Powered by Deep Web Technologies
Note: This page contains sample records for the topic "owned utilities iou" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

U.S. Electric Utility Companies and Rates: Look-up by Zipcode...  

Open Energy Info (EERE)

by NREL and Ventyx, provides average residential, commercial and industrial electricity rates by zip code for both investor owned utilities (IOU) and non-investor owned utilities....

2

US utilities | OpenEI  

Open Energy Info (EERE)

6489 6489 Varnish cache server US utilities Dataset Summary Description This dataset, compiled by NREL and Ventyx, provides average residential, commercial and industrial electricity rates by zip code for both investor owned utilities (IOU) and non-investor owned utilities. Note: the file includes average rates for each utility, but not the detailed rate structure data found in the database available via the zip-code look-up feature on the OpenEI Utilities page (http://en.openei.org/wiki/Gateway:Utilities). The data was released by NREL/Ventyx in February 2011. Source NREL and Ventyx Date Released February 24th, 2012 (2 years ago) Date Updated Unknown Keywords electric rates rates US utilities Data text/csv icon IOU rates by zipcode (csv, 1.7 MiB) text/csv icon Non-IOU rates by zipcode (csv, 2.1 MiB)

3

Financial statistics of major publicly owned electric utilities, 1991  

Science Conference Proceedings (OSTI)

The Financial Statistics of Major Publicly Owned Electric Utilities publication presents summary and detailed financial accounting data on the publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with data that can be used for policymaking and decisionmaking purposes relating to publicly owned electric utility issues.

Not Available

1993-03-31T23:59:59.000Z

4

Financial statistics of major US publicly owned electric utilities 1993  

SciTech Connect

The 1993 edition of the Financial Statistics of Major U.S. Publicly Owned Electric Utilities publication presents five years (1989 to 1993) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decision making purposes related to publicly owned electric utility issues. Generator and nongenerator summaries are presented in this publication. The primary source of publicly owned financial data is the Form EIA-412, the Annual Report of Public Electric Utilities, filed on a fiscal basis.

Not Available

1995-02-01T23:59:59.000Z

5

Financial statistics of major US publicly owned electric utilities 1992  

SciTech Connect

The 1992 edition of the Financial Statistics of Major US Publicly Owned Electric Utilities publication presents 4 years (1989 through 1992) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to publicly owned electric utility issues. Generator and nongenerator summaries are presented in this publication. Four years of summary financial data are provided. Summaries of generators for fiscal years ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data. The primary source of publicly owned financial data is the Form EIA-412, {open_quotes}Annual Report of Public Electric Utilities.{close_quotes} Public electric utilities file this survey on a fiscal year, rather than a calendar year basis, in conformance with their recordkeeping practices. In previous editions of this publication, data were aggregated by the two most commonly reported fiscal years, June 30 and December 31. This omitted approximately 20 percent of the respondents who operate on fiscal years ending in other months. Accordingly, the EIA undertook a review of the Form EIA-412 submissions to determine if alternative classifications of publicly owned electric utilities would permit the inclusion of all respondents.

Not Available

1994-01-01T23:59:59.000Z

6

Financial statistics of major US publicly owned electric utilities 1994  

SciTech Connect

This publication presents 5 years (1990--94) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. Generator and nongenerator summaries are presented. Composite tables present: Aggregates of income statement and balance sheet data, financial indicators, electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data.

NONE

1995-12-15T23:59:59.000Z

7

Financial statistics major US publicly owned electric utilities 1996  

Science Conference Proceedings (OSTI)

The 1996 edition of The Financial Statistics of Major US Publicly Owned Electric Utilities publication presents 5 years (1992 through 1996) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decision making purposes related to publicly owned electric utility issues. Generator and nongenerator summaries are presented in this publication. Five years of summary financial data are provided. Summaries of generators for fiscal years ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data. 2 figs., 32 tabs.

NONE

1998-03-01T23:59:59.000Z

8

U.S. Electric Utility Companies and Rates: Look-up by Zipcode (Feb 2011) |  

Open Energy Info (EERE)

Utility Companies and Rates: Look-up by Zipcode (Feb 2011) Utility Companies and Rates: Look-up by Zipcode (Feb 2011) Dataset Summary Description This dataset, compiled by NREL and Ventyx, provides average residential, commercial and industrial electricity rates by zip code for both investor owned utilities (IOU) and non-investor owned utilities. Note: the file includes average rates for each utility, but not the detailed rate structure data found in the database available via the zip-code look-up feature on the OpenEI Utilities page (http://en.openei.org/wiki/Gateway:Utilities). The data was released by NREL/Ventyx in February 2011. Source NREL and Ventyx Date Released February 24th, 2012 (2 years ago) Date Updated Unknown Keywords electric rates rates US utilities Data text/csv icon IOU rates by zipcode (csv, 1.7 MiB)

9

Financial Statistics of Major U.S. Investor-Owned Electric Utilities  

Reports and Publications (EIA)

1996 - Final issue. Presents summary and detailed financial accounting data on the investor-owned electric utilities.

Information Center

1997-12-01T23:59:59.000Z

10

Financial statistics of selected publicly owned electric utilities 1989. [Contains glossary  

Science Conference Proceedings (OSTI)

The Financial Statistics of Selected Publicly Owned Electric Utilities publication presents summary and detailed financial accounting data on the publicly owned electric utilities. The objective of the publication is to provide the Federal and State governments, industry, and the general public with data that can be used for policymaking and decision making purposes relating to publicly owned electric utility issues. 21 tabs.

Not Available

1991-02-06T23:59:59.000Z

11

Financial statistics of major US investor-owned electric utilities 1994  

SciTech Connect

The Financial Statistics of Major U.S. Investor-Owned Electric Utilities publication presents summary and detailed financial accounting data on the investor-owned electric utilities. The objective of the publication is to provide Federal and State Governments, industry, and the general public with current and historical data that can be used for making policy and decisions relating to investor-owned electric utility issues.

NONE

1995-12-01T23:59:59.000Z

12

Financial statistics of major U.S. investor-owned electric utilities 1993  

SciTech Connect

The Financial Statistics of Major US Investor-Owned Electric Utilities publication presents summary and detailed financial accounting data on the investor-owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to investor-owned electric utility issues.

Not Available

1995-01-01T23:59:59.000Z

13

Financial Statistics of Major U.S. Publicly Owned Electric Utilities  

Reports and Publications (EIA)

2000 - Final issue. Presents summary financial data for 1994 through 2000 and detailed financial data for 2000 on major publicly owned electric utilities.

Tom Leckey

2001-11-01T23:59:59.000Z

14

OpenEI - US utilities  

Open Energy Info (EERE)

Electric Utility Electric Utility Companies and Rates: Look-up by Zipcode (Feb 2011) http://en.openei.org/datasets/node/899 This dataset, compiled by NREL and Ventyx, provides average residential, commercial and industrial electricity rates by zip code for both investor owned utilities (IOU) and non-investor owned utilities. Note: the file includes average rates for each utility, but not the detailed rate structure data found in the database available via the zip-code look-up feature on the OpenEI Utilities page (Utilities" title="http://en.openei.org/wiki/Gateway:Utilities">http://en.openei.org/wiki/Gateway:Utilities). The data was released by NREL/Ventyx in February 2011.

15

Financial Impacts of Nonutility Power Purchases on Investor-Owned Electric Utilities  

Reports and Publications (EIA)

This report provides an overview of the issues surrounding the financial impacts of nonutility generation contracts (since the passage of the Public Utility Regulatory Policies Act of 1978) on investor-owned utilities.

Information Center

1994-06-15T23:59:59.000Z

16

Electricity privatization : should South Korea privatize its state-owned electric utility?  

E-Print Network (OSTI)

The state-owned electric utility, Korea Electricity Power Cooperation (KEPCO), privatization has been a key word in South Korea since 1997, when the government received $55 billion from the International Monetary Fund in ...

Lim, Sungmin

2011-01-01T23:59:59.000Z

17

Financial statistics of major U.S. publicly owned electric utilities 1997  

Science Conference Proceedings (OSTI)

The 1997 edition of the ``Financial Statistics of Major U.S. Publicly Owned Electric Utilities`` publication presents 5 years (1993 through 1997) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to publicly owned electric utility issues. Generator (Tables 3 through 11) and nongenerator (Tables 12 through 20) summaries are presented in this publication. Five years of summary financial data are provided (Tables 5 through 11 and 14 through 20). Summaries of generators for fiscal years ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided in Appendix C. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, operating revenue, and electric energy account data. The primary source of publicly owned financial data is the Form EIA-412, ``Annual Report of Public Electric Utilities.`` Public electric utilities file this survey on a fiscal year basis, in conformance with their recordkeeping practices. The EIA undertook a review of the Form EIA-412 submissions to determine if alternative classifications of publicly owned electric utilities would permit the inclusion of all respondents. The review indicated that financial indicators differ most according to whether or not a publicly owned electric utility generates electricity. Therefore, the main body of the report provides summary information in generator/nongenerator classifications. 2 figs., 101 tabs.

NONE

1998-12-01T23:59:59.000Z

18

ESS 2012 Peer Review - Evaluating Utility Owned Electric ESS - Dhruv Bhatnagar, SNL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaluating Utility Owned Evaluating Utility Owned Electric Energy Storage Systems: A Perspective for State Electric Utility Regulators DOE Energy Storage Program Peer Review 2012 September 28, 2012 Dhruv Bhatnagar & Verne Loose Sandia National Laboratories Motivation for this Work  Many state utility regulatory bodies are unfamiliar with electric energy storage systems  The technology  The functional uses  The value of these uses to the grid  This leads to a handicap in their proper evaluation for rate base  May prevent the best (economic) technologies from system integration 2 Source: GE What we are doing  Developing a guidebook:  Inform regulators about the system benefits of energy storage  Identify regulatory challenges to increased

19

Evaluation and Design of Utility Co-Owned Cogeneration Systems for Industrial Parks  

E-Print Network (OSTI)

The Electric Power Research Institute, EPRI, is currently evaluating the potential of utility co-owned cogeneration facilities in industrial parks. This paper describes part of the work performed by one of EPRI's contractors, Impell Corporation, chosen by EPRI to support the industrial parks study. Cogeneration benefits for park owners, tenants and the local utilities are presented. A method developed for selecting industrial park sites for cogeneration facilities and design and financing options are also discussed.

Hu, D. S.; Tamaro, R. F.; Schiller, S. R.

1984-01-01T23:59:59.000Z

20

Financial statistics of major U.S. publicly owned electric utilities 1995  

SciTech Connect

The 1995 Edition of the Financial Statistics of Major U.S. Publicly Owned Electric Utilities publication presents 5 years (1991 through 1995) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to publicly owned electric utility issues. Generator (Tables 3 through 11) and nongenerator (Tables 12 through 20) summaries are presented in this publication. Five years of summary financial data are provided (Tables 5 through 11 and 14 through 20). Summaries of generators for fiscal years ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided in Appendix C. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data. 9 figs., 87 tabs.

NONE

1997-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "owned utilities iou" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Financial impacts of nonutility power purchases on investor-owned electric utilities  

SciTech Connect

To assist in its these responsibilities in the area of electric power, EIA has prepared this report, Financial Impacts of Nonutility Power Purchases on Investor-Owned Electric Utilities. The primary purpose of this report is to provide an overview of the issues surrounding the financial impacts of nonutility generation contracts (since the passage of the Public Utility Regulatory Policies Act of 1978) on investor-owned utilities. The existing concern in this area is manifest in the provisions of Section 712 of the Energy Policy Act of 1992, which required State regulatory commissions to evaluate various aspects of long-term power purchase contracts, including their impact on investor-owned utilities` cost of capital and rates charged to customers. The EIA does not take positions on policy questions. The EIA`s responsibility is to provide timely, high quality information and to perform objective, credible analyses in support of the deliberations by both public and private decision-makers. Accordingly, this report does not purport to represent the policy positions of the US Department of Energy or the Administration.

Not Available

1994-06-01T23:59:59.000Z

22

Incentive regulation of investor-owned nuclear power plants by public utility regulators. Revision 1  

Science Conference Proceedings (OSTI)

The US Nuclear Regulatory Commission (NRC) periodically surveys the Federal Energy Regulatory Commission (FERC) and state regulatory commissions that regulate utility owners of nuclear power plants. The NRC is interested in identifying states that have established economic or performance incentive programs applicable to nuclear power plants, how the programs are being implemented, and in determining the financial impact of the programs on the utilities. The NRC interest stems from the fact that such programs have the potential to adversely affect the safety of nuclear power plants. The current report is an update of NUREG/CR-5975, Incentive Regulation of Investor-Owned Nuclear Power Plants by Public Utility Regulators, published in January 1993. The information in this report was obtained from interviews conducted with each state regulatory agency that administers an incentive program and each utility that owns at least 10% of an affected nuclear power plant. The agreements, orders, and settlements that form the basis for each incentive program were reviewed as required. The interviews and supporting documentation form the basis for the individual state reports describing the structure and financial impact of each incentive program.

McKinney, M.D.; Seely, H.E.; Merritt, C.R.; Baker, D.C. [Pacific Northwest Lab., Richland, WA (United States)

1995-04-01T23:59:59.000Z

23

Estimating potential stranded commitments for U.S. investor-owned electric utilities  

SciTech Connect

New technologies, low natural gas prices, and federal and state utility regions are restructuring the electricity industry. Yesterday`s vertically integrated utility with a retail monopoly franchise may be a very different organization in a few years. Conferences, regulatory-commission hearings, and other industry fora are dominated by debates over the extent and form of utility deintegration, wholesale competition, and retail wheeling. A key obstacle to restructuring the electricity industry is stranded commitments. Past investments, power-purchase contracts, and public-policy-driven programs that made sense in an era of cost-of-service regulation may not be cost-effective in a competitive power market. Regulators, utilities, and other parties face tough decisions concerning the mitigation and allocation of these stranded commitments. The authors developed and applied a simple method to calculate the amount of stranded commitments facing US investor-owned electric utilities. The results obtained with this method depend strongly on a few key assumptions: (1) the fraction of utility sales that is at risk with respect to competition, (2) the market price of electric generation, and (3) the number of years during which the utility would lose money because of differences between its embedded cost of production and the market price.

Baxter, L.; Hirst, E.

1995-01-01T23:59:59.000Z

24

Monitoring Based Commissioning: Benchmarking Analysis of 24 UC/CSU/IOU  

NLE Websites -- All DOE Office Websites (Extended Search)

Monitoring Based Commissioning: Benchmarking Analysis of 24 UC/CSU/IOU Monitoring Based Commissioning: Benchmarking Analysis of 24 UC/CSU/IOU Projects Title Monitoring Based Commissioning: Benchmarking Analysis of 24 UC/CSU/IOU Projects Publication Type Report LBNL Report Number LBNL-1972E Year of Publication 2009 Authors Mills, Evan, and Paul A. Mathew Call Number LBNL-1972E Abstract HVAC systems that are designed without properly accounting for equipment load variation across laboratory spaces in a facility can significantly increase simultaneous heating and cooling, particularly for systems that use zone reheat for temperature control. This best practice guide describes the problem of simultaneous heating and cooling resulting from load variations, and presents several technological and design process strategies to minimize it.

25

Revisiting the 'Buy versus Build' decision for publicly owned utilities in California considering wind and geothermal resources  

DOE Green Energy (OSTI)

The last two decades have seen a dramatic increase in the market share of independent, non-utility generators (NUGs) relative to traditional, utility-owned generation assets. Accordingly, the ''buy versus build'' decision facing utilities--i.e., whether a utility should sign a power purchase agreement (PPA) with a NUG, or develop and own the generation capacity itself--has gained prominence in the industry. Specific debates have revolved around the relative advantages of, the types of risk created by, and the regulatory incentives favoring each approach. Very little of this discussion has focused specifically on publicly owned electric utilities, however, perhaps due to the belief that public power's tax-free financing status leaves little space in which NUGs can compete. With few exceptions (Wiser and Kahn 1996), renewable sources of supply have received similarly scant attention in the buy versus build debate. In this report, we revive the ''buy versus build'' debate and apply it to the two sectors of the industry traditionally underrepresented in the discussion: publicly owned utilities and renewable energy. Contrary to historical treatment, this debate is quite relevant to public utilities and renewables because publicly owned utilities are able to take advantage of some renewable energy incentives only in a ''buy'' situation, while others accrue only in a ''build'' situation. In particular, possible economic advantages of public utility ownership include: (1) the tax-free status of publicly owned utilities and the availability of low-cost debt, and (2) the renewable energy production incentive (REPI) available only to publicly owned utilities. Possible economic advantages to entering into a PPA with a NUG include: (1) the availability of federal tax credits and accelerated depreciation schedules for certain forms of NUG-owned renewable energy, and (2) the California state production incentives available to NUGs but not utilities. This report looks at a publicly owned utility's decision to buy or build new renewable energy capacity--specifically wind or geothermal power--in California. To examine the economic aspects of this decision, we modified and updated a 20-year financial cash-flow model to assess the levelized cost of electricity under four supply options: (1) public utility ownership of new geothermal capacity, (2) public utility ownership of new wind capacity, (3) a PPA for new geothermal capacity, and (4) a PPA for new wind capacity.

Bolinger, Mark; Wiser, Ryan; Golove, William

2001-10-01T23:59:59.000Z

26

Incentive regulation of investor-owned nuclear power plants by public utility regulators  

Science Conference Proceedings (OSTI)

The US Nuclear Regulatory Commission (NRC) periodically surveys the Federal Energy Regulatory Commission (FERC) and state regulatory commissions that regulate utility owners of nuclear power plants. The NRC is interested in identifying states that have established economic or performance incentive programs applicable to nuclear power plants, including states with new programs, how the programs are being implemented, and in determining the financial impact of the programs on the utilities. The NRC interest stems from the fact that such programs have the potential to adversely affect the safety of nuclear power plants. The information in this report was obtained from interviews conducted with each state regulatory agency that administers an incentive program and each utility that owns at least 10% of an affected nuclear power plant. The agreements, orders, and settlements that form the basis for each incentive program were reviewed as required. The interviews and supporting documentation form the basis for the individual state reports describing the structure and financial impact of each incentive program.

McKinney, M.D.; Elliot, D.B. (Pacific Northwest Lab., Richland, WA (United States))

1993-01-01T23:59:59.000Z

27

Revisiting the 'Buy versus Build' Decision for Publicly Owned Utilities in California Considering Wind and Geothermal Resources  

DOE Green Energy (OSTI)

The last two decades have seen a dramatic increase in the market share of independent, nonutility generators (NUGs) relative to traditional, utility-owned generation assets. Accordingly, the ''buy versus build'' decision facing utilities--i.e., whether a utility should sign a power purchase agreement (PPA) with a NUG, or develop and own the generation capacity itself--has gained prominence in the industry. Very little of this debate, however, has focused specifically on publicly owned electric utilities, and with few exceptions, renewable sources of supply have received similarly scant attention. Contrary to historical treatment, however, the buy versus build debate is quite relevant to publicly owned utilities and renewables because publicly owned utilities are able to take advantage of some renewable energy incentives only in a ''buy'' situation, while others accrue only in a ''build'' situation. In particular, possible economic advantages of public utility ownership include: (1) the tax-free status of publicly owned utilities and the availability of low-cost debt, and (2) the renewable energy production incentive (REPI) available only to publicly owned utilities. Possible economic advantages to entering into a PPA with a NUG include: (1) the availability of federal tax credits and accelerated depreciation schedules for certain forms of NUG-owned renewable energy, and (2) the California state production incentives available to NUGs but not utilities. This article looks at a publicly owned utility's decision to buy or build new renewable energy capacity--specifically wind and geothermal power--in California. To examine the economic aspects of this decision, we used a 20-year financial cash-flow model to assess the levelized cost of electricity under four supply options: (1) public utility ownership of new geothermal capacity, (2) public utility ownership of new wind capacity, (3) a PPA for new geothermal capacity, and (4) a PPA for new wind capacity. We focus on wind and geothermal because both resources are abundant and, in some cases, potentially economic in California. Our analysis is not intended to provide precise estimates of the levelized cost of electricity from wind projects and geothermal plants; nor is our intent to compare the levelized costs of wind and geothermal power to one another. Instead, our intent is simply to compare the costs of buying wind or geothermal power to the costs of building and operating wind or geothermal capacity under various scenarios. Of course, the ultimate decision to buy or build cannot and should not rest solely on a comparison of the levelized cost of electricity. Thus, in addition to quantitative analysis, we also include a qualitative discussion of several important features of the ''buy versus build'' decision not reflected in the economic analysis.

Bolinger, Mark; Wiser, Ryan; Golove, William

2001-12-11T23:59:59.000Z

28

System average rates of U.S. investor-owned electric utilities : a statistical benchmark study  

E-Print Network (OSTI)

Using multiple regression methods, we have undertaken a statistical "benchmark" study comparing system average electricity rates charged by three California utilities with 96 other US utilities over the 1984-93 time period. ...

Berndt, Ernst R.

1995-01-01T23:59:59.000Z

29

Survey and analysis of selected jointly owned large-scale electric utility storage projects  

DOE Green Energy (OSTI)

The objective of this study was to examine and document the issues surrounding the curtailment in commercialization of large-scale electric storage projects. It was sensed that if these issues could be uncovered, then efforts might be directed toward clearing away these barriers and allowing these technologies to penetrate the market to their maximum potential. Joint-ownership of these projects was seen as a possible solution to overcoming the major barriers, particularly economic barriers, of commercializaton. Therefore, discussions with partners involved in four pumped storage projects took place to identify the difficulties and advantages of joint-ownership agreements. The four plants surveyed included Yards Creek (Public Service Electric and Gas and Jersey Central Power and Light); Seneca (Pennsylvania Electric and Cleveland Electric Illuminating Company); Ludington (Consumers Power and Detroit Edison, and Bath County (Virginia Electric Power Company and Allegheny Power System, Inc.). Also investigated were several pumped storage projects which were never completed. These included Blue Ridge (American Electric Power); Cornwall (Consolidated Edison); Davis (Allegheny Power System, Inc.) and Kttatiny Mountain (General Public Utilities). Institutional, regulatory, technical, environmental, economic, and special issues at each project were investgated, and the conclusions relative to each issue are presented. The major barriers preventing the growth of energy storage are the high cost of these systems in times of extremely high cost of capital, diminishing load growth and regulatory influences which will not allow the building of large-scale storage systems due to environmental objections or other reasons. However, the future for energy storage looks viable despite difficult economic times for the utility industry. Joint-ownership can ease some of the economic hardships for utilites which demonstrate a need for energy storage.

Not Available

1982-05-01T23:59:59.000Z

30

Revisiting the 'Buy versus Build' Decision for Publicly Owned Utilities in California Considering Wind and Geothermal Resources  

SciTech Connect

The last two decades have seen a dramatic increase in the market share of independent, nonutility generators (NUGs) relative to traditional, utility-owned generation assets. Accordingly, the ''buy versus build'' decision facing utilities--i.e., whether a utility should sign a power purchase agreement (PPA) with a NUG, or develop and own the generation capacity itself--has gained prominence in the industry. Very little of this debate, however, has focused specifically on publicly owned electric utilities, and with few exceptions, renewable sources of supply have received similarly scant attention. Contrary to historical treatment, however, the buy versus build debate is quite relevant to publicly owned utilities and renewables because publicly owned utilities are able to take advantage of some renewable energy incentives only in a ''buy'' situation, while others accrue only in a ''build'' situation. In particular, possible economic advantages of public utility ownership include: (1) the tax-free status of publicly owned utilities and the availability of low-cost debt, and (2) the renewable energy production incentive (REPI) available only to publicly owned utilities. Possible economic advantages to entering into a PPA with a NUG include: (1) the availability of federal tax credits and accelerated depreciation schedules for certain forms of NUG-owned renewable energy, and (2) the California state production incentives available to NUGs but not utilities. This article looks at a publicly owned utility's decision to buy or build new renewable energy capacity--specifically wind and geothermal power--in California. To examine the economic aspects of this decision, we used a 20-year financial cash-flow model to assess the levelized cost of electricity under four supply options: (1) public utility ownership of new geothermal capacity, (2) public utility ownership of new wind capacity, (3) a PPA for new geothermal capacity, and (4) a PPA for new wind capacity. We focus on wind and geothermal because both resources are abundant and, in some cases, potentially economic in California. Our analysis is not intended to provide precise estimates of the levelized cost of electricity from wind projects and geothermal plants; nor is our intent to compare the levelized costs of wind and geothermal power to one another. Instead, our intent is simply to compare the costs of buying wind or geothermal power to the costs of building and operating wind or geothermal capacity under various scenarios. Of course, the ultimate decision to buy or build cannot and should not rest solely on a comparison of the levelized cost of electricity. Thus, in addition to quantitative analysis, we also include a qualitative discussion of several important features of the ''buy versus build'' decision not reflected in the economic analysis.

Bolinger, Mark; Wiser, Ryan; Golove, William

2001-12-11T23:59:59.000Z

31

Revisiting the "Buy versus Build" decision for publicly owned utilities in California considering wind and geothermal resources  

E-Print Network (OSTI)

Utilities Take Advantage of Lower Property Taxes 18 Listassuming a utility discount rate of 5.0%. Table 1 lists the

Bolinger, Mark; Wiser, Ryan; Golove, William

2001-01-01T23:59:59.000Z

32

Revisiting the "Buy versus Build" decision for publicly owned utilities in California considering wind and geothermal resources  

E-Print Network (OSTI)

for renewable energy projects than for non-renewable ones.Non-Utility Generator Power Purchase Agreement Public Power Renewable Energy

Bolinger, Mark; Wiser, Ryan; Golove, William

2001-01-01T23:59:59.000Z

33

Revisiting the "Buy versus Build" decision for publicly owned utilities in California considering wind and geothermal resources  

E-Print Network (OSTI)

in comparing the costs of renewable energy across ownershipof low-cost debt, and (2) the renewable energy productionCost Recovery System Non-Utility Generator Power Purchase Agreement Public Power Renewable Energy

Bolinger, Mark; Wiser, Ryan; Golove, William

2001-01-01T23:59:59.000Z

34

electric rates | OpenEI  

Open Energy Info (EERE)

electric rates electric rates Dataset Summary Description This dataset, compiled by NREL and Ventyx, provides average residential, commercial and industrial electricity rates by zip code for both investor owned utilities (IOU) and non-investor owned utilities. Note: the file includes average rates for each utility, but not the detailed rate structure data found in the database available via the zip-code look-up feature on the OpenEI Utilities page (http://en.openei.org/wiki/Gateway:Utilities). The data was released by NREL/Ventyx in February 2011. Source NREL and Ventyx Date Released February 24th, 2012 (2 years ago) Date Updated Unknown Keywords electric rates rates US utilities Data text/csv icon IOU rates by zipcode (csv, 1.7 MiB) text/csv icon Non-IOU rates by zipcode (csv, 2.1 MiB)

35

rates | OpenEI  

Open Energy Info (EERE)

rates rates Dataset Summary Description This dataset, compiled by NREL and Ventyx, provides average residential, commercial and industrial electricity rates by zip code for both investor owned utilities (IOU) and non-investor owned utilities. Note: the file includes average rates for each utility, but not the detailed rate structure data found in the database available via the zip-code look-up feature on the OpenEI Utilities page (http://en.openei.org/wiki/Gateway:Utilities). The data was released by NREL/Ventyx in February 2011. Source NREL and Ventyx Date Released February 24th, 2012 (2 years ago) Date Updated Unknown Keywords electric rates rates US utilities Data text/csv icon IOU rates by zipcode (csv, 1.7 MiB) text/csv icon Non-IOU rates by zipcode (csv, 2.1 MiB)

36

Who Owns Renewable Energy Certificates?  

SciTech Connect

Renewable energy certificates (RECs) are tradable instruments that convey the attributes of a renewable energy generator and the right to make certain claims about energy purchases. RECs first appeared in US markets in the late 1990s and are particularly important in states that accept or require them as evidence of compliance with renewables portfolio standards (RPS). The emergence of RECs as a tradable commodity has made utilities, generators, and regulators increasingly aware of the need to specify who owns the RECs in energy transactions. In voluntary transactions, most agree that the question of REC ownership can and should be negotiated privately between the buyer and the seller, and should be clearly established by contract. Claims about purchasing or using renewable energy should only be made if REC ownership can be documented. In many other cases, however, renewable energy transactions are either mandated or encouraged through state or federal policy. Because of the recent appearance of RECs, legislation and regulation mandating the purchase of renewable energy has sometimes been silent on the disposition of the RECs associated with that generation. Furthermore, some renewable energy contracts pre-date the existence of RECs, and therefore do not address REC ownership. In both of these instances, the issue of REC ownership must often be answered by legislative or regulatory authorities. The resulting uncertainty in REC ownership has hindered the development of robust REC markets and has, in some cases, led to contention between buyers and sellers of renewable generation. This article, which is based on a longer Berkeley Lab report, reviews federal and state efforts to clarify the ownership of RECs from Qualifying Facilities (QFs) that sell their generation under the Public Utility Regulatory Policies Act (PURPA) of 1978. The full report also addresses state efforts to clarify REC ownership in two other situations, customer-owned generation that benefits from state net metering rules, and generation facilities that receive financial incentives from state or utility funds. The issue of REC ownership most often arises in states that have adopted an RPS. In such states, both parties to QF contracts have a lot at stake: either additional cost to a utility if RECs are awarded to the QF, or loss of value to the QF if RECs are awarded to the utility. As a rough estimate, QF RECs that are eligible for state RPS programs could have a value between $35 million and $175 million, so there is significant economic value riding on the ownership question.

Holt, Edward; Wiser, Ryan; Bolinger, Mark

2006-06-01T23:59:59.000Z

37

Estimating Civilian Owned Firearms  

E-Print Network (OSTI)

Most of the worlds firearms are privately owned. 1 They include improvised craft guns as well as handguns, rifles, shotguns, and machine guns. The legal definition of a civilian firearm varies; some states allow civilian ownership of certain firearms that are restricted to military use in other states. The word civilian is used here to refer to actual possession, not legality. In 2007, the Small Arms Survey estimated the number of civilian firearm ownership worldwide at approximately 650 million weapons out of some 875 then in existence (see Figures 1 and 2). National ownership rates range from a high of 90 firearms per every 100 people in the United States, to one firearm or less for every 100 residents in countries like South Korea and Ghana (see Table 1). With the worlds factories delivering millions of newly manufactured firearms annually, and with far fewer being destroyed, civilian ownership is growing (Small Arms Survey, 2007, p. 39). Poor record-keeping and the near absence of reporting requirements for detailed information complicate assessments of global stockpiles of small arms and light weapons. When it comes to estimating civilian firearm ownership, differences in national gun culture each countrys unique combination of historic and current sources of supply, laws and attitudes toward firearms ownershipoften have distinct effects on the classification, ownership and perception of firearms. In addition, categories of firearm holders may overlap, as some individuals may use their private firearms at work as security guards, in armed groups, or in gangs.

unknown authors

2011-01-01T23:59:59.000Z

38

Conducting Your Own Energy Audit  

E-Print Network (OSTI)

Why should you or anyone be interested in conducting a time intensive energy audit. What equipment is needed? When should you get started? Who should do it? The answer to Why is that energy costs are cutting into a companys profit every minute of every day. Inefficient energy usage is like having money lost or stolen. Energy costs may account for up to 25% of a companys expenses and hundreds of thousands of dollars a year. To answer What will be discussed later in this paper. The answer to When is that the energy audit needs to be done now! Every day and month of delay is throwing money away that could be put back into the business or distributed as profit. To answer Who should do the study depends on the complexity and size of the utility bill. Large utility bills, $100,000 or more, or a large facility, 100,000 square feet or more, may indicate the skills of a professional energy engineer are required to analyze the facilitys energy consumption and recommend the proper energy conservation measures needed. Smaller facilities usually can be energy analyzed by company personnel who have some energy training. This paper is written to assist those personnel in conducting their own energy audits. Even larger facilities may decide to do an in-house energy audit before they hire outside assistance in order to get an idea of the amount and cost of energy being used and possible savings. This can be compared to the cost of the outside energy audit.

Phillips, J.

2008-01-01T23:59:59.000Z

39

The National Association of State Utility Consumer Advocates...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

is owned by the utility. Consumers have owned and must continue to own their specific energy usage information. 4 Likewise, the Edison Electric Institute ("EEI") claims that...

40

No Home Like Your Own.  

E-Print Network (OSTI)

??No Home Like Your Own is a journey through my childhood memories of pre?war Socialist Yugoslavia and the war in Bosnia and Herzegovina that followed (more)

Alibai?, Emir

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "owned utilities iou" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Women-Owned Small Business Webinar, June 20, 2013  

Energy.gov (U.S. Department of Energy (DOE))

The Office of Small and Disadvantaged Business Utilization hosted a webinar for women-owned small businesses on June 20, 2013, to provide overviews of major program offices in the Department of...

42

Higgs Boson -- on Your Own  

E-Print Network (OSTI)

One of the highlights of 2012 in physics is related to two papers, published by the ATLAS and the CMS Collaborations, that announced the discovery of at least one new particle in pp collisions at CERN LHC. At least one of the properties of this new particle is found to be similar to that of the Higgs boson, the last and most difficult to find building block from the Standard Model of particle physics. Physics teachers are frequently approached by their media-educated students, who inquire about the properties of the Higgs boson, but physics teachers are rarely trained to teach this elusive aspect of particle physics in elementary, middle or junior high schools. In this paper I describe a card-game, that can be considered as a hands-on and easily accessible tool that allows interested teachers, students and also motivated lay-persons to play with the properties of the newly found Higgs-like particle. This new particle was detected through its decays to directly observable, final state particles. Many of these final state particles are represented in a deck of cards, that represent elementary particles, originally invented to popularize the physics of quark matter in the so-called Quark Matter Card Games. The Higgs decay properties can be utilized, playfully, in a Higgs boson search card game. The rules of this game illustrate also the need for some luck, to complement knowledge and memory, useful skills that this game also helps to develop. The paper is organized as a handout or booklet, that directly describes how to play the Higgs boson on Your Own card game.

T. Csorgo

2013-03-12T23:59:59.000Z

43

Evaluation Ratings Definitions (Excluding Utilization of Small...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(WOSB), HUBZone small business, veteran-owned small business (VOSB) and service disabled veteran owned small business (SDVOSB). Complied with FAR 52.219-8, Utilization of...

44

(1) Who owns energy consumption data  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Elster July 12, 2010 Reply to DOE Request for Information of May 11, 2010 Elster July 12, 2010 Reply to DOE Request for Information of May 11, 2010 regarding Data Privacy The DOE questions are restated followed by an answer. Please note that this matter is also related to the May 11, 2010 RFI on needs for utility communications. If data is provided to third parties there is a data processing and communications cost that depends on how many parties data is provided to and by how often data is communicated. These costs are minimized if an in-home display and/or smart thermostat are provided data directly from a smart meter. (1) Q. Who owns energy consumption data? A. Typically by state law the consumer owns the data. (2) Q. Who should be entitled to privacy protections relating to energy information? A. The consumer.

45

Avista Utilities- Net Metering  

Energy.gov (U.S. Department of Energy (DOE))

Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has developed a net...

46

Who Owns Renewable Energy Certificates?  

E-Print Network (OSTI)

Who Owns Renewable Energy Certificates? Edward Holt, RyanME 04079 edholt@igc.org Renewable energy certificates (RECs)convey the attributes of a renewable energy generator and

Holt, Edward; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

47

Flat Plate PV Module Eligibility Listing Procedure Updated 6/28/12 Senate Bill 1 (SB1) defines the solar incentive programs for California, and flat plate PV  

E-Print Network (OSTI)

the solar incentive programs for California, and flat plate PV modules1 must be listed on the SB1 compliant programs for investor owned utility (IOU) territories, the California Solar Initiative (CSI) and the New module list to be eligible for incentives in California. Senate Bill 1 encompasses two staterun

48

From Investor-owned Utility to Independent Power Producer  

E-Print Network (OSTI)

L G & E Energy Corporation Xcel Energy IPP Y N Y Y Y Y Y Y YAmerican Electric Power Co Ine Xcel Energy IPP Y Y Y N Y Y NPower Co Ine UtiliCorp United Xcel Energy American Electric

Ishii, Jun

2003-01-01T23:59:59.000Z

49

From Investor-owned Utility to Independent Power Producer  

E-Print Network (OSTI)

generation supply, three (Duke Energy N o r t h A m e r i cCompany PG&E Exelon Duke Energy ConEd Edison InternationalDominion Resources Inc Duke Energy Public Serv Enterprise

Ishii, Jun

2003-01-01T23:59:59.000Z

50

FORMS AND INSTRUCTIONS FOR PUBLICLY-OWNED UTILITIES  

E-Print Network (OSTI)

included in their natural gas fuel-price forecast and their use of rate stabilization funds. This report B.B Blevins Executive Director Mignon Marks Principal Author Ruben Tavares Supervisor, Market, this report directs the POUs to provide answers to survey questions regarding their assumed inflation rate

51

ESS 2012 Peer Review - Evaluating Utility Owned Electric ESS...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Charge Management The avoided cost of demand charges. Simple internal models; Sandia optimization tool; ESVT Energy T&D Service Reserve Service Customer Service Future Tasks...

52

Who Owns Renewable Energy Certificates?  

E-Print Network (OSTI)

on the ownership question. FERC DecidesOr Does It? In 2003,utilities led to a petition to FERC to issue a declaratoryto Section 210 of PURPA. FERC declared that avoided cost

Holt, Edward; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

53

Who Owns Renewable Energy Certificates?  

E-Print Network (OSTI)

energy and capacity. Utilities also argue that they and their ratepayers are already paying above-market pricesenergy. QFs answer that although many QF contracts have turned out to be expensive relative to market prices,

Holt, Edward; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

54

I!OU!, RECIPIENT:NREL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and returned to NREL upon completion of the assessment. The Mille Lacs Band indicates thai no new permits are needed for the proposal, and there would no generation of air...

