Powered by Deep Web Technologies
Note: This page contains sample records for the topic "owner note totals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

MEMORANDUM OWNER(S)  

Office of Legacy Management (LM)

OWNER(S) OWNER(S) -------- past : Lb-J ' 0-c @+a+~-~% current: -- ________________________ ------7--- -- Owner cantacted 0 yes 4t no; if yes, date contacted TYPE OF OPERATION ----------------- q Research & Development 0 Facility Type 0 Production scale testing 0 Manufacturing 0 Pilat Scale 0 Bench Scale Process i Theoretical Studies Sample & Analysis 0 Production 0 Di5posal/Storage TYPE OF CONTRACT ----_----------- 0 Prime q Subcontractor Cl Purchase Order 0 University 0 Research Organization 0 Government Spohscred Facility 0 Other --------------------- . 0 Other information (i.e., cost + fixed fee, unit price, time 84 material, e,tc:) ------- 'Canfract/Purchase Order # --. CONTRACTING PERIOD: r4J~--___-----___---_____________ ----- OWNERSHIP:

2

OWNER(S) Past:  

Office of Legacy Management (LM)

--------------__ --------------__ CITY: ' -* -I c.l.&&!,Ck -------------------------- OWNER(S) ------__ Past: Owner contacted q yes current: -------------------------- if yea, date contacted ------_---___ TYPE OF OPERATION --------~~_~----_ q Research & Development 0 Production scale testing 0 Pilot Scale 0 Bench Scale Process,. 0 Theoretical Studies 0 Sample & Analysis 0 Production 0 Disposal/Storage 0 Facility Type a Manufacturing (I University, 0 Research Organization 0 Government Sponsored Facility 0 Other ~~~--~~~---~~~------_ TYPE OF CONTRACT ---_---__------_ 0 Prinie 0 Subcantractbr 0 Purchase Order 0 Other information (i.e., cast + fixed fee, unit price, time b material, qtc) ----'w-- ~~--~~-~~~----~~----________ Contract/Purchase ' Order

3

SUBJECT: OWNER(S)  

Office of Legacy Management (LM)

HEHORANDUH HEHORANDUH ;;&; DC&b ------w--v SUBJECT: OWNER(S) -------- P1st a Owner contrctmd TYPE OF OPERATION ----------------- 0 Research I Development 0 Facility Type 0 Production scale testing 0 Pilot Scrlr 0 Bench Seal0 Procemm 0 Theoretical Studier 0 Sample & Anrlyri l 0 Production x Dimpomrl/Storrgr 0 Hmufrcturing 0 University 0 Rmsmarch Organization 0 Government Sponmored Facility 0 Other -II---------------- TYPE OF CONTRACT ----u---------- 0 d ime Subcontract& 0 Purchrre Order 0 Other information (i.e., comt -w-e--- Contrrct/Purchrsa Order 0 CONTRACTING PERIOD: ------------------ . OWNERSHIPa AEC/HED OWNED m---w LANDS 0 BUILDINSS 0 EQUIPMENT 0 ORE OR RAW HA-I-L 0 FINAL PRODUCT q WASTE & RESIDUE 0 AEC/HED LEASED ---w-w E 0 0

4

OWNER(S)  

Office of Legacy Management (LM)

l . . l . . ; * 3Tb'-j .I OWNER(S) rf yea, date contacted ___ TYPE OF OPERATION --~~----~---__--_ aResearch & Development q Facility Type 0 Production scale testing Et Pilot Scale q Hanufacturing 0 Bench Scale Process 0 University 0 Theoretical Studies 0 Research Organization Cl 0 Government Sponsored Facility Sample SC Analysis Cl Other --------__----___--_ 3 Production 1 Disposal/Storage TYPE OF CONTRACT --~_---__---____ m.p rime SC5 sLta4rM-J / Cl Subcqntractor 0 Purchase Order 0 Other information (i.e., cost + fixed fee, unit price? Contract/Purchase Order # ~~~ti~ --------------------_____________ AECf MED OWNED -_--_ LANDS BUILDINGS ' EQUIPMENT ORE OR RAW MATL [3 FINAL PRODUCT 0 WASTE & RESIDUE q GOVT OWNED ----- GOUT LEASED -----_ E

5

OWNER(S)  

Office of Legacy Management (LM)

------ - ------ - Past: ~~~-~~~-~~~~~~~~~~rrent: Owner contacted q yes tina;-. ____ c-lti&pJ-~ lf yes, date contacted -_---__---___ TYPE OF OPERATION -_-----_--_--____ q Research & Development 0 Production scale testing 0 Pilot Scale 0 Bench Scale Process : 'Theoretical Studier Sample & Analysis G Production 0 Disposal/Storage TYPE OF CONTRACT ~-~~~----~~----_ &, Facility Type q Manufacturing 0 University a Research Organizaticn a Other information (i.e., cost + fixed fee,, unit price, -_---- yryoi -37 J-1 4:~zL~~:~:q~&- ,-antract,purchase Order # ,L,U,-37-?\- ---------------------------- --------------------_____________ my~mx~~ai_~Gi~~~Q : _I 7 v 3 _ I 9 V-Y, ---_--_------------------------------ OWNERSHIP: AEC/MED AEC/MED GOUT GOUT

6

OWNER(S)  

Office of Legacy Management (LM)

_----- _----- past: %J +c - fl*+;o.rrq -____------------- Owner contacted 0 yes Curr@nt: ______ -----------L-----l- if yes, date contacted TYPE OF OPERATION Reeearch & Development 0 Facility Type 0 Production scale testing Cl Pilot Scale 0 Bench Scale Process 0 0 Research Organization Theoretical Studies 0 0 Government Sponsored Facility ~ ~*a;~a.a~~plysis 0 Other ~~~~~~~~------____--- 0 Production 0 DispdsalfStoraqe TYPE OF CONTRACT ---------------- 0 Prime 0 Subcontractor 0 Purchase Order 0 Other information (i.e., cost + fixed fee, unit price, time & mater!&, etc) ------- --------------------LA------ ~~------------~~~-~--------- Contract/Purchase Order # ~-----~-~~~~~~~--~~~_____________ CONTRACTING PERIOD: f?Ar! lts' d' ------------------ ___-_ +----a-

7

Notes  

NLE Websites -- All DOE Office Websites (Extended Search)

Notes 1 "Overall AC electrical energy consumption (AC Whmi)" is based on AC electricity consumed during charging events which began during the reporting period and distance driven...

8

User_OrgOwner_Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Organization Owner Overview Organization Owner Overview © 2011 SuccessFactors, Inc. - 1 - SuccessFactors Learning Confidential. All rights reserved. Job Aid: Organization Owner Overview Purpose The purpose of this job aid is to guide organization owners through the step-by-step process of available features within SuccessFactors Learning. The organization dashboard is a collection of charts and data tables that summarize learning data for your organizations and sub-organizations. Note: Depending on how permissions were configured in, access to the following features will vary for each organization. Task A. Organization Dashboard From the Home page, roll-over the Organization tab and select Dashboard from the list. 1 1 Succession Planner 7 Steps

9

Notes  

NLE Websites -- All DOE Office Websites (Extended Search)

Notes Notes Track Reconstruction with Cosmic Ray Data at the Tracker Integration Facility (pdf format) CMS Tracker Alignment at the Integration Facility (pdf format) Silicon Strip Tracker Detector Performance with Cosmic Ray Data at the Tracker Integration Facility (pdf format) Tracker Operation and Performance at the Magnet Test and Cosmic Challenge (pdf format) CMS Silicon Tracker Module Assembly and Testing at FNAL (pdf format) Silicon Tracker Module Assembly at UCSB (pdf format) CT and test beam results of irradiated magnetic Czochralski silicon (MCz-Si) detectors Nuclear Inst. and Methods in Physics Research, A 604 (2009), pp 254-25 Silicon Beam Telescope for LHC Upgrade Tests Nuclear Inst. and Methods in Physics Research, A 593 (2008), pp. 523-529 SiTracker Home Page

10

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions)

11

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Housing Units (millions) Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Census Division Total South...

12

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Division Total West Mountain Pacific Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

13

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

(millions) Census Division Total South Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC13.7...

14

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total Midwest Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC12.7...

15

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total Northeast Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC11.7...

16

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total South Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

17

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

(millions) Census Division Total West Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC14.7...

18

Total  

Gasoline and Diesel Fuel Update (EIA)

Total Total .............. 16,164,874 5,967,376 22,132,249 2,972,552 280,370 167,519 18,711,808 1993 Total .............. 16,691,139 6,034,504 22,725,642 3,103,014 413,971 226,743 18,981,915 1994 Total .............. 17,351,060 6,229,645 23,580,706 3,230,667 412,178 228,336 19,709,525 1995 Total .............. 17,282,032 6,461,596 23,743,628 3,565,023 388,392 283,739 19,506,474 1996 Total .............. 17,680,777 6,370,888 24,051,665 3,510,330 518,425 272,117 19,750,793 Alabama Total......... 570,907 11,394 582,301 22,601 27,006 1,853 530,841 Onshore ................ 209,839 11,394 221,233 22,601 16,762 1,593 180,277 State Offshore....... 209,013 0 209,013 0 10,244 260 198,509 Federal Offshore... 152,055 0 152,055 0 0 0 152,055 Alaska Total ............ 183,747 3,189,837 3,373,584 2,885,686 0 7,070 480,828 Onshore ................ 64,751 3,182,782

19

Total............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Total................................................................... Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546

20

Total...................  

Gasoline and Diesel Fuel Update (EIA)

4,690,065 52,331,397 2,802,751 4,409,699 7,526,898 209,616 1993 Total................... 4,956,445 52,535,411 2,861,569 4,464,906 7,981,433 209,666 1994 Total................... 4,847,702 53,392,557 2,895,013 4,533,905 8,167,033 202,940 1995 Total................... 4,850,318 54,322,179 3,031,077 4,636,500 8,579,585 209,398 1996 Total................... 5,241,414 55,263,673 3,158,244 4,720,227 8,870,422 206,049 Alabama ...................... 56,522 766,322 29,000 62,064 201,414 2,512 Alaska.......................... 16,179 81,348 27,315 12,732 75,616 202 Arizona ........................ 27,709 689,597 28,987 49,693 26,979 534 Arkansas ..................... 46,289 539,952 31,006 67,293 141,300 1,488 California ..................... 473,310 8,969,308 235,068 408,294 693,539 36,613 Colorado...................... 110,924 1,147,743

Note: This page contains sample records for the topic "owner note totals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

TO: FILE MEMORANDUM SUBJECT: ALTERNATE OWNER(S)  

Office of Legacy Management (LM)

SUBJECT: SUBJECT: ALTERNATE OWNER(S) -__----- Owner csntacted r~ yes current: --------------------A----- if yes, date contacted TYPE OF OPERATION ------------_____ Research & Development 0 Facility Type 0 Production seal e testing 0 Pilot Scale 0 Bench Scale Process i Theoretical Studi es Sample & Analysis Producti on Di spas.31 /Storage a' Manufacturing q University 0 Research Organization 0 Government Sponsored Facility Cl Other ~~~~~~~----~~-------- 0 0 Prime q Other information (i.e., cast 0 Subcontractor 0 'Purchase Order + fixed fee, unit piice, pi time & material, gtc) ~~-----_------~~_-------~-~- .Contract./Purchaee Order # fi~k~ti;3 -----------_---------------- CONTRACTING PEXIOD: tit-k ------------------ would -------------------------------------

22

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 2.1 0.6 Q 0.4 500 to 999........................................................... 23.8 13.6 3.7 3.2 3.2 1,000 to 1,499..................................................... 20.8 9.5 3.7 3.4 4.2 1,500 to 1,999..................................................... 15.4 6.6 2.7 2.5 3.6 2,000 to 2,499..................................................... 12.2 5.0 2.1 2.8 2.4 2,500 to 2,999..................................................... 10.3 3.7 1.8 2.8 2.1 3,000 to 3,499..................................................... 6.7 2.0 1.4 1.7 1.6 3,500 to 3,999..................................................... 5.2 1.6 0.8 1.5 1.4 4,000 or More.....................................................

23

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7 1.3 2,500 to 2,999..................................................... 10.3 3.0 1.8 0.5 0.7 3,000 to 3,499..................................................... 6.7 2.1 1.2 0.5 0.4 3,500 to 3,999..................................................... 5.2 1.5 0.8 0.3 0.4 4,000 or More.....................................................

24

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1 2.6 2,500 to 2,999..................................................... 10.3 2.2 2.7 3.0 2.4 3,000 to 3,499..................................................... 6.7 1.6 2.1 2.1 0.9 3,500 to 3,999..................................................... 5.2 1.1 1.7 1.5 0.9 4,000 or More.....................................................

25

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to 2,999..................................................... 10.3 2.4 0.9 1.4 3,000 to 3,499..................................................... 6.7 0.9 0.3 0.6 3,500 to 3,999..................................................... 5.2 0.9 0.4 0.5 4,000 or More.....................................................

26

Total.........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Floorspace (Square Feet) Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3 2,500 to 2,999.................................................... 10.3 1.5 2.3 2.7 2.1 1.7 3,000 to 3,499.................................................... 6.7 1.0 2.0 1.7 1.0 1.0 3,500 to 3,999.................................................... 5.2 0.8 1.5 1.5 0.7 0.7 4,000 or More.....................................................

27

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to 2,999..................................................... 10.3 2.2 1.7 0.6 3,000 to 3,499..................................................... 6.7 1.6 1.0 0.6 3,500 to 3,999..................................................... 5.2 1.1 0.9 0.3 4,000 or More.....................................................

28

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4 2,500 to 2,999..................................................... 10.3 0.5 0.5 0.4 1.1 3,000 to 3,499..................................................... 6.7 0.3 Q 0.4 0.3 3,500 to 3,999..................................................... 5.2 Q Q Q Q 4,000 or More.....................................................

29

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7 0.4 2,139 1,598 Q Q Q Q 2,500 to 2,999........................................ 10.1 Q Q Q Q Q Q Q 3,000 or More......................................... 29.6 0.3 Q Q Q Q Q Q Heated Floorspace (Square Feet) None...................................................... 3.6 1.8 1,048 0 Q 827 0 407 Fewer than 500......................................

30

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

2,033 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546 3,500 to 3,999................................................. 5.2 3,549 2,509 1,508

31

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8 2,500 to 2,999..................................... 10.3 1.2 2.2 2.3 1.7 2.9 0.6 2.0 3,000 to 3,499..................................... 6.7 0.9 1.4 1.5 1.0 1.9 0.4 1.4 3,500 to 3,999..................................... 5.2 0.8 1.2 1.0 0.8 1.5 0.4 1.3 4,000 or More...................................... 13.3 0.9 1.9 2.2 2.0 6.4 0.6 1.9 Heated Floorspace

32

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9 1.8 1.4 2.2 2.1 1.6 0.8 2,500 to 2,999..................................... 10.3 1.6 0.9 1.1 1.1 1.5 1.5 1.7 0.8 3,000 to 3,499..................................... 6.7 1.0 0.5 0.8 0.8 1.2 0.8 0.9 0.8 3,500 to 3,999..................................... 5.2 1.1 0.3 0.7 0.7 0.4 0.5 1.0 0.5 4,000 or More...................................... 13.3

33

Total................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to 2,499.............................. 12.2 11.9 2,039 1,731 1,055 2,143 1,813 1,152 Q Q Q 2,500 to 2,999.............................. 10.3 10.1 2,519 2,004 1,357 2,492 2,103 1,096 Q Q Q 3,000 or 3,499.............................. 6.7 6.6 3,014 2,175 1,438 3,047 2,079 1,108 N N N 3,500 to 3,999.............................. 5.2 5.1 3,549 2,505 1,518 Q Q Q N N N 4,000 or More...............................

34

Casablanca Carlos American Electric Power Transmission Owner  

E-Print Network (OSTI)

(Facilitator) Chantal PJM Interconnection Not Applicable Horstmann John Dayton Power & Light Company (The) Transmission Owner Issermoyer John PPL Electric Utilities Corp. dba PPL Utilities Transmission Owner

Pjm Interconnection Llc; Teleconference Webex Participants; Firstenergy Solutions; Corp Transmission Owner; Boltz Jeff; Firstenergy Solutions; Corp Transmission Owner; Fecho Thomas; Indiana Michigan; Power Company; Transmission Owner; Patten Kevin; Company Transmission Owner

2012-01-01T23:59:59.000Z

35

Owners of nuclear power plants  

Science Conference Proceedings (OSTI)

Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of July 1996. The report is divided into sections representing different aspects of nuclear plant ownership.

Hudson, C.R.; White, V.S.

1996-11-01T23:59:59.000Z

36

Realities of Chiller Plant Operation: Utility Impacts on Owner Operating  

NLE Websites -- All DOE Office Websites (Extended Search)

Realities of Chiller Plant Operation: Utility Impacts on Owner Operating Realities of Chiller Plant Operation: Utility Impacts on Owner Operating Costs and Societal Environmental Issues Speaker(s): Don Aumann Date: March 21, 2000 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Satkartar K. Kinney Don Aumann, a Senior Consultant from BKi in Oakland, will present an overview of two projects he completed for the electric utility industry. The first, a case study evaluation of a hybrid chiller plant in Jefferson City, Missouri, demonstrates the importance of carefully evaluating the impact of utility rate structures on plant operating costs. The building owner, another engineering consultant, and the local utility representatives were confused by the rates and missed an opportunity to cut chiller-plant operating costs by about 20%, totaling $15,000 per year. In

37

Buildings Performance Database Helps Building Owners, Investors...  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Performance Database Helps Building Owners, Investors Evaluate Energy Efficient Buildings Buildings Performance Database June 2013 A new database of building features and...

38

Property:Owners | Open Energy Information  

Open Energy Info (EERE)

Owners Owners Jump to: navigation, search Property Name Owners Property Type Page Description A unique list of owners of all power plants in the area. Automatically populated using ask query on Property: Owner of Category: Energy Generation Facility with property InGeothermalResourceArea set to the the variable vName of the Geothermal Resource Area Subproperties This property has the following 301 subproperties: A Abraham Hot Springs Geothermal Area Adak Geothermal Area Akun Strait Geothermal Area Akutan Fumaroles Geothermal Area Alum Geothermal Area Alvord Hot Springs Geothermal Area Arrowhead Hot Springs Geothermal Area Ashton Warm Springs Geothermal Area Astor Pass Geothermal Area Augusta Mountains Geothermal Area B Bailey Bay Hot Springs Geothermal Area Baker Hot Spring Geothermal Area

39

Definition: Generator Owner | Open Energy Information  

Open Energy Info (EERE)

Generator Owner Entity that owns and maintains generating units.1 References Glossary of Terms Used in Reliability Standards An LikeLike UnlikeLike You like this.Sign Up...

40

JOBAID-ORGANZIATION OWNER OVERVIEW | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OWNER OVERVIEW JOBAID-ORGANZIATION OWNER OVERVIEW The purpose of this job aid is to guide organization owners through the step-by-step process of available features within...

Note: This page contains sample records for the topic "owner note totals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Energy Efficiency: Helping Home Owners and Businesses Understand...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency: Helping Home Owners and Businesses Understand Energy Usage Energy Efficiency: Helping Home Owners and Businesses Understand Energy Usage November 7, 2013 - 3:55pm...

42

Danish Wind Turbine Owners Association | Open Energy Information  

Open Energy Info (EERE)

Owners Association Owners Association Jump to: navigation, search Name Danish Wind Turbine Owners' Association Place Aarhus C, Denmark Zip DK-8000 Sector Wind energy Product Danish Wind Turbine Ownersâ€(tm) Association is a non-profit, independent association overseeing wind turbine ownersâ€(tm) mutual interests regarding the authorities, political decision-makers, utilities and wind turbine manufacturers. References Danish Wind Turbine Owners' Association[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Danish Wind Turbine Owners' Association is a company located in Aarhus C, Denmark . References ↑ "Danish Wind Turbine Owners' Association" Retrieved from "http://en.openei.org/w/index.php?title=Danish_Wind_Turbine_Owners_Association&oldid=344068

43

TO: FILE GiR FROM: SUBJECT: I OWNER(S) Past: Current:  

Office of Legacy Management (LM)

3 749 3 749 '*,. .,;L ----.-. _ 5' . iMEMORANDUM TO: FILE GiR FROM: , SUBJECT: I OWNER(S) ------__ Past: ------------------_----~ Current: Owner contacted q yes qnnc; ~~-~~~---------~~--_______ if yes, date contacted 1 ! I TYPE OF OPERATION --~_--___~---_--_ $ Research b Development a Facility Type 1 I 0 Production scale testing 0 Pilot Scale Bench Scale Process Theoretical 'Studies 0 Sample & Analysis G Production E Disposal/Storage 0 Research 0 Uther --------------T------ I T'/PE OF CONTRACT -----------_____ 0 Prime I2 C! Subcontractor Other information (i.e.:, cost q Purchase Order + fixed fee, unit Arice, time 84 material, etr) i ------- 'I ----------------------i__--_ Contract/Purchase Qrdei. W -----------I--k---j----- ~PJKJbL-I @J OWNERSHIP:

44

PP-82-3 The Joint Owners of the Highgate Interconnection Facilities...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 The Joint Owners of the Highgate Interconnection Facilities PP-82-3 The Joint Owners of the Highgate Interconnection Facilities Presidential Permit authorizing The Joint Owners...

45

"Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Living Space Characteristics by Owner-Occupied Housing Units, 2005" 2 Living Space Characteristics by Owner-Occupied Housing Units, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ," Housing Units (millions) " ,,,"Single-Family Units",,"Apartments in Buildings With--" "Living Space Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,78.1,64.1,4.2,1.8,2.3,5.7 "Floorspace (Square Feet)" "Total Floorspace1" "Fewer than 500",3.2,1.1,"Q","Q","Q","Q",0.4 "500 to 999",23.8,7.2,3.5,0.3,0.3,0.9,2.2

46

Which idling reduction system is most economical for truck owners?  

NLE Websites -- All DOE Office Websites (Extended Search)

Which idling reduction system is Which idling reduction system is most economical for truck owners? Linda Gaines Center for Transportation Research Argonne National Laboratory Commercial Vehicle Engineering Congress and Exposition Rosemont, Il October 7-9, 2008 The price of diesel is high *Idling a Class 8 truck uses 0.6-1.2 gallons per hour *That can total over $50 a night! *So even without regulations, there's an incentive to reduce idling *Even if the price goes down more, idling reduction makes sense 2 Why do sleepers idle overnight? For services to resting driver and friend y Heating, ventilation, and air conditioning (HVAC) y Power for appliances 8TV, microwave, refrigerator, computer, hair drier To keep fuel and engine warm To mask out noises and smells Because other drivers do it

47

Total Natural Gas Underground Storage Capacity  

Annual Energy Outlook 2012 (EIA)

Gas Capacity Total Number of Existing Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes...

48

Property:Owner | Open Energy Information  

Open Energy Info (EERE)

property of type Page. property of type Page. Subproperties This property has the following 1 subproperty: G GRR/Section 4-FD-a - Exploration Permit BLM Pages using the property "Owner" Showing 25 pages using this property. (previous 25) (next 25) A AB Tehachapi Wind Farm + Coram Energy + AFCEE MMR Turbines + AFCEE + AG Land 1 + AG Land Energy LLC + AG Land 2 + AG Land Energy LLC + AG Land 3 + AG Land Energy LLC + AG Land 4 + AG Land Energy LLC + AG Land 5 + AG Land Energy LLC + AG Land 6 + AG Land Energy LLC + AVTEC + AVTEC + Aberdeen Biomass Facility + Sierra Pacific Industries + Adair Wind Farm I + Shafer Systems + Adair Wind Farm II + MidAmerican Energy + Aero Turbine + AeroTurbine Energy Company + Aeroman Repower Wind Farm + Coram Energy + Affinity Wind Farm + Affinity Wind LLC +

49

Explanatory Notes  

U.S. Energy Information Administration (EIA) Indexed Site

Explanatory Notes Explanatory Notes Survey Methodology Description of Survey Form The Form EIA-820, "Annual Refinery Report," is the primary source of data in the "Refinery Capacity Report" tables. The form collects data on the consumption of purchased steam, electricity, coal, and natural gas; refinery receipts of crude oil by method of transportation; operable capacity for atmospheric crude oil distillation units and downstream units; and production capacity for crude oil and petroleum products. Frame The respondent frame consists of all operating and idle petroleum refineries (including new refineries under construction), located in the 50 States, the District of

50

Rights and Duties of Mines and Mine Owners, General (Missouri)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation addresses general operational guidelines for mine owners regarding public notices, fees, land and mineral ownership, requirements for mining in certain municipalities, and mining...

51

Realities of Chiller Plant Operation: Utility Impacts on Owner...  

NLE Websites -- All DOE Office Websites (Extended Search)

plant operating costs. The building owner, another engineering consultant, and the local utility representatives were confused by the rates and missed an opportunity to cut...

52

"Table HC3.4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005" 4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Space Heating Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,78.1,64.1,4.2,1.8,2.3,5.7 "Do Not Have Space Heating Equipment",1.2,0.6,0.3,"N","Q","Q","Q" "Have Main Space Heating Equipment",109.8,77.5,63.7,4.2,1.8,2.2,5.6

53

"Table HC3.8 Water Heating Characteristics by Owner-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Water Heating Characteristics by Owner-Occupied Housing Unit, 2005" 8 Water Heating Characteristics by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Water Heating Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,78.1,64.1,4.2,1.8,2.3,5.7 "Number of Water Heaters" "1.",106.3,74.5,60.9,4,1.8,2.2,5.5 "2 or More",3.7,3.3,3,"Q","Q","Q","Q" "Do Not Use Hot Water",1.1,0.3,"Q","Q","N","Q","Q"

54

"Table HC3.5 Space Heating Usage Indicators by Owner-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Owner-Occupied Housing Unit, 2005" 5 Space Heating Usage Indicators by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Space Heating Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total U.S. Housing Units",111.1,78.1,64.1,4.2,1.8,2.3,5.7 "Do Not Have Heating Equipment",1.2,0.6,0.3,"N","Q","Q","Q" "Have Space Heating Equipment",109.8,77.5,63.7,4.2,1.8,2.2,5.6

55

"Table HC3.7 Air-Conditioning Usage Indicators by Owner-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

7 Air-Conditioning Usage Indicators by Owner-Occupied Housing Unit, 2005" 7 Air-Conditioning Usage Indicators by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Air Conditioning Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,78.1,64.1,4.2,1.8,2.3,5.7 "Do Not Have Cooling Equipment",17.8,11.3,9.3,0.6,"Q",0.4,0.9 "Have Cooling Equipment",93.3,66.8,54.7,3.6,1.7,1.9,4.8 "Use Cooling Equipment",91.4,65.8,54,3.6,1.7,1.9,4.7

56

"Table HC3.6 Air Conditioning Characteristics by Owner-Occupied Housing Units, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

6 Air Conditioning Characteristics by Owner-Occupied Housing Units, 2005" 6 Air Conditioning Characteristics by Owner-Occupied Housing Units, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Air Conditioning Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,78.1,64.1,4.2,1.8,2.3,5.7 "Do Not Have Cooling Equipment",17.8,11.3,9.3,0.6,"Q",0.4,0.9 "Have Cooling Equipment",93.3,66.8,54.7,3.6,1.7,1.9,4.8 "Use Cooling Equipment",91.4,65.8,54,3.6,1.7,1.9,4.7

57

"Table HC3.1 Housing Unit Characteristics by Owner-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

Housing Unit Characteristics by Owner-Occupied Housing Unit, 2005" Housing Unit Characteristics by Owner-Occupied Housing Unit, 2005" " Million Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Housing Unit Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,78.1,64.1,4.2,1.8,2.3,5.7 "Census Region and Division" "Northeast",20.6,13.4,10.4,1.4,1,0.3,0.4 "New England",5.5,3.8,3.1,"Q",0.3,"Q","Q" "Middle Atlantic",15.1,9.6,7.3,1.3,0.6,"Q","Q"

58

"Table HC3.13 Lighting Usage Indicators by Owner-Occupied Housing Unit Zone, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Lighting Usage Indicators by Owner-Occupied Housing Unit Zone, 2005" 3 Lighting Usage Indicators by Owner-Occupied Housing Unit Zone, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Lighting Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total U.S. Housing Units",111.1,78.1,64.1,4.2,1.8,2.3,5.7 "Indoor Lights Turned On During Summer" "Number of Lights Turned On" "Between 1 and 4 Hours per Day",91.8,65,54.3,3.3,1.5,1.6,4.4 "1.",28.6,17.9,14,0.9,0.6,0.7,1.7

59

"Table HC3.11 Home Electronics Characteristics by Owner-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Home Electronics Characteristics by Owner-Occupied Housing Unit, 2005" 1 Home Electronics Characteristics by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Home Electronics Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,78.1,64.1,4.2,1.8,2.3,5.7 "Personal Computers" "Do Not Use a Personal Computer ",35.5,20.3,14.8,1.2,0.6,0.9,2.8 "Use a Personal Computer",75.6,57.8,49.2,2.9,1.2,1.4,3 "Number of Desktop PCs"

60

"Table HC3.9 Home Appliances Characteristics by Owner-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

HC3.9 Home Appliances Characteristics by Owner-Occupied Housing Unit, 2005" HC3.9 Home Appliances Characteristics by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Home Appliances Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total U.S.",111.1,78.1,64.1,4.2,1.8,2.3,5.7 "Cooking Appliances" "Conventional Ovens" "Use an Oven",109.6,77.3,63.4,4.1,1.8,2.3,5.6 "1.",103.3,71.9,58.6,3.9,1.6,2.2,5.5 "2 or More",6.2,5.4,4.8,"Q","Q","Q","Q"

Note: This page contains sample records for the topic "owner note totals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Report Notes  

NLE Websites -- All DOE Office Websites (Extended Search)

Notes Notes 1 "Overall AC electrical energy consumption (AC Wh/mi)" is based on AC electricity consumed during charging events which began during the reporting period and distance driven during all trips in the reporting period. 2 "Overall DC electrical energy consumption (DC Wh/mi)" is based on net DC electricity discharged from or charged to the plug-in battery pack and distance driven during all trips in the reporting period. DC Wh/mi may not be comparable to AC Wh/mi if AC electricity charged prior to the reporting period was discharged during driving within the reporting period, or if AC electricity charged during the reporting period was not discharged during driving within the reporting period. 3 Trips when the plug-in battery pack charge was depleted to propel the vehicle throughout

62

Visiting With Santa Fe Small Business Owners | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Visiting With Santa Fe Small Business Owners Visiting With Santa Fe Small Business Owners Visiting With Santa Fe Small Business Owners May 10, 2012 - 9:02am Addthis Dot Harris Dot Harris The Honorable Dot Harris, Director, Office of Economic Impact and Diversity You've got to do your homework in order to contract with the federal government. Whether you are a large or small business owner, learning the ins and outs of government contracting takes dedication, perseverance, and taking advantage of opportunities to meet face-to-face with procurement experts and other businesses. That's where our Small Business Roundtables, Business Opportunity Sessions, conference booths, and Regional Small Business Summits come in. We want to meet directly with small business owners, managers, and staffers, to hear what you need to learn from us to make the contracting

63

Tips for Renters and Property Owners | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tips for Renters and Property Owners Tips for Renters and Property Owners Tips for Renters and Property Owners July 5, 2012 - 4:51pm Addthis Tips for Renters and Property Owners If you rent, or if you own a rental unit, you can use many of the tips throughout this guide to save money and energy. Renters You can reduce your utility bills by following the tips in these sections: Lighting Heating and Cooling (if you control the thermostat) Appliances Home Office and Home Electronics Windows Transportation Encourage your landlord to follow these tips as well. They'll save energy and money, improving your comfort and lowering your utility bills even more. Property Owners Nearly all of the information in this guide applies to rental units. The section on Your Home's Energy Use focuses on air leaks, insulation, heating

64

Microsoft Word - 2.9 Chemical Owners 0913.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Owners Chemical Owners AFRD Line Management personnel who authorize the use of chemicals in their group's work retain responsibility for ensuring that the chemicals are properly inventoried, labeled, stored, used, and disposed. They may choose to remain Chemical Owners as described in the LBNL Chemical Hygiene and Safety Plan and manage the chemicals themselves, or delegate chemical management tasks to appropriately trained AFRD or matrixed personnel who have knowledge of the chemicals' hazards, controls, and procedures for using and storing them safely. The chemical inventory for each AFRD work area must be maintained on the Chemical Management System. When chemical management tasks are delegated, the AFRD Line Management personnel must also

65

OTS NOTE  

Office of Legacy Management (LM)

@ 'Alexander Williams @ 'Alexander Williams FROM: Ed Mitchellqm SUBJECT: W.R. Grace Elimination Recommendation The purpose of this note is to provide you with certain information regarding the recommendation to eliminate W.R. Grace Company (the former Heavy Minerals Company), Chicago,Illinois, from consideration as a site under FUSRAP. Enclosed is a memo dated July 9, 1990: FUSRAP Considered Site Recommendation, for W.R. Grace Company. It recommends elimination in accordance with FUSRAP protocol. Also enclosed is some typed input material (dated July 9, 1990) about the site that you may want to use in the preparation of your Record of Elimination. If you concur, please provide a Record of Elimination to indicate DOE's decision to eliminate this site. In lieu of a separate memo, you may want

66

OTS NOTE  

Office of Legacy Management (LM)

* pp4 r G- .2- * pp4 r G- .2- OTS NOTE DATE: April 24, 1991 TO: Alexander Williams FROM: Dan Stou tF L SUBJECT: American Potash and Chemical Company Elimination Recommendation The attached memorandum and supporting documents are the basis for our recommendation to eliminate the former American Potash and Chemical Company site from further consideration under FUSRAP. The site is located in West Hanover, Massachusetts. Documents discovered to date indicating use or handling of radioactive material by American Potash consist of a National Lead Company of Ohio (NLO) internal memorandum which discusses tests American Potash performed for Union Carbide Nuclear Corporation (Oak Ridge), an Atomic Energy Commission (AEC) prime contractor. The site predecessor, National Fireworks Ordnance

67

OTS NOTE  

Office of Legacy Management (LM)

March 22, 1991 March 22, 1991 TO: A. Williams FROM: 0. Sto> Attached is a revised site summary for the Exxon Company in Linden, New Jersey. The summary incorporates new information from a file search and from a conversation with.an NRC inspector. The specific locations of AEC/MED operations have not been identified. .I." -:;1 5':' :?iv,::.;& & had been decontami "ated. The NRC inspector did note that the kC.Mackenzie E. Mitchell C. Young .c. FUSRAP NJ.18 Exxon Research and Engineering Company The Former Standard Oil Development Company Linden, New Jersey Site Function In the spring of 1942, Standard Oil Development Company (SODC) was contracted to be in charge of obtaining materials for work being do the Metallurgical Laboratories and subsequently the MED. SODC play

68

Chapter 5. Technical Notes  

Science Conference Proceedings (OSTI)

... OOF: Finite Element Analysis of Microstructures. Table of Contents, Chapter 5. Technical Notes, OOF home. ... Chapter 5. Technical Notes. ...

