Bias

    E-Print Network [OSTI]

    Fried, Jesse M.

    2005-01-01T23:59:59.000Z

    Owner Bias in Corporate Governance Jesse Fried * Boalt Hallmy conclusion that corporate governance arrangements choseninterventions in corporate governance through the securities

  11. Corporate Law's Current-Owner Bias

    E-Print Network [OSTI]

    Fried, Jesse M.

    2006-01-01T23:59:59.000Z

    Owner Bias in Corporate Governance Jesse Fried * Boalt Hallmy conclusion that corporate governance arrangements choseninterventions in corporate governance through the securities

  12. Energy Sector Cybersecurity Framework Implementation Guidance...

    Office of Environmental Management (EM)

    Federal Register Notice, Volume 79, No. 177, September 12, 2014 Public Comments Received on the Draft Voluntary Code of Conduct Sempra LNG Marketing, LLC - FE Dkt. No. 14-177-LNG...

  13. CE FLNG, LLC - FE DKT. NO. 12-123-LNG - ORDER 3193 | Department...

    Broader source: Energy.gov (indexed) [DOE]

    CE FLNG, LLC - FE DKT. NO. 12-123-LNG - ORDER 3193 CE FLNG, LLC - FE DKT. NO. 12-123-LNG - ORDER 3193 No reports submitted for this docket. More Documents & Publications...

  14. Application of Computational Fluid Dynamics in the Forced Dispersion Modeling of LNG Vapor Clouds 

    E-Print Network [OSTI]

    Kim, Byung-Kyu

    2013-05-31T23:59:59.000Z

    droplet-LNG vapor system, which will serve in developing guidelines and establishing engineering criteria for a site-specific LNG mitigation system. Finally, the potentials of applying CFD modeling in providing guidance for setting up the design criteria...

  15. Strom Inc, FE Dkt. No. 14-57-LNG | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7-LNG Strom Inc, FE Dkt. No. 14-57-LNG The Office of Fossil Energy gives notice of receipt of an Application filed April 18, 2014, by Strom, Inc. (Strom), seeking a long-term...

  16. Microsoft Word - Comments to DOE on Alaskan LNG Project.docx

    Broader source: Energy.gov (indexed) [DOE]

    of Energy 1000 Independence Avenue Southwest Washington, D.C. 20585-0001 Re: Alaska LNG Project LLC, Docket No. 14-96-LNG Dear Mr. Secretary We welcome the opportunity to...

  17. From: Miller, Mike To: FERGAS Subject: FE Docket No. 14-96-LNG

    Broader source: Energy.gov (indexed) [DOE]

    Miller, Mike To: FERGAS Subject: FE Docket No. 14-96-LNG Date: Friday, October 24, 2014 3:39:43 PM Please consider the following when reviewing the Alaska LNG Project LLC...

  18. Control of Vapor Dispersion and Pool Fire of Liquefied Natural Gas (LNG) with Expansion Foam 

    E-Print Network [OSTI]

    Yun, Geun Woong

    2011-10-21T23:59:59.000Z

    in outdoor field tests. Thus, this research focused on experimental determination of the effect of expansion foam application on LNG vapor dispersion and pool fire. Specifically, for evaluating the use of foam to control the vapor hazard from spilled LNG...

  19. Pangea LNG (North America) Holdings, LLC - 14-003-CIC | Department...

    Broader source: Energy.gov (indexed) [DOE]

    America) Holdings, LLC - 14-003-CIC Amendment of Application to Export LNG to Non-free Trade Agreement Countries to Reflect a Change in Ownership of Pangea LNG (North...

  20. Pangea LNG (North America) Holdings, LLC - 14-002-CIC | Department...

    Broader source: Energy.gov (indexed) [DOE]

    America) Holdings, LLC - 14-002-CIC Amendment of Application to Export LNG to Non-free Trade Agreement Countries to Reflect a Change in Ownership of Pangea LNG (North...

  1. LNG cascading damage study. Volume I, fracture testing report.

    SciTech Connect (OSTI)

    Petti, Jason P.; Kalan, Robert J.

    2011-12-01T23:59:59.000Z

    As part of the liquefied natural gas (LNG) Cascading Damage Study, a series of structural tests were conducted to investigate the thermal induced fracture of steel plate structures. The thermal stresses were achieved by applying liquid nitrogen (LN{sub 2}) onto sections of each steel plate. In addition to inducing large thermal stresses, the lowering of the steel temperature simultaneously reduced the fracture toughness. Liquid nitrogen was used as a surrogate for LNG due to safety concerns and since the temperature of LN{sub 2} is similar (-190 C) to LNG (-161 C). The use of LN{sub 2} ensured that the tests could achieve cryogenic temperatures in the range an actual vessel would encounter during a LNG spill. There were four phases to this test series. Phase I was the initial exploratory stage, which was used to develop the testing process. In the Phase II series of tests, larger plates were used and tested until fracture. The plate sizes ranged from 4 ft square pieces to 6 ft square sections with thicknesses from 1/4 inches to 3/4 inches. This phase investigated the cooling rates on larger plates and the effect of different notch geometries (stress concentrations used to initiate brittle fracture). Phase II was divided into two sections, Phase II-A and Phase II-B. Phase II-A used standard A36 steel, while Phase II-B used marine grade steels. In Phase III, the test structures were significantly larger, in the range of 12 ft by 12 ft by 3 ft high. These structures were designed with more complex geometries to include features similar to those on LNG vessels. The final test phase, Phase IV, investigated differences in the heat transfer (cooling rates) between LNG and LN{sub 2}. All of the tests conducted in this study are used in subsequent parts of the LNG Cascading Damage Study, specifically the computational analyses.

  2. S.D. Sunnyland Enterprises, Inc._14-59-LNG_3447

    Broader source: Energy.gov (indexed) [DOE]

    ) S.D. SUNNYLAND ENTERPRISES, INC. ) FE DOCKET NO. 14-59-LNG ) ORDER GRANTING BLANKET AUTHORIZATION TO...

  3. SEMI-ANNUAL REPORTS FOR LNG DEVELOPMENT COMPANY, LLC (D/B/A Oregon LNG) -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG - ORDER 2913 | Department ofORDER 3324 |FE DKT.

  4. SEMI-ANNUAL REPORTS FOR Louisiana LNG Energy LLC - FE DKT. NO 14-19-LNG -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG - ORDER 2913 | Department ofORDER 3324 |FE

  5. SEMI-ANNUAL REPORTS FOR MAGNOLIA LNG, LLC - FE DKT. NO. 12-183-LNG - ORDER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG - ORDER 2913 | Department ofORDER 3324 |FE3245 |

  6. SEMI-ANNUAL REPORTS FOR SOUTHERN LNG COMPANY - FE DKT. NO. 12-54-LNG -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG - ORDER 2913 | Department ofORDERORDER 3106 |

  7. SEMI-ANNUAL REPORTS FOR TEXAS LNG - TEXAS LNG - FTA - FE DKT. NO.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG - ORDER 2913 | Department ofORDERORDER 3106

  8. SEMI-ANNUAL REPORTS FOR TRUNKLINE LNG EXPORT, LLC - DK. NO. 13-04-LNG -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG - ORDER 2913 | Department ofORDERORDER 3106ORDER

  9. SEMI-ANNUAL REPORTS FOR WALLER LNG SERVICES, LLC D/B/A WALLER POINT LNG -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG - ORDER 2913 | Department ofORDERORDERFE DKT. NO.

  10. Gulf LNG, Mississippi LNG Imports (Price) from Egypt (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearper ThousandGulf LNG, Mississippi

  11. Gulf LNG, Mississippi LNG Imports (Price) from Egypt (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearper ThousandGulf LNG, MississippiCubic

  12. Gulf LNG, Mississippi LNG Imports (Price) from Trinidad and Tobago (Dollars

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearper ThousandGulf LNG,

  13. Gulf LNG, Mississippi LNG Imports (Price) from Trinidad and Tobago (Dollars

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearper ThousandGulf LNG,per Thousand Cubic

  14. Downeast LNG, Inc. - FE Dkt. No. 14-173-LNG | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 FederalDonna Friend DonnaDowneast LNG,

  15. Sloshing in the LNG shipping industry: risk modelling through multivariate heavy-tail analysis

    E-Print Network [OSTI]

    Sloshing in the LNG shipping industry: risk modelling through multivariate heavy-tail analysis In the liquefied natural gas (LNG) shipping industry, the phenomenon of slosh- ing can lead to the occurrence in the LNG shipping industry. KEYWORDS: Sloshing, multivariate heavy-tail distribution, asymptotic depen

  16. Single-cycle mixed-fluid LNG process Part I: Optimal design

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Single-cycle mixed-fluid LNG process Part I: Optimal design Jørgen Bauck Jensen and Sigurd the design optimization of a relatively simple LNG pro- cess; the PRICO process. A simple economic objective. Keywords: PRICO, LNG, design 1 Introduction Stebbing and O'Brien (1975) reported on the performance

  17. LNG FEM: GENERATING GRADED MESHES AND SOLVING ELLIPTIC EQUATIONS ON 2-D DOMAINS OF POLYGONAL STRUCTURES

    E-Print Network [OSTI]

    LNG FEM: GENERATING GRADED MESHES AND SOLVING ELLIPTIC EQUATIONS ON 2-D DOMAINS OF POLYGONAL, Minnesota 55455­0436 Phone: 612-624-6066 Fax: 612-626-7370 URL: http://www.ima.umn.edu #12;LNG FEM AND VICTOR NISTOR Abstract. We develop LNG FEM, a software package for graded mesh gen- eration

  18. Overview study of LNG release prevention and control systems

    SciTech Connect (OSTI)

    Pelto, P.J.; Baker, E.G.; Holter, G.M.; Powers, T.B.

    1982-03-01T23:59:59.000Z

    The liquefied natural gas (LNG) industry employs a variety of release prevention and control techniques to reduce the likelihood and the consequences of accidental LNG releases. A study of the effectiveness of these release prevention and control systems is being performed. Reference descriptions for the basic types of LNG facilities were developed. Then an overview study was performed to identify areas that merit subsequent and more detailed analyses. The specific objectives were to characterize the LNG facilities of interest and their release prevention and control systems, identify possible weak links and research needs, and provide an analytical framework for subsequent detailed analyses. The LNG facilities analyzed include a reference export terminal, marine vessel, import terminal, peakshaving facility, truck tanker, and satellite facility. A reference description for these facilities, a preliminary hazards analysis (PHA), and a list of representative release scenarios are included. The reference facility descriptions outline basic process flows, plant layouts, and safety features. The PHA identifies the important release prevention operations. Representative release scenarios provide a format for discussing potential initiating events, effects of the release prevention and control systems, information needs, and potential design changes. These scenarios range from relatively frequent but low consequence releases to unlikely but large releases and are the principal basis for the next stage of analysis.

  19. The diseconomics of long-haul LNG trading

    SciTech Connect (OSTI)

    Stauffer, T.R.

    1995-12-31T23:59:59.000Z

    Long-haul liquefied natural gas (LNG) exports yield little or no economic rent. Trades, such as Borneo to Japan, are economical, but government takes otherwise are minimal. Today, the price of LNG is capped by the technical option of modifying gas turbines to bum liquid fuels. The maximum premium for LNG is less than 50 cents per thousand cubic feet (/Mcf), and buyers are resisting any price above oil parity. Costs of LNG are high and increase with distance. The netback value is zero or even negative for the longer-distance trades. The value of extracted co-products (natural gas liquids) is 50 cents to $1/Mcf. These credits are the principal source of profit, especially for foreign partners because natural gas liquids are taxed at low {open_quotes}industrial{close_quotes} rates. Returns are even less when the gas supply is nonassociated so that the project must {open_quotes}pay{close_quotes} the production costs as well. Some exporting countries profit; but the Organization of the Petroleum Exporting Countries as a whole looses because low-revenue LNG energy displaces at the margin fully taxed oil.

  20. Floating LNG plant will stress reliability and safety

    SciTech Connect (OSTI)

    Kinney, C.D.; Schulz, H.R.; Spring, W.

    1997-07-01T23:59:59.000Z

    Mobil has developed a unique floating LNG plant design after extensive studies that set safety as the highest priority. The result is a production, storage and offloading platform designed to produce 6 million tons per year of LNG and up to 55,000 bpd of condensate from 1 Bcfd of feed gas. All production and off-loading equipment is supported by a square donut-shaped concrete hull, which is spread-moored. The hull contains storage tanks for 250,000 m{sup 3} of LNG, 6540,000 bbl of condensate and ballast water. Both LNG and condensate can be directly offloaded to shuttle tankers. Since the plant may be moved to produce from several different gas fields during its life, the plant and barge were designed to be generic. It can be used at any location in the Pacific Rim, with up to 15% CO{sub 2}, 100 ppm H{sub 2}S, 55 bbl/MMcf condensate and 650 ft water depth. It can be modified to handle other water depths, depending upon the environment. In addition, it is much more economical than an onshore grassroots LNG plant, with potential capital savings of 25% or more. The paper describes the machinery, meteorology and oceanography, and safety engineering.

  1. Cours Titre Professeur Horaire Local examen LNG 1010 Langage et cognition Daniel Valois Jeudi 16 h 19 h

    E-Print Network [OSTI]

    Parrott, Lael

    Local Cours Titre Professeur Horaire Local examen LNG 1010 Langage et cognition Daniel Valois Jeudi 16 h à 19 h LNG 1080 Lexicologie, sémantique et morphologie Mireille Tremblay Vendredi 8 h 30 à 11 h 30 LNG 1120 Histoire de la langue française Lundi 8 h 30 à 11 h 30 LNG 1125 Temps et espaces

  2. Cours Titre Professeur Horaire Local examen LNG 6350 Morphologie Jean-Yves Morin Jeudi 16 h 19 h C-9019

    E-Print Network [OSTI]

    Parrott, Lael

    Local Cours Titre Professeur Horaire Local examen LNG 6350 Morphologie Jean-Yves Morin Jeudi 16 h à 19 h C-9019 LNG 6360 Phonologie Lundi 16 h à 19 h C-9019 LNG 6570 Neuro et psycholinguistique Gonia Jarema-Arvanitakis Mercredi 8 h 30 à 11 h 30 C-9019 LNG 6775 Sémantique François Lareau Mardi 8 h 30 à 11

  3. Landfill Gas Conversion to LNG and LCO{sub 2}. Final Report

    SciTech Connect (OSTI)

    Brown, W.R.; Cook, W. J.; Siwajek, L.A.

    2000-10-20T23:59:59.000Z

    This report summarizes work on the development of a process to produce LNG (liquefied methane) for heavy vehicle use from landfill gas (LFG) using Acrion's CO{sub 2} wash process for contaminant removal and CO{sub 2} recovery. Work was done in the following areas: (1) production of natural gas pipeline methane for liquefaction at an existing LNG facility, (2) production of LNG from sewage digester gas, (3) the use of mixed refrigerants for process cooling in the production of LNG, liquid CO{sub 2} and pipeline methane, (4) cost estimates for an LNG production facility at the Arden Landfill in Washington PA.

  4. Lng vehicle technology, economics, and safety assessment. Final report, April 1991-June 1993

    SciTech Connect (OSTI)

    Powars, C.A.; Moyer, C.B.; Lowell, D.D.

    1994-02-01T23:59:59.000Z

    Liquid natural gas (LNG) is an attractive transportation fuel because of its high heating value and energy density (i.e. Btu/lb and Btu/gal), clean burning characteristics, relatively low cost ($/Btu), and domestic availability. This research evaluated LNG vehicle and refueling system technology, economics, and safety. Prior and current LNG vehicle projects were studied to identify needed technology improvements. Life-cycle cost analyses considered various LNG vehicle and fuel supply options. Safety records, standards, and analysis methods were reviewed. The LNG market niche is centrally fueled heavy-duty fleet vehicles with high fuel consumption. For these applications, fuel cost savings can amortize equipment capital costs.