55

A Wholly Owned Subsidiary of  

E-Print Network (OSTI)

This Environmental Report (ER) constitutes one portion of an application being submitted by International Isotopes Fluorine Products (IIFP) to construct and operate a facility that will utilize depleted DUF6 to produce high purity inorganic fluorides, uranium oxides, and anhydrous hydrofluoric acid. The proposed IIFP facility will be located near Hobbs, New Mexico. IIFP has prepared the ER to meet the requirements specified in 10 CFR 51, Subpart A, particularly those requirements set forth in 10 CFR 51.45(b)-(e). The organization of this ER is generally consistent with NUREG-1748, Environmental Review Guidance for Licensing Actions Associated with NMSS Programs, Final Report. The Environmental Report for this proposed facility provides information that is specifically required by the NRC to assist it in meeting its obligations under the National Environmental Policy Act (NEPA) of 1969 and the agencys NEPA-implementing regulations. This ER demonstrates that the environmental protection measures proposed by IIFP are adequate to protect both the environment and the health and safety of the public. This Environmental Report evaluates the potential environmental impacts of the Proposed Action and its reasonable alternatives. This ER also describes the environment potentially affected by IIEFs proposal,

Revision A

2009-01-01T23:59:59.000Z

56

Partnering with Utilities Part 1: Successful Partnerships and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Program Administrator 24 | TAP Webinar eere.energy.gov * Utility Provider(s): Xcel Energy * Utility Type(s): Investor Owned * Relationship Length: 10+ years * Program...

57

Public Service Commission Authorization to Utilize an Alternative...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial InstallerContractor Investor-Owned Utility Rural Electric Cooperative Utility Savings For Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Information...

58

Buildings*","Nongovernment-Owned Buildings",,,,"Government-Owned Buildings"  

U.S. Energy Information Administration (EIA) Indexed Site

8. Occupancy of Nongovernment-Owned and Government-Owned Buildings, Floorspace for Non-Mall Buildings, 2003" 8. Occupancy of Nongovernment-Owned and Government-Owned Buildings, Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Nongovernment-Owned Buildings",,,,"Government-Owned Buildings" ,,"Nongov- ernment- Owned Buildings","Owner Occupied","Nonowner Occupied","Unocc- upied","Govern- ment- Owned Buildings","Federal","State","Local" "All Buildings* ...............",64783,49421,23591,23914,1916,15363,1956,3808,9599 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,6043,2682,3162,199,746,"Q",206,498 "5,001 to 10,000 ..............",6585,5827,2858,2791,"Q",758,"Q","Q",620

59

Buildings*","Nongovernment-Owned Buildings",,,,"Government-Owned Buildings"  

U.S. Energy Information Administration (EIA) Indexed Site

Occupancy of Nongovernment-Owned and Government-Owned Buildings, Number of Buildings for Non-Mall Buildings, 2003" Occupancy of Nongovernment-Owned and Government-Owned Buildings, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Nongovernment-Owned Buildings",,,,"Government-Owned Buildings" ,,"Nongov- ernment- Owned Buildings","Owner Occupied","Nonowner Occupied","Unocc- upied","Govern- ment- Owned Buildings","Federal","State","Local" "All Buildings* ...............",4645,4011,1841,2029,141,635,46,164,425 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,2272,980,1205,87,280,"Q",77,183 "5,001 to 10,000 ..............",889,783,384,375,"Q",106,"Q","Q",87

60

May 23 ChallengeHER Women Owned Small Business Event in Washington, DC |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 23 ChallengeHER Women Owned Small Business Event in Washington, May 23 ChallengeHER Women Owned Small Business Event in Washington, DC May 23 ChallengeHER Women Owned Small Business Event in Washington, DC May 6, 2013 - 4:48pm Addthis John Hale III John Hale III Director, Office of Small and Disadvantaged Business Utilization This April, the Small Business Administration (SBA) announced the ChallengeHER Campaign. The campaign is an exciting new initiative that leverages the resources of SBA, Women Impacting Public Policy, and American Express OPEN to promote the Women-Owned Small Business Federal Contract Program and bring more women-owned firms into the federal government's supply chain. Women owned small business are invited to join us on May 23 in Washington D.C. for a ChallengeHER summit. At this event, the federal government will

Note: This page contains sample records for the topic "owned utilities iou" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Gas Utility Pipeline Tax (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

All gas utilities, including any entity that owns, manages, operates, leases, or controls a pipeline for the purpose of transporting natural gas in the state for sale or compensation, as well as...

62

Electric Utility Industry Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Utility Industry Update Electric Utility Industry Update Steve Kiesner Director, National Customer Markets Edison Electric Institute FUPWG Spring 2012 April 12, 2012 Edison Electric Institute  Investor-Owned Electric Companies  Membership includes  200 US companies,  More than 65 international affiliates and  170 associates  US members  Serve more than 95% of the ultimate customers in the investor-owned segment of the industry and  Nearly 70% of all electric utility ultimate customers, and  Our mission focuses on advocating public policy; expanding market opportunities; and providing strategic business information Agenda Significant Industry Trends Utility Infrastructure Investments Generation and Fuel Landscape

63

OwnEnergy Inc | Open Energy Information  

Open Energy Info (EERE)

OwnEnergy Inc OwnEnergy Inc Jump to: navigation, search Name OwnEnergy Inc. Place Brooklyn, New York Zip 11201 Sector Wind energy Product Brooklyn-based community wind project developer focusing on projects ranging in size from 10-80MW. Coordinates 42.852755°, -89.369069° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.852755,"lon":-89.369069,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

64

SBA Expands Access to Contracting Opportunities for Women-Owned Small  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SBA Expands Access to Contracting Opportunities for Women-Owned SBA Expands Access to Contracting Opportunities for Women-Owned Small Businesses SBA Expands Access to Contracting Opportunities for Women-Owned Small Businesses January 22, 2013 - 10:42am Addthis John Hale III John Hale III Director, Office of Small and Disadvantaged Business Utilization Editor's note: This article was originally published on the Small Business Administration's website. Women-owned small businesses will have greater access to federal contracting opportunities as a result of changes included in the National Defense Authorization Act of 2013 (NDAA) to the U.S. Small Business Administration's Women-Owned Small Business Federal Contract Program. "This new law is a prime example of how the Obama Administration is embracing a more inclusive view of entrepreneurship, helping small

65

DOE Awards Native American, Tribally-Owned Small Business Contract for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Awards Native American, Tribally-Owned Small Business Contract DOE Awards Native American, Tribally-Owned Small Business Contract for Support Services to Savannah River Operations Office DOE Awards Native American, Tribally-Owned Small Business Contract for Support Services to Savannah River Operations Office September 21, 2012 - 5:16pm Addthis John Hale III John Hale III Director, Office of Small and Disadvantaged Business Utilization Editor's Note: This announcement was originally posted on the Office of Environmental Management's website. Today the Energyy Department awarded a $20 million contact (estimated value) to a Native American Tribally-Owned Section 8(a) company for administrative support services and information technology support at our Savannah River Operations Office. The company, NOVA Corp. of Window Rock, Arizona, is owned by the Navajo Nation. NOVA

66

DOE Awards Native American, Tribally-Owned Small Business Contract for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Awards Native American, Tribally-Owned Small Business Contract DOE Awards Native American, Tribally-Owned Small Business Contract for Support Services to Savannah River Operations Office DOE Awards Native American, Tribally-Owned Small Business Contract for Support Services to Savannah River Operations Office September 21, 2012 - 5:16pm Addthis John Hale III John Hale III Director, Office of Small and Disadvantaged Business Utilization Editor's Note: This announcement was originally posted on the Office of Environmental Management's website. Today the Energyy Department awarded a $20 million contact (estimated value) to a Native American Tribally-Owned Section 8(a) company for administrative support services and information technology support at our Savannah River Operations Office. The company, NOVA Corp. of Window Rock, Arizona, is owned by the Navajo Nation. NOVA

67

Public Utility Regulation (Iowa) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Regulation (Iowa) Utility Regulation (Iowa) Public Utility Regulation (Iowa) < Back Eligibility Agricultural Commercial Fuel Distributor Industrial Institutional Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Utilities Board This section applies to any person, partnership, business association, or corporation that owns or operates any facilities for furnishing gas by piped distribution system, electricity, communications services, or water to the public for compensation. Regulations pertaining to these facilities can be found in this section. Some exemptions apply

68

Community-Owned Projects | Open Energy Information  

Open Energy Info (EERE)

Community-Owned Projects Community-Owned Projects Jump to: navigation, search Name Community-Owned Projects Facility Community-Owned Projects Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Dave Norgaard et al/John Deere Wind Energy Developer Dave Norgaard et al/John Deere Wind Energy Energy Purchaser Xcel Energy Location Buffalo Ridge MN Coordinates 44.0039°, -96.0526° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.0039,"lon":-96.0526,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

69

Slide 1  

NLE Websites -- All DOE Office Websites (Extended Search)

Others * EPRI * Financial Firms * R&D Organizations Government * Federal * State * Local Utilities * IOU's * Publics * RTO ISO * Power marketers Advocacy * EEI *...

70

DOE Awards Native American, Tribally-Owned Small Business Contract...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awards Native American, Tribally-Owned Small Business Contract for Support Services to Savannah River Operations Office DOE Awards Native American, Tribally-Owned Small Business...

71

Utility Regulation (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulation (Indiana) Regulation (Indiana) Utility Regulation (Indiana) < Back Eligibility Agricultural Commercial General Public/Consumer Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools State/Provincial Govt Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Indiana Program Type Generating Facility Rate-Making Provider Indiana Utility Regulatory Commission The Indiana Utility Regulatory Commission enforces regulations in this legislation that apply to all individuals, corporations, companies, and partnerships that may own, operate, manage, or control any equipment for the production, transmission, delivery, or furnishing of heat, light,

72

A Case Study on Remote Dispatch of Customer-Owned Resources:Consolidated Edison  

Science Conference Proceedings (OSTI)

This case study from the Consolidated Edison Smart Grid Demonstration Initiative addresses the implementation of a key component of a virtual power plant, an automated demand response (AutoDR) application for the remote dispatch of distributed customer-owned resources.The Consolidated Edison demonstration is focused on developing the technology necessary to integrate distributed resources into the utilitys distribution system and distribution control ...

2012-10-31T23:59:59.000Z

73

Carrots for Utilities: Providing Financial Returns for Utility Investments  

Open Energy Info (EERE)

Carrots for Utilities: Providing Financial Returns for Utility Investments Carrots for Utilities: Providing Financial Returns for Utility Investments in Energy Efficiency Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carrots for Utilities: Providing Financial Returns for Utility Investments in Energy Efficiency Focus Area: Energy Efficiency Topics: Socio-Economic Website: www.aceee.org/research-report/u111 Equivalent URI: cleanenergysolutions.org/content/carrots-utilities-providing-financial Language: English Policies: "Regulations,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. Regulations: Cost Recovery/Allocation This report examines state experiences with shareholder financial incentives that encourage investor-owned utilities to provide energy

74

Joint Electrical Utilities (Iowa) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Joint Electrical Utilities (Iowa) Joint Electrical Utilities (Iowa) Joint Electrical Utilities (Iowa) < Back Eligibility Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Utilities Board Cities may establish utilities to acquire existing electric generating facilities or distribution systems. Acquisition, in this statute, is defined as city involvement, and includes purchase, lease, construction, reconstruction, extension, remodeling, improvement, repair, and equipping of the facility. This chapter does not limit the powers or authority of

75

Mississippi Public Utility Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mississippi Public Utility Act Mississippi Public Utility Act Mississippi Public Utility Act < Back Eligibility Commercial Construction Developer General Public/Consumer Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Mississippi Program Type Industry Recruitment/Support Siting and Permitting Provider Public Service Commission The Mississippi Public Utility Act is relevant to any project that plans to generate energy. It requires that a utility must first obtain a Certificate of Public Convenience and Necessity (CPCN) from the Mississippi Public Service Commission (PSC) before commencing construction of a new electric

76

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network (OSTI)

Energy Regulatory Commission (FERC). 2007. 2006 State of theEnergy Regulatory Commission (FERC). 2005. 2004 State of theprojects owned by POUs, and FERC Form 1 data for IOU-owned

Bolinger, Mark

2010-01-01T23:59:59.000Z

77

Energy Deputy Secretary Poneman Tours Minority-Owned Small Business...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deputy Secretary Poneman Tours Minority-Owned Small Business in Detroit Energy Deputy Secretary Poneman Tours Minority-Owned Small Business in Detroit May 22, 2012 - 10:37am...

78

Federal Energy Management Program: Create Your Own Energy Action...  

NLE Websites -- All DOE Office Websites (Extended Search)

Create Your Own Energy Action Campaign to someone by E-mail Share Federal Energy Management Program: Create Your Own Energy Action Campaign on Facebook Tweet about Federal Energy...

79

Who Owns Renewable Energy Certificates? An Exploration of  

E-Print Network (OSTI)

LBNL-59965 Who Owns Renewable Energy Certificates? An Exploration of Policy Options and Practice Laboratory is an equal opportunity employer. #12;LBNL-59965 Who Owns Renewable Energy Certificates) of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. #12;#12;Who Owns Renewable Energy

80

Public Utilities (Florida) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utilities (Florida) Utilities (Florida) Public Utilities (Florida) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Florida Program Type Generating Facility Rate-Making Provider Florida Public Service Commission Chapter 366 of the Florida Statutes governs the operation of public utilities, and includes a section pertaining to cogeneration and small power production (366.051). This section establishes the state's support for incorporating cogenerators and small power producers into the grid, and directs the Public Service Commission to establish regulations and

Note: This page contains sample records for the topic "owned utilities iou" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Utility-Interconnected Photovoltaic Systems: Evaluating the Rationale for the Utility-Accessible External Disconnect Switch  

DOE Green Energy (OSTI)

The utility-accessible alternating current (AC) external disconnect switch (EDS) for distributed generators, including photovoltaic (PV) systems, is a hardware feature that allows a utility?s employees to manually disconnect a customer-owned generator from the electricity grid. This paper examines the utility-accessible EDS debate in the context of utility-interactive PV systems for residential and small commercial installations. It also evaluates the rationale for EDS requirements.

Coddington, M.; Margolis, R.M.; Aabakken, J.

2008-01-01T23:59:59.000Z

82

Energy Efficiency and Conservation Requirements for Utilities | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Energy Efficiency and Conservation Requirements for Utilities Energy Efficiency and Conservation Requirements for Utilities < Back Eligibility Investor-Owned Utility Savings Category Other Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Heating Water Heating Program Info State Pennsylvania Program Type Energy Efficiency Resource Standard Provider Pennsylvania Public Utilities Commission In October 2008 Pennsylvania adopted Act 129, creating energy efficiency and conservation requirements for the state's investor owned utilities with at least 100,000 customers. With this limitation on applicability, the standards apply only to the following utilities: PECO Energy, PPL Electric Utilities, West Penn Power, Pennsylvania Electric (Penelec), Metropolitan

83

Electric Utilities and Electric Cooperatives (South Carolina) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Utilities and Electric Cooperatives (South Carolina) Electric Utilities and Electric Cooperatives (South Carolina) Electric Utilities and Electric Cooperatives (South Carolina) < Back Eligibility Commercial Construction Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Carolina Program Type Generating Facility Rate-Making Siting and Permitting Provider South Carolina Public Service Commission This legislation authorizes the Public Service Commission to promulgate regulations related to investor owned utilities in South Carolina, and addresses service areas, rates and charges, and operating procedures for

84

City of Lompoc, California (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Lompoc, California (Utility Company) Lompoc, California (Utility Company) Jump to: navigation, search Name City of Lompoc Place California Utility Id 11148 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Customer Owned Generation- Distribution Rate Commercial Customer Owned Street and Highway Lighting- (100W HPS) Lighting Customer Owned Street and Highway Lighting- (150W HPS) Lighting Customer Owned Street and Highway Lighting- (200W HPS) Lighting Customer Owned Street and Highway Lighting- (250W HPS) Lighting

85

City of Williams - AZ, Arizona (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Williams - AZ, Arizona (Utility Company) Williams - AZ, Arizona (Utility Company) Jump to: navigation, search Name City of Williams - AZ Place Arizona Utility Id 56535 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png City owned Lights(20,000 Lumens,400 W MV-Pole) Lighting City owned Lights(4,000 Lumens-Pole) Lighting City owned Lights(7,000 Lumens, 175 W MV-Pole) Lighting Customer owned Lights(20,000 Lumens 400 W MV-Pole) Commercial Customer owned Lights(4,000 Lumens-Pole) Lighting

86

FINAL CA IOU Comment Letter RFI Regulatory Burden  

Energy.gov (U.S. Department of Energy (DOE))

This letter comprises the comments of the Pacific Gas and Electric Company (PG&E), Southern California Gas Company (SCGC), San Diego Gas and Electric (SDG&E), and Southern California Edison...

87

Foley Board of Utilities | Open Energy Information  

Open Energy Info (EERE)

Foley Board of Utilities Foley Board of Utilities Jump to: navigation, search Name Foley Board of Utilities Place Alabama Utility Id 6491 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Athletic Field Electric- Option A Commercial Athletic Field Electric- Option B Commercial General Service -Three-Phase Commercial General Service- Single-Phase Commercial Public Highway Lighting- Special Lighting Public Street and Highway Lighting- Customer Owned Fixtures Lighting Public Street and Highway Lighting- Utility-Owned Fixtures- 20,000 Lumen

88

EETD Sustainability -- Keeping our own house in order  

NLE Websites -- All DOE Office Websites (Extended Search)

EETD Sustainability -- Keeping our own house in order NOTICE Due to the current lapse of federal funding, Berkeley Lab websites are accessible, but may not be updated until...

89

Tribal schools create their own biodiesel to win energy challenge...  

NLE Websites -- All DOE Office Websites (Extended Search)

Little, Danny McKinney. Not pictured: Charles Cook and Bradley Grandquist. Tribal schools create their own biodiesel to win energy challenge By Louise Lerner * July 22, 2011...

90

NSLS Utilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Utilities Utilities The Utilities Group, led by project engineer Ron Beauman, is responsible for providing Utilities Engineering and Technical services to NSLS, Users, and SDL including cooling water at controlled flow rates, pressures, and temperatures, compressed air and other gases. In addition, they provide HVAC engineering, technical, and electrical services as needed. Utilities systems include cooling and process water, gas, and compressed air systems. These systems are essential to NSLS operations. Working behind the scenes, the Utilities group continuously performs preventative maintenance to ensure that the NSLS has minimal downtime. This is quite a feat, considering that the Utilities group has to maintain seven very large and independent systems that extent throughout NSLS. Part of the group's

91

City of Newton Falls, Ohio (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Newton Falls Newton Falls Place Ohio Utility Id 13563 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COMM city owned equip inside city limits Commercial COMM city owned equip inside city limits interuptible electric service Commercial COMM city owned equip outside city limits Commercial COMM cust owned equip inside city limits Commercial COMM cust owned equip inside city limits interuptible electric service Commercial COMM cust owned equip outside city limits

92

OpenEI - electric rates  

Open Energy Info (EERE)

U.S. Electric Utility U.S. Electric Utility Companies and Rates: Look-up by Zipcode (Feb 2011) http://en.openei.org/datasets/node/899 This dataset, compiled by NREL and Ventyx, provides average residential, commercial and industrial electricity rates by zip code for both investor owned utilities (IOU) and non-investor owned utilities. Note: the file includes average rates for each utility, but not the detailed rate structure data found in the database available via the zip-code look-up feature on the OpenEI Utilities page (Utilities" title="http://en.openei.org/wiki/Gateway:Utilities">http://en.openei.org/wiki/Gateway:Utilities). The data was released by NREL/Ventyx in February 2011.

93

OpenEI - rates  

Open Energy Info (EERE)

U.S. Electric Utility U.S. Electric Utility Companies and Rates: Look-up by Zipcode (Feb 2011) http://en.openei.org/datasets/node/899 This dataset, compiled by NREL and Ventyx, provides average residential, commercial and industrial electricity rates by zip code for both investor owned utilities (IOU) and non-investor owned utilities. Note: the file includes average rates for each utility, but not the detailed rate structure data found in the database available via the zip-code look-up feature on the OpenEI Utilities page (Utilities" title="http://en.openei.org/wiki/Gateway:Utilities">http://en.openei.org/wiki/Gateway:Utilities). The data was released by NREL/Ventyx in February 2011.

94

Opportunities for Utility-Owned CHP at Dry-Mill Fuel Ethanol Plants  

Science Conference Proceedings (OSTI)

This report quantifies opportunities to co-locate natural-gas-fueled combined heat and power (CHP) facilities with corn dry-mill fuel ethanol plants in the upper Midwest. It also evaluates the opportunity to generate renewable power by fueling the CHP plants with biogas produced by anaerobic digestion of the byproducts of the corn wet-milling process.

2008-09-23T23:59:59.000Z

95

Build Your Own Pentium III PC, 1st edition  

Science Conference Proceedings (OSTI)

From the Publisher:Build your own Pentium III PC and save a bundle!Why pay big bucks for a Pentium III system when legendary build-it-yourself guru Aubrey Pilgrim can help you construct one at home for a fraction of dealer prices? In Build Your Own Pentium ...

Aubrey Pilgrim

1999-10-01T23:59:59.000Z

96

Green Energy Options for Consumer-Owned Business  

SciTech Connect

The goal of this project was to define, test, and prototype a replicable business model for consumer-owned cooperatives. The result is a replicable consumer-owned cooperative business model for the generation, interconnection, and distribution of renewable energy that incorporates energy conservation and efficiency improvements.

Co-opPlus of Western Massachusetts

2006-05-01T23:59:59.000Z

97

EA-1255: Project Partnership Transportation of Foreign-Owned Enriched  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: Project Partnership Transportation of Foreign-Owned 5: Project Partnership Transportation of Foreign-Owned Enriched Uranium from the Republic of Georgia EA-1255: Project Partnership Transportation of Foreign-Owned Enriched Uranium from the Republic of Georgia SUMMARY This EA evaluates the environmental impacts for the proposal to transport 5.26 kilograms of enriched uranium-23 5 in the form of nuclear fuel, from the Republic of Georgia to the United Kingdom. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD April 30, 1998 EA-1255: Finding of No Significant Impact Project Partnership Transportation of Foreign-Owned Enriched Uranium from the Republic of Georgia April 30, 1998 EA- 1255: Finding of No Significant Impact Project Partnership Transportation of Foreign-Owned Enriched Uranium from

98

Eldridge City Utilities | Open Energy Information  

Open Energy Info (EERE)

Eldridge City Utilities Eldridge City Utilities Jump to: navigation, search Name Eldridge City Utilities Place Iowa Utility Id 5742 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Industrial Industrial Residential Residential Residential- All Electric Residential Security Lighting- 100W HPS Lighting Security Lighting- 100W HPS - Customer Owned Pole Lighting Security Lighting- 400W HPS Lighting Security Lighting- 400W HPS - Customer Owned Pole Lighting

99

Virginia Electric Utility Regulation Act (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Utility Regulation Act (Virginia) Electric Utility Regulation Act (Virginia) Virginia Electric Utility Regulation Act (Virginia) < Back Eligibility Commercial Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Safety and Operational Guidelines Provider Virginia State Corporation Commission The Virginia Electric Utility Regulation Act constitutes the main legislation in Virginia that pertains to the regulation of the state's electric utilities. The Act directs the State Corporation Commission to construct regulations for electric utilities, and contains information on

100

Gas and Electric Utilities Regulation (South Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas and Electric Utilities Regulation (South Dakota) Gas and Electric Utilities Regulation (South Dakota) Gas and Electric Utilities Regulation (South Dakota) < Back Eligibility Utility Commercial Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Retail Supplier Institutional Systems Integrator Fuel Distributor Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Dakota Program Type Generation Disclosure Provider South Dakota Public Utilities Commission This legislation contains provisions for gas and electric utilities. As part of these regulations, electric utilities are required to file with the

Note: This page contains sample records for the topic "owned utilities iou" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Georgia Utility Facility Protection Act (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Utility Facility Protection Act (Georgia) Georgia Utility Facility Protection Act (Georgia) Georgia Utility Facility Protection Act (Georgia) < Back Eligibility Agricultural Commercial Construction General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Georgia Program Type Safety and Operational Guidelines Siting and Permitting Provider Utilities Protection Center of Georgia The Georgia Utility Facility Protection Act (GUFPA) was established to protect the underground utility infrastructure of Georgia. GUFPA mandates that, before starting any mechanized digging or excavation work, you must

102

Avista Utilities - Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Avista Utilities - Net Metering Avista Utilities - Net Metering Avista Utilities - Net Metering < Back Eligibility Agricultural Commercial Residential Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Idaho Program Type Net Metering Provider Avista Utilities Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has developed a net-metering tariff that has been approved by the Idaho Public Utilities Commission (PUC). The framework of the utilities' net-metering programs is similar, in that each utility: (1) offers net metering to customers that generate electricity using solar,

103

Alternative Fuels Data Center: Public Utility Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Public Utility Public Utility Definition to someone by E-mail Share Alternative Fuels Data Center: Public Utility Definition on Facebook Tweet about Alternative Fuels Data Center: Public Utility Definition on Twitter Bookmark Alternative Fuels Data Center: Public Utility Definition on Google Bookmark Alternative Fuels Data Center: Public Utility Definition on Delicious Rank Alternative Fuels Data Center: Public Utility Definition on Digg Find More places to share Alternative Fuels Data Center: Public Utility Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Public Utility Definition An entity that owns, controls, operates, or manages a facility that supplies electricity to the public exclusively to charge battery electric

104

Alternative Fuels Data Center: Public Utility Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Public Utility Public Utility Definition to someone by E-mail Share Alternative Fuels Data Center: Public Utility Definition on Facebook Tweet about Alternative Fuels Data Center: Public Utility Definition on Twitter Bookmark Alternative Fuels Data Center: Public Utility Definition on Google Bookmark Alternative Fuels Data Center: Public Utility Definition on Delicious Rank Alternative Fuels Data Center: Public Utility Definition on Digg Find More places to share Alternative Fuels Data Center: Public Utility Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Public Utility Definition A corporation or individual that owns, controls, operates, or manages a facility that supplies electricity to the public exclusively to charge

105

Financial Statistics of Major U.S. Publicly Owned Electric ...  

U.S. Energy Information Administration (EIA)

Rural Electric Borrowers published by the Rural Util-ities Service of the U.S. Department of Agriculture. Summary tables for the cooperative borrowers are

106

Property:Incentive/OwnRenewEnrgyCrdts | Open Energy Information  

Open Energy Info (EERE)

OwnRenewEnrgyCrdts OwnRenewEnrgyCrdts Jump to: navigation, search Property Name Incentive/OwnRenewEnrgyCrdts Property Type Text Description Ownership of Renewable Energy Credits. Pages using the property "Incentive/OwnRenewEnrgyCrdts" Showing 25 pages using this property. (previous 25) (next 25) A AEP Ohio - Renewable Energy Technology Program (Ohio) + Customers must commit RECs to AEP Ohio for 15 years. AEP SWEPCO - SMART Source Solar PV Program (Texas) + Customer-generator AEP Texas Central Company - SMART Source Solar PV Rebate Program (Texas) + Customer-generator AEP Texas North Company - SMART Source Solar PV Rebate Program (Texas) + Customer-generator APS - Renewable Energy Incentive Program (Arizona) + APS Alameda Municipal Power - Solar Photovoltaics Rebate Program (California) + Alameda Power and Telecom

107

Faith Enterprises Inc. A Service Disabled Veteran-Owned Small...  

NLE Websites -- All DOE Office Websites (Extended Search)

Faith Enterprises Inc. A Service Disabled Veteran-Owned Small Business Security When the Air Force asked Sandia to deliver complex security upgrades to a facility on Kirtland Air...

108

KPaul A Service Disabled Veteran-Owned Small Business  

NLE Websites -- All DOE Office Websites (Extended Search)

KPaul A Service Disabled Veteran-Owned Small Business Jennifer Muth's initial phone call put her in touch with Ann Riley, Sandia's Business Point of Contact. "I work with all new...

109

Worker owned cooperatives and the ecosystems that support them  

E-Print Network (OSTI)

By emphasizing wealth creation, communities can not only cultivate streams of income, but also build wealth. Through collectively owned and democratically governed assets, communities can build wealth. Economic development ...

Tanner, Rachael A. (Rachael Ann)

2013-01-01T23:59:59.000Z

110

Energy Analysis Department Who Owns Renewable Energy Certificates  

E-Print Network (OSTI)

Energy Analysis Department Who Owns Renewable Energy Certificates: An Exploration of Policy Options about different approaches to clarifying the ownership of renewable energy certificates (RECs), focusing the output from certain Qualifying Facilities, including cogeneration and renewable energy generators · PURPA

111

Managing information diffusion in Name-Your-Own-Price auctions  

Science Conference Proceedings (OSTI)

In Name-Your-Own-Price auctions (NYOP) prospective buyers bid against a secret reserve price set by the seller and only win the auction at the price of their bid if it is equal or higher than the seller's reserve price. Thus, bidders who want to win ... Keywords: Decision support system, Information diffusion, Name-Your-Own-Price, Social networks, eBay Best Offer

Oliver Hinz; Martin Spann

2010-11-01T23:59:59.000Z

112

West Point Utility System | Open Energy Information  

Open Energy Info (EERE)

System System Jump to: navigation, search Name West Point Utility System Place Iowa Utility Id 20396 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service and Municipal Institutional service Large General Service Commercial Rural Resident and Farm All-Electric Residential Rural Resident and Farm Rate Residential Security Light - 150 Watt HPS Customer Owned Pole Lighting Security Light - 150 Watt HPS Utility Owned Pole Lighting Urban All-Electric Residential Rate Residential

113

Beyond the Price Effect in Time-of-Use Programs: Results from a Municipal Utility Pilot, 2007-2008  

E-Print Network (OSTI)

a number of utilities offered rates on an experimental basisMany utilities offer other seasonal rates, of course, whichinvestor-owned utilities (IOUs) offer TOU rates to their

Lutzenhiser, Susan

2010-01-01T23:59:59.000Z

114

Gas Utilities (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas Utilities (Maine) Gas Utilities (Maine) Gas Utilities (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Safety and Operational Guidelines Siting and Permitting Provider Public Utilities Commission Rules regarding the production, sale, and transfer of manufactured gas will also apply to natural gas. This section regulates natural gas utilities that serve ten or more customers, more than one customer when any portion

115

Natural Gas Pipeline Utilities (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Pipeline Utilities (Maine) Natural Gas Pipeline Utilities (Maine) Natural Gas Pipeline Utilities (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Siting and Permitting Provider Public Utilities Commission These regulations apply to entities seeking to develop and operate natural gas pipelines and provide construction requirements for such pipelines. The regulations describe the authority of the Public Utilities Commission with

116

RADIOLOGICAL SURVEY OF A PORTION OF PROPERTY OWNED BY MODERN LANDFILL, INC. -  

Office of Legacy Management (LM)

A" 917 A" 917 RADIOLOGICAL SURVEY OF A PORTION OF PROPERTY OWNED BY MODERN LANDFILL, INC. - FORMER LOOW SITE Summary Report Work performed by the Health and Safety Research Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830 March 1981 OAK RIDGE NATIONAL LABORATORY operated by UNION. CARBIDE CORPORATION for the DEPARTMENT OF ENERGY as part of the Formerly Utilized Sites-- Remedial Action Program CONTENTS Page LIST OF FIGURES .. .. . .. . . . . . . . ......... iii LIST OF TABLES ......... .. iv INTRODUCTION .. ......... 1 OBJECTIVE .................... 1 SURVEY TECHNIQUES . . ............. ...... 1 RESULTS ..... 2 Gamma-Ray Exposure Rates . . . . . . 2 Beta-Gamma Dose Rate ............. 2 226Ra in Soil ............ 3 CONCLUSIONS .. . . . . . . . . . . . .. .. . .. .. 3 REFERENCES . . . . . . . . .

117

Cost Containment Through Energy Efficiency in Texas State-Owned Buildings  

E-Print Network (OSTI)

"The Energy Cost Containment Through Energy Efficiency" in Texas State-owned buildings project was begun in the spring of 1984 as a part of a multipronged effort to reduce rising energy costs in State operations. Energy audits of 21 million square feet (22% of total conditioned space) were conducted by three energy engineering firms and Texas Engineering Extension Service personnel under contract to the Public Utility Commission of Texas. Retrofits totaling $15.6 million with annual savings of $9.2 million were identified (59% ROI). This paper will detail the objectives of the project, summarize audit results, and outline financing options for individual projects.

Ponder, W. M.; Verdict, M. E.

1985-01-01T23:59:59.000Z

118

Tribal Utility Feasibility Study  

SciTech Connect

The Schatz Energy Research Center (SERC) assisted the Yurok Tribe in investigating the feasibility of creating a permanent energy services program for the Tribe. The original purpose of the DOE grant that funded this project was to determine the feasibility of creating a full-blown Yurok Tribal electric utility to buy and sell electric power and own and maintain all electric power infrastructure on the Reservation. The original project consultant found this opportunity to be infeasible for the Tribe. When SERC took over as project consultant, we took a different approach. We explored opportunities for the Tribe to develop its own renewable energy resources for use on the Reservation and/or off-Reservation sales as a means of generating revenue for the Tribe. We also looked at ways the Tribe can provide energy services to its members and how to fund such efforts. We identified opportunities for the development of renewable energy resources and energy services on the Yurok Reservation that fall into five basic categories: Demand-side management This refers to efforts to reduce energy use through energy efficiency and conservation measures. Off-grid, facility and household scale renewable energy systems These systems can provide electricity to individual homes and Tribal facilities in areas of the Reservation that do not currently have access to the electric utility grid. Village scale, micro-grid renewable energy systems - These are larger scale systems that can provide electricity to interconnected groups of homes and Tribal facilities in areas of the Reservation that do not have access to the conventional electric grid. This will require the development of miniature electric grids to serve these interconnected facilities. Medium to large scale renewable energy development for sale to the grid In areas where viable renewable energy resources exist and there is access to the conventional electric utility grid, these resources can be developed and sold to the wholesale electricity market. Facility scale, net metered renewable energy systems These are renewable energy systems that provide power to individual households or facilities that are connected to conventional electric utility grid.

Engel, R. A.; Zoellick, J. J.

2007-06-30T23:59:59.000Z

119

New Prague Utilities Commission- Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Southern Minnesota Municipal Power Agency (SMMPA) is a joint-action agency which generates and sells reliable electricity at wholesale to its eighteen non-profit, municipally-owned member utilities...

120

Bowling Green Municipal Utilities - Net Metering (Ohio) | Open...  

Open Energy Info (EERE)

to investor-owned utilities.) A standard interconnection permit is available for wind, solar, hydro, fuel cells and microgenerators up to 25 kilowatts (kW) in capacity. Larger...

Note: This page contains sample records for the topic "owned utilities iou" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Blooming Prairie Public Utilities- Commercial & Industrial Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Southern Minnesota Municipal Power Agency (SMMPA) is a joint-action agency which generates and sells reliable electricity at wholesale to its eighteen non-profit, municipally-owned member utilities...

122

Waseca Utilities- Commercial & Industrial Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Southern Minnesota Municipal Power Agency (SMMPA) is a joint-action agency which generates and sells reliable electricity at wholesale to its eighteen non-profit, municipally-owned member utilities...

123

GC GUIDANCE ON BARTER TRANSACTIONS INVOLVING DOE-OWNED URANIUM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GC GUIDANCE ON BARTER TRANSACTIONS INVOLVING DOE-OWNED URANIUM GC GUIDANCE ON BARTER TRANSACTIONS INVOLVING DOE-OWNED URANIUM The Department of Energy has on a variety of occasions engaged in transactions under which it bartered uranium to which it has title for goods or services . This guidance memorializes the results of analyses previously directed to individual proposed transactions . For the reasons discussed below, we conclude that the Atomic Energy Act of 1954' , as amended, (AEA), authorizes such barter transactions. Background : DOE Barter Transactions In a number of instances, DOE has engaged in transactions involving the barter of DOE-owned uranium2 in exchange for various products or services. For example, DOE entered into a transaction with the United States Enrichment Corporation (USEC), under which USEC would

124

High School Students Build Their Own Supercomputer (Almost) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High School Students Build Their Own Supercomputer (Almost) High School Students Build Their Own Supercomputer (Almost) High School Students Build Their Own Supercomputer (Almost) September 10, 2010 - 9:47am Addthis Eric Gedenk What are the key facts? Students built a computer cluster -- a group of computers communicating with one another to operate as a single machine -- out of Mac mini CPUs. For the third straight year, students and teachers from around Appalachia gathered at Oak Ridge National Laboratory (ORNL) this summer for an interactive training with some of the world's leading computing experts. The focal point of the training was a course called "Build a Supercomputer - Well Almost." And build they did. With guidance from ORNL staff, collaborators and interns, the high-school students went about building a

125

Minority-Owned Business Creating Career Opportunities | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minority-Owned Business Creating Career Opportunities Minority-Owned Business Creating Career Opportunities Minority-Owned Business Creating Career Opportunities September 15, 2010 - 2:21pm Addthis Most Catalyst Management Group employees had no previous experience with weatherization. | Photo by CMG Most Catalyst Management Group employees had no previous experience with weatherization. | Photo by CMG Lindsay Gsell What are the key facts? This Pontiac, Michigan weatherization company sees growth through Recovery Act. Catalyst Management Group will add nearly 50% more staff in the coming months. Employees new to the trade get weatherization training and mentoring. Leon Brown, an engineer by trade, started his career as a manufacturing engineer in the automobile industry in Detroit. After earning his master in business administration, and with the decline of jobs in the automobile

126

Utility Rate | OpenEI Community  

Open Energy Info (EERE)

Utility Rate Utility Rate Home > Groups Content Group Activity By term Q & A Feeds Share your own status updates, and follow the updates & activities of others by creating your own account. Or, remember to log in If you already have an account. Groups Menu You must login in order to post into this group. Recent content There is currently no way to s... ranking of utilities by demand charge? FYI, OpenEI now accommodates t... Very useful information. Thank... The utility rate database version 1 API is now deprecated more Group members (28) Managers: Dloomis Rmckeel Sfomail Recent members: MSiira Apin101 Lissacoffey Denizurla Bazouing Gdavis Shehant Anapettirossi Abkatzman BijouLulla Vbugnion Marklane Cbonsig Verdel3c Wisconsin Weatherall Windows Payne Nlong Wzeng 429 Throttled (bot load)

127

Utility Easements (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Easements (Indiana) Utility Easements (Indiana) Utility Easements (Indiana) < Back Eligibility Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Indiana Program Type Siting and Permitting Provider Indiana Department of Natural Resources A permit is required from the Indiana Department of Natural Resources for the construction of a utility upon a state park, a state forest, a state game preserve, land acquired by the state and set aside as a scenic or historic place, or the portion of a public highway passing through one of the aforementioned types of places

128

First university owned district heating system using biomass heat  

E-Print Network (OSTI)

Highlights · First university owned district heating system using biomass heat · Capacity: 15 MMBtu Main Campus District Heating Performance · Avoided: 3500 tonnes of CO2 · Particulate: less than 10 mg District Heating Goals To displace 85% of natural gas used for core campus heating. Fuel Bunker Sawmill

Northern British Columbia, University of

129

Save Money with Your Very Own Drapes | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

with Your Very Own Drapes with Your Very Own Drapes Save Money with Your Very Own Drapes June 11, 2012 - 2:47pm Addthis Elizabeth Spencer Communicator, National Renewable Energy Laboratory So, last winter I decided that I was going to get crafty and make my own blankets as an incentive to keep the thermostat low. It was a fun project, and it actually worked. I needed more blankets, so I made them. They were warm, so I used them all the time. And hey, I was proud of them! It feels good to make something you love. Now that it's summer, the blankets are folded up-though they're still out. I like the colors I chose, so I just hung them up in the study. So my simple project ended up being a huge success: Easy home décor, super warm winter blankets, and an easy way to save money! And now that it's summer, I want to make drapes.