2013-08-23T23:59:59.000Z

69

Notes and Definitions  

Weekly Natural Gas Storage Report (EIA)

Notes and Definitions Notes and Definitions This report tracks U.S. natural gas inventories held in underground storage facilities. The weekly stocks generally are the volumes of working gas as of the report date. Changes in reported stock levels reflect all events affecting working gas in storage, including injections, withdrawals, and reclassifications between base and working gas. Totals may not match sum of components because of independent rounding. The complete documentation of EIA's estimation methodology is available in the report, Methodology for EIA Weekly Underground Natural Gas Storage Estimates. Information about the method used to prepare weekly data to compute the 5-year averages, maxima, minima, and year-ago values for the weekly report can be found in Computing the 5-year Averages, Maxima, Minima, and Year-Ago

70

Secretaries Chu and Donovan to Host Conference Call on Home Owners...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Donovan to Host Conference Call on Home Owners Energy-Saving Improvements Program Secretaries Chu and Donovan to Host Conference Call on Home Owners Energy-Saving Improvements...

71

Business Owners: Prepare a Business Recovery Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

a Business Recovery Plan a Business Recovery Plan Business Owners: Prepare a Business Recovery Plan Business Owners: Prepare a Business Recovery Plan Smart business owners develop and test a written business recovery plan to support them through disasters and help them stay in operation. Planning ahead will help your company get back to business more quickly. Consider your risks-How might a disaster affect your business operations? What natural disasters are most likely where you operate? Identify your critical business functions-What resources and personnel will you need to restore or reproduce these functions during a recovery? Assign disaster response duties to your employees. Identify critical suppliers-Identify suppliers, providers, shippers, resources, and other businesses you typically interact with and

72

Energy Efficiency: Helping Home Owners and Businesses Understand Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency: Helping Home Owners and Businesses Understand Efficiency: Helping Home Owners and Businesses Understand Energy Usage Energy Efficiency: Helping Home Owners and Businesses Understand Energy Usage November 7, 2013 - 3:55pm Addthis Building 90, an 89,000-square foot office building at Berkeley Lab, served as the commercial setting for the miscellaneous and electronic loads (MELs) study. 460 meters were placed throughout the building to serve as a representative sample of a wide range of device types. | Photo courtesy of Berkeley Lab. Building 90, an 89,000-square foot office building at Berkeley Lab, served as the commercial setting for the miscellaneous and electronic loads (MELs) study. 460 meters were placed throughout the building to serve as a representative sample of a wide range of device types. | Photo courtesy of

73

Table HC1-5a. Housing Unit Characteristics by Type of Owner-Occupied Housing Unit,  

U.S. Energy Information Administration (EIA) Indexed Site

5a. Housing Unit Characteristics by Type of Owner-Occupied Housing Unit, 5a. Housing Unit Characteristics by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 Housing Unit Characteristics RSE Column Factor: Total Owner- Occupied Units Type of Owner-Occupied Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Homes Two to Four Units Five or More Units 0.4 0.4 1.8 2.1 1.4 Total ............................................... 72.7 63.2 2.1 1.8 5.7 6.7 Census Region and Division Northeast ...................................... 13.0 10.8 1.1 0.5 0.6 11.4 New England .............................. 3.5 3.1 0.2 Q 0.1 16.9 Middle Atlantic ............................ 9.5 7.7 0.9 0.4 0.4 13.4 Midwest ......................................... 17.5 16.0 0.3 Q 1.0 10.3 East North Central ......................

74

Table HC7-5a. Home Office Equipment by Type of Owner-Occupied Housing Unit,  

U.S. Energy Information Administration (EIA) Indexed Site

5a. Home Office Equipment by Type of Owner-Occupied Housing Unit, 5a. Home Office Equipment by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total Owner- Occupied Units Type of Owner-Occupied Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.3 0.3 2.1 3.0 1.6 Total ............................................... 72.7 63.2 2.1 1.8 5.7 6.7 Households Using Office Equipment .......................... 67.5 59.0 2.0 1.7 4.8 7.0 Personal Computers 1 ................... 45.7 41.1 1.3 0.9 2.4 8.6 Number of Desktop PCs 1 .................................................. 34.1 30.5 1.0 0.7 1.9 9.7 2 or more .................................... 7.4 7.0 Q Q 0.2 18.4 Number of Laptop PCs 1 ..................................................

75

Total Crude by Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2007 2008 2009 2010 2011 2012 View

76

texas well owner network More than a million private water  

E-Print Network (OSTI)

texas well owner network More than a million private water wells in Texas provide water to citi and are at a greater risk for exposure to compromised water quality. The Texas Water Resources Institute along with the Texas AgriLife Extension Service's Department of Soil and Crop Sciences and Department of Biological

77

Maintainability Implemented by Third-Party Contractor for Public Owner  

E-Print Network (OSTI)

is implementation of a computerized maintenance management system CMMS . The CMMS is a tool used to establish maintenance strategy for systems Construction manager · Conduct construction practices that do not alter by NASA, the owner. The policy directive endorses a maintenance management pro- gram capable of developing

Sheridan, Jennifer

78

Business Owners: Respond to an Energy Emergency | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Respond to an Energy Emergency Respond to an Energy Emergency Business Owners: Respond to an Energy Emergency Business Owners: Respond to an Energy Emergency Ensure your building is safe to occupy-Initially allow only essential, critical-operations staff into restricted areas. Ask your local or State health department for guidance on determining the safety of your building. Decide whether to activate backup power-If your backup generator doesn't automatically turn on during a power outage, you'll have to determine when to activate backup systems. First determine whether power is likely to be restored within 24 hours. If not, you may want to activate those systems to protect your business assets. Learn more Contact your fuel supplier-If you rely on fuel supplies for your business, vehicles, generators, and other equipment, contact your fuel

79

Business Owners: Prepare for Fuel Shortages | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Shortages Fuel Shortages Business Owners: Prepare for Fuel Shortages Business Owners: Prepare for Fuel Shortages You may need fuel for vehicles, generators, and other equipment to continue operating your business during an emergency. During a shortage, local authorities and fuel suppliers will prioritize getting fuel to key assets such as emergency operations centers, hospitals, food supply dealers, water supply plants, and telecommunication networks. Plan ahead to help make sure you have adequate supplies. Review your fuel supply contracts-Arrange priority contacts with fuel suppliers, including an out-of-region supplier, and include language for providing fuel supplies during an emergency. Can your fuel suppliers operate with no power? Do they have gravity-fed systems? What if your fuel

80

Business Owners: Prepare for Utility Disruptions | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for Utility Disruptions for Utility Disruptions Business Owners: Prepare for Utility Disruptions Business Owners: Prepare for Utility Disruptions Have a plan in place in case a natural disaster or other hazard knocks out your business's electricity or natural gas service. Identify energy utilities-The utilities that are absolutely necessary to running your business. How might a disaster impact the availability of those utilities? Determine backup options-Contact your utility companies to discuss potential backup options, such as portable generators to provide power. Learn how and when to turn off utilities-For example, if you turn off your natural gas, a professional technician must turn it back on. Learn more Consider using backup generators-Generators can power the most important aspects of your business in an emergency. This will involve:

Note: This page contains sample records for the topic "owner note totals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

River resort owners find LPG a power behind their success  

SciTech Connect

This paper reports on a restaurant and resort which runs entirely on LPG. It has two generators converted to LPG that supply the power for the complex. Energy supplied from the propane is used in the kitchens, to drive the water pump and provide electricity for lighting and other power needs, and to heat the swimming pool. Far more importantly for the owners has been the fuel cost savings of at least 60%.

1991-01-01T23:59:59.000Z

82

DOE NSTB Researchers Demonstrate R&D Successes to Asset Owners...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE NSTB Researchers Demonstrate R&D Successes to Asset Owners at EnergySec Conference DOE NSTB Researchers Demonstrate R&D Successes to Asset Owners at EnergySec Conference...

83

Quickies : intelligent sticky notes  

E-Print Network (OSTI)

This thesis introduces 'Quickies', an attempt to bring one of the most useful inventions of the 20th century into the digital age: the ubiquitous sticky notes. Sticky notes help us manage our to-do lists, tag our objects ...

Mistry, Pranav (Pranav K.)

2008-01-01T23:59:59.000Z

84

just staff note  

NLE Websites -- All DOE Office Websites (Extended Search)

Staff private notes Staff private notes August 27, 2013 (0 Comments) The availability on Edison started as of 20:00 PDT 8232013. Post your comment You cannot post comments until...

85

NIST Technical Note XXXX  

Science Conference Proceedings (OSTI)

Page 1. NIST Technical Note 1621 Optical Radiation Measurements Based on Detector Standards George P. Eppeldauer, Editor Page 2. ...

2010-10-08T23:59:59.000Z

86

NBS TECHNICAL NOTE 674  

Science Conference Proceedings (OSTI)

Page 1. NBS TECHNICAL NOTE 674 Page 2. NATIONAL BUREAU OF STANDARDS The National Bureau of Standards ...

2002-08-19T23:59:59.000Z

87

Focus group discussions among owners and non-owners of ground source heat pumps  

SciTech Connect

This research was sponsored by the Office of Buildings and Community Systems and conducted by the Pacific Northwest Laboratory as part of an ongoing effort to enhance the commercial use of federally developed technology. Federal dollars have supported research on the development of ground source heat pumps (GSHP) for several years. Though several companies currently sell GSHP's for residential use, their share of the total heating and air conditioning business remains less than one percent. Large manufacturing companies with national distribution have not yet added GSHP equipment to their product line. GSHP's use only about one half (Braud 1987) to one third (Bose 1987) of the energy needed to operate conventional furnaces and air conditioners. Consequently, a high level of market penetration by the GSHP offers direct benefits to both utility companies and individual users of the systems. Widespread use of these highly efficient systems will reduce both total energy consupmtion, and problems associated with high levels of energy use during peak periods. This will allow utility companies to delay capital expenditures for new facilities to meet the growing energy demand during peak periods. The cost effective use of electricity also reduces the likelihood of homeowners switching to a different fuel source for heating. 5 refs.

Roberson, B.F.

1988-07-01T23:59:59.000Z

88

Table HC3.4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005  

U.S. Energy Information Administration (EIA) Indexed Site

.4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005 .4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005 Million U.S. Housing Units Total................................................................ 111.1 78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Space Heating Equipment....... 1.2 0.6 0.3 N Q Q Q Have Main Space Heating Equipment.......... 109.8 77.5 63.7 4.2 1.8 2.2 5.6 Use Main Space Heating Equipment............ 109.1 77.2 63.6 4.2 1.8 2.1 5.6 Have Equipment But Do Not Use It.............. 0.8 0.3 Q N Q Q Q Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 41.8 35.3 2.8 1.2 1.0 1.6 Central Warm-Air Furnace........................ 44.7 34.8 29.7 2.3 0.7 0.6 1.4 For One Housing Unit........................... 42.9 34.3 29.5 2.3 0.6 0.6 1.4 For Two Housing Units..........................

89

TECHNICAL NOTE A  

NLE Websites -- All DOE Office Websites (Extended Search)

TECHNICAL NOTE A novel FRET approach for in situ investigation of cellulase-cellulose interaction Liqun Wang & Yiqing Wang & Arthur J. Ragauskas Received: 15 May 2010 Revised: 9...

90

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Prices, Sales Volumes & Stocks by State Prices, Sales Volumes & Stocks by State Definitions Key Terms Definition Aviation Gasoline (Finished) A complex mixture of relatively volatile hydrocarbons with or without small quantities of additives, blended to form a fuel suitable for use in aviation reciprocating engines. Fuel specifications are provided in ASTM Specification D 910 and Military Specification MIL-G-5572. Note: Data on blending components are not counted in data on finished aviation gasoline. Gas Plant Operator Any firm, including a gas plant owner, which operates a gas plant and keeps the gas plant records. A gas plant is a facility in which natural gas liquids are separated from natural gas or in which natural gas liquids are fractionated or otherwise separated into natural gas liquid products or both. For the purposes of this survey, gas plant operator data are contained in the refiner categories.

91

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Product Prices by Sales Type Petroleum Product Prices by Sales Type Definitions Key Terms Definition Aviation Gasoline (Finished) A complex mixture of relatively volatile hydrocarbons with or without small quantities of additives, blended to form a fuel suitable for use in aviation reciprocating engines. Fuel specifications are provided in ASTM Specification D 910 and Military Specification MIL-G-5572. Note: Data on blending components are not counted in data on finished aviation gasoline. Gas Plant Operator Any firm, including a gas plant owner, which operates a gas plant and keeps the gas plant records. A gas plant is a facility in which natural gas liquids are separated from natural gas or in which natural gas liquids are fractionated or otherwise separated into natural gas liquid products or both. For the purposes of this survey, gas plant operator data are contained in the refiner categories.

92

Linear Collider Collaboration Tech Notes  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 May 2001 Lattice Description for NLC Damping Rings at 120 Hz Andrzej Wolski Lawrence Berkeley National Laboratory Abstract: We present a lattice design for the NLC Main Damping Rings at 120 Hz repe tition rate. A total wiggler length of a little over 46 m is needed to achieve the damping time required for extracted, normalized, vertical emittance below 0.02 mm mrad. The dynamic aperture (using a linear model for the wiggler) is in excess of 15 times the injected beam size. The principal lattice parameters and characteristics are presented in this note; we also outline results of studies of alignment and field quality tolerances. CBP Tech Note-227 LCC-0061 Lattice Description for NLC Main Damping Rings at 120 Hz Andrzej Wolski Lawrence Berkeley National Laboratory

93

Company Level Imports Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Company Level Imports Explanatory Notes Company Level Imports Explanatory Notes Notice: Ongoing analysis of imports data to the Energy Information Administration reveals that some imports are not correctly reported on Form EIA-814 "Monthly Imports Report". Contact with the companies provides sufficient information for EIA to include these imports in the data even though they have not provided complete reports on Form EIA-814. Estimates are included in aggregate data, but the estimates are not included in the file of Company-Level Imports. Therefore, summation of volumes for PAD Districts 1-5 from the Company-Level Imports will not equal aggregate import totals. Explanation of Codes Used in Imports Database Files SURVEY_ID EIA-814 Survey Form Number for Collecting Petroleum Import Statistics

94

Manhattan Project: Potsdam Note  

Office of Scientific and Technical Information (OSTI)

POTSDAM NOTE POTSDAM NOTE Potsdam, Germany (July 1945) Resources > Photo Gallery Note written by President Harry S. Truman, in which he brags that Stalin did not understand when Truman hinted at Potsdam of a powerful new American weapon. (Scroll down to see the note.) Due to the success of Soviet espionage, however, Truman was incorrect-in fact, Stalin knew about the atomic bomb project three years before Truman did. Truman wrote this note on the back of a photograph of the Potsdam Conference taken on July 19, 1945. In the photograph Stalin talks with Truman and Secretary of State James Byrnes (both have their backs to the camera). The photograph of Potsdam is courtesy the Office of the Chief Signal Officer, War Department, U.S. Army; this image, and the photograph of Truman's writing on the back of it, are courtesy the National Archives.

95

Meeting Notes and Presentations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Board Notes and Slides Board Notes and Slides Notes from EM Corporate QA Board Tele-Conference - February 22, 2010 1 of 2 General: Attendance of voting board members was documented. All members were present or had a representative present on the call. Previous 5 Focus Areas: Dave Tuttel presented the proposed closeout of the previous 5 focus areas for the EM Corporate Board. * Focus Area 1 (Requirements Flow Down) - Board voted to close the focus area (unanimous) * Focus Area 2 (Adequate NQA-1 Suppliers) - Board voted to close the focus area (unanimous) * Focus Area 3 (CGI and Services Dedication) - Board voted to close the focus area (unanimous) * Focus Area 4 (Graded Approach to QA) -Discussion noted that the area as a whole may need more work in the future focus areas even though the procurement piece is ready to close out. The discussion also noted

96

national total  

U.S. Energy Information Administration (EIA)

AC Argentina AR Aruba AA Bahamas, The BF Barbados BB Belize BH Bolivia BL Brazil BR Cayman Islands CJ ... World Total ww NA--Table Posted: December 8, ...

97

EWS NOTES N  

NLE Websites -- All DOE Office Websites (Extended Search)

EWS NOTES EWS NOTES N f √ ν Fermilab Friends for Science Education Fermilab Friends for Science Education exists to support innovative science education programs. Fall, 2009 Lynda Ballingall, Mike McGee and Mary Jo Murphy at the Fermilab booth Can they accelerate the ball? Michael Cooke and David Schmitz with liquid helium A cryogenic cannon - how cool is that?! Fermilab was a year-long participant in Science Chicago's LabFest, a series of events throughout the

98

DOE/NNSA Facility Management Contracts Facility Owner Contractor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility Management Contracts Facility Management Contracts Facility Owner Contractor Award Date End Date Options/Award Term Ultimate Potential Expiration Date Contract FY Competed Parent Companies/ LLC Partners DOE Site Procurement Director DOE Contracting Officer SLAC National Accelerator Laboratory (SLAC) SC Stanford University DE-AC03-76SF00515 1/25/1981 9/30/2017 9/30/2017 M&O 1981 Stanford University Barbara Jackson 865-576-0976 Kyong H. Watson 650-926-5203 Pacific Northwest National Laboratory (PNNL) SC Battelle Memorial Institute DE-AC05-76RL01830 12/30/2002 9/30/2017 9/30/2017 M&O 1965 Battelle Memorial Institute Barbara Jackson 865-576-0976 Ryan Kilbury 509-372-4030 Brookhaven National Laboratory (BNL) SC Brookhaven Science Associates, LLC DE-AC02-98CH10886 1/5/1998 1/4/2015 1/4/2015 M&O 1998 Battelle Memorial Institute

99

DOE/NNSA Facility Management Contracts Facility Owner Contractor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility Management Contracts Facility Management Contracts Facility Owner Contractor Award Date End Date Options/Award Term Ultimate Potential Expiration Date Contract FY Competed Parent Companies/ LLC Partners DOE Site Procurement Director DOE Contracting Officer SLAC National Accelerator Laboratory (SLAC) SC Stanford University DE-AC03-76SF00515 1/25/1981 9/30/2017 9/30/2017 M&O 1981 Stanford University Barbara Jackson 865-576-0976 Kyong H. Watson 650-926-5203 Pacific Northwest National Laboratory (PNNL) SC Battelle Memorial Institute DE-AC05-76RL01830 12/30/2002 9/30/2017 9/30/2017 M&O 1965 Battelle Memorial Institute Barbara Jackson 865-576-0976 Ryan Kilbury 509-372-4030 Brookhaven National Laboratory (BNL) SC Brookhaven Science Associates, LLC DE-AC02-98CH10886 1/5/1998 1/4/2015 1/4/2015 M&O 1998 Battelle Memorial Institute

100

Keywords Europe Home-owners Housing wealth Pensions Welfare  

E-Print Network (OSTI)

Abstract Notwithstanding current market volatility, there has been exceptional expansion in owner-occupied housing sectors and increases in house prices across European countries in recent decades. In the EU, individual wealth held in housing equity, especially among older people, has been considered a substantial reserve that could be tapped into to meet future pension needs as the ageing of the population becomes a greater stress on European welfare states. This paper seeks to take the notion of property-based welfare further by examining, in principle at least, how home ownership may function as a pension across EU states. This firstly involves very approximate estimates of the types of, and rates of, income homeowners could hypothetically generate from their homes, including forms of income in kind. Secondly, criteria are identified to estimate how adequate such potential incomes are in relation to working incomes and in bringing retired households above poverty levels. Thirdly, different circumstances across EU member states with regard to existing housing and pension arrangements are examined. Broad national groupings appear evident, with housing income having least impact in older member states in central and northern Europe. The paper concludes that while the potential outcome of housing wealth is country specific, in many cases, greater dependency on home ownership in welfare provision, particularly if it is used as a substitute rather than a complement to existing arrangements, may have adverse consequences for many.

John Doling; Richard Ronald; J. Doling; R. Ronald; R. Ronald

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "owner note totals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Personalized Face Verification System Using Owner-Specific Cluster-Dependent LDA-Subspace  

Science Conference Proceedings (OSTI)

In this paper, we propose an owner-specific cluster-dependent linear discriminant analysis (OSCD-LDA) method, and apply it to develop a personalized face verification system. Before the owner enrollment, our system first divides all the training face ...

Hsien-Chang Liu; Chan-Hung Su; Yueh-Hsuan Chiang; Yi-Ping Hung

2004-08-01T23:59:59.000Z

102

DOE NSTB Researchers Demonstrate R&D Successes to Asset Owners at EnergySec  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NSTB Researchers Demonstrate R&D Successes to Asset Owners at NSTB Researchers Demonstrate R&D Successes to Asset Owners at EnergySec Conference DOE NSTB Researchers Demonstrate R&D Successes to Asset Owners at EnergySec Conference More than 150 energy sector leaders-including nearly 100 asset owners and operators-gathered at the 2009 EnergySec Annual Summit in Seattle, WA, on Sept. 23-24, where researchers from the Department of Energy's National SCADA Test Bed (NSTB) Program gave a four-hour demonstration and presentation of their Roadmap-related control systems security work. DOE NSTB Researchers Demonstrate R&D Successes to Asset Owners at EnergySec Conference More Documents & Publications DOE/OE National SCADA Test Bed Fiscal Year 2009 Work Plan Security is Not an Option DOE National SCADA Test Bed Program Multi-Year Plan

103

DOE NSTB Researchers Demonstrate R&D Successes to Asset Owners at EnergySec  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE NSTB Researchers Demonstrate R&D Successes to Asset Owners at DOE NSTB Researchers Demonstrate R&D Successes to Asset Owners at EnergySec Conference DOE NSTB Researchers Demonstrate R&D Successes to Asset Owners at EnergySec Conference October 1, 2009 - 1:26pm Addthis More than 150 energy sector leaders-including nearly 100 asset owners and operators-gathered at the 2009 EnergySec Annual Summit in Seattle, WA, on Sept. 23-24, where researchers from the Department of Energy's National SCADA Test Bed (NSTB) Program gave a four-hour demonstration and presentation of their Roadmap-related control systems security work. EnergySec is an information sharing forum with more than 230 utility members representing 75 energy companies across the nation. Its fifth annual conference drew asset owners, vendors, and government

104

Total Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & Ed55 Imports - Other Conventional Gasoline Imports - Motor Gasoline Blend. Components Imports - Motor Gasoline Blend. Components, RBOB Imports - Motor Gasoline Blend. Components, RBOB w/ Ether Imports - Motor Gasoline Blend. Components, RBOB w/ Alcohol Imports - Motor Gasoline Blend. Components, CBOB Imports - Motor Gasoline Blend. Components, GTAB Imports - Motor Gasoline Blend. Components, Other Imports - Fuel Ethanol Imports - Kerosene-Type Jet Fuel Imports - Distillate Fuel Oil Imports - Distillate F.O., 15 ppm Sulfur and Under Imports - Distillate F.O., > 15 ppm to 500 ppm Sulfur Imports - Distillate F.O., > 500 ppm to 2000 ppm Sulfur Imports - Distillate F.O., > 2000 ppm Sulfur Imports - Residual Fuel Oil Imports - Propane/Propylene Imports - Other Other Oils Imports - Kerosene Imports - NGPLs/LRGs (Excluding Propane/Propylene) Exports - Total Crude Oil and Products Exports - Crude Oil Exports - Products Exports - Finished Motor Gasoline Exports - Kerosene-Type Jet Fuel Exports - Distillate Fuel Oil Exports - Residual Fuel Oil Exports - Propane/Propylene Exports - Other Oils Net Imports - Total Crude Oil and Products Net Imports - Crude Oil Net Imports - Petroleum Products Period: Weekly 4-Week Avg.

105

muon Collider Notes  

NLE Websites -- All DOE Office Websites (Extended Search)

Muon Collider Notes Muon Collider Notes MC-001 D. Neuffer, "Colliding Muon Beams at 90 GeV" Fermilab Note FN-319, July 1979. MC-002 D. Neuffer, "Principles and Applications of Muon Cooling" Proc. of the 12th International Conf. on High-Energy Accelerators, p. 481, 1983. MC-003 V.V. Parkhomchuk and A.N. Skrinsky, "Ionization Cooling: Physics and Applications" Proc. of the 12th International Conf. on High-Energy Accelerators, p. 485, 1983. MC-004 E.A. Perevedentsev and A.N. Skrinsky, "On the Proton Klystron" Proc. of the 12th International Conf. on High-Energy Accelerators, p. 508, 1983. MC-005 D. Neuffer, "Principles and Applications of Muon Cooling" Particle Accelerators, Vol. 14, p. 75, 1983. MC-006 D. Neuffer, "Multi-TeV Muon Colliders" Proc. of the Advanced

106

Total Sales of Kerosene  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Farm All Other Period: End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 492,702 218,736 269,010 305,508 187,656 81,102 1984-2012 East Coast (PADD 1) 353,765 159,323 198,762 237,397 142,189 63,075 1984-2012 New England (PADD 1A) 94,635 42,570 56,661 53,363 38,448 15,983 1984-2012 Connecticut 13,006 6,710 8,800 7,437 7,087 2,143 1984-2012 Maine 46,431 19,923 25,158 24,281 17,396 7,394 1984-2012 Massachusetts 7,913 3,510 5,332 6,300 2,866 1,291 1984-2012 New Hampshire 14,454 6,675 8,353 7,435 5,472 1,977 1984-2012

107

Letter of Intent: Commercial Real Estate Developer/Owner | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Letter of Intent: Commercial Real Estate Developer/Owner Letter of Intent: Commercial Real Estate Developer/Owner Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources

108

Table 17. Purchases of enrichment services by owners and operators ...  

U.S. Energy Information Administration (EIA)

Next Release Date: May 2014 Enrichment Service Contract Type: U.S. Enrichment Foreign Enrichment: Total Spot : 0 521 : 521 Long-Term : 3,261 11,808 : 15,069

109

Total Thermal Management System for Hybrid and Full Electric Vehicles  

Total Thermal Management System for Hybrid and Full Electric Vehicles Note: The technology described above is an early stage opportunity. Licensing rights to this ...

110

Group Member Names: ________________________________________________ Scenario: You are the owner of a potato plant in Idaho. You have recently won a contract  

E-Print Network (OSTI)

: ________________________________________________ ________________________________________________ ________________________________________________ Scenario: You are the owner of a potato plant in Idaho. You have recently won a contract to supply Mc

Provancher, William

111

Summary Max Total Units  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Max Total Units Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water Refrig Voltage Cond Unit IF-CU Combos 2 4 5 28 References Refrig Voltage C-U type Compressor HP R-404A 208/1/60 Hermetic SA 2.5 R-507 230/1/60 Hermetic MA 2.5 208/3/60 SemiHerm SA 1.5 230/3/60 SemiHerm MA 1.5 SemiHerm HA 1.5 1000lb, remote rack systems, fresh water Refrig/system Voltage Combos 12 2 24 References Refrig/system Voltage IF only

112

MOTION TO INTERVENE OF THE NEW YORK TRANSMISSION OWNERS PP-230-4 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MOTION TO INTERVENE OF THE NEW YORK TRANSMISSION OWNERS PP-230-4 MOTION TO INTERVENE OF THE NEW YORK TRANSMISSION OWNERS PP-230-4 MOTION TO INTERVENE OF THE NEW YORK TRANSMISSION OWNERS PP-230-4 Pursuant to Rules 212 and 214 of the Rules of Practice and Procedure, 18 C.F.R. §§ 385.212 and 385.214 (2010), Central Hudson Gas & Electric Corporation, Consolidated Edison Company of New York, Inc., Long Island Power Authority, New York Power Authority, New York State Electric & Gas Corporation, Niagara Mohawk Power Corporation d/b/a National Grid, Orange and Rockland Utilities, Inc., and Rochester Gas and Electric Corporation (referred to herein as the "New York Transmission Owners"), individually and collectively move to intervene in the above-captioned proceeding and request an opportunity to comment on International Transmission Company's d/b/a/ ITCTransmission

113

note1.dvi  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Emittance Low-Emittance APS Lattice with Alternating Horizontal Beta Functions at Insertion Devices - formerly OAG-TN-2004-057 - Michael Borland-12/8/2004 - Accelerator Systems Division, Advanced Photon Source 1 Introduction Previously [1, 2] we looked at the possibility of reducing the horizontal beta function in a straight section in order to optimize the beam properties for certain uses. This is difficult to do as an insertion because of the many constraints on the APS lattice. In particular, the emittance inevitably increases, and it can only be done for one or two sectors. We noted in [1] that an ESRF-style lattice with alternating high- and low-β x sectors might provide reasonably good emittance for the APS, while providing two types of beta function. In this note, we present such a lattice that not only provides alternating β x , but also improved emittance. 2 Linear Optics For the

114

A comparison of noxious facilities` impacts for home owners versus renters  

Science Conference Proceedings (OSTI)

The siting of noxious facilities, such as hazardous waste facilities, is often vigorously opposed by local residents, and thus it is now common for local residents to be compensated for the presence of the facility. One technique that has been employed to implicitly value noxious facilities is the intercity hedonic approach, which examines the wage and land rent premia between cities that result from the presence of the facility. However, most of the focus has been on the behavior of home owners as opposed to renters. Since these two groups of residents vary on numerous dimensions such as marital status, age, sex, and personal mobility, it would not be surprising to find different marginal valuations of local site characteristics. The authors use 1980 Census data to derive separate estimates for owners and renters of the implicit value placed on eight different types of noxious facilities. They find that renters and owners differ in their response to noxious facilities, although the differences are not systematic. Furthermore, the differences between owners and renters are not primarily due to differential mobility or socio-demographic factors. Controlling those factors decreases the differences between renters` and owners` implicit valuations of noxious facilities by less than 10%. Unmeasured differences between the two groups, such as tastes, risk aversion, or commitment to the community, must account for the remaining difference in valuations. These findings suggest that policymakers should separately consider the responses of owners and renters when estimating noxious facility impacts.