  5. LNG SAFETY RESEARCH: FEM3A MODEL DEVELOPMENT

    SciTech Connect (OSTI)

    Jerry Havens; Iraj A. Salehi

    2005-02-21T23:59:59.000Z

    This quarterly report for DE-FG26-04NT42030 covers a period from October 1, 2004 to December 31, 2004. On December 9, 2004 a meeting was held in Morgantown to rescope the LNG safety modeling project such that the work would complement the DOE's efforts relative to the development of the intended LNG-Fluent model. It was noted and discussed at the December 9th meeting that the fundamental research being performed on surface to cloud heat transfer and low wind speed issues will be relevant to the development of the DOE LNG/Fluent Model. In general, it was decided that all research to be performed from December 9th through the remainder of the contract is to be focused on the development of the DOE LNG/Fluent model. In addition, all GTI activities for dissemination and transfer of FEM3A will cease and dissemination activities will focus on the new DOE LNG/Fluent model. The proposed new scope of work is presented in section 4 of this report. The work reported in the present document relates to the original scope of work which was in effect during the reporting period. The future work will be re-scoped to meet the requirements of the new scope of work. During the report period work was underway to address numerical problems present during simulation of low-wind-speed, stable, atmospheric conditions with FEM3A. Steps 1 and 2 in the plan outlined in the first Quarterly report are complete and steps 3 and 4 are in progress. During this quarter, the University of Arkansas has been investigating the effect upon numerical stability of the heat transfer model used to predict the surface-to-cloud heat transfer, which can be important for LNG vapor dispersion. Previously, no consideration has been given to ground cooling as a result of heat transfer to the colder gas cloud in FEM3A.

  6. Hawaii energy strategy project 2: Fossil energy review. Task 3 -- Greenfield options: Prospects for LNG use

    SciTech Connect (OSTI)

    Breazeale, K. [ed.; Fesharaki, F.; Fridley, D.; Pezeshki, S.; Wu, K.

    1993-12-01T23:59:59.000Z

    This paper begins with an overview of the Asia-Pacific LNG market, its major players, and the likely availability of LNG supplies in the region. The discussion then examines the possibilities for the economic supply of LNG to Hawaii, the potential Hawaiian market, and the viability of an LNG project on Oahu. This survey is far from a complete technical assessment or an actual engineering/feasibility study. The economics alone cannot justify LNG`s introduction. The debate may continue as to whether fuel diversification and environmental reasons can outweigh the higher costs. Several points are made. LNG is not a spot commodity. Switching to LNG in Hawaii would require a massive, long-term commitment and substantial investments. LNG supplies are growing very tight in the Asia-Pacific region. Some of the environmental benefits of LNG are not entirely relevant in Hawaii because Hawaii`s air quality is generally excellent. Any air quality benefits may be more than counterbalanced by the environmental hazards connected with large-scale coastal zone construction, and by the safety hazards of LNG carriers, pipelines, etc. Lastly, LNG is not suitable for all energy uses, and is likely to be entirely unsuitable for neighbor island energy needs.

  7. Analysis of LNG peakshaving-facility release-prevention systems

    SciTech Connect (OSTI)

    Pelto, P.J.; Baker, E.G.; Powers, T.B.; Schreiber, A.M.; Hobbs, J.M.; Daling, P.M.

    1982-05-01T23:59:59.000Z

    The purpose of this study is to provide an analysis of release prevention systems for a reference LNG peakshaving facility. An overview assessment of the reference peakshaving facility, which preceeded this effort, identified 14 release scenarios which are typical of the potential hazards involved in the operation of LNG peakshaving facilities. These scenarios formed the basis for this more detailed study. Failure modes and effects analysis and fault tree analysis were used to estimate the expected frequency of each release scenario for the reference peakshaving facility. In addition, the effectiveness of release prevention, release detection, and release control systems were evaluated.

  8. Monitoring, safety systems for LNG and LPG operators

    SciTech Connect (OSTI)

    True, W.R.

    1998-11-16T23:59:59.000Z

    Operators in Korea and Australia have chosen monitoring and control systems in recent contracts for LNG and LPG storage. Korea Gas Corp. (Kogas) has hired Whessoe Varec, Calais, to provide monitoring systems for four LNG storage tanks being built at Kogas` Inchon terminal. For Elgas Ltd., Port Botany, Australia, Whessoe Varec has already shipped a safety valve-shutdown system to a new LPG cavern-storage facility under construction. The paper describes the systems, terminal monitoring, dynamic approach to tank management, and meeting the growing demand for LPG.

  9. EIS-0504: Gulf LNG Liquefaction Project, Jackson County, Mississippi

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission (FERC) announced its intent to prepare an EIS to analyze the potential environmental impacts of a proposal to expand an existing liquefied natural gas (LNG) import terminal in Jackson County Mississippi and modify related facilities to enable the terminal to liquefy natural gas for export. DOE is a cooperating agency in preparing the EIS. DOE, Office of Fossil Energy, has an obligation under Section 3 of the Natural Gas Act to authorize the import and export of natural gas, including LNG, unless it finds that the import or export is not consistent with the public interest.

  10. The development of mathematical model for cool down technique in the LNG pipe-line system

    SciTech Connect (OSTI)

    Hamaogi, Kenji; Takatani, Kouji; Kosugi, Sanai; Fukunaga, Takeshi

    1999-07-01T23:59:59.000Z

    An increase in demand for LNG as energy source can be expected since LNG is clean, in stable supply and produces low levels of carbon dioxide. Expansion of various LNG plants is planned. However, the optimal design of the LNG pipe-line systems has not yet been determined since the LNG transport phenomenon is not yet fully understood clearly. For example, in the LNG pipe-line system, large temperature gradients occur when the LNG transport starts. Therefore, although the necessity to cool down the pipe in order to minimize serious deformation is clear, the studies to understand it quantitatively have not been carried out. In this study, experiments on a commercial plant scale and a computer simulation, made up of structural analysis and two phase flow simulation were carried out to establish a prediction model of pipe deformation and to understand the phenomenon in the pipe.

  11. Supplying LNG markets using nitrogen rejection units at Exxon Shute Creek Facility

    SciTech Connect (OSTI)

    Hanus, P.M.; Kimble, E.L. [Exxon Co. USA, Midland, TX (United States)

    1995-11-01T23:59:59.000Z

    Interest is growing in the United States for using Liquid Natural Gas (LNG) as an alternative transportation fuel for diesel and as a source of heating fuel. For gas producers, LNG offers a premium price opportunity versus conventional natural gas sales. To supply this developing market, two existing Nitrogen Rejection Units (NRU) at the Exxon Shute Creek Facility in Wyoming were modified allowing LNG extraction and truck loading for transport to customers. The modifications involved adding heat exchanger capacity to the NRUs to compensate for the refrigeration loss when LNG is removed. Besides allowing for LNG extraction, the modifications also debottlenecked the NRUs resulting in higher methane recovery and lower compression costs. With the modifications, the NRUs are capable of producing for sale 60,000 gpd (5 MMscfd gas equivalent) of high purity LNG. Total investment has been $5 million with initial sales of LNG occurring in September 1994.

  12. Potential for long-term LNG supplies to the United States

    SciTech Connect (OSTI)

    Not Available

    1992-02-01T23:59:59.000Z

    Liquefied natural gas (LNG) has been a component of the US gas supply mix since 1970. Between 1970 and 1981 LNG terminals were constructed that have the current capability of receiving annual LNG shipments equivalent to about 700 Bcf. Additional terminal capacity was proposed and sites were under consideration in 1985 when reduced demand for natural gas and softening of gas prices resulted in the termination of plans for new capacity and suspension of contracts for imports. In the 1990s, however, shipments of LNG are again being received, and it is expected that imports of LNG by seaborne trade will play a significant role in meeting the growing US requirements for natural gas supply. It is expected that all existing US terminals will be operational by the mid-1990s, and the existing terminal capacity would be fully utilized by the year 2000. The report summarizes the analysis of the LNG terminal capacity aimed at identifying future LNG liquefaction and transportation needs.

  13. american lng projects: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    american lng projects First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Environmental and Economical...

  14. Experiments for the Measurement of LNG Mass Burning Rates

    E-Print Network [OSTI]

    Herrera Gomez, Lady Carolina

    2012-07-16T23:59:59.000Z

    Liquefied Natural Gas (LNG) is a commonly used flammable fuel that has safety concerns associated with vapor dispersion and radiation emitted from pool fires. The main objective of this effort is to advance the knowledge of pool fires and to expand...

  15. Development of mid-scale and floating LNG facilities

    SciTech Connect (OSTI)

    Price, B.C.; Mortko, R.A. [Black and Veatch Pritchard, Inc., Overland Park, KS (United States)

    1998-12-31T23:59:59.000Z

    The development of large-scale base load LNG facilities has dominated the process industry for decades. However, in many areas of the world, base load facilities are not feasible due to inadequate reserves. Mid-scale facilities can be economically attractive in certain locations and, in fact, have several advantages which aid in their development. The PRICO II LNG liquefaction process offers a process configuration which fits well with these developments. The process has been used in a range of facility sizes from base load to peak shaving applications. In addition to onshore facilities, floating liquefaction facilities can be developed on barges or tankers to handle mid-scale to large scale LNG production. Concepts for several sizes and configurations of floating facilities have been developed using the PRICO II process integrated into a total production, liquefaction, and load-out system. This paper covers the PRICO process concept, application areas and facility configurations which are currently being developed for mid-scale and floating LNG facilities.

  16. LNG Safety Research: FEM3A Model Development

    SciTech Connect (OSTI)

    Iraj A. Salehi

    2004-09-30T23:59:59.000Z

    This quarterly report for DE-FG26-04NT42030 covers a period from July 1, 2004 to September 30, 2004. Activity during this period included preparation of a CD containing the FEM3a FORTRAN code for distribution and organization of an LNG safety workshop. Contract negotiation between GTI and University of Arkansas continued.

  17. LNG scene; Qatar's export plans intensify; sale of Columbia's U. S. terminal in doubt

    SciTech Connect (OSTI)

    Not Available

    1992-07-20T23:59:59.000Z

    This paper reports that Activity continues to percolate in Qatar's massive liquefied natural gas export program. In the latest development, France's Ste. Nationale Elf Aquitaine and Japan's Sumitomo Corp. agreed to promote development of Qatar's LNG export project based on supergiant North Offshore gas field and step up discussions with potential buyers in coming months. Target markets lie in Japan and the Far East. Among other LNG operations, Columbia Gas System Inc. last week the it was told by Shell LNG Co. it is unlikely that presale conditions will be met prior to Shell LNG's scheduled purchase July 29 of 40.8% of the stock in Columbia LNG. Columbia LNG owns and LNG receiving terminal at Cove Point, Md., with a design sendout capacity of 1 bcfd of regasified LNG. That makes it the biggest in type U.S. Columbia the it had not received work on what action Shell LNG will take on the purchase agreement. However, failure to meet the undisclosed conditions will allow Shell LNG to end the agreement.

  18. Analysis of LNG import terminal release prevention systems

    SciTech Connect (OSTI)

    Baker, E G

    1982-04-01T23:59:59.000Z

    The release prevention systems of liquefied natural gas (LNG) import terminal were analyzed. A series of potential release scenarios were analyzed to determine the frequency of the release events, the probability these releases are not stopped or isolated by emergency shutdown systems, the estimated release quantities, and the critical components of the system. The two plant areas identified as being most significant with respect to safety are the unloading system and the storage system. Rupture of the main transfer line and gross failure of the storage tanks are the two release scenarios of primary safety interest. Reducing the rate of failure by improved design, better maintenance and testing, or adding redundancy of the critical system components for these plant areas and release scenarios will result in improved safety. Several design alternatives which have the potential to significantly reduce the probability of a large release of LNG occurring at an import terminal are identified. These design alternatives would reduce the probability of a large release of LNG by reducing the expected number of failures which could cause a release or by reducing the magnitude of releases that do occur. All of these alternatives are technically feasible and have been used or considered for use in at least one LNG facility. A more rigorous analysis of the absolute risk of LNG import terminal operation is necessary before the benefits of these design alternatives can be determined. In addition, an economic evaluation of these alternatives must be made so the costs and benefits can be compared. It is concludd that for remotely located facilities many of these alternatives are probably not justified; however, for facilities located in highly populated areas, these alternatives deserve serious consideration.

  19. A review of large-scale LNG spills : experiment and modeling.

    SciTech Connect (OSTI)

    Luketa-Hanlin, Anay Josephine

    2005-04-01T23:59:59.000Z

    The prediction of the possible hazards associated with the storage and transportation of liquefied natural gas (LNG) by ship has motivated a substantial number of experimental and analytical studies. This paper reviews the experimental and analytical work performed to date on large-scale spills of LNG. Specifically, experiments on the dispersion of LNG, as well as experiments of LNG fires from spills on water and land are reviewed. Explosion, pool boiling, and rapid phase transition (RPT) explosion studies are described and discussed, as well as models used to predict dispersion and thermal hazard distances. Although there have been significant advances in understanding the behavior of LNG spills, technical knowledge gaps to improve hazard prediction are identified. Some of these gaps can be addressed with current modeling and testing capabilities. A discussion of the state of knowledge and recommendations to further improve the understanding of the behavior of LNG spills on water is provided.

  20. Interim qualitative risk assessment for an LNG refueling station and review of relevant safety issues

    SciTech Connect (OSTI)

    Siu, N.; Herring, S.; Cadwallader, L.; Reece, W.; Byers, J.

    1997-07-01T23:59:59.000Z

    This report is a qualitative assessment of the public and worker risk involved with the operation of a liquefied natural (LNG) vehicle refueling facility. This study includes facility maintenance and operations, tanker truck delivers and end-use vehicle fueling; it does not treat the risks of LNG vehicles on roadways. Accident initiating events are identified by using a Master Logic Diagram, a Failure Modes and Effects analysis and historical operating experiences. The event trees were drawn to depict possible sequences of mitigating events following the initiating events. The phenomenology of LNG and other vehicle fuels is discussed to characterize the hazard posed by LNG usage. Based on the risk modeling and analysis, recommendations are given to improve the safety of LNG refueling stations in the areas of procedures and training, station design, and the dissemination of best practice information throughout the LNG community.

  1. Development of a simple 5-15 litre per hour LNG refueling system

    SciTech Connect (OSTI)

    Corless, A.J.; Sarangi, S.; Hall, J.L.; Barclay, J.A. [Univ. of Victoria, British Columbia (Canada)

    1994-12-31T23:59:59.000Z

    A variable capacity, small-scale liquefied natural gas (LNG) refueling system has been designed, built, and tested at the Cryofuel Systems` Laboratory, University of Victoria, Canada. The system, designed to continuously liquefy between 5 and 15 litres of NG, utilizes liquid nitrogen (LN{sub 2}) as its cold source and contains most of the components found in a typical commercial refueling system; i.e. purification system, liquefier, LNG storage, automatic control and monitoring system. This paper describes the design of the system as well as the results of a set of LNG production trials. The performance of the system exceeded expected LNG production rates, but at levels of efficiency somewhat less than predicted. Cryofuel Systems expects to use this system to implement an LNG vehicle demonstration program and to gain experience in the integration of LNG refueling systems which exploit advanced liquefaction technology such as magnetic refrigeration.

  2. Qualitative Risk Assessment for an LNG Refueling Station and Review of Relevant Safety Issues

    SciTech Connect (OSTI)

    Siu, N.; Herring, J.S.; Cadwallader, L.; Reece, W.; Byers, J.

    1998-02-01T23:59:59.000Z

    This report is a qualitative assessment of the public and worker risk involved with the operation of a liquefied natural gas (LNG) vehicle refueling facility. This study includes facility maintenance and operations, tank truck deliveries, and end-use vehicle fueling; it does not treat the risks of LNG vehicles on roadways. Accident initiating events are identified by using a Master Logic Diagram, a Failure Modes and Effects Analysis, and historical operating experiences. The event trees were drawn to depict possible sequences of mitigating events following the initiating events. The phenomenology of LNG and other vehicle fuels is discussed to characterize the hazard posed by LNG usage. Based on the risk modeling and analysis, recommendations are given to improve the safety of LNG refueling stations in the areas of procedures and training, station design, and the dissemination of ``best practice`` information throughout the LNG community.

  3. Cove Point: A step back into the LNG business

    SciTech Connect (OSTI)

    Katz, M.G.

    1995-12-31T23:59:59.000Z

    In 1978, ships began unloading LNG from Algeria at Cove Point`s berthing facilities 1.25 miles offshore. An underwater pipeline transported the LNG to land, where it was stored in the terminal`s four 140-foot-high cryogenic storage tanks. When the LNG was needed, the terminals 10 vaporizers converted it back to gas for send out via an 87-mile-long, 36-inch-diameter pipeline linking the terminal with interstate pipelines of CNG Transmission Corp. and Columbia Gas Transmission Corp. in Loudon County, Va. But Cove Point handled only about 80 shiploads of LNG before shutting down in December 1980, after a dispute about gas prices between US customers and Algeria. The plant sat dormant until the natural gas industry`s deregulation under Order 636. Deregulation resulted in major pipelines abandoning their sales service, and gas distributors and large customers found it was now their obligation to ensure that they had adequate gas supplies during winter peak-demand periods. Enter Cove Point`s peaking capabilities. They had to add the liquefaction unit and recommission other parts of the plant, but the timing was right. Cove Point`s new liquefaction unit is liquefying about 15 million cubic feet (MMcf) of LNG per day of domestic gas. It chills the gas to {minus}260 degrees Fahrenheit to turn it into a liquid for injection and storage in one of the facility`s double-walled insulated tanks. During its initial injection season, which ends Dec. 15, Cove Point is expected to produce enough LNG to almost fill one tank, which can store up to 1.25 billion cubic feet (Bcf). Were the gas not intended for peak-shaving purposes, it would be enough to supply 14,000 homes for a year. As it is, most of the gas will be returned as pipeline gas, during next January and February`s expected cold snaps, to the utilities and users who supplied it. Cove Point`s initial daily sendout capacity is about 400 MMcf.