130

Molecular motors interacting with their own tracks Max N. Artyomov  

E-Print Network (OSTI)

Molecular motors interacting with their own tracks Max N. Artyomov Department of Chemistry; published 17 April 2008 Dynamics of molecular motors that move along linear lattices and interact with them exactly solvable discrete-state "burnt- bridge" models. Molecular motors are viewed as diffusing particles

131

Public Utility Regulatory Act, Alternative Energy Providers (Texas) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulatory Act, Alternative Energy Providers (Texas) Regulatory Act, Alternative Energy Providers (Texas) Public Utility Regulatory Act, Alternative Energy Providers (Texas) < Back Eligibility Utility Fed. Government Commercial Investor-Owned Utility Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Texas Program Type Safety and Operational Guidelines Provider Public Utility Commission of Texas Chapter 35 of the Public Utility Regulatory Act specifically addresses alternative energy providers, and contains provisions designed to aid such providers in selling power in Texas's competitive utility market. The

132

City of Bay City, Michigan (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

City, Michigan (Utility Company) City, Michigan (Utility Company) Jump to: navigation, search Name City of Bay City Place Michigan Utility Id 1366 Utility Location Yes Ownership M NERC Location ECAR NERC RFC Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COMMERCIAL DEMAND RATE Commercial COMPANY OWNED STREET LIGHTING (High Pressure Sodium - 100 WATTS) Lighting COMPANY OWNED STREET LIGHTING (High Pressure Sodium - 150 WATTS) Lighting COMPANY OWNED STREET LIGHTING (High Pressure Sodium - 250 WATTS) Lighting

133

City of Valentine, Nebraska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Valentine, Nebraska (Utility Company) Valentine, Nebraska (Utility Company) Jump to: navigation, search Name City of Valentine Place Nebraska Utility Id 19677 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Rate Commercial General Service- Demand Commercial Large Power General Service Industrial Large Power General Service(Primary voltage and Customer Owned Transformer) Industrial Large Power General Service(Primary voltage and City-Owned Transformer) Industrial Large Power General Service(Secondary voltage and Customer Owned

134

Village of Leigh, Nebraska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Leigh, Nebraska (Utility Company) Leigh, Nebraska (Utility Company) Jump to: navigation, search Name Village of Leigh Place Nebraska Utility Id 10886 Utility Location Yes Ownership M NERC Location MAPP Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 14 Area Lighting - 100 W High Pressure Sodium- Customer Leased Lighting Area Lighting - 100 W High Pressure Sodium- Customer Owned Lighting Area Lighting - 100 W High Pressure Sodium- District Owned Lighting Area Lighting - 175 W Mercury Vapor- District Owned Lighting Area Lighting - 175 W Mercury Vapor-Customer Leased Lighting

135

Frostbite Theater - Static Electricity Experiments - How to Make Your Own  

NLE Websites -- All DOE Office Websites (Extended Search)

How Does a Van de Graaff Generator Work? How Does a Van de Graaff Generator Work? Previous Video (How Does a Van de Graaff Generator Work?) Frostbite Theater Main Index Next Video (Should a Person Touch 200,000 Volts?) Should a Person Touch 200,000 Volts? How to Make Your Own Electroscope! An electroscope is a simple device that you can use to do static electricity experiments. They are easy to make. Would you like to know how to build your own? We'll show you how! [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: An electroscope is a simple device that you can use to do static electricity experiments. Today, Steve and I are going to show you how to make one! Steve: The electroscope is fairly simple. Ours is just made from a binder

136

How to Add Your Own Reading Comprehension Passage  

NLE Websites -- All DOE Office Websites (Extended Search)

Adding Your Own Reading Comprehension Passage Adding Your Own Reading Comprehension Passage Please follow these instructions for submitting a reading comprehension passage: Use a text editor or word processor to create your reading comprehension passage. Since Jefferson Lab is a basic physics research facility, passages that incorporate some aspect of science are preferred over passages that do not. Make certain that your passage is accessible to a general audience. While you are creating this passage primarily for your classes' benefit, realize that anyone on the internet will be able to view it. The passage should make sense to anyone, not just to those in your class. Check your passage for: Factual accuracy Correct spelling Correct punctuation Proper grammar Once you have your passage, place brackets ([]) around the words you

137

A comparative analysis of business structures suitable forfarmer-owned wind power projects in the United States  

DOE Green Energy (OSTI)

For years, farmers in the United States have looked with envy on their European counterparts' ability to profitably farm the wind through ownership of distributed, utility-scale wind projects. Only within the past few years, however, has farmer- or community-owned wind power development become a reality in the United States. The primary hurdle to this type of development in the United States has been devising and implementing suitable business and legal structures that enable such projects to take advantage of tax-based federal incentives for wind power. This article discusses the limitations of such incentives in supporting farmer- or community-owned wind projects, describes four ownership structures that potentially overcome such limitations, and finally conducts comparative financial analysis on those four structures, using as an example a hypothetical 1.5 MW farmer-owned project located in the state of Oregon. We find that material differences in the competitiveness of each structure do exist, but that choosing the best structure for a given project will largely depend on the conditions at hand; e.g., the ability of the farmer(s) to utilize tax credits, preference for individual versus ''cooperative'' ownership, and the state and utility service territory in which the project will be located.

Bolinger, Mark; Wiser, Ryan

2004-11-11T23:59:59.000Z

138

Hutchinson Utilities Comm | Open Energy Information  

Open Energy Info (EERE)

Hutchinson Utilities Comm Hutchinson Utilities Comm Jump to: navigation, search Name Hutchinson Utilities Comm Place Minnesota Utility Id 9130 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png LARGE GENERAL ELECTRIC SERVICE Industrial LARGE GENERAL ELECTRIC SERVICE - PRIMARY VOLTAGE (CUSTOMER OWNED) Industrial

139

Definition: Electric utility | Open Energy Information  

Open Energy Info (EERE)

utility utility Jump to: navigation, search Dictionary.png Electric utility A corporation, agency, or other legal entity that owns and/or operates facilities for the generation, transmission, distribution or sale of electricity primarily for use by the public. Also known as a power provider.[1][2] View on Wikipedia Wikipedia Definition An electric utility is an electric power company that engages in the generation, transmission, and distribution of electricity for sale generally in a regulated market. The electrical utility industry is a major provider of energy in most countries. It is indispensable to factories, commercial establishments, homes, and even most recreational facilities. Lack of electricity causes not only inconvenience, but also economic loss due to reduced industrial production. Utility in the terms of power system,

140

Farmington Electric Utility System - Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Farmington Electric Utility System - Net Metering Farmington Electric Utility System - Net Metering Farmington Electric Utility System - Net Metering < Back Eligibility Residential Savings Category Energy Sources Buying & Making Electricity Solar Home Weatherization Water Wind Program Info State New Mexico Program Type Net Metering Provider Farmington Electric Utility System Net metering rules developed by the New Mexico Public Regulation Commission (PRC) apply to the state's investor-owned utilities and electric cooperatives. Municipal utilities, which are not regulated by the commission, are exempt from the PRC rules but authorized to develop their own net metering programs. Farmington Electric, a municipal utility, offers net metering to residential customers with systems up to 10 kilowatts (kW) in capacity.

Note: This page contains sample records for the topic "owned utilities iou" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Energy and Utility Project Review | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Utility Project Review and Utility Project Review Energy and Utility Project Review < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Wisconsin Program Type Siting and Permitting Provider Department of Natural Resources The DNR's Office of Energy and Environmental Analysis is responsible for coordinating the review of all proposed energy and utility projects in the

142

Utility Facility Siting and Environmental Protection Act (South Carolina) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Facility Siting and Environmental Protection Act (South Utility Facility Siting and Environmental Protection Act (South Carolina) Utility Facility Siting and Environmental Protection Act (South Carolina) < Back Eligibility Utility Commercial Investor-Owned Utility Industrial Construction Municipal/Public Utility Installer/Contractor Rural Electric Cooperative Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Carolina Program Type Siting and Permitting Provider South Carolina Public Service Commission This legislation applies to electric generating plants and associated facilities designed for or capable of operation at a capacity of more than 75 MW. A certificate from the Public Service Commission is required prior

143

California Energy Commission Public Interest Energy Research/Energy System Integration -- Transmission-Planning Research & Development Scoping Project  

E-Print Network (OSTI)

CRT DC DSM EHV ESI FACTS FERC GIS HHI IEC IEPR IID IOU IPPEnergy Regulatory Commission (FERC), followed by Californiacase of municipal utilities). FERC authorizes tariffs for

Eto, Joseph H.; Lesieutre, Bernard; Widergren, Steven

2004-01-01T23:59:59.000Z

144

Transportation capabilities study of DOE-owned spent nuclear fuel  

Science Conference Proceedings (OSTI)

This study evaluates current capabilities for transporting spent nuclear fuel owned by the US Department of Energy. Currently licensed irradiated fuel shipping packages that have the potential for shipping the spent nuclear fuel are identified and then matched against the various spent nuclear fuel types. Also included are the results of a limited investigation into other certified packages and new packages currently under development. This study is intended to support top-level planning for the disposition of the Department of Energy`s spent nuclear fuel inventory.

Clark, G.L.; Johnson, R.A.; Smith, R.W. [Packaging Technology, Inc., Tacoma, WA (United States); Abbott, D.G.; Tyacke, M.J. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

1994-10-01T23:59:59.000Z

145

Village of Rouses Point, New York (Utility Company) | Open Energy  

Open Energy Info (EERE)

Rouses Point, New York (Utility Company) Rouses Point, New York (Utility Company) Jump to: navigation, search Name Village of Rouses Point Place New York Utility Id 16325 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes ISO NY Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service , Non demand Metered Commercial General Service Demand Metered Industrial Large General Service Industrial Public Street Lighting Privately Owned Lighting Public Street Lighting Utility Owned Lighting Residential Residential Average Rates Residential: $0.0340/kWh Commercial: $0.0438/kWh

146

City of Berea Municipal Utility, Kentucky | Open Energy Information  

Open Energy Info (EERE)

Berea Municipal Utility, Kentucky Berea Municipal Utility, Kentucky Jump to: navigation, search Name City of Berea Municipal Utility Place Kentucky Utility Id 49998 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Electric Rate Commercial Industrial and Large Commercial Electric Rate Industrial Large Commercial Electric Rate Commercial Net Metering Rate Commercial Primary Metering Customer Owned/Leased Transformers Industrial Primary Metering Non-Owned/Leased Transformers Industrial

147

DOE-owned spent nuclear fuel strategic plan. Revision 1  

SciTech Connect

The Department of Energy (DOE) is responsible for safely and efficiently managing DOE-owned spent nuclear fuel (SNF) and SNF returned to the US from foreign research reactors (FRR). The fuel will be treated where necessary, packaged suitable for repository disposal where practicable, and placed in interim dry storage. These actions will remove remaining vulnerabilities, make as much spent fuel as possible ready for ultimate disposition, and substantially reduce the cost of continued storage. The goal is to complete these actions in 10 years. This SNF Strategic Plan updates the mission, vision, objectives, and strategies for the management of DOE-owned SNF articulated by the SNF Strategic Plan issued in December 1994. The plan describes the remaining issues facing the EM SNF Program, lays out strategies for addressing these issues, and identifies success criteria by which program progress is measured. The objectives and strategies in this plan are consistent with the following Em principles described by the Assistance Secretary in his June 1996 initiative to establish a 10-year time horizon for achieving most program objectives: eliminate and manage the most serious risks; reduce mortgage and support costs to free up funds for further risk reduction; protect worker health and safety; reduce generation of wastes; create a collaborative relationship between DOE and its regulators and stakeholders; focus technology development on cost and risk reduction; and strengthen management and financial control.

1996-09-01T23:59:59.000Z

148

Program on Technology Innovation: Distributed Photovoltaic Power Applications for Utilities  

Science Conference Proceedings (OSTI)

Emerging PV technology brings significant opportunities for many stakeholders including electric utilities, electric customers, energy-service providers and PV equipment vendors. The opportunities for utilities range from owning and deploying various PV generation resources and related products to incentivizing other owners to install PV systems and technology that provide benefits to the power system. This technical update describes PV power system concepts that utilities may want to consider as they pl...

2009-12-30T23:59:59.000Z

149

Power Sales to Electric Utilities  

SciTech Connect

The Public Utilities Regulatory Policies Act (PURPA) of 1979 requires that electrical utilities interconnect with qualifying facilities and purchase electricity at a rate based upon their full avoided costs (i.e., costs of providing both capacity and energy). Qualifying facilities (QF) include solar or geothermal electric units, hydropower, municipal solid waste or biomass-fired power plants, and cogeneration projects that satisfy maximum size, fuel use, ownership, location, and/or efficiency criteria. In Washington State, neither standard power purchase prices based upon a proxy ''avoided plant'', standard contracts, or a standard offer process have been used. Instead, a variety of power purchase contracts have been negotiated by developers of qualifying facilities with investor-owned utilities, public utility districts, and municipally-owned and operated utilities. With a hydro-based system, benefits associated with resource acquisition are determined in large part by how compatible the resource is with a utility's existing generation mix. Power purchase rates are negotiated and vary according to firm energy production, guarantees, ability to schedule maintenance or downtime, rights of refusal, power plant purchase options, project start date and length of contract; front-loading or levelization provisions; and the ability of the project to provide ''demonstrated'' capacity. Legislation was also enacted which allows PURPA to work effectively. Initial laws established ownership rights and provided irrigation districts, PUDs, and municipalities with expanded enabling powers. Financial processes were streamlined and, in some cases, simplified. Finally, laws were passed which are designed to ensure that development proceeds in an environmentally acceptable manner. In retrospect, PURPA has worked well within Washington. In the state of Washington, 20 small-scale hydroelectric projects with a combined generating capacity of 77 MW, 3 solid waste-to-energy facilities with 55 MW of electrical output, 4 cogeneration projects with 34.5 MW of generating capability, and 4 wastewater treatment facility digester gas-to-energy projects with 5 MW of electrical production have come on-line (or are in the final stages of construction) since the passage of PURPA. These numbers represent only a small portion of Washington's untapped and underutilized cogeneration and renewable resource generating potentials. [DJE-2005

1989-02-01T23:59:59.000Z

150

Power Sales to Electric Utilities  

SciTech Connect

The Public Utilities Regulatory Policies Act (PURPA) of 1979 requires that electrical utilities interconnect with qualifying facilities and purchase electricity at a rate based upon their full avoided costs (i.e., costs of providing both capacity and energy). Qualifying facilities (QF) include solar or geothermal electric units, hydropower, municipal solid waste or biomass-fired power plants, and cogeneration projects that satisfy maximum size, fuel use, ownership, location, and/or efficiency criteria. In Washington State, neither standard power purchase prices based upon a proxy ''avoided plant'', standard contracts, or a standard offer process have been used. Instead, a variety of power purchase contracts have been negotiated by developers of qualifying facilities with investor-owned utilities, public utility districts, and municipally-owned and operated utilities. With a hydro-based system, benefits associated with resource acquisition are determined in large part by how compatible the resource is with a utility's existing generation mix. Power purchase rates are negotiated and vary according to firm energy production, guarantees, ability to schedule maintenance or downtime, rights of refusal, power plant purchase options, project start date and length of contract; front-loading or levelization provisions; and the ability of the project to provide ''demonstrated'' capacity. Legislation was also enacted which allows PURPA to work effectively. Initial laws established ownership rights and provided irrigation districts, PUDs, and municipalities with expanded enabling powers. Financial processes were streamlined and, in some cases, simplified. Finally, laws were passed which are designed to ensure that development proceeds in an environmentally acceptable manner. In retrospect, PURPA has worked well within Washington. In the state of Washington, 20 small-scale hydroelectric projects with a combined generating capacity of 77 MW, 3 solid waste-to-energy facilities with 55 MW of electrical output, 4 cogeneration projects with 34.5 MW of generating capability, and 4 wastewater treatment facility digester gas-to-energy projects with 5 MW of electrical production have come on-line (or are in the final stages of construction) since the passage of PURPA. These numbers represent only a small portion of Washington's untapped and underutilized cogeneration and renewable resource generating potentials. [DJE-2005

None

1989-02-01T23:59:59.000Z

151

NET PRED UTILITY  

Energy Science and Technology Software Center (OSTI)

002602IBMPC00 Normalized Elution Time Prediction Utility http://omics.pnl.gov/software/NETPredictionUtility.php

152

Awards go to disadvantaged, veteran-owned and small businesses  

NLE Websites -- All DOE Office Websites (Extended Search)

Three small businesses recognized by DOE Three small businesses recognized by DOE Awards go to disadvantaged, veteran-owned and small businesses Three business serving LANL are recognized by DOE. April 3, 2012 Workers sample contents of LANL's Material Disposal Area B (MDA-B) before excavation Workers took direct-push samples to characterize the contents of Material Disposal Area B prior to excavation. Contact Small Business Office (505) 667-4419 Email Small businesses serving LANL receive DOE awards Three businesses that provide services to LANL received Department of Energy small business awards for fiscal year 2011 were recognized by DOE at a ceremony in Washington, D.C. on June 17, 2012. Eberline Services of Santa Fe received DOE's Small Business of the Year award. Eberline conducted environmental drilling services at LANL. The work

153

CABLE AOORIs*. HICRONIZER. MOORLblOWN. NEW ,SRIEY  

Office of Legacy Management (LM)

NEW ALBANY ROAD . MOORESTOWN . NEW ]ERSEY NEW ALBANY ROAD . MOORESTOWN . NEW ]ERSEY CABLE AOORIs*. HICRONIZER. MOORLblOWN. NEW ,SRIEY be returned further obliga- may desire any patent protection, provi#ed; however, that the costa in connectSo& with the pregaration;~~fillrig nnd prosecution of the same shall be entirely: at ?SG,~~e~enS.e ,of our..company. This provision, how- ever, ls.' subJect:to eny.~prlor'arra~cmont between your Institu- tion and the government with respect to inventions and p?j,tents. ,.: 3,ri 'I :: .:v:ri :!:!p, +lo.~nl.~~! ( '.'I! &f :, > ,>,' :'It'r*i&: sltibr~!the understandfng that your Instttution will ca,rry such insurance as you'may deem ndvi~able~ln aonoec- tion with this m ill or its use ~lhile :kt the UnivsF@#b v' "t -' . ' - IN,TERNATI.ONAL PULVERIZING c0RP0RAi.1~

154

Who owns leaded fuel vehicles: impact of the phasedown  

DOE Green Energy (OSTI)

The US Environmental Protection Agency has promulgated regulations lowering the allowable level of lead in gasoline from 1.1 g/gal to 0.1 g/gal on January 1, 1986. Impacts of this action on minority groups were assessed in this study, focusing on household ownership of leaded-fuel vehicles, and on the number of small children residing in the households. The number of vehicles requiring leaded gasoline is declining rapidly, from 67.4 million in 1981 to 28.1 million in 1986, and 18.6 million in 1988. The share of vehicle-miles traveled by these vehicles will fall from 40% in 1981 to less than 10% in 1988. Leaded-gasoline vehicles are held by all types of households; the ownership pattern for these older vehicles is very similar to the pattern for all vehicles owned by households grouped by race of householder or region.

LaBelle, S.

1985-04-01T23:59:59.000Z

155

Public Service Commission Authorization to Utilize an Alternative Method of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Public Service Commission Authorization to Utilize an Alternative Public Service Commission Authorization to Utilize an Alternative Method of Cost Recovery for Certain Base Load Generation (Mississippi) Public Service Commission Authorization to Utilize an Alternative Method of Cost Recovery for Certain Base Load Generation (Mississippi) < Back Eligibility Commercial Construction Developer Fuel Distributor General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Mississippi Program Type Green Power Purchasing Industry Recruitment/Support Performance-Based Incentive Public Benefits Fund Provider Public Service Commission The Senate Bill 2793 authorizes the Public Service Commission (PSC) to

156

DEMEC Member Utilities - Green Energy Program Incentives (8 utilities...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Member Utilities - Green Energy Program Incentives (8 utilities) DEMEC Member Utilities - Green Energy Program Incentives (8 utilities) Eligibility Agricultural Commercial...

157

Mandatory Utility Green Power Option | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mandatory Utility Green Power Option Mandatory Utility Green Power Option Mandatory Utility Green Power Option < Back Eligibility Investor-Owned Utility Municipal Utility Utility Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Water Energy Sources Solar Wind Program Info State Maine Program Type Mandatory Utility Green Power Option Provider Maine Public Utilities Commission Legislation enacted in 2009 directed the Maine Public Utilities Commission (PUC) to develop a program offering green power as an option to residential and small commercial customers in the state. The PUC issued rules in October 2010 and issued an RFP. The PUC selected a company, 3 Degrees, to manage the statewide green power program for Maine's transmission and distribution territories. The program includes community-based renewable

158

Mandatory Utility Green Power Option | Open Energy Information  

Open Energy Info (EERE)

Mandatory Utility Green Power Option Mandatory Utility Green Power Option Jump to: navigation, search Several states require certain electric utilities to offer customers the option of buying electricity generated from renewable resources, commonly known as “green power.” Typically, utilities offer green power generated using renewable resources that the utilities own (or for which they contract), or they buy renewable energy credits (RECs) from a renewable energy provider certified by a state public utilities commission [1] Mandatory Utility Green Power Option Incentives CSV (rows 1 - 17) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active DEMEC - Green Power Program (Delaware) Mandatory Utility Green Power Option Delaware Municipal Utility Solar Water Heat

159

Alternative Fuels Data Center: Public Utility Definition Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Public Utility Public Utility Definition Exemption to someone by E-mail Share Alternative Fuels Data Center: Public Utility Definition Exemption on Facebook Tweet about Alternative Fuels Data Center: Public Utility Definition Exemption on Twitter Bookmark Alternative Fuels Data Center: Public Utility Definition Exemption on Google Bookmark Alternative Fuels Data Center: Public Utility Definition Exemption on Delicious Rank Alternative Fuels Data Center: Public Utility Definition Exemption on Digg Find More places to share Alternative Fuels Data Center: Public Utility Definition Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Public Utility Definition Exemption An entity that owns, controls, operates, or manages a plant or facility

160

Utilities | Open Energy Information  

Open Energy Info (EERE)

Utilities Utilities Jump to: navigation, search Utilities Electric Utility Rates The Utilities Gateway houses OpenEI's free, community-editable utility rate repository. OpenEI users may browse, edit and add new electric utility rates to OpenEI's repository. EIA provides the authoritative list of utility companies in the United States, and thus OpenEI limits utility rates to companies listed by EIA. 43,031 rates have been contributed for 3,832 EIA-recognized utility companies. Browse rates by zip code Browse rates by utility name Create or edit a rate Number of Utility Companies by State Click on a state to view summaries for that state. See a list of all U.S. utility companies and aliases Utility Rate Database Description The Utility Rate Database (URDB) is a free storehouse of rate structure

Note: This page contains sample records for the topic "owned utilities iou" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

City of Troy, Alabama (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Alabama Alabama Utility Id 19225 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png ATHLETIC FIELD SERVICE Commercial CHURCH SERVICES Commercial Commercial Service Commercial Industrial Commercial Industrial Large Industrial Service Industrial Residential Residential TROY HOUSING AUTHORITY SERVICE Commercial Unmetered Protective Lighting 400 W HPS City Owned Lighting Unmetered Protective Lighting 1000 W HPS City Owned Lighting Unmetered Protective Lighting 1000 W HPS Customer Owned Lighting

162

City of Pryor, Oklahoma (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Pryor, Oklahoma (Utility Company) Pryor, Oklahoma (Utility Company) Jump to: navigation, search Name City of Pryor Place Oklahoma Utility Id 15462 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Commercial Total Electric Heat Rate Commercial Commercial demand rate Commercial Residential Residential Residential total electric Residential sale for resale rate- landlord owns meters and associated equipment only. Residential sale for resale rate-landlord owns and maintains the transformers, meters,

163

City of Bardstown, Kentucky (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Bardstown, Kentucky (Utility Company) Bardstown, Kentucky (Utility Company) Jump to: navigation, search Name City of Bardstown Place Kentucky Utility Id 690 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png E-1 Residential Customers Residential E-2 Commercial Customers Commercial E-3 Large Power Customers Commercial E-4 Industrial Customer (City Owned Distribution Facilities) Industrial E-5 Industrial Customer (Customer Owned Distribution Facilities) Industrial SECURITY LIGHTS 175 W Lighting Average Rates Residential: $0.0748/kWh

164

California Public Utilities Commission | Open Energy Information  

Open Energy Info (EERE)

Public Utilities Commission Public Utilities Commission Address 505 Van Ness Avenue Place San Francisco, California Zip 94102 Phone number 415-703-2782 Website http://www.cpuc.ca.gov/puc/ References CPUC Website[1] This article is a stub. You can help OpenEI by expanding it. California Public Utilities Commission is an organization based in San Francisco, California. The CPUC regulates privately owned electric, natural gas, telecommunications, water, railroad, rail transit, and passenger transportation companies, in addition to authorizing video franchises. Our five Governor-appointed Commissioners, as well as our staff, are dedicated to ensuring that consumers have safe, reliable utility service at reasonable rates, protecting against fraud, and promoting the health of California's economy.

165

When it comes to Demand Response, is FERC its Own Worst Enemy?  

E-Print Network (OSTI)

July 1978, pp. 42-47. FERC, "Final Rule, Order 719,comes to Demand Response, is FERC its Own Worst Enemy? Jamesit comes to demand response, is FERC its own worst enemy? By

Bushnell, James; Hobbs, Benjamin; Wolak, Frank A.

2009-01-01T23:59:59.000Z

166

May 23 ChallengeHER Women Owned Small Business Event in Washington...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 23 ChallengeHER Women Owned Small Business Event in Washington, DC May 23 ChallengeHER Women Owned Small Business Event in Washington, DC May 6, 2013 - 4:48pm Addthis John Hale...

167

Who Owns Renewable Energy Certificates? An Exploration of Policy Options and Practice  

E-Print Network (OSTI)

Minnesota Methane owns a landfill gas facility located infor example, that wind or landfill gas energy was conveyed,

Holt, Edward A.; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

168

Revisiting the "Buy versus Build" decision for publicly owned utilities in California considering wind and geothermal resources  

E-Print Network (OSTI)

California state incentives for renewable energy. In thisenergy, and (2) the California state production incentives

Bolinger, Mark; Wiser, Ryan; Golove, William

2001-01-01T23:59:59.000Z

169

Energy utilization analysis of buildings  

DOE Green Energy (OSTI)

The accurate calculation of the energy requirements and heating and cooling equipment sizes for buildings is one of the most important, as well as one of the most difficult, problems facing the engineer. The fundamental principles utilized in the procedures developed by American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) are explained and brief descriptions of the computer programs using these procedures are given. Such computer programs generally are capable of: simulating the thermal response of a building to all sources of heat gains and losses, accounting for all non-thermal energy requirements in the building or on the sites, translating the building operating schedules into energy demand and consumption, identifying the peak capacity requirements of heating and cooling equipment, and performing an economic analysis that would select the most economical overall owning and operating cost equipment and energy source that minimize the building's life cycle cost.

Lokmanhekim, M.

1978-06-01T23:59:59.000Z

170

Natural Gas Utility Conservation Programs (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Natural Gas Utility Conservation Programs (Maine) Natural Gas Utility Conservation Programs (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Mandatory Utility Green Power Option Provider Public Utilities Commission This Chapter describes how natural gas utilities serving more than 5,000 residential customers must implement natural gas energy conservation programs. The regulations describe

171

Mandatory Utility Green Power Option | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mandatory Utility Green Power Option Mandatory Utility Green Power Option Mandatory Utility Green Power Option < Back Eligibility Investor-Owned Utility Municipal Utility Rural Electric Cooperative Savings Category Bioenergy Buying & Making Electricity Water Solar Wind Program Info State District of Columbia Program Type Mandatory Utility Green Power Option Provider Washington State Department of Commerce In May 2001, Washington enacted legislation (EHB 2247) that requires all electric utilities serving more than 25,000 customers to offer customers the option of purchasing renewable energy. Eligible renewables include wind, solar, geothermal, landfill gas, wave or tidal action, wastewater treatment gas, certain biomass resources, and "qualified hydropower" that is fish-friendly. Beginning January 1, 2002, each electric utility must inform its customers

172

Who Owns Renewable Energy Certificates? An Exploration of PolicyOptions and Practice  

SciTech Connect

Renewable energy certificates (RECs) represent the bundle of information that describes the characteristics of renewable electricity generation, and may be (and increasingly are) sold separately from the underlying electricity itself. RECs are a relatively new phenomenon, emerging as a tradable commodity in voluntary markets in the late 1990s, and gaining strength as a means of compliance with various state policy requirements affecting renewable generation in the early 2000s (Holt and Bird 2005). Twenty states and Washington, D.C. now have mandatory renewables portfolio standard (RPS) obligations, and most of these may be satisfied by owning and retiring RECs. Many states also have fuel source and emissions disclosure requirements, for which RECs are useful. Even where state policy does not allow unbundled and fully tradable RECs to meet these requirements, RECs may still be used as an accounting and verification tool (REC tracking systems are in place or under development in many regions of the U.S.). These applications, plus REC trading activity in support of voluntary green claims, give rise to potential ''double counting'' to the extent that the purchaser of the RECs and the purchaser of the underlying electricity both make claims to the renewable energy attributes of the facility in question (Hamrin and Wingate 2003). When renewable electricity is sold and purchased, an important question therefore arises: ''Who owns the RECs created by the generation of renewable energy?'' In voluntary transactions, most agree that the question of REC ownership can and should be negotiated between the buyer and the seller privately, and should be clearly established by contract. Claims about purchasing renewable energy should only be made if REC ownership can be documented. In many other cases, however, renewable energy transactions are either mandated or encouraged through state or federal policy. In these cases, the issue of REC ownership must often be answered by legislative or regulatory authorities. Some renewable energy contracts pre-date the existence of RECs, however, and in these cases the disposition of RECs is often unclear. Similarly, because of the recent appearance of RECs, legislation and regulation mandating the purchase of renewable energy has sometimes been silent on the disposition of the RECs associated with that generation. The resulting uncertainty in REC ownership has hindered the development of robust REC markets and has, in some cases, led to contention between buyers and sellers of renewable generation. The purpose of this report is to provide information and insight to state policy-makers, utility regulators, and others about different approaches to clarifying the ownership of RECs. We focus exclusively on three distinct areas in which REC ownership issues have arisen: (1) Qualifying Facilities (QFs) that sell their generation under the Public Utility Regulatory Policies Act (PURPA) of 1978; (2) Customer-owned generation that benefits from state net metering rules; and (3) Generation facilities that receive financial incentives from state or utility funds. This is a survey report. It reviews how both the federal government and states have addressed these issues to date, and highlights the arguments that have been raised for different REC ownership dispositions. Our aim is to describe the arguments on each side, and the context for the debates that are occurring. We do not, in this report, provide a list of policy recommendations for how policymakers should be addressing these issues.

Holt, Edward A.; Wiser, Ryan; Bolinger, Mark

2006-04-05T23:59:59.000Z

173

Who Owns Renewable Energy Certificates? An Exploration of PolicyOptions and Practice  

SciTech Connect

Renewable energy certificates (RECs) represent the bundle of information that describes the characteristics of renewable electricity generation, and may be (and increasingly are) sold separately from the underlying electricity itself. RECs are a relatively new phenomenon, emerging as a tradable commodity in voluntary markets in the late 1990s, and gaining strength as a means of compliance with various state policy requirements affecting renewable generation in the early 2000s (Holt and Bird 2005). Twenty states and Washington, D.C. now have mandatory renewables portfolio standard (RPS) obligations, and most of these may be satisfied by owning and retiring RECs. Many states also have fuel source and emissions disclosure requirements, for which RECs are useful. Even where state policy does not allow unbundled and fully tradable RECs to meet these requirements, RECs may still be used as an accounting and verification tool (REC tracking systems are in place or under development in many regions of the U.S.). These applications, plus REC trading activity in support of voluntary green claims, give rise to potential ''double counting'' to the extent that the purchaser of the RECs and the purchaser of the underlying electricity both make claims to the renewable energy attributes of the facility in question (Hamrin and Wingate 2003). When renewable electricity is sold and purchased, an important question therefore arises: ''Who owns the RECs created by the generation of renewable energy?'' In voluntary transactions, most agree that the question of REC ownership can and should be negotiated between the buyer and the seller privately, and should be clearly established by contract. Claims about purchasing renewable energy should only be made if REC ownership can be documented. In many other cases, however, renewable energy transactions are either mandated or encouraged through state or federal policy. In these cases, the issue of REC ownership must often be answered by legislative or regulatory authorities. Some renewable energy contracts pre-date the existence of RECs, however, and in these cases the disposition of RECs is often unclear. Similarly, because of the recent appearance of RECs, legislation and regulation mandating the purchase of renewable energy has sometimes been silent on the disposition of the RECs associated with that generation. The resulting uncertainty in REC ownership has hindered the development of robust REC markets and has, in some cases, led to contention between buyers and sellers of renewable generation. The purpose of this report is to provide information and insight to state policy-makers, utility regulators, and others about different approaches to clarifying the ownership of RECs. We focus exclusively on three distinct areas in which REC ownership issues have arisen: (1) Qualifying Facilities (QFs) that sell their generation under the Public Utility Regulatory Policies Act (PURPA) of 1978; (2) Customer-owned generation that benefits from state net metering rules; and (3) Generation facilities that receive financial incentives from state or utility funds. This is a survey report. It reviews how both the federal government and states have addressed these issues to date, and highlights the arguments that have been raised for different REC ownership dispositions. Our aim is to describe the arguments on each side, and the context for the debates that are occurring. We do not, in this report, provide a list of policy recommendations for how policymakers should be addressing these issues.

Holt, Edward A.; Wiser, Ryan; Bolinger, Mark

2006-04-05T23:59:59.000Z

174

Evaluation of the Geothermal Public Power Utility Workshops in California  

DOE Green Energy (OSTI)

The federal government devotes significant resources to educating consumers and businesses about geothermal energy. Yet little evidence exists for defining the kinds of information needed by the various audiences with specialized needs. This paper presents the results of an evaluation of the Geothermal Municipal Utility Workshops that presented information on geothermal energy to utility resource planners at customer-owned utilities in California. The workshops were sponsored by the Western Area Power Administration and the U.S. Department of Energy's GeoPowering the West Program and were intended to qualitatively assess the information needs of municipal utilities relative to geothermal energy and get feedback for future workshops. The utility workshop participants found the geothermal workshops to be useful and effective for their purposes. An important insight from the workshops is that utilities need considerable lead-time to plan a geothermal project. They need to know whether it is better to own a project or to purchase geothermal electricity from another nonutility owner. California customer-owned utilities say they do not need to generate more electricity to meet demand, but they do need to provide more electricity from renewable resources to meet the requirements of the state's Renewable Portfolio Standard.

Farhar, B. C.

2004-10-01T23:59:59.000Z

175

V-033: ownCloud Cross-Site Scripting and File Upload Vulnerabilities |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: ownCloud Cross-Site Scripting and File Upload 3: ownCloud Cross-Site Scripting and File Upload Vulnerabilities V-033: ownCloud Cross-Site Scripting and File Upload Vulnerabilities November 26, 2012 - 2:00am Addthis PROBLEM: ownCloud Cross-Site Scripting and File Upload Vulnerabilities PLATFORM: ownCloud 4.5.2, 4.5.1, 4.0.9 ABSTRACT: Multiple vulnerabilities have been reported in ownCloud REFERENCE LINKS: ownCloud Server Advisories Secunia Advisory SA51357 IMPACT ASSESSMENT: Medium DISCUSSION: 1) Input passed via the filename to apps/files_versions/js/versions.js and apps/files/js/filelist.js and event title to 3rdparty/fullcalendar/js/fullcalendar.js is not properly sanitised before being returned to the user. This can be exploited to execute arbitrary HTML and script code in a user's browser session in context of an affected site.