Clark, D.E. [Marquette Univ., Milwaukee, WI (United States). Dept. of Economics]|[Argonne National Lab., IL (United States); Nieves, L.A. [Argonne National Lab., IL (United States)

1995-01-01T23:59:59.000Z

115

FINAL CONTRACT WITH OWNER 1 TOWN OF BABYLON  

E-Print Network (OSTI)

of the number and gender in which used, shall be deemed to include any other number and any other gender,330.00 DEDUCTIONS: LESS: Applied Energy Audit Expense $250.00 LESS: LIPA Rebate (@10% of qualified costs) TBD1 TOTAL DEDUCTIONS from CONTRACT AMOUNT $250.00 NET AMOUNT of BENEFIT ASSESSMENT $11,080.00 ESTIMATED ANNUAL ENERGY

Kammen, Daniel M.

116

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Motor Gasoline Motor Gasoline Definitions Key Terms Definition Bulk Sales Wholesale sales of gasoline in individual transactions which exceed the size of a truckload. Dealer Tank Wagon Sales (DTW) Wholesale sales of gasoline priced on a delivered basis to a retail outlet. Gas Plant Operator Any firm, including a gas plant owner, which operates a gas plant and keeps the gas plant records. A gas plant is a facility in which natural gas liquids are separated from natural gas or in which natural gas liquids are fractionated or otherwise separated into natural gas liquid products or both. For the purposes of this survey, gas plant operator data are contained in the refiner categories. Gasoline Grades The classification of gasoline by octane ratings. Each type of gasoline (conventional and reformulated) is classified by three grades - regular, midgrade, and premium. Note: gasoline sales are reported by grade in accordance with their classification at the time of sale. In general, automotive octane requirements are lower at high altitudes. Therefore, in some areas of the United States, such as the Rocky Mountain States, the octane ratings for the gasoline grades may be 2 or more octane points lower.

117

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Motor Gasoline Prices by Grade and Sales Type Motor Gasoline Prices by Grade and Sales Type Definitions Key Terms Definition Bulk Sales Wholesale sales of gasoline in individual transactions which exceed the size of a truckload. Dealer Tank Wagon Sales (DTW) Wholesale sales of gasoline priced on a delivered basis to a retail outlet. Gas Plant Operator Any firm, including a gas plant owner, which operates a gas plant and keeps the gas plant records. A gas plant is a facility in which natural gas liquids are separated from natural gas or in which natural gas liquids are fractionated or otherwise separated into natural gas liquid products or both. For the purposes of this survey, gas plant operator data are contained in the refiner categories. Gasoline Grades The classification of gasoline by octane ratings. Each type of gasoline (conventional and reformulated) is classified by three grades - regular, midgrade, and premium. Note: gasoline sales are reported by grade in accordance with their classification at the time of sale. In general, automotive octane requirements are lower at high altitudes. Therefore, in some areas of the United States, such as the Rocky Mountain States, the octane ratings for the gasoline grades may be 2 or more octane points lower.

118

Travel Notes - World Market Update  

Science Conference Proceedings (OSTI)

Travel notes, air travel, rail travel. Travel Notes - World Market Update Biofuels and Bioproducts and Biodiesel Processing Elearning Olive oil Industry Events Industrial Oil Products Abstracts Program Travel Hotel Short Courses Exhibits Regi

119

Turbine Oil Lube Notes Compilation  

Science Conference Proceedings (OSTI)

This report is a special compilation of the EPRI Nuclear Maintenance Applications Center's (NMAC's) "Lube Notes" articles (extracted from "Lube Notes Compilation, 1989-2001 (Report Number 1006848)) that relate specifically to the topic of turbine oils.

2002-11-25T23:59:59.000Z

120

Windows Installation Notes for EXPGUI  

Science Conference Proceedings (OSTI)

... These notes describe how GSAS & EXPGUI are installed using separate distribution files for GSAS, EXPGUI and Tcl/Tk. ...

Note: This page contains sample records for the topic "owner note totals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Manhattan Project: Sources and Notes  

Office of Scientific and Technical Information (OSTI)

SOURCES AND NOTES SOURCES AND NOTES Resources > Sources Below are the collected specific notes for the text and images used on the pages of this web site. For a discussion of the most important works on the Manhattan Project, see the "Suggested Readings." For a general discussion of the use of sources in this web site, see "A Note on Sources." To scan the sources and notes for various categories, choose from the list below. To view the sources and notes for a specific web page, see the footnote at the bottom of each page (exceptions include this page and the home page; the sources and notes for the home page are the first ones listed below). Home Events 1890s-1939: Atomic Discoveries 1939-1942: Early Government Support 1942: Difficult Choices

122

End Notes: Material Matters January 2007  

Science Conference Proceedings (OSTI)

A recent U.S. Supreme Court decision ruled that a prevailing patent owner in a patent infringement case cannot assume that it will obtain a permanent injunction ...

123

End Notes: Material Matters May 2007 - TMS  

Science Conference Proceedings (OSTI)

When the patent statute was amended, effective January 1, 1996, to broaden the exclusionary rights of a patent owner, the value of a patent and the enhanced...

124

Meeting Summary Notes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Transportation Stakeholders Forum (NTSF) National Transportation Stakeholders Forum (NTSF) May 26, 2010 Meeting Summary Notes Opening Remarks - Steve O'Connor, DOE Office of Packaging and Transportation Steve O'Connor, DOE/EM Office of Packaging and Transportation welcomed the group to this first National Transportation Stakeholders Forum (NTSF) and thanked the planning committee and the dedication of the Midwest Council of State Government for hosting the meeting. The NTSF will focus on transportation across the DOE complex. Mr. O'Connor announced that the meeting would be recorded and questions for the panel could either be written down and passed to the session moderator or asked via the central microphone. Planners for the meeting have worked to ensure a more engaging panel format and to minimize the use of formal presentations. Mr. O'Connor

125

Secretaries Chu and Donovan to Host Conference Call on Home Owners  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Donovan to Host Conference Call on Home Owners Donovan to Host Conference Call on Home Owners Energy-Saving Improvements Program Secretaries Chu and Donovan to Host Conference Call on Home Owners Energy-Saving Improvements Program April 20, 2011 - 12:00am Addthis WASHINGTON - Thursday, April 21st, U.S. Department of Energy Secretary Steven Chu and U.S. Housing and Urban Development Secretary Shaun Donovan will launch a new pilot program intended to offer homeowners low-cost financing to help make their homes more energy efficient. The Federal Housing Administration's (FHA) new PowerSaver Program will offer homeowners up to $25,000 to finance the installation of insulation, duct sealing, replacement doors and windows, HVAC systems, water heaters, solar panels, and geothermal systems. Donovan and Chu will speak with reporters following a tour of a local

126

Step 8: Work with the building owner to complete the ENERGY STAR lifecycle  

NLE Websites -- All DOE Office Websites (Extended Search)

8: Work with the building owner to complete the ENERGY STAR 8: Work with the building owner to complete the ENERGY STAR lifecycle Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Why you should design to earn the ENERGY STAR Follow EPA's step-by-step process Step 1: Assemble a team Step 2: Set an energy performance target Step 3: Evaluate your target using ENERGY STAR tools Step 4: Design to be energy efficient

127

A comparison of noxious facilities` impacts for home owners versus renters  

SciTech Connect

The siting of noxious facilities, such as hazardous waste facilities, is often vigorously opposed by local residents. As a result, one would expect people`s residential and employment choices to reflect a desire to avoid proximity to such facilities. Ibis behavior would in turn affect labor and housing prices. One technique that has been employed to implicitly value impacts of noxious facilities is the intercity hedonic approach, which examines the wage and land rent differentials among cities that result from environmental amenities and disamenities. However, most of the research focus has been on the behavioral response of home owners as opposed to renters. Since these two groups of residents vary on numerous dimensions such as marital status, age, sex, and personal mobility, it would not be surprising to find different marginal valuations of local site characteristics. We use 1980 Census data to derive separate estimates for owners and renters of the implicit value placed on eight different types of noxious facilities. Although the magnitude of the responses of renters and owners to noxious facilities and other environmental characteristics varies, the signs are generally consistent. The differences in values between owners and renters are not primarily due to differential mobility or sociodemographic factors. Controlling those factors decreases the differences between renters` and owners` implicit valuations by less than 10%. Unmeasured differences in characteristics between the two groups, such as tastes, risk aversion, or commitment to the community, must account for the remaining difference in valuations. These findings suggest that policymakers should separately consider the responses of owners and renters when estimating noxious facility impacts.

Clark, D.E. [Marquette Univ., Milwaukee, WI (United States). Dept. of Economics]|[Argonne National Lab., IL (United States); Nieves, L.A. [Argonne National Lab., IL (United States)

1996-09-01T23:59:59.000Z

128

Linear Collider Collaboration Tech Notes  

NLE Websites -- All DOE Office Websites (Extended Search)

NLC Home Page NLC Technical SLAC The LCC Tech Note series was started in July 1998 to document the JLC/NLC collaborative design effort. The notes are numbered sequentially and may also be given a SLAC, FNAL, LBNL, LLNL and/or KEK publication number. The LCC notes will be distributed through the Web in electronic form as PDF files -- the authors are responsible for keeping the original documents. Other document series are the NLC Notes that were started for the SLAC ZDR, the KEK ATF Notes, and at some future time there should be a series of Technical (NLD) Notes to document work on detector studies for the next-generation linear collider. LCC-0001 "Memorandum of Understanding between KEK and SLAC," 2/98. LCC-0002 "Transparencies and Summaries from the 1st ISG meeting: January 1998," G. Loew, ed., 2/98.

129

Cogeneration for industrial and mixed-use parks. Volume 3. A guide for park developers, owners, and tenants. Final report  

SciTech Connect

Using cogeneration in mixed-use and industrial parks can cut energy costs ad smooth out peak load demands - benefits for servicing utilities and park owners and tenants. The two handbooks developed by this project can help utilities identify existing or planned parks as potential cogeneration sites as well as help developers and park owners evaluate the advantages of cogeneration. The second handbook (volume 3) describes the benefits of cogeneration for park developers, owners, and tenants.

Schiller, S.R.; Minicucci, D.D.; Tamaro, R.F.

1986-05-01T23:59:59.000Z

130

Coordinator's Notes: Thinking Gender 2009  

E-Print Network (OSTI)

forward to attending Thinking Gender on February 5, 2010, asUntil then Thinking Gender 2009 Conference Coordinator, TGCOORDINATORs NOTES Thinking Gender 2009 Usually, when I

Riojas, Mirasol

2009-01-01T23:59:59.000Z

131

Search notes by: Eyal Amir  

E-Print Network (OSTI)

Search notes by: Eyal Amir April 26, 1997 Abstract Search is ubiquitous in AI. Here we Unguided Search 3 2.1 Breadth First Search

Amir, Eyal

132

Research Park Notes, Issue 20  

NLE Websites -- All DOE Office Websites (Extended Search)

0, September 4, 2001 Welcome to Research Park Notes Look for tidbits of information on National Environmental Research Park activities, observations, and users every couple of...

133

Research Park Notes, Issue 14  

NLE Websites -- All DOE Office Websites (Extended Search)

4, May 29, 2001 Welcome to Research Park Notes Look for tidbits of information on National Environmental Research Park activities, observations, and users every couple of weeks....

134

Research Park Notes, Issue 17  

NLE Websites -- All DOE Office Websites (Extended Search)

7, July 24, 2001 Welcome to Research Park Notes Look for tidbits of information on National Environmental Research Park activities, observations, and users every couple of weeks....

135

Research Park Notes, Issue 16  

NLE Websites -- All DOE Office Websites (Extended Search)

6, July 10, 2001 Welcome to Research Park Notes Look for tidbits of information on National Environmental Research Park activities, observations, and users every couple of weeks....

136

Research Park Notes, Issue 22  

NLE Websites -- All DOE Office Websites (Extended Search)

2, October 2, 2001 Welcome to Research Park Notes Look for tidbits of information on National Environmental Research Park activities, observations, and users every couple of...

137

Research Park Notes, Issue 25  

NLE Websites -- All DOE Office Websites (Extended Search)

5, November 13, 2001 Welcome to Research Park Notes Look for tidbits of information on National Environmental Research Park activities, observations, and users every couple of...

138

Research Park Notes, Issue 15  

NLE Websites -- All DOE Office Websites (Extended Search)

5, June 12, 2001 Welcome to Research Park Notes Look for tidbits of information on National Environmental Research Park activities, observations, and users every couple of weeks....

139

Facility Name Facility Name Facility FacilityType Owner Developer EnergyPurchaser  

Open Energy Info (EERE)

Name Facility Name Facility FacilityType Owner Developer EnergyPurchaser Name Facility Name Facility FacilityType Owner Developer EnergyPurchaser Place GeneratingCapacity NumberOfUnits CommercialOnlineDate WindTurbineManufacturer FacilityStatus Coordinates D Metals D Metals D Metals Definition Small Scale Wind Valley City OH MW Northern Power Systems In Service AB Tehachapi Wind Farm AB Tehachapi Wind Farm AB Tehachapi Definition Commercial Scale Wind Coram Energy AB Energy Southern California Edison Co Tehachapi CA MW Vestas In Service AFCEE MMR Turbines AFCEE MMR Turbines AFCEE MMR Turbines Definition Commercial Scale Wind AFCEE Air Force Center for Engineering and the Environment Distributed generation net metered Camp Edwards Sandwich MA MW GE Energy In Service AG Land AG Land AG Land Definition Community Wind AG Land Energy LLC

140

Solar PV Project Financing: Regulatory and Legislative Challenges for Third-Party PPA System Owners (Revised)  

NLE Websites -- All DOE Office Websites (Extended Search)

23 23 Revised February 2010 Solar PV Project Financing: Regulatory and Legislative Challenges for Third-Party PPA System Owners Katharine Kollins Duke University Bethany Speer and Karlynn Cory National Renewable Energy Laboratory National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-6A2-46723 Revised February 2010 Solar PV Project Financing: Regulatory and Legislative Challenges for Third-Party PPA System Owners Katharine Kollins Duke University Bethany Speer and Karlynn Cory

Note: This page contains sample records for the topic "owner note totals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

ARM - Measurement - Total cloud water  

NLE Websites -- All DOE Office Websites (Extended Search)

cloud water cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The total concentration (mass/vol) of ice and liquid water particles in a cloud; this includes condensed water content (CWC). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. External Instruments NCEPGFS : National Centers for Environment Prediction Global Forecast System Field Campaign Instruments CSI : Cloud Spectrometer and Impactor PDI : Phase Doppler Interferometer

142

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Total Stocks Total Stocks Definitions Key Terms Definition All Other Motor Gasoline Blending Components Naphthas (e.g. straight-run gasoline, alkylate, reformate, benzene, toluene, xylene) used for blending or compounding into finished motor gasoline. Includes receipts and inputs of Gasoline Treated as Blendstock (GTAB). Excludes conventional blendstock for oxygenate blending (CBOB), reformulated blendstock for oxygenate blending, oxygenates (e.g. fuel ethanol and methyl tertiary butyl ether), butane, and pentanes plus. Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton.

143

ConsumTechNotes2011.vp  

Gasoline and Diesel Fuel Update (EIA)

The The following six sections, one for each energy source and total energy, provide: descriptions of all the data series that are entered into SEDS; the formulas applied in SEDS for creating additional data series; and notes on special circumstances for any series. Appendix A is an alphabetical listing of the variable names and formulas used in consumption estimation; Appendix B lists the conversion factors used to convert physical units into British thermal units and cites the sources for those factors; Appendix C provides the state-level resident pop- ulation data used in per capita calculations; Appendix D presents the real gross domestic product by state used to calculate total energy per real dol- lar of economic output; Appendix E provides metric and other physical conversion factors for measures used in energy analyses; and Appendix F summarizes changes made since the last complete

144

ConsumTechNotes2011.vp  

Gasoline and Diesel Fuel Update (EIA)

Section Section 1. Documentation Guide This section describes the data identification codes in the State Energy Data System (SEDS). The following six sections, one for each energy source and total energy, provide: descriptions of all the data series that are entered into SEDS; the formulas applied in SEDS for creating additional data series; and notes on special circumstances for any series. Appendix A is an alphabetical listing of the variable names and formulas used in consumption estimation; Appendix B lists the conversion factors used to convert physical units into British thermal units and cites the sources for those factors; Appendix C provides the state-level resident pop- ulation data used in per capita calculations; Appendix D presents the real gross domestic product by state used to calculate total energy per real dol- lar of economic output; Appendix E provides metric and other

145

Total Adjusted Sales of Kerosene  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Farm All Other Period: End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 492,702 218,736 269,010 305,508 187,656 81,102 1984-2012 East Coast (PADD 1) 353,765 159,323 198,762 237,397 142,189 63,075 1984-2012 New England (PADD 1A) 94,635 42,570 56,661 53,363 38,448 15,983 1984-2012 Connecticut 13,006 6,710 8,800 7,437 7,087 2,143 1984-2012 Maine 46,431 19,923 25,158 24,281 17,396 7,394 1984-2012 Massachusetts 7,913 3,510 5,332 6,300 2,866 1,291 1984-2012 New Hampshire 14,454 6,675 8,353 7,435 5,472 1,977 1984-2012

146

Total OECD Oil Stocks  

Gasoline and Diesel Fuel Update (EIA)

5 Notes: OECD oil inventory levels are not expected to rise sufficiently during the rest of the year to match the average levels seen prior to the wide swings since 1995. This...

147

Linear Collider Collaboration Tech Notes  

NLE Websites -- All DOE Office Websites (Extended Search)

Notes Notes LCC - 0038 29/04/00 CBP Tech Note - 234 Transverse Field Profile of the NLC Damping Rings Electromagnet Wiggler 29 April 2000 17 J. Corlett and S. Marks Lawrence Berkeley National Laboratory M. C. Ross Stanford Linear Accelerator Center Stanford, CA Abstract: The primary effort for damping ring wiggler studies has been to develop a credible radiation hard electromagnet wiggler conceptual design that meets NLC main electron and positron damping ring physics requirements [1]. Based upon an early assessment of requirements, a hybrid magnet similar to existing designs satisfies basic requirements. However, radiation damage is potentially a serious problem for the Nd-Fe-B permanent magnet material, and cost remains an issue for samarium cobalt magnets. Superconducting magnet designs have not been

148

them. A French military officer noted in 1750 that Indians living near Fort Figu  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

them. A French military officer noted in 1750 that Indians living near Fort Figure 11. Petroleum Production and Consumption them. A French military officer noted in 1750 that Indians living near Fort Figure 11. Petroleum Production and Consumption Duquesne (now the site of Pittsburgh) set fire to an oil-slicked creek as part of a religious ceremony. As settlement by Europeans proceeded, oil' was discovered in many places in northwestern Pennsylvania and western New York-to tile frequent dismay of the well-owners, who were drilling for salt brine./ >' Cons umption/ In the mid-1800s expanding uses for oil extracted from coal and shale began to hint at the value of rock oil and encouraged the search for readily accessible A Production supplies. This impetus launched the modem petroleum age, which began on a t 10 - Sunday afternoon in August 1859 at Oil Creek, near Titusville in northwestern-\

149

DOE NSTB Researchers Demonstrate R&D Successes to Asset Owners at EnergySec Conference  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NSTB Researchers Demonstrate R&D Successes to Asset Owners at EnergySec Conference NSTB Researchers Demonstrate R&D Successes to Asset Owners at EnergySec Conference October 1, 2009 More than 150 energy sector leaders-including nearly 100 asset owners and operators-gathered at the 2009 EnergySec Annual Summit in Seattle, WA, on Sept. 23-24, where researchers from the Department of Energy's National SCADA Test Bed (NSTB) Program gave a four-hour demonstration and presentation of their Roadmap-related control systems security work. EnergySec is an information sharing forum with more than 230 utility members representing 75 energy companies across the nation. Its fifth annual conference drew asset owners, vendors, and government representatives for presentations and discussions on NERC CIP standards, collaborative industry efforts

150

Community Resilience: Workshops on Private Sector and Property Owner Requirements for Recovery and Restoration from a Diasaster  

SciTech Connect

This report summarizes the results of a proejct sponsored by DTRA to 1) Assess the readiness of private-sector businesses, building owners, and service providers to restore property and recover operations in the aftermath of a wide-area dispersal of anthrax; and 2) Understand what private property owners and businesses "want and need" from federal, state, and local government to support recovery and restoration from such an incident.

Judd, Kathleen S.; Stein, Steven L.; Lesperance, Ann M.

2008-12-22T23:59:59.000Z

151

Natural Gas Total Liquids Extracted  

U.S. Energy Information Administration (EIA) Indexed Site

Thousand Barrels) Thousand Barrels) Data Series: Natural Gas Processed Total Liquids Extracted NGPL Production, Gaseous Equivalent Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History U.S. 658,291 673,677 720,612 749,095 792,481 873,563 1983-2012 Alabama 13,381 11,753 11,667 13,065 1983-2010 Alaska 22,419 20,779 19,542 17,798 18,314 18,339 1983-2012 Arkansas 126 103 125 160 212 336 1983-2012 California 11,388 11,179 11,042 10,400 9,831 9,923 1983-2012 Colorado 27,447 37,804 47,705 57,924 1983-2010 Florida 103 16 1983-2008 Illinois 38 33 24 231 705 0 1983-2012

152

Explanatory Notes Explanatory Notes The EIA-782 Surveys Background  

Gasoline and Diesel Fuel Update (EIA)

Explanatory Notes Explanatory Notes The EIA-782 Surveys Background The EIA-782 surveys were implemented in 1983 to fulfill the data requirements necessary to meet En- ergy Information Administration (EIA) legislative mandates and user community data needs. The re- quirements include petroleum product price, market distribution, demand (or sales), and product supply data, which are needed for a complete evaluation of petroleum market performance. The EIA-782 series includes the Form EIA-782A, "Refiners'/Gas Plant Operators' Monthly Petroleum Product Sales Re- port"; Form EIA-782B, "Resellers'/Retailers' Monthly Petroleum Product Sales Report"; and Form EIA- 782C, "Monthly Report of Prime Supplier Sales of Petroleum Products Sold for Local Consumption."

153

Commissioning : The Total Process  

E-Print Network (OSTI)

In recent years, most new buildings have been equipped with increasingly sophisticated heating, ventilating, and air-conditioning (HVAC) systems, energy conservation equipment, lighting systems, security systems, and environmental control devices that rely on electronic control. Very frequently these systems and design features have not performed as expected. This can result in energy-efficiency losses. occupant complaints about comfort, indoor air quality problems. high operating costs, and increased liability for building owners, operators, employers, and design professionals. Building commissioning was developed in response to these concerns. Commissioning involves the examining and testing of building systems to verify aspects of the building design, ensure that the building is constructed in accordance with the contract documents, and verify that the building and its systems function according to the design intent documents. The process helps to integrate and organize the design, construction, operations, and maintenance of a building's systems to produce a healthy, comfortable, and efficient facility.

Kettler, G. J.

1998-01-01T23:59:59.000Z

154

Solar PV Project Financing: Regulatory and Legislative Challenges for Third-Party PPA System Owners  

DOE Green Energy (OSTI)

Residential and commercial end users of electricity who want to generate electricity using on-site solar photovoltaic (PV) systems face challenging initial and O&M costs. The third-party ownership power purchase agreement (PPA) finance model addresses these and other challenges. It allows developers to build and own PV systems on customers? properties and sell power back to customers. However, third-party electricity sales commonly face five regulatory challenges. The first three challenges involve legislative or regulatory definitions of electric utilities, power generation equipment, and providers of electric services. These definitions may compel third-party owners of solar PV systems to comply with regulations that may be cost prohibitive. Third-party owners face an additional challenge if they may not net meter, a practice that provides significant financial incentive to owning solar PV systems. Finally, municipalities and cooperatives worry about the regulatory implications of allowing an entity to sell electricity within their service territories. This paper summarizes these challenges, when they occur, and how they have been addressed in five states. This paper also presents alternative to the third-party ownership PPA finance model, including solar leases, contractual intermediaries, standardized contract language, federal investment tax credits, clean renewable energy bonds, and waived monopoly powers.

Kollins, K.; Speer, B.; Cory, K.

2009-11-01T23:59:59.000Z

155

Linear Collider Collaboration Tech Notes  

NLE Websites -- All DOE Office Websites (Extended Search)

Notes Notes LCC - 0018, 15/06/99 Rev B, June 2002 Correct Account of RF Deflections in Linac Acceleration June 15, 1999 G.V. Stupakov Stanford Linear Accelerator Center Stanford, California Abstract: During acceleration in the linac structure, the beam not only increases its longitudinal momentum, but also experiences a transverse kick from the accelerating mode which is linear in accelerating gradient. This effect is neglected in such computer codes as LIAR and TRANSPORT. We derived the Hamiltonian equations that describe the effect of RF deflection into the acceleration process and included it into the computational engine of LIAR. By comparing orbits for the NLC main linac, we found that the difference between the two algorithms is about 10\%. The effect will be more pronounced at smaller

156

Linear Collider Collaboration Tech Notes  

NLE Websites -- All DOE Office Websites (Extended Search)

4, 10/03/00 4, 10/03/00 Luminosity for NLC Design Variations March 10, 1999 K.A. Thompson and T.O. Raubenheimer Stanford Linear Accelerator Center Stanford, CA, USA Abstract: In this note we give Guineapig simulation results for the luminosity and luminosity spectrum of three baseline NLC designs at 0.5~TeV and 1.0~TeV and compare the simulation results with analytic approximations. We examine the effects of varying several design parameters away from the NLC-B-500 and NLC-B-1000 designs, in order to study possible trade-offs of parameters that could ease tolerances, increase luminosity, or help to optimize machine operation for specific physics processes. Luminosity for NLC Design Variations K.A. Thompson and T.O.Raubenheimer INTRODUCTION In this note we give Guineapig [l] simulation results for the luminosity and

157

EM QA Working Group September 2011 Notes  

Energy.gov (U.S. Department of Energy (DOE))

Meeting minutes and notes from the EM QA Working Group video conference meeting held in September 2011.

158

Appendix A Explanatory Notes - Energy Information Administration  

U.S. Energy Information Administration (EIA)

October 2013 U.S. Energy Information Administration | Natural Gas Monthly 89 Appendix A Explanatory Notes The Energy Information ...

159

Lecture notes for criticality safety  

Science Conference Proceedings (OSTI)

These lecture notes for criticality safety are prepared for the training of Department of Energy supervisory, project management, and administrative staff. Technical training and basic mathematics are assumed. The notes are designed for a two-day course, taught by two lecturers. Video tapes may be used at the options of the instructors. The notes provide all the materials that are necessary but outside reading will assist in the fullest understanding. The course begins with a nuclear physics overview. The reader is led from the macroscopic world into the microscopic world of atoms and the elementary particles that constitute atoms. The particles, their masses and sizes and properties associated with radioactive decay and fission are introduced along with Einstein's mass-energy equivalence. Radioactive decay, nuclear reactions, radiation penetration, shielding and health-effects are discussed to understand protection in case of a criticality accident. Fission, the fission products, particles and energy released are presented to appreciate the dangers of criticality. Nuclear cross sections are introduced to understand the effectiveness of slow neutrons to produce fission. Chain reactors are presented as an economy; effective use of the neutrons from fission leads to more fission resulting in a power reactor or a criticality excursion. The six-factor formula is presented for managing the neutron budget. This leads to concepts of material and geometric buckling which are used in simple calculations to assure safety from criticality. Experimental measurements and computer code calculations of criticality are discussed. To emphasize the reality, historical criticality accidents are presented in a table with major ones discussed to provide lessons-learned. Finally, standards, NRC guides and regulations, and DOE orders relating to criticality protection are presented.

Fullwood, R.

1992-03-01T23:59:59.000Z

160

Lessons Learned From Implementation of Westinghouse Owners Group Risk-Informed Inservice Inspection Methodology for Piping  

SciTech Connect

Risk-informed inservice inspection (ISI) programs have been in use for over seven years as an alternative to current regulatory requirements in the development and implementation of ISI programs for nuclear plant piping systems. Programs using the Westinghouse Owners Group (WOG) (now known as the Pressurized Water Reactor Owners Group - PWROG) risk-informed ISI methodology have been developed and implemented within the U.S. and several other countries. Additionally, many plants have conducted or are in the process of conducting updates to their risk-informed ISI programs. In the development and implementation of these risk-informed ISI programs and the associated updates to those programs, the following important lessons learned have been identified and are addressed. Concepts such as 'loss of inventory', which are typically not modeled in a plant's probabilistic risk assessment (PRA) model for all systems. The importance of considering operator actions in the identification of consequences associated with a piping failure and the categorization of segments as high safety significant (HSS) or low safety significant (LSS). The impact that the above considerations have had on the large early release frequency (LERF) and categorization of segments as HSS or LSS. The importance of automation. Making the update process more efficient to reduce costs associated with maintaining the risk-informed ISI program. The insights gained are associated with many of the steps in the risk-informed ISI process including: development of the consequences associated with piping failures, categorization of segments, structural element selection and program updates. Many of these lessons learned have impacted the results of the risk-informed ISI programs and have impacted the updates to those programs. This paper summarizes the lessons learned and insights gained from the application of the WOG risk-informed ISI methodology in the U.S., Europe and Asia. (authors)

Stevenson, Paul R.; Haessler, Richard L. [Westinghouse Electric Company, LLC (United States); McNeill, Alex [Dominion Energy, Innsbrook Technical Center (United States); Pyne, Mark A. [Duke Energy (United States); West, Raymond A. [Dominion Nuclear Connecticut, Inc. - Dominion Generation (United States)

2006-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "owner note totals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

BUILDING TECHNOLOGIES PROGRAM CODE NOTES  

NLE Websites -- All DOE Office Websites (Extended Search)

IECC IECC BUILDING TECHNOLOGIES PROGRAM CODE NOTES 1 The intent of the pipe insulation requirements is to reduce temperature changes while fluids are being transported through piping associated with heating, cooling or service hot water (SHW) systems, thereby saving energy and reducing operating costs. Uninsulated piping systems that transport fluids can create water temperature irregularities, which ultimately requires additional heating or cooling and associated energy costs to bring the water to operating temperature. Any piping that carries heated or cooled water, including piping systems with external heating (e.g., heat trace or impedance heating), should be thermally insulated to reduce heat loss or gain, allowing the fluid to be delivered at the intended temperature.

162

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

163

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

164

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

165

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

166

47318 Federal Register / Vol. 77, No. 153 / Wednesday, August 8, 2012 / Rules and Regulations bluefin tuna landed by owners of  

E-Print Network (OSTI)

bluefin tuna landed by owners of vessels not permitted to do so under § 635.4, or purchase, receive, or transfer, or attempt to purchase, receive, or transfer Atlantic bluefin tuna without the appropriate valid Federal Atlantic tunas dealer permit issued under § 635.4. Purchase, receive, or transfer or attempt

167

The consumer's guide to earth sheltered housing: A step-by-step workbook for prospective owners  

SciTech Connect

Earth sheltered homes have captured the imagination of many homeowners seeking the cost and energy savings features they offer. This book provides the discussion of the advantages and disadvantages of such homes and includes illustrations showing interiors and exteriors with advise to owners on dealine with architects and contractors.

Rollwagen, M.

1985-01-01T23:59:59.000Z

168

Total Working Gas Capacity  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2008 2009 2010 2011 2012 View History U.S. 4,211,193 4,327,844 4,410,224 4,483,650 4,576,356 2008-2012 Alabama 20,900 20,900 25,150 27,350 27,350 2008-2012 Arkansas 14,500 13,898 13,898 12,036 12,178 2008-2012 California 283,796 296,096 311,096 335,396 349,296 2008-2012 Colorado 42,579 48,129 49,119 48,709 60,582 2008-2012 Illinois 296,318 303,761 303,500 302,385 302,962 2008-2012 Indiana 32,769 32,157 32,982 33,024 33,024 2008-2012 Iowa 87,350 87,414 90,613 91,113 90,313 2008-2012 Kansas 119,260 119,339 123,190 123,225 123,343 2008-2012 Kentucky

169

ARM - Measurement - Net broadband total irradiance  

NLE Websites -- All DOE Office Websites (Extended Search)

govMeasurementsNet broadband total irradiance govMeasurementsNet broadband total irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Net broadband total irradiance The difference between upwelling and downwelling, covering longwave and shortwave radiation. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments EBBR : Energy Balance Bowen Ratio Station SEBS : Surface Energy Balance System External Instruments ECMWF : European Centre for Medium Range Weather Forecasts Model

170

Safety Evaluation Report related to Hydrogen Control Owners Group assessment of Mark 3 containments  

DOE Green Energy (OSTI)

Title 10 of the Code of Federal Regulations (10 CFR), Section 50.44 Standards for Combustible Gas Control System in Light-Water-Cooled Power Reactors,'' requires that systems be provided to control hydrogen concentration in the containment atmosphere following an accident to ensure that containment integrity is maintained. The purpose of this report is to provide regulatory guidance to licensees with Mark III containments with regard to demonstrating compliance with 10 CFR 50.44, Section (c)(3)(vi) and (c)(3)(vii). In this report, the staff provides its evaluation of the generic methodology proposed by the Hydrogen Control Owners Group. This generic methodology is documented in Topical Report HGN-112-NP, Generic Hydrogen Control Information for BWR/6 Mark III Containments.'' In addition, the staff has recommended that the vulnerability to interruption of power to the hydrogen igniters be evaluated further on a plant-specific basis as part of the individual plant examination of the plants with Mark III containments. 10 figs., 1 tab.