  4. amerikaanse lng-projecten zetten: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    amerikaanse lng-projecten zetten First Page Previous Page 1 Next Page Last Page Topic Index 1 Verschenen: Lans Bovenberg, Jean Frijn, Kees Goudswaard en Theo Nijman, 'Sociale...

  5. Using LNG as a Fuel in Heavy-Duty Tractors

    SciTech Connect (OSTI)

    Liquid Carbonic, Inc. and Trucking Research Institute

    1999-08-09T23:59:59.000Z

    Recognizing the lack of operational data on alternative fuel heavy-truck trucks, NREL contracted with the Trucking Research Institute (TRI) in 1994 to obtain a cooperative agreement with Liquid Carbonic. The purpose of this agreement was to (1) purchase and operate liquid natural gas- (LNG-) powered heavy-duty tractor-trailers with prototype Detroit Diesel Corporation (DDC) Series 60 natural gas (S60G) engines in over-the-road commercial service applications; and (2) collect and provide operational data to DDC to facilitate the on-road prototype development of the engine and to NREL for the Alternative Fuels Data Center. The vehicles operated from August 1994 through April of 1997 and led to a commercially available, emissions-certified S60G in 1998. This report briefly documents the engine development, the operational characteristics of LNG, and the lessons learned during the project.

  6. Tips For Residential Heating Oil Tank Owners

    E-Print Network [OSTI]

    Maroncelli, Mark

    · · · · · · · · · · · · · · · · · · · · · · Tips For Residential Heating Oil Tank Owners Source: DEP Fact Sheet Residential heating oil tanks are used to store fuel for furnaces or boilers to heat

  7. Optimizingof Tangential Tool Shift in Gear Hobbing" Prof. Dr.-lng. habil. K.-D. Bouzakis (I), Aristoteles Universityof Thessaloniki;

    E-Print Network [OSTI]

    Aristomenis, Antoniadis

    Optimizingof Tangential Tool Shift in Gear Hobbing" Prof. Dr.-lng. habil. K.-D. Bouzakis (I), Aristoteles Universityof Thessaloniki; Assistant Prof. Dr.-lng. A. Antoniadis, Technological Educational

  8. LNG (liquefied natural gas) in the Asia-Pacific region: Twenty years of trade and outlook for the future

    SciTech Connect (OSTI)

    Kiani, B.

    1990-01-01T23:59:59.000Z

    This report discusses the following topics: the current status of LNG trade in the Asia-Pacific region; present structure and projected demand in the Asia-Pacific region; prospective and tentative projects; and LNG contracts: stability versus flexibility.

  9. Design advanced for large-scale, economic, floating LNG plant

    SciTech Connect (OSTI)

    Naklie, M.M. [Mobil Technology Co., Dallas, TX (United States)

    1997-06-30T23:59:59.000Z

    A floating LNG plant design has been developed which is technically feasible, economical, safe, and reliable. This technology will allow monetization of small marginal fields and improve the economics of large fields. Mobil`s world-scale plant design has a capacity of 6 million tons/year of LNG and up to 55,000 b/d condensate produced from 1 bcfd of feed gas. The plant would be located on a large, secure, concrete barge with a central moonpool. LNG storage is provided for 250,000 cu m and condensate storage for 650,000 bbl. And both products are off-loaded from the barge. Model tests have verified the stability of the barge structure: barge motions are low enough to permit the plant to continue operation in a 100-year storm in the Pacific Rim. Moreover, the barge is spread-moored, eliminating the need for a turret and swivel. Because the design is generic, the plant can process a wide variety of feed gases and operate in different environments, should the plant be relocated. This capability potentially gives the plant investment a much longer project life because its use is not limited to the life of only one producing area.

  10. An Analysis of the Risks of a Terrorist Attack on LNG Receiving Facilities in the United States

    E-Print Network [OSTI]

    Wang, Hai

    An Analysis of the Risks of a Terrorist Attack on LNG Receiving Facilities in the United States #12;An Analysis of the Risks of a Terrorist Attack on LNG Receiving Facilities in the United States 3-D Aerial View from Proposed SES LNG Receiving Facility Site to Downtown Long Beach [White line is 2

  11. Comparative Life-cycle Air Emissions of Coal, Domestic Natural Gas, LNG, and SNG for Electricity Generation

    E-Print Network [OSTI]

    Jaramillo, Paulina

    1 Comparative Life-cycle Air Emissions of Coal, Domestic Natural Gas, LNG, and SNG for Electricity from the LNG life-cycle. Notice that local distribution of natural gas falls outside our analysis boundary. Figure 1S: Domestic Natural Gas Life-cycle. Figure 2S: LNG Life-cycle. Processing Transmission

  12. (LNG) production. Volitional selection occurs, for instance, in verbal fluency and verb generation, tasks widely used as

    E-Print Network [OSTI]

    #12;(LNG) production. Volitional selection occurs, for instance, in verbal fluency and verb attention focusing on incorpo- rating response selection into contemporary models of LNG and speech. One-general processes has important theoretical impli- cations for modelling of spoken LNG behaviour. Contempo- rary

  13. LNG as a fuel for railroads: Assessment of technology status and economics. Topical report, June-September 1992

    SciTech Connect (OSTI)

    Pera, C.J.; Moyer, C.B.

    1993-01-06T23:59:59.000Z

    The objective of the research was to investigate the feasibility of liquefied natural gas (LNG) as a fuel for railroads. The investigation included assessment of the status of relevant technologies (i.e., LNG-fueled locomotive engines, tender cars, refueling equipment), a review of current demonstration projects, and an analytical evaluation of LNG railroad economics.

  14. Computational fluid dynamics for LNG vapor dispersion modeling: a key parameters study

    E-Print Network [OSTI]

    Cormier, Benjamin Rodolphe

    2009-05-15T23:59:59.000Z

    The increased demand for liquefied natural gas (LNG) has led to the construction of several new LNG terminals in the United States (US) and around the world. To ensure the safety of the public, consequence modeling is used to estimate the exclusion...

  15. Control of Vapor Dispersion and Pool Fire of Liquefied Natural Gas (LNG) with Expansion Foam

    E-Print Network [OSTI]

    Yun, Geun Woong

    2011-10-21T23:59:59.000Z

    Liquefied Natural Gas (LNG) is flammable when it forms a 5 – 15 percent volumetric concentration mixture with air at atmospheric conditions. When the LNG vapor comes in contact with an ignition source, it may result in fire and/or explosion. Because...

  16. High-expansion foam for LNG vapor mitigation. Topical report, September 1987-December 1989

    SciTech Connect (OSTI)

    Atallah, S.; Shah, J.N.; Peterlinz, M.E.

    1990-05-01T23:59:59.000Z

    One of the purposes of these high expansion foam systems is to reduce the extent of the hazardous vapor cloud generated during an accidental LNG release. Should the LNG ignite, these systems serve the additional function of controlling the LNG fire and minimizing its radiation to the surroundings. Foam generators have been installed along the tops of dike walls surrounding some LNG storage tanks, and around other fenced containment areas where LNG may be accidentally released, such as LNG pump pits and pipe rack trenches. To date there are no technically justifiable guidelines for the design and installation of these systems. Furthermore, there are no models that may be used describe the vapor source so as to be able to predict the reduction in the hazardous vapor cloud zone when high expansion foam is applied to an LNG spill. Information is essential not only for the optimal design of high expansion foam systems, but also for comparing the cost effectiveness of alternative LNG vapor mitigation measures.

  17. From: To: FERGAS Subject: FE Docket No. 14-96-LNG Date:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FE Docket No. 14-96-LNG Date: Monday, November 17, 2014 7:26:37 PM Dear DOE, I am writing in support of FE Docket No. 14-96-LNG and asking you to grant an Export License to The...

  18. LNG Vehicle High-Pressure Fuel System and ''Cold Energy'' Utilization

    SciTech Connect (OSTI)

    powers,Charles A.; Derbidge, T. Craig

    2001-03-27T23:59:59.000Z

    A high-pressure fuel system for LNG vehicles with direct-injection natural gas engines has been developed and demonstrated on a heavy-duty truck. A new concept for utilizing the ''cold energy'' associated with LNG vehicles to generate mechanical power to drive auxiliary equipment (such as high-pressure fuel pumps) has also been developed and demonstrated in the laboratory. The high-pressure LNG fuel system development included the design and testing of a new type of cryogenic pump utilizes multiple chambers and other features to condense moderate quantities of sucked vapor and discharge supercritical LNG at 3,000 to 4,000 psi. The pump was demonstrated on a Class 8 truck with a Westport high-pressure direct-injection Cummins ISX engine. A concept that utilizes LNG's ''cold energy'' to drive a high-pressure fuel pump without engine attachments or power consumption was developed. Ethylene is boiled and superheated by the engine coolant, and it is cooled and condensed by rejecting h eat to the LNG. Power is extracted in a full-admission blowdown process, and part of this power is applied to pump the ethylene liquid to the boiler pressure. Tests demonstrated a net power output of 1.1. hp at 1.9 Lbm/min of LNG flow, which is adequate to isentropically pump the LNG to approximately 3,400 psi..

  19. Alternative Fuel Transit Buses: DART's (Dallas Area Rapid Transit) LNG Bus Fleet Final Results

    SciTech Connect (OSTI)

    Chandler, K. [Battelle (US); Norton, P. [National Renewable Energy Lab., Golden, CO (US); Clark, N.

    2000-11-07T23:59:59.000Z

    In 1998, Dallas Area Rapid Transit, a public transit agency in Dallas, Texas, began operating a large fleet of heavy-duty buses powered by liquefied natural gas. As part of a $16 million commitment to alternative fuels, DART operates 139 LNG buses serviced by two new LNG fueling stations.

  20. The potential for LNG as a railroad fuel in the U.S.

    SciTech Connect (OSTI)

    Fritz, S.G.

    2000-01-01T23:59:59.000Z

    Freight railroad operations in the US represent a substantial opportunity for liquefied natural gas (LNG) to displace diesel fuel. With the promise of achieving an overwhelming economic advantage over diesel fuel, this paper presents some discussion to the question, ``Why is the application of LNG for railroad use in the US moving so slowly?'' A brief overview of the freight railroad operations in the US is given, along with a summary of several railroad LNG demonstration projects. US Environmental Protection Agency and California Air Resources Board exhaust emission regulations may cause the railroad industry to move from small-scale LNG demonstration projects to using LNG as a primary freight railroad transportation fuel in selected regions or route-specific applications.

  1. Governmental-Owner Power Imbalance and Privatization

    E-Print Network [OSTI]

    Xu, Kehan

    2011-10-21T23:59:59.000Z

    fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Laszlo Tihanyi Committee Members, Michael Hitt Lorraine Eden Allan (Haipeng) Chen Head of Department, Murray Barrick August 2010... Major Subject: Management iii ABSTRACT Governmental-Owner Power Imbalance and Privatization. (August 2010) Kehan Xu, B.S., China Criminal Police College; M.B.A., University of Miami Chair of Advisory Committee: Dr. Laszlo Tihanyi...

  2. Sempra Generation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScottsOklahoma: Energy Resources Jump

  3. LNG Safety Research: FEM3A Model Development

    SciTech Connect (OSTI)

    Liese Dallbauman

    2004-06-30T23:59:59.000Z

    During this reporting period, kickoff and planning meetings were held. Subcontracted experimental and modeling tasks were defined. Efforts to address the numerical stability problems that hamper FEM3A's applicability to low wind speed, stable atmospheric conditions were initiated. A detailed review of FEM3A code and its execution, required for development of an accessible user interface, was also begun. A one-day workshop on LNG safety models has been scheduled for September 2004. The goals of this project are to develop a national focal point for LNG safety research and technical dissemination and to develop the FEM3A dispersion model for application to general scenarios involving dispersion problems with obstacle and terrain features of realistic complexity. During this reporting period, the objectives and scope of the project and its constituent tasks were discussed at a project kickoff meeting in Morgantown. Details of the subcontracted experimental and modeling tasks were further defined at a separate meeting at the University of Arkansas. Researchers at the university have begun to modify the turbulence closure model used in FEM3A to insure numerical stability during simulation of low-wind-speed, stable atmospheric conditions. The university's wind tunnel is being prepared for upcoming experimental studies. GTI has begun a detailed review of the FEM3A code and its execution that will provide guidance during development of an accessible user interface. Plans were made for a one day workshop on LNG safety models that will be held at the end of September and will provide an introduction to currently available and pending software tools.

  4. LNG SAFETY RESEARCH: FEM3A MODEL DEVELOPMENT

    SciTech Connect (OSTI)

    Jerry Havens; Iraj A. Salehi

    2005-05-10T23:59:59.000Z

    The objective of this report is to develop the FEM3A model for application to general scenarios involving dispersion problems with obstacles and terrain features of realistic complexity, and for very low wind speed, stable weather conditions as required for LNG vapor dispersion application specified in 49 CFR 193. The dispersion model DEGADIS specified in 49 CFR 193 is limited to application for dispersion over smooth, level terrain free of obstacles (such as buildings, tanks, or dikes). There is a need for a dispersion model that allows consideration of the effects of terrain features and obstacles on the dispersion of LNG vapor clouds. Project milestones are: (1) Simulation of Low-Wind-Speed Stable Atmospheric Milestones Conditions; (2) Verification for Dispersion over Rough Surfaces, With And Without Obstacles; and (3) Adapting the FEM3A Model for General Application. Results for this quarter are work continues to underway to address numerical problems during simulation of low-wind-speed, stable, atmospheric conditions with FEM3A. Steps 1 and 2 in the plan outlined in the first Quarterly report are complete and steps 3 and 4 are in progress. During this quarter, we have been investigating the effect upon numerical stability of the heat transfer model used to predict the surface-to-cloud heat transfer, which can be important for LNG vapor dispersion. Previously, no consideration has been given to ground cooling as a result of heat transfer to the colder gas cloud in FEM3A. The present effort is directed to describing the ground surface temperature decrease as a function of time.

  5. Cameron LNG LLC Final Order | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJuneWaste To Wisdom: UtilizingDepartment62-LNG - Order 3391-A The

  6. Venture Global Calcasieu Pass, LLC - (Formerly Venture Global LNG, LLC) -

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartmentDepartment(GATE) |Department of14-88-LNG | Department

  7. FE DOCKET NO. 11-59-LNG | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010SaltInstrumentation andFE DOCKET NO. 11-59-LNG FE DOCKET

  8. Complete LNG Terminal Status Maps | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesville EnergyDepartment.Attachment FY2011-40 Chapter 6Complete LNG

  9. DOE LNG Exports Announcements - May 29, 2014 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOE Fits Princeton PlasmaDepartment ofLNG

  10. ORDER NO. 3465: LNG DEVELOPMENT COMPANY, LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Order No.of Energy OPCOPSAID|65: LNG DEVELOPMENT

  11. LNG Technology Is in the News | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLS Experimental Run SchedulesLNG Technology Is in

  12. Gulf LNG, Mississippi Liquefied Natural Gas Imports from Egypt (Million

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearper ThousandGulf LNG,per Thousand

  13. Gulf LNG, Mississippi Liquefied Natural Gas Imports from Trinidad and

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearper ThousandGulf LNG,per ThousandTobago

  14. LNG Safety Research Report to Congress | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas » MethaneJohnsonKristina PflanzLM News ArchiveLNG

  15. The effects of refueling system operating pressure on LNG and CNG economics

    SciTech Connect (OSTI)

    Corless, A.J.; Barclay, J.A. [Univ. of Victoria (Canada)

    1996-12-31T23:59:59.000Z

    Natural gas (NG) liquefaction and compression are energy intensive processes which make up a significant portion of the overall delivered price of liquefied NG (LNG) and compressed NG (CNG). Increases in system efficiency and/or process changes which reduce the required amount of work will improve the overall economics of NG as a vehicle fuel. This paper describes a method of reducing the delivered cost of LNG by liquefying the gas above ambient pressures. Higher pressure LNG is desirable because OEM NG engine manufacturers would like NG delivered to the engine intake manifold at elevated pressures to avoid compromising engine performance. Producing LNG at higher pressures reduces the amount of work required for liquefaction but it is only practical when the LNG is liquefied on-site. Using a thermo-economic approach, it is shown that NG fuel costs can be reduced by as much as 10% when producing LNG at higher pressures. A reduction in the delivered cost is also demonstrated for CNG produced on-site from high pressure LNG.