176

Vehicle Technologies Office: Fact #694: September 26, 2011 Costs of Owning  

NLE Websites -- All DOE Office Websites (Extended Search)

4: September 26, 4: September 26, 2011 Costs of Owning a Vehicle by State to someone by E-mail Share Vehicle Technologies Office: Fact #694: September 26, 2011 Costs of Owning a Vehicle by State on Facebook Tweet about Vehicle Technologies Office: Fact #694: September 26, 2011 Costs of Owning a Vehicle by State on Twitter Bookmark Vehicle Technologies Office: Fact #694: September 26, 2011 Costs of Owning a Vehicle by State on Google Bookmark Vehicle Technologies Office: Fact #694: September 26, 2011 Costs of Owning a Vehicle by State on Delicious Rank Vehicle Technologies Office: Fact #694: September 26, 2011 Costs of Owning a Vehicle by State on Digg Find More places to share Vehicle Technologies Office: Fact #694: September 26, 2011 Costs of Owning a Vehicle by State on AddThis.com...

177

Tell Us: Your Thoughts on a Bring Your Own Device Policy | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tell Us: Your Thoughts on a Bring Your Own Device Policy Tell Us: Your Thoughts on a Bring Your Own Device Policy Tell Us: Your Thoughts on a Bring Your Own Device Policy October 2, 2012 - 12:25pm Addthis The Bring Your Own Device (BYOD) effort will focus on how personally owned devices could be used for government work. The Bring Your Own Device (BYOD) effort will focus on how personally owned devices could be used for government work. Peter J. Tseronis Peter J. Tseronis Chief Technology Officer What does this mean for me? You will possess fewer devices. It will help you avoiding compatibility issues. You'll experience less downtime because of updates. In May, the Administration unveiled its Digital Government Strategy, intended to "build a 21st century digital Government that delivers better digital services to the American people." This vision recognizes that

178

Trends in Utility Green Pricing Programs (2004)  

Science Conference Proceedings (OSTI)

In the early 1990s, only a handful of utilities offered their customers a choice of purchasing electricity generated from renewable energy sources. Today, nearly 600 utilities in regulated electricity markets--or almost 20% of all utilities nationally--provide their customers a "green power" option. Because some utilities offer programs in conjunction with cooperative associations or other publicly owned power entities, the number of distinct programs totals about 125. Through these programs, more than 40 million customers spanning 34 states have the ability to purchase renewable energy to meet some portion or all of their electricity needs--or make contributions to support the development of renewable energy resources. Typically, customers pay a premium above standard electricity rates for this service. This report presents year-end 2004 data on utility green pricing programs, and examines trends in consumer response and program implementation over time. The data in this report, which were obtained via a questionnaire distributed to utility green pricing program managers, can be used by utilities as benchmarks by which to gauge the success of their green power programs.

Bird, L.; Brown, E.

2005-10-01T23:59:59.000Z

179

Conducting Energy Reviews and Audits of Your Own Plant  

E-Print Network (OSTI)

This paper is aimed at people who have a full or part time responsibility for keeping energy costs down. The information in this paper is based on a combination of four years as the energy coordinator of a fertilizer manufacturing plant and other experiences in energy management and energy auditing over the last 19 years. This paper describes energy auditing from three viewpoints: the four years I spent as an energy coordinator in a manufacturing plant, conducting various types of audits and energy reviews in-house; the approach to energy aUditing from the viewpoint of a consulting engineer; and from the way the utilities view the audits they provide for customers.

Thomas, D. G.

1993-03-01T23:59:59.000Z

180

Strategy for advancement of IRP in public power, Volume 1: IRP advancement strategy  

SciTech Connect

The nation`s 3,000 publicly and cooperatively owned utilities have a documented need for assistance in integrated resource planning (IRP) and related strategic business planning practices. The availability of appropriate and sufficient assistance will be an important factor influencing the ability of these utilities to face the challenges and opportunities of today`s competitive electric utility environment. The U.S. Department of Energy (DOE) actively supports IRP advancement in the investor-owned utility (IOU) sector. This is accomplished through multiple vehicles, including grant funding to the state energy offices, to the National Conference of State Legislatures (NCSL), and to the National Association of Regulatory Utility Commissioners (NARUC). However, public utilities typically are not impacted by these DOE efforts. As consumer-controlled organizations, many publicly and cooperatively owned utilities are not regulated by state public utility commissions (PUCs). To advance IRP as an essential approach for publicly and cooperatively owned utility operation in a drastically changing industry, DOE must develop additional vehicles of assistance, including the federal power agencies and key industry organizations such as the American Public Power Association (APPA) and the National Rural Electric Cooperatives Association (NRECA).

Garrick, C.J. [Garrick & Associates, Morrison, CO (United States)

1995-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "owned utilities iou" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Cogeneration - A Utility Perspective  

E-Print Network (OSTI)

Cogeneration has become an extremely popular subject when discussing conservation and energy saving techniques. One of the key factors which effect conservation is the utility viewpoint on PURPA and cogeneration rule making. These topics are discussed from a utility perspective as how they influence utility participation in future projects. The avoided cost methodology is examined, and these payments for sale of energy to the utility are compared with utility industrial rates. In addition to utilities and industry, third party owner/operation is also a viable option to cogeneration. These options are also discussed as to their impact on the utility and the potential of these ownership arrangements.

Williams, M.

1983-01-01T23:59:59.000Z

182

City of Berea Municipal Utility, Kentucky | Open Energy Information  

Open Energy Info (EERE)

Berea Municipal Utility, Kentucky Berea Municipal Utility, Kentucky (Redirected from City of Berea Municipal Utilities, Kentucky) Jump to: navigation, search Name City of Berea Municipal Utility Place Kentucky Utility Id 49998 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Electric Rate Commercial Industrial and Large Commercial Electric Rate Industrial Large Commercial Electric Rate Commercial Net Metering Rate Commercial Primary Metering Customer Owned/Leased Transformers Industrial

183

Utility Generation and Clean Coal Technology (Indiana) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Generation and Clean Coal Technology (Indiana) Utility Generation and Clean Coal Technology (Indiana) Utility Generation and Clean Coal Technology (Indiana) < Back Eligibility Commercial Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Utility Savings Category Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Indiana Program Type Corporate Tax Incentive Industry Recruitment/Support Performance-Based Incentive Rebate Program Grant Program Provider Indiana Utility Regulatory Commission This statute establishes the state's support and incentives for the development of new energy production and generating facilities implementing advanced clean coal technology, such as coal gasification. The statute also supports the development of projects using renewable energy sources as well

184

The Sustainable Energy Utility (SEU) Model for Energy Service Delivery  

E-Print Network (OSTI)

-of-contact for efficiency and self-generation in the same way that conventional utilities are the point- of and businesses use less energy and generate their own clean energy. As a nonprofit umbrella entity at a city around networks of distrib- uted generators and energy efficient technologies has significant technical

Delaware, University of

185

Presentations, Women-Owned Small Business Forum (May 2013) | Department of  

NLE Websites -- All DOE Office Websites (Extended Search)

Presentations, Women-Owned Small Business Forum (May 2013) Presentations, Women-Owned Small Business Forum (May 2013) Presentations, Women-Owned Small Business Forum (May 2013) Below, download presentations from the Women-Owned Small Business Opportunity Forum, held in Washington DC on May 23, 2013. Presented in partnership with the U.S. Department of Energy, the Small Business Administration, Women Impacting Public Policy, and American Express OPEN, this event featured critical information for small business owners who want to do business with the Department of Energy. This event featured: Insight into potential procurements and women-owned small business set-asides in 2014. Talks from key agency procurement representatives An update on current procurement policy and the women-owned small business program. Opportunities to meet other female small business owners working

186

Alternative Fuels Data Center: Buying and Selling Pre-Owned Alternative  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicles Vehicles Printable Version Share this resource Send a link to Alternative Fuels Data Center: Buying and Selling Pre-Owned Alternative Fuel and Advanced Vehicles to someone by E-mail Share Alternative Fuels Data Center: Buying and Selling Pre-Owned Alternative Fuel and Advanced Vehicles on Facebook Tweet about Alternative Fuels Data Center: Buying and Selling Pre-Owned Alternative Fuel and Advanced Vehicles on Twitter Bookmark Alternative Fuels Data Center: Buying and Selling Pre-Owned Alternative Fuel and Advanced Vehicles on Google Bookmark Alternative Fuels Data Center: Buying and Selling Pre-Owned Alternative Fuel and Advanced Vehicles on Delicious Rank Alternative Fuels Data Center: Buying and Selling Pre-Owned Alternative Fuel and Advanced Vehicles on Digg

187

Utilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utilities Utilities Utilities Below are resources for Tribes about utilities. The Economics of Electric System Municipalization Looks at the economic environment in California to determine whether municipalization would be a beneficial option for many California cities. Source: Bay Area Economic Forum. Establishing a Tribal Utility Authority Handbook Provides an introduction to electric utility operation and general guidance for the steps required to form a tribal utility authority. Funded by an economic development grant awarded by the U.S. Department of the Interior's Office of Indian Energy and Economic Development to the Ak-Chin Indian Community and its tribal utility authority, Ak-Chin Energy Services. Source: Leonard S. Gold, Utility Strategies Consulting Group,

188

The Utilities' Role in Conservation and Cogeneration  

E-Print Network (OSTI)

The electric utility industry is uniquely qualified and positioned to serve as an effective 'deliverer' of energy conservation services and alternative energy supply options, such as cogeneration, rather than merely as a 'facilitator' of their development by other parties. Amendments to current legislation are required to remove the barriers to utility participation and to provide electric utilities with appropriate incentives to deliver conservation and alternative power sources in their own self-interest. That utility self-interest can take the form of benefits to its ratepayers or stockholders -- or, optimally, to both. Moreover, adequate, reliable and economical electric energy from the utility grid is vital to our nation's economic well-being. A financially healthy electric utility industry is essential to the realization of this goal. Therefore, as we continue to refine a national energy policy, we must give this requisite careful attention when developing positions on conservation, cogeneration, equitable rate design, and all of the other elements, for they are inextricably related.

Mitchell, R. C., III

1982-01-01T23:59:59.000Z

189

FEMP Utility Services  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Services Utility Services Karen Thomas & Deb Beattie  SPONSORED BY THE FEDERAL ENERGY MANAGEMENT PROGRAM  Overview  UESC Project Support  Agency / Utility Partnerships  Renewable Project Support  Design Assistance  Agency Energy Implementation Plans * * * * * * UESC Project Support Education UESC Workshops Agency Briefings Utility Briefings On-site team training Communications Web site Enabling documents * Case studies UESC Project Support Direct Project Assistance Project facilitation Advise & Consult In depth Contract development Technical Proposal review Performance Verification Agency / Utility Partnerships Federal Utility Partnership Working Group Strategic Partnering Meeting Renewable Projects  Resource Screening: - PV - Solar Hot Water

190

Realities of Consumer-Owned Wind Power for Rural Electric Co-operatives (Presentation)  

DOE Green Energy (OSTI)

Presentation for WindPower 2006 held June 4-7, 2006, in Pittsburgh, PA, describing consumer-owned wind power for rural electric co-operatives.

Lindenberg, S.; Green, J.

2006-06-01T23:59:59.000Z

191

Who Owns Renewable Energy Certificates? An Exploration of Policy Options and Practice  

E-Print Network (OSTI)

2005. Emerging Markets for Renewable Energy Certificates:Challenges. National Renewable Energy Laboratory, January.less important. Who Owns Renewable Energy Certificates?

Holt, Edward A.; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

192

Who Owns Renewable Energy Certificates? An Exploration of Policy Options and Practice  

E-Print Network (OSTI)

2005. Emerging Markets for Renewable Energy Certificates:Challenges. National Renewable Energy Laboratory, January.law (Olson Who Owns Renewable Energy Certificates? On May

Holt, Edward A.; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

193

Who Owns Renewable Energy Certificates? An Exploration of Policy Options and Practice  

E-Print Network (OSTI)

2005. Emerging Markets for Renewable Energy Certificates:Challenges. National Renewable Energy Laboratory, January.state law (Olson Who Owns Renewable Energy Certificates? On

Holt, Edward A.; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

194

Utility Brownfields Resource Guide  

Science Conference Proceedings (OSTI)

EPRI has established a program designed to assist utilities wishing to participate in local Brownfields redevelopment projects. EPRI developed this Brownfields guide to educate utility economic and real estate development personnel in identifying, screening, and supporting Brownfields projects.

1998-12-18T23:59:59.000Z

195

By-Products Utilization  

E-Print Network (OSTI)

for rapid identification of buried utilities, blended coal ash, and non-spec./off-spec. aggregates and fly

Wisconsin-Milwaukee, University of

196

Clark Public Utilities - Solar Water Heater Rebate | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clark Public Utilities - Solar Water Heater Rebate Clark Public Utilities - Solar Water Heater Rebate Clark Public Utilities - Solar Water Heater Rebate < Back Eligibility Commercial Residential Savings Category Heating & Cooling Solar Water Heating Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount $500 Provider Clark PUD Clark Public Utilities offers a rebate of $500 to customers who install a solar water heating system. Customers must own the residence or business where the solar water heating system is installed and must have an electric water heater. In addition, Clark Public Utilities offers a [http://dsireusa.org/incentives/incentive.cfm?Incentive_Code=WA29F&re=1&ee=1 loan program] for eligible solar water heater equipment. For additional information, call Energy Services at (360) 992-3355.

197

Mandatory Utility Green Power Option | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mandatory Utility Green Power Option Mandatory Utility Green Power Option Mandatory Utility Green Power Option < Back Eligibility Utility Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Wind Program Info State New Mexico Program Type Mandatory Utility Green Power Option Provider New Mexico Public Regulation Commission In addition to meeting the requirements of the state [http://www.dsireusa.org/library/includes/incentive2.cfm?Incentive_Code=N... renewables portfolio standard], New Mexico investor-owned utilities (IOUs) are required to offer a voluntary program for purchasing renewable energy to customers. The voluntary renewable tariff may also allow consumers to purchase renewable energy within certain energy blocks and by source of

198

Least-cost utility planning consumer participation manual  

Science Conference Proceedings (OSTI)

This manual is designed to provide guidance to state consumer advocates and other state consumer groups interested in either initiating and/or participating in an Least-Cost Utility Planning (LCUP) process in their state. Least cost utility planning examined primarily as a regulatory framework to be implemented by an appropriate state authority -- usually the public utility commission -- for the benefit of the state's citizens and electric utility customers. LCUP is also a planning process to be used by investor owned and public utilities to select, support and justify future expenditures in resource additions. This manual is designed as a How-To'' manual for implementing and participating in a statewide LCUP process. Its goal is to guide the reader through the LCUP maze so that meaningful, forward-looking, and cost minimizing electric utility planning can be initiated and sustained in your state.

Mitchell, C.; Wellinghoff, J.; Goldberg, F.

1989-01-01T23:59:59.000Z

199

Least-cost utility planning consumer participation manual. [Final report  

Science Conference Proceedings (OSTI)

This manual is designed to provide guidance to state consumer advocates and other state consumer groups interested in either initiating and/or participating in an Least-Cost Utility Planning (LCUP) process in their state. Least cost utility planning examined primarily as a regulatory framework to be implemented by an appropriate state authority -- usually the public utility commission -- for the benefit of the state`s citizens and electric utility customers. LCUP is also a planning process to be used by investor owned and public utilities to select, support and justify future expenditures in resource additions. This manual is designed as a ``How-To`` manual for implementing and participating in a statewide LCUP process. Its goal is to guide the reader through the LCUP maze so that meaningful, forward-looking, and cost minimizing electric utility planning can be initiated and sustained in your state.

Mitchell, C.; Wellinghoff, J.; Goldberg, F.

1989-12-31T23:59:59.000Z

200

Pennsylvania Farmland and Forest Land Assessment Act of 1974 - Utilization  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pennsylvania Farmland and Forest Land Assessment Act of 1974 - Pennsylvania Farmland and Forest Land Assessment Act of 1974 - Utilization of Land or Conveyance of Rights for Exploration or Extraction of Gas, Oil or Coal Bed Methane Pennsylvania Farmland and Forest Land Assessment Act of 1974 - Utilization of Land or Conveyance of Rights for Exploration or Extraction of Gas, Oil or Coal Bed Methane < Back Eligibility Utility Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Transportation Program Info Start Date 2011 State Pennsylvania Program Type Siting and Permitting Provider Pennsylvania Department of Environmental Protection This act prescribes the procedure utilization of land or conveyance of rights for exploration or extraction of gas, oil or coal bed methane in

Note: This page contains sample records for the topic "owned utilities iou" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Comments on Docket ID: DOE-HQ-2011-0014 | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

on Docket ID: DOE-HQ-2011-0014 on Docket ID: DOE-HQ-2011-0014 Comments on Docket ID: DOE-HQ-2011-0014 This letter comprises the comments of the Pacific Gas and Electric Company (PG&E), Southern California Gas Company (SCGC), San Diego Gas and Electric (SDG&E), and Southern California Edison (SCE) in response to the U.S. Department of Energy's (DOE) Request for Information on Regulatory Burden. The signatories of this letter, collectively referred to herein as the California Investor Owned Utilities (CA IOUs) represent some of the largest utility companies in the Western United States, serving over 35 million customers. Comments on Docket ID: DOE-HQ-2011-0014 More Documents & Publications FINAL CA IOU Comment Letter RFI Regulatory Burden O:\IM-20\E-Government Program Office\FDMS\FDMS

202

Comments on Docket ID: DOE-HQ-2011-0014 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Comments on Docket ID: DOE-HQ-2011-0014 Comments on Docket ID: DOE-HQ-2011-0014 Comments on Docket ID: DOE-HQ-2011-0014 This letter comprises the comments of the Pacific Gas and Electric Company (PG&E), Southern California Gas Company (SCGC), San Diego Gas and Electric (SDG&E), and Southern California Edison (SCE) in response to the U.S. Department of Energy's (DOE) Request for Information on Regulatory Burden. The signatories of this letter, collectively referred to herein as the California Investor Owned Utilities (CA IOUs) represent some of the largest utility companies in the Western United States, serving over 35 million customers. Comments on Docket ID: DOE-HQ-2011-0014 More Documents & Publications FINAL CA IOU Comment Letter RFI Regulatory Burden O:\IM-20\E-Government Program Office\FDMS\FDMS

203

Energy Efficiency Standards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Standards Standards Energy Efficiency Standards < Back Eligibility Investor-Owned Utility Rural Electric Cooperative Savings Category Other Program Info State Arizona Program Type Energy Efficiency Resource Standard Provider Arizona Corporation Commission Electricity Standard The Arizona Corporation Commission (ACC) adopted [http://images.edocket.azcc.gov/docketpdf/0000116125.pdf rules] in August 2010 requiring certain electric utilities in the state to meet prescribed energy efficiency requirements. The rules pertain to public service companies providing retail electric service and having annual revenue of more than $5 million; however, electric distribution cooperatives have to propose a goal for each year to achieve at least 75% of the savings requirement. By 2020 every IOU must achieve cumulative savings equal to 22% of their

204

City of Lansing, Michigan (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Name Lansing City of Place Michigan Utility Id 10704 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png CUSTOMER OWNED SYSTEMS (High Pressure Sodium Luminaire 70 W) Lighting CUSTOMER OWNED SYSTEMS (High Pressure Sodium Luminaire 100 W) Lighting

205

NEW TERMS OF ACCOMMODATION: BENJAMIN ELMANS ON THEIR OWN TERMS AND EARLY MODERN GLOBAL  

E-Print Network (OSTI)

NEW TERMS OF ACCOMMODATION: BENJAMIN ELMANS ON THEIR OWN TERMS AND EARLY MODERN GLOBAL NETWORK-1850, the subtitle of Benjamin Elmans On Their Terms, hardly captures the depth of the historiographic revision role to science, that the very idea that Chinese developed science ,,on their own terms

Elman, Benjamin

206

Improved taguchi method based contracted capacity optimization for power consumer with self-owned generating units  

Science Conference Proceedings (OSTI)

The paper proposes an improved Taguchi method to determine the best capacity contracts and dispatch the power output of the self-owned generating units from almost infinite combinations. To be achieved are savings of total power expenses of the consumers ... Keywords: capacity contracts, improved Taguchi method, self-owned generating units

Hong-Tzer Yang; Pai-Chun Peng; Chung-His Huang

2007-05-01T23:59:59.000Z

207

"2012 Utility Bundled Retail Sales- Total"  

U.S. Energy Information Administration (EIA) Indexed Site

Total" Total" "(Data from forms EIA-861- schedules 4A & 4D and EIA-861S)" "Entity","State","Ownership","Customers (Count)","Sales (Megawatthours)","Revenues (Thousands Dollars)","Average Price (cents/kWh)" "Alaska Electric Light&Power Co","AK","Investor Owned",16180,399144,41820,10.477422 "Alaska Power and Telephone Co","AK","Investor Owned",6976,64788,18175,28.053035 "Alaska Village Elec Coop, Inc","AK","Cooperative",7923,73956,42708,57.74785 "Anchorage Municipal Light and Power","AK","Municipal",30747,1100665,100959.2,9.1725639 "Barrow Utils & Elec Coop, Inc","AK","Cooperative",1871,49580,5293,10.675676

208

Cascade Multilevel Inverters for Utility Applications  

SciTech Connect

Cascade multilevel inverters have been developed by the authors for utility applications. A cascade M-level inverter consists of (M-1)/2 H- bridges in which each bridge has its own separate dc source. The new inverter: (1) can generate almost sinusoidal waveform voltage while only switching one time per fundamental cycle, (2) can eliminate transformers of multipulse inverters used in conventional utility interfaces and static var compensators, and (3) makes possible direct parallel or series connection to medium- and high-voltage power systems without any transformers. In other words, the cascade inverter is much more efficient and suitable for utility applications than traditional multipulse and pulse width modulation (PWM) inverters. The authors have experimentally demonstrated the superiority of the new inverter for reactive power (var) and harmonic compensation. This paper will summarize features,feasibility, and control schemes of the cascade inverter for utility applications including utility interface of renewable energy, voltage regulation, var compensation, and harmonic filtering in power systems.Analytical, simulated, and experimental results demonstrate the superiority of the new inverters.

Peng, F.Z., McKeever, J.W., Adams, D.J.

1997-12-31T23:59:59.000Z

209

Evaluating the Rationale for the Utility-Accessible External Disconnect Switch: Preprint  

DOE Green Energy (OSTI)

This paper describes the utility-accessible alternating current (AC) external disconnect switch (EDS) for distributed generators, including photovoltaic (PV) systems, which is a hardware feature that allows a utility's employees to manually disconnect a customer-owned generator from the electricity grid.

Coddington, M. H.

2008-05-01T23:59:59.000Z

210

"List of Covered Electric Utilities" under the Public Utility...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Revised "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2006 Revised Under Title I of the Public Utility Regulatory...

211

OpenEI Community - Utility+Utility Access Map  

Open Energy Info (EERE)

Finding Utility Finding Utility Companies Under a Given Utility ID http://en.openei.org/community/blog/finding-utility-companies-under-given-utility-id  Here's a quick way to find all the utility company pages under a given utility id.  From the Special Ask page, in the query box enter the following: [[Category:Utility Companies]][[EiaUtilityId::15248]] substituting your utility id of interest for 15248, and click "Find results". http://en.openei.org/community/blog/finding-utility-companies-under-given-utility-id#comments

212

Carrots for Utilities: Providing Financial Returns for Utility...  

Open Energy Info (EERE)

Carrots for Utilities: Providing Financial Returns for Utility Investments in Energy Efficiency Jump to: navigation, search Name Carrots for Utilities: Providing Financial Returns...

213

Partners for Progress- A Utility Perspective  

E-Print Network (OSTI)

Central Power and Light Company, an Investor Owned Utility serving the greater part of South Texas, got the largest setback of its 75 year life during the 1980's when cogeneration hit home. It's no secret that the Texas Gulf Coast in 1980 was one of the greenest pastures in the country for the integration of cogeneration. Scattered throughout our coastal service area was a concentration of petrochemical plants and refineries placed like a row of dominoes waiting to be knocked over. These plants while operating in Texas were really doing business in a world market. If one company took advantage of a technology that could reduce its operation costs significantly, then very definite pressure was placed on all its competitors to follow suit in quick order or lose a share in the market. To make the story short, CPL lost over 250 MWs and eight of its largest customers in about a six year period to the implementation of cogeneration technology. By CPL I mean the stockholders who expected a dividend, the employees who faced possible layoffs and the remaining customers who faced the possibility of increased rates necessary to pick up embedded costs of the system. All these groups had a stake in turning the situation around. I have to add that even the customers who began to serve their own load had a stake in tile health of the utility with which they remained interconnected with and purchased standby and maintenance service from.

Pierce, C. S.

1990-06-01T23:59:59.000Z

214

Utility Solar Business Models  

Science Conference Proceedings (OSTI)

Many utilities are initiating business plans that enable them to play a more integral role in the solar power value chain. This report summarizes research completed to identify and track utility solar business models (USBMs) in the United States. EPRI and the Solar Electric Power Association (SEPA) are conducting an ongoing joint research effort to evaluate the expanding range of utility activities in acquiring solar energy, including photovoltaic (PV) asset ownership. Throughout 2011, USBMs have been ca...

2011-11-21T23:59:59.000Z

215

Utilities weather the storm  

SciTech Connect

Utilities must restore power to storm-damaged transmission and distribution systems, even if it means going out in ice storms or during lightning and hurricane conditions. Weather forecasting helps utilities plan for possible damage as well as alerting them to long-term trends. Storm planning includes having trained repair personnel available and adjusting the system so that less power imports are needed. Storm damage response requires teamwork and cooperation between utilities. Utilities can strengthen equipment in storm-prone or vulnerable areas, but good data are necessary to document the incidence of lighning strikes, hurricanes, etc. 2 references, 8 figures.

Lihach, N.

1984-11-01T23:59:59.000Z

216

Tribal Utility Feasibility Study  

DOE Green Energy (OSTI)

Facility scale, net metered renewable energy systems These are renewable energy systems that provide power to individual households or facilities that are connected to conventional electric utility grid.

Engel, R. A.; Zoellick, J. J.

2007-06-30T23:59:59.000Z

217

Municipal Utility Districts (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

Municipal Utility Districts, regulated by the Texas Commission on Environmental Quality, may be created for the following purposes: (1) the control, storage, preservation, and distribution of its...

218

City of Denver - Green Building Requirement for City-Owned Buildings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Denver - Green Building Requirement for City-Owned Denver - Green Building Requirement for City-Owned Buildings City of Denver - Green Building Requirement for City-Owned Buildings < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Solar Heating Buying & Making Electricity Water Water Heating Wind Program Info State Colorado Program Type Energy Standards for Public Buildings Provider Greenprint Denver Executive Order 123, signed in October 2007, established the Greenprint Denver Office and the Sustainability Policy for the city. The Sustainability Policy includes several goals and requirements meant to increase the sustainability of Denver by having the city government lead by

219

City of Burley, Idaho (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Burley, Idaho (Utility Company) Burley, Idaho (Utility Company) Jump to: navigation, search Name City of Burley Place Idaho Utility Id 2545 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Retail Marketing Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png City Owned Street Lights Lighting Residential Residential Single Phase Commercial Commercial Three Phase Commercial Commercial Yard Lights Lighting Average Rates Residential: $0.0653/kWh Commercial: $0.0489/kWh

220

City of St Charles, Illinois (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Illinois (Utility Company) Illinois (Utility Company) Jump to: navigation, search Name City of St Charles Place Illinois Utility Id 17860 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General service Commercial Governmental Outdoor Sports Lighting Lighting Large General Service Industrial Municipal Owned Street Lighting and Traffic Signals Lighting Residential Residential Small General Service Commercial Average Rates Residential: $0.1010/kWh Commercial: $0.0839/kWh Industrial: $0.0679/kWh References

Note: This page contains sample records for the topic "owned utilities iou" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Federal Energy Management Program: Resources on Utility Energy Service  

NLE Websites -- All DOE Office Websites (Extended Search)

Utility Energy Service Contracts Utility Energy Service Contracts Many helpful resources about utility energy service contracts (UESCs) are available. Also see Case Studies. Training The Federal Energy Management Program (FEMP) offers an ongoing series of workshops and webinars to train Federal agencies on how to implement UESC projects. Visit the FEMP events calendar for upcoming training opportunities. UESC Virtual Center of Expertise The Virtual Center of Expertise helps Federal agencies and utilities significantly streamline the UESC implementation process and access the resources and expertise needed to overcome project barriers. The center provides project teams with FEMP points of contact and maintains a list of agency, utility, and financing experts willing to assist their peers with project implementation based on their own experiences. The center also offers sample documents and templates necessary for UESC implementation. These resources are made available to help promote the benefits of implementing a UESC project.

222

City of Lansing, Michigan (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Lansing, Michigan (Utility Company) Lansing, Michigan (Utility Company) (Redirected from BWL) Jump to: navigation, search Name Lansing City of Place Michigan Utility Id 10704 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png CUSTOMER OWNED SYSTEMS (High Pressure Sodium Luminaire 70 W) Lighting

223

City of Palo Alto, California (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

City of Palo Alto, California (Utility Company) City of Palo Alto, California (Utility Company) Jump to: navigation, search Name City of Palo Alto Place California Utility Id 14401 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Activity Buying Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Customer-Owned Generation-Firm Power Commercial Large Commercial Block Green Power Commercial Large Commercial Primary Discount Commercial Large Commercial Service Commercial Large Commercial Service TOU Commercial

224

City of Lansing, Michigan (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Lansing, Michigan (Utility Company) Lansing, Michigan (Utility Company) (Redirected from Lansing Board of Water & Light) Jump to: navigation, search Name Lansing City of Place Michigan Utility Id 10704 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png CUSTOMER OWNED SYSTEMS (High Pressure Sodium Luminaire 70 W) Lighting

225

Utility+Utility Access Map | OpenEI Community  

Open Energy Info (EERE)

the utility company pages under a given utility id. From the Special Ask page, in the query box enter the following: Category:Utility CompaniesEiaUtilityId::15248...

226

Hammerfest Strom UK co owned by StatoilHydro | Open Energy Information  

Open Energy Info (EERE)

Hammerfest Strom UK co owned by StatoilHydro Hammerfest Strom UK co owned by StatoilHydro Jump to: navigation, search Name Hammerfest Strom UK co owned by StatoilHydro Address The Innovation Centre 1 Ainslie Road Hillington Business Park Place Glasgow Zip G52 4RU Sector Marine and Hydrokinetic Phone number +44 141 585 6447 Website http://www.hammerfeststrom.com Region United Kingdom LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Hammerfest Strom UK Tidal Stream Kvalsundet This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Hammerfest_Strom_UK_co_owned_by_StatoilHydro&oldid=678328"

227

Office of River Protection Women-Owned Small Business Contractor Receives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

River Protection Women-Owned Small Business Contractor River Protection Women-Owned Small Business Contractor Receives One-Year Extension Office of River Protection Women-Owned Small Business Contractor Receives One-Year Extension December 19, 2012 - 10:33am Addthis Richland - - The Energy Department's Office of River Protection announced the contract for Advanced Technologies and Laboratories International Inc. (ATL) has been extended for a second one-year option. ATL, a women-owned small business, will continue to provide analytical services and testing work at the Hanford Site 222-S Laboratory through January 2, 2014. "ORP values ATL's performance and commitment to safety," said Ellen Mattlin, Tank Farm Programs Division Director. "DOE appreciates the technical and management capabilities demonstrated by the ATL workforce."

228

Family-Owned Restaurant Serves Up Huge Energy Savings | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Family-Owned Restaurant Serves Up Huge Energy Savings Family-Owned Restaurant Serves Up Huge Energy Savings Family-Owned Restaurant Serves Up Huge Energy Savings May 8, 2013 - 2:27pm Addthis Energy efficiency upgrades helped the Athenian Corner reduce its operating costs and improved the restaurant's bottom line. | Photo courtesy of BetterBuildings Lowell Energy Upgrade program. Energy efficiency upgrades helped the Athenian Corner reduce its operating costs and improved the restaurant's bottom line. | Photo courtesy of BetterBuildings Lowell Energy Upgrade program. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs What are the key facts? The Athenian Corner, a family-owned restaurant in Lowell, Massachusetts, made energy efficiency upgrades that are saving it more than

229

Largest Federally-Owned Wind Farm Breaks Ground at U.S. Weapons Facility |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Largest Federally-Owned Wind Farm Breaks Ground at U.S. Weapons Largest Federally-Owned Wind Farm Breaks Ground at U.S. Weapons Facility Largest Federally-Owned Wind Farm Breaks Ground at U.S. Weapons Facility August 13, 2013 - 10:54am Addthis News Media Contact (202) 586-4940 WASHINGTON - Building on President Obama's Climate Action Plan, which calls for steady, responsible steps to reduce carbon pollution, the Energy Department today broke ground on the nation's largest federally-owned wind project at the Pantex Plant in Amarillo, Texas. Once completed, this five-turbine 11.5 megawatt project will power more than 60 percent of the plant with clean, renewable wind energy and reduce carbon emissions by over 35,000 metric tons per year - equivalent to taking 7,200 cars off the road. The Pantex Plant is the primary site for the assembly, disassembly,

230

Largest Federally-Owned Wind Farm Breaks Ground at U.S. Weapons Facility |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Largest Federally-Owned Wind Farm Breaks Ground at U.S. Weapons Largest Federally-Owned Wind Farm Breaks Ground at U.S. Weapons Facility Largest Federally-Owned Wind Farm Breaks Ground at U.S. Weapons Facility August 13, 2013 - 10:54am Addthis News Media Contact (202) 586-4940 WASHINGTON - Building on President Obama's Climate Action Plan, which calls for steady, responsible steps to reduce carbon pollution, the Energy Department today broke ground on the nation's largest federally-owned wind project at the Pantex Plant in Amarillo, Texas. Once completed, this five-turbine 11.5 megawatt project will power more than 60 percent of the plant with clean, renewable wind energy and reduce carbon emissions by over 35,000 metric tons per year - equivalent to taking 7,200 cars off the road. The Pantex Plant is the primary site for the assembly, disassembly,

231

GC GUIDANCE ON BARTER TRANSACTIONS INVOLVING DOE-OWNED URANIUM | Department  

NLE Websites -- All DOE Office Websites (Extended Search)

GC GUIDANCE ON BARTER TRANSACTIONS INVOLVING DOE-OWNED URANIUM GC GUIDANCE ON BARTER TRANSACTIONS INVOLVING DOE-OWNED URANIUM GC GUIDANCE ON BARTER TRANSACTIONS INVOLVING DOE-OWNED URANIUM The Department of Energy has on a variety of occasions engaged in transactions under which it bartered uranium to which it has title for goods or services . This guidance memorializes the results of analyses previously directed to individual proposed transactions . For the reasons discussed below, we conclude that the Atomic Energy Act of 1954' , as amended, (AEA), authorizes such barter transactions. GC GUIDANCE ON BARTER TRANSACTIONS INVOLVING DOE-OWNED URANIUM More Documents & Publications Leasing of Department of Energy Property Before the Senate Energy and Natural Resources Subcommittee on Energy EIS-0468: Final Environmental Impact Statement

232

City of Fort Collins - Green Building Requirement for City-Owned Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fort Collins - Green Building Requirement for City-Owned Fort Collins - Green Building Requirement for City-Owned Buildings City of Fort Collins - Green Building Requirement for City-Owned Buildings < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Water Heating Wind Program Info State Colorado Program Type Energy Standards for Public Buildings Provider The City of Fort Collins The City Council of Fort Collins passed a resolution in September 2006, establishing green building goals for new city-owned buildings of 5,000 square feet or more. New buildings must be designed and constructed to

233

A new life for plazas : reimagining privately owned public spaces in New York City  

E-Print Network (OSTI)

Since 1961 the City of New York has allowed buildings to receive added floor area in exchange for privately owned public spaces. These spaces, typically in the form of small outdoor plazas, are spatially clustered in the ...

Suarez, Richard Anthony

2012-01-01T23:59:59.000Z

234

DOE Awards Native American, Tribally-Owned Small Business Contract for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Native American, Tribally-Owned Small Business Contract Native American, Tribally-Owned Small Business Contract for Support Services to Savannah River Operations Office DOE Awards Native American, Tribally-Owned Small Business Contract for Support Services to Savannah River Operations Office September 21, 2012 - 12:00pm Addthis Media Contact Bill Taylor, DOE bill.taylor@srs.gov 803-952-8564 Aiken, SC - The U.S. Department of Energy (DOE) today awarded a set- aside contract to the NOVA Corp. of Window Rock, Arizona. NOVA will provide administrative support services and information technology support to the Savannah River Operations Office. The firm fixed-price Indefinite Delivery/Indefinite Quantity contract with an estimated value of $20 million with a two-year performance period. NOVA Corp. is a Native American Tribally-Owned (Navajo) Section 8(a)

235

Who Owns Renewable Energy Certificates? An Exploration of Policy Options and Practice  

E-Print Network (OSTI)

Company of New Mexicos (PNM) Solar Energy Program thatMexico..40 vii Who Owns Renewable EnergyNew Mexicos Solar PV Program, 101 and We Energies Energy

Holt, Edward A.; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

236

Public Utility Commission in the year 2000  

Science Conference Proceedings (OSTI)

This article is about What is and What ought to be as we look to the institution of public utility commission regulation at the turn of the century. To signal my own view at the outset, I find the prospects somewhat worrisome in light of the nature and direction of much of the response to real and imaginary changes in the regulated sectors. I surely do not call for standing in place, but I strongly believe we should leave the place standing. The following items are discernable trends that will shape the PUC at the turn-of-the century: (1) dichotomy of customers into core and noncore groups, (2) unbundling and new service offerings with a menu of prices, (3) relaxed regulation and increased reliance on market solutions instead of command and control, (4) increased use of market-based pricing and incentive ratemaking, (5) large users seeking lowest-cost generation and supply services, (6) shift from old regulatory bargains regarding exclusive territorial franchises and assured recovery of costs and investments, (7) utility diversification, (8) increasing business risk for utilities, amd (9) uncertainty as to continued utility attention to social goals and a changing obligation to serve. For each of these, the author focuses on: (1) changing missions and roles of the PUC, (2) the strategies for achieving them, and (3) the implementation requirements that operationalize the strategies.