Li, C.Y.; Kudrick, J.A.

1990-10-01T23:59:59.000Z

171

Imports of Total Motor Gasoline  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether and RBOB ...

172

Stocks of Total Motor Gasoline  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Stocks include those ...

173

129 Lecture Notes Relativistic Quantum Mechanics  

E-Print Network (OSTI)

129 Lecture Notes Relativistic Quantum Mechanics 1 Need for Relativistic Quantum Mechanics's equation of motion in mechanics. The initial condtions to solve the Newton's equation of motion

Murayama, Hitoshi

174

NETL: LabNotes - September 2008  

NLE Websites -- All DOE Office Websites (Extended Search)

Student says studying biogas at NETL was a great learning experience (Editor's note: Penn State student Justin Weber spent his summer at NETL studying the effectiveness of a...

175

A Note on the Consumption Function  

E-Print Network (OSTI)

Zeldes, S. (1989) Consumption and Liquidity Constraints:A Note on the Consumption Function Douglas G.Steigerwald Consumption Function The international

Steigerwald, Douglas G

2009-01-01T23:59:59.000Z

176

DOE Sustainability Assistance Network (SAN) Notes, Thursday,...  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 of 4 DOE Sustainability Assistance Network (SAN) Notes Thursday, November 15, 2012 1. Sustainability Performance Office Highlights Paul Estabrooks, SPO The Sustainability...

177

Table Definitions, Sources, and Explanatory Notes  

Annual Energy Outlook 2012 (EIA)

refer to the EIA Energy Glossary. Sources Energy Information Administration, Office of Oil and Gas Explanatory Notes Shale Gas production data collected in conjunction with...

178

Mac OS X Installation Notes for EXPGUI  

Science Conference Proceedings (OSTI)

... of the following steps: On the finder window for the ... Proceed through the windows by pressing Continue (note ... Mac OS X books that cover this subject ...

179

COURSE NOTES: Nuclear Materials (NE120)  

Science Conference Proceedings (OSTI)

Feb 10, 2007 ... This resource provides PDF lecture notes and readings for an undergraduate course covering materials issues in nuclear power systems.

180

MODELING IN COMPUTATIONAL BIOLOGY NOTES OF ... - CECM  

E-Print Network (OSTI)

MODELING IN COMPUTATIONAL BIOLOGY. NOTES OF WEEK 9. 1. Fully Observed Markov Model: F. Sometimes we want to model a process of generating...

Note: This page contains sample records for the topic "owner note totals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Linear Collider Collaboration Tech Notes LCC-0076  

NLE Websites -- All DOE Office Websites (Extended Search)

6 CBPTech Note - 238 November 2001 Transport Lines for the NLC Damping Rings Andrzej Wolski November 2001 Lawrence Berkeley National Laboratory Berkeley, California Abstract: The...

182

References and Notes for Astatine ( At )  

Science Conference Proceedings (OSTI)

... Switch to Formatted Version References and Notes for Astatine ( At ). M64a R. McLaughlin, J. Opt. Soc. Am. 54, 965 (1964).

183

References and Notes for Astatine ( At )  

Science Conference Proceedings (OSTI)

... Version References and Notes for Astatine ( At ). Ref. ID, Reference, M64a, R. McLaughlin, J. Opt. Soc. Am. 54, 965 (1964).

184

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

185

Total OECD Oil Stocks*  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: The most recent data show OECD inventories remaining at very low levels. EIA expects inventories to remain low through the coming year. This increases the potential for price volatility through the rest of the winter, and into the next gasoline season. Inventories are a good measure of the supply/demand balance that affects prices. A large over-supply (production greater than demand) will put downward pressure on prices, while under-supply will push prices upward. As global oil production changed relative to demand, the world moved from a period of over-supply in 1998 to one of under-supply in 1999 and 2000. OECD inventories illustrate the changes in the world petroleum balance. OECD inventories rose to high levels during 1997 and 1998 when production exceeded demand and prices dropped to around $10 per barrel in

186

Total OECD Oil Stocks*  

Gasoline and Diesel Fuel Update (EIA)

7 7 Notes: As global production changed relative to demand, the world moved from a period of "over supply" in 1998 to one of "under supply" in 1999 and 2000. Inventories are a good means of seeing the imbalance between petroleum production and demand. For example, when production exceeds demand, inventories rise. A large over supply will put downward pressure on prices, while under supply will cause prices to rise. OECD inventories illustrate the changes in the world petroleum balance. OECD inventories rose to high levels during 1997 and 1998 when production exceeded demand and prices dropped to around $10 per barrel in December 1998. However, when demand exceeded production in 1999 and early 2000, inventories fell to the low levels seen above, and prices rose to $35 per

187

Total OECD Oil Stocks*  

Gasoline and Diesel Fuel Update (EIA)

9 9 Notes: The most recent data show OECD inventories remaining at very low levels. EIA expects inventories to remain low through the coming year. This increases the potential for price volatility through the winter, and even extending to the next gasoline season. Inventories are a good measure of the supply/demand balance that effects prices. A large over-supply (production greater than demand) will put downward pressure on prices, while under-supply will push prices upward. As global oil production changed relative to demand, the world moved from a period of over-supply in 1998 to one of under-supply in 1999 and 2000. OECD inventories illustrate the changes in the world petroleum balance. OECD inventories rose to high levels during 1997 and 1998 when production exceeded demand and prices dropped to around $10 per barrel in

188

Estimation Methodology for Total and Elemental Mercury Emissions from Coal-Fired Power Plants  

Science Conference Proceedings (OSTI)

This report provides a tool for estimating total and speciated mercury emissions from coal-fired power plants. The mercury emissions methodology is based on EPRI's analyses of the results from the U.S. Environmental Protection Agency (EPA) Mercury Information Collection Request (ICR). The Mercury ICR required owner/operators of coal-fired electric utility steam generating units to report for calendar year 1999 the quantity of fuel consumed and the mercury content of that fuel. In addition, 84 power plant...

2001-04-18T23:59:59.000Z

189

TESLA-LNF TECHNICAL NOTE Divisione Acceleratori  

E-Print Network (OSTI)

TESLA-LNF TECHNICAL NOTE _____________ Divisione Acceleratori Frascati, November 20, 2003 Note: TESLA Report 2003-26 TESLA DAMPING RING: INJECTION/EXTRACTION SCHEMES WITH RF DEFLECTORS D. Alesini, S/extraction schemes in the Damping Ring of TESLA using RF deflectors. We illustrate different possible solutions using

190

U.S. Total Exports  

U.S. Energy Information Administration (EIA) Indexed Site

TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

191

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

192

Connecting Distributed Energy Resources to the Grid: Their Benefits to the DER Owner etc.  

SciTech Connect

The vision of the Distributed Energy Research Program (DER) program of the U.S. Department of Energy (DOE) is that the United States will have the cleanest and most efficient and reliable energy system in the world by maximizing the use of affordable distributed energy resources. Electricity consumers will be able to choose from a diverse number of efficient, cost-effective, and environmentally friendly distributed energy options and easily connect them into the nation's energy infrastructure while providing benefits to their owners and other stakeholders. The long-term goal of this vision is that DER will achieve a 20% share of new electric capacity additions in the United States by 2010, thereby helping to make the nation's electric power generation and delivery system more efficient, reliable, secure, clean, economical, and diverse in terms of fuel use (oil, natural gas, solar, hydroelectric, etc.) and prime mover resource (solar, wind, gas turbines, etc.). Near- and mid-term goals are to develop new technologies for implementing and operating DER and address barriers associated with DER usage and then to reduce costs and emissions and improve the efficiency and reliability of DER. Numerous strategies for meeting these goals have been developed into a research, development, and demonstration (RD&D) program that supports generation and delivery systems architecture, including modeling and simulation tools. The benefits associated with DER installations are often significant and numerous. They almost always provide tangible economic benefits, such as energy savings or transmission and distribution upgrade deferrals, as well as intangible benefits, such as power quality improvements that lengthen maintenance or repair intervals for power equipment. Also, the benefits routinely are dispersed among end users, utilities, and the public. For instance, an end user may use the DER to reduce their peak demand and save money due to lower demand charges. Reduced end user peak demand, in turn, may lower a distribution system peak load such that upgrades are deferred or avoided. This could benefit other consumers by providing them with higher reliability and power quality as well as avoiding their cost share of a distribution system upgrade. In this example, the costs of the DER may be born by the end user, but that user reaps only a share of the benefits. This report, the first product of a study to quantify the value of DER, documents initial project efforts to develop an assessment methodology. The focus of currently available site-specific DER assessment techniques are typically limited to two parties, the owner/user and the local utility. Rarely are the impacts on other stakeholders, including interconnected distribution utilities, transmission system operators, generating system operators, other local utility customers, local and regional industry and business, various levels of government, and the environment considered. The goal of this assessment is to quantify benefits and cost savings that accrue broadly across a region, recognizing that DER installations may have local, regional, or national benefits.

Poore, WP

2003-07-09T23:59:59.000Z

193

Manhattan Project: A Note on Sources  

Office of Scientific and Technical Information (OSTI)

A NOTE ON SOURCES A NOTE ON SOURCES Resources > Note on Sources The text for this web site is a combination of original material and adaptations from previous publications of the Department of Energy (including contractors), its predecessor agencies (primarily the Atomic Energy Commission and the Manhattan Engineer District), and other government agencies. Adaptations run the gamut from summaries to close paraphrases to text being taken directly. This material was gathered and adapted for use by the DOE's Office of History and Heritage Resources. For detailed notes on what sources were used for any particular page, see the footnote at the bottom of the page or its entry in Sources and Notes. For a discussion of the best general sources on the Manhattan Project, see the Suggested Readings.

194

STEPS TO ESTABLISH A REAL-TIME TRANSMISSION MONITORING SYSTEM FOR TRANSMISSION OWNERS AND OPERATORS WITHIN THE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STEPS TO ESTABLISH A REAL-TIME TRANSMISSION MONITORING STEPS TO ESTABLISH A REAL-TIME TRANSMISSION MONITORING SYSTEM FOR TRANSMISSION OWNERS AND OPERATORS WITHIN THE EASTERN AND WESTERN INTERCONNECTIONS A REPORT TO CONGRESS PURSUANT TO SECTION 1839 OF THE ENERGY POLICY ACT OF 2005 Prepared by United States Department of Energy & Federal Energy Regulatory Commission February 3, 2006 Report to Congress Joint Report by the Department of Energy and Federal Energy Regulatory Commission on Steps to Establish a Real-Time Transmission Monitoring System for Transmission Owners and Operators within the Eastern and Western Interconnections February 2006 Executive Summary In August 2003, an electrical outage in one state precipitated a cascading blackout across seven other states and as far north as a province in Canada, leaving more than 50 million

195

21 briefing pages total  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

briefing pages total p. 1 briefing pages total p. 1 Reservist Differential Briefing U.S. Office of Personnel Management December 11, 2009 p. 2 Agenda - Introduction of Speakers - Background - References/Tools - Overview of Reservist Differential Authority - Qualifying Active Duty Service and Military Orders - Understanding Military Leave and Earnings Statements p. 3 Background 5 U.S.C. 5538 (Section 751 of the Omnibus Appropriations Act, 2009, March 11, 2009) (Public Law 111-8) Law requires OPM to consult with DOD Law effective first day of first pay period on or after March 11, 2009 (March 15 for most executive branch employees) Number of affected employees unclear p. 4 Next Steps

196

Barge Truck Total  

U.S. Energy Information Administration (EIA) Indexed Site

Barge Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over total shipments Year (nominal) (real) (real) (percent) (nominal) (real) (real) (percent) 2008 $6.26 $5.77 $36.50 15.8% 42.3% $6.12 $5.64 $36.36 15.5% 22.2% 2009 $6.23 $5.67 $52.71 10.8% 94.8% $4.90 $4.46 $33.18 13.5% 25.1% 2010 $6.41 $5.77 $50.83 11.4% 96.8% $6.20 $5.59 $36.26 15.4% 38.9% Annual Percent Change First to Last Year 1.2% 0.0% 18.0% - - 0.7% -0.4% -0.1% - - Latest 2 Years 2.9% 1.7% -3.6% - - 26.6% 25.2% 9.3% - - - = No data reported or value not applicable STB Data Source: The Surface Transportation Board's 900-Byte Carload Waybill Sample EIA Data Source: Form EIA-923 Power Plant Operations Report

197

ARM - Measurement - Shortwave broadband total downwelling irradiance  

NLE Websites -- All DOE Office Websites (Extended Search)

downwelling irradiance downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband total downwelling irradiance The total diffuse and direct radiant energy that comes from some continuous range of directions, at wavelengths between 0.4 and 4 {mu}m, that is being emitted downwards. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AMC : Ameriflux Measurement Component BSRN : Baseline Solar Radiation Network

198

Total Sales of Residual Fuel Oil  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 10,706,479 8,341,552 6,908,028 7,233,765 6,358,120 6,022,115 1984-2012 East Coast (PADD 1) 5,527,235 4,043,975 2,972,575 2,994,245 2,397,932 2,019,294 1984-2012 New England (PADD 1A) 614,965 435,262 281,895 218,926 150,462 101,957 1984-2012 Connecticut 88,053 33,494 31,508 41,686 6,534 5,540 1984-2012 Maine 152,082 110,648 129,181 92,567 83,603 49,235 1984-2012 Massachusetts 300,530 230,057 59,627 52,228 34,862 30,474 1984-2012

199

Guide to Combined Heat and Power Systems for Boiler Owners and Operators  

Science Conference Proceedings (OSTI)

Combined heat and power (CHP) or cogeneration is the sequential production of two forms of useful energy from a single fuel source. In most CHP applications, chemical energy in fuel is converted to both mechanical and thermal energy. The mechanical energy is generally used to generate electricity, while the thermal energy or heat is used to produce steam, hot water, or hot air. Depending on the application, CHP is referred to by various names including Building Cooling, Heating, and Power (BCHP); Cooling, Heating, and Power for Buildings (CHPB); Combined Cooling, Heating, and Power (CCHP); Integrated Energy Systems (IES), or Distributed Energy Resources (DER). The principal technical advantage of a CHP system is its ability to extract more useful energy from fuel compared to traditional energy systems such as conventional power plants that only generate electricity and industrial boiler systems that only produce steam or hot water for process applications. By using fuel energy for both power and heat production, CHP systems can be very energy efficient and have the potential to produce electricity below the price charged by the local power provider. Another important incentive for applying cogeneration technology is to reduce or eliminate dependency on the electrical grid. For some industrial processes, the consequences of losing power for even a short period of time are unacceptable. The primary objective of the guide is to present information needed to evaluate the viability of cogeneration for new or existing industrial, commercial, and institutional (ICI) boiler installations and to make informed CHP equipment selection decisions. Information presented is meant to help boiler owners and operators understand the potential benefits derived from implementing a CHP project and recognize opportunities for successful application of cogeneration technology. Topics covered in the guide follow: (1) an overview of cogeneration technology with discussions about benefits of applying cogeneration technology and barriers to implementing cogeneration technology; (2) applicable federal regulations and permitting issues; (3) descriptions of prime movers commonly used in CHP applications, including discussions about design characteristics, heat-recovery options and equipment, fuels and emissions, efficiency, maintenance, availability, and capital cost; (4) electrical generators and electrical interconnection equipment; (5) cooling and dehumidification equipment; (6) thermodynamic cycle options and configurations; (7) steps for evaluating the technical and economic feasibility of applying cogeneration technology; and (8) information sources.

Oland, CB

2004-08-19T23:59:59.000Z

200

Note: 2005 Changes in Coal Distribution Table Format and Data Sources  

U.S. Energy Information Administration (EIA) Indexed Site

Note: 2005 Changes in Coal Distribution Table Format and Data Sources" Note: 2005 Changes in Coal Distribution Table Format and Data Sources" "Domestic and Foreign Distribution of U.S. Coal by State of Origin, 2005 (Thousand Short Tons)" "State / Region","Domestic*","Foreign*","Total" "Alabama",5432,4214,9646 "Alaska",899,503,1402 "Arizona",12806,"- ",12806 "Arkansas",2,"- ",2 "Colorado",35766,706,36472 "Illinois",26664,284,26949 "Indiana",24074,11,24086 "Kansas",170,"- ",170 "Kentucky Total",100152,3148,103300 "East",77397,3127,80524 "West",22754,22,22776 "Louisiana",3970,"- ",3970 "Maryland",5252,754,6007

Note: This page contains sample records for the topic "owner note totals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

U.S. Total Exports  

Annual Energy Outlook 2012 (EIA)

NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan...

202

Property:Notes | Open Energy Information  

Open Energy Info (EERE)

Notes Notes Jump to: navigation, search Property Name Notes Property Type Text Pages using the property "Notes" Showing 25 pages using this property. (previous 25) (next 25) 2 2-M Probe At Alum Area (Kratt, Et Al., 2010) + More than 100 new 2m measurements at Astor Pass, Nevada resolved additional details of near-surface thermal outflow in this blind geothermal system 2-M Probe At Astor Pass Area (Kratt, Et Al., 2010) + More than 100 new 2m measurements at Astor Pass, Nevada resolved additional details of near-surface thermal outflow in this blind geothermal system 2-M Probe At Columbus Salt Marsh Area (Kratt, Et Al., 2010) + At Columbus Salt Marsh, Nevada, additional 2m measurements better defined the shape of a blind, shallow thermal anomaly; also at this location deeper temperature measurements were used to develop a near-surface temperature gradient.

203

221B Lecture Notes Relativistic Quantum Mechanics  

E-Print Network (OSTI)

221B Lecture Notes Relativistic Quantum Mechanics 1 Need for Relativistic Quantum Mechanics We, similarly to the Newton's equation of motion in mechanics. The initial condtions to solve the Newton

Murayama, Hitoshi

204

221B Lecture Notes Relativistic Quantum Mechanics  

E-Print Network (OSTI)

221B Lecture Notes Relativistic Quantum Mechanics 1 Need for Relativistic Quantum Mechanics We's equation of motion in mechanics. The initial condtions to solve the Newton's equation of motion

Murayama, Hitoshi

205

2009 Environmental Sustainability Network Conference Call Notes  

NLE Websites -- All DOE Office Websites (Extended Search)

Notes 1. 450.1A Guidance Update - Jane Powers (HS-22), (202) 586-7301, Jane.Powers@hq.doe.gov The Directives Review Board placed the four proposed guidance documents related to...

206

1998 Update --- Notes in the Particle Listings  

NLE Websites -- All DOE Office Websites (Extended Search)

the Reviews, Tables, and Plots and in the Particle Listings Notes in the Gauge and Higgs Boson Listings PostScript PDF (3 pages) The Mass of the W Boson PostScript PDF (12 pages)...

207

Lube Notes Compilation, 1989-2001  

Science Conference Proceedings (OSTI)

Much of the equipment installed in nuclear and fossil power plants relies on proper lubrication for trouble-free operation. EPRI's Nuclear Maintenance Applications Center (NMAC) began publishing the "Lube Notes" newsletter in 1989 to assist maintenance personnel in addressing plant lubrication issues. Each issue provides guidance on lubricant selection, application, and testing in specific plant applications. This report compiles all of the "Lube Notes" published from 1989 through 2001. A subject index i...

2002-05-01T23:59:59.000Z

208

NERSC Users Group Meeting February 22, 2001 Notes for Greenbook...  

NLE Websites -- All DOE Office Websites (Extended Search)

Notes Notes for Greenbook Process W. Kramer's Flip Charts - Input from the attendees on the Greenbook NUG Meeting February 22-23, 2001 The following are notes transcribed from the...

209

Total Marketed Production ..............  

Gasoline and Diesel Fuel Update (EIA)

billion cubic feet per day) billion cubic feet per day) Total Marketed Production .............. 68.95 69.77 70.45 71.64 71.91 71.70 71.46 71.57 72.61 72.68 72.41 72.62 70.21 71.66 72.58 Alaska ......................................... 1.04 0.91 0.79 0.96 1.00 0.85 0.77 0.93 0.97 0.83 0.75 0.91 0.93 0.88 0.87 Federal GOM (a) ......................... 3.93 3.64 3.44 3.82 3.83 3.77 3.73 3.50 3.71 3.67 3.63 3.46 3.71 3.70 3.62 Lower 48 States (excl GOM) ...... 63.97 65.21 66.21 66.86 67.08 67.08 66.96 67.14 67.92 68.18 68.02 68.24 65.58 67.07 68.09 Total Dry Gas Production .............. 65.46 66.21 66.69 67.79 68.03 67.83 67.61 67.71 68.69 68.76 68.50 68.70 66.55 67.79 68.66 Gross Imports ................................ 8.48 7.60 7.80 7.95 8.27 7.59 7.96 7.91 7.89 7.17 7.61 7.73 7.96 7.93 7.60 Pipeline ........................................

210

Total Biofuels Consumption (2005 - 2009) Total annual biofuels...  

Open Energy Info (EERE)

Total Biofuels Consumption (2005 - 2009) Total annual biofuels consumption (Thousand Barrels Per Day) for 2005 - 2009 for over 230 countries and regions. ...

211

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas > Natural Gas Information Query System > Definitions, Sources, & Notes Natural Gas > Natural Gas Information Query System > Definitions, Sources, & Notes Definitions, Sources, and Explanatory Notes The EIA-176 form contains responses submitted from an identified universe of pipelines, local distribution companies, and operators of fields, wells or gas processing plants, who distribute gas to end users or transport gas across State borders; or underground natural gas storage operators. Definitions Key Terms Definition Commercial Consumption Gas used by nonmanufacturing establishments or agencies primarily engaged in the sale of goods or services. Included are such establishments as hotels, restaurants, wholesale and retail stores and other service enterprises; gas used by local, State, and Federal agencies engaged in nonmanufacturing activities.

212

ConsumTechNotes2011.vp  

Gasoline and Diesel Fuel Update (EIA)

Note: Note: The conversion factor for asphalt is 5.5 barrels per short ton. ASTM: American Society for Testing and Materials Aviation Gasoline (Finished): A complex mixture of relatively volatile hydrocarbons with or without small quantities of additives, blended to form a fuel suitable for use in aviation reciprocating engines. Fuel specifi- cations are provided in ASTM Specification D 910 and Military Specifica- tion MIL-G-5572. Note: Data on blending components are not counted in data on finished aviation gasoline. Aviation Gasoline Blending Components: Naphthas that will be used for blending or compounding into finished aviation gasoline (e.g., straight run gasoline, alkylate, reformate, benzene, toluene, and xylene). Excludes ox- ygenates (alcohols, ethers), butane, and pentanes plus. Oxygenates are re- ported as other hydrocarbons, hydrogen, and oxygenates. Barrel

213

NETL: NewsRoom - LabNotes  

NLE Websites -- All DOE Office Websites (Extended Search)

LabNotes LabNotes NewsRoom LabNotes January 2014 Chemical Looping 101: The Basics NETL's Chemical Looping Research Facilities Oxygen Carriers in Chemical Looping Combustion Chemical Looping Modeling and Simulation Research at NETL December 2013 Foamed Cement Can Seal Tricky Oil and Gas Wells November 2013 High-Performance Rechargeable Batteries May Help Keep the Lights On Rocks Demystified in Geomechanical Properties Lab October 2013 NETL's Morgantown Supercomputer Sets a High Bar for Energy Efficiency September 2013 NETL's Energy Data Exchange (EDX): Providing Access to Quality Energy Data Sorbents Capturing CO2 Will Make Power Plants Cleaner August 2013 Collaborative Technology Demonstrates Potential in Diabetes Testing Quantifying Uncertainty in Computer Model Predictions

214

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

U.S. Refiner Motor Gasoline Prices by Formulation, Grade, Sales Type U.S. Refiner Motor Gasoline Prices by Formulation, Grade, Sales Type Definitions Key Terms Definition Bulk Sales Wholesale sales of gasoline in individual transactions which exceed the size of a truckload. Conventional Finished motor gasoline not included in the oxygenated or reformulated gasoline categories. Excludes reformulated gasoline blendstock for oxygenate blending (RBOB) as well as other blendstock. Dealer Tank Wagon Sales (DTW) Wholesale sales of gasoline priced on a delivered basis to a retail outlet. Gas Plant Operator Any firm, including a gas plant owner, which operates a gas plant and keeps the gas plant records. A gas plant is a facility in which natural gas liquids are separated from natural gas or in which natural gas liquids are fractionated or otherwise separated into natural gas liquid products or both. For the purposes of this survey, gas plant operator data are contained in the refiner categories.

215

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Residual Fuel Prices by Sales Type Residual Fuel Prices by Sales Type Definitions Key Terms Definition Gas Plant Operator Any firm, including a gas plant owner, which operates a gas plant and keeps the gas plant records. A gas plant is a facility in which natural gas liquids are separated from natural gas or in which natural gas liquids are fractionated or otherwise separated into natural gas liquid products or both. For the purposes of this survey, gas plant operator data are contained in the refiner categories. Petroleum Administration for Defense District (PADD): PADD 1 (East Coast): PADD 1A (New England): Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont. PADD 1B (Central Atlantic): Delaware, District of Columbia, Maryland, New Jersey, New York, Pennsylvania.

216

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Motor Gasoline Prices by Formulation, Grade, Sales Type Motor Gasoline Prices by Formulation, Grade, Sales Type Definitions Key Terms Definition Bulk Sales Wholesale sales of gasoline in individual transactions which exceed the size of a truckload. Conventional Finished motor gasoline not included in the oxygenated or reformulated gasoline categories. Excludes reformulated gasoline blendstock for oxygenate blending (RBOB) as well as other blendstock. Dealer Tank Wagon Sales (DTW) Wholesale sales of gasoline priced on a delivered basis to a retail outlet. Gas Plant Operator Any firm, including a gas plant owner, which operates a gas plant and keeps the gas plant records. A gas plant is a facility in which natural gas liquids are separated from natural gas or in which natural gas liquids are fractionated or otherwise separated into natural gas liquid products or both. For the purposes of this survey, gas plant operator data are contained in the refiner categories.

217

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings* ........................... 3,037 115 397 384 52 1,143 22 354 64 148 357 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 386 19 43 18 11 93 7 137 8 12 38 5,001 to 10,000 .......................... 262 12 35 17 5 83 4 56 6 9 35 10,001 to 25,000 ........................ 407 20 46 44 8 151 3 53 9 19 54 25,001 to 50,000 ........................ 350 15 55 50 9 121 2 34 7 16 42 50,001 to 100,000 ...................... 405 16 57 65 7 158 2 29 6 18 45 100,001 to 200,000 .................... 483 16 62 80 5 195 1 24 Q 31 56 200,001 to 500,000 .................... 361 8 51 54 5 162 1 9 8 19 43 Over 500,000 ............................. 383 8 47 56 3 181 2 12 8 23 43 Principal Building Activity

218

ARM - Measurement - Shortwave narrowband total upwelling irradiance  

NLE Websites -- All DOE Office Websites (Extended Search)

upwelling irradiance upwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband total upwelling irradiance The rate at which radiant energy, in narrow bands of wavelengths shorter than approximately 4 {mu}m, passes through a horizontal unit area in an upward direction. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments MFR : Multifilter Radiometer Field Campaign Instruments RAD-AIR : Airborne Radiometers

219

ARM - Measurement - Shortwave narrowband total downwelling irradiance  

NLE Websites -- All DOE Office Websites (Extended Search)

downwelling irradiance downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband total downwelling irradiance The rate at which radiant energy, in narrow bands of wavelengths shorter than approximately 4 {mu}m, passes through a horizontal unit area in a downward direction. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments MFRSR : Multifilter Rotating Shadowband Radiometer NFOV : Narrow Field of View Zenith Radiometer

220

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

Note: This page contains sample records for the topic "owner note totals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

222

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Total Energy Total Energy Glossary › FAQS › Overview Data Monthly Annual Analysis & Projections All Reports Most Requested Annual Monthly Projections U.S. States Annual Energy Review September 2012 PDF | previous editions Release Date: September 27, 2012 Important notes about the data Note: The emphasis of the Annual Energy Review (AER) is on long-term trends. Analysts may wish to use the data in this report in conjunction with EIA's monthly releases that offer updates to the most recent years' data. In particular, see the Monthly Energy Review for statistics that include updates to many of the annual series in this report. Data Years Displayed: For tables beginning in 1949, some early years (usually 1951-1954, 1956-1959, 1961-1964, 1966-1969, and 1971-1974) are not

223

Percentage of Total Natural Gas Commercial Deliveries included in Prices  

Gasoline and Diesel Fuel Update (EIA)

City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. 63.3 59.3 57.9 57.0 57.4 61.3 1983-2013 Alabama 71.7 71.0 68.5 68.2 68.4 66.7 1989-2013 Alaska 94.1 91.6 91.1 91.0 92.3 92.6 1989-2013 Arizona 84.0 83.0 81.6 80.3 82.8 82.7 1989-2013 Arkansas 37.8 28.3 28.1 28.6 26.7 28.0 1989-2013

224

Percentage of Total Natural Gas Industrial Deliveries included in Prices  

Gasoline and Diesel Fuel Update (EIA)

City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. 16.5 16.3 16.0 16.2 16.6 16.9 2001-2013 Alabama 22.1 21.7 21.6 22.8 22.0 22.7 2001-2013 Alaska 100.0 100.0 100.0 100.0 100.0 100.0 2001-2013 Arizona 13.4 15.7 15.3 13.8 13.7 13.9 2001-2013 Arkansas 1.7 1.4 1.2 1.4 1.3 1.5 2001-2013

225

Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis  

SciTech Connect

Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

Ekechukwu, A.A.

2002-05-10T23:59:59.000Z

226

Property:CompletionNotes | Open Energy Information  

Open Energy Info (EERE)

CompletionNotes CompletionNotes Jump to: navigation, search Property Name CompletionNotes Property Type Text Description List of data that still needs to be researched and entered for the NEPA document Subproperties This property has the following 2 subproperties: C CA-96062042 D DOI-BLM-CA-ES-2013-002+1793-EIS Pages using the property "CompletionNotes" Showing 25 pages using this property. (previous 25) (next 25) B BLM-NV-WN-ES-08-01-1310, NV-020-08-01 + 8/2: Data reviewed for completion C CA-017-05-051 + 8/9 Data entry complete. Attached FONSI does not seem to be fully related to the attached EA. The FONSI is for a geothermal well and slimhole exploration project and the EA is for a pipeline project. Need to add Public Health and Safety as a resource 8/22/13 - The 'FONSI/DR is actually for EA CA-170-02-15 Bassalt Canyon..dated Jan 2002 KW 8/26/13 - I deleted the FONSI from this page. Filename is incorrect for the file and stands as "CA-017-05-51-EA-DR -FONSI.pdf," Andrew Gentile. Unable to find Final EA or FONSI online. When RMP added, add "Inyo National Forest "Land and Resource Management Plan" (LRMP) 1988"

227

Nukes (notes on PFFP) Chain reactions  

E-Print Network (OSTI)

corresponds to 300 million kg of TNT = 300 ktons Energetics But the Hiroshima bomb (10 kg) only release 20 Clouds" Nagasaki Atomic Bomb 1945 Volcanic Eruption (Mount Redoubt) Not characteristic of nuclear bombs weapons and nuclear power reactors. #12;Chain reactions in nuclear fission bomb Note the number

Browder, Tom

228

EndNote Web Brief Guide  

E-Print Network (OSTI)

EndNote Web Brief Guide Victoria T. Kok Head, Veterinary Medical Library Virginia Polytechnic Institute & State University February 2010 #12;CREATING AN ENDNOTE WEB ACCOUNT Through Web-of-Knowledge: · GototheLibraryHomepagehttp://www.lib.vt.eduandlocatetheWebofKnowledge database. · ClickonMyEndnoteWeb

Wynne, Randolph H.

229

A Note on Supersymmetric Chiral Bosons  

E-Print Network (OSTI)

In this note we extend the Pasti-Sorokin-Tonin formalism for chiral bosons in two dimensions to $N=(1,1)$ and $N=(2,2)$ superspace. In the latter case the formalism is developed for chiral, twisted chiral and semi-chiral superfields.