  16. SEMI-ANNUAL REPORTS FOR GULF COAST LNG EXPORT, LLC - FE DKT. NO. 12-05-LNG

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG - ORDER 2913 | Department of EnergyLLC

  17. SEMI-ANNUAL REPORTS FOR JORDAN COVE LNG L.P. - FE DKT. NO. 13-141-LNG -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG - ORDER 2913 | Department of

  18. Property:Owner | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook icon Twitter iconNumOfPlants Jump to:Tool/KeywordOwner

  19. DOE/NNSA Facility Management Contracts Facility Owner Contractor

    Broader source: Energy.gov (indexed) [DOE]

    NNSA Facility Management Contracts Facility Owner Contractor Award Date End Date OptionsAward Term Ultimate Potential Expiration Date Contract FY Competed Parent Companies LLC...

  20. Rights and Duties of Mines and Mine Owners, General (Missouri)

    Broader source: Energy.gov [DOE]

    This legislation addresses general operational guidelines for mine owners regarding public notices, fees, land and mineral ownership, requirements for mining in certain municipalities, and mining...

  1. Volume 90 / Number 75 / Tuesday, April 17, 2012 The McGraw-Hill Companies

    E-Print Network [OSTI]

    , liquids JV 2 South Korean auditor slams KNOC, Kogas 3 Kyushu Electric extends Australian NWS LNG deal 3 Japan 2012 LNG demand for power seen flat from 2011 3 Japan hikes oil imports from Libya, Africa 4 Sempra's Tangguh LNG cargoes headed for spot market 4 Europe, Middle East & Africa Wintershall makes

  2. Texas Rice, Volume VII, Number 6

    E-Print Network [OSTI]

    and petrochemical industries, but this trend is accelerating with over $10 billion in industry expan- sion slated over the next 5 years: Cheniere LNG - $1 B; Golden Pass LNG - $1 B; Sempra LNG - $1 B; Motiva Refinery expansion - $4.5 B; TOTAL refinery...

  3. Hazards to nuclear power plants from large liquefied natural gas (LNG) spills on water

    SciTech Connect (OSTI)

    Kot, C.A.; Eichler, T.V.; Wiedermann, A.H.; Pape, R.; Srinivasan, M.G.

    1981-11-01T23:59:59.000Z

    The hazards to nuclear power plants arising from large spills of liquefied natural gas (LNG) on water transportation routes are treated by deterministic analytical procedures. Global models, which address the salient features of the LNG spill phenomena are used in the analysis. A coupled computational model for the combined LNG spill, spreading, and fire scenario is developed. To predict the air blast environment in the vicinity of vapor clouds with pancake-like geometries, a scalable procedure using both analytical methods and hydrocode calculations is synthesized. Simple response criteria from the fire and weapons effects literature are used to characterize the susceptibility of safety-related power plant systems. The vulnerability of these systems is established either by direct comparison between the LNG threat and the susceptibility criteria or through simple response calculations. Results are analyzed.

  4. The effect of LNG on the relationship between UK and Continental Europena natural gas markets

    E-Print Network [OSTI]

    Koenig, Philipp

    2012-12-10T23:59:59.000Z

    the structural relationship between UK and Continental European markets. (ii) The effect of UK import capacity extensions since 2005, through both pipeline and LNG regasification capacity, on this long-term relationship will be analyzed. The results suggest...

  5. Freeport LNG Expansion, L.P., FLNG Liquefaction, LLC, FLNG Liquefactio...

    Office of Environmental Management (EM)

    LLC, FLNG Liquefaction 2, LLC and FLNG Liquefaction 3, LLC - 14-005-CIC Freeport LNG Expansion, L.P., FLNG Liquefaction, LLC, FLNG Liquefaction 2, LLC and FLNG Liquefaction...

  6. Pending Long-Term Applications to Export LNG to Non-FTA Countries...

    Broader source: Energy.gov (indexed) [DOE]

    Pending Long-Term Applications to Export LNG to Non-FTA Countries - Listed in Order DOE Will Commence Processing Order to Be Processed Company DOEFE Docket No. Date DOE...

  7. Price discrimination and limits to arbitrage: An analysis of global LNG markets

    E-Print Network [OSTI]

    Ritz, Robert A.

    2014-07-31T23:59:59.000Z

    Gas prices around the world vary widely despite being connected by international trade of liquefied natural gas (LNG). Some industry observers argue that major exporters have acted irrationally by not arbitraging prices. This is also difficult...

  8. International LNG trade : the emergence of a short-term market

    E-Print Network [OSTI]

    Athanasopoulos, Panagiotis G

    2006-01-01T23:59:59.000Z

    Natural gas is estimated to be the fastest growing component of world primary energy consumption. Liquefied natural gas (LNG) supply chain is a way of transporting natural gas over seas, by following a procedure of gas ...

  9. Study of the Effects of Obstacles in Liquefied Natural Gas (LNG) Vapor Dispersion using CFD Modeling

    E-Print Network [OSTI]

    Ruiz Vasquez, Roberto

    2012-10-19T23:59:59.000Z

    The evaluation of the potential hazards related with the operation of an LNG terminal includes possible release scenarios with the consequent flammable vapor dispersion within the facility; therefore, it is important to know the behavior...

  10. Liquefied Natural Gas (LNG) Vapor Dispersion Modeling with Computational Fluid Dynamics Codes

    E-Print Network [OSTI]

    Qi, Ruifeng

    2012-10-19T23:59:59.000Z

    Federal regulation 49 CFR 193 and standard NFPA 59A require the use of validated consequence models to determine the vapor cloud dispersion exclusion zones for accidental liquefied natural gas (LNG) releases. For modeling purposes, the physical...

  11. Opportunities for LNG supply infrastructure and demand growth in US and International markets

    E-Print Network [OSTI]

    Connell, Richard Perry

    2004-01-01T23:59:59.000Z

    Countries are looking beyond their borders for options to satiate a forecasted increase in natural gas consumption. A strong option for importing natural gas is by way of a liquefied natural gas (LNG) supply chain where ...

  12. Study of the Effects of Obstacles in Liquefied Natural Gas (LNG) Vapor Dispersion using CFD Modeling 

    E-Print Network [OSTI]

    Ruiz Vasquez, Roberto

    2012-10-19T23:59:59.000Z

    The evaluation of the potential hazards related with the operation of an LNG terminal includes possible release scenarios with the consequent flammable vapor dispersion within the facility; therefore, it is important to ...

  13. Best available practices for lng fueling of fleet vehicles. Topical report, March-November 1995, tasks 85 and 86

    SciTech Connect (OSTI)

    Midgett, D.E.

    1996-02-01T23:59:59.000Z

    The report provides essential information on the design and operation of liquefied natural gas (LNG) fueling stations for fleet vehicles. The report serves to evaluate current practices in LNG fleet vehicle fueling station designs, and provide fleet operators with a tool for use in discussions with permitting agencies, engineering firms, fabricators, and contractors who permit, design, or construct LNG fueling stations. Representative sites (i.e., LNG fueling stations) were evaluated for technical feasibility, customer satisfaction, economics, operating and maintenance history, problems encountered/overcome, and regulatory environment. The compiled information in this report reveals that LNG fueling stations have advanced to the point where LNG is a viable alternative to gasoline and/or diesel fuel.

  14. Basic research opportunities to support LNG technology. Topical report, July 1989-December 1990

    SciTech Connect (OSTI)

    Groten, B.

    1991-03-01T23:59:59.000Z

    As additional gas reserves come on production during the next decade in areas with limited local markets, worldwide LNG trade is expected to expand. The availability of dedicated LNG tankers may well determine the rate at which this growth occurs. Plans are being made now to bring the four U.S. import terminals up to capacity during this period. As LNG becomes a more significant factor in the domestic natural gas market, consideration should be given to applications other than simply regassifying and comingling it with other supplies entering the pipeline grid. The higher energy density and the low temperature of LNG offer opportunities for expanding the use of natural gas into the industrial and transportation sectors. Greater use of LNG in peak shaving and intermediate storage may also provide benefits in increased reliability and performance of the gas transmission and distribution grid. In order to provide new and more cost-effective technologies to respond to these opportunities, it is recommended that GRI broaden the range of research it is currently performing on LNG.

  15. Comparison of LNG, CNG, and diesel transit bus economics. Topical report, July 1992-September 1993

    SciTech Connect (OSTI)

    Powars, C.A.; Moyer, C.B.; Luscher, D.R.; Lowell, D.D.; Pera, C.J.

    1993-10-20T23:59:59.000Z

    The purpose of the report is to compare the expected costs of operating a transit bus fleet on liquefied natural gas (LNG), compressed natural gas (CNG), and diesel fuel. The special report is being published prior to the overall project final report in response to the current high level of interest in LNG transit buses. It focuses exclusively on the economics of LNG buses as compared with CNG and diesel buses. The reader is referred to the anticipated final report, or to a previously published 'White Paper' report (Reference 1), for information regarding LNG vehicle and refueling system technology and/or the economics of other LNG vehicles. The LNG/CNG/diesel transit bus economics comparison is based on total life-cycle costs considering all applicable capital and operating costs. The costs considered are those normally borne by the transit property, i.e., the entity facing the bus purchase decision. These costs account for the portion normally paid by the U.S. Department of Transportation (DOT) Federal Transit Administration (FTA). Transit property net costs also recognize the sale of emissions reduction credits generated by using natural gas (NG) engines which are certified to levels below standards (particularly for NOX).

  16. "Table HC3.5 Space Heating Usage Indicators by Owner-Occupied...

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Space Heating Usage Indicators by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing...

  17. Guide to Combined Heat and Power Systems for Boiler Owners and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat and Power Systems for Boiler Owners and Operators, July 2004 Guide to Combined Heat and Power Systems for Boiler Owners and Operators, July 2004 Many owners and...

  18. Optimization and testing of the Beck Engineering free-piston cryogenic pump for LNG systems on heavy vehicles. Final technical report

    SciTech Connect (OSTI)

    Beck, Douglas S.

    2003-01-10T23:59:59.000Z

    Task 7 was completed by reaching Milestone 7: Test free piston cryogenic pump (FPCP) in Integrated LNG System. Task 4: Alternative Pump Design was also completed. The type of performance of the prototype LNG system is consistent with requirements of fuel systems for heavy vehicles; however, the maximum flow capacity of the prototype LNG system is significantly less than the total flow requirement. The flow capacity of the prototype LNG system is determined by a cavitation limit for the FPCP.

  19. Qatargas exporting LNG from Qatar`s new Ras Laffan Port

    SciTech Connect (OSTI)

    NONE

    1997-02-24T23:59:59.000Z

    When the 135,000 cu m LNG carrier Al Zubarah departed Ras Laffan Port in December, Qatar entered a new era of commerce that will both boost the emirate`s economic development and influence energy trade around the world. The event capped more than a decade of planning, design, and construction of Ras Laffan Port--the world`s newest and largest LNG exporting facility. During the 1980s, the focus in Qatar was on exploration and development of North field, which holds the world`s largest reserves of nonassociated natural gas. In the 1990s, efforts concentrated on establishing a direct production and export link between North field, the new multi-billion-dollar Qatar Liquefied Gas Co. (Qatargas) gas liquefaction plant at Ras Laffan, and LNG export facilities at the 8.5 sq km Ras Laffan Port. Markets of the Far East will be first to be served by LNG from Ras Laffan Port. Two 25-year LNG supply contracts have been signed with buyers in Japan and South Korea, and negotiations are under way with potential customers from China, Taiwan, and Thailand. The paper describes the port, its operations, and export projects.

  20. MAINE MULTIFAMILY BUILDING OWNERS TRUST IN EFFICIENCY | Department...

    Broader source: Energy.gov (indexed) [DOE]

    MAINE MULTIFAMILY BUILDING OWNERS TRUST IN EFFICIENCY Nearly 70% of households in Maine rely on fuel oil as their primary energy source for home heating, more than any other state....

  1. Owner/contractor work structure process with integrated alignment framework

    E-Print Network [OSTI]

    Sullivan, George Ray

    1996-01-01T23:59:59.000Z

    capital program expenditures , and to improve operational efficiency. For their capital projects, owners want the highest quality project, as fast as possible, at the lowest possible cost, with no harm to workers or the environment. To accomplish this...

  2. The Impact of Energy Information Upon Small Business Owners

    E-Print Network [OSTI]

    Franklin, Casey Gail

    2014-05-31T23:59:59.000Z

    . Findings indicated that although each participant expressed an interest in conserving energy, none were regularly engaging with their electricity consumption information through the online monitor. Business owners did not find the monitor useful because...

  3. Applications of human factors engineering to LNG release prevention and control

    SciTech Connect (OSTI)

    Shikiar, R.; Rankin, W.L.; Rideout, T.B.

    1982-06-01T23:59:59.000Z

    The results of an investigation of human factors engineering and human reliability applications to LNG release prevention and control are reported. The report includes a discussion of possible human error contributions to previous LNG accidents and incidents, and a discussion of generic HF considerations for peakshaving plants. More specific recommendations for improving HF practices at peakshaving plants are offered based on visits to six facilities. The HF aspects of the recently promulgated DOT regulations are reviewed, and recommendations are made concerning how these regulations can be implemented utilizing standard HF practices. Finally, the integration of HF considerations into overall system safety is illustrated by a presentation of human error probabilities applicable to LNG operations and by an expanded fault tree analysis which explicitly recognizes man-machine interfaces.

  4. Puerto Rico`s EcoElectrica LNG/power project marks a project financing first

    SciTech Connect (OSTI)

    Lammers, R. [Enron International, Houston, TX (United States); Taylor, S. [Kenetech Energy Systems Inc., Houston, TX (United States)

    1998-02-23T23:59:59.000Z

    On Dec. 15, 1997, Enron International and Kenetech Energy Services achieved financial close on the $670 million EcoElectrica liquefied natural gas terminal and cogeneration project proposed for Puerto Rico. The project involves construction of a liquefied natural gas terminal, cogeneration plant, and desalination unit on the southern coast of Puerto Rico, in the Penuelas/Guayanilla area. EcoElectrica will include a 500-mw, combined-cycle cogeneration power plant fueled mainly by LNG imported from the 400 MMcfd Atlantic LNG project on the island of Trinidad. Achieving financial close on a project of this size is always a time-consuming matter and one with a number of challenges. These challenges were increased by the unique nature of both the project and its financing--no project financing had ever before been completed that combined an LNG terminal and power plant. The paper discusses the project, financing details and challenges, key investment considerations, and integrated project prospects.

  5. Investigation of low-cost LNG vehicle fuel tank concepts. Final report

    SciTech Connect (OSTI)

    O`Brien, J.E.; Siahpush, A. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.

    1998-02-01T23:59:59.000Z

    The objective of this study was to investigate development of a low-cost liquid natural gas (LNG) vehicle fuel storage tank with low fuel boil-off, low tank pressure, and high safety margin. One of the largest contributors to the cost of converting a vehicle to LNG is the cost of the LNG fuel tank. To minimize heat leak from the surroundings into the low-temperature fuel, these tanks are designed as cryogenic dewars with double walls separated by an evacuated insulation space containing multi-layer insulation. The cost of these fuel tanks is driven by this double-walled construction, both in terms of materials and labor. The primary focus of the analysis was to try to devise a fuel tank concept that would allow for the elimination of the double-wall requirement. Results of this study have validated the benefit of vacuum/MLI insulation for LNG fuel tanks and the difficulty in identifying viable alternatives. The thickness of a non-vacuum insulation layer would have to be unreasonably large to achieve an acceptable non-venting hold time. Reasonable hold times could be achieved by using an auxiliary tank to accept boil-off vapor from a non-vacuum insulated primary tank, if the vapor in the auxiliary tank can be stored at high pressure. The primary focus of the analysis was to try to devise a fuel tank concept that allowed for the elimination of the double-wall requirement. Thermodynamic relations were developed for analyzing the fuel tank transient response to heat transfer, venting of vapor, and out-flow of either vapor or liquid. One of the major costs associated with conversion of a vehicle to LNG fuel is the cost of the LNG fuel tank. The cost of these tanks is driven by the cryogenic nature of the fuel and by the fundamental design requirements of long non-venting hold times and low storage pressure.