Jones, D.N.

1995-12-31T23:59:59.000Z

237

Monitoring Based Commissioning: Benchmarking Analysis of 24 UC/CSU/IOU Projects  

E-Print Network (OSTI)

energy savings %, project costs, cost savings, and payback timesenergy cost savings were $0.25/sf, for a median simple payback timeenergy cost savings were $0.25/sf-year, for a median simple payback time

Mills, Evan

2009-01-01T23:59:59.000Z

238

Monitoring Based Commissioning: Benchmarking Analysis of 24 UC/CSU/IOU Projects  

E-Print Network (OSTI)

climate zone classification was developed by Pacific Northwest National Laboratory, and has been adopted by ASHRAE [

Mills, Evan

2009-01-01T23:59:59.000Z

239

Monitoring Based Commissioning: Benchmarking Analysis of 24 UC/CSU/IOU Projects  

E-Print Network (OSTI)

we recommend using a climate zone classification to compareclassification; and b) California Title 24 climate zones.The DOE climate zone classification was developed by Pacific

Mills, Evan

2009-01-01T23:59:59.000Z

240

Monitoring Based Commissioning: Benchmarking Analysis of 24 UC/CSU/IOU Projects  

E-Print Network (OSTI)

Buildings. California Commissioning Collaborative. Haasl,2006b. California Commissioning Guide: Existing Buildings.California Commissioning Collaborative. Haves, P. , and

Mills, Evan

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "owned utilities iou" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Monitoring Based Commissioning: Benchmarking Analysis of 24 UC/CSU/IOU Projects  

E-Print Network (OSTI)

of deficiencies through metering and trending. Severalmeasures identified through metering and trending during theprior to installation of metering equipment) vs. the revised

Mills, Evan

2009-01-01T23:59:59.000Z

242

Monitoring Based Commissioning: Benchmarking Analysis of 24 UC/CSU/IOU Projects  

SciTech Connect

Buildings rarely perform as intended, resulting in energy use that is higher than anticipated. Building commissioning has emerged as a strategy for remedying this problem in non-residential buildings. Complementing traditional hardware-based energy savings strategies, commissioning is a 'soft' process of verifying performance and design intent and correcting deficiencies. Through an evaluation of a series of field projects, this report explores the efficacy of an emerging refinement of this practice, known as monitoring-based commissioning (MBCx). MBCx can also be thought of as monitoring-enhanced building operation that incorporates three components: (1) Permanent energy information systems (EIS) and diagnostic tools at the whole-building and sub-system level; (2) Retro-commissioning based on the information from these tools and savings accounting emphasizing measurement as opposed to estimation or assumptions; and (3) On-going commissioning to ensure efficient building operations and measurement-based savings accounting. MBCx is thus a measurement-based paradigm which affords improved risk-management by identifying problems and opportunities that are missed with periodic commissioning. The analysis presented in this report is based on in-depth benchmarking of a portfolio of MBCx energy savings for 24 buildings located throughout the University of California and California State University systems. In the course of the analysis, we developed a quality-control/quality-assurance process for gathering and evaluating raw data from project sites and then selected a number of metrics to use for project benchmarking and evaluation, including appropriate normalizations for weather and climate, accounting for variations in central plant performance, and consideration of differences in building types. We performed a cost-benefit analysis of the resulting dataset, and provided comparisons to projects from a larger commissioning 'Meta-analysis' database. A total of 1120 deficiency-intervention combinations were identified in the course of commissioning the projects described in this report. The most common location of deficiencies was in HVAC equipment (65% of sites), followed by air-handling and distributions systems (59%), cooling plant (29%), heating plants (24%), and terminal units (24%). The most common interventions were adjusting setpoints, modifying sequences of operations, calibration, and various mechanical fixes (each done in about two-thirds of the sites). The normalized rate of occurrence of deficiencies and corresponding interventions ranged from about 0.1/100ksf to 10/100ksf, depending on the issue. From these interventions flowed significant and highly cost-effective energy savings For the MBCx cohort, source energy savings of 22 kBTU/sf-year (10%) were achieved, with a range of 2% to 25%. Median electricity savings were 1.9 kWh/sf-year (9%), with a range of 1% to 17%. Peak electrical demand savings were 0.2 W/sf-year (4%), with a range of 3% to 11%. The aggregate commissioning cost for the 24 projects was $2.9 million. We observed a range of normalized costs from $0.37 to 1.62/sf, with a median value of $1.00/sf for buildings that implemented MBCx projects. Per the program design, monitoring costs as a percentage of total costs are significantly higher in MBCx projects (median value 40%) than typical commissioning projects included in the Meta-analysis (median value of 2% in the commissioning database). Half of the projects were in buildings containing complex and energy-intensive laboratory space, with higher associated costs. Median energy cost savings were $0.25/sf-year, for a median simple payback time of 2.5 years. Significant and cost-effective energy savings were thus obtained. The greatest absolute energy savings and shortest payback times were achieved in laboratory-type facilities. While impacts varied from project to project, on a portfolio basis we find MBCx to be a highly cost-effective means of obtaining significant program-level energy savings across a variety of building types. E

Mills, Evan; Mathew, Paul

2009-04-01T23:59:59.000Z

243

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Release Date: June 2013 | Release Date: June 2013 | Report Number: DOE/EIA-0383(2012) Acronyms List of Acronyms AB Assembly Bill IHSGI IHS Global Insight AB32 California Assembly Bill 32 INFORUM Interindustry Forecasting Project at the University of Maryland ACI Activated carbon injection IOU Invester-owned utility AEO Annual Energy Outlook IREC Interstate Renewable Energy Council AEO2012 Annual Energy Outlook 2012 ITC Investment tax credit ANWR Arctic National Wildlife Refuge LCFS Low Carbon Fuel Standard ARRA2009 American Recovery and Reinvestment Act of 2009 LDV Light-duty vehicle ASHRAE American Society of Heating, Refrigerating, and Air-Conditioning Engineers LED Light-emitting diode Blue Chip Blue Chip Consensus LFMM Liquid Fuels Market Module

244

California Solar Initiative - Multi-Family Affordable Solar Housing (MASH)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

California Solar Initiative - Multi-Family Affordable Solar Housing California Solar Initiative - Multi-Family Affordable Solar Housing (MASH) Program California Solar Initiative - Multi-Family Affordable Solar Housing (MASH) Program < Back Eligibility Low-Income Residential Multi-Family Residential Savings Category Solar Buying & Making Electricity Program Info State California Program Type State Rebate Program Rebate Amount Track 1: Fully Subscribed Track 2: Closed '''''Track 2 was closed in 2011. Track 1 incentives have been fully subscribed for all three program administrators and waitlists have been established. Contact the appropriate program administrator for up to date information on the status of Track 1. ''''' The California Solar Initiative (CSI) provides financial incentives to customers in investor-owned utility (IOU) territories of Pacific Gas and

245

Delivering energy services: the emerging role of California's municipal utilities  

SciTech Connect

The financial circumstances and energy service opportunities for California's municipal electric utilities are explored. The structure and financial operation of municipal utilities, including the new role of joint powers agency financing, are analyzed. The advantages which conservation and alternative energy resources can offer municipal utilities are discussed: reduced capital requirements, increased cash flow, oil displacement, improved air quality, reduced risk of large plant outages, and matching new capacity to uncertain load growth. Recommendations are presented for removing the existing barriers which discourage prospects for municipal utility energy service investments, such as wholesale rate design reflecting flat or declining block rates and high demand charges, control of bulk power transmission lines by investor-owned utilities, failure of federal power-marketing agencies to provide conservation incentives to their municipal utility customers, and tax credit provisions of the Crude Oil Windfall Profit Tax Act of 1980. Appendices include the municipal utilities' current resource plans, the history and process of the formation of new municipal utilities, and the energy service role of municipal agencies in cities which may not have municipal utilities.

Dawson, M.H.; Praul, C.G.; Marcus, W.B.

1982-11-01T23:59:59.000Z

246

Dekker PMIS Extraction Utility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1217. The Extraction Utility is used for retrieving project 1217. The Extraction Utility is used for retrieving project management data from a variety of source systems for upload into the Dekker PMIS(tm) (Dekker iPursuit®, Dekker iProgram(tm), or DOE PARSII). This release incorporates a number of new features and updates primarily focused to improve the existing functionality. The quality of each Dekker PMIS(tm) Extraction Utility release is a primary consideration at Dekker, Ltd. Since every customer environment is unique, Dekker strongly recommends that each implementation site validate all software updates prior to release into the production environment. Dekker continually strives to enhance the features and capabilities of the Dekker PMIS(tm) Extraction Utility. We are very excited about this update and look forward to its implementation in your

247

Dekker PMIS Extraction Utility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0907. The Extraction Utility is used for retrieving project 0907. The Extraction Utility is used for retrieving project management data from a variety of source systems for upload into Dekker PMIS(tm) (Dekker iPursuit®, Dekker iProgram(tm), or DOE PARSII). This release incorporates a number of new features and updates focused to improve existing functionality. The quality of each Dekker PMIS(tm) Extraction Utility release is a primary consideration at Dekker, Ltd. Since every customer environment is unique, Dekker strongly recommends that each implementation validate any software update prior to its release into the production environment. Dekker continually strives to enhance the features and capabilities of the Dekker PMIS(tm) Extraction Utility. We are very excited about this update and look forward to its implementation in your

248

Gas Utilities (New York)  

Energy.gov (U.S. Department of Energy (DOE))

This chapter regulates natural gas utilities in the State of New York, and describes standards and procedures for gas meters and accessories, gas quality, line and main extensions, transmission and...

249

Utility Solar Business Models  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) and the Solar Electric Power Association (SEPA) are conducting an ongoing joint research effort, initiated in 2011, to define, track, and evaluate the expanding range of regulated utility solar energy acquisition activities. This report provides a high-level overview of the conceptual framework by which EPRI-SEPA are classifying regulated utility solar business models (USBMs) in the United States. It then provides five case studies detailing existing ...

2012-12-31T23:59:59.000Z

250

Utility interface evaluation for the Sacramento Municipal Utility's first photovoltaic plant  

SciTech Connect

A study of the 1-MW photovoltaic power plant owned and operated by the Sacramento Municipal Utilities has identified and examined some of the effects photovoltaic power systems may have on the operation of the utility grid. The plant contains a single, line-commutated inverter that delivers power to the local 12-kV distribution grid. To monitor harmonics, voltages, energy flows, and other parameters, data were collected a the plant/grid interface, at a power factor correction bank located on the grid, and at the substation feeding the grid. Analyses of the collected data indicate that no adverse effects on the distribution line resulted from operation of the photovoltaic power plant.

Not Available

1986-03-01T23:59:59.000Z

251

Orange & Rockland Utils Inc | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Name Orange & Rockland Utils Inc Place New York Utility Id 14154 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png SC1 Residential (Multiple Bills, Full Service) Residential SC1 Residential (Multiple Bills, Retail Service) SC1 Residential (Single Bill, Retail Service) SC1 Residential - Residential SC15 Buyback Service SC15 Buyback Service SC16 Flood Lighting Sodium Vapor Overhead and Underground 250w (Customer owned, retail service, single bill)

252

City of Danville, Virginia (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Danville Danville Place Virginia Utility Id 4794 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Operates Generating Plant Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Auxiliary or Standby Electric Service Rider Commercial General Service- Large-Primary Meter & Customer Equipment Industrial General Service- Large-Primary Meter & Utility-Owned Transformer Industrial General Service- Large-secondary meter Industrial General service-medium secondary meter Commercial General service-medium secondary meter-Industrial Industrial

253

City of Berkeley - Green Building Standards for City Owned and Operated  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Building Standards for City Owned and Green Building Standards for City Owned and Operated Projects City of Berkeley - Green Building Standards for City Owned and Operated Projects < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Heating Wind Program Info State California Program Type Energy Standards for Public Buildings Provider City of Berkeley The Berkeley City Council adopted Resolution 62284 on November 18, 2003 requiring that all city-sponsored building projects receive LEED certification. Its incorporation occurred in two phases, first requiring city-sponsored projects entering design and construction after January 1,

254

Do You Have Your Own Tips for Saving Fuel? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Have Your Own Tips for Saving Fuel? Have Your Own Tips for Saving Fuel? Do You Have Your Own Tips for Saving Fuel? May 11, 2012 - 1:37pm Addthis Earlier this week, Amanda shared a checklist on Fueleconomy.gov that helps you keep your car well maintained. Keeping your car well maintained is one way to make sure that it's not using more gas than it needs to. Do you have any other ideas for saving gas this summer? You have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. E-mail your responses to the Energy Saver team at consumer.webmaster@nrel.gov. Addthis Related Articles How Does Your Fuel Economy Compare to the Test Ratings on Fueleconomy.gov? How Will You Save Fuel and Energy this 4th of July? How Did You Celebrate Valentine's Day Efficiently

255

Pantex receives Perkins Award in recognition of its work with women-owned  

National Nuclear Security Administration (NNSA)

Perkins Award in recognition of its work with women-owned Perkins Award in recognition of its work with women-owned small businesses | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Pantex receives Perkins Award in recognition of ... Pantex receives Perkins Award in recognition of its work with women-owned small businesses

256

Beating Nature at her Own Game? | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Beating Nature at her Own Game? Beating Nature at her Own Game? Discovery & Innovation Stories of Discovery & Innovation Brief Science Highlights SBIR/STTR Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 08.24.11 Beating Nature at her Own Game? New catalyst speeds conversion of electricity to hydrogen fuel. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo Systemic view of how catalyst might fit into a renewable energy production and storage system Image courtesy of Pacific Northwest National Laboratory Systemic view of how catalyst might fit into a renewable energy production and storage system. Major improvements in our ability to store electrical energy will be

257

Make Your Own National Science Bowl® Competition Buzzer | U.S. DOE Office  

Office of Science (SC) Website

Resources » Make Resources » Make Your Own National Science Bowl® Competition Buzzer National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Make Your Own National Science Bowl® Competition Buzzer National Science Bowl® Competition Buzzer Materials List National Science Bowl® Competition Buzzer Schematic Sample Questions Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov High School Rules, Forms, and Resources Make Your Own National Science Bowl® Competition Buzzer

258

Purple Bacteria Develops Its Own Form of Sunscreen | U.S. DOE Office of  

Office of Science (SC) Website

Purple Bacteria Develops Its Own Form Purple Bacteria Develops Its Own Form of "Sunscreen" Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights Highlight Archives News & Events Publications Contact BES Home 05.03.12 Purple Bacteria Develops Its Own Form of "Sunscreen" Print Text Size: A A A RSS Feeds FeedbackShare Page Scientific Achievement Found that specific pigments in the light harvesting complex of a photosynthetic bacterium act primarily to protect the cell from damage by excess sunlight Significance and Impact May aid the design of both natural and artificial light harvesting systems to minimize deleterious effects of exposure to too much light energy Research Details In photosynthetic organisms, carotenoids typically act as supplementary

259

Make Your Own National Science Bowl® Competition Buzzer | U.S. DOE Office  

Office of Science (SC) Website

Make Your Own National Science Bowl® Competition Buzzer Make Your Own National Science Bowl® Competition Buzzer National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Academic Question Resources Make Your Own National Science Bowl® Competition Buzzer National Science Bowl® Competition Buzzer Materials List National Science Bowl® Competition Buzzer Schematic Sample Questions Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Middle School Rules, Forms, and Resources

260

Energy Deputy Secretary Poneman Tours Minority-Owned Small Business in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Deputy Secretary Poneman Tours Minority-Owned Small Business Energy Deputy Secretary Poneman Tours Minority-Owned Small Business in Detroit Energy Deputy Secretary Poneman Tours Minority-Owned Small Business in Detroit May 22, 2012 - 10:37am Addthis Deputy Secretary of Energy Daniel Poneman meets with owners and workers at Diversified Chemical Technologies, a small business in Detroit, MI. | Energy Department photo Deputy Secretary of Energy Daniel Poneman meets with owners and workers at Diversified Chemical Technologies, a small business in Detroit, MI. | Energy Department photo Bill Gibbons Deputy Press Secretary, Office of Public Affairs What does this mean for me? During National Small Business Week, Energy Department leaders are visiting small businesses across the country as a renewed promise to help their businesses grow, hire and succeed.

Note: This page contains sample records for the topic "owned utilities iou" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

"List of Covered Electric Utilities" under the Public Utility...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2009 Under Title I, Sec. 102(c) of the Public Utility Regulatory Policies...

262

"List of Covered Electric Utilities" under the Public Utility...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2008 Under Title I of the Public Utility Regulatory Policies Act of 1978...

263

utilities | OpenEI  

Open Energy Info (EERE)

utilities utilities Dataset Summary Description Datasets are for the US electricity grid system interconnect regions (ASCC, FRCC, HICC, MRO, NPCC, RFC, SERC, SPP, TRE, WECC) for 2008. The data is provided in life cycle inventory (LCI) forms (both xls and xml). A module report and a detailed spreadsheet are also included. Source US Life Cycle Inventory Database Date Released May 01st, 2011 (3 years ago) Date Updated Unknown Keywords ASCC FRCC HICC interconnect region LCI life cycle inventory MRO NPCC RFC SERC SPP TRE unit process US utilities WECC Data application/zip icon interconnect_lci_datasets_2008.zip (zip, 6.3 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL)

264

Coal Utilization Science Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Utilization SCienCe Program Coal Utilization SCienCe Program Description The Coal Utilization Science (CUS) Program sponsors research and development (R&D) in fundamental science and technology areas that have the potential to result in major improvements in the efficiency, reliability, and environmental performance of advanced power generation systems using coal, the Nation's most abundant fossil fuel resource. The challenge for these systems is to produce power in an efficient and environmentally benign manner while remaining cost effective for power providers as well as consumers. The CUS Program is carried out by the National Energy Technology Laboratory (NETL) under the Office of Fossil Energy (FE) of the U.S. Department of Energy (DOE). The program supports DOE's Strategic Plan to:

265

Cost of Gas Adjustment for Gas Utilities (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cost of Gas Adjustment for Gas Utilities (Maine) Cost of Gas Adjustment for Gas Utilities (Maine) Cost of Gas Adjustment for Gas Utilities (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Generation Disclosure Provider Public Utilities Commission This rule, applicable to gas utilities, establishes rules for calculation of gas cost adjustments, procedures to be followed in establishing gas cost adjustments and refunds, and describes reports required to be filed with

266

Who Owns Renewable Energy Certificates? An Exploration of Policy Options and Practice  

E-Print Network (OSTI)

Tannery Island Power Company, Hydro Power, Inc. , and EnergyHydro-Electric Company; California Public Utilities Commission; Central Maine Power

Holt, Edward A.; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

267

Utility Stack Opacity Troubleshooting Guidelines  

Science Conference Proceedings (OSTI)

Utilities have become increasingly concerned about stack plume visibility, and some have been cited for excess plume opacity. This troubleshooting guide enables utilities to characterize plume opacity problems at full-scale utility sites and evaluate possible solutions.

1991-03-01T23:59:59.000Z

268

Utility spot pricing, California  

E-Print Network (OSTI)

The objective of the present spot pricing study carried out for SCE and PG&E is to develop the concepts which wculd lead to an experimental design for spot pricing in the two utilities. The report suggests a set of experiments ...

Schweppe, Fred C.

1982-01-01T23:59:59.000Z

269

By-Products Utilization  

E-Print Network (OSTI)

was produced by Wisconsin Electric's coal-fired power plants. The criteria for selecting these mixtures was to utilize minimal cost materials, such as coal combustion by-products (fly ash, bottom ash, etc of sufficient strength to withstand handling, transfer and long term exposure. The final phase (4) was designed

Wisconsin-Milwaukee, University of

270

By-Products Utilization  

E-Print Network (OSTI)

investigation. Two additional ash samples were prepared by blending these selected conventional and clean coalCenter for By-Products Utilization HIGH-STRENGTH HVFA CONCRETE CONTAINING CLEAN COAL ASH By Tarun R #12;1 HIGH-STRENGTH HVFA CONCRETE CONTAINING CLEAN COAL ASH By Tarun R. Naik, Shiw S. Singh, and Bruce

Wisconsin-Milwaukee, University of

271

By-Products Utilization  

E-Print Network (OSTI)

Center for By-Products Utilization USE OF CLASS F FLY ASH AND CLEAN-COAL ASH BLENDS FOR CAST by blending these selected conventional and clean coal ashes. Using these sixdifferent ash samples, eleven of 0 and60 percent by high-sulfurcoal ashes (Class F and clean-coal ashes) andcoal ash blends (Class F

Wisconsin-Milwaukee, University of

272

By-Products Utilization  

E-Print Network (OSTI)

Center for By-Products Utilization USE OF CLASS F FLY ASH AND CLEAN-COAL ASH BLENDS FOR CAST OF CLASS F FLY ASH AND CLEAN-COAL ASH BLENDS FOR CAST CONCRETE PRODUCTS Authors: Tarun R. Naik, Director investigation. Two additional ash samples were prepared by blending these selected conventional and clean coal

Wisconsin-Milwaukee, University of

273

By-Products Utilization  

E-Print Network (OSTI)

as the coal ash derived from SOx control technology. Up to 80% of CCA was blended with ground portland cement: blended cement, clean coal ash, sulfate resistance, time of setting #12;3 Zichao Wu is Structural EngineerCenter for By-Products Utilization USE OF CLEAN COAL ASH AS SETTING TIME REGULATOR IN PORTLAND

Wisconsin-Milwaukee, University of

274

By-Products Utilization  

E-Print Network (OSTI)

and clean-coal ashes) andcoal ash blends (Class F plus clean-coal ash blends) in the range of 0 to 60Center for By-Products Utilization CHARACTERIZATION AND APPLICATION OF CLASSF FLY ASHCOAL AND CLEAN-COAL,and Bruce W. Ramme CBU-1996-08 REP-283 July 1996 Presented andPublished at the American Coal Ash Association

Wisconsin-Milwaukee, University of

275

By-Products Utilization  

E-Print Network (OSTI)

. Test results indicated that all the blends with coal ash had lower expansion than the control mixtureCenter for By-Products Utilization USE OF CLEAN-COAL ASH FOR MANAGING ASR By Zichao Wu and Tarun R College of Engineering and Applied Science THE UNIVERSITY OF WISCONSIN­MILWAUKEE #12;USE OF CLEAN-COAL ASH

Wisconsin-Milwaukee, University of

276

By-Products Utilization  

E-Print Network (OSTI)

mixtures were developed using blends of wood FA and Class C coal FA. Two levels of blended ash of concrete. Blending of wood FA with Class C coal FA improved performance of wood FA to a significant extentCenter for By-Products Utilization GREENER CONCRETE FROM WOOD FLY ASH AND COAL FLY ASH By Tarun R

Wisconsin-Milwaukee, University of

277

Utility Baghouse Survey 2009  

Science Conference Proceedings (OSTI)

EPRI conducted comprehensive surveys of utility baghouse installations in 1981, 1991, and 2005 to summarize the state of the technology. The current survey focuses on nine selected pulse-jet baghouses to provide a better understanding of the design, performance, and operation of recent installations.

2009-12-14T23:59:59.000Z

278

Advanced fossil energy utilization  

Science Conference Proceedings (OSTI)

This special issue of Fuel is a selection of papers presented at the symposium Advanced Fossil Energy Utilization co-sponsored by the Fuels and Petrochemicals Division and Research and New Technology Committee in the 2009 American Institute of Chemical Engineers (AIChE) Spring National Meeting Tampa, FL, on April 2630, 2009.

Shekhawat, D.; Berry, D.; Spivey, J.; Pennline, H.; Granite, E.

2010-01-01T23:59:59.000Z

279

May 8, 2013 Each of us facing similar challenges on our own  

E-Print Network (OSTI)

May 8, 2013 #12;2 Each of us facing similar challenges on our own #12;3 DIY SaaS -e-commerce Video: the DIY (do it yourself) user experience Sample e-Commerce use cases Catalogs, Pricing, Product, enrich, apply The economics of DIY semantic SaaS Automate, instant ROI, DIY personalize & maintain k

Shamir, Ron

280

Publish Your Own Magazine, Guidebk...: How to Start, Manage, and Profit from a Homebased Publishing Company  

Science Conference Proceedings (OSTI)

From the Publisher:A dynamic step-by-step guide to creating everything from tourism books and niche market magazines to specialty tabloids, using a home computer. Having built his own publishing business from scratch, Williams is uniquely qualified to ...

Thomas A. Williams

2002-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "owned utilities iou" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Making Google Maps A comprehensive user guide for creating and using your own online Google Maps  

E-Print Network (OSTI)

1 Making Google Maps A comprehensive user guide for creating and using your own online Google Maps By Devlin Hughes and Brett Jackson Trinity College May 2007 edition #12;2 Chapter 1: Introduction to Google, and are accessible to the public. You can also chose to display a mashup on your website. Mashups use Google Map

Wright, Dawn Jeannine

282

Audit of the transfer of government-owned property at the Mound and Pinellas Plants  

SciTech Connect

This report addresses the audit of the transfer of government-owned property at the Mound and Pinellas Plants. The end of the Cold War brought many changes to the Department of Energy (Department), including the reconfiguration of defense program activities and the closure of some operations. Public Law 103-160 allows the Department to transfer or lease, under specified conditions, Department-owned personal property to economic development initiatives. By encouraging economic development, the Department hopes to mitigate adverse impacts that plant closures would have on local economies. The objective of the audit was to determine whether the Department's interests were properly protected with regard to the transfer of equipment from weapons production use to economic development initiatives. The Mound Plant (Mound) and the Pinellas Plant (Pinellas) did not have property disposition plans that would properly protect Departmental interests. Specifically, Mound planned to make about $13.2 million of Government-owned property available to private businesses even through the property was needed by Defense Programs at other facilities and would cost less than $1 million to relocate. In addition, Mound and Pinellas planned to make available to economic development initiatives several hundred million dollars of Government-owned property without first determining whether it was needed by other Departmental elements. These conditions existed because neither Headquarters nor the Albuquerque Operations Office provided Mound and Pinellas adequate guidance, and Mound and Pinellas management believed that economic development initiatives could take precedence over some Departmental programs.

Not Available

1994-11-01T23:59:59.000Z

283

The United States and Gun Violence Americans owned between 220 and 280 million guns in  

E-Print Network (OSTI)

rifles for sale, Dayton, Ohio. 11 #12;Inside Gun Shows for less than 5% of the worlds population but 351 Gun Shows in Context The United States and Gun Violence Americans owned between 220 and 280 million guns in 2004, including at least 86 million handguns.1 Millions of guns are added to that total

Leistikow, Bruce N.

284

Industrial - Utility Cogeneration Systems  

E-Print Network (OSTI)

Cogeneration may be described as an efficient method for the production of electric power in conjunction with process steam or heat which optimizes the energy supplied as fuel to maximize the energy produced for consumption. In a conventional electric utility power plant, considerable energy is wasted in the form of heat rejection to the atmosphere thru cooling towers, ponds or lakes, or to rivers. In a cogeneration system heat rejection can be minimized by systems which apply the otherwise wasted energy to process systems requiring energy in the form of steam or heat. Texas has a base load of some 75 million pounds per hour of process steam usage, of which a considerable portion could be generated through cogeneration methods. The objective of this paper is to describe the various aspects of cogeneration in a manner which will illustrate the energy saving potential available utilizing proven technology. This paper illustrates the technical and economical benefits of cogeneration in addition to demonstrating the fuel savings per unit of energy required. Specific examples show the feasibility and desirability of cogeneration systems for utility and industrial cases. Consideration of utility-industrial systems as well as industrial-industrial systems will be described in technical arrangement as well as including a discussion of financial approaches and ownership arrangements available to the parties involved. There is a considerable impetus developing for the utilization of coal as the energy source for the production of steam and electricity. In many cases, because of economics and site problems, the central cogeneration facility will be the best alternative for many users.

Harkins, H. L.

1979-01-01T23:59:59.000Z

285

Utility Line Inspections and Audits  

Science Conference Proceedings (OSTI)

Utility Line Inspections and Audits provides utility engineers with a concise reference for the pros, cons, and how to related to performing various line inspections and audits.

2007-03-21T23:59:59.000Z

286

Utilities offer photovoltaic systems to remote residential customers  

SciTech Connect

From Idaho to Arizona and Nevada to Colorado, utilities across the U.S. are beginning to offer remote homeowners an option that may seem unusual today, but might be commonplace in the future. Would-be customers who do not live close to the electric grid may choose the option of photovoltaic (PV) systems to supply their electricity as an alternative to expensive line extension. These customers typically live and/or farm in rural sections of the country. Others own vacation homes far from towns or cities. Solar-powered energy systems have already proven successful for powering pumps to water livestock, and for lights and communications devices in locations far from established sources of electricity. Rather than receiving the customary electric bill for metered service, customers will pay a set rate to use the PV system, which the utility will own and maintain. The initial cost of purchasing the system can be much lower than extending the utility line (which can cost $20,000 a mile). From the utility's standpoint, it saves on investing in lines that stand to generate small profits because of the small load and resultant energy sales.

Van Arsdall, A.

1993-01-01T23:59:59.000Z

287

utility | OpenEI Community  

Open Energy Info (EERE)

utility utility Home Sfomail's picture Submitted by Sfomail(48) Member 17 May, 2013 - 11:14 Utility Rates API Version 2 is Live! API developer OpenEI update utility Utility Companies utility rate Utility Rates version 1 version 2 version 3 web service Smart meter After several months of development and testing, the next generation web service for the utility rate database is finally here! I encourage you to check out the V2 Utility Rates API at http://en.openei.org/services/doc/rest/util_rates Graham7781's picture Submitted by Graham7781(2002) Super contributor 11 January, 2013 - 14:21 Swinerton Renewable Energy Awarded Contract to Construct and Operate 250 MWac K Road Moapa Solar Plant Marketwire OpenEI Renewable Energy Solar Swinerton utility Syndicate content 429 Throttled (bot load)

288

pine (mail utility info)  

NLE Websites -- All DOE Office Websites (Extended Search)

pine (mail utility info) pine (mail utility info) Basics, FAQ, etc, On our UNIX machines, module load pine The line module load pine should ALSO be in the file ~/.rc/user_modules (The pine module also includes pico) pine usage with IMAP4 (UNIX) Moving pine email files into IMAP4 LBNL UNIX info on pine links to Pine Information Center Pine 4.2.1/Solaris: Forwarding as attachment; the following procedure has proved successful for at least some users: Check the option "enable-full-header-cmd". To get to this option, 1. M (Main Menu) 2. S (Setup) "Choose a setup task from the menu below :" 3. C (Configure) 4. Scroll down to "Advanced Command Preferences", and press "X" to set "enable-full-header-cmd". It looks like this: ================================================================

289

PDSF Utilization Graphs  

NLE Websites -- All DOE Office Websites (Extended Search)

Graphs Graphs Utilization Graphs This page contains a series of graphs that use data from the PDSF batch scheduler (SGE) to show the utilization of the cluster over the past 24 hours. The graphs were generated with RRDTool and are updated approximately every 15 minutes. This graph shows the aggregate cluster CPU availablity and usage according to sgeload: 24 hour rolling usage graph (click to see long term averages) This graph shows the number of jobs being run by each group: Rolling 24 Running Jobs by Group (click to see long term averages) This is the same graph as above weighted by the clockspeed (GHz) of the node used for the job: Rolling 24 Running Jobs by Group (click to see long term averages) This graph show the number of pending jobs by group: Rolling 24 Pending Jobs

290

How to Live Well Without Owning a Car: Save Money, Breathe Easier, and Get More Mileage Out of Life By Chris Balish  

E-Print Network (OSTI)

Without Owning a Car: Save Money, Breathe Easier, and GetWithout Owning a Car: Save Money, Breathe Easier, an Getyou can save a ton of money by not owning. One assumption he

Wong, Carleton

2008-01-01T23:59:59.000Z

291

How to Live Well Without Owning a Car: Save Money, Breathe Easier, and Get More Mileage Out of Life By Chris Balish  

E-Print Network (OSTI)

Live Well Without Owning a Car: Save Money, Breathe Easier,Live Well Without Owning a Car: Save Money, Breathe Easier,mere thought of not owning a car in the United States today

Wong, Carleton

2008-01-01T23:59:59.000Z

292

Municipal solar utilities in California: marketing, financial and legal issues  

Science Conference Proceedings (OSTI)

A Municipal Solar Utility, a municipal-level organization, designed to promote the use of solar technologies within the local marketplace is discussed. Over the past 14 months, the cities of Bakersfield, Oceanside, Palo Alto, San Dimas, Santa Monica and Ukiah have worked on implementation plans to develop MSUs for their respective communities. An analysis of specific marketing, financial, and legal issues associated with the development of Municipal Solar Utilities is presented. Three service delivery packages are analyzed: (1) full service or direct model; (2) low-interest loan; and (3) facilitation or brokerage model. These models represent a variety of potential organizational and program initiatives ranging from consumer education, capitalization and financing methods, to consumer protection from liabilities of owning, installing, and leasing solar equipment. The feasibility of local-level Municipal Solar Utility programs is demonstrated and the capability of communities to successfully initiate total energy programs is addressed.

Sanger, J.M.; Epstein, P.B.

1980-12-01T23:59:59.000Z

293

Wind Energy for Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Wind Energy for Municipal Utilities Jump to: navigation, search Four 1.8-MW Vestas turbines owned by AMP-Ohio in Bowling Green, Ohio. Photo from Ohio Office of Energy Efficiency, NREL 14070 In the face of new and emerging market conditions, municipal utilities across the country find themselves at a crossroads. Load requirements are expected to continue increasing, while in many cases, existing supply contracts will end within the next few years. Further, customers throughout municipal utility service territories express consistently high levels of interest in renewable energy alternatives. In most cases, the preferred

294

City of Galion, Ohio (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Galion Galion Place Ohio Utility Id 6914 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Account Commercial Large Power Account Industrial Large Power Account- Own Transformer Industrial Power Account Commercial Residential Account Residential Security Light- 175 W Lighting Security Light- 400 W Lighting Average Rates Residential: $0.0967/kWh Commercial: $0.0831/kWh Industrial: $0.0723/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

295

Case for utility involvement in solar-domestic water heating  

SciTech Connect

Credibility of system performance over an extended period of time is still a major concern for prospective buyers of solar-collector systems. Although Congress has enacted solar legislation with the intention of assisting homeowners in the adoption of solar energy, it apparently did not consider which organizational entities could best address the concerns of the consumer and accelerate the adoption of solar energy for domestic hot water heating. This article points out that legislation which does not encourage full participation by utilities in the marketing of solar energy has produced very low adoption rates compared to the size of the solar market potential. It also describes some of the empirical results of one utility company's efforts with a large-scale solar demonstration program, and presents some findings for the investor-owned utility industry to consider before Congress takes additional legislative action in this area. 11 references, 2 figures, 2 tables.

Smackey, B.M.

1982-04-01T23:59:59.000Z

296

Innovative Utility Pricing for Industry  

E-Print Network (OSTI)

The electric utility industry represents only one source of power available to industry. Although the monopolistic structure of the electric utility industry may convey a perception that an electric utility is unaffected by competition, this is an erroneous perception with regard to industry. Electric utilities face increased competition, both from other utilities and from industrial self-generation. The paper discusses competition for industrial customers and innovative pricing trends that have evolved nationally to meet the growing competition for industrial sales. Cogeneration activities and the emerging concepts of wheeling power are also discussed. Specifics of industry evaluation and reaction to utility pricing are presented. Also enumerated are examples of the response various utilities throughout the United States have made to the needs of their industrial customers through innovative rate design. Industry/utility cooperation can result in benefits to industry, to the electric utility and to all other ratepayers. This discussion includes examples of successful cooperation between industry and utilities.

Ross, J. A.

1986-06-01T23:59:59.000Z

297

CPI anticipates price benefits in an open electricity market - but utilities `will erect roadblocks`  

SciTech Connect

Chemical manufacturers and industrial gas firms welcome the coming deregulation of electricity because the change offers them competitive choice in power supplies. They anticipate price benefits like those that have flowed from natural gas deregulation, which feed from manufacturers to bypass local utilities and shop for their own fuel supplies.

Pospisil, R.

1994-11-23T23:59:59.000Z

298

Who Owns Renewable Energy Certificates? An Exploration of Policy Options and Practice  

E-Print Network (OSTI)

state renewable energy programs that offer financial incentivesstate renewable energy programs that offer financial incentivesstates and utilities provide financial incentives to renewable energy

Holt, Edward A.; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

299

Wind Generators and Market Power: Does it matter who owns them?  

E-Print Network (OSTI)

Electricity production from wind generators holds significant importance in European Unions 20 % renewable energy target by 2020. In this paper, I show that ownership of wind generators affects market outcomes by using both a Cournot oligopoly model and a real options model. In the Cournot oligopoly model, ownership of the wind generators by owners of fossil-fueled (peakload) generators decreases total peakload production and increases the market price. These effects increase with total wind generation and aggregate wind generator ownership. In the real options model, start up and shut down price thresholds are significantly higher when the monopolist at the peakload level owns both types of generators. Furthermore, when producing electricity with the peakload generator, the monopolist can avoid facing prices below marginal cost by owning a certain share of the wind generators.