Alexander Sevrin; Daniel C. Thompson

2013-05-21T23:59:59.000Z

230

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

231

Channels and sources used to gather equine-related information by college-age horse owners and enthusiasts  

E-Print Network (OSTI)

This thesis identifies the equine-related topics that are important to Texas college-age horse owners and enthusiasts and the channels/sources they use to get equine-related information. Little research has focused on this group to determine their information needs. Therefore, two focus groups were conducted in 2008 in Texas with college-age horse owners and enthusiasts to conduct a needs assessment. Participants were separated into competitive and recreational groups depending on their level of participation in the industry. They were asked what topics they consider important and what channels/sources they use to gain desired information. Training was the most mentioned topic overall, and the most mentioned by recreational participants. Alternative medical treatments was the most mentioned topic by competitive participants. Competitive participants reported a smaller number of topics as important, indicating that they have specialized information needs. Recreational participants emphasized broader, less specialized topics. Participants showed an interest in relevant and controversial topics affecting the equine industry. Participants also used a combination of channels/sources and competitive and recreational participants often placed importance on different channels/sources. Face-to-face communication was important to both groups. Magazines were important to competitive participants, while the Internet was important to recreational participants. Competitive participants doubted the trustworthiness of sources available through the Internet, but wanted more reliable sources to be made available in the future. Participants preferred to get information from industry specialist sources, such as trainers, veterinarians, other owners and enthusiasts, breed associations, and equine magazines. Participants perceptions of trustworthiness were affected by the sources ability to demonstrate equine-specific knowledge and the sources reputation and success among equine industry members. The results suggests that the influence of the Internet has altered the traditional models of communication in which source selection determines channel use. In this study, the participants Internet channel selection often determined their source use. The results also suggests that communicators wanting to reach this audience should target specific topics to competitive and recreational audiences, use a multi-channel approach, establish trustworthiness, and explore the changing role of the Internet in agricultural communication.

Sullivan, Erin Alene

2008-12-01T23:59:59.000Z

232

Total Natural Gas Underground Storage Capacity  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Existing fields ...

233

Ending Stocks - Total Fuel Ethanol & Oxygenates  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

234

Total Working Gas Capacity - Energy Information Administration  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Existing fields ...

235

Total Crude by Trucks - Energy Information Administration  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

236

Total Crude by All Transport Methods  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

237

Message from the Owner of the Improved Financial Performance Initiative of the Presidents Management Agenda:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

I am enthusiastic and proud to be the owner of the Improved Financial Performance initiative of the President's Management Agenda (PMA) in the Department of Energy (DOE). The Department has received clean opinions on its annual financial statements for six straight years with no material internal control weaknesses identified by the auditors. Further, DOE was successful in maintaining its clean opinion for the FY 2004 financial statements while accelerating issuance to 45 days after the end of the fiscal year. For the third quarter of FY 2004, when the Department of Energy received a Green status score on Improved Financial Performance, DOE was one of only five agencies with a Green status score on this initiative. I am enormously proud

238

Combinatorial aspects of total positivity  

E-Print Network (OSTI)

In this thesis I study combinatorial aspects of an emerging field known as total positivity. The classical theory of total positivity concerns matrices in which all minors are nonnegative. While this theory was pioneered ...

Williams, Lauren Kiyomi

2005-01-01T23:59:59.000Z

239

Linear Collider Collaboration Tech Notes LCC-0109  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 TESLA 2002-11 CBP Tech Note-269 November 2002 Alignment Stability Models for Damping Rings Andrej Wolski Lawrence Berkeley National Laboratory University of California Berkeley, CA Winfried Decking Deutsches Elektron Synchrotron (DESY) Hamburg, Germany Abstract: Linear collider damping rings are highly sensitive to magnet alignment. Emittance tuning simulations for current designs of damping rings for TESLA and NLC have given encouraging results, but depend on invasive measurements of dispersion. The frequency with which such measurements must be made is therefore an operational issue, and depends on the time stability of the alignment. In this note, we consider three effects that lead to misalignment and the need to retune the damping ring: (1)

240

Linear Collider Collaboration Tech Notes LCC-0063  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 May 2001 Varying alpha/lambda in NLC Structures - BNS Damping and Emittance Growth G. Stupakov and Z. Li Stanford Linear Accelerator Center Stanford, CA Abstract: In this note we consider the effect of varying this iris opening in the NLC structures on the beam dynamics and the rf efficiency in the linac. Varying a/λ in NLC structures - BNS damping and emittance growth G. Stupakov and Z. Li SLAC, Stanford University, Stanford, CA 94309 In this note we consider the effect of the varying the iris opening a in the NLC structures on the beam dynamics and the RF efficiency in the linac. The most important consequence of the variation of the iris openings is the change of the longitudinal and transverse wakefields. Wake as a function of parameter a for the NLC structures has been previously calculated by K. Bane. Here we will use his

Note: This page contains sample records for the topic "owner note totals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Retail Gasoline and Diesel Surveys Retail Gasoline and Diesel Surveys Definitions Key Terms Definition Conventional Area Any area that does not require the sale of reformulated gasoline. All types of finished motor gasoline may be sold in this area. Conventional Gasoline Finished motor gasoline not included in the reformulated gasoline category. Excludes reformulated gasoline blendstock for oxygenate blending (RBOB) as well as other blendstock. Note: this survey designates all motor gasoline collected within a conventional area as conventional gasoline (see conventional area). Gasoline Grades The classification of gasoline by octane ratings. Each type of gasoline (conventional and reformulated) is classified by three grades - regular, midgrade, and premium. Note: gasoline sales are reported by grade in accordance with their classification at the time of sale. In general, automotive octane requirements are lower at high altitudes. Therefore, in some areas of the United States, such as the Rocky Mountain States, the octane ratings for the gasoline grades may be 2 or more octane points lower.

242

A Note on Search Trees Jianer Chen  

E-Print Network (OSTI)

in (0, ) such that f(r) = 0 for r (0, ) implies that f (r) > 0. Suppose further that f is continuous than one root in (0, ). Let r1 and r2, with r1 r2, be two consecutive such roots (note that we can always find two consecutive roots r1 and r2 because f (r) > 0 for any root r). From the hypothesis, we

Schaefer, Marcus

243

EART 265 Lecture Notes: Energy Energy Usage  

E-Print Network (OSTI)

EART 265 Lecture Notes: Energy Energy Usage US per capita energy usage is 10 kW. This represents 1 of 2 kW. Euro- pean countries tend to use less energy per capita by a factor of 2. China's per capita/4 of the worldwide energy usage, and with 1/20th of the world population gives a global average power consumption

Nimmo, Francis

244

Total correlations and mutual information  

E-Print Network (OSTI)

In quantum information theory it is generally accepted that quantum mutual information is an information-theoretic measure of total correlations of a bipartite quantum state. We argue that there exist quantum states for which quantum mutual information cannot be considered as a measure of total correlations. Moreover, for these states we propose a different way of quantifying total correlations.

Zbigniew Walczak

2008-06-30T23:59:59.000Z

245

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Residual Fuel Oil and No. 4 Fuel Oil Residual Fuel Oil and No. 4 Fuel Oil Definitions Key Terms Definition Gas Plant Operator Any firm, including a gas plant owner, which operates a gas plant and keeps the gas plant records. A gas plant is a facility in which natural gas liquids are separated from natural gas or in which natural gas liquids are fractionated or otherwise separated into natural gas liquid products or both. For the purposes of this survey, gas plant operator data are contained in the refiner categories. No. 4 Fuel A distillate fuel oil made by blending distillate fuel oil and residual fuel oil stocks. It conforms with ASTM Specification D 396 or Federal Specification VV-F-815C and is used extensively in industrial plants and in commercial burner installations that are not equipped with preheating facilities. It also includes No. 4 diesel fuel used for low- and medium-speed diesel engines and conforms to ASTM Specification D 975.

246

Total.................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

49.2 49.2 15.1 15.6 11.1 7.0 5.2 8.0 Have Cooling Equipment............................... 93.3 31.3 15.1 15.6 11.1 7.0 5.2 8.0 Use Cooling Equipment................................ 91.4 30.4 14.6 15.4 11.1 6.9 5.2 7.9 Have Equipment But Do Not Use it............... 1.9 1.0 0.5 Q Q Q Q Q Do Not Have Cooling Equipment................... 17.8 17.8 N N N N N N Air-Conditioning Equipment 1, 2 Central System............................................. 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat Pump................................ 53.5 3.5 12.9 12.7 8.6 5.5 4.2 6.2 With a Heat Pump..................................... 12.3 0.4 2.2 2.9 2.5 1.5 1.0 1.8 Window/Wall Units........................................ 28.9 27.5 0.5 Q 0.3 Q Q Q 1 Unit......................................................... 14.5 13.5 0.3 Q Q Q N Q 2 Units.......................................................

247

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.2 Have Main Space Heating Equipment.................. 109.8 7.1 6.8 7.9 11.9 Use Main Space Heating Equipment.................... 109.1 7.1 6.6 7.9 11.4 Have Equipment But Do Not Use It...................... 0.8 N Q N 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 3.8 0.4 3.8 8.4 Central Warm-Air Furnace................................ 44.7 1.8 Q 3.1 6.0 For One Housing Unit................................... 42.9 1.5 Q 3.1 6.0 For Two Housing Units................................. 1.8 Q N Q Q Steam or Hot Water System............................. 8.2 1.9 Q Q 0.2 For One Housing Unit................................... 5.1 0.8 Q N Q For Two Housing Units.................................

248

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Do Not Have Space Heating Equipment............... 1.2 Q Q N Have Main Space Heating Equipment.................. 109.8 25.6 17.7 7.9 Use Main Space Heating Equipment.................... 109.1 25.6 17.7 7.9 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 18.4 13.1 5.3 Central Warm-Air Furnace................................ 44.7 16.2 11.6 4.7 For One Housing Unit................................... 42.9 15.5 11.0 4.5 For Two Housing Units................................. 1.8 0.7 0.6 Q Steam or Hot Water System............................. 8.2 1.6 1.2 0.4 For One Housing Unit................................... 5.1 1.1 0.9 Q For Two Housing Units.................................

249

Total...........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Cooling Equipment............................. 17.8 10.3 3.1 7.3 Have Cooling Equipment.......................................... 93.3 13.9 4.5 9.4 Use Cooling Equipment........................................... 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it.......................... 1.9 1.0 Q 0.8 Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat Pump........................................... 53.5 8.7 3.2 5.5 With a Heat Pump............................................... 12.3 1.7 0.7 1.0 Window/Wall Units.................................................. 28.9 3.6 0.6 3.0 1 Unit................................................................... 14.5 2.9 0.5 2.4 2 Units.................................................................

250

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005

251

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Personal Computers Personal Computers Do Not Use a Personal Computer.................................. 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer.............................................. 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 20.5 11.0 3.4 6.1 Laptop Model............................................................. 16.9 6.1 3.5 0.7 1.9 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 5.0 2.6 1.0 1.3 2 to 15 Hours............................................................. 29.1 10.3 5.9 1.6 2.9 16 to 40 Hours........................................................... 13.5 4.1 2.3 0.6 1.2 41 to 167 Hours.........................................................

252

Total..............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

,171 ,171 1,618 1,031 845 630 401 Census Region and Division Northeast................................................... 20.6 2,334 1,664 562 911 649 220 New England.......................................... 5.5 2,472 1,680 265 1,057 719 113 Middle Atlantic........................................ 15.1 2,284 1,658 670 864 627 254 Midwest...................................................... 25.6 2,421 1,927 1,360 981 781 551 East North Central.................................. 17.7 2,483 1,926 1,269 999 775 510 West North Central................................. 7.9 2,281 1,930 1,566 940 796 646 South.......................................................... 40.7 2,161 1,551 1,295 856 615 513 South Atlantic......................................... 21.7 2,243 1,607 1,359 896 642 543 East South Central.................................

253

Total.........................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

..... ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer...................................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer.................................................. 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model............................................................. 58.6 3.2 3.9 4.0 6.7 Laptop Model................................................................. 16.9 1.0 1.1 1.3 2.4 Hours Turned on Per Week Less than 2 Hours......................................................... 13.6 0.7 0.9 0.9 1.4 2 to 15 Hours................................................................. 29.1 1.7 2.1 1.9 3.4 16 to 40 Hours............................................................... 13.5 0.9 0.9 0.9 1.8 41 to 167 Hours.............................................................

254

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 2.6 0.7 1.9 2 Times A Day...................................................... 24.6 6.6 2.0 4.6 Once a Day........................................................... 42.3 8.8 2.9 5.8 A Few Times Each Week...................................... 27.2 4.7 1.5 3.1 About Once a Week.............................................. 3.9 0.7 Q 0.6 Less Than Once a Week....................................... 4.1 0.7 0.3 0.4 No Hot Meals Cooked........................................... 0.9 0.2 Q Q Conventional Oven Use an Oven......................................................... 109.6 23.7 7.5 16.2 More Than Once a Day..................................... 8.9 1.7 0.4 1.3 Once a Day.......................................................

255

Total..............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

20.6 20.6 25.6 40.7 24.2 Do Not Have Cooling Equipment................................ 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................. 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment.............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................. 1.9 0.3 Q 0.5 1.0 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 6.0 17.3 32.1 10.5 Without a Heat Pump.............................................. 53.5 5.5 16.2 23.2 8.7 With a Heat Pump................................................... 12.3 0.5 1.1 9.0 1.7 Window/Wall Units..................................................... 28.9 10.7 6.6 8.0 3.6 1 Unit......................................................................

256

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer.................................. 35.5 8.1 5.6 2.5 Use a Personal Computer.............................................. 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 14.1 10.0 4.0 Laptop Model............................................................. 16.9 3.4 2.1 1.3 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 3.4 2.5 0.9 2 to 15 Hours............................................................. 29.1 7.0 4.8 2.3 16 to 40 Hours........................................................... 13.5 2.8 2.1 0.7 41 to 167 Hours......................................................... 6.3

257

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.2 15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing Unit.............................. 3.3 2.9 Q Q Q N For Two Housing Units............................. 1.4 Q Q 0.5 0.8 N Central Warm-Air Furnace........................... 2.8 2.4 Q Q Q 0.2 Other Equipment......................................... 0.3 0.2 Q N Q N Wood..............................................................

258

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment................. Do Not Have Cooling Equipment................. 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment.............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment............................... 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Air-Conditioning Equipment 1, 2 Central System............................................ 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump.............................. 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat Pump................................... 12.3 1.7 2.8 2.8 1.6 3.4 1.0 2.7 Window/Wall Units...................................... 28.9 10.5 8.1 4.5 2.7 3.1 6.7 14.1 1 Unit....................................................... 14.5 5.8 4.3 2.0 1.1 1.3 3.4 7.4 2 Units.....................................................

259

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.4 1.0 0.4 2 Times A Day...................................................... 24.6 5.8 3.5 2.3 Once a Day........................................................... 42.3 10.7 7.8 2.9 A Few Times Each Week...................................... 27.2 5.6 4.0 1.6 About Once a Week.............................................. 3.9 0.9 0.6 0.3 Less Than Once a Week....................................... 4.1 1.1 0.7 0.4 No Hot Meals Cooked........................................... 0.9 Q Q N Conventional Oven Use an Oven......................................................... 109.6 25.3 17.6 7.7 More Than Once a Day..................................... 8.9 1.3 0.8 0.5 Once a Day.......................................................

260

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer ........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Number of Desktop PCs 1.......................................................... 50.3 8.3 14.2 11.4 7.2 9.2 5.3 14.2 2.......................................................... 16.2 0.9 2.6 3.7 2.9 6.2 0.8 2.6 3 or More............................................. 9.0 0.4 1.2 1.3 1.2 5.0 0.3 1.1 Number of Laptop PCs 1.......................................................... 22.5 2.2 4.6 4.5 2.9 8.3 1.4 4.0 2.......................................................... 4.0 Q 0.4 0.6 0.4 2.4 Q 0.5 3 or More............................................. 0.7 Q Q Q Q 0.4 Q Q Type of Monitor Used on Most-Used PC Desk-top

Note: This page contains sample records for the topic "owner note totals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

20.6 20.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer ........... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......................... 75.6 13.7 17.5 26.6 17.8 Number of Desktop PCs 1.......................................................... 50.3 9.3 11.9 18.2 11.0 2.......................................................... 16.2 2.9 3.5 5.5 4.4 3 or More............................................. 9.0 1.5 2.1 2.9 2.5 Number of Laptop PCs 1.......................................................... 22.5 4.7 4.6 7.7 5.4 2.......................................................... 4.0 0.6 0.9 1.5 1.1 3 or More............................................. 0.7 Q Q Q 0.3 Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 7.9 11.4 15.4 10.2 Flat-panel LCD.................................

262

Total................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Do Not Have Space Heating Equipment....... 1.2 0.5 0.3 0.2 Q 0.2 0.3 0.6 Have Main Space Heating Equipment.......... 109.8 26.2 28.5 20.4 13.0 21.8 16.3 37.9 Use Main Space Heating Equipment............ 109.1 25.9 28.1 20.3 12.9 21.8 16.0 37.3 Have Equipment But Do Not Use It.............. 0.8 0.3 0.3 Q Q N 0.4 0.6 Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 12.2 14.4 11.3 7.1 13.2 7.6 18.3 Central Warm-Air Furnace........................ 44.7 7.5 10.8 9.3 5.6 11.4 4.6 12.0 For One Housing Unit........................... 42.9 6.9 10.3 9.1 5.4 11.3 4.1 11.0 For Two Housing Units......................... 1.8 0.6 0.6 Q Q Q 0.4 0.9 Steam or Hot Water System..................... 8.2 2.4 2.5 1.0 1.0 1.3 1.5 3.6 For One Housing Unit...........................

263

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.7 Have Main Space Heating Equipment.................. 109.8 20.5 25.6 40.3 23.4 Use Main Space Heating Equipment.................... 109.1 20.5 25.6 40.1 22.9 Have Equipment But Do Not Use It...................... 0.8 N N Q 0.6 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 18.4 13.6 14.7 Central Warm-Air Furnace................................ 44.7 6.1 16.2 11.0 11.4 For One Housing Unit................................... 42.9 5.6 15.5 10.7 11.1 For Two Housing Units................................. 1.8 0.5 0.7 Q 0.3 Steam or Hot Water System............................. 8.2 4.9 1.6 1.0 0.6 For One Housing Unit................................... 5.1 3.2 1.1 0.4

264

Total...........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.6 0.6 15.1 5.5 Do Not Have Cooling Equipment............................. 17.8 4.0 2.4 1.7 Have Cooling Equipment.......................................... 93.3 16.5 12.8 3.8 Use Cooling Equipment........................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it.......................... 1.9 0.3 Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 5.2 0.8 Without a Heat Pump........................................... 53.5 5.5 4.8 0.7 With a Heat Pump............................................... 12.3 0.5 0.4 Q Window/Wall Units.................................................. 28.9 10.7 7.6 3.1 1 Unit................................................................... 14.5 4.3 2.9 1.4 2 Units.................................................................

265

Total.......................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.4 2.2 4.2 Use a Personal Computer................................ 75.6 17.8 5.3 12.5 Number of Desktop PCs 1.................................................................. 50.3 11.0 3.4 7.6 2.................................................................. 16.2 4.4 1.3 3.1 3 or More..................................................... 9.0 2.5 0.7 1.8 Number of Laptop PCs 1.................................................................. 22.5 5.4 1.5 3.9 2.................................................................. 4.0 1.1 0.3 0.8 3 or More..................................................... 0.7 0.3 Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)...........................

266

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer.................................. 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer.............................................. 75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 22.9 9.8 14.1 11.9 Laptop Model............................................................. 16.9 7.4 2.7 4.0 2.9 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 5.7 1.8 2.9 3.2 2 to 15 Hours............................................................. 29.1 11.9 5.1 6.5 5.7 16 to 40 Hours........................................................... 13.5 5.5 2.5 3.3 2.2 41 to 167 Hours.........................................................

267

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.2 Q Have Main Space Heating Equipment.................. 109.8 46.3 18.9 22.5 22.1 Use Main Space Heating Equipment.................... 109.1 45.6 18.8 22.5 22.1 Have Equipment But Do Not Use It...................... 0.8 0.7 Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 27.0 11.9 14.9 4.3 Central Warm-Air Furnace................................ 44.7 19.8 8.6 12.8 3.6 For One Housing Unit................................... 42.9 18.8 8.3 12.3 3.5 For Two Housing Units................................. 1.8 1.0 0.3 0.4 Q Steam or Hot Water System............................. 8.2 4.4 2.1 1.4 0.3 For One Housing Unit................................... 5.1 2.1 1.6 1.0

268

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.1 15.1 5.5 Do Not Have Space Heating Equipment............... 1.2 Q Q Q Have Main Space Heating Equipment.................. 109.8 20.5 15.1 5.4 Use Main Space Heating Equipment.................... 109.1 20.5 15.1 5.4 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 9.1 2.3 Central Warm-Air Furnace................................ 44.7 6.1 5.3 0.8 For One Housing Unit................................... 42.9 5.6 4.9 0.7 For Two Housing Units................................. 1.8 0.5 0.4 Q Steam or Hot Water System............................. 8.2 4.9 3.6 1.3 For One Housing Unit................................... 5.1 3.2 2.2 1.0 For Two Housing Units.................................

269

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.2 1.0 0.2 2 Times A Day...................................................... 24.6 4.0 2.7 1.2 Once a Day........................................................... 42.3 7.9 5.4 2.5 A Few Times Each Week...................................... 27.2 6.0 4.8 1.2 About Once a Week.............................................. 3.9 0.6 0.5 Q Less Than Once a Week....................................... 4.1 0.6 0.4 Q No Hot Meals Cooked........................................... 0.9 0.3 Q Q Conventional Oven Use an Oven......................................................... 109.6 20.3 14.9 5.4 More Than Once a Day..................................... 8.9 1.4 1.2 0.3 Once a Day.......................................................

270

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

47.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer ........... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......................... 75.6 30.3 12.5 18.1 14.7 Number of Desktop PCs 1.......................................................... 50.3 21.1 8.3 10.7 10.1 2.......................................................... 16.2 6.2 2.8 4.1 3.0 3 or More............................................. 9.0 2.9 1.4 3.2 1.6 Number of Laptop PCs 1.......................................................... 22.5 9.1 3.6 6.0 3.8 2.......................................................... 4.0 1.5 0.6 1.3 0.7 3 or More............................................. 0.7 0.3 Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 17.7 7.5 10.2 9.6 Flat-panel LCD.................................

271

Total........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 24.5 1,090 902 341 872 780 441 Census Region and Division Northeast............................................. 20.6 6.7 1,247 1,032 Q 811 788 147 New England.................................... 5.5 1.9 1,365 1,127 Q 814 748 107 Middle Atlantic.................................. 15.1 4.8 1,182 978 Q 810 800 159 Midwest................................................ 25.6 4.6 1,349 1,133 506 895 810 346 East North Central............................ 17.7 3.2 1,483 1,239 560 968 842 351 West North Central........................... 7.9 1.4 913 789 329 751 745 337 South................................................... 40.7 7.8 881 752 572 942 873 797 South Atlantic................................... 21.7 4.9 875 707 522 1,035 934 926 East South Central........................... 6.9 0.7 Q Q Q 852 826 432 West South Central..........................

272

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Personal Computers Do Not Use a Personal Computer ........... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer......................... 75.6 26.6 14.5 4.1 7.9 Number of Desktop PCs 1.......................................................... 50.3 18.2 10.0 2.9 5.3 2.......................................................... 16.2 5.5 3.0 0.7 1.8 3 or More............................................. 9.0 2.9 1.5 0.5 0.8 Number of Laptop PCs 1.......................................................... 22.5 7.7 4.3 1.1 2.4 2.......................................................... 4.0 1.5 0.9 Q 0.4 3 or More............................................. 0.7 Q Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 15.4 7.9 2.8 4.8 Flat-panel LCD.................................

273

Total.................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day.............................. 8.2 2.9 2.5 1.3 0.5 1.0 2.4 4.6 2 Times A Day........................................... 24.6 6.5 7.0 4.3 3.2 3.6 4.8 10.3 Once a Day................................................ 42.3 8.8 9.8 8.7 5.1 10.0 5.0 12.9 A Few Times Each Week........................... 27.2 5.6 7.2 4.7 3.3 6.3 3.2 7.5 About Once a Week................................... 3.9 1.1 1.1 0.6 0.5 0.6 0.4 1.4 Less Than Once a Week............................ 4.1 1.3 1.0 0.9 0.5 0.4 0.7 1.4 No Hot Meals Cooked................................ 0.9 0.5 Q Q Q Q 0.2 0.5 Conventional Oven Use an Oven.............................................. 109.6 26.1 28.5 20.2 12.9 21.8 16.3 37.8 More Than Once a Day..........................

274

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment..................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................. 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment.................................. 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................. 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 3.7 2.6 6.1 6.8 11.2 13.2 13.9 8.2 Without a Heat Pump.................................. 53.5 3.6 2.3 5.5 5.8 9.5 10.1 10.3 6.4 With a Heat Pump....................................... 12.3 Q 0.3 0.6 1.0 1.7 3.1 3.6 1.7 Window/Wall Units....................................... 28.9 7.3 3.2 4.5 3.7 4.8 3.0 1.9 0.7 1 Unit..........................................................

275

Total..............................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 86.6 2,720 1,970 1,310 1,941 1,475 821 1,059 944 554 Census Region and Division Northeast.................................... 20.6 13.9 3,224 2,173 836 2,219 1,619 583 903 830 Q New England.......................... 5.5 3.6 3,365 2,154 313 2,634 1,826 Q 951 940 Q Middle Atlantic........................ 15.1 10.3 3,167 2,181 1,049 2,188 1,603 582 Q Q Q Midwest...................................... 25.6 21.0 2,823 2,239 1,624 2,356 1,669 1,336 1,081 961 778 East North Central.................. 17.7 14.5 2,864 2,217 1,490 2,514 1,715 1,408 907 839 553 West North Central................. 7.9 6.4 2,729 2,289 1,924 1,806 1,510 1,085 1,299 1,113 1,059 South.......................................... 40.7 33.0 2,707 1,849 1,563 1,605 1,350 954 1,064 970 685 South Atlantic......................... 21.7 16.8 2,945 1,996 1,695 1,573 1,359 909 1,044 955

276

Total.................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

... ... 111.1 20.6 15.1 5.5 Do Not Have Cooling Equipment................................. 17.8 4.0 2.4 1.7 Have Cooling Equipment............................................. 93.3 16.5 12.8 3.8 Use Cooling Equipment............................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it............................. 1.9 0.3 Q Q Type of Air-Conditioning Equipment 1, 2 Central System.......................................................... 65.9 6.0 5.2 0.8 Without a Heat Pump.............................................. 53.5 5.5 4.8 0.7 With a Heat Pump................................................... 12.3 0.5 0.4 Q Window/Wall Units.................................................... 28.9 10.7 7.6 3.1 1 Unit.......................................................................

277

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................ 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................ 1.9 0.9 0.3 0.3 0.4 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 25.8 10.9 16.6 12.5 Without a Heat Pump............................................. 53.5 21.2 9.7 13.7 8.9 With a Heat Pump................................................. 12.3 4.6 1.2 2.8 3.6 Window/Wall Units.................................................. 28.9 13.4 5.6 3.9 6.1 1 Unit.....................................................................

278

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 10.3 3.1 7.3 Have Cooling Equipment............................................ 93.3 13.9 4.5 9.4 Use Cooling Equipment............................................. 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it............................ 1.9 1.0 Q 0.8 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat Pump............................................. 53.5 8.7 3.2 5.5 With a Heat Pump................................................. 12.3 1.7 0.7 1.0 Window/Wall Units.................................................. 28.9 3.6 0.6 3.0 1 Unit..................................................................... 14.5 2.9 0.5 2.4 2 Units...................................................................

279

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

78.1 78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Cooling Equipment..................... 17.8 11.3 9.3 0.6 Q 0.4 0.9 Have Cooling Equipment................................. 93.3 66.8 54.7 3.6 1.7 1.9 4.8 Use Cooling Equipment.................................. 91.4 65.8 54.0 3.6 1.7 1.9 4.7 Have Equipment But Do Not Use it................. 1.9 1.1 0.8 Q N Q Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 51.7 43.9 2.5 0.7 1.6 3.1 Without a Heat Pump.................................. 53.5 41.1 34.8 2.1 0.5 1.2 2.6 With a Heat Pump....................................... 12.3 10.6 9.1 0.4 Q 0.3 0.6 Window/Wall Units....................................... 28.9 16.5 12.0 1.3 1.0 0.4 1.7 1 Unit.......................................................... 14.5 7.2 5.4 0.5 0.2 Q 0.9 2 Units.........................................................

280

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q 0.5 Q Q Monitor is Turned Off... 0.5 N Q Q Q Q N Q Use of Internet Have Access to Internet Yes... 66.9...

Note: This page contains sample records for the topic "owner note totals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

m... 3.2 0.2 Q 0.1 Telephone and Office Equipment CellMobile Telephone... 84.8 14.9 11.1 3.9 Cordless...

282

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

m... 3.2 0.9 0.7 Q Telephone and Office Equipment CellMobile Telephone... 84.8 19.3 13.2 6.1 Cordless...

283

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Four Most Populated States New York Florida Texas California Million U.S. Housing Units Home Electronics Usage Indicators Table HC15.12 Home Electronics Usage Indicators by Four...

284

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

285

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Fuel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

286

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

60,000 to 79,999 80,000 or More Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

287

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

Usage Indicators by U.S. Census Region, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators U.S. Census Region Northeast Midwest South West Energy Information...

288

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Homes Million U.S. Housing Units Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.7...

289

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Homes Million U.S. Housing Units Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC4.7...

290

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

Self-Reported) City Town Suburbs Rural Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC8.7...

291

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

East North Central West North Central Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

292

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Housing Units Home Electronics Usage Indicators Table HC10.12 Home Electronics Usage Indicators by U.S. Census Region, 2005 Housing Units (millions) Energy Information...

293

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Housing Units Home Electronics Usage Indicators Table HC8.12 Home Electronics Usage Indicators by UrbanRural Location, 2005 Housing Units (millions) Energy Information...

294

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

7.0 7.7 6.6 Have Equipment But Do Not Use it... 1.9 Q N Q 0.6 Air-Conditioning Equipment 1, 2 Central System......

295

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

Air-Conditioning Equipment 1, 2 Central System... 65.9 47.5 4.0 2.8 7.9 3.7 Without a Heat Pump... 53.5...

296

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it... 1.9 Q Q Q Air-Conditioning Equipment 1, 2 Central System......

297

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

18.0 Have Equipment But Do Not Use it... 1.9 0.9 0.3 0.3 0.4 Air-Conditioning Equipment 1, 2 Central System......

298

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

at All... 2.9 1.1 0.5 Q 0.4 Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools......

299

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

3.3 Not Used at All... 2.9 0.7 0.5 Q Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools... 54.9...

300

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

3.6 Not Used at All... 2.9 0.8 0.3 0.4 Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools... 54.9...

Note: This page contains sample records for the topic "owner note totals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

1.1 Not Used at All... 2.9 0.4 Q 0.2 Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools... 54.9...

302

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

at All... 2.9 1.4 0.4 0.4 0.7 Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools......

303

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer ... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer......

304

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

... 25.8 2.8 5.8 5.5 3.8 7.9 1.4 5.1 Use of Most-Used Ceiling Fan Used All Summer... 18.7 4.2 4.9 4.1 2.1 3.4 2.4 6.3...

305

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Heating Characteristics Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC5.4 Space Heating...

306

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) At Home Behavior Home Used for Business Yes......

307

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

... 34.3 1.2 0.9 2.2 2.9 5.4 7.0 8.2 6.6 Adequacy of Insulation Well Insulated... 29.5 1.5 0.9 2.3 2.7 4.1...

308

Total..............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Do Not Have Cooling Equipment................................ 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................. 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment.............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................. 1.9 0.5 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump.............................................. 53.5 23.2 10.9 3.8 8.4 With a Heat Pump................................................... 12.3 9.0 6.7 1.4 0.9 Window/Wall Units..................................................... 28.9 8.0 3.4 1.7 2.9 1 Unit......................................................................