  6. LNG Safety Research: FEM3A Model Development

    SciTech Connect (OSTI)

    None

    2006-09-30T23:59:59.000Z

    The initial scope of work for this project included: 1) Improving the FEM3A advanced turbulence closure module, 2) Adaptation of FEM3A for more general applications, and 3) Verification of dispersion over rough surfaces, with and without obstacle using the advanced turbulence closure module. These work elements were to be performed by Chemical Hazards Research Center (CHRC), Department of Chemical Engineering, University of Arkansas as a subcontractor to Gas Technology Institute (GTI). The tasks for GTI included establishment of the scientific support base for standardization of the FEM3A model, project management, technology transfer, and project administration. Later in the course of the project, the scope of work was modified by the National Energy Technology Laboratories (NETL) to remove the emphasis on FEM3A model and instead, develop data in support of NETL’s FLUENT modeling. With this change, GTI was also instructed to cease activities relative to FEM3A model. GTI’s technical activities through this project included the initial verification of FEM3A model, provision of technical inputs to CHRC researchers regarding the structure of the final product, and participation in technical discussion sessions with CHRC and NETL technical staff. GTI also began the development of a Windows-based front end for the model but the work was stopped due to the change in scope of work. In the meantime, GTI organized a workshop on LNG safety in Houston, Texas. The workshop was very successful and 75 people from various industries participated. All technical objectives were met satisfactorily by Dr. Jerry Havens and Dr. Tom Spicer of CHRC and results are presented in a stand-alone report included as Appendix A to this report.

  7. LNG Safety Research: FEM3A Model Development

    SciTech Connect (OSTI)

    Iraj A. Salehi; Jerry Havens; Tom Spicer

    2006-09-30T23:59:59.000Z

    The initial scope of work for this project included: (1) Improving the FEM3A advanced turbulence closure module, (2) Adaptation of FEM3A for more general applications, and (3) Verification of dispersion over rough surfaces, with and without obstacle using the advanced turbulence closure module. These work elements were to be performed by Chemical Hazards Research Center (CHRC), Department of Chemical Engineering, University of Arkansas as a subcontractor to Gas Technology Institute (GTI). The tasks for GTI included establishment of the scientific support base for standardization of the FEM3A model, project management, technology transfer, and project administration. Later in the course of the project, the scope of work was modified by the National Energy Technology Laboratories (NETL) to remove the emphasis on FEM3A model and instead, develop data in support of NETL's FLUENT modeling. With this change, GTI was also instructed to cease activities relative to FEM3A model. GTI's technical activities through this project included the initial verification of FEM3A model, provision of technical inputs to CHRC researchers regarding the structure of the final product, and participation in technical discussion sessions with CHRC and NETL technical staff. GTI also began the development of a Windows-based front end for the model but the work was stopped due to the change in scope of work. In the meantime, GTI organized a workshop on LNG safety in Houston, Texas. The workshop was very successful and 75 people from various industries participated. All technical objectives were met satisfactorily by Dr. Jerry Havens and Dr. Tom Spicer of CHRC and results are presented in a stand-alone report included as Appendix A to this report.

  8. Thermodynamic analysis of solar energy utilization combined with the exploitation of the LNG physical energy

    SciTech Connect (OSTI)

    Bisio, G.; Pisoni, C. [Univ. of Genoa (Italy). Energy Engineering Dept.

    1995-11-01T23:59:59.000Z

    The consumption of LNG (liquid natural gas) is growing and will probably increase rapidly in the near future. Consequently, (in addition to the use of the chemical exergy) the exploitation of the physical energy of LNG, due to its state in liquid phase at a temperature under that of the environment, is becoming more important. Nowadays most of LNG is regassified using the thermal energy of sea water or of warm sea water effluent from a power plant, destroying in this way its physical exergy. Several processes have been considered to utilize the physical exergy of fluids in liquid phase by vaporizing these fluids at atmospheric pressure and cryogenic temperatures. Two general alternatives may be envisaged: (a) direct utilization in cryogenic facilities (cold storage or other process uses); (b) indirect utilization in the generation of electric power. Griepentrog and Weber and others proposed a closed-cycle gas turbine with several kinds of heat sources and with liquid natural gas or hydrogen as the heat sink. In this paper a combined system utilizing a gas turbine with solar heating and LNG refrigerating is examined.

  9. Selection of an acid-gas removal process for an LNG plant

    SciTech Connect (OSTI)

    Stone, J.B.; Jones, G.N. [Exxon Production Research, Houston, TX (United States); Denton, R.D. [Exxon Production Malaysia, Inc., Kuala Lumpur (Malaysia)

    1996-12-31T23:59:59.000Z

    Acid gas contaminants, such as, CO{sub 2}, H{sub 2}S and mercaptans, must be removed to a very low level from a feed natural gas before it is liquefied. CO{sub 2} is typically removed to a level of about 100 ppm to prevent freezing during LNG processing. Sulfur compounds are removed to levels required by the eventual consumer of the gas. Acid-gas removal processes can be broadly classified as: solvent-based, adsorption, cryogenic or physical separation. The advantages and disadvantages of these processes will be discussed along with design and operating considerations. This paper will also discuss the important considerations affecting the choice of the best acid-gas removal process for LNG plants. Some of these considerations are: the remoteness of the LNG plant from the resource; the cost of the feed gas and the economics of minimizing capital expenditures; the ultimate disposition of the acid gas; potential for energy integration; and the composition, including LPG and conditions of the feed gas. The example of the selection of the acid-gas removal process for an LNG plant.

  10. Liquefied Natural Gas (LNG) Vapor Dispersion Modeling with Computational Fluid Dynamics Codes 

    E-Print Network [OSTI]

    Qi, Ruifeng

    2012-10-19T23:59:59.000Z

    of obstacles. A sensitivity analysis was conducted to illustrate the impact of key parameters on the accuracy of simulation results. In addition, a series of medium-scale LNG spill tests have been performed at the Brayton Fire Training Field (BFTF), College...

  11. EIS-0494: Excelerate Liquefaction Solutions Lavaca Bay LNG Project, Calhoun and Jackson Counties, Texas

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission (FERC) is preparing, with DOE as a cooperating agency, an EIS to analyze the potential environmental impacts of a proposal to construct and operate a liquefied natural gas terminal consisting of two floating liquefaction, storage and offloading units and a 29-mile pipeline header system to transport natural gas from existing pipeline systems to the LNG terminal facilities.

  12. LIQUID NATURAL GAS (LNG): AN ALTERNATIVE FUEL FROM LANDFILL GAS (LFG) AND WASTEWATER DIGESTER GAS

    SciTech Connect (OSTI)

    VANDOR,D.

    1999-03-01T23:59:59.000Z

    This Research and Development Subcontract sought to find economic, technical and policy links between methane recovery at landfill and wastewater treatment sites in New York and Maryland, and ways to use that methane as an alternative fuel--compressed natural gas (CNG) or liquid natural gas (LNG) -- in centrally fueled Alternative Fueled Vehicles (AFVs).

  13. Feasibility of methods and systems for reducng LNG tanker fire hazards

    SciTech Connect (OSTI)

    Not Available

    1980-08-01T23:59:59.000Z

    In this program concepts for reducing fire hazards that may result from LNG tanker collisions are identified and their technical feasibility evaluated. Concepts considered include modifications to the shipborne LNG containers so that in the event of a container rupture less of the contents would spill and/or the contents would spill at a reduced rate. Changes in the cargo itself, including making the LNG into a gel, solidifying it, converting it to methanol, and adding flame suppressants are also evaluated. The relative effectiveness and the costs of implementing these methods in terms of increased cost of gas at the receiving terminal, are explained. The vulnerability of an LNG tanker and its crew to the thermal effects of a large pool fire caused by a collision spill is estimated and methods of protecting the crew are considered. It is shown that the protection of ship and crew so that further deterioration of a damaged ship might be ameliorated, would require the design and installation of extraordinary insulation systems and life support assistance for the crew. Methods of salvaging or disposing of cargo from a damaged and disabled ship are evaluated, and it is concluded that if the cargo cannot be transferred to another (empty) LNG tanker because of lack of availability, then the burning of the cargo at a location somewhat distant from the disabled tanker appears to be a promising approach. Finally, the likelihood of the vapors from a spill being ignited due to the frictional impact of the colliding ships was examined. It is found that the heating of metal sufficient to ignite flammable vapors would occur during a collision, but it is questionable whether flammable vapor and air will, in fact, come in contact with the hot metal surfaces.

  14. Guidance on risk analysis and safety implications of a large liquefied natural gas (LNG) spill over water.

    SciTech Connect (OSTI)

    Wellman, Gerald William; Melof, Brian Matthew; Luketa-Hanlin, Anay Josephine; Hightower, Marion Michael; Covan, John Morgan; Gritzo, Louis Alan; Irwin, Michael James; Kaneshige, Michael Jiro; Morrow, Charles W.

    2004-12-01T23:59:59.000Z

    While recognized standards exist for the systematic safety analysis of potential spills or releases from LNG (Liquefied Natural Gas) storage terminals and facilities on land, no equivalent set of standards or guidance exists for the evaluation of the safety or consequences from LNG spills over water. Heightened security awareness and energy surety issues have increased industry's and the public's attention to these activities. The report reviews several existing studies of LNG spills with respect to their assumptions, inputs, models, and experimental data. Based on this review and further analysis, the report provides guidance on the appropriateness of models, assumptions, and risk management to address public safety and property relative to a potential LNG spill over water.

  15. OFF-THE-RECORD COMMUNICATION FOR JORDAN COVE ENERGY PROJECT, L.P., FE DKT. NO. 12-32-LNG

    Broader source: Energy.gov [DOE]

    Posting of Off-the-Record CommunicationThe documents linked below were sent to the Department of Energy (DOE) in reference to the Jordan Cove Energy Project, L.P., FE Dkt. No. 12-32-LNG proceeding....

  16. Design Team:Owners Team: Solaris Group, LLC

    E-Print Network [OSTI]

    Solaris Port of Benton NORTH #12;Climate and Design Maximize East/West Solar Orientation · Reduce ThermalDesign Team:Owners Team: Solaris Group, LLC a management company TRI-CITIES RESEARCH DISTRICT Prevailing Winds for Passive Site Cooling · Deter Winter Gusts · Protection via Walkway Screens and Canopies

  17. COMMUNITY RESILIENCE: WORKSHOPS ON PRIVATE SECTOR AND PROPERTY OWNER

    E-Print Network [OSTI]

    STATES DEPARTMENT OF ENERGY under Contract DE-AC05-76RL01830 #12;Acknowledgments The authors would like to acknowledge and thank the businesses, building owners, service providers, and representatives who participated .....................................................................................3 4.1 Workshop with Private Sector Businesses on August 12

  18. Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation

    SciTech Connect (OSTI)

    Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews [Carnegie Mellon University, Pittsburgh, PA (United States). Civil and Environmental Engineering Department

    2007-09-15T23:59:59.000Z

    The U.S. Department of Energy (DOE) estimates that in the coming decades the United States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could come domestically from the production of synthetic natural gas (SNG) via coal gasification-methanation. The objective of this study is to compare greenhouse gas (GHG), SOx, and NOx life-cycle emissions of electricity generated with NG/LNG/SNG and coal. This life-cycle comparison of air emissions from different fuels can help us better understand the advantages and disadvantages of using coal versus globally sourced NG for electricity generation. Our estimates suggest that with the current fleet of power plants, a mix of domestic NG, LNG, and SNG would have lower GHG emissions than coal. If advanced technologies with carbon capture and sequestration (CCS) are used, however, coal and a mix of domestic NG, LNG, and SNG would have very similar life-cycle GHG emissions. For SOx and NOx we find there are significant emissions in the upstream stages of the NG/LNG life-cycles, which contribute to a larger range in SOx and NOx emissions for NG/LNG than for coal and SNG. 38 refs., 3 figs., 2 tabs.

  19. Cours Titre Professeur Horaire Local LNG 1050 Ancien et moyen franais Philippe Leblond Jeu 13h00 16h00 B-4340 B-4295

    E-Print Network [OSTI]

    Parrott, Lael

    Cours Titre Professeur Horaire Local Local examen LNG 1050 Ancien et moyen français Philippe Leblond Jeu 13h00 à 16h00 B-4340 B-4295 LNG 1300 Dictionnaires : analyse de contenu Louise Dagenais Ven 13h00 à 16h00 B-4220 B-3290 LNG 1540 Notions de syntaxe Mireille Tremblay Mar 13h00 à 16h00 B-2245 B

  20. Cours Titre Professeur Horaire Local examen LNG 1050 Ancien et moyen franais Isabelle Delage-Bland Jeu 13h00 16h00 B-4265 B-4265

    E-Print Network [OSTI]

    Leclercq, Remi

    Local Cours Titre Professeur Horaire Local examen LNG 1050 Ancien et moyen français Isabelle Delage-Béland Jeu 13h00 à 16h00 B-4265 B-4265 LNG 1300 Dictionnaires : analyse de contenu Louise Dagenais Ven 13h00 à 16h00 B-4240 B-4240 LNG 1540 Notions de syntaxe Mireille Tremblay Mar 13h00 à 16h00 D-550 D-550

  1. Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications

    E-Print Network [OSTI]

    Zhao, Hengbing

    2013-01-01T23:59:59.000Z

    Combustion Engine Lower Heating Value Liquefied Natural Gasnatural gas directly as the fuel in internal combustionliquefied natural gas (LNG) used in SI and CI combustion

  2. Survey of fire-protection systems at LNG facilities. Topical report, July-November 1990

    SciTech Connect (OSTI)

    Atallah, S.; Borows, K.A.

    1991-04-05T23:59:59.000Z

    The objectives of the study were to collect and analyze data relating to the types, costs, and operational problems of gas leak and fire detection devices and of fire prevention and suppression systems used at LNG facilities operating in the United States. Data from 39 LNG facilities, which accounted for 45% of the total U.S. storage capacity, were collected. The report provides information relating to equipment manufacturers, site applications, operational problems, initial installation costs, annual operational costs, and equipment lifetime. Equipment of interest included fixed gas leak, fire and cryogenic detection systems, water deluge and barrier systems, thermal radiation walls and protective coatings, and fixed high expansion foam, dry chemical, carbon dioxide and halon fire suppression systems. In addition, internal fire fighting capabilities were reviewed.

  3. Second Stage Intercooling Using LNG for Turbocharged Heavy Duty Road Vehicles Phase I Final Report

    SciTech Connect (OSTI)

    None

    1999-09-21T23:59:59.000Z

    It is well documented in engine performance literature that reduced engine inlet air temperature increases power output and reduces NO, emissions for both diesel and spark ignited (SI) engines. In addition, reduced inlet temperature increases the knock resistance of SI engines. In that most HD natural gas engines are SI derivatives of diesel engines it is appropriate to evaluate the benefits of reduced engine air temperature through LNG fuel. This project investigated the ''real world'' possibilities of a patented process for utilizing the ''cold'' in LNG to chill engine inlet air. The results support the conclusion that doing so is a practical means to increase engine power and reduce engine-out NO{sub x}.

  4. Who knew? looks like we're in for an LNG glut

    SciTech Connect (OSTI)

    NONE

    2009-04-15T23:59:59.000Z

    U.S. domestic production of natural gas has grown considerably in the recent past, especially from unconventional domestic resources. Recession has reduced demand. Further, the U.S. may end up on the receiving end of much of the excess global production and transportation capacity because of its massive storage capacity. Charts of U.S. natural gas production and LNG imports are given.

  5. ,"Rhode Island Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ Lease Condensate ProvedGas,CanadaLNG Storage Net

  6. ,"South Carolina Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ Lease Condensate ProvedGas,CanadaLNGDeliveriesPriceLNG

  7. ,"Alabama Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit:1996..........RegionTotalPrice (Dollars per ThousandLNG

  8. ,"Alaska Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit:1996..........RegionTotalPriceShareCrudeTotalLNG

  9. ,"Iowa Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (Dollars per+NonassociatedPrice+NetWellheadLNG

  10. ,"Maine Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociated NaturalCoalbedLNG Storage Net

  11. ,"Maryland Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociated NaturalCoalbedLNG Storage

  12. ,"New York Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, ExpectedLNG Storage Net Withdrawals (MMcf)"

  13. Dome takes a 20% interest in the Arctic pilot project to move LNG

    SciTech Connect (OSTI)

    Richards, B.; Bell, J.