Nihat Misir

2012-01-01T23:59:59.000Z

300

Unpacking the opportunities for change within a family owned manufacturing sme : a design led innovation case study.  

E-Print Network (OSTI)

??This thesis explored how an Australian, family owned, manufacturing firm responded to a design led innovation approach as conducted by the action researcher. Specifically, it (more)

Pozzey, Erica C.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "owned utilities iou" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

A comparative analysis of business structures suitable for farmer-owned wind power projects in the United States  

E-Print Network (OSTI)

own challenges. 9 The Internal Revenue Service will considerlimited For example, the Internal Revenue Code requires thatPower Price Revenue Shortfall After-Tax Internal Rate of

Bolinger, Mark; Wiser, Ryan

2004-01-01T23:59:59.000Z

302

Extraction Utility Design Specification  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Extraction Utility Extraction Utility Design Specification January 11, 2011 Document Version 1.9 1 Revision History Date Version Section and Titles Author Summary of Change January 15, 2010 1.0 All Eric Morgan, Dekker, Ltd. Initial Draft Document January 19, 2010 1.1 All Igor Pedan, Dekker, Ltd. Document update with EM team review notes January 20, 2010 1.2 2.1.1 EM Project Team Document Review January 27, 2010 1.3 All Bruce Bartells Final Draft Review May 10, 2010 1.4.1 2.8 Igor Pedan, Dekker, Ltd. Section Update May 14, 2010 1.4.2 2.3.1 Igor Pedan, Dekker, Ltd. System Tables Added May 17, 2010 1.4.3 2.3 Igor Pedan, Dekker, Ltd. Enhancements Update June 29, 2010 1.5 All Igor Pedan, Dekker, Ltd. Revised for Version 8.0.20100628 July 14, 2010 1.5.1 2.8 Igor Pedan,

303

2012 Green Utility Leaders | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Leaders 2012 Green Utility Leaders 2012 Green Utility Leaders Ranking the Top Green Utilities See All Rankings x Renewable Energy Sales Total Customer Participants...

304

PARS II Extraction Utility | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Extraction Utility PARS II Extraction Utility PARS II Extraction Utility v8020130510.zip More Documents & Publications PARS II Extraction Utility Release Notes PARS II CPP...

305

Implementation process of management control systems in the municipally owned hospitals: in the case of Nagasaki prefectural hospitals in Japan  

Science Conference Proceedings (OSTI)

The purpose of this paper is to describe and explore management reforms in the municipally owned hospitals in Nagasaki prefecture, Japan, based on 'levers of control' framework (Simons, 1995). The hospitals are changing their strategy ... Keywords: Japan, Local Public Enterprise Law, healthcare, levers of control, management control systems, management reform, municipally owned hospitals

Takahito Kondo; Hiromasa Okada

2010-12-01T23:59:59.000Z

306

Utility Data Collection Service  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Data Collection Service Data Collection Service Federal-Utility Partnership Working Group 4 May 2006 Paul Kelley, Chief of Operations, 78 th CES, Robins AFB David Dykes, Industrial Segment Mgr, Federal, GPC Topics  Background  Commodities Metered  Data Collection  Cost  Results Background  Robins AFB (RAFB) needed to:  Control electricity usage and considered Demand Control  Track and bill base tenants for energy usage  Metering Project Originated in 1993  $$ requirements limited interest  Developed criteria for available $$  Energy Policy Act 2005:  All facilities sub-metered by 2012  $$ no longer restricts metering project Metering Criteria prior to EPACT 2005  All New Construction - (per Air Force Instructions)

307

EM Utility Contracts  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

12 12 EM UTILITY CONTRACT Site State Supplier Executed Contract Type DOE Contract # East Tennessee Technology Park TN Tennessee Valley Authority 4/27/2007 Energy supply contract (retail) DE-AC05-07OR23242 Hanford WA Bonneville Power Administration 10/1/2001 Transmission Service Agreement Hanford WA Bonneville Power Administration 10/1/2011 Power Sales Agreement (retail) Moab UT Paducah KY Electric Energy, Inc. (EEI as agent for DOE) Original Power Contract Portsmouth OH Pike Natural Gas 2/28/2007 Negotiated contract Portsmouth OH Ohio Valley Electric Corporation (OVEC) 9/10/2008 Letter Agreement DE-AC05-03OR22988 Savannah River Site SC South Carolina Electric & Gas

308

Utility Metering - AGL Resources  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AGL Resources AGL Resources Mike Ellis Director, AGL Energy Services Federal Utility Partnership Working Group Spring 2013 - May 22-23 San Francisco, CA Hosted by: Pacific Gas and Electric Company  Multiple LDCs with legacy metering equipment  Several use Itron 100G technology ◦ Mobile, once-a-month data collection ◦ Meter can store interval data for >30 days ◦ Meter technology could be leverage on fixed-base network, however there are no current plans for upgrade  Technology for capturing interval data is installed on case by case basis ◦ Customers on Interruptible Rate ◦ Large users  Electronic corrector installed on the meter ◦ Pressure and Temperature compensation  Typically data is retrieved once a day ◦ Transmission frequency impacts battery life

309

Extraction Utility Design Specification  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Extraction Extraction Utility Design Specification May 13, 2013 Document Version 1.10 1 Revision History Date Version Section and Titles Author Summary of Change January 15, 2010 1.0 All Eric Morgan, Dekker, Ltd. Initial Draft Document January 19, 2010 1.1 All Igor Pedan, Dekker, Ltd. Document update with EM team review notes January 20, 2010 1.2 2.1.1 EM Project Team Document Review January 27, 2010 1.3 All Bruce Bartells Final Draft Review May 10, 2010 1.4.1 2.8 Igor Pedan, Dekker, Ltd. Section Update May 14, 2010 1.4.2 2.3.1 Igor Pedan, Dekker, Ltd. System Tables Added May 17, 2010 1.4.3 2.3 Igor Pedan, Dekker, Ltd. Enhancements Update June 29, 2010 1.5 All Igor Pedan, Dekker, Ltd. Revised for Version

310

Utility spot pricing study : Wisconsin  

E-Print Network (OSTI)

Spot pricing covers a range of electric utility pricing structures which relate the marginal costs of electric generation to the prices seen by utility customers. At the shortest time frames prices change every five ...

Caramanis, Michael C.

1982-01-01T23:59:59.000Z

311

Carbon Dioxide Utilization Archived Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Utility Mercury Sorbent Field Testing Program Sorbent Technologies Corporation Western Kentucky University 9292003 Enhanced Practical Photosynthesis Carbon Sequestration ORNL...

312

Reexamination of electric-utility profitability in Ohio  

SciTech Connect

This article looks back to an earlier FORTNIGHTLY article by Coyne (Sept. 16, 1982), one which argued that investor-owned electric-utility companies in the state of Ohio could be demonstrated to be earning returns that were greater than those of major oil companies when the relative risks of the companies were taken into account. The author here points to considerations overlooked in the earlier article, leading to a conclusion that there is not statistical or practical difference between the risk-adjusted rates of return of the two industries. 6 references, 2 tables.

Davidson, W.N. III

1983-08-18T23:59:59.000Z

313

Cogeneration Assessment Methodology for Utilities  

E-Print Network (OSTI)

A methodology is presented that enables electric utilities to assess the cogeneration potential among industrial, commercial, and institutional customers within the utility's service area. The methodology includes a survey design, analytic assessment model, and a data base to track customers over time. A case study is presented describing the background, procedures, and results of a cogeneration investigation for Northeast Utilities.

Sedlik, B.

1983-01-01T23:59:59.000Z

314

Own Your Power! A Consumer Guide to Solar Electricity for the Home (Brochure)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Consumer Guide to Solar Electricity for the Home Consumer Guide to Solar Electricity for the Home Own Your Power! Contents Benefits of Solar Electricity . . . . . . . . . . . . . . . . . . . 1 Solar Electricity Basics . . . . . . . . . . . . . . . . . . . . . . . 2 Types of Solar Panels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Types of Solar Electric Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Power Produced by a Solar Electric System . . . . . . . . . . . . . . . . . . . . . . 5 How To Choose a System . . . . . . . . . . . . . . . . . . . . . 6 Roof Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Installation and Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Costs and Financial Incentives . . . . . . . . . . . . . . . . . 10 Purchasing Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Financing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 About this guide: The U .S . Department of Energy (DOE) receives numerous inquiries each year

315

Who Owns Renewable Energy Certificates? An Exploration of Policy Options and Practice  

E-Print Network (OSTI)

GATS) being developed by PJM-Environmental InformationQFs by the utilities at the PJM billing rate (the marginalwas still under development by PJM (the BPU has subsequently

Holt, Edward A.; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

316

YEAR 2 BIOMASS UTILIZATION  

DOE Green Energy (OSTI)

This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from cofiring coal with waste paper, sunflower hulls, and wood waste showed a broad spectrum of chemical and physical characteristics, according to American Society for Testing and Materials (ASTM) C618 procedures. Higher-than-normal levels of magnesium, sodium, and potassium oxide were observed for the biomass-coal fly ash, which may impact utilization in cement replacement in concrete under ASTM requirements. Other niche markets for biomass-derived fly ash were explored. Research was conducted to develop/optimize a catalytic partial oxidation-based concept for a simple, low-cost fuel processor (reformer). Work progressed to evaluate the effects of temperature and denaturant on ethanol catalytic partial oxidation. A catalyst was isolated that had a yield of 24 mole percent, with catalyst coking limited to less than 15% over a period of 2 hours. In biodiesel research, conversion of vegetable oils to biodiesel using an alternative alkaline catalyst was demonstrated without the need for subsequent water washing. In work related to biorefinery technologies, a continuous-flow reactor was used to react ethanol with lactic acid prepared from an ammonium lactate concentrate produced in fermentations conducted at the EERC. Good yields of ester were obtained even though the concentration of lactic acid in the feed was low with respect to the amount of water present. Esterification gave lower yields of ester, owing to the lowered lactic acid content of the feed. All lactic acid fermentation from amylose hydrolysate test trials was completed. Management activities included a decision to extend several projects to December 31, 2003, because of delays in receiving biomass feedstocks for testing and acquisition of commercial matching funds. In strategic studies, methods for producing acetate esters for high-value fibers, fuel additives, solvents, and chemical intermediates were discussed with several commercial entities. Commercial industries have an interest in efficient biomass gasification designs but are waiting for economic incentives. Utility, biorefinery, pulp and paper, or o

Christopher J. Zygarlicke

2004-11-01T23:59:59.000Z

317

National Utility Rate Database: Preprint  

DOE Green Energy (OSTI)

When modeling solar energy technologies and other distributed energy systems, using high-quality expansive electricity rates is essential. The National Renewable Energy Laboratory (NREL) developed a utility rate platform for entering, storing, updating, and accessing a large collection of utility rates from around the United States. This utility rate platform lives on the Open Energy Information (OpenEI) website, OpenEI.org, allowing the data to be programmatically accessed from a web browser, using an application programming interface (API). The semantic-based utility rate platform currently has record of 1,885 utility rates and covers over 85% of the electricity consumption in the United States.

Ong, S.; McKeel, R.

2012-08-01T23:59:59.000Z

318

Utility Connection | Open Energy Information  

Open Energy Info (EERE)

Utility Connection Utility Connection Jump to: navigation, search Return to Connections to Energy Use Data and Information Page Please tell us how connected you are to your customers Thank you for taking the time to complete this questionnaire! As you know, utility data is very important and, if used correctly, can educate consumers and change their behavior to save money and energy. First select your utility company, then provide us a little information about yourself. Only one person from each utility can answer these questions and the results from your input will be shown on the Utility Data Accessibility Map. If the questionnaire has already been completed for your utility and you think the answers need to be changed, or if you are having trouble accessing your questionnaire, please contact the .

319

Pelican Utility | Open Energy Information  

Open Energy Info (EERE)

Pelican Utility Pelican Utility Jump to: navigation, search Name Pelican Utility Place Alaska Utility Id 29297 Utility Location Yes Ownership I NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.4450/kWh Commercial: $0.4450/kWh Industrial: $0.3890/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Pelican_Utility&oldid=411348

320

Flora Utilities | Open Energy Information  

Open Energy Info (EERE)

Flora Utilities Flora Utilities Jump to: navigation, search Name Flora Utilities Place Indiana Utility Id 6425 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Rate Commercial Municipal Rate Commercial Power Acct. Rate Commercial Residential Rate Residential Average Rates Residential: $0.0958/kWh Commercial: $0.0893/kWh Industrial: $0.0805/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Flora_Utilities&oldid=410706

Note: This page contains sample records for the topic "owned utilities iou" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

PFBC Utility Demonstration Project  

Science Conference Proceedings (OSTI)

This report provides a summary of activities by American Electric Power Service Corporation during the first budget period of the PFBC Utility Demonstration Project. In April 1990, AEP signed a Cooperative Agreement with the US Department of Energy to repower the Philip Sporn Plant, Units 3 4 in New Haven, West Virginia, with a 330 KW PFBC plant. The purpose of the program was to demonstrate and verify PFBC in a full-scale commercial plant. The technical and cost baselines of the Cooperative Agreement were based on a preliminary engineering and design and a cost estimate developed by AEP subsequent to AEP's proposal submittal in May 1988, and prior to the signing of the Cooperative Agreement. The Statement of Work in the first budget period of the Cooperative Agreement included a task to develop a preliminary design and cost estimate for erecting a Greenfield plant and to conduct a comparison with the repowering option. The comparative assessment of the options concluded that erecting a Greenfield plant rather than repowering the existing Sporn Plant could be the technically and economically superior alternative. The Greenfield plant would have a capacity of 340 MW. The ten additional MW output is due to the ability to better match the steam cycle to the PFBC system with a new balance of plant design. In addition to this study, the conceptual design of the Sporn Repowering led to several items which warranted optimization studies with the goal to develop a more cost effective design.

Not Available

1992-11-01T23:59:59.000Z

322

Gas utilization technologies  

SciTech Connect

One of the constant challenges facing the research community is the identification of technology needs 5 to 15 years from now. A look back into history indicates that the forces driving natural gas research have changed from decade to decade. In the 1970s research was driven by concerns for adequate supply; in the 1980s research was aimed at creating new markets for natural gas. What then are the driving forces for the 1990s? Recent reports from the natural gas industry have helped define a new direction driven primarily by market demand for natural gas. A study prepared by the Interstate Natural Gas Association of America Foundation entitled ``Survey of Natural Research, Development, and Demonstration RD&D Priorities`` indicated that in the 1990s the highest research priority should be for natural gas utilization and that technology development efforts should not only address efficiency and cost, but environmental and regulatory issues as well. This study and others, such as the report by the American Gas Association (A.G.A.) entitled ``Strategic Vision for Natural Gas Through the Year 2000,`` clearly identify the market sectors driving today`s technology development needs. The biggest driver is the power generation market followed by the industrial, transportation, appliance, and gas cooling markets. This is best illustrated by the GRI 1994 Baseline Projection on market growth in various sectors between the year 1992 and 2010. This paper highlights some of the recent technology developments in each one of these sectors.

Biljetina, R.

1994-09-01T23:59:59.000Z

323

NETL: IEP - Coal Utilization By-Products - Utilization Projects...  

NLE Websites -- All DOE Office Websites (Extended Search)

University of North Dakota, EERC - Table of Contents Coal Ash Resources Research Consortium Stabilizing Feedlots Using Coal Ash Environmental Evaluation for Utilization of Ash in...

324

The Integration of Renewable Energy Sources into Electric Power Distribution Systems, Vol. II Utility Case Assessments  

SciTech Connect

Electric utility distribution system impacts associated with the integration of renewable energy sources such as photovoltaics (PV) and wind turbines (WT) are considered in this project. The impacts are expected to vary from site to site according to the following characteristics: the local solar insolation and/or wind characteristics, renewable energy source penetration level, whether battery or other energy storage systems are applied, and local utility distribution design standards and planning practices. Small, distributed renewable energy sources are connected to the utility distribution system like other, similar kW- and MW-scale equipment and loads. Residential applications are expected to be connected to single-phase 120/240-V secondaries. Larger kW-scale applications may be connected to three+phase secondaries, and larger hundred-kW and y-scale applications, such as MW-scale windfarms, or PV plants, may be connected to electric utility primary systems via customer-owned primary and secondary collection systems. In any case, the installation of small, distributed renewable energy sources is expected to have a significant impact on local utility distribution primary and secondary system economics. Small, distributed renewable energy sources installed on utility distribution systems will also produce nonsite-specific utility generation system benefits such as energy and capacity displacement benefits, in addition to the local site-specific distribution system benefits. Although generation system benefits are not site-specific, they are utility-specific, and they vary significantly among utilities in different regions. In addition, transmission system benefits, environmental benefits and other benefits may apply. These benefits also vary significantly among utilities and regions. Seven utility case studies considering PV, WT, and battery storage were conducted to identify a range of potential renewable energy source distribution system applications. The following utility- and site-specific conditions that may affect the economic viability of distributed renewable energy sources were considered: distribution system characteristics, and design standards, and voltage levels; load density, reliability, and power quality; solar insolation and wind resource levels; utility generation characteristics and load profiles; and investor-owned and publicly owned utilities, size, and financial assumptions.

Zaininger, H.W.

1994-01-01T23:59:59.000Z

325

Oconomowoc Utilities | Open Energy Information  

Open Energy Info (EERE)

Utilities Utilities Jump to: navigation, search Name Oconomowoc Utilities Place Wisconsin Utility Id 13963 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Industrial Cp-1 Small Power Service Primary Metering Discount with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership Discount Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership

326

Slinger Utilities | Open Energy Information  

Open Energy Info (EERE)

Slinger Utilities Slinger Utilities Jump to: navigation, search Name Slinger Utilities Place Wisconsin Utility Id 17324 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service- Single-Phase Commercial General Service- Single-Phase- Time-of-Day Commercial General Service- Three-Phase Commercial General Service- Three-Phase- Time-of-Day Commercial Industrial Power- Time-of-Day Industrial Large Power- Time-of-Day Commercial Ornamental Street Lighting- 150W HPS Lighting Overhead Street Lighting- 150W HPS Lighting

327

Decatur Utilities | Open Energy Information  

Open Energy Info (EERE)

Utilities Utilities Jump to: navigation, search Name Decatur Utilities Place Alabama Utility Id 4958 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial - BILL CODE 50 Commercial Commercial - Bill Code 40 Commercial Residential - Bill Code 22 Residential Security Light 100 W HPS (No Pole) Lighting Security Light 100 W HPS (With Pole) Lighting Security Light 250 W HPS (No Pole) Lighting Security Light 250 W HPS (With Pole) Lighting

328

Dalton Utilities | Open Energy Information  

Open Energy Info (EERE)

Dalton Utilities Dalton Utilities Jump to: navigation, search Name Dalton Utilities Place Georgia Utility Id 4744 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 - Watt Sodium Vapor Lighting 1000 - Watt Metal Halide Directional Type Lighting 150 Watt Mercury Vapor Underground Service Lighting 150 Watt Sodium Vapor Underground Service Lighting 175 - Watt Mercury Vapor Lighting 175 - Watt Sodium Vapor Lighting

329

Waupun Utilities | Open Energy Information  

Open Energy Info (EERE)

Waupun Utilities Waupun Utilities Jump to: navigation, search Name Waupun Utilities Place Wisconsin Utility Id 20213 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Single Phase Commercial Commercial Three Phase Commercial Renewable Energy Residential Residential Small Power Industrial Average Rates Residential: $0.1060/kWh Commercial: $0.0968/kWh Industrial: $0.0770/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

330

Maryville Utilities | Open Energy Information  

Open Energy Info (EERE)

Maryville Utilities Maryville Utilities Jump to: navigation, search Name Maryville Utilities Place Tennessee Utility Id 11789 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial- Schedule GSA-1 Commercial Commercial- Schedule GSA-2 Commercial Commercial- Schedule GSA-3 Commercial Outdoor Light- 100W HP Sodium Security Light Lighting Outdoor Light- 175W Mercury Vapor Lighting Outdoor Light- 250W HP Sodium Flood Light Lighting Outdoor Light- 250W HP Sodium Security Light Lighting Outdoor Light- 400W Mercury Vapor Lighting

331

Utility solar water heating workshops  

DOE Green Energy (OSTI)

The objective of this project was to explore the problems and opportunities for utility participation with solar water heating as a DSM measure. Expected benefits from the workshops included an increased awareness and interest by utilities in solar water heating as well as greater understanding by federal research and policy officials of utility perspectives for purposes of planning and programming. Ultimately, the project could result in better information transfer, increased implementation of solar water heating programs, greater penetration of solar systems, and more effective research projects. The objective of the workshops was satisfied. Each workshop succeeded in exploring the problems and opportunities for utility participation with solar water heating as a DSM option. The participants provided a range of ideas and suggestions regarding useful next steps for utilities and NREL. According to evaluations, the participants believed the workshops were very valuable, and they returned to their utilities with new information, ideas, and commitment.

Barrett, L.B. (Barrett Consulting Associates, Inc., Colorado Springs, CO (United States))

1992-01-01T23:59:59.000Z

332

Sheffield Utilities | Open Energy Information  

Open Energy Info (EERE)

Utilities Utilities Jump to: navigation, search Name Sheffield Utilities Place Alabama Utility Id 17033 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Security Light 100 W HPS Openbottom Lighting Security Light 150 W HPS Cobrahead Lighting Security Light 150 W HPS Decorative Light Lighting Security Light 1500 W MH Floodlight Lighting Security Light 175 W MV Openbottom Lighting Security Light 250 W HPS Cobrahead Lighting Security Light 250 W HPS Decorative Light Lighting Security Light 250 W HPS Floodlight Lighting

333

Cannelton Utilities | Open Energy Information  

Open Energy Info (EERE)

Cannelton Utilities Cannelton Utilities Jump to: navigation, search Name Cannelton Utilities Place Indiana Utility Id 2964 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Outdoor Lighting: Murcury Vapor Light, 175 Watt Lighting Rate 1: Residential Residential Rate 2: Multi-Phase Commercial Rate 2: Single Phase Commercial Rate 3: Industrial Phase II Residential Rate 3: Industrial phase I Industrial Street Lighting: Decorative Metal Halide, 175 Watt Lighting Street Lighting: High Pressure Sodium, 100 Watt Lighting

334

Small power systems study technical summary report. Volume II. Inventory of small generating units in U. S. utility systems  

SciTech Connect

Data identifying small (less than or equal to 10 MW) power units in the United States are tabulated. The data are listed alphabetically by state and are reported sequentially for investor owned utilities, municipal utilities, and electrical cooperatives and other utility systems. For a given utility system, the generating units are divided into steam turbines, diesel generators and gas turbines. The number and size of generating units are listed. A summary tabulation of the number of generating units of each type and total generating capacity by state is presented.

Sitney, L.R.

1978-05-31T23:59:59.000Z

335

Advanced Manufacturing Office: Utility Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

Printable Version Save Energy Now Utility Partnerships In order to reduce industrial energy intensity and use, the Industrial Technologies Program (ITP) is forming...

336

APS sector layout: Utilities, etc  

SciTech Connect

This bulletin describes the general physical layout of the APS Experiment Hall and the utilities that will be available for the beamlines.

Davey, S.

1993-02-01T23:59:59.000Z

337

APS sector layout: Utilities, etc.  

SciTech Connect

This bulletin describes the general physical layout of the APS Experiment Hall and the utilities that will be available for the beamlines.

Davey, S.

1993-02-01T23:59:59.000Z

338

ESP: A system utilization benchmark  

E-Print Network (OSTI)

ESP: A System Utilization Benchmark Adrian T. Wong, LeonidEffective System Performance (ESP) test, which is designedEffective System Performance (ESP) benchmark, which measures

Wong, Adrian T.; Oliker, Leonid; Kramer, William T.C.; Kaltz, Teresa L.; Bailey, David H.

2000-01-01T23:59:59.000Z

339

Utility Partnerships Program Overview (Brochure)  

Science Conference Proceedings (OSTI)

Program overview brochure for the Utility Partnerships Program within the U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP).

Not Available

2011-07-01T23:59:59.000Z

340

Mandatory Utility Green Power Option  

Energy.gov (U.S. Department of Energy (DOE))

In Montana, regulated electric utilities are required to offer customers the option of purchasing electricity generated by certified, environmentally-preferred resources that include, but are not...

Note: This page contains sample records for the topic "owned utilities iou" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Privately owned public space attached to office buildings in Manhattan : economic and urban perspectives of incentive zoning  

E-Print Network (OSTI)

This thesis examines the Incentive Zoning Policy of New York City from economic and urban perspectives. In the first part, it evaluates empirically the economic contribution of privately owned public space to the value of ...

Cai, Hongyu.

2003-01-01T23:59:59.000Z

342

Own-price and income elasticities for household electricity demand : a survey of literature using meta-regression analysis.  

E-Print Network (OSTI)

??Maria Wist Langmoen Own-price and income elasticities for household electricity demand -A Literature survey using meta-regression analysis Economists have been modelling the electricity demand for (more)

Langmoen, Maria Wist

2004-01-01T23:59:59.000Z

343

Community-Owned wind power development: The challenge of applying the European model in the United States, and how states are addressing that challenge  

DOE Green Energy (OSTI)

Local farmers, towns, schools, and individual investors are, however, beginning to invest in wind power. With the help of state policy and clean energy fund support, new federal incentives, and creative local wind developers who have devised ownership structures that maximize the value of both state and federal support, community wind power is beginning to take a foothold in parts of the US, in particular the upper Midwest. The purpose of this report is to describe that foothold, as well as the state support that helped to create it. There are a number of reasons why states are becoming increasingly interested in community wind power. In rural Midwestern states such as Minnesota, Wisconsin, Iowa, and Illinois, community wind is seen as a way to help supplement and stabilize farmer income, and thereby contribute to the preservation of farming communities and the rural landscapes and values they create. In the Northeast, densely populated states such as Massachusetts are turning to community-scale wind development to increase not only the amount of wind power on the grid, but also the public's knowledge, perception, and acceptance of wind power. In still other areas--such as the Pacific Northwest, which is already home to several large wind farms--states are simply responding to strong interest from local constituents who see community wind power as a way to take responsibility for, and mitigate the environmental impact of, electricity generation. But what exactly is ''community wind power''? Definitions vary widely, ranging from behind-the-meter installations to the Danish wind ''cooperatives'' to wind projects owned by municipal utilities. Possible defining criteria include: project size (small vs. large projects); purpose (to offset end-use power consumption vs. to sell power to the grid); ownership (single local vs. multiple local vs. municipal utility vs. commercial owners); and interconnection (behind the meter vs. to the distribution grid vs. to the transmission grid). For the purposes of this report, ''community wind'' is defined as locally owned utility-scale wind development, on either the customer or utility side of the meter. This definition accommodates projects of various sizes (e.g., ranging from single utility-scale turbine installations at Iowa schools all the way up to the 100 MW Trimont project in Minnesota), single or multiple local owners, and perhaps even municipal utilities. In this report, however, municipal utility projects will only be mentioned if specifically funded by a state clean energy fund. Within the confines of this definition, this report first describes state support for, and the status of, community wind in the upper Midwest, including Minnesota, Wisconsin, Iowa, and Illinois. The focus then shifts to the Northeast, where Massachusetts and, to a lesser extent, New York have recently funded community wind initiatives. The report concludes in the western US by briefly describing community wind-related work just getting underway in Oregon and Washington, as well as a few isolated projects in California, Idaho, and on tribal lands.

Bolinger, Mark

2004-03-28T23:59:59.000Z

344

Do You Buy Clean Electricity From Your Utility? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Do You Buy Clean Electricity From Your Utility? Do You Buy Clean Electricity From Your Utility? Do You Buy Clean Electricity From Your Utility? November 19, 2009 - 7:00am Addthis This week, John discussed buying clean electricity from your utility. If you can't set up a small renewable energy system of your own, buying clean electricity is a great way to support the use of renewable energy. Do you buy clean electricity from your utility? Tell us about your experience. Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments. Addthis Related Articles You Can't Manage Energy Use That You Don't Measure Six Places to Find Help with Your Energy Costs Do You Drive a Hybrid Electric Vehicle?

345

Utility to Purchase Electricity from Innovative DOE-Supported Clean Coal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility to Purchase Electricity from Innovative DOE-Supported Clean Utility to Purchase Electricity from Innovative DOE-Supported Clean Coal Project Utility to Purchase Electricity from Innovative DOE-Supported Clean Coal Project January 17, 2012 - 12:00pm Addthis Washington, DC - An innovative clean coal technology project in Texas will supply electricity to the largest municipally owned utility in the United States under a recently signed Power Purchase Agreement, the U.S. Department of Energy (DOE) announced today. Under the agreement - the first U.S. purchase by a utility of low-carbon power from a commercial-scale, coal-based power plant with carbon capture - CPS Energy of San Antonio will purchase approximately 200 megawatts (MW) of power from the Texas Clean Energy Project (TCEP), located just west of Midland-Odessa.

346

NBP RFI: Data Access, Third Party Use and Privacy- Comments of Utilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Use and Privacy- Comments of Use and Privacy- Comments of Utilities Telecom Council NBP RFI: Data Access, Third Party Use and Privacy- Comments of Utilities Telecom Council The Utilities Telecom Council hereby comments in response to the Department of Energy (DOE) request for information on data access, third party use, and privacy. In summary, UTC submits that the innovative deployment by energy utilities of smart meters and smart control systems will create a smart energy grid that will unlock the value of what has been called the Energy Information Economy2. Smart energy grids will create an environment in which consumers will have greater abilities to manage their own energy usage and utilities will have new tools to affect grid-wide energy efficiencies never before possible. The key to all this is data. How to provide secure access to it

347

Energy Efficiency as a Preferred Resource: Evidence from Utility Resource  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency as a Preferred Resource: Evidence from Utility Resource Energy Efficiency as a Preferred Resource: Evidence from Utility Resource Plans in the Western United States and Canada Title Energy Efficiency as a Preferred Resource: Evidence from Utility Resource Plans in the Western United States and Canada Publication Type Journal Article Refereed Designation Unknown Year of Publication 2008 Authors Hopper, Nicole C., Galen L. Barbose, Charles A. Goldman, and Jeff Schlegel Journal Energy Efficiency Journal Volume Volume 2, Number 1 Pagination 24 Date Published 09/2008 Keywords electricity markets and policy group, energy analysis and environmental impacts department Abstract This article examines the future role of energy efficiency as a resource in the Western US and Canada, as envisioned in the most recent resource plans issued by 16 utilities, representing about 60% of the region's load. Utility and third-party-administered energy-efficiency programs proposed by 15 utilities over a 10-year horizon would save almost 19,000 GWh annually, about 5.2% of forecast load. There are clear regional trends in the aggressiveness of proposed energy savings. California's investor-owned utilities (IOUs) had the most aggressive savings targets, followed by IOUs in the Pacific Northwest, and the lowest savings were proposed by utilities in Inland West states and by two public utilities on the West Coast. The adoption of multiple, aggressive policies targeting energy efficiency and climate change appears to produce sizeable energy-efficiency commitments. Certain specific policies, such as mandated energy savings goals for California's IOUs and energy-efficiency provisions in Nevada's Renewable Portfolio Standard, had a direct impact on the level of energy savings included in the resource plans. Other policies, such as revenue decoupling and shareholder incentives and voluntary or legislatively mandated greenhouse gas emission reduction policies, may have also impacted utilities' energy-efficiency commitments, though the effects of these policies are not easily measured. Despite progress among the utilities in our sample, more aggressive energy-efficiency strategies that include high-efficiency standards for additional appliances and equipment, tighter building codes for new construction and renovation, as well as more comprehensive ratepayer-funded energy-efficiency programs are likely to be necessary to achieve a region-wide goal of meeting 20% of electricity demand with efficiency in 2020.

348

Utility Scale Solar Inc | Open Energy Information  

Open Energy Info (EERE)

Utility Scale Solar Inc Jump to: navigation, search Name Utility Scale Solar Inc Place Palo Alto, California Zip 94301 Product California-based PV tracker maker. References Utility...

349

Columbia Utilities Electricity | Open Energy Information  

Open Energy Info (EERE)

Utilities Electricity Place New York Utility Id 55814 Utility Location Yes Ownership R Operates Generating Plant Yes Activity Retail Marketing Yes References EIA Form EIA-861...

350

2012 Green Utility Leaders | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Sites Power Marketing Administration Other Agencies You are here Home 2012 Green Utility Leaders 2012 Green Utility Leaders 2012 Green Utility Leaders Ranking the Top...

351

Electric-utility DSM programs: 1990 data and forecasts to 2000  

SciTech Connect

In April 1992, the Energy Information Administration (EIA) released data on 1989 and 1990 electric-utility demand-site management (DMS) programs. These data represent a census of US utility DSM programs, with reports of utility expenditures, energy savings, and load reductions caused by these programs. In addition, EIA published utility estimates of the costs and effects of these programs from 1991 to 2000. These data provide the first comprehensive picture of what utilities are spending and accomplishing by utility, state, and region. This report presents, summarizes, and interprets the 1990 data and the utility forecasts of their DSM-program expenditures and impacts to the year 2000. Only utilities with annual sales greater than 120 GWh were required to report data on their DSM programs to EIA. Of the 1194 such utilities, 363 reported having a DSM program that year. These 363 electric utilities spent $1.2 billion on their DSM programs in 1990, up from $0.9 billion in 1989. Estimates of energy savings (17,100 GWh in 1990 and 14,800 GWh in 1989) and potential reductions in peak demand (24,400 MW in 1990 and about 19,400 MW in 1989) also showed substantial increases. Overall, utility DSM expenditures accounted for 0.7% of total US electric revenues, while the reductions in energy and demand accounted for 0.6% and 4.9% of their respective 1990 national totals. The investor-owned utilities accounted for 70 to 90% of the totals for DSM costs, energy savings, and demand reductions. The public utilities reported larger percentage reductions in peak demand and energy smaller percentage DSM expenditures. These averages hide tremendous variations across utilities. Utility forecasts of DSM expenditures and effects show substantial growth in both absolute and relative terms.

Hirst, E.

1992-06-01T23:59:59.000Z

352

PRELIMINARY UTILITY SERVICE CONNECTION APPLICATION  

E-Print Network (OSTI)

SERVICES: WATER, SANITARY, STORM, GAS, and DISTRICT HEATING Part 3 (a). Water Distribution. Water service.5.7 and Section 02730, Clause 2.5.6). #12;Page 2 of 2 Revised 4 October 2011 Part 3 (c). Gas and District Heating) and Section (TBA-District Heating ­ contact UBC Utilities. · Fax or mail request to UBC Utilities (address

Vellend, Mark

353

Property:OpenEI/UtilityRate/Utility | Open Energy Information  

Open Energy Info (EERE)

Utility Utility Jump to: navigation, search This is a property of type Page. Name: Utility Subproperties This property has the following 1 subproperty: A Data:Add4bb7f-e6bd-4427-a614-3a92bd5ba15d Pages using the property "OpenEI/UtilityRate/Utility" Showing 25 pages using this property. (previous 25) (next 25) 0 0000827d-84d0-453d-b659-b86869323897 + Prairie Land Electric Coop Inc + 000086db-7a5e-4356-9c57-c912f7d1622e + Talquin Electric Coop, Inc + 0003a8b3-04b9-4ecb-b06d-6022e7f0f009 + Central Electric Membership Corporation + 000470c7-df04-47aa-bdd2-d70f0a2c52b3 + New London Electric&Water Util + 000b6dfa-a541-428a-9029-423006e22a34 + City of Plymouth, Wisconsin (Utility Company) + 000db36e-b548-43e7-a283-d37ecc77cef1 + Surprise Valley Electrification Corp. +

354

Grease/fat waste utilized as a fuel. Final report  

Science Conference Proceedings (OSTI)

Chicken processing plants produce wastewater loaded with grease-oil-fat matter. Depending upon plant size, location, and pretreatment requirements some processing plants discharge untreated wastewater directly into publicly owned treatment works (POTW) while other plants pretreat, removing up to 98% of the grease-oil-fat (GOF) matter, prior to discharging the resulting effluent. The purpose of this study is to evaluate the energy potential of the GOF waste, analyze systems to separate the GOF waste from the process wastewater, select possible incineration systems which may utilize the GOF waste as fuel and recover the heat for plant use. The objective of this project is to theoretically determine if the GOF material, presently disposed of as waste, can be utilized as furnace fuel in a manner which is cost effective. Commercially available equipment in the areas of wastewater pretreatment, incineration, and heat recovery are analyzed for effective utilization. Results indicate that chicken processing plant GOF waste can be effectively utilized as fuel rather than disposed as waste which has compounded problems at landfills, treatment plants, oxidation pools, and receiving waters. 2 figures, 11 tables.

Davis, J.A.

1982-09-30T23:59:59.000Z

355

Utility Conservation Programs: A Regulatory and Design Framework  

E-Print Network (OSTI)

Investing in opportunities to conserve electricity is frequently very economic to the energy user. Often, it also is in society's, ratepayers', or a utility's economic interest to promote this conservation by the utility providing a financial incentive to the customer for the investment. Such a conservation program, whether undertaken by a utility on its own initiative or required by a public service commission, raises several issues of public policy that must be carefully examined. First, a regulatory framework is necessary to ensure compatibility between the design of a conservation program and its stated goals. At times, regulatory policies inconsistent with the stated goal of a conservation program have been applied. Second, constraints that necessitate the utility offering less than the theoretical maximum amount of a financial incentive under the applicable regulatory policy need to be recognized. Finally, a methodology to assess the induced impacts of the conservation program is necessary to evaluate the program's cost-effectiveness under any of the chosen regulatory policies.