309

Total....................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Household Size 1 Person.......................................................... 30.0 4.6 2.5 3.7 3.2 5.4 5.5 3.7 1.6 2 Persons......................................................... 34.8 4.3 1.9 4.4 4.1 5.9 5.3 5.5 3.4 3 Persons......................................................... 18.4 2.5 1.3 1.7 1.9 2.9 3.5 2.8 1.6 4 Persons......................................................... 15.9 1.9 0.8 1.5 1.6 3.0 2.5 3.1 1.4 5 Persons......................................................... 7.9 0.8 0.4 1.0 1.1 1.2 1.1 1.5 0.9 6 or More Persons........................................... 4.1 0.5 0.3 0.3 0.6 0.5 0.7 0.8 0.4 2005 Annual Household Income Category Less than $9,999............................................. 9.9 1.9 1.1 1.3 0.9 1.7 1.3 1.1 0.5 $10,000 to $14,999..........................................

310

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer.............................................. 75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 10.4 14.1 20.5 13.7 Laptop Model............................................................. 16.9 3.3 3.4 6.1 4.1 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 2.4 3.4 5.0 2.9 2 to 15 Hours............................................................. 29.1 5.2 7.0 10.3 6.6 16 to 40 Hours........................................................... 13.5 3.1 2.8 4.1 3.4 41 to 167 Hours.........................................................

311

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.4 2.2 4.2 Use a Personal Computer.............................................. 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 13.7 4.2 9.5 Laptop Model............................................................. 16.9 4.1 1.1 3.0 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 2.9 0.9 2.0 2 to 15 Hours............................................................. 29.1 6.6 2.0 4.6 16 to 40 Hours........................................................... 13.5 3.4 0.9 2.5 41 to 167 Hours......................................................... 6.3

312

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

33.0 33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Cooling Equipment..................... 17.8 6.5 1.6 0.9 1.3 2.4 0.2 Have Cooling Equipment................................. 93.3 26.5 6.5 2.5 4.6 12.0 1.0 Use Cooling Equipment.................................. 91.4 25.7 6.3 2.5 4.4 11.7 0.8 Have Equipment But Do Not Use it................. 1.9 0.8 Q Q 0.2 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 14.1 3.6 1.5 2.1 6.4 0.6 Without a Heat Pump.................................. 53.5 12.4 3.1 1.3 1.8 5.7 0.6 With a Heat Pump....................................... 12.3 1.7 0.6 Q 0.3 0.6 Q Window/Wall Units....................................... 28.9 12.4 2.9 1.0 2.5 5.6 0.4 1 Unit.......................................................... 14.5 7.3 1.2 0.5 1.4 3.9 0.2 2 Units.........................................................

313

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.7 1.6 1.4 1.5 2 Times A Day.............................................................. 24.6 10.8 4.1 4.3 5.5 Once a Day................................................................... 42.3 17.0 7.2 8.7 9.3 A Few Times Each Week............................................. 27.2 11.4 4.7 6.4 4.8 About Once a Week..................................................... 3.9 1.7 0.6 0.9 0.8 Less Than Once a Week.............................................. 4.1 2.2 0.6 0.8 0.5 No Hot Meals Cooked................................................... 0.9 0.4 Q Q Q Conventional Oven Use an Oven................................................................. 109.6 46.2 18.8

314

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Single-Family Units Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) At Home Behavior Home Used for Business

315

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 2.1 1.8 0.3 Have Cooling Equipment............................................ 93.3 23.5 16.0 7.5 Use Cooling Equipment............................................. 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it............................ 1.9 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat Pump............................................. 53.5 16.2 10.6 5.6 With a Heat Pump................................................. 12.3 1.1 0.8 0.4 Window/Wall Units.................................................. 28.9 6.6 4.9 1.7 1 Unit..................................................................... 14.5 4.1 2.9 1.2 2 Units...................................................................

316

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................ 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................ 1.9 0.5 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump............................................. 53.5 23.2 10.9 3.8 8.4 With a Heat Pump................................................. 12.3 9.0 6.7 1.4 0.9 Window/Wall Units.................................................. 28.9 8.0 3.4 1.7 2.9 1 Unit.....................................................................

317

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.7 Have Main Space Heating Equipment.................. 109.8 23.4 7.5 16.0 Use Main Space Heating Equipment.................... 109.1 22.9 7.4 15.4 Have Equipment But Do Not Use It...................... 0.8 0.6 Q 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 14.7 4.6 10.1 Central Warm-Air Furnace................................ 44.7 11.4 4.0 7.4 For One Housing Unit................................... 42.9 11.1 3.8 7.3 For Two Housing Units................................. 1.8 0.3 Q Q Steam or Hot Water System............................. 8.2 0.6 0.3 0.3 For One Housing Unit................................... 5.1 0.4 0.2 0.1 For Two Housing Units.................................

318

Total..............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment................ Do Not Have Cooling Equipment................ 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment.............................. 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Type of Air-Conditioning Equipment 1, 2 Central System.......................................... 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump.............................. 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat Pump................................... 12.3 1.7 2.8 2.8 1.6 3.4 1.0 2.7 Window/Wall Units................................... 28.9 10.5 8.1 4.5 2.7 3.1 6.7 14.1 1 Unit...................................................... 14.5 5.8 4.3 2.0 1.1 1.3 3.4 7.4 2 Units....................................................

319

V-211: IBM iNotes Multiple Vulnerabilities  

Energy.gov (U.S. Department of Energy (DOE))

IBM iNotes has two cross-site scripting vulnerabilities and an ActiveX Integer overflow vulnerability

320

Total Crude Oil and Petroleum Products Imports by Processing Area  

Gasoline and Diesel Fuel Update (EIA)

Product: Total Crude Oil and Petroleum Products Crude Oil Total Products Other Liquids Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Product: Total Crude Oil and Petroleum Products Crude Oil Total Products Other Liquids Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History East Coast (PADD 1) 62,196 60,122 54,018 52,671 54,668 52,999 1981-2013 Midwest (PADD 2) 54,439 53,849 53,638 60,984 63,482 56,972 1981-2013 Gulf Coast (PADD 3) 141,142 150,846 138,204 149,059 141,421 138,656 1981-2013

Note: This page contains sample records for the topic "owner note totals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

ConsumTechNotes2011.vp  

Gasoline and Diesel Fuel Update (EIA)

Total Total Energy The preceding sections of this documentation describe how the Energy In- formation Administration (EIA) arrives at state end-use consumption esti- mates by individual energy source in the State Energy Data System (SEDS). This section describes how all energy sources are added in Btu to create total energy consumption and end-use consumption estimates. Total Energy Consumption Total energy consumption by state is defined in SEDS as the sum of all en- ergy sources consumed. The total includes all primary energy sources used directly by the energy-consuming sectors (residential, commercial, indus- trial, transportation, and electric power), as well as net interstate flow of electricity (ELISB) and net imports of electricity (ELNIB). Energy sources can be categorized as renewable and non-renewable sources: Non-Renewable Sources Fossil fuels: · coal (CL) · net

322

Idle Operating Total Stream Day  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 11 10 1 1,293,200 1,265,200 28,000 1,361,700 1,329,700 32,000 ............................................................................................................................................... PAD District I 1 1 0 182,200 182,200 0 190,200 190,200 0 ................................................................................................................................................................................................................................................................................................ Delaware......................................

323

China Total Cloud Amount Trends  

NLE Websites -- All DOE Office Websites (Extended Search)

Trends in Total Cloud Amount Over China DOI: 10.3334CDIACcli.008 data Data image Graphics Investigator Dale P. Kaiser Carbon Dioxide Information Analysis Center, Environmental...

324

DANE TECHNICAL NOTE INFN -LNF, Accelerator Division  

E-Print Network (OSTI)

current (A) 57 Maximum total average current (A) 5.3 Maximum synchrotron power/beam (kW) 49 VRF (kV) 254

Istituto Nazionale di Fisica Nucleare (INFN)

325

Linear Collider Collaboration Tech Notes LCC-0108  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 TESLA 2002-10 CBP Tech Note-268 November 2002 Comparison of Emittance Tuning Simulations in the NLC and TESLA Damping Rings Andrej Wolski Lawrence Berkeley National Laboratory University of California Berkeley, CA Winfried Decking Deutsches Elektron Synchrotron (DESY) Hamburg, Germany Abstract: Vertical emittance is a critical issue for future linear collider damping rings. Both NLC and TESLA specify vertical emittance of the order of a few picometers, below values currently achieved in any storage ring. Simulations show that algorithms based on correcting the closed orbit and the vertical dispersion can be effective in reducing the vertical emittance to the required levels, in the presence of a limited subset of

326

Linear Collider Collaboration Tech Notes LCC-0104  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 October 2002 Beamstrahlung Photon Load on the TESLA Extraction Septum Blade Andrei Seryi Stanford Linear Accelerator Center Stanford, CA 94309, USA Abstract: This note describes work performed in the framework of the International Linear Collider Technical Review Committee [1] to estimate the power load on the TESLA extraction septum blade due to beamstrahlung photons. It is shown, that under realistic conditions the photon load can be several orders of magnitude higher than what was estimated in the TESLA TDR [2] for the ideal Gaussian beams, potentially representing a serious limitation of the current design. Beamstrahlung Photon Load on the TESLA Extraction Septum Blade ANDREI SERYI STANFORD LINEAR

327

Note on tachyon moduli and closed strings  

SciTech Connect

The collective behavior of the SL(2,R) covariant brane states of noncritical c=1 string theory, found in a previous work, is studied in the Fermi liquid approximation. It is found that such states mimic the coset WZW model, whereas only by further restrictions one recovers the double-scaling limit which was purported to be equivalent to closed string models. Another limit is proposed, inspired by the tachyon condensation ideas, where the spectrum is the same of two-dimensional string theory. We close by noting some strange connections between vacuum states of the theory in their different interpretations.

Carneiro da Cunha, Bruno [Helsinki Institute of Physics, P.O. Box 64, FIN-00014 University of Helsinki (Finland) and Departamento de Fisica, Universidade Federal de Pernambuco, CEP 53901-970, Recife, Pernambuco (Brazil)

2008-07-15T23:59:59.000Z

328

ESC/Java2 Implementation Notes  

E-Print Network (OSTI)

Abstract: ESC/Java2 is a tool for statically checking program specifications. It expands significantly upon ESC/Java, on which it is built. It is consistent with the definition of JML and of Java 1.4. It adds additional static checking to that in ESC/Java; most significantly, it adds support for checking frame conditions and annotations containing method calls. This document describes the status of the final release of ESC/Java2, along with some notes regarding the details of that implementation.

David R. Cok; Joseph R. Kiniry; Dermot Cochran

2008-01-01T23:59:59.000Z

329

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Prime Supplier Sales Volume Prime Supplier Sales Volume Definitions Key Terms Definition Conventional Gasoline Finished motor gasoline not included in the oxygenated or reformulated gasoline categories. Excludes reformulated gasoline blendstock for oxygenate blending (RBOB) as well as other blendstock. Finished Aviation Gasoline A complex mixture of relatively volatile hydrocarbons with or without small quantities of additives, blended to form a fuel suitable for use in aviation reciprocating engines. Fuel specifications are provided in ASTM Specification D 910 and Military Specification MIL-G-5572. Note: Data on blending components are not counted in data on finished aviation gasoline. Gasoline Grades The classification of gasoline by octane ratings. Each type of gasoline (conventional and reformulated) is classified by three grades - regular, midgrade, and premium. Note: gasoline sales are reported by grade in accordance with their classification at the time of sale. In general, automotive octane requirements are lower at high altitudes. Therefore, in some areas of the United States, such as the Rocky Mountain States, the octane ratings for the gasoline grades may be 2 or more octane points lower.

330

total energy | OpenEI  

Open Energy Info (EERE)

total energy total energy Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion BTUs, and quantifies the energy prices using U.S. dollars. The data is broken down into total production, imports, exports, consumption, and prices for energy types. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption EIA export import production reference case total energy Data application/vnd.ms-excel icon AEO2011: Total Energy Supply, Disposition, and Price Summary - Reference Case (xls, 112.8 KiB) Quality Metrics Level of Review Peer Reviewed

331

Exports of Total Crude Oil and Products  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether and RBOB ...

332

Total Crude Oil and Petroleum Products Exports  

U.S. Energy Information Administration (EIA)

Notes: Crude oil exports are restricted to: (1) crude oil derived from fields under the State waters of Alaska's Cook Inlet; (2) Alaskan North Slope crude oil; (3) ...

333

U.S. Total Gasoline Inventory Outlook  

Gasoline and Diesel Fuel Update (EIA)

7 Notes: Gasoline inventories in the United States began last summer's driving season low and ended low. In October 2000, with the market focusing on distillate, gasoline...

334

Crude Oil Total Stocks Stocks by Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil stocks in the ...

335

Gulf Coast (PADD 3) Total Stocks  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil stocks in the ...

336

Lubricants Total Stocks Stocks by Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil stocks in the ...

337

Reconciling OntoNotes: unrestricted coreference resolution in OntoNotes with Reconcile  

Science Conference Proceedings (OSTI)

This paper describes our entry to the 2011 CoNLL closed task (Pradhan et al., 2011) on modeling unrestricted coreference in OntoNotes. Our system is based on the Reconcile coreference resolution research platform. Reconcile is a general software infrastructure ...

Veselin Stoyanov; Uday Babbar; Pracheer Gupta; Claire Cardie

2011-06-01T23:59:59.000Z

338

U.S. Total Exports  

Annual Energy Outlook 2012 (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

339

ConsumTechNotes2011.vp  

Gasoline and Diesel Fuel Update (EIA)

Data Data 2011: Consumption 125 A P P E N D I X A ABICB Aviation gasoline blending components Billion Btu ABICBZZ = ABTCBZZ total consumed by the industrial sector. ABICBUS = ABTCBUS ABICP Aviation gasoline blending components Thousand barrels ABICPZZ = ABTCPZZ total consumed by the industrial sector. ABICPUS = ABTCPUS ABTCB Aviation gasoline blending components total Billion Btu ABTCBZZ = ABTCPZZ * 5.048 consumed. ABTCBUS = SABTCBZZ ABTCP Aviation gasoline blending components total Thousand barrels ABTCPZZ = (COCAPZZ / COCAPUS) * ABTCPUS consumed. ABTCPUS is independent. AICAP Aluminum ingot production capacity. Short tons AICAPZZ is independent. AICAPUS = SAICAPZZ ARICB Asphalt and road oil consumed by the Billion Btu ARICBZZ = ARICPZZ * 6.636 industrial sector. ARICBUS = SARICBZZ ARICP Asphalt and road oil consumed by the Thousand barrels ARICPZZ = ASICPZZ + RDICPZZ industrial

340

ConsumTechNotes2012.vp  

Gasoline and Diesel Fuel Update (EIA)

Data: Data: Consumption 125 A P P E N D I X A ABICB Aviation gasoline blending components Billion Btu ABICBZZ = ABTCBZZ total consumed by the industrial sector. ABICBUS = ABTCBUS ABICP Aviation gasoline blending components Thousand barrels ABICPZZ = ABTCPZZ total consumed by the industrial sector. ABICPUS = ABTCPUS ABTCB Aviation gasoline blending components total Billion Btu ABTCBZZ = ABTCPZZ * 5.048 consumed. ABTCBUS = SABTCBZZ ABTCP Aviation gasoline blending components total Thousand barrels ABTCPZZ = (COCAPZZ / COCAPUS) * ABTCPUS consumed. ABTCPUS is independent. AICAP Aluminum ingot production capacity. Short tons AICAPZZ is independent. AICAPUS = SAICAPZZ ARICB Asphalt and road oil consumed by the Billion Btu ARICBZZ = ARICPZZ * 6.636 industrial sector. ARICBUS = SARICBZZ ARICP Asphalt and road oil consumed by the Thousand barrels ARICPZZ = ASICPZZ + RDICPZZ industrial sector.

Note: This page contains sample records for the topic "owner note totals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Area of Entry Area of Entry Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Aviation Gasoline Blending Components Naphthas which will be used for blending or compounding into finished aviation gasoline (e.g., straight-run gasoline, alkylate, reformate, benzene, toluene, and xylene). Excludes oxygenates (alcohols, ethers), butane, and pentanes plus. Oxygenates are reported as other hydrocarbons, hydrogen, and oxygenates.

342

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

& Blender Net Production & Blender Net Production Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Barrel A unit of volume equal to 42 U.S. gallons. Blending Plant A facility which has no refining capability but is either capable of producing finished motor gasoline through mechanical blending or blends oxygenates with motor gasoline.

343

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Production Capacity of Operable Petroleum Refineries Production Capacity of Operable Petroleum Refineries Definitions Key Terms Definition Alkylate The product of an alkylation reaction. It usually refers to the high octane product from alkylation units. This alkylate is used in blending high octane gasoline. Aromatics Hydrocarbons characterized by unsaturated ring structures of carbon atoms. Commercial petroleum aromatics are benzene, toluene, and xylene (BTX). Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton.

344

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Stocks by Type Stocks by Type Definitions Key Terms Definition Alaskan in Transit Alaskan crude oil stocks in transit by water between Alaska and the other States, the District of Columbia, Puerto Rico, and the Virgin Islands. Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Aviation Gasoline Blending Components Naphthas which will be used for blending or compounding into finished aviation gasoline (e.g., straight-run gasoline, alkylate, reformate, benzene, toluene, and xylene). Excludes oxygenates (alcohols, ethers), butane, and pentanes plus. Oxygenates are reported as other hydrocarbons, hydrogen, and oxygenates.

345

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

U.S. Imports by Country of Origin U.S. Imports by Country of Origin Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Aviation Gasoline Blending Components Naphthas which will be used for blending or compounding into finished aviation gasoline (e.g., straight-run gasoline, alkylate, reformate, benzene, toluene, and xylene). Excludes oxygenates (alcohols, ethers), butane, and pentanes plus. Oxygenates are reported as other hydrocarbons, hydrogen, and oxygenates.

346

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Refinery Stocks Refinery Stocks Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Aviation Gasoline Blending Components Naphthas which will be used for blending or compounding into finished aviation gasoline (e.g., straight-run gasoline, alkylate, reformate, benzene, toluene, and xylene). Excludes oxygenates (alcohols, ethers), butane, and pentanes plus. Oxygenates are reported as other hydrocarbons, hydrogen, and oxygenates.

347

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Propane (Consumer Grade) Prices by Sales Type Propane (Consumer Grade) Prices by Sales Type Definitions Key Terms Definition Commercial/Institutional An energy-consuming sector that consists of service-providing facilities and equipment of: businesses; Federal, State, and local governments; and other private and public organizations, such as religious, social, or fraternal groups. The commercial sector includes institutional living quarters. It also includes sewage treatment facilities. Common uses of energy associated with this sector include space heating, water heating, air conditioning, lighting, refrigeration, cooking, and running a wide variety of other equipment. Note: This sector includes generators that produce electricity and/or useful thermal output primarily to support the activities of the above-mentioned commercial establishments.

348

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Supply and Disposition Balance Supply and Disposition Balance Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Aviation Gasoline Blending Components Naphthas which will be used for blending or compounding into finished aviation gasoline (e.g., straight-run gasoline, alkylate, reformate, benzene, toluene, and xylene). Excludes oxygenates (alcohols, ethers), butane, and pentanes plus. Oxygenates are reported as other hydrocarbons, hydrogen, and oxygenates.

349

Linear Collider Collaboration Tech Notes LCC-0101  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 August 2002 Collimator Wakefield Calculations for ILC-TRC Report Peter Tenenbaum Stanford Linear Accelerator Center Stanford University Stanford, CA 94309, USA Abstract: We summarize the formalism of collimator wakefields and their effect on beams that are near the center of the collimator gap, and apply the formalism to the TESLA, NLC, and CLIC collimation systems. Collimator Wakefield Calculations for ILC-TRC Report P. Tenenbaum LCC-Note-0101 20-Aug-2002 Abstract We summarize the formalism of collimator wakefields and their effect on beams which are near the center of the collimator gap, and apply the formalism to the TESLA, NLC, and CLIC collimation systems. 1 Introduction One of the beam dynamics effects which must be evaluated for the

350

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

No. 2 Distillate Prices by Sales Type, Selected States No. 2 Distillate Prices by Sales Type, Selected States Definitions Key Terms Definition Commercial/Institutional An energy-consuming sector that consists of service-providing facilities and equipment of: businesses; Federal, State, and local governments; and other private and public organizations, such as religious, social, or fraternal groups. The commercial sector includes institutional living quarters. It also includes sewage treatment facilities. Common uses of energy associated with this sector include space heating, water heating, air conditioning, lighting, refrigeration, cooking, and running a wide variety of other equipment. Note: This sector includes generators that produce electricity and/or useful thermal output primarily to support the activities of the above-mentioned commercial establishments.

351

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

PAD District Imports by Country of Origin PAD District Imports by Country of Origin Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Aviation Gasoline Blending Components Naphthas which will be used for blending or compounding into finished aviation gasoline (e.g., straight-run gasoline, alkylate, reformate, benzene, toluene, and xylene). Excludes oxygenates (alcohols, ethers), butane, and pentanes plus. Oxygenates are reported as other hydrocarbons, hydrogen, and oxygenates.

352

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Imports by Destination Imports by Destination Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Aviation Gasoline Blending Components Naphthas which will be used for blending or compounding into finished aviation gasoline (e.g., straight-run gasoline, alkylate, reformate, benzene, toluene, and xylene). Excludes oxygenates (alcohols, ethers), butane, and pentanes plus. Oxygenates are reported as other hydrocarbons, hydrogen, and oxygenates.

353

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Pipeline, Tanker, and Barge Between PADDs Pipeline, Tanker, and Barge Between PADDs Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Barrel A unit of volume equal to 42 U.S. gallons. Conventional Blendstock for Oxygenate Blending (CBOB) Motor gasoline blending components intended for blending with oxygenates to produce finished conventional motor gasoline.

354

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Shell Storage Capacity at Operable Refineries Shell Storage Capacity at Operable Refineries Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Barrel A unit of volume equal to 42 U.S. gallons. Biomass-Based Diesel Fuel Biodiesel and other renewable diesel fuel or diesel fuel blending components derived from biomass, but excluding renewable diesel fuel coprocessed with petroleum feedstocks.

355

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Tanker and Barge Between PADDs Tanker and Barge Between PADDs Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Barrel A unit of volume equal to 42 U.S. gallons. Conventional Blendstock for Oxygenate Blending (CBOB) Motor gasoline blending components intended for blending with oxygenates to produce finished conventional motor gasoline. Conventional Gasoline Finished motor gasoline not included in the oxygenated or reformulated gasoline categories. Excludes reformulated gasoline blendstock for oxygenate blending (RBOB) as well as other blendstock.

356

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Number of Producing Gas Wells Number of Producing Gas Wells Definitions Key Terms Definition Gas Well A well completed for the production of natural gas from one or more gas zones or reservoirs. Such wells contain no completions for the production of crude oil. For definitions of related energy terms, refer to the EIA Energy Glossary. Sources Form EIA-895A, "Annual Quantity and Value of Natural Gas Production Report" , EIA estimates based on data from the Bureau of Safety and Environmental Enforcement, and predecessor agencies; state agencies; and World Oil Magazine. Background on "Natural Gas Annual" data Natural Gas Survey Forms and Instructions Explanatory Notes Beginning in 2001, the number of Federal offshore Gulf of Mexico producing gas and gas condensate wells is reported separately. For previous years the well counts for the Federal offshore Gulf of Mexico were included in the well counts

357

Ford Escape Advanced Research Vehicle Report Notes  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Research Vehicle Advanced Research Vehicle Report Notes 1 "Overall AC electrical energy consumption (AC Wh/mi)" is based on AC electricity consumed during charging events which began during the reporting period and distance driven during all trips in the reporting period. 2 "Overall DC electrical energy consumption (DC Wh/mi)" is based on net DC electricity discharged from or charged to the plug-in battery pack and distance driven during all trips in the reporting period. DC Wh/mi may not be comparable to AC Wh/mi if AC electricity charged prior to the reporting period was discharged during driving within the reporting period, or if AC electricity charged during the reporting period was not discharged during driving within the reporting period.

358

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Production Production Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Barrel A unit of volume equal to 42 U.S. gallons. Butane (C4H10) A normally gaseous straight-chain or branch-chain hydrocarbon extracted from natural gas or refinery gas streams. It includes isobutane and normal butane and is designated in ASTM Specification D1835 and Gas Processors Association Specifications for commercial butane.

359

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Receipts by Pipeline, Tanker, and Barge Between PAD Districts Receipts by Pipeline, Tanker, and Barge Between PAD Districts Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Barrel A unit of volume equal to 42 U.S. gallons. Butane (C4H10) A normally gaseous straight-chain or branch-chain hydrocarbon extracted from natural gas or refinery gas streams. It includes isobutane and normal butane and is designated in ASTM Specification D1835 and Gas Processors Association Specifications for commercial butane.

360

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Exports by Destination Exports by Destination Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Aviation Gasoline Blending Components Naphthas which will be used for blending or compounding into finished aviation gasoline (e.g., straight-run gasoline, alkylate, reformate, benzene, toluene, and xylene). Excludes oxygenates (alcohols, ethers), butane, and pentanes plus. Oxygenates are reported as other hydrocarbons, hydrogen, and oxygenates.

Note: This page contains sample records for the topic "owner note totals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Notes on parafermionic QFT's with boundary interaction  

E-Print Network (OSTI)

The main result of these notes is an analytical expression for the partition function of the circular brane model for arbitrary values of the topological angle. The model has important applications in condensed matter physics. It is related to the dissipative rotator (Ambegaokar-Eckern-Schon) model and describes a ``weakly blocked'' quantum dot with an infinite number of tunneling channels under a finite gate voltage bias. A numerical check of the analytical solution by means of Monte Carlo simulations has been performed recently. To derive the main result we study the so-called boundary parafermionic sine-Gordon model. The latter is of certain interest to condensed matter applications, namely as a toy model for a point junction in the multichannel quantum wire.

S. L. Lukyanov

2006-06-16T23:59:59.000Z

362

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Products Supplied Products Supplied Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Aviation Gasoline Blending Components Naphthas which will be used for blending or compounding into finished aviation gasoline (e.g., straight-run gasoline, alkylate, reformate, benzene, toluene, and xylene). Excludes oxygenates (alcohols, ethers), butane, and pentanes plus. Oxygenates are reported as other hydrocarbons, hydrogen, and oxygenates.

363

PriceTechNotes2011.vp  

Gasoline and Diesel Fuel Update (EIA)

ASTM: The American Society for Testing and Materials. Aviation Gasoline (Finished): A complex mixture of relatively volatile hydrocarbons with or without small quantities of additives, blended to form a fuel suitable for use in aviation reciprocating engines. Fuel specifi- cations are provided in ASTM Specification D 910 and Military Specifica- tion MIL-G-5572. Note: Data on blending components are not counted in data on finished aviation gasoline. Aviation Gasoline Blending Components: Naphthas that will be used for blending or compounding into finished aviation gasoline (e.g., straight run gasoline, alkylate, reformate, benzene, toluene, and xylene). Excludes oxygenates (alcohols, ethers), butane, and pentanes plus. Oxygenates are reported as other hydrocarbons, hydrogen, and oxygenates. Barrel (petroleum): A unit of volume equal to 42 U.S. gallons. Biomass Waste:

364

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Weekly Supply Estimates Weekly Supply Estimates Definitions Key Terms Definition All Other Motor Gasoline Blending Components Naphthas (e.g. straight-run gasoline, alkylate, reformate, benzene, toluene, xylene) used for blending or compounding into finished motor gasoline. Includes receipts and inputs of Gasoline Treated as Blendstock (GTAB). Excludes conventional blendstock for oxygenate blending (CBOB), reformulated blendstock for oxygenate blending, oxygenates (e.g. fuel ethanol and methyl tertiary butyl ether), butane, and pentanes plus. Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton.

365

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Working Storage Capacity at Operable Refineries Working Storage Capacity at Operable Refineries Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Barrel A unit of volume equal to 42 U.S. gallons. Biomass-Based Diesel Fuel Biodiesel and other renewable diesel fuel or diesel fuel blending components derived from biomass, but excluding renewable diesel fuel coprocessed with petroleum feedstocks.

366

Linear Collider Collaboration Tech Notes LCC-0113 CBP Tech Note-276  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 CBP Tech Note-276 February 2003 The NLC Main Damping Ring Lattice Mark Woodley 1 and Andrzej Wolski 2 1 Stanford Linear Accelerator Center Stanford University Menlo Park, CA 04025 2 Lawrence Berkeley National Laboratory University of California Berkeley, CA Abstract: Studies of the NLC Main Damping Ring lattice since April 2001 have indicated that there are a number of collective effects that potentially limit operational performance. One possible way to reduce the impact of these effects is to raise the momentum compaction of the lattice, which requires a significant redesign. In this note, we present a lattice that has a momentum compaction four times larger than the previous design. We discuss the linear and nonlinear dynamical properties of the lattice, and

367

Linear Collider Collaboration Tech Notes LCC-0130 CBP Tech Note-302  

NLE Websites -- All DOE Office Websites (Extended Search)

30 30 CBP Tech Note-302 March 2004 Abstract This note documents a set of expressions used to explore the issue of whether or not it is reasonable to consider a conventional positron source for a Tesla formatted beam. The critical issue is that of energy deposition in the conversion target and the comparison of the induced stress with the ultimate tensile strength of the target material. Since the length of the incident beam pulse is large in comparison to the ratio of beam size to the speed of sound, the concurrent pressure pulse dissipates in a time short compared to the overall pulse duration and one is left with only the Research and Development Issues for NLC Damping Rings 2003-2004 A. Wolski Lawrence Berkeley National Laboratory

368

Linear Collider Collaboration Tech Notes LCC-0105 CBP Tec Note-266  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 CBP Tec Note-266 October 2002 Effects of Systematic Multipole Errors on the Dynamic Aperture of the NLC Main Damping Rings A. Wolski, J.-Y. Jung Lawrence Berkeley National Laboratory University of California Berkeley, CA Abstract: Recent work on designs of dipoles, quadrupoles and sextupoles for the NLC Main Damping Ring has led to estimates of the systematic multipole components in the fields of these magnets. We report on studies of the effects of these multipoles on the dynamic aperture of the damping ring, and show that the systematic multipole components in the present magnet designs are unlikely to be a severe limitation. LCC-0105 CBP Tech Note-266 Effects of Systematic Multipole Errors on the Dynamic

369

Linear Collider Collaboration Tech Notes LCC-0080 CBP Tech Note-244  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 CBP Tech Note-244 May 2002 Estimates of Collective Effects in the NLC Main Damping Rings A. Wolski and S. de Santis Lawrence Berkeley National Laboratory Berkeley, California Abstract: Damping Ring performance depends on the ability to store the design beam current, and extract the beam with the specified low transverse emittance. Given the high bunch charge and moderate energy, a variety of collective effects could play a significant role, in either limiting the bunch current, or increasing the emittance. Here, we estimate the consequences of various effects, based on current theories and understanding. LCC-0080 CBP Tech Note-244 Estimates of Collective Effects in the NLC Main Damping Rings A. Wolski and S. de Santis Lawrence Berkeley National Laboratory

370

Linear Collider Collaboration Tech Notes LCC-0150 CBP Tech Note-321  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 CBP Tech Note-321 June 2004 Abstract This note documents a set of expressions used to explore the issue of whether or not it is reasonable to consider a conventional positron source for a Tesla formatted beam. The critical issue is that of energy deposition in the conversion target and the comparison of the induced stress with the ultimate tensile strength of the target material. Since the length of the incident beam pulse is large in comparison to the ratio of beam size to the speed of sound, the concurrent pressure pulse dissipates in a time short compared to the overall pulse duration and one is left with only the Research and Development Issues for NLC Damping Rings 2004-2005 A. Wolski June 2004

371

Linear Collider Collaboration Tech Notes LCC-0155 CBP Tech Note-326  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 CBP Tech Note-326 July 2004 Abstract This note documents a set of expressions used to explore the issue of whether or not it is reasonable to consider a conventional positron source for a Tesla formatted beam. The critical issue is that of energy deposition in the conversion target and the comparison of the induced stress with the ultimate tensile strength of the target material. Since the length of the incident beam pulse is large in comparison to the ratio of beam size to the speed of sound, the concurrent pressure pulse dissipates in a time short compared to the overall pulse duration and one is left with only the Spin-Tracking Studies for Beam Polarization Preservation in the NLC Main Damping Rings

372

Linear Collider Collaboration Tech Notes LCC-0147 CBP Tech Note-319  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 CBP Tech Note-319 June 2004 Abstract This note documents a set of expressions used to explore the issue of whether or not it is reasonable to consider a conventional positron source for a Tesla formatted beam. The critical issue is that of energy deposition in the conversion target and the comparison of the induced stress with the ultimate tensile strength of the target material. Since the length of the incident beam pulse is large in comparison to the ratio of beam size to the speed of sound, the concurrent pressure pulse dissipates in a time short compared to the overall pulse duration and one is left with only the Intrabeam Scattering in the NLC Main Damping Rings A. Wolski June 2004 Lawrence Berkeley National Laboratory

373

Improved Measurements of the Ice Water Content in Cirrus Using a Total-Water Probe  

Science Conference Proceedings (OSTI)

This note describes an improved method for the measurement of the ice water content (IWC) of cirrus cloud using a total water content probe. A previous version of this technique assumed that the air in cloud-containing regions was saturated with ...