    1980-05-05T23:59:59.000Z

    According to B. Richards of Dome Petroleum Ltd., Dome's interest will be shared with its partially owned subsidiary, Trans-Canada Pipe Lines Ltd. According to J. Bell of Petro-Canada, the operator for the Arctic project, negotiations are under way with Tenneco Inc. for gas sales of up to 225 million cu ft/day to begin in 1985-86. At first, two tankers would ship LNG to a delivery terminal at an as yet unselected site on Canada's east coast, but by 1992, nine ships capable of delivering 1.23 billion cu ft/day of LNG, could be in service. The U.S. and European potential LNG markets amounts to 3-4 trillion cu ft/yr and 3.5-4 trillion cu ft/yr, respectively. Petro-Canada also supports the Polar Gas Ltd. project to lay a gas pipeline from the Arctic Islands and Mackenzie Delta to the south; the projects are not considered to be in competition.

  14. How life insurance can benefit the business owner

    SciTech Connect (OSTI)

    Byles, B.

    1993-02-01T23:59:59.000Z

    There are many situations when life insurance can fill the financial needs of business owners. Three of the most common needs are business continuation/value conservation (buy-sell agreement), asset conservation upon death or disability of a key employee (replace the value of a key employee upon death or disability), and the reward and retention of selected employees (bonus or deferred compensation). Let's take a closer look to see why life insurance makes sense in these three areas.

  15. Building Energy Asset Score: Building Owners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronicBuildingDepartment ofCodesBuilding Owners

  16. Guide to Combined Heat and Power Systems for Boiler Owners and...

    Broader source: Energy.gov (indexed) [DOE]

    the Department of Energy to improve steam system performance. Guide to Combined Heat and Power Systems for Boiler Owners and Operators (July 2004) More Documents & Publications...

  17. Pressurized release of liquefied fuel gases (LNG and LPG). Topical report, May 1993-February 1996

    SciTech Connect (OSTI)

    Atallah, S.; Janardhan, A.

    1996-02-01T23:59:59.000Z

    This report is an important contribution to the behavior of pressurized liquefied gases when accidentally released into the atmosphere. LNG vehicle fueling stations and LPG storage facilities operate at elevated pressures. Accidental releases could result in rainout and the formation of an aerosol in the vapor cloud. These factors must be considered when estimating the extent of the hazard zone of the vapor cloud using a heavier-than-air gas dispersion model such as DEGADIS (or its Windows equivalent DEGATEC). The DOS program PREL has been incorporated in the Windows program LFGRISK.

  18. Pangea LNG (North America) Holdings, LLC - 14-002-CIC (FE Dkt. No.

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM5 Accretion-of-DutiesPROPERTY3-0127Paducah3 Theofof12-184-LNG

  19. Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE Dkt. No.

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy: Thomas P. D'Agostino, Undersecretary11-161-LNG | Department of

  20. ,"Oregon Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, ExpectedLNGCoalbed MethaneWellhead PriceLNG Storage Net

  1. ,"Tennessee Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to ElectricLNG Storage Net Withdrawals

  2. ,"Virginia Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, and Natural GasU.S.PlantandCoalbed MethanePriceLNG

  3. ,"Washington Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, and NaturalWellhead Price (DollarsPrice (DollarsLNG

  4. ,"Wisconsin Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, andPrice (Dollars perPlantWellheadShalef.d.PriceLNG

  5. Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE Dkt. No.

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf0 Budget Fossil Energy FY 2010 BudgetofFramework for10-161-LNG |

  6. Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE Dkt. No.

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf0 Budget Fossil Energy FY 2010 BudgetofFramework for10-161-LNG

  7. Secretary Bodman Tours LNG Powered City Bus in Seoul | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015ParentsMiddle School (6-8)Need for a Second RepositoryLNG Powered

  8. SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTION,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG - ORDER 2913 | Department of Energy EXPANSION

  9. SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTION,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG - ORDER 2913 | Department of Energy

  10. SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION, L.P. & FLNG LIQUEFACTION,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG - ORDER 2913 | Department of EnergyLLC - FE

  11. SEMI-ANNUAL REPORTS FOR GASFIN DEVELOPMENT USA, LLC - FE DKT. NO. 13-06-LNG

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG - ORDER 2913 | Department of EnergyLLC --

  12. SEMI-ANNUAL REPORTS FOR GOLDEN PASS PRODUCTS LLC - FE DKT. NO. 12-88-LNG -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG - ORDER 2913 | Department of EnergyLLC --ORDER

  13. SEMI-ANNUAL REPORTS FOR JORDAN COVE ENERGY FE DKT. NO. 12-32-LNG - ORDER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG - ORDER 2913 | Department of EnergyLLC3413 |

  14. SEMI-ANNUAL REPORTS FOR LAKE CHARLES EXPORTS, LLC - FE DKT. NO. 11-59-LNG -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG - ORDER 2913 | Department ofORDER 3324 |

  15. SEMI-ANNUAL REPORTS FOR PANGEA LNG (NORTH AMERICA) HOLDINGS, LLC - FE DKT.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG - ORDER 2913 | Department ofORDER 3324 |FE3245

  16. SEMI-ANNUAL REPORTS FOR PIERIDAE ENERGY (USA), LTD - DKT. NO. 14-179-LNG -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG - ORDER 2913 | Department ofORDER 3324

  17. SEMI-ANNUAL REPORTS FOR SEAONE PASCAGOULA, LLC - FE DKT. NO. 14-83-LNG -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG - ORDER 2913 | Department ofORDER

  18. Sabine Pass Liquefaction, LLC - FE Dkt. No. 14-92-LNG | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG - ORDERSTATE0-1 CHAPTER1the Dynamics ofEnergy

  19. U.S. LNG Imports and Exports (2004-2012) | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015 -Helicopter Accident atConference | DepartmentU.S. LNG Imports and

  20. Document center for 14-179-LNG Pieridae | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 Federal Register / Vol.99199014-179-LNG

  1. ,"Arkansas Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellhead PricePrice (Dollars per ThousandLNG

  2. ,"Colorado Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNaturalDryCoalbed MethaneLNG Storage

  3. ,"Connecticut Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNaturalDryCoalbedNetGas,tofromLNG

  4. ,"Idaho Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (Dollars per+NonassociatedPrice (Dollars perLNG

  5. ,"Indiana Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (Dollars per+NonassociatedPrice+ LeaseLNG Storage

  6. ,"Louisiana Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociated Natural Gas, Wet AfterCrude OilLNG

  7. ,"Missouri Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future Production (MillionCrudePrice (DollarsLNG

  8. ,"Nebraska Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future ProductionNetPriceGas, WetThrough+LNG

  9. ,"Nevada Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future7, 2008" ,"Next Update:LNG

  10. ,"North Carolina Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, ExpectedLNG Storage NetPrice Sold toNetGas,Price

  11. Landfill Gas Conversion to LNG and LCO{sub 2}. Phase II Final Report for January 25, 1999 - April 30, 2000

    SciTech Connect (OSTI)

    Brown, W. R.; Cook, W. J.; Siwajek, L. A.

    2000-10-20T23:59:59.000Z

    This report summarizes work on the development of a process to produce LNG (liquefied methane) for heavy vehicle use from landfill gas (LFG) using Acrion's CO{sub 2} wash process for contaminant removal and CO{sub 2} recovery.

  12. EIS-0501: Golden Pass LNG Export and Pipeline Project, Texas and Louisiana

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission (FERC) is analyzing the potential environmental impacts of a proposal to construct and operate natural gas liquefaction and export facilities at the existing Golden Pass liquefied natural gas terminal in Jefferson County, Texas. The proposal includes three new compressor stations in Jefferson and Orange Counties, Texas, and Calcasieu Parish, Louisiana; a new 3-mile long pipeline in Calcasieu Parish; and modifications to 11 existing interconnections with other pipeline systems. In 2013, FERC announced its intent to prepare an EA and conducted public scoping. (See DOE/EA-1971.) In June 2014, FERC announced that, due to changes in the project location and scope, it would prepare an EIS. DOE, Office of Fossil Energy – a cooperating agency in preparing the EIS – has an obligation under Section 3 of the Natural Gas Act to authorize the import and export of natural gas, including LNG, unless it finds that the import or export is not consistent with the public interest.

  13. MEMORANDUM OWNER(S)

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNewCF INDUSTRIES,L? .-IGY DATE---I TO:

  14. OWNER(S)

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 AugustAFRICAN .METALS~ c3 Alexander9412,l . . ;

  15. OWNER(S)

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 AugustAFRICAN .METALS~ c3 Alexander9412,l . .

  16. OWNER(S)

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 AugustAFRICAN .METALS~ c3 Alexander9412,l .

  17. OWNER(S) Past:

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 AugustAFRICAN .METALS~ c3 Alexander9412,l

  18. SUBJECT: OWNER(S)

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 AugustAFRICAN3u ;;;:: A' 3

  19. An Internet survey of private pond owners and managers in Texas

    E-Print Network [OSTI]

    Schonrock, April Elizabeth

    2005-11-01T23:59:59.000Z

    pond owners got the information they used to deal with pond management problems. A secondary emphasis of the project was to examine the potential presented by the Internet for use in this type of information gathering and distribution for Texas...

  20. DOE NSTB Researchers Demonstrate R&D Successes to Asset Owners at EnergySec Conference

    Broader source: Energy.gov [DOE]

    More than 150 energy sector leaders—including nearly 100 asset owners and operators—gathered at the 2009 EnergySec Annual Summit in Seattle, WA, on Sept. 23-24, where researchers from the...

  1. REVIEW OF TRANSAMERICA DELAVAL INC. DIESEL GENERATOR OWNERS' GROUP ENGINE REQUALIFICATION PROGRAM

    SciTech Connect (OSTI)

    Berlinger, C. H.

    1985-12-01T23:59:59.000Z

    In December 1983, 13 nuclear utilities that own TDI diesel generators formally established an Owners• Group to address concerns regarding the reliability and operability of these engines. The Owners' Group program for engine requalification consisted of four major elements: 1) resolution of known problems with potentially generic implications, 2) a design review and quality revalidation (DR/QR) effort aimed at identifying and correcting potential problems with the important engine components, 3) expanded engine testing and inspection, and 4) enhanced engine maintenance and surveillance (M/S) to maintain the qualification of the diesel engines for the lifetime of the nuclear plants that they service. In providing technical support to NRC, the PNL project staff, assisted by a number of diesel engine consultants, focused on the four major elements of the Owners' Group engine requalification program, addressing both generic and plant-specific areas.

  2. EIS-0492: Oregon LNG Export Project (Warrenton, OR) and Washington Expansion Project (between Sumas and Woodland, WA)

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission (FERC) is preparing, with DOE as a cooperating agency, an EIS to analyze the potential environmental impacts of proposals (1) to add liquefaction and export capability to a proposed liquefied natural gas (LNG) import terminal in Warrenton, Oregon, and add 39 miles of new pipeline in Columbia County, Oregon, and Cowlitz County, Washington, to interconnect with the Northwest Pipeline, and (2) to expand the capacity of the Northwest Pipeline by adding 140 miles of 36-inch diameter pipeline in 10 segments and increasing compression at five existing compressor stations. These proposals are connected actions and will be evaluated in the same EIS.

  3. SEMI-ANNUAL REPORTS FOR FREEPORT McMoran - FE DKT. NO. 13-26-LNG - ORDER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG - ORDER 2913 | Department of EnergyLLC -

  4. SEMI-ANNUAL REPORTS FOR MAIN PASS ENERGY HUB, LLC - FE DKT. NO. 12-114-LNG

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG - ORDER 2913 | Department ofORDER 3324 |FE3245 |-

  5. A unique program for horse business owners Tuesdays, February 5 -March 19 (seven weeks)

    E-Print Network [OSTI]

    Goodman, Robert M.

    A unique program for horse business owners Tuesdays, February 5 - March 19 (seven weeks) 6:00pm ­ 9 budgeting plan by the end of the seven-week course. The course is offered by Dr. Carey Williams, Equine@njaes.rutgers.edu, 848-932-3229 $70.00 per person Dinner and Companion workbook included. Equine Business Planning Course

  6. Tour of Entergy's Nuclear Power Plant in River Bend Owner: Entergy Gulf States Inc.

    E-Print Network [OSTI]

    Ervin, Elizabeth K.

    Tour of Entergy's Nuclear Power Plant in River Bend Owner: Entergy Gulf States Inc. Reactor Type a nuclear power plant. Plant was Entergy, a Boiling Water Reactor (BWR) type. Built in the 80's, it has of the veteran plant workers. The presentation gave the nuclear plant engineering basics and built

  7. WORKING PAPER N 2013 11 The Grey Paradox: How Oil Owners Can Benefit

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , Fossil Fuels, GlobalWarming, Non-renewable Resources, OPEC PARIS-JOURDAN SCIENCES ECONOMIQUES 48, BD, Fossil Fuels, Global Warming, Non-renewable Resources, OPEC. JEL Classication: H21, H23, Q31, Q38, Q41, Q of fossil-fuel owners de- pends on the characteristics of their fossil fuels (recoverable reserves

  8. LANDFILL GAS CONVERSION TO LNG AND LCO{sub 2}. PHASE 1, FINAL REPORT FOR THE PERIOD MARCH 1998-FEBRUARY 1999

    SciTech Connect (OSTI)

    COOK,W.J.; NEYMAN,M.; SIWAJEK,L.A.; BROWN,W.R.; VAN HAUWAERT,P.M.; CURREN,E.D.

    1998-02-25T23:59:59.000Z

    Process designs and economics were developed to produce LNG and liquid carbon dioxide (CO{sub 2}) from landfill gas (LFG) using the Acrion CO{sub 2} wash process. The patented Acrion CO{sub 2} wash process uses liquid CO{sub 2} to absorb contaminants from the LFG. The process steps are compression, drying, CO{sub 2} wash contaminant removal and CO{sub 2} recovery, residual CO{sub 2} removal and methane liquefaction. Three flowsheets were developed using different residual CO{sub 2} removal schemes. These included physical solvent absorption (methanol), membranes and molecular sieves. The capital and operating costs of the flowsheets were very similar. The LNG production cost was around ten cents per gallon. In parallel with process flowsheet development, the business aspects of an eventual commercial project have been explored. The process was found to have significant potential commercial application. The business plan effort investigated the economics of LNG transportation, fueling, vehicle conversion, and markets. The commercial value of liquid CO{sub 2} was also investigated. This Phase 1 work, March 1998 through February 1999, was funded under Brookhaven National laboratory contract 725089 under the research program entitled ``Liquefied Natural Gas as a Heavy Vehicle Fuel.'' The Phase 2 effort will develop flowsheets for the following: (1) CO{sub 2} and pipeline gas production, with the pipeline methane being liquefied at a peak shaving site, (2) sewage digester gas as an alternate feedstock to LFG and (3) the use of mixed refrigerants for process cooling. Phase 2 will also study the modification of Acrion's process demonstration unit for the production of LNG and a market site for LNG production.

  9. g:\\fpdc\\contracts unit\\consultant selection and agreement forms\\consultant agreements\\owner consultant agreement final pdc.doc Page 1 of 24

    E-Print Network [OSTI]

    Dyer, Bill

    \\owner consultant agreement final pdc.doc Page 1 of 24 MONTANA STATE UNIVERSITY PLANNING, DESIGN & CONSTRUCTION 6TH forms\\consultant agreements\\owner consultant agreement final pdc.doc Page 2 of 24 TABLE OF CONTENTS PART\\consultant selection and agreement forms\\consultant agreements\\owner consultant agreement final pdc.doc Page 3 of 24 1

  10. Federal offshore oil and gas lease bonus bid rejections: viewpoints of bidders and owners

    SciTech Connect (OSTI)

    Lohrenz, J.; Dougherty, E.L.

    1983-03-01T23:59:59.000Z

    The Federal Government currently estimates values of leases offered in offshore oil and gas sales. After sales, the estimates are compared with highest bonus bids to decide whether to issue a lease or not. Over the past decade the Government has opted via this process not to issue leases on approximately one out of seven leases receiving bonus bids. The Government avows this assures fair market value is received. The authors believe this avowal is hogwash. The authors support this belief with logical argument, quantitative analysis, and statistical study. They conclude that by following the current policy, the Federal Government acting as agent for all of us, the collected people and owners of the lands in question, is acting to the detriment of the account they should serve. Alternative policies are proposed which both increase the efficiency of bringing offshore oil and gas resources to use and decrease the expense the Government burdens the owners with.