Norland, D. L.; Wolf, J. L.

1986-06-01T23:59:59.000Z

356

GSA-Utility Interconnection Agreements  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Property Property Asset Management Office of General Counsel Real Property Division Richard R. Butterworth Senior Assistant General Counsel (202) 501-4436 richard.butterworth@gsa.gov The Problem: * Most agreements require indemnity clauses - usually either by tariff or by the submission of standard contracts to PSCs * Federal Government precluded from providing indemnity by: * Anti-deficiency Act - 31 U.S.C. 665(a) * Adequacy of Appropriations Act - 41 U.S.C. 11 GSA - Utility Interconnection Agreements GSA - Utility Interconnection Agreements Exception: Utility Contracts * GAO decision sets the foundation for exception for utility contracts - 59 Comp. Gen. 705 * But it's a narrow exception - B-197583, January 19, 1981 GSA - Utility Interconnection Agreements

357

UCSC EMPLOYEE HOUSING APARTMENTS APPLICATION Rental rates include: rent, refuse collection, common area utilities, groundskeeping services, and repairs and  

E-Print Network (OSTI)

UCSC EMPLOYEE HOUSING APARTMENTS APPLICATION Rental rates include: rent, refuse collection, common. Tenants pay for their own utilities (i.e., electricity, gas, water, telephone and cable services). A $750 for current rental rates): 1 bedroom 1 bdrm deluxe 2 bdrm/1 bath 2 bdrm/2 bath) If you are interested in a two

California at Santa Cruz, University of

358

Proceedings: 1991 Fuel Oil Utilization Workshop  

Science Conference Proceedings (OSTI)

To assist utilities in improving fossil steam plant operations, EPRI continues to conduct annual fuel oil utilization workshops. At the 1991 conference, personnel from 16 electric utilities exchanged ideas on improving residual fuel oil utilization in their generating plants.

1991-05-01T23:59:59.000Z

359

Hualapai Tribal Utility Development Project  

SciTech Connect

The first phase of the Hualapai Tribal Utility Development Project (Project) studied the feasibility of establishing a tribally operated utility to provide electric service to tribal customers at Grand Canyon West (see objective 1 below). The project was successful in completing the analysis of the energy production from the solar power systems at Grand Canyon West and developing a financial model, based on rates to be charged to Grand Canyon West customers connected to the solar systems, that would provide sufficient revenue for a Tribal Utility Authority to operate and maintain those systems. The objective to establish a central power grid over which the TUA would have authority and responsibility had to be modified because the construction schedule of GCW facilities, specifically the new air terminal, did not match up with the construction schedule for the solar power system. Therefore, two distributed systems were constructed instead of one central system with a high voltage distribution network. The Hualapai Tribal Council has not taken the action necessary to establish the Tribal Utility Authority that could be responsible for the electric service at GCW. The creation of a Tribal Utility Authority (TUA) was the subject of the second objective of the project. The second phase of the project examined the feasibility and strategy for establishing a tribal utility to serve the remainder of the Hualapai Reservation and the feasibility of including wind energy from a tribal wind generator in the energy resource portfolio of the tribal utility (see objective 2 below). It is currently unknown when the Tribal Council will consider the implementation of the results of the study. Objective 1 - Develop the basic organizational structure and operational strategy for a tribally controlled utility to operate at the Tribes tourism enterprise district, Grand Canyon West. Coordinate the development of the Tribal Utility structure with the development of the Grand Canyon West Power Project construction of the power infrastructure at Grand Canyon West. Develop the maintenance and operations capacity necessary to support utility operations. Develop rates for customers on the Grand Canyon West mini-grid sufficient for the tribal utility to be self-sustaining. Establish an implementation strategy for tribal utility service at Grand Canyon West Objective 2 - Develop a strategy for tribal utility takeover of electric service on the Reservation. Perform a cost analysis of Reservation electrical service. Develop an implementation strategy for tribal takeover of Reservation electrical service. Examine options and costs associated with integration of the Tribes wind resources.

Hualapai Tribal Nation

2008-05-25T23:59:59.000Z

360

NETL: Coal Utilization By-Products (CUB)  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Technologies > Coal & Power Systems > Innovations for Existing Plants > Coal Utilization Byproducts Innovations for Existing Plants Solid Waste (Coal Utilization...

Note: This page contains sample records for the topic "owned utilities iou" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

American Municipal Power (Public Electric Utilities) - Residential...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Municipal Power (Public Electric Utilities) - Residential Efficiency Smart Program (Ohio) American Municipal Power (Public Electric Utilities) - Residential Efficiency...

362

Energy Crossroads: Utility Energy Efficiency Programs Delaware...  

NLE Websites -- All DOE Office Websites (Extended Search)

Delaware Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Chesapeake Utilities Information for Businesses Delmarva Power...

363

Technology Utilization Program (Newfoundland and Labrador, Canada...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utilization Program (Newfoundland and Labrador, Canada) Technology Utilization Program (Newfoundland and Labrador, Canada) Eligibility Agricultural Commercial Construction Fuel...

364

White Paper: Multi-purpose canister (MPC) for DOE-owned spent nuclear fuel (SNF)  

Science Conference Proceedings (OSTI)

The paper examines the issue, What are the advantages, disadvantages, and other considerations for using the MPC concept as part of the strategy for interim storage and disposal of DOE-owned SNF? The paper is based in part on the results of an evaluation made for the DOE National Spent Fuel Program by the Waste Form Barrier/Canister Team, which is composed of knowledgeable DOE and DOE-contractor personnel. The paper reviews the MPC and DOE SNF status, provides criteria and other considerations applicable to the issue, and presents an evaluation, conclusions, and recommendations. The primary conclusion is that while most of DOE SNF is not currently sufficiently characterized to be sealed into an MPC, the advantages of standardized packages in handling, reduced radiation exposure, and improved human factors should be considered in DOE SNF program planning. While the design of MPCs for DOE SNF are likely premature at this time, the use of canisters should be considered which are consistent with interim storage options and the MPC design envelope.

Knecht, D.A.

1994-04-01T23:59:59.000Z

365

California Utility Vision and Roadmap for the Smart Grid of 2020  

Science Conference Proceedings (OSTI)

California investor-owned utilities have a vision that the California Smart Grid of 2020 will be a more capable, robust, and efficient electricity infrastructure, which will help achieve multiple energy and environmental policy goals. This report describes that vision and presents a detailed roadmap for achieving that vision. The report provides clarity and direction to support California Smart Grid initiatives and the State's energy and environmental policy goals. The report details findings in six doma...

2011-08-29T23:59:59.000Z

366

Utility Energy Savings Contract Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Energy Savings Utility Energy Savings Contract Project Redstone Arsenal, Alabama Presented by Doug Dixon, Pacific Northwest National Laboratory For Mark D. Smith, PE, CEM, CEA Energy Manager, Redstone Arsenal Federal Utility Partnership Working Group - Fall 2010 UNCLASSIFIED UNCLASSIFIED 0 50 100 150 200 250 Klbs FY09 Total Hourly Steam FY09 Total Threshold $22.76 / MMBTU (Minimum take-or-pay base rate) (Consumer Price Index) Average FY09 Natural Gas Price $5.52 / MMBTU $16.91 / MMBTU (High capacity rate) (Petroleum Price Index) Hours UNCLASSIFIED Resolution * Manage the steam load to the minimum take-or- pay thresholds under the existing contract.  Prune the distribution system by eliminating long runs with low density and high thermal losses.  Ensure summer steam loads are utilized.

367

Deregulating the electric utility industry  

E-Print Network (OSTI)

Many functions must be performed in any large electric power system. A specific proposal for a deregulated power system, based on a real-time spot energy marketplace, is presented and analyzed. A central T&D utility acts ...

Bohn, Roger E.

1982-01-01T23:59:59.000Z

368

OpenEI Community - utility  

Open Energy Info (EERE)

60 en Utility Rates API Version 2 is Live http:en.openei.orgcommunityblogutility-rates-api-version-2-live

369

Utility Lines and Facilities (Montana)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations apply to the construction of utility and power lines and facilities. They address the use of public right-of-ways for such construction, underground power lines, and construction...

370

Photovoltaics: New opportunities for utilities  

SciTech Connect

This publication presents information on photovoltaics. The following topics are discussed: Residential Photovoltaics: The New England Experience Builds Confidence in PV; Austin's 300-kW Photovoltaic Power Station: Evaluating the Breakeven Costs; Residential Photovoltaics: The Lessons Learned; Photovoltaics for Electric Utility Use; Least-Cost Planning: The Environmental Link; Photovoltaics in the Distribution System; Photovoltaic Systems for the Rural Consumer; The Issues of Utility-Intertied Photovoltaics; and Photovoltaics for Large-Scale Use: Costs Ready to Drop Again.

Not Available

1991-07-01T23:59:59.000Z

371

Hustisford Utilities | Open Energy Information  

Open Energy Info (EERE)

Hustisford Utilities Hustisford Utilities Jump to: navigation, search Name Hustisford Utilities Place Wisconsin Utility Id 9124 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service between 50kW and 200kW Demand with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service between 50kW and 200kW Demand Industrial Cp-1 TOD Small Power Service between 50kW and 200kW Demand Optional Time-of-Day Service Industrial Cp-1 TOD Small Power Service between 50kW and 200kW Demand Optional

372

Utilities and others ink $560-million energy-efficiency pact in California  

SciTech Connect

Three California investor-owned electric utilities and one gas utility have joined with consumer activists, environmental groups, regulators, and state officials in the signing of an agreement to invest over $560-million on energy-efficiency programs and research during the next two years. The ambitious endeavor sets a goal of $300-million in expenditures for 1991--a 96% increase over 1988--and promises to put rebates into the pockets of homeowners, businesses, and industries that install a wide range of high-tech, energy-saving devices.

1990-03-01T23:59:59.000Z

373

Reading the Tea Leaves: How Utilities in the West Are Managing Carbon Regulatory Risk in their Resource Plans  

Science Conference Proceedings (OSTI)

The long economic lifetime and development lead-time of many electric infrastructure investments requires that utility resource planning consider potential costs and risks over a lengthy time horizon. One long-term -- and potentially far-reaching -- risk currently facing the electricity industry is the uncertain cost of future carbon dioxide (CO2) regulations. Recognizing the importance of this issue, many utilities (sometimes spurred by state regulatory requirements) are beginning to actively assess carbon regulatory risk within their resource planning processes, and to evaluate options for mitigating that risk. However, given the relatively recent emergence of this issue and the rapidly changing political landscape, methods and assumptions used to analyze carbon regulatory risk, and the impact of this analysis on the selection of a preferred resource portfolio, vary considerably across utilities. In this study, we examine the treatment of carbon regulatory risk in utility resource planning, through a comparison of the most-recent resource plans filed by fifteen investor-owned and publicly-owned utilities in the Western U.S. Together, these utilities account for approximately 60percent of retail electricity sales in the West, and cover nine of eleven Western states. This report has two related elements. First, we compare and assess utilities' approaches to addressing key analytical issues that arise when considering the risk of future carbon regulations. Second, we summarize the composition and carbon intensity of the preferred resource portfolios selected by these fifteen utilities and compare them to potential CO2 emission benchmark levels.

Barbose, Galen; Wiser, Ryan; Phadke, Amol; Goldman, Charles

2008-02-01T23:59:59.000Z

374

Unique challenges for storage and disposal of DOE-owned SNF at the INEEL  

SciTech Connect

Non-commercial Spent Nuclear Fuel (SNF) owned by the Department of Energy presents some unique challenges for interim storage as well as ultimate disposal in a repository. There is an important link between Yucca Mountain Repository work and the future needs of the DOE SNF program. Close coordination and early definition of acceptance criteria are essential. Much of the Yucca Mountain Repository work has focused on commercial SNF which has very high structural integrity and a well documented set of characteristics and burn-up histories. In contrast, DOE non-commercial SNF at the Idaho National Environmental and Engineering Laboratory (INEEL) represents over two hundred fifty fuel types, much of which is degraded. Fuel designs by DOE were centered around various test objectives in experimental reactors. The result was a proliferation of fuel types. Interest in enhanced heat transfer led to use of sodium as a bond between the fuel and cladding. The desire for smaller more compact reactors with higher power densities led to a variety of enrichments from less than 20% to greater than 90%. INEEL has most of the US U-233 spent nuclear fuel, which came from breeder reactor concepts and consideration of a thorium fuel cycle. These various fuel types now must be placed in safe, stable interim dry storage. Emphasis is being placed on the use of commercially available dry storage designs and independent spent fuel storage installations licensed under NRC criteria. A lot of technological development is being done to characterize fuels that do not have the documented fabrication and operational histories of commercial LWR fuels. Program objectives are safe interim storage and least cost transition to geological repository storage.

Mathews, T.A.

1998-03-01T23:59:59.000Z

375

PRE-STUDY COMMENTS OF IOWA UTILITIES BOARD ON DOE 2012 ELECTRIC TRANSMISSION CONGESTION STUDY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PRE-STUDY COMMENTS OF IOWA UTILITIES BOARD ON PRE-STUDY COMMENTS OF IOWA UTILITIES BOARD ON DOE 2012 ELECTRIC TRANSMISSION CONGESTION STUDY JANUARY 2012 The Iowa Utilities Board (Board) is pleased to provide these comments as the Department of Energy (DOE) commences its next transmission congestion study (2012). These comments are organized to give DOE a perspective on electric transmission issues in Iowa - transmission planning, congestion, and siting. Iowa has been a leader in wind generation installation as well as manufacturing of wind turbines. Iowa has the second most installed wind capacity of any state. Since the DOE 2009 congestion study, Iowa added 884 MW of wind generation in 2009 -2010. MidAmerican Energy Company (MidAmerican), an Iowa investor owned utility added 593.5 MW in 2011 and plans to

376

Incentive regulation of nuclear power plants by state public utility commissions  

Science Conference Proceedings (OSTI)

This report on incentive regulation of nuclear power plants by state public utility commissions (PUCs). Economic performance incentives established by state PUCs are applicable to the construction or operation of about 45 nuclear power reactors owned by 30 utilities in 17 states. The NRC staff monitors development of the incentives and periodically provides an updated report on all nuclear plant incentives to its regional offices. The staff maintains contact with the PUCs and the utilities responsible for implementing the incentives in order to obtain the updated information and to consider potential safety effects of the incentives. This report presents the NRC staff's concerns on potential safety effects of economic performance incentives. It also includes a plant-by-plant survey that describes the mechanics of each incentive and discusses the financial effects of the incentive on the utility-owner(s) of the plant.

Petersen, J.C.

1987-12-01T23:59:59.000Z

377

Incentive regulation of nuclear power plants by state Public Utility Commissions  

Science Conference Proceedings (OSTI)

Economic performance incentives established by state Public Utility Commissions (PUCs) currently are applicable to the construction or operation of approximately 73 nuclear power reactors owned by 27 utilities with investment greater than 10% in 18 states. The NRC staff monitors development of the incentives and periodically provides an updated report on all nuclear plant incentives to its headquarters and regional offices. The staff maintains contact with the PUCs and the utilities responsible for implementing the incentives in order to obtain the updated information and to consider potential safety effects of the incentives. This report on incentive regulation of nuclear power plants by state PUCs presents the NRC staff's concerns on potential safety effects of economic performance incentives. It also includes a plant-by-plant survey that describes the mechanics of each incentive and discusses the financial effects of the incentive on the utility-owner(s) of the plant.

Martin, R.L.; Olson, J. (Battelle Human Affairs Research Center, Seattle, WA (USA)); Hendrickson, P. (Pacific Northwest Lab., Richland, WA (USA))

1989-12-01T23:59:59.000Z

378

Federal Utility Partnership Working Group - Utility Interconnection Panel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WORKING GROUP - Utility Interconnection Panel M. Renee Jewell, Program/Energy Manager, & Contracting Officer, Forest Service (reneejewell@fs.fed.us) SCENARIO: Fed Agencies had Solar PV Projects To Connect with Utility in California * United States (US) Forest Service (FS) - 1 small Solar Photovoltaic (PV) project; and - 1 small Renewable project (Solar PV) exporting energy to grid. * U.S. National Park Service (NPS) - 24 Small Solar Photovoltaic projects. * U.S. Dept. of Veterans Affairs (VA) - 6 Renewable generation projects of different sizes. FS Region 5 (California) - Solar Photovoltaic Installations Solar PV Project @ Mono Lake Visitor Center (Inyo NF) Solar PV Project (net exporter) @ San Dimas Technology and Development Center SITUATION - Utility Wanted Feds to Sign Its

379

2003 Conference on Unburned Carbon on Utility Fly Ash  

NLE Websites -- All DOE Office Websites (Extended Search)

2003 Conference on Unburned Carbon on Utility Fly Ash 2003 Conference on Unburned Carbon on Utility Fly Ash October 28, 2003 Table of Contents Disclaimer Participants List [PDF-31KB] Papers and Presentations Control Measures Predictive Performance Tools (Including Instrumentation) Processing and Utilization of High-LOI Fly Ash Beneficiation of High-LOI Fly Ash Characterization of High-LOI Fly Ash Poster Presentations Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

380

Utility Solar Generation Valuation Methods  

DOE Green Energy (OSTI)

Tucson Electric Power (TEP) developed, tested and verified the results of a new and appropriate method for accurately evaluating the capacity credit of time variant solar generating sources and reviewed new methods to appropriately and fairly evaluate the value of solar generation to electric utilities. The project also reviewed general integrated approaches for adequately compensating owners of solar generation for their benefits to utilities. However, given the limited funding support and time duration of this project combined with the significant differences between utilities regarding rate structures, solar resource availability and coincidence of solar generation with peak load periods, it is well beyond the scope of this project to develop specific rate, rebate, and interconnection approaches to capture utility benefits for all possible utilities. The project developed computer software based evaluation method models to compare solar generation production data measured in very short term time increments called Sample Intervals over a typical utility Dispatch Cycle during an Evaluation Period against utility system load data. Ten second resolution generation production data from the SGSSS and actual one minute resolution TEP system load data for 2006 and 2007, along with data from the Pennington Street Garage 60 kW DC capacity solar unit installed in downtown Tucson will be applied to the model for testing and verification of the evaluation method. Data was provided by other utilities, but critical time periods of data were missing making results derived from that data inaccurate. The algorithms are based on previous analysis and review of specific 2005 and 2006 SGSSS production data. The model was built, tested and verified by in house TEP personnel. For this phase of the project, TEP communicated with, shared solar production data with and collaborated on the development of solar generation valuation tools with other utilities, including Arizona Public Service, Salt River Project, Xcel and Nevada Power Company as well as the Arizona electric cooperatives. In the second phase of the project, three years of 10 second power output data of the SGSSS was used to evaluate the effectiveness of frequency domain analysis, normal statistical distribution analysis and finally maximum/minimum differential output analysis to test the applicability of these mathematic methods in accurately modeling the output variations produced by clouds passing over the SGSSS array.

Hansen, Thomas N.; Dion, Phillip J.

2009-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "owned utilities iou" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Jefferson Utilities | Open Energy Information  

Open Energy Info (EERE)

Jefferson Utilities Jefferson Utilities Place Wisconsin Utility Id 9690 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service between 50kW and 200kW Demand with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service between 50kW and 200kW Demand Industrial Cp-1 TOD Small Power Service between 50kW and 200kW Demand Optional Time-of-Day Service 7am-9pm with Parallel Generation(20kW or less) Industrial Cp-1 TOD Small Power Service between 50kW and 200kW Demand Optional

382

Renewable energy and utility regulation  

DOE Green Energy (OSTI)

This report summarizes the results of a joint project on renewable energy of the National Association of Regulatory Utility Commissioners (NARUC) and the US DOE. NARUC`S Task Force on Renewable Energy conducted a review of the current state of renewable energy technologies to evaluate their potential and extract key policy lessons from experience already gained in deployment of these technologies in numerous states. The main focus of this effort has been to clarify how utility regulators affect the development of renewable energy resources. The goal of the project was twofold: (1) identify the factors that have led to success or failure or renewable energy technologies in various energy markets, and (2) to develop an agenda on renewable energy and utility regulation for NARUC and the DOE. This report consists of three sections: renewable energy contributions, costs and potential; factors affecting development of renewable energy resources; and a renewable energy agenda for NARUC.

Not Available

1991-04-10T23:59:59.000Z

383

Renewable energy and utility regulation  

DOE Green Energy (OSTI)

This report summarizes the results of a joint project on renewable energy of the National Association of Regulatory Utility Commissioners (NARUC) and the US DOE. NARUC'S Task Force on Renewable Energy conducted a review of the current state of renewable energy technologies to evaluate their potential and extract key policy lessons from experience already gained in deployment of these technologies in numerous states. The main focus of this effort has been to clarify how utility regulators affect the development of renewable energy resources. The goal of the project was twofold: (1) identify the factors that have led to success or failure or renewable energy technologies in various energy markets, and (2) to develop an agenda on renewable energy and utility regulation for NARUC and the DOE. This report consists of three sections: renewable energy contributions, costs and potential; factors affecting development of renewable energy resources; and a renewable energy agenda for NARUC.

Not Available

1991-04-10T23:59:59.000Z

384

PILOTING UTILITY MODELING APPLICATIONS (PUMA) UTILITY BRIEFING PAPERS  

E-Print Network (OSTI)

.g., wholesale, has members, wholesale with retail), number of customers, description of supply sources, and solid waste utilities, as well as engineering and customer services. SPU's Director reports to the Mayor wholesale customers created the Seattle Water Supply Operating Board. The board works on policy

385

The multiple market-exposure of waste management companies: A case study of two Swedish municipally owned companies  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Swedish municipally owned waste management companies are active on political, material, technical, and commercial markets. Black-Right-Pointing-Pointer These markets differ in kind and their demands follow different logics. Black-Right-Pointing-Pointer These markets affect the public service, processing, and marketing of Swedish waste management. Black-Right-Pointing-Pointer Articulating these markets is a strategic challenge for Swedish municipally owned waste management. - Abstract: This paper describes how the business model of two leading Swedish municipally owned solid waste management companies exposes them to four different but related markets: a political market in which their legitimacy as an organization is determined; a waste-as-material market that determines their access to waste as a process input; a technical market in which these companies choose what waste processing technique to use; and a commercial market in which they market their products. Each of these markets has a logic of its own. Managing these logics and articulating the interrelationships between these markets is a key strategic challenge for these companies.

Corvellec, Herve, E-mail: herve.corvellec@ism.lu.se [Department of Service Management, Lund University, Campus Helsingborg, PO Box 882, SE-251 08 Helsingborg (Sweden); Bramryd, Torleif [Department of Environmental Strategy, Lund University, Campus Helsingborg, PO Box 882, SE-251 08 Helsingborg (Sweden)

2012-09-15T23:59:59.000Z

386

Characteristics of Social Networks and Employee Behavior and Performance A Chinese Case Study of a State-Owned Enterprise  

Science Conference Proceedings (OSTI)

Based on the social networks at a Chinese state-owned enterprise, the authors examine the factors that are correlated with employee performance. They delineate two types of performance: task and contextual. The factors in their study are the characteristics ... Keywords: China, Employee Performance, Information Technology Capability, Knowledge Sharing, Social Network Analysis SNA

Jianping Peng; Jing Quan

2012-10-01T23:59:59.000Z

387

Rising Electricity Costs: A Challenge For Consumers, Regulators, And Utilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Update Update Steve Kiesner Director, National Customer Markets FUPWG Spring 2010 Meeting April 14, 2010 What's On the Minds of Your Utilities?  Transformation of the Electricity Industry  Emerging smart technology  Financial reform  Reliability  Major initiatives to address climate change  Gaps / Lack of Clarity in Federal / State Decisions on Infrastructure and Market Issues  Operating in a carbon constrained world EEI  Our members serve 95% of the ultimate customers in the shareholder-owned segment of the industry,  and represent approximately 70% of the U.S. electric power industry.  We also have more than 80 international electric companies as Affiliate Members  Organized in 1933, EEI works closely with all of its members, representing their interests and

388

Canola: Chemistry, Production, Processing and Utilization Chapter 10 Meal Nutrition and Utilization  

Science Conference Proceedings (OSTI)

Canola: Chemistry, Production, Processing and Utilization Chapter 10 Meal Nutrition and Utilization Processing eChapters Processing AOCS Press Downloadable pdf of Chapter 10 Meal Nutrition and Utilization,

389

utility rate | OpenEI Community  

Open Energy Info (EERE)

utility rate utility rate Home Sfomail's picture Submitted by Sfomail(48) Member 17 May, 2013 - 11:14 Utility Rates API Version 2 is Live! API developer OpenEI update utility Utility Companies utility rate Utility Rates version 1 version 2 version 3 web service Smart meter After several months of development and testing, the next generation web service for the utility rate database is finally here! I encourage you to check out the V2 Utility Rates API at http://en.openei.org/services/doc/rest/util_rates Rmckeel's picture Submitted by Rmckeel(297) Contributor 22 June, 2012 - 09:30 Increasing ask query limit developer utility rate An NREL user who is trying to use the utility rate service was having an issue. He writes "I noticed that any rates past 10,000 are not accessible via json. For example, this query only returns two entries:

390

Utility Companies | OpenEI Community  

Open Energy Info (EERE)

Utility Companies Utility Companies Home Sfomail's picture Submitted by Sfomail(48) Member 17 May, 2013 - 11:14 Utility Rates API Version 2 is Live! API developer OpenEI update utility Utility Companies utility rate Utility Rates version 1 version 2 version 3 web service Smart meter After several months of development and testing, the next generation web service for the utility rate database is finally here! I encourage you to check out the V2 Utility Rates API at http://en.openei.org/services/doc/rest/util_rates Graham7781's picture Submitted by Graham7781(1992) Super contributor 29 October, 2012 - 14:46 East Coast Utilities prepare for Hurricane Sandy East Coast Hurricane Sandy OpenEI outages storm United States Utility Companies As Hurricane Sandy continues to track towards the coast of the Eastern

391

Utilization ROLE OF COAL COMBUSTION  

E-Print Network (OSTI)

Center for Products Utilization ROLE OF COAL COMBUSTION PRODUCTS IN SUSTAINABLE CONSTRUCTION and Applied Science THE UNIVERSITY OF WISCONSIN - MILWAUKEE #12;ROLE OF COAL COMBUSTION PRODUCTS, Federal Highway Administration, Washington, DC., U.S.A. SYNOPSIS Over one hundred million tonnes of coal

Wisconsin-Milwaukee, University of

392

Electrochemical Capacitors for Utility Applications  

Science Conference Proceedings (OSTI)

Electrochemical capacitors have over 100 times the energy density of conventional electrolytic capacitors, while retaining the high-power, high-life-cycle properties of conventional capacitors. This report presents a summary of the technical trends, commercialization status, and feasibility of electrochemical capacitor (ECC) technology in utility applications.

2005-08-31T23:59:59.000Z

393

Zymomonas with improved xylose utilization  

DOE Patents (OSTI)

Strains of Zymomonas were engineered by introducing a chimeric xylose isomerase gene that contains a mutant promoter of the Z. mobilis glyceraldehyde-3-phosphate dehydrogenase gene. The promoter directs increased expression of xylose isomerase, and when the strain is in addition engineered for expression of xylulokinase, transaldolase and transketolase, improved utilization of xylose is obtained.

Viitanen, Paul V. (West Chester, PA); Tao, Luan (Havertown, PA); Zhang, Yuying (New Hope, PA); Caimi, Perry G. (Kennett Square, PA); McCutchen, Carol M. (Wilmington, DE); McCole, Laura (East Fallowfield, PA); Zhang, Min (Lakewood, CO); Chou, Yat-Chen (Lakewood, CO); Franden, Mary Ann (Centennial, CO)

2011-08-16T23:59:59.000Z

394

Module Utilization Committee. Final report  

DOE Green Energy (OSTI)

Photovoltaic collector modules were declared surplus to the needs of the US Department of Energy. The Module Utilization Committee was formed to make appropriate disposition of the surplus modules. The final report of that committee accounts for that disposition. The membership and activities of the committee are set forth and the results of its activities are reported.

None

1984-03-01T23:59:59.000Z

395

Energy Crossroads: Utility Energy Efficiency Programs California...  

NLE Websites -- All DOE Office Websites (Extended Search)

for Businesses Southwest Gas Corporation Information for Businesses Truckee Donner Public Utility District Information for Businesses Sacramento Municipal Utility District (SMUD...

396

Aligning Utility Interests with Energy Efficiency Objectives...  

Open Energy Info (EERE)

Aligning Utility Interests with Energy Efficiency Objectives: A Review of Recent Efforts at Decoupling and Performance Incentives Jump to: navigation, search Name Aligning Utility...

397

Partnering with Utilities and Other Program Administrators  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnering with Utilities and Other Ratepayer-Funded Energy Efficiency Program Administrators May 2013 1 Partnering with Utilities and Other Ratepayer-Funded Energy Efficiency...

398

Coldwater Board of Public Utilities - Commercial & Industrial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

here Home Savings Coldwater Board of Public Utilities - Commercial & Industrial Lighting Rebate Program Coldwater Board of Public Utilities - Commercial & Industrial Lighting...

399

Cedarburg Light & Water Utility - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cedarburg Light & Water Utility - Residential Energy Efficiency Rebate Program Cedarburg Light & Water Utility - Residential Energy Efficiency Rebate Program Eligibility Low-Income...

400

PARS II Extraction Utility | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PARS II Extraction Utility DEC1387487110111DekkerPMISExtractionUtilityv8020101217.zip More Documents & Publications Dekker PMIS Extraction Utility Release Notes for the PARS...

Note: This page contains sample records for the topic "owned utilities iou" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

California Energy Commission - Electricity Consumption by Utility  

Open Energy Info (EERE)

Utility (1990-2009) Electricity consumption by Utility company for Commercial, Residential, Ag & Water Pump, Streetlight, Industry, Mining & Construction and Total...

402

Energy Crossroads: Utility Energy Efficiency Programs Colorado...  

NLE Websites -- All DOE Office Websites (Extended Search)

Colorado Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Colorado Springs Utilities Information for Businesses Nebraska Municipal Power Pool...

403

Form:Utility Rate | Open Energy Information  

Open Energy Info (EERE)

Form Edit History Facebook icon Twitter icon Form:Utility Rate Jump to: navigation, search Add or Update Utility Rate Information Retrieved from "http:en.openei.orgw...

404

Federal Energy Efficiency through Utility Partnerships  

SciTech Connect

Two-page fact sheet on FEMP's Federal Utility Program that works with federal agencies and their utilities to reduce energy use.

2007-08-01T23:59:59.000Z

405

Studying the Communications Requirements of Electric Utilities...  

NLE Websites -- All DOE Office Websites (Extended Search)

Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policies- Public Meeting Studying the Communications Requirements of Electric Utilities...

406

NETL: IEP - Coal Utilization By-Products - Utilization Projects -  

NLE Websites -- All DOE Office Websites (Extended Search)

University of North Dakota, EERC - Table of Contents University of North Dakota, EERC - Table of Contents Coal Ash Resources Research Consortium Stabilizing Feedlots Using Coal Ash Environmental Evaluation for Utilization of Ash in Soil Stabilization Coal Ash Resources Research Consortium Background CAEEC is a cooperation among industry, government, and the research community to work together to solve CCB- related problems and promote the environmentally safe, technically sound, and economically viable utilization and disposal of CCBs. Objectives To improve the technical and economic aspects of coal combustion by-product (CCB) management. Description CARRC tasks fall into three general categories: Member-prioritized research tasks, Technical and administrative tasks, and Special projects that support CARRC objectives and strengthen and increase the availability of sound technical data for CARRC use.

407

Utility Marketing Strategies & Pricing Trends  

E-Print Network (OSTI)

Marketing seems to have come out of the utility closet once again, but it is a far sight different from that of the 1970s. While some are still on a sell, Sell, SELL! campaign, most are soberly looking at their customers from a different perspective. They are concerned about losing them to other service territories or seeing them vanish to domestic and foreign competition. There is a sense of a strategic alliance being sought by the most proactive of utilities in which they become allies of their customers. In this sense, the issue of how much these customers purchased from them vanishes into the shadows of the more important elements of the relationships. Oh sure, there still are some pushing technology as the customers answer. And there are others using incentive and other rate gambits to develop strategic load building. But there is a definite trend emerging toward building the relationship for the long haul and putting short range profit or number game objectives on the back burner. This paper investigates the most successful current utility marketing postures, how they are changing, where pricing fits in and what we are likely to see within the next few years. We will also illustrate the potential traps in competitive marketing and customer service that still lie in wait. We still see a major number of current marketing efforts that are unbalanced, unfairly reward luck, are wasteful and counterproductive. As many of you know, we strongly believe marketing must move from technology-based, silver bullet competition, frenetic non-competitive load retention dissipation and load claiming to relational-based marketing in which absolute integrity and service and their consequent trust become paramount. We believe utilities must build honest relationships with all their customers, not merely their energy purchasers. These include their fuel suppliers and regulators. When a utility is not trusted, the competitive situation is reduced to that of a commodity supplier in which price and terms constitute the whole of the relationship. Utilities reduced to this level of inadequate customer service ultimately will lose to those that recognize the alternative of adding value. As the nature and consequences of competition increase, so does the importance of breaking from the methods of the past.

Gilbert, J. S.

1989-09-01T23:59:59.000Z

408

A comparative analysis of business structures suitable for farmer-owned wind power projects in the United States  

E-Print Network (OSTI)

of the states generous net metering program, the absence oftypically waived under net metering tariffs, which enablerequire utilities to offer net metering tariffs, only a few

Bolinger, Mark; Wiser, Ryan

2004-01-01T23:59:59.000Z

409

Electric utility system master plan  

SciTech Connect

This publication contains the electric utility system plan and guidelines for providing adequate electric power to the various facilities of Lawrence Livermore National Laboratory in support of the mission of the Laboratory. The topics of the publication include general information on the current systems and their operation, a planning analysis for current and future growth in energy demand, proposed improvements and expansions required to meet long range site development and the site`s five-year plan.

Erickson, O.M.

1992-10-01T23:59:59.000Z

410

FFTF utilization for irradiation testing  

SciTech Connect

FFTF utilization for irradiation testing is beginning. Two Fuels Open Test Assemblies and one Vibration Open Test Assembly, both containing in-core contact instrumentation, are installed in the reactor. These assemblies will be used to confirm plant design performance predictions. Some 100 additional experiments are currently planned to follow these three. This will result in an average core loading of about 50 test assemblies throughout the early FFTF operating cycles.

Corrigan, D.C.; Julyk, L.J.; Hoth, C.W.; McGuire, J.C.; Sloan, W.R.

1980-01-01T23:59:59.000Z

411

Device for monitoring utility usage  

SciTech Connect

A device for monitoring utility usage for installation and use by homeowners and consumers with existing public utility meters having a disk that is mounted inside a transparent case and that rotates in response to electrical current usage, the device is described comprising: a disk rotation monitoring assembly for mounting on the exterior of the transparent case, said monitoring assembly comprising: (a) a sensor for sensing disk rotation speed and generating a signal in response thereto; and (b) means for mounting said sensor on the transparent case, said mounting means further comprising means for holding said sensor, means for attaching said holding means to the transparent case, and means for adjusting the position of said holding means to enable precise alignment of said sensor with the plane of the disk such that said sensor is in optical communication with the edge of said disk; one or more remote display terminals in electrical communication with said monitoring assembly, each of said one or more remote terminals comprising: (a) means for receiving said signal and processing said signal into utility consumption data; (b) an electronic memory for storing said data; (c) a visual display for displaying data in a reader-usable format about consumption; and (d) a display controller that enables selective displaying of any of said data on said visual display.

Green, R.G.

1993-05-25T23:59:59.000Z

412

Energy Crossroads: Utility Energy Efficiency Programs Tennessee...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tennessee Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Tennessee Valley Authority (TVA...

413

Energy Crossroads: Utility Energy Efficiency Programs Maine ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Maine Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Central Maine Power...

414

Field Evaluation of the Comanagement of Utility Low-Volume Wastes with High-Volume Coal Combustion By-Products: HA Site  

Science Conference Proceedings (OSTI)

Typically, utilities comanage some or all of their low-volume wastes with their high-volume by-products in disposal facilities. This report presents the results of a field study of comanagement of coal combustion by-products at a utility-owned impoundment in the midwestern United States (HA site). The findings from this research provided technical information for use in a study of comanagement practices by the U.S. Environmental Protection Agency (EPA).

2000-10-30T23:59:59.000Z

415

SMUD plans a [open quote]renewable[close quote] future. [Sacramento Municipal Utility District (SMUD)  

Science Conference Proceedings (OSTI)

Sacramento Municipal Utility District (SMUD) is currently developing a plan to meet 54 percent of its projected power needs with renewable energy sources - up from 49 percent today - and increase to 60 percent by 2004. Since the closing of the Rancho Seco nuclear plant, with the loss of 913 MW, SMUD has had to find and develop alternative sources of energy. Besides buying power from other utilities, SMUD has a far reaching integrated resource plan (IRP) that includes many types of renewable energy sources. Among the projects already producing are: the nation's largest photovoltaic power plant, the largest utility owned wind turbine, photovoltaic recharging stations for electric vehicles, and two geothermal projects generating 134 MW.

Garner, W.L.

1994-12-01T23:59:59.000Z

416

Pacific gas electric: 1993 EL P Utility of the Year. Incentive nuclear regulation spurs financial comeback  

SciTech Connect

Incentive agreements for Diablo Canyon nuclear plant helped spur Pacific Gas Electric Co.'s financial comeback. Consistent nuclear plant capacity factors above 80 percent contributed 38 percent of 1992 PG E earnings per share. This, plus aggressive cost cutting and reorganization, industry leading demand-side management, environmental measures and a rate refund and freeze are among the reasons Electric Light Power magazine names Pacific Gas Electric Co. the 1993 EL P Utility of the Year. San Francisco-based PG E is the 25th utility to receive the annual award for investor-owned electric utilities. PG E employees strive to create the kind of environment that can address increasing industry competitiveness. Rather than just doing their jobs, people consistently challenge each other to do their jobs better, trying to anticipate the changes of tomorrow and the next millennium.