Philip R. A. Brown; Peter N. Francis

1995-04-01T23:59:59.000Z

374

A note on the asymptotic distribution of the sample variogram  

Science Conference Proceedings (OSTI)

A Note on the Asymptotic Distribution of the. Sample Variogram I. Bruce M. Davis 2 and Leon E. Borgman 3. INTRODUCTION. Because the variogram is such a...

375

DOE Sustainability Assistance Network (SAN) Notes Thursday, February...  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 of 2 DOE Sustainability Assistance Network (SAN) Notes Thursday, February 21, 2013 1. Oak Ridge National Laboratory Water Resource Management Dan OConnor, ORNL Implementing...

376

DOE Sustainability Assistance Network (SAN) Notes Thursday, June...  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 of 3 DOE Sustainability Assistance Network (SAN) Notes Thursday, June 21, 2012 1. Sustainability Performance Office (SPO) Highlights Paul Estabrooks, SPO Paul Estabrooks...

377

DOE Sustainability Assistance Network (SAN) Notes Thursday, August...  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 of 2 DOE Sustainability Assistance Network (SAN) Notes Thursday, August 16, 2012 1. Sustainability Performance Office (SPO) Highlights Paul Estabrooks, SPO The guidance for...

378

DOE Sustainability Assistance Network (SAN) Notes Thursday, June...  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 of 3 DOE Sustainability Assistance Network (SAN) Notes Thursday, June 20, 2013 1. Sustainability Performance Office Highlights Paul Estabrooks, SPO Nominations for the 2013...

379

Summary Notes from 28 May 2008 Generic Technical Issue Discussion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summary Notes from 28 May 2008 Generic Technical Issue Discussion on Estimating Waste Inventory and Waste Tank Characterization Attendees: Representatives from Department of...

380

PLEASE NOTE THURSDAY DATE - COLLOQUIUM: Professor Ralph Roskies...  

NLE Websites -- All DOE Office Websites (Extended Search)

MBG Auditorium PLEASE NOTE THURSDAY DATE - COLLOQUIUM: Professor Ralph Roskies - "Big Data at the Pittsburgh Supercomputing Center" Professor Ralph Roskies Pittsburgh...

Note: This page contains sample records for the topic "owner note totals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Total Imports of Residual Fuel  

Annual Energy Outlook 2012 (EIA)

2007 2008 2009 2010 2011 2012 View History U.S. Total 135,676 127,682 120,936 133,646 119,888 93,672 1936-2012 PAD District 1 78,197 73,348 69,886 88,999 79,188 59,594 1981-2012...

382

Compact Totally Disconnected Moufang Buildings  

E-Print Network (OSTI)

Let $\\Delta$ be a spherical building each of whose irreducible components is infinite, has rank at least 2 and satisfies the Moufang condition. We show that $\\Delta$ can be given the structure of a topological building that is compact and totally disconnected precisely when $\\Delta$ is the building at infinity of a locally finite affine building.

Grundhofer, T; Van Maldeghem, H; Weiss, R M

2010-01-01T23:59:59.000Z

383

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Yield Yield Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Distillate Fuel Oil A general classification for one of the petroleum fractions produced in conventional distillation operations. It includes diesel fuels and fuel oils. Products known as No. 1, No. 2, and No. 4 diesel fuel are used in on-highway diesel engines, such as those in trucks and automobiles, as well as off-highway engines, such as those in railroad locomotives and agricultural machinery. Products known as No. 1, No. 2, and No. 4 fuel oils are used primarily for space heating and electric power generation.

384

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Reserves Summary Reserves Summary Definitions Key Terms Definition Dry Natural Gas Natural gas which remains after: 1) the liquefiable hydrocarbon portion has been removed from the gas stream (i.e., gas after lease, field, and/or plant separation); and 2) any volumes of nonhydrocarbon gases have been removed where they occur in sufficient quantity to render the gas unmarketable. (Note: Dry natural gas is also known as consumer-grade natural gas. The parameters for measurement are cubic feet at 60 degrees Fahrenheit and 14.73 pounds per square inch absolute.) Natural Gas Associated-Dissolved The combined volume of natural gas which occurs in crude oil reservoirs either as free gas (associated) or as gas in solution with crude oil (dissolved). Natural Gas Liquids Those hydrocarbons in natural gas which are separated from the gas through the processes of absorption, condensation, adsorption, or other methods in gas processing or cycling plants. Generally such liquids consist of propane and heavier hydrocarbons and are commonly referred to as condensate, natural gasoline, or liquefied petroleum gases. Where hydrocarbon components lighter than propane are recovered as liquids, these components are included with natural gas liquids.

385

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

by End Use by End Use Definitions Key Terms Definition Adjusted Sales Distillate fuel oil sales estimates have been adjusted at the PADD district level to equal published EIA volume estimates of petroleum products supplied in the U.S. marketplace. The kerosene and residual fuel oil sales estimates have been adjusted at the national level. The products supplied estimates can be found in the Petroleum Supply Annual for the appropriate year. In addition, electric power generation data and on-highway diesel data are used in lieu of adjusted survey results. For details, see Technical Note 3 in the Fuel Oil and Kerosene Sales report. All Other Sales for all other energy-consuming sectors not included elsewhere. Commercial An energy-consuming sector that consists of service-providing facilities and equipment of nonmanufacturing businesses; Federal, State, and local governments; and other private and public organizations, such as religious, social, or fraternal groups. The commercial sector includes institutional living quarters. Common uses of energy associated with this sector include space heating, water heating, air conditioning, lighting, refrigeration, cooking and running a wide variety of other equipment.

386

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Distillate by End Use Distillate by End Use Definitions Key Terms Definition Adjusted Sales Distillate fuel oil sales estimates have been adjusted at the PADD district level to equal published EIA volume estimates of petroleum products supplied in the U.S. marketplace. The kerosene and residual fuel oil sales estimates have been adjusted at the national level. The products supplied estimates can be found in the Petroleum Supply Annual for the appropriate year. In addition, electric power generation data and on-highway diesel data are used in lieu of adjusted survey results. For details, see Technical Note 3 in the Fuel Oil and Kerosene Sales report. All Other Sales for all other energy-consuming sectors not included elsewhere. Commercial An energy-consuming sector that consists of service-providing facilities and equipment of nonmanufacturing businesses; Federal, State, and local governments; and other private and public organizations, such as religious, social, or fraternal groups. The commercial sector includes institutional living quarters. Common uses of energy associated with this sector include space heating, water heating, air conditioning, lighting, refrigeration, cooking and running a wide variety of other equipment.

387

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Kerosene by End Use Kerosene by End Use Definitions Key Terms Definition Adjusted Sales Distillate fuel oil sales estimates have been adjusted at the PADD district level to equal published EIA volume estimates of petroleum products supplied in the U.S. marketplace. The kerosene and residual fuel oil sales estimates have been adjusted at the national level. The products supplied estimates can be found in the Petroleum Supply Annual for the appropriate year. In addition, electric power generation data and on-highway diesel data are used in lieu of adjusted survey results. For details, see Technical Note 3 in the Fuel Oil and Kerosene Sales report. All Other Sales for all other energy-consuming sectors not included elsewhere. Commercial An energy-consuming sector that consists of service-providing facilities and equipment of nonmanufacturing businesses; Federal, State, and local governments; and other private and public organizations, such as religious, social, or fraternal groups. The commercial sector includes institutional living quarters. Common uses of energy associated with this sector include space heating, water heating, air conditioning, lighting, refrigeration, cooking and running a wide variety of other equipment.

388

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Heat Content of Natural Gas Consumed Heat Content of Natural Gas Consumed Definitions Key Terms Definition British Thermal Unit (Btu) The quantity of heat required to raise the temperature of 1 pound of liquid water by 1 degree Fahrenheit at the temperature at which water has its greatest density (approximately 39 degrees Fahrenheit). Delivered to Consumers (Heat Content) Heat content of residential, commercial, industrial, vehicle fuel and electric power deliveries to consumers. Electric Power (Heat Content) Heat content of natural gas used as fuel in the electric power sector. Heat Content The amount of heat energy available to be released by the transformation or use of a specified physical unit of an energy form (e.g., a ton of coal, a barrel of oil, a kilowatthour of electricity, a cubic foot of natural gas, or a pound of steam). The amount of heat energy is commonly expressed in British thermal units (Btu). Note: Heat content of combustible energy forms can be expressed in terms of either gross heat content (higher or upper heating value) or net heat content (lower heating value), depending upon whether or not the available heat energy includes or excludes the energy used to vaporize water (contained in the original energy form or created during the combustion process). The Energy Information Administration typically uses gross heat content values.

389

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

U.S. Weekly Products Supplied U.S. Weekly Products Supplied Definitions Key Terms Definition Barrel A unit of volume equal to 42 U.S. gallons. Distillate Fuel Oil A general classification for one of the petroleum fractions produced in conventional distillation operations. It includes diesel fuels and fuel oils. Products known as No. 1, No. 2, and No. 4 diesel fuel are used in on-highway diesel engines, such as those in trucks and automobiles, as well as off-highway engines, such as those in railroad locomotives and agricultural machinery. Products known as No. 1, No. 2, and No. 4 fuel oils are used primarily for space heating and electric power generation. Finished Motor Gasoline A complex mixture of relatively volatile hydrocarbons with or without small quantities of additives, blended to form a fuel suitable for use in spark-ignition engines. Motor gasoline, as defined in ASTM Specification D 4814 or Federal Specification VV-G-1690C, is characterized as having a boiling range of 122 to 158 degrees Fahrenheit at the 10 percent recovery point to 365 to 374 degrees Fahrenheit at the 90 percent recovery point. Motor Gasoline includes conventional gasoline; all types of oxygenated gasoline, including gasohol; and reformulated gasoline, but excludes aviation gasoline. Note: Volumetric data on blending components, such as oxygenates, are not counted in data on finished motor gasoline until the blending components are blended into the gasoline.

390

Take Notes from Corn Hybrid Plots  

E-Print Network (OSTI)

Corn harvest is slow to get going this year, with only 5 % of the states crop reported harvested as of 24 Sep (USDA-NASS, 25 Sep 2006). The causes of the slow start to harvest are slower than normal maturation of the grain (Fig 1), cool temperatures (slower grain drying), and muddy field conditions due to the continuing pattern of frequent rains. The slow pace of corn harvest coupled with the poor stalk quality in some fields (Nielsen, 2006) reminds us how spoiled we were with generally good harvest conditions of the past two seasons. But, that is not the point of this article. Fig. 1. Percent of Indianas corn crop that is rated mature and safe from frost, as of 24 Sep 2006. Data source: USDA-NASS. If rainy weather and soggy field conditions are keeping you from your own harvest, spend some of your down time to walk or re-walk neighborhood on-farm hybrid plots before they are harvested. Many of these trials are still signed so that you can identify 2006, Purdue UnivRL (Bob) Nielsen Page 2 9/27/2006 the seed company and their hybrid numbers. Record notes on hybrid characteristics such as ear height, ear size, completeness of kernel set, husk coverage, standability, and

R. L. (bob Nielsen

2006-01-01T23:59:59.000Z

391

BNL ALARA Center: ALARA Notes, No. 9  

SciTech Connect

This issue of the Brookhaven National Laboratory`s Alara Notes includes the agenda for the Third International Workshop on ALARA and specific instructions on the use of the on-line fax-on-demand service provided by BNL. Other topics included in this issue are: (1) A discussion of low-level discharges from Canadian nuclear plants, (2) Safety issues at French nuclear plants, (3) Acoustic emission as a means of leak detection, (4) Replacement of steam generators at Doel-3, Beaznau, and North Anna-1, (5) Remote handling equipment at Bruce, (6) EPRI`s low level waste program, (7) Radiation protection during concrete repairs at Savannah River, (8) Reactor vessel stud removal/repair at Comanche Peak-1, (9) Rework of reactor coolant pump motors, (10) Restoration of service water at North Anna-1 and -2, (11) Steam generator tubing problems at Mihama-1, (12) Full system decontamination at Indian Point-2, (13) Chemical decontamination at Browns Ferry-2, and (14) Inspection methodolody in France and Japan.

Khan, T.A.; Xie, J.W.; Beckman, M.C. [eds.] [and others

1994-02-01T23:59:59.000Z

392

U.S. Total Imports of Residual Fuel  

U.S. Energy Information Administration (EIA) Indexed Site

Area: U.S. Total PAD District 1 Connecticut Delaware Florida Georgia Maine Maryland Massachusetts New Hampshire New Jersey New York North Carolina Pennsylvania Rhode Island South Carolina Vermont Virginia PAD District 2 Illinois Indiana Michigan Minnesota North Dakota Ohio PAD District 3 Alabama Louisiana Mississippi Texas PAD District 4 Idaho Montana PAD District 5 Alaska California Hawaii Oregon Washington Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Area: U.S. Total PAD District 1 Connecticut Delaware Florida Georgia Maine Maryland Massachusetts New Hampshire New Jersey New York North Carolina Pennsylvania Rhode Island South Carolina Vermont Virginia PAD District 2 Illinois Indiana Michigan Minnesota North Dakota Ohio PAD District 3 Alabama Louisiana Mississippi Texas PAD District 4 Idaho Montana PAD District 5 Alaska California Hawaii Oregon Washington Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes

393

Other States Total Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011...

394

Total Number of Existing Underground Natural Gas Storage Fields  

Annual Energy Outlook 2012 (EIA)

Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2006 2007 2008 2009 2010...

395

Performance Period Total Fee Paid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Period Period Total Fee Paid 4/29/2012 - 9/30/2012 $418,348 10/1/2012 - 9/30/2013 $0 10/1/2013 - 9/30/2014 $0 10/1/2014 - 9/30/2015 $0 10/1/2015 - 9/30/2016 $0 Cumulative Fee Paid $418,348 Contract Type: Cost Plus Award Fee Contract Period: $116,769,139 November 2011 - September 2016 $475,395 $0 Fee Information Total Estimated Contract Cost $1,141,623 $1,140,948 $1,140,948 $5,039,862 $1,140,948 Maximum Fee $5,039,862 Minimum Fee Fee Available Portage, Inc. DE-DT0002936 EM Contractor Fee Site: MOAB Uranium Mill Tailings - MOAB, UT Contract Name: MOAB Uranium Mill Tailings Remedial Action Contract September 2013 Contractor: Contract Number:

396

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995" L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings*",54068,51570,45773,6746,34910,1161,3725,779 "Building Floorspace" "(Square Feet)" "1,001 to 5,000",6272,5718,4824,986,3767,50,22,54 "5,001 to 10,000",7299,6667,5728,1240,4341,61,169,45 "10,001 to 25,000",10829,10350,8544,1495,6442,154,553,"Q"

397

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999" L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings* ...............",61707,58693,49779,6496,37150,3058,5343,1913 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6750,5836,4878,757,3838,231,109,162 "5,001 to 10,000 ..............",7940,7166,5369,1044,4073,288,160,109 "10,001 to 25,000 .............",10534,9773,7783,1312,5712,358,633,232

398

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003" L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings* ...............",64783,62060,51342,5556,37918,4004,4950,2403 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,6038,4826,678,3932,206,76,124 "5,001 to 10,000 ..............",6585,6090,4974,739,3829,192,238,248 "10,001 to 25,000 .............",11535,11229,8618,1197,6525,454,506,289

399

PriceTechNotes2012.vp  

Gasoline and Diesel Fuel Update (EIA)

Data: Data: Prices and Expenditures 135 A P P E N D I X A Price and Expenditure Variables ARICD Asphalt and road oil price in the industrial Dollars per million Btu ARICDZZ is independent. sector. ARICDUS = ARICVUS / ARICBUS * 1000 ARICV Asphalt and road oil expenditures in the Million dollars ARICVZZ = ARICBZZ * ARICDZZ / 1000 industrial sector. ARICVUS = SARICVZZ ARTCD Asphalt and road oil average price, all sectors. Dollars per million Btu ARTCD = ARICD ARTCV Asphalt and road oil total expenditures. Million dollars ARTCV = ARICV ARTXD Asphalt and road oil average price, all end-use Dollars per million Btu ARTXD = ARTXV / ARTXB * 1000 sectors. ARTXV Asphalt and road oil total end-use expenditures. Million dollars ARTXV = ARICV AVACD Aviation gasoline price in the transportation Dollars per million Btu AVACDZZ is independent. sector. AVACDUS = AVACVUS / AVACBUS * 1000 AVACV Aviation gasoline expenditures

400

NETL: LabNotes - November 2008  

NLE Websites -- All DOE Office Websites (Extended Search)

November 2008 November 2008 NETL Research Sheds New Light on Unique Class of CO2 Capture Materials Angela Goodman, a chemist at NETL, uses attenuated total reflectance infrared spectroscopy to investigate the mechanism by which carbon dioxide interacts with a nickel-based metal-organic framework, a new carbon dioxide capture material. NETL researchers use attenuated total reflectance infrared spectroscopy equipment to characterize in situgas-solid interactions at high temperatures and pressures. Researchers at the Department of Energy's National Energy Technology Laboratory developed and applied a new optical technique to show for the first time that structural changes are responsible for the high carbon dioxide (CO2) capture capacity of a new nickel-based metal-organic

Note: This page contains sample records for the topic "owner note totals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

PriceTechNotes2011.vp  

Gasoline and Diesel Fuel Update (EIA)

Data Data 2011: Prices and Expenditures 135 A P P E N D I X A Price and Expenditure Variables ARICD Asphalt and road oil price in the industrial Dollars per million Btu ARICDZZ is independent. sector. ARICDUS = ARICVUS / ARICBUS * 1000 ARICV Asphalt and road oil expenditures in the Million dollars ARICVZZ = ARICBZZ * ARICDZZ / 1000 industrial sector. ARICVUS = SARICVZZ ARTCD Asphalt and road oil average price, all sectors. Dollars per million Btu ARTCD = ARICD ARTCV Asphalt and road oil total expenditures. Million dollars ARTCV = ARICV ARTXD Asphalt and road oil average price, all end-use Dollars per million Btu ARTXD = ARTXV / ARTXB * 1000 sectors. ARTXV Asphalt and road oil total end-use expenditures. Million dollars ARTXV = ARICV AVACD Aviation gasoline price in the transportation Dollars per million Btu AVACDZZ is independent. sector. AVACDUS = AVACVUS / AVACBUS * 1000 AVACV Aviation gasoline

402

ConsumTechNotes2012.vp  

Gasoline and Diesel Fuel Update (EIA)

Data: Data: Consumption 31 P E T R O L E U M O V E R V I E W U.S. Energy Information Administration 32 State Energy Data: Consumption Petroleum Products Residential Sector Estimated Consumption (RC) Commercial Sector Estimated Consumption (CC) Industrial Sector Estimated Consumption (IC) Transportation Sector Estimated Consumption (AC) Electric Power Sector Estimated Consumption (EI) Total Estimated Consumption (TC) Asphalt and Road Oil (AR) ARIC = ARTC + + Aviation Gasoline (AV) AVAC = AVTC + + Distillate Fuel Oil (DF) DFRC + DFCC + DFIC + DFAC + DFEI = DFTC + + + + + + Jet Fuel (JF) JFAC JFEU = JFTC + + Kerosene (KS) KSRC + KSCC + KSIC = KSTC + + + + Liquefied Petroleum Gases (LG) LGRC + LGCC + LGIC + LGAC = LGTC + + + Lubricants (LU) + LUIC LUAC = LUTC + + + Motor Gasoline (MG) MGCC MGIC MGAC = MGTC + + + + Residual Fuel Oil (RF) RFCC RFIC + RFAC + RFEI = RFTC + + + Other Petroleum Products (PO) PCCC 1 + POIC 2 + PCEI 1 = POTC Total

403

Property:Incentive/QuantNotes | Open Energy Information  

Open Energy Info (EERE)

QuantNotes QuantNotes Jump to: navigation, search Property Name Incentive/QuantNotes Property Type Text Description DSIRE Quantitative notes. Pages using the property "Incentive/QuantNotes" Showing 25 pages using this property. (previous 25) (next 25) 3 30% Business Tax Credit for Solar (Vermont) + For property placed in service on or before 09/01/2011. Cannot be taken if other CEDF grant is taken. A AEP Ohio - Renewable Energy Credit (REC) Purchase Program (Ohio) + All RECs were required to be transfered into AEP Ohio's GATS account by July 15, 2013 in order to be eligible for the program. No information is available regarding future solicitations. AEP Ohio - Renewable Energy Technology Program (Ohio) + Wind incentive is an upfront incentive based on expected annual output in kWh (not a PBI). Entered below as a PBI.

404

ConsumTechNotes2012.vp  

Gasoline and Diesel Fuel Update (EIA)

Data: Data: Consumption 109 E L E C T R I C A L E N E R G Y S O U R C E S British Thermal Units (Btu) In order to total all the energy that is used to produce electricity, the energy sources are converted to the common unit of Btu. The methods for calcu- lating the Btu content of coal, natural gas, petroleum, and renewable energy sources consumed for generating electric power are explained in their respective sections of this documentation. Nuclear electric power is described in the following section. Total energy consumed by the electric power sector is the sum of all pri- mary energy used to generate electricity, including net imports of electric- ity across U.S. borders (ELNIBZZ, see page 111). To eliminate the double counting of supplemental gaseous fuels, which are accounted for in the en- ergy sources (such as coal) from which they are derived, and in natural gas, they are removed from the total: TEEIBZZ

405

ConsumTechNotes2011.vp  

Gasoline and Diesel Fuel Update (EIA)

Data Data 2011: Consumption 109 E L E C T R I C A L E N E R G Y S O U R C E S British Thermal Units (Btu) In order to total all the energy that is used to produce electricity, the energy sources are converted to the common unit of Btu. The methods for calcu- lating the Btu content of coal, natural gas, petroleum, and renewable energy sources consumed for generating electric power are explained in their respective sections of this documentation. Nuclear electric power is described in the following section. Total energy consumed by the electric power sector is the sum of all pri- mary energy used to generate electricity, including net imports of electric- ity across U.S. borders (ELNIBZZ, see page 111). To eliminate the double counting of supplemental gaseous fuels, which are accounted for in the en- ergy sources (such as coal) from which they are derived, and in natural gas, they are removed from the total:

406

U.S. Propane Total Stocks  

Gasoline and Diesel Fuel Update (EIA)

6 Notes: U.S. inventories of propane benefited from a late pre-season build that pushed inventories to over 65 million barrels by early November 2000, the second highest peak...

407

U.S. Propane Total Stocks  

Gasoline and Diesel Fuel Update (EIA)

7 Notes: U.S. inventories of propane benefited from a late pre-season build that pushed inventories to over 65 million barrels by early November 2000, the second highest peak...

408

Fuel Ethanol Total Stocks Stocks by Type  

U.S. Energy Information Administration (EIA)

Stock Type: Download Series History: Definitions, Sources & Notes: Show Data By: Product: Stock Type: Area: Feb-13 Mar-13 Apr-13 May-13 Jun-13 Jul-13 View History; U ...

409

A total risk assessment methodology for security assessment.  

Science Conference Proceedings (OSTI)

Sandia National Laboratories performed a two-year Laboratory Directed Research and Development project to develop a new collaborative risk assessment method to enable decision makers to fully consider the interrelationships between threat, vulnerability, and consequence. A five-step Total Risk Assessment Methodology was developed to enable interdisciplinary collaborative risk assessment by experts from these disciplines. The objective of this process is promote effective risk management by enabling analysts to identify scenarios that are simultaneously achievable by an adversary, desirable to the adversary, and of concern to the system owner or to society. The basic steps are risk identification, collaborative scenario refinement and evaluation, scenario cohort identification and risk ranking, threat chain mitigation analysis, and residual risk assessment. The method is highly iterative, especially with regard to scenario refinement and evaluation. The Total Risk Assessment Methodology includes objective consideration of relative attack likelihood instead of subjective expert judgment. The 'probability of attack' is not computed, but the relative likelihood for each scenario is assessed through identifying and analyzing scenario cohort groups, which are groups of scenarios with comparable qualities to the scenario being analyzed at both this and other targets. Scenarios for the target under consideration and other targets are placed into cohort groups under an established ranking process that reflects the following three factors: known targeting, achievable consequences, and the resources required for an adversary to have a high likelihood of success. The development of these target cohort groups implements, mathematically, the idea that adversaries are actively choosing among possible attack scenarios and avoiding scenarios that would be significantly suboptimal to their objectives. An adversary who can choose among only a few comparable targets and scenarios (a small comparable target cohort group) is more likely to choose to attack the specific target under analysis because he perceives it to be a relatively unique attack opportunity. The opposite is also true. Thus, total risk is related to the number of targets that exist in each scenario cohort group. This paper describes the Total Risk Assessment Methodology and illustrates it through an example.

Aguilar, Richard; Pless, Daniel J.; Kaplan, Paul Garry; Silva, Consuelo Juanita; Rhea, Ronald Edward; Wyss, Gregory Dane; Conrad, Stephen Hamilton

2009-06-01T23:59:59.000Z

410

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

LNG Storage Additions & Withdrawals LNG Storage Additions & Withdrawals Definitions Key Terms Definition Liquefied Natural Gas Natural gas (primarily methane) that has been liquefied by reducing its temperature to -260 degrees Fahrenheit at atmospheric pressure. Net Withdrawals The amount by which storage withdrawals exceed storage injections. Storage Additions Volumes of gas injected or otherwise added to underground natural gas reservoirs or liquefied natural gas storage. Storage Withdrawals Total volume of gas withdrawn from underground storage or from liquefied natural gas storage over a specified amount of time. For definitions of related energy terms, refer to the EIA Energy Glossary. Sources Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition"

411

Notes on the holographic Lifshitz theory  

E-Print Network (OSTI)

In the Lifshitz black brane geometry of the Einstein-Maxwell-dilaton theory, we clarify thermodynamics and show that the dual theory following the gauge/gravity duality is described by a non-relativistic medium with an equation state parameter z/2. In this background, the binding energy and drag force of particles or monopoles are investigated with an F1- or a D1-string respectively. Moreover, the electric DC conductivity carried by an impurity or the same matter fluctuation is holographically investigated in the hydrodynamic limit. Depending on the charge carrier, the DC conductivity shows a totally different behavior.

Chanyong Park

2013-05-29T23:59:59.000Z

412

Notes on the holographic Lifshitz theory  

E-Print Network (OSTI)

In the Lifshitz black brane geometry of the Einstein-Maxwell-dilaton theory, we clarify thermodynamics and show that the dual theory following the gauge/gravity duality is described by a non-relativistic medium with an equation state parameter z/2. In this background, the binding energy and drag force of particles or monopoles are investigated with an F1- or a D1-string respectively. Moreover, the electric DC conductivity carried by an impurity or the same matter fluctuation is holographically investigated in the hydrodynamic limit. Depending on the charge carrier, the DC conductivity shows a totally different behavior.

Park, Chanyong

2013-01-01T23:59:59.000Z

413

Grantee Total Number of Homes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grantee Grantee Total Number of Homes Weatherized through November 2011 [Recovery Act] Total Number of Homes Weatherized through November 2011 (Calendar Year 2009 - November 2011) [Recovery Act + Annual Program Funding] Alabama 6,704 7,867 1 Alaska 443 2,363 American Samoa 304 410 Arizona 6,354 7,518 Arkansas 5,231 6,949 California 41,649 50,002 Colorado 12,782 19,210 Connecticut 8,940 10,009 2 Delaware** 54 54 District of Columbia 962 1,399 Florida 18,953 20,075 Georgia 13,449 14,739 Guam 574 589 Hawaii 604 1,083 Idaho** 4,470 6,614 Illinois 35,530 44,493 Indiana** 18,768 21,689 Iowa 8,794 10,202 Kansas 6,339 7,638 Kentucky 7,639 10,902 Louisiana 4,698 6,946 Maine 5,130 6,664 Maryland 8,108 9,015 Massachusetts 17,687 21,645 Michigan 29,293 37,137 Minnesota 18,224 22,711 Mississippi 5,937 6,888 Missouri 17,334 20,319 Montana 3,310 6,860 Navajo Nation

414

Solar total energy project Shenandoah  

DOE Green Energy (OSTI)

This document presents the description of the final design for the Solar Total Energy System (STES) to be installed at the Shenandoah, Georgia, site for utilization by the Bleyle knitwear plant. The system is a fully cascaded total energy system design featuring high temperature paraboloidal dish solar collectors with a 235 concentration ratio, a steam Rankine cycle power conversion system capable of supplying 100 to 400 kW(e) output with an intermediate process steam take-off point, and a back pressure condenser for heating and cooling. The design also includes an integrated control system employing the supervisory control concept to allow maximum experimental flexibility. The system design criteria and requirements are presented including the performance criteria and operating requirements, environmental conditions of operation; interface requirements with the Bleyle plant and the Georgia Power Company lines; maintenance, reliability, and testing requirements; health and safety requirements; and other applicable ordinances and codes. The major subsystems of the STES are described including the Solar Collection Subysystem (SCS), the Power Conversion Subsystem (PCS), the Thermal Utilization Subsystem (TUS), the Control and Instrumentation Subsystem (CAIS), and the Electrical Subsystem (ES). Each of these sections include design criteria and operational requirements specific to the subsystem, including interface requirements with the other subsystems, maintenance and reliability requirements, and testing and acceptance criteria. (WHK)

None

1980-01-10T23:59:59.000Z

415

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Plant Processing Plant Processing Definitions Key Terms Definition Extraction Loss The reduction in volume of natural gas due to the removal of natural gas liquid constituents such as ethane, propane, and butane at natural gas processing plants. Natural Gas Processed Natural gas that has gone through a processing plant. Natural Gas Processing Plant A facility designed to recover natural gas liquids from a stream of natural gas which may or may not have passed through lease separators and/or field separation facilities. These facilities also control the quality of the natural gas to be marketed. Cycling plants are classified as natural gas processing plants. For definitions of related energy terms, refer to the EIA Energy Glossary. Sources Natural Gas Processed, Total Liquids Extracted, and Extraction Loss Volume: Form EIA-64A, "Annual Report of the Origin of Natural Gas Liquids Production" . Estimated Heat Content of Extraction Loss: Estimated, assuming the makeup to total liquids production as reported on Form EIA-64A for each State was proportional to the components and products ultimately separated in the States as reported on the 12 monthly reports on Energy Information Administration, Form EIA-816, "Monthly Natural Gas Liquids Report," and applying the following conversion factors to the individual component and product production estimates (million Btu extraction loss per barrel of liquid produced): ethane - 3.082; propane - 3.836; normal butane - 4.326; isobutane - 3.974; pentanes plus - 4.620.

416

EIA Renewable Energy-Total Renewable Net Generation by Energy ...  

U.S. Energy Information Administration (EIA)

a Agriculture byproducts/crops, sludge waste, tires and other biomass solids, liquids and gases. Note: ...

417

Total Number of Operable Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

418

Total quality management implementation guidelines  

SciTech Connect

These Guidelines were designed by the Energy Quality Council to help managers and supervisors in the Department of Energy Complex bring Total Quality Management to their organizations. Because the Department is composed of a rich mixture of diverse organizations, each with its own distinctive culture and quality history, these Guidelines are intended to be adapted by users to meet the particular needs of their organizations. For example, for organizations that are well along on their quality journeys and may already have achieved quality results, these Guidelines will provide a consistent methodology and terminology reference to foster their alignment with the overall Energy quality initiative. For organizations that are just beginning their quality journeys, these Guidelines will serve as a startup manual on quality principles applied in the Energy context.

Not Available

1993-12-01T23:59:59.000Z

419

ConsumTechNotes2011.vp  

Gasoline and Diesel Fuel Update (EIA)

Real Real Gross Domestic Product by State The real gross domestic product (GDP) data used in the U.S. Energy Infor- mation Administration State Energy Data System to calculate total energy consumed per chained (2005) dollar of output are shown in Tables D1 through D4. The data are the U.S. Department of Commerce, Bureau of Economic Analysis (BEA), real GDP estimates by state, beginning in 1977. The estimates are released in June of each year. For 1997 forward, BEA reports real GDP by state based on the North American Industry Classification System (NAICS). From 1977 through 1997, BEA reports real GDP by state based on the Standard Industrial Classification (SIC). A set of quality indexes for real GDP by state (1997=100) is available for 1977 through 1997. Given the differences in NAICS and SIC, BEA has cautioned against appending the two data series in an attempt to construct a single time series.