  11. The effect of landownership change among small woodland owners on timber availability in East Texas

    E-Print Network [OSTI]

    Gehlhausen, Randy Joe

    1976-01-01T23:59:59.000Z

    Forest Ownership Past Management Practices Past Harvesting H1. story Futu e Nanagement Intentions Future Harvesting Plans Statistical Analysis of Landowner Ccaracteristics Restrictions 18 20 22 22 25 25 25 29 29 29 33 33 33 36 39 48... of respondents according to future plans to consult foresters 51 24. Distribution of respondents according to future plans to participate in assistance programs 53 25, Willingness to sell timber among owners of less than 100 acres of 56 forest 26. Summary...

  12. Design-Build and CM at Risk- comparative analysis for owner decision making based on case studies and project surveys

    E-Print Network [OSTI]

    Park, Soon Rock

    2012-07-16T23:59:59.000Z

    Currently, many researchers and stakeholders believe that effective delivery systems for construction projects are key to improving project quality and value in the construction industry. Therefore, it is important that owners use the best project...

  13. Community Resilience: Workshops on Private Sector and Property Owner Requirements for Recovery and Restoration from a Diasaster

    SciTech Connect (OSTI)

    Judd, Kathleen S.; Stein, Steven L.; Lesperance, Ann M.

    2008-12-22T23:59:59.000Z

    This report summarizes the results of a proejct sponsored by DTRA to 1) Assess the readiness of private-sector businesses, building owners, and service providers to restore property and recover operations in the aftermath of a wide-area dispersal of anthrax; and 2) Understand what private property owners and businesses "want and need" from federal, state, and local government to support recovery and restoration from such an incident.

  14. EA-1796: Sempra Mesquite Solar Energy Facility near Gillespie, AZ |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJuly 2011D APPENDIXKahukuCounty, NVDepartment of Energy

  15. PP-235 Sempra Energy Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse(Expired) | Department ofINCREASES1 Northern States Power4-1

  16. EA-284-A Sempra Energy Solutions: Temporary Extension | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197EFindingEA-257-C EmeraEA-278

  17. PP-235 Sempra Energy Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in

  18. EA-176 Sempra Energy Trading Corporation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E TDrewFinding of No SignificantMitigation9: Finding

  19. EA-176-A Sempra Energy Trading Corporation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E TDrewFinding of No SignificantMitigation9:

  20. EA-191 Sempra Energy Trading Corporation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197EFinding of No Significant ImpactFinding of NoEA-191

  1. EA-191-A Sempra Energy Trading Corporation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197EFinding of No Significant ImpactFinding of

  2. EA-191-D Sempra Energy Trading Corporation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197EFinding of No Significant ImpactFinding

  3. EA-191-B Sempra Energy Trading Corporation | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy5-FEB. 15,5: Mitigation ActionDraft

  4. Sempra Energy Trading Corp (Washington) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey JumpAir JumpCalifornia |Semikron Jump to:Energy

  5. EA-284-A Sempra Energy Solutions: Temporary Extension | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy |Final Site-WideBPAPower Marketing,CPNorthern

  6. EA-406 Sempra Generation, LLC | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy |FinalEESS-7 to export electric energy to Canada.Chubu

  7. The economic effects of elevated and depressed freeways on adjacent property owners

    E-Print Network [OSTI]

    Scurry, Floyd David

    1995-01-01T23:59:59.000Z

    ABSTRACT The Economic EfFects of Elevated and Depressed Freeways on The Adjacent Property Owners. (May 1995) Floyd David Sentry, B. S. , Texas AkM University Chair of Advisory Committee: Dr. Daniel B. Fambro An econonuc assessment of a comnunity... 322, 095 283, 680 283, 680 260, 040 3, 327, 330 $5, 005, 770 Net Effect of Highway on Property Values $4, 275 139, 635 185, 310 262, 145 254, 800 271, 680 257, 840 3, 327, 330 $4, 703, 095 23 The resale of homes at all levels showed...

  8. br Owner br Facility br Type br Capacity br MW br Commercial br Online

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch,Eaga SolarZolo Technologies IncusgbcblackOwner

  9. STEPS TO ESTABLISH A REAL-TIME TRANSMISSION MONITORING SYSTEM FOR TRANSMISSION OWNERS AND OPERATORS WITHIN THE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG - ORDERSTATE ENERGY PROGRAMJulyExecutive S

  10. Solar PV Project Financing: Regulatory and Legislative Challenges for Third-Party PPA System Owners

    SciTech Connect (OSTI)

    Kollins, K.; Speer, B.; Cory, K.

    2009-11-01T23:59:59.000Z

    Residential and commercial end users of electricity who want to generate electricity using on-site solar photovoltaic (PV) systems face challenging initial and O&M costs. The third-party ownership power purchase agreement (PPA) finance model addresses these and other challenges. It allows developers to build and own PV systems on customers? properties and sell power back to customers. However, third-party electricity sales commonly face five regulatory challenges. The first three challenges involve legislative or regulatory definitions of electric utilities, power generation equipment, and providers of electric services. These definitions may compel third-party owners of solar PV systems to comply with regulations that may be cost prohibitive. Third-party owners face an additional challenge if they may not net meter, a practice that provides significant financial incentive to owning solar PV systems. Finally, municipalities and cooperatives worry about the regulatory implications of allowing an entity to sell electricity within their service territories. This paper summarizes these challenges, when they occur, and how they have been addressed in five states. This paper also presents alternative to the third-party ownership PPA finance model, including solar leases, contractual intermediaries, standardized contract language, federal investment tax credits, clean renewable energy bonds, and waived monopoly powers.

  11. Audit of joint owner costing and billing practices, Naval Petroleum Reserve No. 1, Elk Hills, California

    SciTech Connect (OSTI)

    Richards, J.R.

    1986-01-13T23:59:59.000Z

    The review showed a need for the Department to revise and strengthen cash management and cost allocation procedures and practices for jointly shared Reserve operating costs funded by the Government. The procedures and practices in effect for processing Joint Owner costs, billings and collections do not permit the Government to receive full advantage of the time value of money paid in behalf of Chevron or provide for the full sharing of all costs incurred by the Government to absorb unnecessary interest and operating costs since assuming responsibility for funding Reserve operations in October 1975. It is estimated that the Department would benefit by over $3 million per year if our recommendations in these areas are fully implemented.

  12. Pet owners have the responsibility to care for the well being of their animals. Your ability to

    E-Print Network [OSTI]

    Pet owners have the responsibility to care for the well being of their animals. Your ability to care for an animal can help determine what kind of animal you select as a pet. Out-of-Town Emergency Pamphlet, "Emergency Preparedness for Your Pets," 2003. Veterinarians in Your County or City Name

  13. Multifaceted Value Profiles of Forest Owner Categories in South Sweden: The River Helge a Catchment as a Case Study

    E-Print Network [OSTI]

    Vermont, University of

    -industrial forest land owners and municipalities included all value categories, the forest companies focused on wood including non-timber forest products as well as ecological, social, and cultural dimensions at multiple goods (e.g., timber and fish) can readily be converted into market goods. In contrast, many

  14. Channels and sources used to gather equine-related information by college-age horse owners and enthusiasts 

    E-Print Network [OSTI]

    Sullivan, Erin Alene

    2009-05-15T23:59:59.000Z

    This thesis identifies the equine-related topics that are important to Texas college-age horse owners and enthusiasts and the channels/sources they use to get equine-related information. Little research has focused on this group to determine...

  15. Group Member Names: ________________________________________________ Scenario: You are the owner of a potato plant in Idaho. You have recently won a contract

    E-Print Network [OSTI]

    Provancher, William

    : ________________________________________________ ________________________________________________ ________________________________________________ Scenario: You are the owner of a potato plant in Idaho. You have recently won a contract to supply McDonald's with potatoes. McDonald's requires their suppliers to precut and freeze the potatoes before shipping to their distributing center. Your potato plant does not currently have a process for precutting and freezing potatoes

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Annual Fee Owners of compressed natural gas (CNG), liquefied natural gas (LNG), and propane powered vehicles are required to pay an annual license fee, based on gross vehicle...

  17. Safety Evaluation Report related to Hydrogen Control Owners Group assessment of Mark 3 containments

    SciTech Connect (OSTI)

    Li, C.Y.; Kudrick, J.A.

    1990-10-01T23:59:59.000Z

    Title 10 of the Code of Federal Regulations (10 CFR), Section 50.44 Standards for Combustible Gas Control System in Light-Water-Cooled Power Reactors,'' requires that systems be provided to control hydrogen concentration in the containment atmosphere following an accident to ensure that containment integrity is maintained. The purpose of this report is to provide regulatory guidance to licensees with Mark III containments with regard to demonstrating compliance with 10 CFR 50.44, Section (c)(3)(vi) and (c)(3)(vii). In this report, the staff provides its evaluation of the generic methodology proposed by the Hydrogen Control Owners Group. This generic methodology is documented in Topical Report HGN-112-NP, Generic Hydrogen Control Information for BWR/6 Mark III Containments.'' In addition, the staff has recommended that the vulnerability to interruption of power to the hydrogen igniters be evaluated further on a plant-specific basis as part of the individual plant examination of the plants with Mark III containments. 10 figs., 1 tab.

  18. Faced with rising fuel costs, building and home owners are looking for energy-efficient solutions. Improving the building envelope (roof or attic system, walls,

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    and envelope assemblies for use in new construction and retrofits. Patrick Hughes Director, Building better understanding of product performance by the entire construction materials industry. INNOVATIONSFaced with rising fuel costs, building and home owners are looking for energy- efficient solutions

  19. Text-Alternative Version: The L Prize-Winning LED A19 Replacement—What Commercial Building Owners/Operators Can Expect in 2012

    Broader source: Energy.gov [DOE]

    Below is the text-alternative version of the "The L Prize-Winning LED A19 Replacement—What Commercial Building Owners/Operators Can Expect in 2012" webcast, held January 18, 2012.

  20. Legislating the rights of private property owners: a review and analysis of actions in the 103rd and 104th Congresses

    E-Print Network [OSTI]

    Kerby, Hannah Elizabeth

    1995-01-01T23:59:59.000Z

    LEGISLATING THE RIGHTS OF PRIVATE PROPERTY OWNERS: A REVIEW AND ANALYSIS OF ACTIONS IN THE 103RD AND 104TH CONGRESSES A Professional Paper by Hannah Elizabeth Kerby Approved as to style and content by: hairman, Advisory Committee Committee... Member Committee Member August 1995 Record of Study LEGISLATING THE RIGHTS OF PRIVATE PROPERTY OWNERS: A REVIEW AND ANALYSIS OF ACTIONS IN THE 103RD AND 104TH CONGRESSES A PROFESSIONAL PAPER by Hannah Elizabeth Kerby Submitted to the College...

  1. Connecting Distributed Energy Resources to the Grid: Their Benefits to the DER Owner etc.

    SciTech Connect (OSTI)

    Poore, WP

    2003-07-09T23:59:59.000Z

    The vision of the Distributed Energy Research Program (DER) program of the U.S. Department of Energy (DOE) is that the United States will have the cleanest and most efficient and reliable energy system in the world by maximizing the use of affordable distributed energy resources. Electricity consumers will be able to choose from a diverse number of efficient, cost-effective, and environmentally friendly distributed energy options and easily connect them into the nation's energy infrastructure while providing benefits to their owners and other stakeholders. The long-term goal of this vision is that DER will achieve a 20% share of new electric capacity additions in the United States by 2010, thereby helping to make the nation's electric power generation and delivery system more efficient, reliable, secure, clean, economical, and diverse in terms of fuel use (oil, natural gas, solar, hydroelectric, etc.) and prime mover resource (solar, wind, gas turbines, etc.). Near- and mid-term goals are to develop new technologies for implementing and operating DER and address barriers associated with DER usage and then to reduce costs and emissions and improve the efficiency and reliability of DER. Numerous strategies for meeting these goals have been developed into a research, development, and demonstration (RD&D) program that supports generation and delivery systems architecture, including modeling and simulation tools. The benefits associated with DER installations are often significant and numerous. They almost always provide tangible economic benefits, such as energy savings or transmission and distribution upgrade deferrals, as well as intangible benefits, such as power quality improvements that lengthen maintenance or repair intervals for power equipment. Also, the benefits routinely are dispersed among end users, utilities, and the public. For instance, an end user may use the DER to reduce their peak demand and save money due to lower demand charges. Reduced end user peak demand, in turn, may lower a distribution system peak load such that upgrades are deferred or avoided. This could benefit other consumers by providing them with higher reliability and power quality as well as avoiding their cost share of a distribution system upgrade. In this example, the costs of the DER may be born by the end user, but that user reaps only a share of the benefits. This report, the first product of a study to quantify the value of DER, documents initial project efforts to develop an assessment methodology. The focus of currently available site-specific DER assessment techniques are typically limited to two parties, the owner/user and the local utility. Rarely are the impacts on other stakeholders, including interconnected distribution utilities, transmission system operators, generating system operators, other local utility customers, local and regional industry and business, various levels of government, and the environment considered. The goal of this assessment is to quantify benefits and cost savings that accrue broadly across a region, recognizing that DER installations may have local, regional, or national benefits.

  2. LNG 2015.xlsx

    Broader source: Energy.gov (indexed) [DOE]

    5 Jan Feb March April May June July Aug Sept Oct Nov Dec TOTAL Egypt 0.0 0.0 Nigeria 0.0 0.0 Norway 0.0 0.0 Qatar 0.0 0.0 Trinidad 9.4 9.4 Yemen 2.2 2.2 Undetermined * 0.0 0.0...

  3. Guide to Combined Heat and Power Systems for Boiler Owners and Operators

    SciTech Connect (OSTI)

    Oland, CB

    2004-08-19T23:59:59.000Z

    Combined heat and power (CHP) or cogeneration is the sequential production of two forms of useful energy from a single fuel source. In most CHP applications, chemical energy in fuel is converted to both mechanical and thermal energy. The mechanical energy is generally used to generate electricity, while the thermal energy or heat is used to produce steam, hot water, or hot air. Depending on the application, CHP is referred to by various names including Building Cooling, Heating, and Power (BCHP); Cooling, Heating, and Power for Buildings (CHPB); Combined Cooling, Heating, and Power (CCHP); Integrated Energy Systems (IES), or Distributed Energy Resources (DER). The principal technical advantage of a CHP system is its ability to extract more useful energy from fuel compared to traditional energy systems such as conventional power plants that only generate electricity and industrial boiler systems that only produce steam or hot water for process applications. By using fuel energy for both power and heat production, CHP systems can be very energy efficient and have the potential to produce electricity below the price charged by the local power provider. Another important incentive for applying cogeneration technology is to reduce or eliminate dependency on the electrical grid. For some industrial processes, the consequences of losing power for even a short period of time are unacceptable. The primary objective of the guide is to present information needed to evaluate the viability of cogeneration for new or existing industrial, commercial, and institutional (ICI) boiler installations and to make informed CHP equipment selection decisions. Information presented is meant to help boiler owners and operators understand the potential benefits derived from implementing a CHP project and recognize opportunities for successful application of cogeneration technology. Topics covered in the guide follow: (1) an overview of cogeneration technology with discussions about benefits of applying cogeneration technology and barriers to implementing cogeneration technology; (2) applicable federal regulations and permitting issues; (3) descriptions of prime movers commonly used in CHP applications, including discussions about design characteristics, heat-recovery options and equipment, fuels and emissions, efficiency, maintenance, availability, and capital cost; (4) electrical generators and electrical interconnection equipment; (5) cooling and dehumidification equipment; (6) thermodynamic cycle options and configurations; (7) steps for evaluating the technical and economic feasibility of applying cogeneration technology; and (8) information sources.

  4. Are owners' reports of their dogs’ ‘guilty look’ influenced by the dogs’ action and evidence of the misdeed?

    E-Print Network [OSTI]

    Ostoji?, Ljerka; Tkal?i?, Mladenka; Clayton, Nicola S.

    2015-01-03T23:59:59.000Z

    dogs’ greeting behaviours were not a Thus, our findings do not support th concurrent negative reaction by their © 2015 The Authors. Published bylocate /behavproc uenced by the dogs’ nija 4, 51000 Rijeka Croatia eeting behaviour after having performed a... dogs that have eaten the r whom the food was not replaced by the experimenter lude that their dog had performed the misdeed. ls and methods s ix owners and their dogs were tested in Croatia from 011 to January 2012 and from June to October 2013 (see...