Hoske, M.T.; Beaty, W.

1993-12-01T23:59:59.000Z

417

Federal Energy Management Program: Utility Contract Competition  

NLE Websites -- All DOE Office Websites (Extended Search)

Competition to someone by E-mail Competition to someone by E-mail Share Federal Energy Management Program: Utility Contract Competition on Facebook Tweet about Federal Energy Management Program: Utility Contract Competition on Twitter Bookmark Federal Energy Management Program: Utility Contract Competition on Google Bookmark Federal Energy Management Program: Utility Contract Competition on Delicious Rank Federal Energy Management Program: Utility Contract Competition on Digg Find More places to share Federal Energy Management Program: Utility Contract Competition on AddThis.com... Energy Savings Performance Contracts ENABLE Utility Energy Service Contracts Types of Contracts Laws & Regulations Best Practices Financing Decrease Interest Buydown & Buyout Approaches Contract Competition Diversify Project Portfolios

418

Two-way data communication between utility and customer  

SciTech Connect

Distribution automation is the remote control of the distribution network that carries power from local substations to customer meters. The system, which seems to be feasible for the near future, provides two-way communication between utility and customer; not only must the utility operator be able to issue commands to automated equipment but the customer's meter must be able to answer the controller, reporting status and relaying data. Although there are other available, three types of communication systems are being investigated at present as the most feasible: power line carrier, telephone, and radio. Each system has its own special capabilities and limitations. Hybrid systems (two or more different communication systems) are also a possibility. Besides fault location and service restoration, distribution automation could facilitate time-of-day metering, load control, voltage control, and even meter reading. Most aspects of this two-way communication are accepted as beneficial by the customer; load control, however, which could selectively interfere with major appliances like water heaters, air conditioners, etc., during peak demand by selectively switching them off to level peak loads, might not be so readily acceptable. (SAC)

Lihach, N.; Blair, W.

1980-05-01T23:59:59.000Z

419

DETERMINATION OF THE DISTRIBUTION AND INVENTORY OF RADIONUCLIDES WITHIN A SAVANNAH RIVER SITE WATERWAY  

Science Conference Proceedings (OSTI)

An investigation was conducted to evaluate the radionuclide inventory within the Lower Three Runs (LTR) Integrator Operable Unit (IOU) at the U.S. Department of Energys (DOEs) Savannah River Site (SRS). The scope of this effort included the analysis of previously existing sampling and analysis data as well as additional streambed and floodplain sampling and analysis data acquired to delineate horizontal and vertical distributions of the radionuclide as part of the ongoing SRS environmental restoration program, and specifically for the LTR IOU program. While cesium-137 (Cs-137) is the most significant and abundant radionuclide associated with the LTR IOU it is not the only radionuclide, hence the scope included evaluating all radionuclides present and includes an evaluation of inventory uncertainty for use in sensitivity and uncertainty analyses. The scope involved evaluation of the radionuclide inventory in the P-Reactor and RReactor cooling water effluent canal systems, PAR Pond (including Pond C) and the floodplain and stream sediment sections of LTR between the PAR Pond Dam and the Savannah River. The approach taken was to examine all of the available Sediment and Sediment/Soil analysis data available along the P- and R-Reactor cooling water re-circulation canal system, the ponds situated along those canal reaches and along the length of LTR below Par Pond dam. By breaking the IOU into a series of sub-components and sub-sections, the mass of contaminated material was estimated and a representative central concentration of each radionuclide was computed for each compartment. The radionuclide inventory associated with each sub-compartment was then aggregated to determine the total radionuclide inventory that represented the full LTR IOU. Of special interest was the inventory of Cs-137 due to its role in contributing to the potential dose to an offsite member of the public. The overall LTR IOU inventory of Cs-137 was determined to be 75.5 Ci, which is similar to two earlier estimates. This investigation provides an independent, ground-up estimate of Cs-137 inventory in LTR IOU utilizing the most recent field data.

Hiergesell, R.; Phifer, M.

2012-11-09T23:59:59.000Z

420

The integration of renewable energy sources into electric power distribution systems. Volume 2, Utility case assessments  

Science Conference Proceedings (OSTI)

Electric utility distribution system impacts associated with the integration of renewable energy sources such as photovoltaics (PV) and wind turbines (WT) are considered in this project. The impacts are expected to vary from site to site according to the following characteristics: (1) The local solar insolation and/or wind characteristics; (2) renewable energy source penetration level; (3) whether battery or other energy storage systems are applied; and (4) local utility distribution design standards and planning practices. Small, distributed renewable energy sources are connected to the utility distribution system like other, similar kW- and MW-scale equipment and loads. Residential applications are expected to be connected to single-phase 120/240-V secondaries. Larger kw-scale applications may be connected to three-phase secondaries, and larger hundred-kW and MW-scale applications, such as MW-scale windfarms or PV plants, may be connected to electric utility primary systems via customer-owned primary and secondary collection systems. Small, distributed renewable energy sources installed on utility distribution systems will also produce nonsite-specific utility generation system benefits such as energy and capacity displacement benefits, in addition to the local site-specific distribution system benefits. Although generation system benefits are not site-specific, they are utility-specific, and they vary significantly among utilities in different regions. In addition, transmission system benefits, environmental benefits and other benefits may apply. These benefits also vary significantly among utilities and regions. Seven utility case studies considering PV, WT, and battery storage were conducted to identify a range of potential renewable energy source distribution system applications.

Zaininger, H.W.; Ellis, P.R.; Schaefer, J.C. [Zaininger Engineering Co., San Jose, CA (United States)

1994-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "owned utilities iou" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

A study of replacement rules for a parallel fleet replacement problem based on user preference utilization pattern and alternative fuel considerations  

Science Conference Proceedings (OSTI)

Parallel fleet replacement problems deal with determining an optimal replacement schedule that results in a minimal total cost of owning and operating a fleet within a finite planning horizon. In this paper, the fleet consists of service vehicles, varying ... Keywords: Alternative fuels, Parallel fleet replacement, Replacement rules, User preference utilization

Parthana Parthanadee; Jirachai Buddhakulsomsiri; Peerayuth Charnsethikul

2012-08-01T23:59:59.000Z

422

The roles of antitrust law and regulatory oversight in the restructured electricity industry  

SciTech Connect

The introduction of retail wheeling is changing the roles of regulators and the courts. When states unbundle the vertically integrated investor-owned utility (IOU) into generation companies, transmission companies, and distribution companies, antitrust enforcement and policy setting by the state public utility/service commissions (PUCs) will be paramount. As was seen in the deregulation of the airline industry, vigorous enforcement of antitrust laws by the courts and proper policy setting by the regulators are the keys to a successful competitive market. Many of the problems raised in the airline deregulation movement came about due to laxity in correcting clear antitrust violations and anti-competitive conditions before they caused damage to the market. As retail wheeling rolls out, it is critical for state PUCs to become attuned to these issues and, most of all, to have staff trained in these disciplines. The advent of retail wheeling changes the application of the State Action Doctrine and, in turn, may dramatically alter the role of the state PUC--meaning antitrust law and regulatory oversight must step in to protect competitors and consumers from monopolistic abuse.

Glazer, C.A.; Little, M.B.

1999-05-01T23:59:59.000Z

423

Utility Energy Services Contracts: Enabling Documents Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Documents Documents Update San Diego, CA November 28, 2007 Deb Beattie & Karen Thomas Overview  Legislative & Executive Actions  Legal Opinions  Agency Guidance  Contracts  Sample Documents  Resources www.eere.energy.gov/femp/pdfs/28792.pdf Enabling Legislation for Utility Programs Energy Policy Act of 1992 Section 152(f) - Utility Incentive Programs Section 152(f) - Utility Incentive Programs Agencies:  Are authorized and encouraged to participate in utility programs generally available to customers  May accept utility financial incentives, goods, and services generally available to customers  Are encouraged to enter into negotiations with utilities to design cost effective programs to address unique needs of facilities used by agency

424

Energy Crossroads: Utility Energy Efficiency Programs | Environmental  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Programs Energy Efficiency Programs Suggest a Listing Efficiency United The energy efficiency program for 18 Michigan Utilities including Alpena Power Company, Baraga Electric Utility, Bayfield Electric Cooperative, City of Crystal Falls Electric Department, City of Gladstone Department of Power & Light, City of South Haven Public Works, Daggett Electric Company, Hillsdale Board of Public Utilities, Indiana Michigan Power Company, L'Anse Electric Utility, Michigan Gas Utilities, Negaunee Electric Department, The City of Norway Department of Power & Light, SEMCO ENERGY Gas Company, Upper Peninsula Power Company, We Energies, Wisconsin Public Service and Xcel Energy. Energy Company Links A directory of approximately 700 oil and gas companies, utilities and oil

425

Utility Conservation Programs: Opportunities and Strategies  

E-Print Network (OSTI)

This paper examines the use of conservation programs to achieve utility goals in an electric industry environment subject to change. First, the importance of articulating clear goals for the mission of a utility is discussed. Second, a strategic framework for analysis of utility promotion of conservation investment is presented. Third, the rationale, design and marketing of basic conservation strategies based on differences in utility capacity and cost situations are examined. Particular attention is given to evaluating the establishment of a subsidiary by a utility to offer energy management services -- a relatively new concept that: may present great opportunities for many utilities.

Norland, D. L.; Wolf, J. L.

1986-06-01T23:59:59.000Z

426

A comparative analysis of business structures suitable for farmer-owned wind power projects in the United States  

E-Print Network (OSTI)

containing a demand and/or standby charge, it will not beretail rate. Conversely, a standby charge is based on anypower. In other words, a standby charge allows the utility

Bolinger, Mark; Wiser, Ryan

2004-01-01T23:59:59.000Z

427

Tapping into social resources to address occupational health : a network analysis of Vietnamese-owned nail salons  

E-Print Network (OSTI)

Social networks in the Vietnamese nail salon industry were studied for their utility in addressing occupational health risks. Major findings include heavy reliance on family networks for fundamental needs, an extensive ...

Doan, Tam Minh-Thi, 1976-

2004-01-01T23:59:59.000Z

428

"List of Covered Electric Utilities" under the Public Utility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 8 "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2008 Under Title I of the Public Utility Regulatory Policies Act of 1978 (PURPA), the U.S. Department of Energy (DOE) is required to publish a list identifying each electric utility. "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) More Documents & Publications Public Utility Regulatory Policies Act of 1978 (PURPA) as Applicable to the Energy Policy Act of 2005 (EPACT 2005) - List of Covered Electric Utilities. Public Utility Regulatory Policies Act of 1978 (PURPA) as Applicable to the Energy Policy Act of 2005 (EPACT 2005) -List of Covered Electric Utilities - 2006 "List of Covered Electric Utilities" under the Public Utility

429

Finding Utility Companies Under a Given Utility ID | OpenEI Community  

Open Energy Info (EERE)

Finding Utility Companies Under a Given Utility ID Finding Utility Companies Under a Given Utility ID Home > Groups > Developer Jayhuggins's picture Submitted by Jayhuggins(15) Member 22 June, 2012 - 09:39 Utility+Utility Access Map Here's a quick way to find all the utility company pages under a given utility id. From the Special Ask page, in the query box enter the following: [[Category:Utility Companies]][[EiaUtilityId::15248]] substituting your utility id of interest for 15248, and click "Find results". Groups: Developer Login to post comments Jayhuggins's blog Latest blog posts Rmckeel The utility rate database version 1 API is now deprecated Posted: 6 Sep 2013 - 14:00 by Rmckeel Jweers New Robust References! Posted: 7 Aug 2013 - 18:23 by Jweers 1 comment(s) 1 of 10 ›› Groups Menu You must login in order to post into this group.

430

Practical Handbook of Soybean Processing and Utilization Chapter 7 Soybean Meal Processing and Utilization  

Science Conference Proceedings (OSTI)

Practical Handbook of Soybean Processing and Utilization Chapter 7 Soybean Meal Processing and Utilization Processing eChapters Processing AOCS Press Downloadable pdf of Chapter 7 Soybean Meal Processing and Util

431

Canola: Chemistry, Production, Processing and UtilizationChapter 9 Oil Nutrition and Utilization  

Science Conference Proceedings (OSTI)

Canola: Chemistry, Production, Processing and Utilization Chapter 9 Oil Nutrition and Utilization Processing eChapters Processing AOCS Press Downloadable pdf of Chapter 9 Oil Nutrition and Utilization from ...

432

Practical Handbook of Soybean Processing and UtilizationChapter 20 Soybean Oil Products Utilization: Shortenings  

Science Conference Proceedings (OSTI)

Practical Handbook of Soybean Processing and Utilization Chapter 20 Soybean Oil Products Utilization: Shortenings Processing eChapters Processing AOCS Press Downloadable pdf of Chapter 20 Soybean Oil Products Util

433

Electric Utility Measurement & Verification Program  

E-Print Network (OSTI)

BC Hydro is an electric utility with a service area covering over 95% of the province of British Columbia in Canada. Power Smart is BC Hydros demand-side-management (DSM) division. Power Smart develops, operates and manages various DSM programs for residential, commercial and industrial customers. The Measurement and Verification (M&V) of applicable Power Smart Industrial projects is the process of verifying the results of the implementation of energy conservation measures (ECMs) at industrial customer facilities. Power Smart M&V activities are based on the International Performance Measurement & Verification Protocol (IPMVP); a consensus document produced with the international support of industry and government. This paper discusses BC Hydros M&V program and the M&V results from industrial projects. Several case history studies will also be reviewed. The case studies reviewed involve aeration motor speed controls upgrade, steam turbine controls upgrade and natural gas liquid pump speed controls upgrade.

Lau, K.; Henderson, G.; Hebert, D.

2007-05-01T23:59:59.000Z

434

Energy efficiency and electric utilities  

SciTech Connect

Twenty years have now elapsed since the energy crisis irrevocably changed world energy priorities. The energy crisis banished all apparitions of cheap and almost limitless energy and made the public keenly aware of its scarcity. The sharp rise in energy prices that followed the Arab oil embargo created strong market incentives to conserve energy. Most users have substantially improved the efficiency with which they use energy, although one might lament that the gains have not been larger. In contrast to the increased efficiency with which electricity and other forms of energy are used, electric utilities themselves have singularly failed to improve their heat efficiency in generating electricity. This failure can be attributed to regulation preventing market forces from creating incentive to improve efficiency.

Studness, C.M.

1994-03-15T23:59:59.000Z

435

Spectral utilization in thermophotovoltaic devices  

DOE Green Energy (OSTI)

Multilayer assemblies of epitaxially-grown, III-V semiconductor materials are being investigated for use in thermophotovoltaic (TPV) energy conversion applications. It has been observed that thick, highly-doped semiconductor layers within cell architectures dominate the parasitic free-carrier absorption (FCA) of devices at wavelengths above the bandgap of the semiconductor material. In this work, the wavelength-dependent, free-carrier absorption of p- and n-type InGaAs layers grown epitaxially onto semi-insulating (SI) InP substrates has been measured and related to the total absorption of long-wavelength photons in thermophotovoltaic devices. The optical responses of the TPV cells are then used in the calculation of spectral utilization factors and device efficiencies.

Clevenger, M.B.; Murray, C.S.

1997-12-31T23:59:59.000Z

436

Utility Service Renovations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Service Renovations Utility Service Renovations Utility Service Renovations October 16, 2013 - 4:59pm Addthis Renewable Energy Options for Utility Service Renovations Photovoltaics Wind Any upgrade to utility service provides an opportunity to revisit a Federal building's electrical loads and costs, but it also may provide an economic way to bundle the upgrade with an onsite renewable electricity project during renovation. Upgrading utility service to the site may involve improving or adding a transformer, upgrading utility meters, or otherwise modifying the interconnection equipment or services with the utility. In some cases, the upgrade may change the tariff structure for the facility and may qualify the property for a different structure with lower overall costs. In all cases, the implementation of renewable energy technologies

437

Utility Rate | OpenEI Community  

Open Energy Info (EERE)

Utility Rate Utility Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: API Type Term Title Author Replies Last Post sort icon Blog entry API The utility rate database version 1 API is now deprecated Rmckeel 6 Sep 2013 - 14:00 Blog entry API Lighting Electricity Rates on OpenEI Sfomail 31 May 2013 - 12:04 Blog entry API Utility Rates API Version 2 is Live! Sfomail 17 May 2013 - 11:14 Groups Menu You must login in order to post into this group. Recent content There is currently no way to s... ranking of utilities by demand charge? FYI, OpenEI now accommodates t... Very useful information. Thank... The utility rate database version 1 API is now deprecated more Group members (28) Managers: Dloomis

438

Clarksdale Public Utilities | Open Energy Information  

Open Energy Info (EERE)

Clarksdale Public Utilities Clarksdale Public Utilities Jump to: navigation, search Name Clarksdale Public Utilities Place Mississippi Utility Id 3702 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes NERC SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Church and Fraternal Commercial Church and Fraternal-All Electric Commercial Commercial All Electric/Governmental All Electric/Utility All Electric Commercial Commercial Small/Governmental Small/Utility Small\ Commercial

439

Utility Contract Competition | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Competition Competition Utility Contract Competition October 7, 2013 - 2:26pm Addthis Opening utility energy service contracts to competing franchised utility companies ensures Federal agencies get the best value for their projects. Federal agencies are not legally required to compete for utility incentive services provided by the "established source" utility in the utility's franchised service territory. If services are available, the Energy Policy Act of 1992 states that there should be no restriction on Federal facilities directly benefiting from the services the same as any other customer. The exception is if there is more than one serving utility offering utility energy services (e.g., a gas company and an electric company). In this case, the Federal Acquisition Regulations and good fiscal management

440

Keewatin Public Utilities | Open Energy Information  

Open Energy Info (EERE)

Keewatin Public Utilities Keewatin Public Utilities Jump to: navigation, search Name Keewatin Public Utilities Place Minnesota Utility Id 10089 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Commercial Average Rates Residential: $0.0883/kWh Commercial: $0.0889/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Keewatin_Public_Utilities&oldid=410929" Categories: EIA Utility Companies and Aliases

Note: This page contains sample records for the topic "owned utilities iou" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

U.S. Refining Capacity Utilization  

Reports and Publications (EIA)

This article briefly reviews recent trends in domestic refining capacity utilization and examines in detail the differences in reported crude oil distillation capacities and utilization rates among different classes of refineries.

Tancred Lidderdale

1995-10-01T23:59:59.000Z

442

Spot pricing of public utility services  

E-Print Network (OSTI)

This thesis analyzes how public utility prices should be changed over time and space. Earlier static and non spatial models of public utility pricing emerge as special cases of the theory developed here. Electricity is ...

Bohn, Roger E.

1982-01-01T23:59:59.000Z

443

Practical Handbook of Soybean Processing and Utilization  

Science Conference Proceedings (OSTI)

This new Practical Handbook of Soybean Processing and Utilization is intended to provide a single source of practical information on the subject to an international audience. Practical Handbook of Soybean Processing and Utilization Processing agricultura

444

Liberty Utilities (Electric) - Commercial New Construction Rebate...  

Open Energy Info (EERE)

Service Department Liberty Utilities Address PO Box 960 Place Northborough, Massachusetts ZipPostal Code 1532-0960 Phone (800) 375-7413 Website http:liberty-utilities.comeast...

445

* Canola: Chemistry, Production, Processing, and Utilization  

Science Conference Proceedings (OSTI)

Volume 4 in the AOCS Monograph Series on Oilseeds. * Canola: Chemistry, Production, Processing, and Utilization Processing agricultural algae algal analytical aocs articles biomass biotechnology By-product Utilization courses detergents division division

446

Federal Utility Program Overview (Fact Sheet)  

SciTech Connect

Fact sheet overview of the U.S. Department of Energy (DOE) Federal Energy Management Program's (FEMP) Federal Utility Program, including common contracts and services available to Federal agencies through local serving utilities.

Not Available

2009-07-01T23:59:59.000Z

447

Form:Utility Company | Open Energy Information  

Open Energy Info (EERE)

Form Edit History Facebook icon Twitter icon Form:Utility Company Jump to: navigation, search Input your utility company name below to add to the registry. If the company is...

448

Federal Utility Program Overview (Fact Sheet)  

SciTech Connect

Fact sheet overview of the U.S. Department of Energy (DOE) Federal Energy Management Program's (FEMP) Federal Utility Program, including common contracts and services available to Federal agencies through local serving utilities.

2009-07-01T23:59:59.000Z

449

Federal Energy Management Program: Federal Utility Partnership Working  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Utility Federal Utility Partnership Working Group Utility Partners to someone by E-mail Share Federal Energy Management Program: Federal Utility Partnership Working Group Utility Partners on Facebook Tweet about Federal Energy Management Program: Federal Utility Partnership Working Group Utility Partners on Twitter Bookmark Federal Energy Management Program: Federal Utility Partnership Working Group Utility Partners on Google Bookmark Federal Energy Management Program: Federal Utility Partnership Working Group Utility Partners on Delicious Rank Federal Energy Management Program: Federal Utility Partnership Working Group Utility Partners on Digg Find More places to share Federal Energy Management Program: Federal Utility Partnership Working Group Utility Partners on AddThis.com...

450

Utility residential new construction programs: Going beyond the code. A report from the Database on Energy Efficiency Programs (DEEP) Project  

SciTech Connect

Based on an evaluation of 10 residential new construction programs, primarily sponsored by investor-owned utilities in the United States, we find that many of these programs are in dire straits and are in danger of being discontinued because current inclusion of only direct program effects leads to the conclusion that they are not cost-effective. We believe that the cost-effectiveness of residential new construction programs can be improved by: (1) promoting technologies and advanced building design practices that significantly exceed state and federal standards; (2) reducing program marketing costs and developing more effective marketing strategies; (3) recognizing the role of these programs in increasing compliance with existing state building codes; and (4) allowing utilities to obtain an ``energy-savings credit`` from utility regulators for program spillover (market transformation) impacts. Utilities can also leverage their resources in seizing these opportunities by forming strong and trusting partnerships with the building community and with local and state government.

Vine, E.

1995-08-01T23:59:59.000Z

451

XYLOSE UTILIZATION IN RECOMBINANT ZYMOMONAS - Energy ...  

Engineering these strains to increase ribose-5-phosphate isomerase activity led to reduced ribulose accumulation, improved growth, improved xylose utilization, ...

452

PNNL: Available Technologies: Energy & Utilities Industry  

Industry: Energy & Utilities. Click on the portfolios below to view the technologies that may have potential applications in the Energy & ...

453

Cedarburg Light & Water Utility - Commercial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Rebate Program Cedarburg Light & Water Utility - Commercial Energy Efficiency Rebate Program Eligibility Agricultural Commercial Fed. Government Industrial Local...

454

Energy Crossroads: Utility Energy Efficiency Programs Minnesota...  

NLE Websites -- All DOE Office Websites (Extended Search)

Minnesota Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Minnesota Power Information for Businesses Xcel Energy (Minnesota...

455

Utility Rebates and Incentive Programs (Fact Sheet)  

SciTech Connect

Fact sheet overview of the Federal Utility Partnership Working Group (FUPWG), including group objectives, activities, and services.

Not Available

2009-07-01T23:59:59.000Z

456

Cedar Falls Utilities - Residential Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Program Cedar Falls Utilities - Residential Energy Efficiency Rebate Program Eligibility Residential Savings For Heating & Cooling Commercial...

457

Energy Crossroads: Utility Energy Efficiency Programs Indiana...  

NLE Websites -- All DOE Office Websites (Extended Search)

Indiana Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Duke Energy Information for Businesses VECTREN...

458

Coldwater Board of Public Utilities - Commercial & Industrial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial & Industrial Lighting Rebate Program Coldwater Board of Public Utilities - Commercial & Industrial Lighting Rebate Program Eligibility Commercial Industrial Local...

459

Avista Utilities (Electric) - Commercial Energy Efficiency Incentives...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Incentives Program Avista Utilities (Electric) - Commercial Energy Efficiency Incentives Program Eligibility Commercial Industrial InstallerContractor Savings...

460

Energy Crossroads: Utility Energy Efficiency Programs District...  

NLE Websites -- All DOE Office Websites (Extended Search)

District of Columbia Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Pepco Information for Businesses Washington Gas...

Note: This page contains sample records for the topic "owned utilities iou" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Energy Crossroads: Utility Energy Efficiency Programs Mississippi...  

NLE Websites -- All DOE Office Websites (Extended Search)

Mississippi Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Entergy Corporation (Mississippi) Information for Businesses Mississippi Power...

462

Energy Crossroads: Utility Energy Efficiency Programs Hawaii...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hawaii Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Hawaiian Electric Company, Inc. (HECO...

463

Utility Energy Service Contracts - Lessons Learned  

NLE Websites -- All DOE Office Websites (Extended Search)

Service Contracts-Lessons Learned Service Contracts-Lessons Learned Utility Energy Services Contracts Lessons Learned Water Conservation Negotiating Financing Lowering Finance Rates Utility Energy Service Contracts-Lessons Learned 2 -- FEDERAL ENERGY MANAGEMENT PROGRAM Contents Introduction .............................................................................................................................................................................3 Financing Utility Energy Services Contracts ..........................................................................................................................3 Understanding Financing Factors ...........................................................................................................................................3

464

Electric Utility Marketing Guide to Foodservice  

Science Conference Proceedings (OSTI)

Business groups apply rigorous evaluation standards to guide them toward increased efficiency. Utility foodservice programs are not immune to this same sort of scrutiny. Designed to address key issues facing utility foodservice programs, this marketing guide is essentially a set of crucial guidelines and advice. This information can assist utilities servicing the foodservice industry to become more profitable.

1998-11-09T23:59:59.000Z

465

Utility Energy Service Contracts - Lessons Learned  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Service Contracts-Lessons Learned Service Contracts-Lessons Learned Utility Energy Services Contracts Lessons Learned Water Conservation Negotiating Financing Lowering Finance Rates Utility Energy Service Contracts-Lessons Learned 2 -- FEDERAL ENERGY MANAGEMENT PROGRAM Contents Introduction .............................................................................................................................................................................3 Financing Utility Energy Services Contracts ..........................................................................................................................3 Understanding Financing Factors ...........................................................................................................................................3

466

Distributed Generation and Renewable Energy in the Electric Cooperative Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

Generation and Generation and Renewable Energy in the Electric Cooperative Sector Ed Torrero Cooperative Research Network (CRN) National Rural Electric Cooperative Association September 22, 2004 Co-op Basics  Customer owned  Serve 35 million people in 47 states  75 percent of nation's area  2.3 million miles of line is close to half of nation's total  Growth rate twice that of IOU Electrics  Six customers per line-mile vs 33 for IOU  Co-ops view DP as a needed solution; not as a "problem" Broad Range of Technologies Chugach EA 1-MW Fuel Cell Installation Post Office in Anchorage, AK Chugach EA Microturbine Demo Unit at Alaska Village Electric Co-op CRN Transportable 200kW Fuel Cell at Delta- Montrose EA in Durango, CO Plug Power Fuel Cell at Fort Jackson, SC

467

"List of Covered Electric Utilities" under the Public Utility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Revised 6 Revised "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2006 Revised Under Title I of the Public Utility Regulatory Policies Act of 1978 (PURPA), the U.S. Department of Energy (DOE) is required to publish a list identifying each electric utility. "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) More Documents & Publications "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2008 Public Utility Regulatory Policies Act of 1978 (PURPA) as Applicable to the Energy Policy Act of 2005 (EPACT 2005) - List of Covered Electric Utilities. Public Utility Regulatory Policies Act of 1978 (PURPA) as Applicable to the

468

Community Renewable Energy Deployment: Sacramento Municipal Utility  

Open Energy Info (EERE)

Deployment: Sacramento Municipal Utility Deployment: Sacramento Municipal Utility District Projects Jump to: navigation, search Name Community Renewable Energy Deployment: Sacramento Municipal Utility District Projects Agency/Company /Organization US Department of Energy Focus Area Agriculture, Economic Development, Greenhouse Gas, Renewable Energy, Biomass - Anaerobic Digestion, Solar - Concentrating Solar Power, Solar, - Solar Pv, Biomass - Waste To Energy Phase Bring the Right People Together, Develop Finance and Implement Projects Resource Type Case studies/examples Availability Publicly available--Free Publication Date 2/2/2011 Website http://www1.eere.energy.gov/co Locality Sacramento Municipal Utility District, CA References Community Renewable Energy Deployment: Sacramento Municipal Utility District Projects[1]

469

Utilization Technology Institute | Open Energy Information  

Open Energy Info (EERE)

Institute Institute Jump to: navigation, search Name Utilization Technology Institute Place Des Plaines, IL References Utilization Technology Institute[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Utilization Technology Institute is a company located in Des Plaines, IL. References ↑ "Utilization Technology Institute" Retrieved from "http://en.openei.org/w/index.php?title=Utilization_Technology_Institute&oldid=381738" Categories: Clean Energy Organizations Companies Organizations What links here Related changes

470

A utility`s perspective of the market for IGCC  

SciTech Connect

I believe, in the short-term U. S. market that IGCC`s primary competition is, natural gas-fired combined cycle technology. I believe that in order for IGCC to compete on a commercial basis, that natural gas prices have to rise relative to coal prices, and that the capital cost of the technology must come down. While this statement may seem to be somewhat obvious, it raises two interesting points. The first is that while the relative pricing of natural gas and coal is not generally within the technology supplier`s control, the capital cost is. The reduction of capital cost represents a major challenge for the technology suppliers in order for this technology to become commercialized. The second point is that the improvements being achieved with IGCC efficiencies probably won`t help it outperform the effects of natural gas pricing. This is due to the fact that the combined cycle portion of the IGCC technology is experiencing the most significant improvements in efficiency. I do see, however, a significant advantage for IGCC technology compared to conventional pulverized coal-fired units. As IGCC efficiencies continue to improve, combined with their environmentally superior performance, I believe that IGCC will be the ``technology of choice`` for utilities that install new coal-fired generation. We have achieved economic justification of our project by virtue of the DOE`s funding of $120 million awarded in Round III of their Clean Coal Technology Program. This program provides the bridge between current technology economics and those of the future. And Tampa Electric is pleased to be taking a leadership position in furthering the IGCC knowledge base.

Black, C.R. [Tampa Electric Co., FL (United States)

1993-08-01T23:59:59.000Z

471

Improved motors for utility applications. Volume 2. Industry assessment study. Final report  

SciTech Connect

Auxiliary drive motor failures in electric utility applications result in large repair costs and, energy replacement costs. In order to assess the motor reliability experience of the utility industry and identify specific problem areas, information or more than 4800 motors at 132 generating units owned by 56 utilities was collected. The computerized database encompasses all fuel sources, geographic factors and motor manufacturers. Analysis of the data, field interviews with utilities across the country and technical judgment were used to identify the major factors influencing motor reliability. In total, 1221 failures were reported which represents a rate of 4.6% failure per motor per year. Several utilities reported experience as good as 1 or 2% and others as poor as 12%. Although all manufacturers can supply reliable equipment for most applications, failures of specific components in certain specific applications appear to be associated with specific manufacturers. However, overall, 22% of all reported failures were attributed to winding failure and 13% to sleeve bearings. Numerous examples of misapplication were discovered such as the horizontal motor which was vertically mounted by an OEM, inadequately balanced hydraulic thrust loads in a packaged motor/pump system and inappropriate enclosure specified for a motor located outdoors.The internal procedures and practices of those utilities which had particularly low failure rate experience included such factors as, stringent specifications, objective purchasing policies, adequate record keeping and preventative maintenance programs. Auxiliary large drive motor failures are estimated to cost the average utility over $350,000 per unit per year for alternate energy source during outages. Future cooperative efforts by the manufacturers, the A and E firms, the OEM's and the utilities could significantly reduce this value.

Mighdoll, P.; Bloss, R.P.; Hayashi, F.

1982-10-01T23:59:59.000Z

472

Domestic utility attitudes toward foreign uranium supply  

SciTech Connect

The current embargo on the enrichment of foreign-origin uranium for use in domestic utilization facilities is scheduled to be removed in 1984. The pending removal of this embargo, complicated by a depressed worldwide market for uranium, has prompted consideration of a new or extended embargo within the US Government. As part of its on-going data collection activities, Nuclear Resources International (NRI) has surveyed 50 domestic utility/utility holding companies (representing 60 lead operator-utilities) on their foreign uranium purchase strategies and intentions. The most recent survey was conducted in early May 1981. A number of qualitative observations were made during the course of the survey. The major observations are: domestic utility views toward foreign uranium purchase are dynamic; all but three utilities had some considered foreign purchase strategy; some utilities have problems with buying foreign uranium from particular countries; an inducement is often required by some utilities to buy foreign uranium; opinions varied among utilities concerning the viability of the domestic uranium industry; and many utilities could have foreign uranium fed through their domestic uranium contracts (indirect purchases). The above observations are expanded in the final section of the report. However, it should be noted that two of the observations are particularly important and should be seriously considered in formulation of foreign uranium import restrictions. These important observations are the dynamic nature of the subject matter and the potentially large and imbalanced effect the indirect purchases could have on utility foreign uranium procurement.

1981-06-01T23:59:59.000Z

473

Regulated utilities and solar energy: a legal-economic analysis of the major issues affecting the solar commercialization effort  

DOE Green Energy (OSTI)

The reaction of public utilities to the addition (and competitive) sources of energy supplied by solar technologies will have a significant impact on the commercialization of solar energy. Decentralized applications of solar energy need utility-produced power to back up the energy produced by solar means. The cost and availability of this power will largely determine the acceptance of solar energy. There are three legal issues surrounding the role of utilities in the solar commercialization effort: (1) the extent to which utilities may own, sell, lease, finance, or service solar devices for utility customers; (2) the degree to which solar-powered utilities may be able to compete with existing utilities; and (3) the degree to which various utility rate structures will be allowed to penalize decentralized solar users. The impact of state constitutional and statutory provisions upon these issues is examined, along with relevant federal constitutional doctrines. Finally, the statutes of the National Energy Act, many of which specifically address the above issues, are discussed.

Laitos, J.; Feuerstein, R. J.

1979-06-01T23:59:59.000Z

474

Nome Joint Utility Systems | Open Energy Information  

Open Energy Info (EERE)

Joint Utility Systems Joint Utility Systems Jump to: navigation, search Name Nome Joint Utility Systems Place Alaska Utility Id 13642 Utility Location Yes Ownership M NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Electrical Charge Residential Power Cost Equalization Average Rates Residential: $0.3600/kWh Commercial: $0.3310/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Nome_Joint_Utility_Systems&oldid=411195

475

Cairo Public Utility Company | Open Energy Information  

Open Energy Info (EERE)

Cairo Public Utility Company Cairo Public Utility Company Jump to: navigation, search Name Cairo Public Utility Company Place Illinois Utility Id 2776 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Residential Residential Average Rates Residential: $0.1160/kWh Commercial: $0.1140/kWh Industrial: $0.0654/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Cairo_Public_Utility_Company&oldid=409150

476

Gowrie Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Gowrie Municipal Utilities Gowrie Municipal Utilities Jump to: navigation, search Name Gowrie Municipal Utilities Place Iowa Utility Id 7424 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Residential Residential Average Rates Residential: $0.0976/kWh Commercial: $0.0900/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Gowrie_Municipal_Utilities&oldid=41075

477

Building Energy Software Tools Directory: Utility Manager  

NLE Websites -- All DOE Office Websites (Extended Search)

Utility Manager Utility Manager Utility Manager logo Utility Manager™ captures data from historical and current utility bills every month into its centralized database, helping clients measure and energy costs and usage. Utility Manager™ provides energy, operational and financial managers with a series of customizable reports to help shape future decisions regarding energy costs and usage. Screen Shots Keywords Central capture of utility data for cost and energy usage reporting and reduction Validation/Testing Software has been rigorously tested internally throughout the course of its development and ongoing maintenance and enhancement (more than 15 years). Expertise Required Basic computer skills and understanding of energy accounting principles. Users 400-500 U.S. and Canada (primarily U.S.).

478

Knoxville Utilities Board | Open Energy Information  

Open Energy Info (EERE)

Knoxville Utilities Board Knoxville Utilities Board (Redirected from KUB) Jump to: navigation, search Name Knoxville Utilities Board Place Knoxville, Tennessee Utility Id 10421 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] SGIC[2] Energy Information Administration Form 826[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Knoxville Utilities Board Smart Grid Project was awarded $3,585,022 Recovery Act Funding with a total project value of $9,356,989. Utility Rate Schedules Grid-background.png FIVE-MINUTE RESPONSE (5 MR) INTERRUPTIBLE POWER Commercial GSA (1) 0KW-50KW Commercial OUTDOOR LIGHTING Part B- Mercury Vapor 1000W Lighting

479

UGI Utilities, Inc | Open Energy Information  

Open Energy Info (EERE)

Utilities, Inc Utilities, Inc Jump to: navigation, search Name UGI Utilities, Inc Place Pennsylvania Utility Id 19390 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Commercial: $0.0204/kWh Industrial: $0.0373/kWh The following table contains monthly sales and revenue data for UGI Utilities, Inc (Pennsylvania).

480

Lawrenceburg Municipal Utils | Open Energy Information  

Open Energy Info (EERE)

Lawrenceburg Municipal Utils Lawrenceburg Municipal Utils Jump to: navigation, search Name Lawrenceburg Municipal Utils Place Indiana Utility Id 10798 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0749/kWh Commercial: $0.1150/kWh Industrial: $0.0597/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Lawrenceburg_Municipal_Utils&oldid=410978

Note: This page contains sample records for the topic "owned utilities iou" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.