420

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Ethanol Plant Production Ethanol Plant Production Definitions Key Terms Definition Barrel A unit of volume equal to 42 U.S. gallons. Fuel Ethanol An anhydrous alcohol (ethanol with less than 1% water) intended for gasoline blending as described in the Oxygenates definition. Oxygenates Substances which, when added to gasoline, increase the amount of oxygen in that gasoline blend. Ethanol, Methyl Tertiary Butyl Ether (MTBE), Ethyl Tertiary Butyl Ether (ETBE), and methanol are common oxygenates. Fuel Ethanol: Blends of up to 10 percent by volume anhydrous ethanol (200 proof) (commonly referred to as the "gasohol waiver"). Methanol: Blends of methanol and gasoline-grade tertiary butyl alcohol (GTBA) such that the total oxygen content does not exceed 3.5 percent by weight and the ratio of methanol to GTBA is less than or equal to 1. It is also specified that this blended fuel must meet ASTM volatility specifications (commonly referred to as the "ARCO" waiver).

Note: This page contains sample records for the topic "owner note totals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

NETL: LabNotes - October 2013  

NLE Websites -- All DOE Office Websites (Extended Search)

October 2013 October 2013 NETL's Morgantown Supercomputer Sets a High Bar for Energy Efficiency Most of us do our part to reduce energy consumption by some minuscule measure, even if it's to simply save a few bucks rather than save the planet. Consider this: a single Google search consumes electricity equivalent to turning on a 60W light bulb for 17 seconds. In 2011, datacenters were estimated to be responsible for 1.3 percent of the world's total electrical consumption. The engines that run these staples of our digital planet-known as supercomputers, or high-performance computing (HPC) resources-actually consume massive amounts of electricity. And, it's a serious problem that is escalating quickly as our dependence on these technologies skyrockets. The massive HPC that powers the NETL SBEUC is cooled using revolutionary methods to reduce energy requirements below DOE standards and far below the global average.

422

ConsumTechNotes2011.vp  

Gasoline and Diesel Fuel Update (EIA)

Data Data 2011: Consumption 31 P E T R O L E U M O V E R V I E W U.S. Energy Information Administration 32 State Energy Data 2011: Consumption Petroleum Products Residential Sector Estimated Consumption (RC) Commercial Sector Estimated Consumption (CC) Industrial Sector Estimated Consumption (IC) Transportation Sector Estimated Consumption (AC) Electric Power Sector Estimated Consumption (EI) Total Estimated Consumption (TC) Asphalt and Road Oil (AR) ARIC = ARTC + + Aviation Gasoline (AV) AVAC = AVTC + + Distillate Fuel Oil (DF) DFRC + DFCC + DFIC + DFAC + DFEI = DFTC + + + + + + Jet Fuel (JF) JFAC JFEU = JFTC + + Kerosene (KS) KSRC + KSCC + KSIC = KSTC + + + + Liquefied Petroleum Gases (LG) LGRC + LGCC + LGIC + LGAC = LGTC + + + Lubricants (LU) + LUIC LUAC = LUTC + + + Motor Gasoline (MG) MGCC MGIC MGAC = MGTC + + + + Residual Fuel Oil (RF) RFCC RFIC + RFAC + RFEI = RFTC + + + Other Petroleum Products (PO) PCCC 1 + POIC 2 + PCEI

423

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Refinery, Bulk Terminal, and Natural Gas Plant Stocks by State Refinery, Bulk Terminal, and Natural Gas Plant Stocks by State Definitions Key Terms Definition Bulk Terminal A facility used primarily for the storage and/or marketing of petroleum products which has a total bulk storage capacity of 50,000 barrels or more and/or receives petroleum products by tanker, barge, or pipeline. Conventional Gasoline Finished motor gasoline not included in the oxygenated or reformulated gasoline categories. Excludes reformulated gasoline blendstock for oxygenate blending (RBOB) as well as other blendstock. Crude Oil A mixture of hydrocarbons that exists in liquid phase in natural underground reservoirs and remains liquid at atmospheric pressure after passing through surface separating facilities. Depending upon the characteristics of the crude stream, it may also include:

424

ConsumTechNotes2011.vp  

Gasoline and Diesel Fuel Update (EIA)

oxygenate oxygenate (blended up to 10 percent concentration). A small amount of fuel ethanol is used as an alternative fuel, such as E85. It is typically produced chemically from ethylene, or biologically from fermentation of various sugars from carbo- hydrates found in agricultural crops and cellulosic residues from crops or wood. For 1981 forward, fuel ethanol estimates are maintained separately from motor gasoline in SEDS and shown in the state energy consumption data tables to illustrate renewable energy use. The U.S. total fuel ethanol consumption in SEDS is a series developed by the U.S. Energy Information Administration (EIA) from annual reports of field production of oxygenated gasoline (prior to 2005), finished motor gasoline and motor gasoline blending components adjustments (2005 for- ward), and refinery and blender net inputs of fuel ethanol (all years). The fuel ethanol

425

PriceTechNotes2011.vp  

Gasoline and Diesel Fuel Update (EIA)

Current-Dollar Current-Dollar Gross Domestic Product by State The current-dollar gross domestic product (GDP) data used in the U.S. Energy Information Administration State Energy Data System (SEDS) to calculate total energy consumed per current dollar of output are shown in Tables B1 through B4. The data are the U.S. Department of Commerce, Bureau of Economic Analysis, current-dollar GDP estimates by state. The estimates are released June of each year. For 1970 through 1996, BEA reports current-dollar GDP by state based on the Standard Industrial Classification (SIC). For 1997 forward, the BEA reports current-dollar GDP by state based on the 1997 North Ameri- can Classification System (NAICS). Given this discontinuity in the GDP by states series at 1997, users of these data are strongly cautioned against appending the two data series in an attempt to construct a single time se- ries of GDP by state

426

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Capacity Capacity Definitions Key Terms Definition Aquifer Storage Field A sub-surface facility for storing natural gas, consisting of water-bearing sands topped by an impermeable cap rock. Depleted Reservoir Storage Field A sub-surface natural geological reservoir, usually a depleted gas or oil field, used for storing natural gas. Natural Gas A gaseous mixture of hydrocarbon compounds, the primary one being methane. Salt Dome Storage Field (Salt Cavern) A storage facility that is a cavern hollowed out in either a salt "bed" or "dome" formation. Storage Capacity The present developed maximum operating capacity. Working Gas Capacity The volume of total natural gas storage capacity that contains natural gas available for withdrawal. For definitions of related energy terms, refer to the EIA Energy Glossary.

427

ConsumTechNotes2012.vp  

Gasoline and Diesel Fuel Update (EIA)

oxygenate. oxygenate. A small amount of fuel ethanol is used as an alternative fuel, such as E85. It is typ- ically produced chemically from ethylene, or biologically from fermenta- tion of various sugars from carbohydrates found in agricultural crops and cellulosic residues from crops or wood. For 1981 forward, fuel ethanol es- timates are maintained separately from motor gasoline in SEDS and shown in the state energy consumption data tables to illustrate renewable energy use. The U.S. total fuel ethanol consumption in SEDS is a series developed by the U.S. Energy Information Administration (EIA) from annual reports of field production of oxygenated gasoline (prior to 2005), finished motor gasoline and motor gasoline blending components adjustments (2005 for- ward), and refinery and blender net inputs of fuel ethanol (all years). The fuel ethanol series used in SEDS is denatured fuel ethanol,

428

Missouri Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA)

snpt2mo Callaway Unit 1 1,190 8,996 100.0 Union Electric Co 1 Plant 1 Reactor Owner Note: Totals may not equal sum of components due to independent rounding.

429

Connecticut Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA)

snpt2ct Millstone Unit 2, Unit 3 2,103 16,750 100.0 Dominion Nuclear Conn Inc 1 Plant 2 Reactors Owner Note: Totals may not equal sum of components due to independent ...

430

Arkansas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA)

snpt2ar Arkansas Nuclear One Unit 1, Unit 2 1,835 15,023 100.0 Entergy Arkansas Inc 1 Plant 2 Reactors Owner Note: Totals may not equal sum of ...

431

Linear Collider Collaboration Tech Notes LCC-0062 CBP-tech Note228  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 CBP-tech Note228 May 2001 Symplectic Integrators for Nonlinear Wiggler Fields Andrzej Wolski Lawrence Berkeley National Laboratory Abstract: To achieve fast damping, the NLC Main Damping Ring uses a wiggler with high field strength, 2.15 T, and over 45 m in length. An ideal wiggler with infinitely wide pole pieces may be treated as a linear eleme nt, and has no impact on the dynamic aperture. However, the integrated nonlinear components from a real wiggler with integrated field over 100 T 2 m can be significant, and the choice of methods for studying the effects in such cases is limited at present. We present two possibilities for symplectic tracking through a wiggler taking full account of the nonlinear components of the field, compare the results with

432

Transport Policy Note-Bangladesh | Open Energy Information  

Open Energy Info (EERE)

Note-Bangladesh Note-Bangladesh Jump to: navigation, search Name Transport Policy Note-Bangladesh Agency/Company /Organization Government of Bangladesh Sector Energy Focus Area Transportation Topics Implementation, GHG inventory, Policies/deployment programs, Background analysis Website http://siteresources.worldbank Program Start 2009 Country Bangladesh UN Region South-Eastern Asia References Bangladesh-Transportation[1] Abstract "This policy note provides an overview of the main characteristics of the transport sector in Bangladesh and the challenges going forward. It also provides guidance to the Bank in its dialogue with the Government of Bangladesh on the strategic priorities in the sector and the areas where the Bank can provide the most support consistent with the overall strategic

433

Notes from the Call | OpenEI Community  

Open Energy Info (EERE)

Notes from the Call Notes from the Call Home > Groups > Linked Open Data Workshop in Washington, D.C. Jweers's picture Submitted by Jweers(83) Contributor 27 September, 2012 - 17:57 notes Here's my notes from the call this morning. Some confusion about the date. NREL to confirm room reservation and details. Hotels - Availability? Book soon! General Ideas We would prefer an afternoon event, especially on Monday. Start around 1pm, and do a cocktail hour or mid-afternoon snack. Allow a good amount of time for networking in the middle of the event. Keynote Speaker? Can we get another speaker as good as Ndemo, but focused on energy? What does LOD mean to him? To what extent do we want to focus people on energy issues? Possible Speakers: Jeanne Holm - Data.gov. Bernadete Hyland - 3 Round Stones

434

NERSC Users Group Meeting Nov. 15, 1999 Notes  

NLE Websites -- All DOE Office Websites (Extended Search)

Notes Notes Notes ERSUG Meeting Summary Notes, November 15, 1999 Here are some highlights from the discussions (excepting the items contributed by ERSUG Chair, Bas Bramms below): During the state of NERSC presentation by Jim Craw a primary topic of discussion was the issue of the processing capabilities of the PVP cluster. Since the upgrade of the batch system processors to SV1s, some concern has been expressed about the relatively poorer processing capabilities of the J90SE processors on the interactive Killeen system. Naturally everybody would prefer having all the processors on Killeen also upgraded to SV1s. This would both make the system more uniform (upcoming compiler releases are expected to diverge with more optimization in place for the SV1s) and performance would be improved (especially important to 2-3 groups).

435

A Note on Gandin and Murphy's Equitable Skill Score  

Science Conference Proceedings (OSTI)

Gandin and Murphy introduced an equitable skill score for use in evaluating categorical forecasts. For forecasts involving more than two categories, the elements of the scoring matrix are not defined uniquely. In this note, a specific formula ...

Joseph P. Gerrity Jr.

1992-11-01T23:59:59.000Z

436

Renewable Energy Working Group- Summary Notes 5-2-2012  

Energy.gov (U.S. Department of Energy (DOE))

Meeting minutes describes the Renewable Energy Working Group summary notes from the Open Webinar Meeting on May 2, 2012 from 2:30 p.m. 3:30 p.m.

437

Energy Prices Note 4. Crude Oil Landed Costs.  

U.S. Energy Information Administration (EIA)

Energy Prices Note 1. Crude Oil Refinery Acquisition Costs. Begin-ning with January 1981, refiner acquisition costs of crude oil are from data collected on U.S ...

438

Microsoft Word - Energ-Water Issue Notes.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 0 7 7 7 N N N o o o . . . 2 2 2 NETL: Erik Shuster September 26, 2007 Topic Energywater issues Objective The objective of this issue note is to explore future impacts and...

439

DOE-EERE Durability Working Group Meeting Notes  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE-EERE Durability Working Group (DWG) Meeting Thursday, October 13, 2011 Boston, MA Meeting Notes D. Myers and R. Borup Meeting Agenda 6:30 pm Welcome and introductory comments...

440

Combating terrorism insurgency resolution software: a research note  

Science Conference Proceedings (OSTI)

This is a research note to propose the development of a combating terrorism (CbT) insurgency resolution software that would operationalize and visualize all the processes involved in resolving terrorist-type insurgencies, including metrics for measures ...

Joshua Sinai

2006-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "owner note totals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

SLAC National Accelerator Laboratory - Chi-Chang Kao, Noted X...  

NLE Websites -- All DOE Office Websites (Extended Search)

Press Release Archive Chi-Chang Kao, Noted X-ray Scientist, Named SLAC Director October 24, 2012 Stanford University press release Chi--Chang Kao, an associate laboratory director...

442

A Note on Parabolic Subgroups of a Coxeter Group  

E-Print Network (OSTI)

The aim of this note is to prove that the parabolic closure of any subset of a Coxeter group is a parabolic subgroup. To obtain that, several technical lemmas on the root system of a parabolic subgroup are established.

Dongwen Qi

2008-01-01T23:59:59.000Z

443

Notes on Technical Writing The University of Texas at Austin  

E-Print Network (OSTI)

, not wordy 2. Concrete, not vague 3. Down-to-earth, not esoteric or "ultracompact" Notes on Technical Writing on Technical Writing ­ p.11/44 #12;Down-to-earth vs. esoteric · Antipodal diodic phase demodulator · Two diodes with a purpose. . . Notes on Technical Writing ­ p.12/44 #12;Down-to-earth vs. esoteric · It is interesting

Aziz, Adnan

444

Nuclear Maintenance Applications Center: Lube Notes Compilation, 1989-2007  

Science Conference Proceedings (OSTI)

Proper equipment lubrication is a necessity for trouble-free operation in both nuclear and fossil power plants. In 1989, EPRI's Nuclear Maintenance Applications Center (NMAC) began publishing Lube Notes biannually. The intent of the newsletter was to address common lubrication issues and provide assistance to plant maintenance personnel. Lubrication topics vary from component-specific case studies to generic testing analysis. This report compiles all of the Lube Notes published from 1989 through 2007. In...

2007-12-21T23:59:59.000Z

445

U.S. Total Shell Storage Capacity at Operable Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Area: U.S. East Coast (PADD 1) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Period: Area: U.S. East Coast (PADD 1) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Period: Annual (as of January 1) Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2008 2009 2010 2011 2012 2013 View History Total 765,593 758,619 710,413 -- -- -- 1982-2013 Crude Oil 180,830 179,471 180,846 -- -- -- 1985-2013 Liquefied Petroleum Gases 34,772 32,498 33,842 -- -- -- 1982-2013 Propane/Propylene 10,294 8,711 8,513 -- -- -- 1982-2013 Normal Butane/Butylene 24,478 23,787 25,329 -- -- -- 1982-2013 Other Liquids 95,540 96,973 96,157 -- -- -- 1982-2013 Oxygenates 1,336 1,028 1,005 -- -- -- 1994-2013

446

Total Imports of Residual Fuel  

Gasoline and Diesel Fuel Update (EIA)

May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. Total 5,752 5,180 7,707 9,056 6,880 6,008 1936-2013 PAD District 1 1,677 1,689 2,008 3,074 2,135 2,814 1981-2013 Connecticut 1995-2009 Delaware 1995-2012 Florida 359 410 439 392 704 824 1995-2013 Georgia 324 354 434 364 298 391 1995-2013 Maine 65 1995-2013 Maryland 1995-2013 Massachusetts 1995-2012 New Hampshire 1995-2010 New Jersey 903 756 948 1,148 1,008 1,206 1995-2013 New York 21 15 14 771 8 180 1995-2013 North Carolina 1995-2011 Pennsylvania 1995-2013 Rhode Island 1995-2013 South Carolina 150 137 194 209 1995-2013 Vermont 5 4 4 5 4 4 1995-2013 Virginia 32 200 113 1995-2013 PAD District 2 217 183 235 207 247 179 1981-2013 Illinois 1995-2013

447

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

448

ConsumTechNotes2011.vp  

Gasoline and Diesel Fuel Update (EIA)

65 65 Appendix B Thermal Conversion Factors A P P E N D I X B Table B1. Approximate Heat Content of Petroleum and Heat Rates for Electricity, Selected Years, 1960-2011 Year Petroleum Consumption Electricity Net Generation Liquefied Petroleum Gases, Industrial Sector (LGICKUS) Liquefied Petroleum Gases, All Sectors (LGTCKUS) Motor Gasoline, All Sectors (MGTCKUS) Total Petroleum Products, All Sectors a (PATCKUS) Fossil-Fueled Steam-Electric Plants b (FFETKUS) Nuclear Steam-Electric Plants (NUETKUS) Million Btu per Barrel Btu per Kilowatthour 1960 4.163 4.011 5.253 5.555 10,760 11,629 1965 4.149 4.011 5.253 5.532 10,453 11,804 1970 3.736 3.779 5.253 5.503 10,494 10,977 1975 3.645 3.715 5.253 5.494 10,406 11,013 1976 3.640 3.711 5.253 5.504 10,373 11,047 1977 3.590 3.677 5.253 5.518 10,435 10,769 1978 3.579 3.669 5.253 5.519 10,361 10,941 1979

449

Map Data: Total Production | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Total Production Map Data: Total Production totalprod2009final.csv More Documents & Publications Map Data: Renewable Production Map Data: State Consumption...

450

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 222 194 17...

451

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,100...

452

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,928 1,316...

453

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

454

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

455

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

456

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

457

Total production of uranium concentrate in the United States  

Gasoline and Diesel Fuel Update (EIA)

3. U.S. uranium mills and heap leach facilities by owner, location, capacity, and operating status 3. U.S. uranium mills and heap leach facilities by owner, location, capacity, and operating status Operating Status at the End of Owner Mill and Heap Leach1 Facility Name County, State (existing and planned locations) Capacity (short tons of ore per day) 2012 1st Quarter 2013 2nd Quarter 2013 3rd Quarter 2013 EFR White Mesa LLC White Mesa Mill San Juan, Utah 2,000 Operating Operating Operating Operating-Processing Alternate Feed Energy Fuels Resources Corporation Piñon Ridge Mill Montrose, Colorado 500 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Permitted and Licensed Energy Fuels Wyoming Inc Sheep Mountain Fremont, Wyoming 725 - Undeveloped Undeveloped Undeveloped

458

Total production of uranium concentrate in the United States  

Gasoline and Diesel Fuel Update (EIA)

4. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status 4. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status Operating Status at the End of In-Situ-Leach Plant Owner In-Situ-Leach Plant Name County, State (existing and planned locations) Production Capacity (pounds U3O8 per year) 2012 1st Quarter 2013 2nd Quarter 2013 3rd Quarter 2013 Cameco Crow Butte Operation Dawes, Nebraska 1,000,000 Operating Operating Operating Operating Hydro Resources, Inc. Church Rock McKinley, New Mexico 1,000,000 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Hydro Resources, Inc. Crownpoint McKinley, New Mexico 1,000,000 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed

459

Percentages of Total Imported Crude Oil by API Gravity  

U.S. Energy Information Administration (EIA) Indexed Site

Percentages of Total Imported Crude Oil by API Gravity Percentages of Total Imported Crude Oil by API Gravity (Percent by Interval) Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes API Gravity Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History 20.0º or Less 16.07 17.25 17.35 14.65 17.17 19.70 1983-2013 20.1º to 25.0º 34.75 32.07 33.66 33.41 32.73 35.52 1983-2013 25.1º to 30.0º 9.35 8.59 8.61 11.45 8.98 7.73 1983-2013 30.1º to 35.0º 25.99 30.03 26.36 28.73 29.89 26.56 1983-2013 35.1º to 40.0º 11.94 10.60 12.42 9.74 9.89 8.80 1983-2013 40.1º to 45.0º 1.62 1.23 1.13 1.70 1.14 W 1983-2013 45.1º or Greater 0.28 0.23 0.48 0.31 0.20 W 1983-2013 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

460

U.S. Total Exports  

U.S. Energy Information Administration (EIA) Indexed Site

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

Note: This page contains sample records for the topic "owner note totals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Automatic Lighting Shutoff for Tenant Spaces - Code Notes | Building Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Automatic Lighting Shutoff for Tenant Spaces - Code Notes Automatic Lighting Shutoff for Tenant Spaces - Code Notes Automatic shutoff capability for all interior building lighting (with exceptions) is required by ASHRAE Standard 90.1-2007 (as well as previous versions back to 1999) and the 2009 International Energy Conservation Code (including versions back to 2003) for buildings over 5,000ft2. Publication Date: Thursday, March 10, 2011 cn_automatic_lighting_shutoff_for_tenant_spaces.pdf Document Details Document Number: PNNL-SA-66719 Prepared by: Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program Focus: Compliance Building Type: Commercial Code Referenced: ASHRAE Standard 90.1-2007 2009 IECC Document type: Code Notes Target Audience: Architect/Designer Builder Code Official

462

NERSC Users Group Meeting June 24-25, 2004 Notes  

NLE Websites -- All DOE Office Websites (Extended Search)

Notes Notes Notes Live Media Streaming via RealPlayer Media streaming of these lectures will be provided via RealPlayer. Users of Windows- or Macintosh-based computers will be able to see and hear the presentation by way of the following procedures. 1. Download and open the slide files onto your computer. 2. Make certain you have the current version of RealPlayer installed. These are available at the Real Free Player Download web site 3. Start the RealPlayer application, and then enter the following address into its URL location: http://ipvideo.lbl.gov:8080/scalable/live.rm.sdp. Should the above address not work, or if your workstation is on a non-LBL network, then use the following one: rtsp://ipvideo.lbl.gov:554/encoder/live.rm
You may

463

Commercial Air Barrier Requirements for Insulated Ceilings - Code Notes |  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Barrier Requirements for Insulated Ceilings - Code Notes Air Barrier Requirements for Insulated Ceilings - Code Notes The 2009 International Energy Conservation Code requires openings in the building envelope to be sealed to prevent air leakage into and out of the space, including an air barrier at insulation installations. Publication Date: Wednesday, June 22, 2011 cn_commercial_air_barrier_requirements_for_insulated_ceilings.pdf Document Details Prepared by: Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program Focus: Compliance Building Type: Commercial Code Referenced: ASHRAE Standard 90.1-2007 2009 IECC Document type: Code Notes Target Audience: Architect/Designer Builder Code Official Contractor Engineer Contacts Web Site Policies U.S. Department of Energy USA.gov Last Updated: Thursday, September 20, 2012 - 17:25

464

Refinery & Blender Net Production of Total Finished Petroleum ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

465

U.S. Total Imports of Residual Fuel  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

466

Total Cost of Motor-Vehicle Use  

E-Print Network (OSTI)

Grand total social cost of highway transportation Subtotal:of alternative transportation investments. A social-costtransportation option that has These costs will be inefficiently incurred if people do not fully lower total social costs.

Delucchi, Mark A.

1996-01-01T23:59:59.000Z

467

Contractor: Contract Number: Contract Type: Total Estimated  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Number: Contract Type: Total Estimated Contract Cost: Performance Period Total Fee Earned FY2008 2,550,203 FY2009 39,646,446 FY2010 64,874,187 FY2011 66,253,207 FY2012...

468

Total cost model for making sourcing decisions  

E-Print Network (OSTI)

This thesis develops a total cost model based on the work done during a six month internship with ABB. In order to help ABB better focus on low cost country sourcing, a total cost model was developed for sourcing decisions. ...

Morita, Mark, M.B.A. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

469

Fractionally total colouring Gn,p  

Science Conference Proceedings (OSTI)

We study the fractional total chromatic number of G"n","p as p varies from 0 to 1. We also present an algorithm that computes the fractional total chromatic number of a random graph in polynomial expected time. Keywords: Fractional total colouring, Graph colouring, Random graphs

Conor Meagher; Bruce Reed

2008-04-01T23:59:59.000Z

470

Property:NEPA Completion Notes | Open Energy Information  

Open Energy Info (EERE)

Completion Notes Completion Notes Jump to: navigation, search Property Name NEPA Completion Notes Property Type Text Pages using the property "NEPA Completion Notes" Showing 25 pages using this property. (previous 25) (next 25) B BLM-NV-WN-ES-08-01-1310, NV-020-08-01 + 8/2: Data reviewed for completion C CA-017-05-051 + 8/9 Data entry complete. Attached FONSI does not seem to be fully related to the attached EA. The FONSI is for a geothermal well and slimhole exploration project and the EA is for a pipeline project. Need to add Public Health and Safety as a resource 8/22/13 - The 'FONSI/DR is actually for EA CA-170-02-15 Bassalt Canyon..dated Jan 2002 KW 8/26/13 - I deleted the FONSI from this page. Filename is incorrect for the file and stands as "CA-017-05-51-EA-DR -FONSI.pdf," Andrew Gentile. Unable to find Final EA or FONSI online. When RMP added, add "Inyo National Forest "Land and Resource Management Plan" (LRMP) 1988"

471

BIOINFORMATICS APPLICATIONS NOTE Vol. 17 no. 3 2001  

E-Print Network (OSTI)

BIOINFORMATICS APPLICATIONS NOTE Vol. 17 no. 3 2001 Pages 286­287 Dynamic simulation of the humanDepartment of Chemical Engineering, University of Delaware, Newark, DE 19711, USA Received on June 20, 2000. The extensive data regarding the red blood cell metabolic net- work and the previous kinetic analysis of all

Church, George M.

472

Approved Test Procedures Version 1.1 Release Notes  

E-Print Network (OSTI)

Approved Test Procedures Version 1.1 Release Notes 1 Change Reason for Change 302.a drugdrug, drug allergy In the Informative Test Description section Added clarification to the example. 302.c Problem List In the Informative Test Description section Added the sentence "The test also

473

TESLA 2002-10 CBP Tech Note-268  

E-Print Network (OSTI)

LCC-0108 TESLA 2002-10 CBP Tech Note-268 Comparison of Emittance Tuning Simulations in the NLC and TESLA Damping Rings A. Wolski LBNL W. Decking DESY November 11th , 2002 Abstract Vertical emittance is a critical issue for future linear collider damping rings. Both NLC and TESLA specify vertical emittance

474

Referencing & Citing with Introduction to EndNote X5  

E-Print Network (OSTI)

references Find full- text Open link Open file Insert citation Format bibliography Return to wordprocesser Click on OK. Linking to the Full-text EndNote provides several ways of linking to the full-text will automatically be populated into the URL field. If the University subscribes to the full- text of the article

Li, Jingpeng

475

Traffic and Transportation Committee Meeting Summary of Meeting Notes  

E-Print Network (OSTI)

Traffic and Transportation Committee Meeting Summary of Meeting Notes October 5, 2009 - 1:30 PM Kevin Young Ned Hacker Salt Lake City Transportation WFRC Robert Miles UDOT Rob Kistler U of U person introduced him/herself to the group. II. The group discussed the future meeting schedule (Agenda

Capecchi, Mario R.

476

Traffic and Transportation Committee Summary of Meeting Notes  

E-Print Network (OSTI)

Traffic and Transportation Committee Summary of Meeting Notes March 31, 2006 ­ 1:30pm ­ 1210 Annex Young Salt Lake City - Transportation Tim Harpst Salt Lake City - Transportation Dan Bergenthal Salt Lake City - Transportation Robin Carbaugh Yalecrest Neighborhood Council Hal Johnson UTA-Mgr. BRT

Capecchi, Mario R.

477

Traffic and Transportation Committee Meeting Summary of Meeting Notes  

E-Print Network (OSTI)

to alternative transportation even as they grow. Plans for the future include increasing the number of bikeTraffic and Transportation Committee Meeting Summary of Meeting Notes September 15, 2006- 1:30 PM 6 Jenkin Howard Hughes Medical Institute @ U of U Joe Perrin Salt Lake City, Transportation Advisory Board

Capecchi, Mario R.

478

HomeNote: supporting situated messaging in the home  

Science Conference Proceedings (OSTI)

In this paper we describe a field trial designed to investigate the potential of remote, situated messaging within the home. Five households used our "HomeNote" device for approximately a month. The results show a diversity of types of communication ... Keywords: SMS, domestic communication, epigraphic, family life, field study, messaging, situated displays

Abigail Sellen; Richard Harper; Rachel Eardley; Shahram Izadi; Tim Regan; Alex S. Taylor; Ken R. Wood

2006-11-01T23:59:59.000Z

479

TECHNICAL NOTES Balancing Efficiency and Equity of Ramp Meters  

E-Print Network (OSTI)

TECHNICAL NOTES Balancing Efficiency and Equity of Ramp Meters Lei Zhang1 and David Levinson2 on equity. This paper addresses this issue and presents a new objective for ramp metering. Introduction Previous evaluation studies e.g., Cambridge Systematics 2001 show ramp meters can lower travel

Levinson, David M.

480

Windows File Sharing / Accessing Samba Shares General Notes  

E-Print Network (OSTI)

Windows File Sharing / Accessing Samba Shares General Notes · When mapping a drive on a Windows XP from any Windows machine, before you can share a folder or access a shared folder, you need to have the File and Print Sharing enabled in the Windows Firewall exceptions list. Creating Shares: To Create

Firtel, Richard A.

Note: This page contains sample records for the topic "owner note totals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

CDF Note 10796 Search for Standard Model Higgs Boson Production  

E-Print Network (OSTI)

CDF Note 10796 Search for Standard Model Higgs Boson Production in Association with a W± Boson present a search for the standard model Higgs boson produced in association with a W± boson. This search that at least one jet be identified to originate from a bottom quark. Discrimination between the Higgs boson

Fermilab

482

TECHNICAL NOTE Testing avian, squamate, and mammalian nuclear markers for  

E-Print Network (OSTI)

TECHNICAL NOTE Testing avian, squamate, and mammalian nuclear markers for cross amplification amplifications to assess 120 previously described nuclear markers for phylogeographic and phylogenetic analysis. marmorata or P. castaneus, and a subset of eight markers amplified single products across a test panel of 11

Grether, Gregory

483

Branden Fitelson Philosophy 201 Notes 1 Announcements and Such  

E-Print Network (OSTI)

'. ­ `New York is a city.' `Cn'. · As in LSL, we can combine different LMPL atomic sentences using premises and conclusions of these kinds of arguments. · If it's not atomic sentences that the premises Philosophy 201 Notes 5 ' & $ % Symbolization in LMPL I: New Atomic Sentences · Among the atomic sentences

Fitelson, Branden

484

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

38 38 Nevada - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S30. Summary statistics for natural gas - Nevada, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 4 4 4 3 4 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 4 4 4 3 4

485

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Idaho - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S14. Summary statistics for natural gas - Idaho, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

486

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Washington - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S49. Summary statistics for natural gas - Washington, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

487

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Maine - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S21. Summary statistics for natural gas - Maine, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0

488

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Minnesota - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S25. Summary statistics for natural gas - Minnesota, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

489

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 South Carolina - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S42. Summary statistics for natural gas - South Carolina, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

490

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Minnesota - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S25. Summary statistics for natural gas - Minnesota, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

491

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 New Jersey - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. Summary statistics for natural gas - New Jersey, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

492

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Vermont - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S47. Summary statistics for natural gas - Vermont, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

493

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Wisconsin - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S51. Summary statistics for natural gas - Wisconsin, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

494

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 North Carolina - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. Summary statistics for natural gas - North Carolina, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

495

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 New Jersey - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. Summary statistics for natural gas - New Jersey, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

496

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Maryland - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S22. Summary statistics for natural gas - Maryland, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 7 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells 35 28 43 43 34 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 35

497

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 New Hampshire - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S31. Summary statistics for natural gas - New Hampshire, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

498

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Maryland - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S22. Summary statistics for natural gas - Maryland, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 7 7 7 8 9 Production (million cubic feet) Gross Withdrawals From Gas Wells 28 43 43 34 44 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 28

499

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Missouri - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S27. Summary statistics for natural gas - Missouri, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 53 100 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

500

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Massachusetts - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0