  5. Hot Works Procedures and Protocols Last Updated: 2/14/2014 Owner: Safety and Risk Management Director Page 1 of 6

    E-Print Network [OSTI]

    Dyer, Bill

    Hot Works Procedures and Protocols Last Updated: 2/14/2014 Owner: Safety and Risk Management Management Director Page 2 of 6 start and stop times, and location of work. The Office of Work Control and Risk Management reserves the right to inspect all Hot Works areas, and revoke authorizations

  6. Faced with rising fuel costs, building and home owners are looking for energy-efficient solutions. Improving the building envelope (roof or attic system, walls,

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    and envelope assemblies for use in new construction and retrofits. Patrick Hughes Director, Building materials industry. INNOVATIONS IN BUILDINGS Contact ORNL 2012-G00695/tcc Ensuring Affordable, EfficientFaced with rising fuel costs, building and home owners are looking for energy- efficient solutions

  7. KUALI TIPS FOR CAPITAL ASSETS NEW OBJECT CODES: These are based upon the Funding Source Code. Owner Field shows Title now.

    E-Print Network [OSTI]

    KUALI TIPS FOR CAPITAL ASSETS NEW OBJECT CODES: These are based upon the Funding Source Code. Owner Field shows Title now. Decal # Historical Sub Code New Object Code Description Comments OBJECT CODES: To determine which Object Code you should use, you will need to look up the Account Fund

  8. KUALI TIPS FOR CAPITAL ASSETS NEW OBJECT CODES: These are based upon Funding Source vs. Title. Owner Field shows Title now.

    E-Print Network [OSTI]

    KUALI TIPS FOR CAPITAL ASSETS NEW OBJECT CODES: These are based upon Funding Source vs. Title. Owner Field shows Title now. Decal # Historical Sub Code New Object Code Description 3 8210 8210 CSU) and 8247 (Federal Loaned) are Property Use Only. HOW TO USE THE NEW OBJECT CODES: To determine which Object

  9. The Guaranteed Maximum Price proposal is developed at the phase specified in the Agreement Between Owner and Construction Manager, usually at 50% Construction Documents.

    E-Print Network [OSTI]

    Sura, Philip

    Owner and Construction Manager, usually at 50% Construction Documents. The GMP proposal should be bound general summary of scope of work, alternates, etc.) Tab 2 List of documents (project manual(s), drawings summary of the work, the construction manager's fee (as identified in Paragraph 7.2 of the Agreement) must

  10. Absentee herd owners and part-time pastoralists: the political economy of resource use in northern Kenya

    SciTech Connect (OSTI)

    Little, P.D.

    1985-06-01T23:59:59.000Z

    The prevalence of absentee herd ownership in Africa's pastoral areas is increasing. Its presence has important implications both for local resource management systems and for research programs that address pastoral ecology and related topics. This paper examines patterns of absentee herd ownership in the Baringo District of northern Kenya. This region has been the source of much debate regarding herder ''mismanagement'' of range lands. Three categories of absentee herd owners are discussed in the paper: (1) ranchers, (2) livestock traders, and (3) townsmen. It is suggested that the blame for some of the apparent resource mismanagement in the region may lie more with actors in these categories than with the pastoralists themselves. Data collected during an 18-month period in 1980-1981 on pastoral ecology, grazing patterns, and tenure institutions are presented in support of the argument. The paper concludes with a comparative analysis of contemporary resource management strategies in pastoral Africa, emphasizing that: (1) the Baringo case is not an isolated anomaly, and (2) a new orientation toward pastoral studies is warranted.

  11. The B and W Owners Group program for microstructural characterization and radiation embrittlement modelling of Linde 80 reactor vessel welds

    SciTech Connect (OSTI)

    Pavinich, W.A. [Grove Engineering, Knoxville, TN (United States); Harbison, L.S. [B and W Nuclear Technologies, Lynchburg, VA (United States)

    1996-12-31T23:59:59.000Z

    The Babcock and Wilcox Owners Group (B and WOG) is embrittlement of Linde 80 reactor vessel welds from a micro-mechanical viewpoint. Previous work that focused on characterizing the large microstructural features indicated that a large portion of the bulk copper content is in precipitate/inclusion/carbide form. This result indicates that copper in solid solution is considerably less than the bulk composition. Field-ion microscope atom probe investigations on unirradiated weld metals with bulk copper contents ranging from 0.22 to 0.38 wt%, also indicate significant amount of copper are tied up in precipitate/inclusion/carbide form. This results is significant since the bulk copper content (which includes both copper in solid solution and copper contained in precipitates, inclusions, and carbides) is used in Regulatory Guide 1.99, Revision 2 to determine radiation damage. This paper reviews these results. Existing radiation embrittlement models superpose the changes in yield strength due to defect clusters and copper-rich precipitates induced by neutron irradiation. Low-copper Linde 80 welds display little or no increase in the 41 joule (30 ft-lb) transition temperature as a result of neutron irradiation which indicates that precipitation is the dominant component of radiation embrittlement for Linde 80 welds. Future work will include further microstructural characterizations of Linde 80 reactor vessel welds and applying the existing radiation embrittlement models to Linde 80 welds. This paper describes the detailed plans for future work.

  12. CX-009533: Categorical Exclusion Determination | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,TheEnergyNotice of ProposedAcidUniversityTheSempra LNG

  13. Debra N. Thompson, PhD, RN, NEA-BC Debra N. Thompson, PhD, RN, NEA-BC, owner and principal of Debra N. Thompson, LLC holds an

    E-Print Network [OSTI]

    Sibille, Etienne

    Debra N. Thompson, PhD, RN, NEA-BC Biosketch Debra N. Thompson, PhD, RN, NEA-BC, owner and principal of Debra N. Thompson, LLC holds an Adjunct Faculty appointment as an Assistant Professor

  14. Has sempra found El Dorado in solar PVs? grid parity may now be within reach

    SciTech Connect (OSTI)

    NONE

    2009-03-15T23:59:59.000Z

    Instead of using conventional polycrystalline silicon modules that turn sunlight into electricity, these solar panels use cadmium telluride, a lower-cost semiconductor manufactured into thin-film cells that are cheaper to manufacture than their silicon-based counterparts. Electricity is being produced at costs as low as 7.5 {cents}/kWh.

  15. Application to Export Electric Energy OE Docket No. EA-406 Sempra...

    Office of Environmental Management (EM)

    Notice, Volume 80, No. 42 - March 4, 2015 Application to Export Electric Energy OE Docket No. EA-405 Del Norte Energy LLC: Federal Register Notice, Volume 80, No. 21 - Feb. 2, 2015...

  16. Application to Export Electric Energy OE Docket No. EA-406 Sempra

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy:Whether you'reInc.: Federal Register NoticeLLC: Federal

  17. Application for Presidential Permit OE Docket No. PP-235 Sempra Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'s Reply Comments AT&T,FACT968 DecemberTransmission

  18. Application for Presidential Permit OE Docket No. PP-334 Sempra Generation

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'s Reply Comments AT&T,FACT968 DecemberTransmissionServices,U.S.|

  19. Application for presidential permit OE Docket No. PP-235-1 Sempra Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'s Reply CommentsTransmission:TransmissionTransmission Company:

  20. Application to Export Electric Energy OE Docket No. EA-406 Sempra

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'s ReplyApplication of SyntheticPowerManagement Inc. | DepartmentLLC

  1. Application to Export Electric Energy OE Docket No. EA-406 Sempra

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments from Tarasa U.S.LLC | Department of Energy 405

  2. Application to Export Electric Energy OE Docket No. EA-406 Sempra

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments from Tarasa U.S.LLC | Department of Energy 405Generation,

  3. ATTACHMENT FLOODPLAIN STATEMENT OF FINDINGS FOR DEPARTMENT OF ENERGY LOAN GUARANTEE TO SEMPRA GENERATION

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 A Strategic FrameworkRoadmap ANSItheARPA-EEnergy 1

  4. Reliability Standards Owner

    Broader source: Energy.gov [DOE]

    This position is located in the Internal Operations and Asset Management group of Planning and Asset Management (TP). A successful candidate in this position will serve as the Reliability Standards...

  5. Procedures for LNG Export Decisions

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy will act on applications to export liquefied natural gas from the lower-48 states to countries with which the United States does not have a free trade agreement...

  6. Improvement in LNG storage tanks

    SciTech Connect (OSTI)

    NONE

    1999-11-20T23:59:59.000Z

    To develop and produce natural gas fuel tanks for medium duty truck and transit bus end-use to overcome the weight and range problems inherent in current fuel systems.

  7. Analysis of liquid natural gas as a truck fuel: a system dynamics approach

    SciTech Connect (OSTI)

    Bray, M.A.; Sebo, D.E.; Mason, T.L.; Mills, J.I.; Rice, R.E.

    1996-10-01T23:59:59.000Z

    The purpose of this analysis is to evaluate the potential for growth in use of liquid natural gas (LNG) fueled trucks. . A system dynamics model was constructed for the analysis and a variety of scenarios were investigated. The analysis considers the economics of LNG fuel in the context of the trucking industry to identify barriers to the increased use of LNG trucks and potential interventions or leverage points which may overcome these barriers. The study showed that today, LNG use in trucks is not yet economically viable. A large change in the savings from fuel cost or capital cost is needed for the technology to take off. Fleet owners have no way now to benefit from the environmental benefits of LNG fuel nor do they benefit from the clean burning nature of the fuel. Changes in the fuel cost differential between diesel and LNG are not a research issue. However, quantifying the improvements in reliability and wear from the use of clean fuel could support increased maintenance and warranty periods. Many people involved in the use of LNG for trucks believe that LNG has the potential to occupy a niche within the larger diesel truck business. But if LNG in trucks can become economic, the spread of fuel stations and technology improvements could lead to LNG trucks becoming the dominant technology. An assumption in our simulation work is that LNG trucks will be purchased when economically attractive. None of the simulation results show LNG becoming economic but then only to the level of a niche market.

  8. WEST VIRGINIA UNIVERSITY is the owner of all rights, title and interest in and to the following Indicia, which includes trademarks, service marks, trade names, designs, logos, seals and symbols.

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    APPENDIX B WEST VIRGINIA UNIVERSITY is the owner of all rights, title and interest: The marks of West Virginia University of are controlled under a licensing program administered Licensing Company. Yes No Restrictions WEST VIRGINIA UNIVERSITY® MOUNTAINEERS® · University seal permitted

  9. BOWLING GREEN STATE UNIVERSITY is the owner of all rights, title and interest in and to the following Indicia, which includes trademarks, service marks, trade names, designs, logos, seals and symbols.

    E-Print Network [OSTI]

    Moore, Paul A.

    APPENDIX B BOWLING GREEN STATE UNIVERSITY is the owner of all rights, title and interest 1126 BLACK WHITE RA TBD RA 2273 BLACK WHITE NOTE: The marks of Bowling Green State University University ® Bowling Green ® Bowling Green Falcons ® Bowling Green State University Falcons ® BGSU ® BGSU

  10. *Intel and the Intel logo are registered trademarks of Intel Corporation. Other brands and names are the property of their respective owners The Concurrent Collections (CnC) Parallel Programming

    E-Print Network [OSTI]

    Hazelwood, Kim

    *Intel and the Intel logo are registered trademarks of Intel Corporation. Other brands and names of their respective owners *Intel and the Intel logo are registered trademarks of Intel Corporation. Other brands *Intel and the Intel logo are registered trademarks of Intel Corporation. Other brands and names

  11. EA-1796: Loan Guarantee to Sempra Generation for Construction of the Mesquite Solar Energy Project, Mariacopa County, Arizona

    Broader source: Energy.gov [DOE]

    DOE prepared an EA that assesses the potential environmental impacts of the proposed Mesquite Solar Energy Project.

  12. Identification of Owner’s Project Value Interests

    E-Print Network [OSTI]

    Gunby, Molly Gaynell

    2011-02-22T23:59:59.000Z

    and to aid the engineering and/or construction (E&C) provider in identifying an 4 appropriate value interest response strategy. The efforts of the CII study provided the value interest, project characteristic, and survey data required to complete... execution and delivery. Berman (2006) developed the Speed2Value? Road Map, a comprehensive process designed to help organizations focus on and achieve the strategic value of a project. The process is broad enough to be used in any industry and provides...

  13. TO: FILE MEMORANDUM SUBJECT: ALTERNATE OWNER(S)

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 AugustAFRICAN3uj: ;;I : T'ncZl'FILESUBJECT:

  14. Dispute Resolution Process Utility Owner

    E-Print Network [OSTI]

    Minnesota, University of

    State One Call (GSOC) for "Design Call" Provide "as-builts", marked plans or field locates MnDOT Utility? Underground Utility? Contact Minnesota Office of Pipeline Safety Minnesota Office of Pipeline Safety Step 1 - Utility Identification for Construction Investigate and take appropriate action up to and including

  15. Institutional owners and competitive rivalry

    E-Print Network [OSTI]

    Connelly, Brian Lawrence

    2008-10-10T23:59:59.000Z

    factors that make firms increasingly aware of competitive behavior (e.g., TMT heterogeneity and This dissertation follows the style of the Academy of Management Journal. 2 multimarket competition) and increasingly capable of initiating...

  16. Sumas, WA LNG Imports from Canada

    Gasoline and Diesel Fuel Update (EIA)

    12,530 7,769 9,768 6,016 10,409 3,547 1996-2014 Pipeline Prices 5.55 4.81 4.47 3.87 4.02 5.05 1996...

  17. Modeling of LNG Pool Spreading and Vaporization 

    E-Print Network [OSTI]

    Basha, Omar 1988-

    2012-11-20T23:59:59.000Z

    sensitivity analysis was conducted to determine the effect of boiling heat transfer regimes, friction, thermal contact/roughness correction parameter and VLE/mixture thermodynamics on the pool spreading behavior. The aim was to provide a better understanding...

  18. EIS-0513: Jacksonville LNG Project, Jacksonville, Florida

    Broader source: Energy.gov [DOE]

    Notice of Intent: Public Scoping Period Ends 04/24/15The Federal Energy Regulatory Commission (FERC), with DOE as a cooperating agency, is preparing an EIS that analyzes the potential environmental impacts of a proposal to construct and operate a natural gas liquefaction, storage, and export facility on the St. Johns River in Jacksonville, Florida. DOE, Office of Fossil Energy, has an obligation under Section 3 of the Natural Gas Act to authorize the export of natural gas, including liquefied natural gas, unless it finds that the export is not consistent with the public interest.

  19. LNG Annual Report - 2007 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLED Lighting5-15Trade | Department of4

  20. LNG Annual Report - 2009 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLED Lighting5-15Trade | Department of48

  1. LNG Annual Report - 2010 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLED Lighting5-15Trade | Department of4810

  2. LNG Annual Report - 2011 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLED Lighting5-15Trade | Department of48101

  3. LNG Annual Report - 2012 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLED Lighting5-15Trade | Department of481012

  4. LNG Annual Report - 2013 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLED Lighting5-15Trade | Department of4810123

  5. LNG_v11_appendixupdate.qxd

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLED Lighting5-15Trade |Vessel into the U.S.n

  6. Microsoft Word - LNG_Jan2007.doc

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400,Information Administration2 U.S.and Winter Fuels8 1 07 107 1

  7. U.S. LNG Imports from Algeria

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr MayNov-14 Dec-14 Jan-15 Feb-15(BTU

  8. U.S. LNG Imports from Australia

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr MayNov-14 Dec-14 Jan-15 Feb-15(BTU

  9. U.S. LNG Imports from Brunei

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr MayNov-14 Dec-14 Jan-15

  10. U.S. LNG Imports from Egypt

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr MayNov-14 Dec-14 Jan-155-2015 Liquefied

  11. U.S. LNG Imports from Indonesia

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr MayNov-14 Dec-14 Jan-155-20151997-2015

  12. U.S. LNG Imports from Malaysia

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr MayNov-14 Dec-14

  13. U.S. LNG Imports from Nigeria

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr MayNov-14 Dec-147-2015 Liquefied Natural

  14. U.S. LNG Imports from Norway

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr MayNov-14 Dec-147-2015 Liquefied

  15. U.S. LNG Imports from Oman

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr MayNov-14 Dec-147-2015 Liquefied2000-2015

  16. U.S. LNG Imports from Peru

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr MayNov-14 Dec-147-20152010-2015 Liquefied

  17. U.S. LNG Imports from Qatar

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr MayNov-14 Dec-147-20152010-2015

  18. U.S. LNG Imports from Yemen

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr MayNov-142,234 2,373 2,834 0 2010-2015

  19. LNG - Engine Delivery - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s - 1 2 3 4 5 6 755826LegacyLM Sites

  20. OpenEI Community - Mini LNG Terminals

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil and GasOff the GridHomeWrap-up courtesy5/0 en